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CHAPTER I 

INTRODUCTION AND SUMMARY 

In this thesis, we obtain limit theorems for some sto- 

chastic processes arising in single server queuing systems. 

These systems are described in terms of the arrival and 

service mechanisms besides the priority rule used for the 

servicing order of the customers.  The ratio of the mean 

service time to the mean interarrival time of the customers, 

called the traffic intensity and denoted by p, plays an 

important role in the analysis of a queuing system.  When 

p < 1, the stochastic processes (queue length, waiting time) 

associated with the system, converge in distribution to 

non-degenerate limiting distributions; this fact is expressed 

by saying that the system attains a steady state.  On the 

other hand, no such steady state exists in the case  p ^ 1. 

Of course, one could introduce some mechanism, such as finite 

waiting room or customer impatience, which would keep the 

system stable even when p ^ 1.  However, these mechanisms do 

not have any relevance to this thesis. Also, throughout this 

work, we deal solely with the first-come-first-served priority 

rule. 

Our objective is to investigate the cas^ p > 1 by 

exhibiting some properties of the behavior of the afore- 

mentioned stochastic processes.  We shall demonstrattthat 

these processes, suitably translated and scaled, possess 



non-degervrate limit distributions. The limit theorems are 

obtained by considering limiting orperations on the two varia- 

bles, traffic intensity and the time parameter. We give below 

a brief account of the work done in this area. 

The area of research in the case of so-called heavy 

traffic, namely, when the traffic intensity p is less than 

but close to unity, was initiated by Kingman [15] in 1961.  He 

considers the distribution of the waiting time in the single 

server queue with general independent input and general service 

time; this system is usually denoted by the symbol Gl|G|l. 

Let us denote the service time of the n   customer by v^ J      n 

and the interval between the arrival times of the n   and 

st 
(n+1)   customers by u .  The sequences of independent and 

identically distributed  (i.i.d.) random variables,  {u } and 

{v }, are assumed to be independent of each o*:her. Consequently, 

the random variables defined by X = v - u , form an i.i.d. 
n   n   n 

sequence. Let a = Varfx } < *, and set 

E(Xn) 
(1) 

■ ■■" II 

!3 = Ji V where  S. = J X•.  Starting from this xesult, Kingman's 

Letting W  denote the waiting time of the  n   customer, 

Lindley [18] has shown that, if W, = 0, then ■ 

■ 

^•'Vl - "l = Prf'nax(sl,S2,-,-,Sn> i "1  •    (2) 

• 
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result states that+ 

/ 

lim PrjJ W(o) > x} = < 
a * 0   ö 

e-2x  , x > 0 

1      x < 0   .       (3) 

where W(a) =  lim W (o), o being used explicitly in the 
n ■► OR " 

symbol Wn(o)  for the waiting time. Stated in words, this 

means that for small, but positive a, the limiting waiting 

time has approximately the negative exponential distribution 

with mean o/2o. The traffic intensity and the parameter a 

are connected by the relation 

E(vn)  E(Xn) 
p s ETTTT = ETTTT + l   • <*> 

n     n 

Thus, o=o    corresponds to    p  = 1,  and    a    small but positive 

corresponds to    p    close to but less than unity. 

Subsequent to 1961, a number of authors have obtained more 

general results in heavy traffic theory.    Notable contributions 

have been made by Prokhorov  [24] and Borovkov [2,3].     Prokhorov's 

work exhibits the interplay between the two limiting operations, 

n ■»■ eo    and    p -»• 1    (equivalently,   6   = 1-p •»• 0).    He exhibits 
2 

a number of possible limit    theorems depending on whether    n 6 

converges  to zero, a positive  constant or plus infinity.    The 

T    x + c    means that    x    approaches    c    from above.    Similarly, 
x t c    denotes the approach from below. 

mmmmmam^mmmA 
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limiting distributions are obtained in terms of the probabilities 

of Brownian motion. Kingnan's result follows from the last of 

the abovementioned three cases. 

In [2], the author considers batch arrivals in the Gl(G|l 

system. He furthermore generalizes this system by letting the 

interarrival time and the service time depend on ö = 1-p.  For 

such a system, the author obtains estimates of the remainder 

terms in the asymptotic exponential behavior of the waiting 

time. In his second paper [3], Borovkov considers general 

multiple channel queues and shows that the results in this  case 

are of the same form as those obtained for single channel 

queues, e.g. by Prokhorov. 

Among other contributions to heavy traffic theory are the 

following.  Samandorov [26], who considers Poisson arrivals, 

single server systems.  Pressman [23] considers multi-channel 

systems with exponential service times.  Viskov [28] obtains 

some results based on Prokhorov's work.  Brody [U] and Iglehart 

[12] consider the case when p = 1 in an M|G(l queue (single 

server, Poisson arrivals and general service time). Iglehart 

obtains limit distributions for certain functionals on the 

queue length and the waiting time processes.  For an expository 

paper on heavy traffic, the reader is referred to Kingman [17]. 

A feature of the above result« is that they provide limit 

theorems when the time parameter goes to infinity. Also, in 

most cases the stochastic process considered is discretely 

indexed by time.  Our aim will be to consider a stochastic 

■ ^■Mt»*mf*imf&fMNtl 
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process that has a continuous index (time t :> 0) and show the 

convergence of its distribution at each time point. As far as 

the author is aware, the only work done in this area in queuing 

theory is by Iglehart [11]. He considers a M|M|n system and 

shows that the queue length process, suitably translated and 

scaled, converges weakly to the Ornstein-Uhlenbeck process as 

the interarrival time goes to zero and the number of servers 

grows large, the traffic intensity being fixed at a value less 

than one.  A feature of this process is that it is a birth and 

death process (B-D process).  Further, the author exhibits a 

similar convergence for a B-D process arising in the machine 

repairman problem. 

Now, we are ready to give an outline of the work done in 

this thesis. It is organized into the following chapters.  In 

Chapter II, we consider the continuous time phase length process 

in a Poisson input, generalized Erlangian service queuing model 

(Luchak's model). This is a Markov process with a denumerable 

state space; this process has a lower barrier at 0 and it 

takes upward jumps of random magnitude and downward jumps of 

1 (B-D process takes upward and downward jumps of magnitude 

1).  We look at a sequence of these Luchak systems and exhibit 

the convergence of the distribution of the phase length process 

to that of Brownian motion (at each time point) as the traffic 

intensity goes to unity (from above and below). This conver- 

gence is obtained by considering the corresponding convergence 

of the jump chain associated with the phase length Ilarkov 

.£.  
■BMMMIMHMMWMB 
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process. This approach of considering the jump chain has been 

used in genetics by Karlin and McGregor [13] and Kimura Cl«*]. 

In Chapter III» some theorems for the maximum of a sequence 

of partial sums are proved. Two cases are considered depending 

on whether the mean of the basic random variables constituting 

the partial sums is zero or positive. We utilize concepts from 

fluctuation theory and ladder variables. The random variable, 

maximum of partial sums, occurs frequently in studying imbedded 

Markov chains in queuing systems.  We find that the two cases 

mentioned above correspond to the cases when the traffic intensity 

is equal to or greater than unity. 

In Chapter IV, the results obtained in Chapter III «re used 

to obtain limit theorems for some single server queuing systems. 

The queue length and the waiting time are two of the processes 

considered when the traffic intensity is fixed at a value greater 

than or equal to one. 

Finally, in Chapter V, we mention some possible directions 

for future research. 

' —MMP" 
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CHAPTER II 

LUCHAK'S QUEUING MODEL 

Luchak's queuing model is described as follows.  Customers 

arrive according to a Poisson process at rate X > 0. Each 

customer demands N phases of service, where N is a random 

variable with the distribution 

Pr{N = n) = cn     (n > 1) (5) 

The service time for each phase has the negative exponential 

distribution ye   dv (0 < v < «). Thus, the service time 

for each customer has the density function b(v), where 

b(v) 
n=l n 

n -uv v"-1 11 e   Tn^TTT (0 < v < •) (6) 

which is commonly called the general Erlangian density. The 

queue discipline is first-come-first-served. 

This system has been studied by Luchak [19], who considers 

the transient behavior of the phase length process; this pro- 

cess is the number of phases present in the system, waiting to 

be served.  Prabhu and Lalchandani [22] have analysed the 

transient state of chis system via the bivariate process 

{Q(t),R(t)}; 0(t)  is the queue length at time t and R(t) 

is the residual number of phases present at the service counter 

_HMaaaaiaaB MMMiMAi 



at time t. 

In this chapter, we shall study the behavior of the phase 

length process as the traffic intensity approaches unity.  We 

assume the existence of the first two moments of the random 

variable IJ and denote them by 

X  n Cr, *<-    n 
n=l 

<  «» 

n-i 
(7) 

The    moment generating function  (m.g.f.) of N is 

denoted by 

C(z) 
n=l n 

(0 < 2 < 1) (8) 

The traffic intensity of the system is given by 

XC (1) Xa 
U 

(9) 

We define a sequence of Luchak systems indexed by n 

(n > 1); the parameters for the n   system are X . y  and —       * n  n 

p  = X a/y ,  The number of ohases present in the n   system 
n   n  n " 

at time t is denoted by Qn(t) (n ^ l,t > 0); {0 (t);t > 0} 

is a continuous time Markov process with the denumerable state 

space S = {0,1,2,..,}. 

The method of approach used in this chapter is as follows. 

MMMHMMMMfti 



We choose the parameters  X  and y  so that p ♦ 1 as n ^n n 
n -► •,    Also, we suitably translate and scale the process    0  (t) 

so that the distribution of the normalized process   converges 

to a non-degenerate distribution,  for all    t.    The limit distri- 

bution is the Brownian motion process    X(t)    with infinitesimal 

variance 

a2 = i + -£ . (10) 
a      a* 

The characteristic function of the process X(t) is defined as 

^(s;t) = E(eisX(t)|X(0) = y) 

2 2 
so*  n— + isy 

= e   ^ (s reel, t > 0)  .   (11) 

For Sections 2.1 through 2.3 we choose 

Xn = n , pn = a(n+/n) ,  (n > 1)   , (12) 

so that 

X a 
P„ = -£- = —^- + 1 as n ^ «o  . (13) 
n  un   n+/n 

Also, the normalized process will be defined by 

0 (t)-n 
X (t) = -2     (n > 1, t > 0)   . (m) 
n      a/n        "    " 

mm* 
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To study the convergence of distribution of the X (t) 

process X (t), as follows: 

Xn(k) = -2   (k = 0,1,...; n = 1,2,...)   (15) 
a/n 

where 0 (k)  is the Markov chain with the following transitions: 

Qn(k) * j  w.p.+ gn c.  (j > 1) 

QJk+l) =( q(k) -  1  w.p.  h f     rt 
if 0_(k) > 0 

ln 

and 

ln l    n 

[6(k)  + j  w.p.  1     (j > 1) if Q (k) = 0 ^ n     J    r J —        n 

(k = 0,1,...; n = 1,2,...)   ,      (16) 

n n 

h„ = ! - 8n = x^S;     (n i ^      • (18) 

We also define the continuous time process 

t  w.p. means "with probability." 

tt Cx] denotes the largest integer less than or equal to x. 

■ 

i 

process as n ■»• •, we define the sequence {X (k); k = 0,1,...} 

(n > 1) of Markov chains, called the jump chain of the Markov 

mmmmmmtmmmmmmmmmimmm 
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Yn(t) s XT,
(C^«+M„)t])  (n > 1, t > 0)  .   (19) n     n   n n       — '  — 

Y (t) is the step process obtained from X (k). n r - n 

To economize on notation we shall restrict our analysis to 

the case  t e [0,1], The results obtained in this chapter 

hold for t e C0,T] as well, for all finite T. 

We shall organize our work into four sections.  In Section 

2,1, we show the convergence of the distributions of the 

sequence Y (t) to the distribution of X(t). In Section 2.2, 

we study some properties of the process X (t). These enable 

us to show that the limiting distributions of X (t) and Y (t) n n 

are identical as n * » (Section 2.3).  In Section 2.U, we 

consider a different set of values for X  and  y • They n       n 

are chosen so that p ♦ 1 as n ■► <». n 

2.1.  THE PROCESS  Y (t) n 

To obtain the convergence of the distributions of the 

sequence {Y (t)} (n >^ 1) (Theorem 2.3), we need the asymptotic 

behavior of a certain probability associated with the Markov 

chain {Q (k)}.  This is done in two consecutive steps 

(Theorems 2.1 and 2.2).  For this purpose, we introduce the 

following notation. 

Let the single step transition probabilities of the Markov 

chain (O (k)}  be 1 n  ' 

T  La,bJ denotes the set of all points x such that a < x < b, 

MMBMH 
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P-j^n) = Pr{Qn(k) = j|Qn(0) = i} 

(k > 0, j > 0, i > 0, n > 1)  .     (20) 

We shall denote the m.g.f. of P^di) by 
13 

CD 

H, (z)   =     I     2j  pJ^Cn) (0 <  z <  1),   (k >   0)     , (21) 
K .=0 13 -      - 

and its power series by 

00 
k G(z,w)   =     I    wK H. (z) (0  <  w <   1) (22) 

k = 0 K 

«a co 

I    wk    I     2j   P^^n) . (23) 
k=0 j=0 ^ 

From (20) and (21) it follows that 

H0(z) = z1       . (21*) 

(k) We shall be interested m the behavior of P.0(n)  as n-*-» 

and to do so, we study its power series in the following. 

Theorem 2.1.  Let  0 < w < 1.  Then 

00  v  ^     *       U (w)]i+1 

wh ere  z = C (w)  is the unique root in 0 < z < 1, 

? 
i 

>■—•^»«■■■MaMBaMMMBBMMBanaMBaMiMaa^aaaMMMMi 



of the equation 

13 

f(2)=z-wh -wgzC(z)=0 n    n (25) 

Proof 

The Chapman-Kolmogorov equations of the Markov chain 

(Qn(k)}> which follow from (16), are 

P^'(n) 

r = l 

pu)(n) hnP^-1)(n) ♦ c, P^-1)(n) 

p(k), v . .  p<k-l).n. 
Pi0 (n) ' hn Pil  (n) for all k > 1 

(26) 

Upon simplifyine the set of Equations (26), we obtain, by 

using (22) 

n,n(k-l) Hk(2) = {~ + gn C(2)}Hk_>1(z) + {C(2) - gn C(z) - Jl}P^-i;(n) 

(k > 1)  .  (27) 

Using   (23),   (24)   and  (27),  we obtain 

mMmaamtmm^m 
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w z1 - {l-wC(2)} I wk P^^n) 
G(z,w) = I    wk P k)(n) * z - ks0    l0 

k=0 z - whn - wgn2 C(z) 

(28) 

Now, consider the function 
i 

f(z) = z - whn - wgnz C(z) (29) 

T'.Je have f(0) = -whn < 0, f(l) = 1-wh -wg = 1-w > 0. for n n "n * 
0 < w < 1.  Also, 

a^f(z) •wgnCzC  (z) + 2C (z)] < 0  , 

for 0 < z, w < 1 

Hence, f(2) is concave for 0 < z < 1 and thus f(z) = 0 has 

a unique root z = Cn(w)  in 0 < z < 1 for a fixed w, 

0 < w < 1. 

Now, since G(z,w) converges in the region 0 < z, w < 1, 

the roots of the numerator and the denominator in the last 

term in (28) must coincide.  Thus, 

^n W  Pi0 (n) " 1-w CTC^Tl 
k „(k) 

k=0 
(30) 

From (2S), we have bv substituting z = ; (w). 



• ■ 

mm 

Cn(w) - whn - wgn Cn(w) C(Cn(w)) = 0   , 

15 

(31) 

OP alternatively, 

1 - w C(;n(w)) 
h„ w-c (w) n    n 
g n T^T (32) 

The theorem thus follows from (17), (18), (30) and (32). 

Before we Droceed to Theorem 2,2, we shall need the 

following lemma. 

Lemma 2,1. Let <!_> 0 and suppose that 

Q^s) = I    Qn s" < 00 for  0 £ s < 1 
n=0 

.. t If L(.)  is slowly varying at infinity and 0 <_ p < », then 

each of the two relations 

T A positive function f(x)  defined on (O,00)  is said to 

vary slowly at infinity if 

lim jj~y-  =1  ,  for all c > 
x ♦ « 

k ^m^^^^ mmmmmi 
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Q(S)    -    (1-S)"P    LCyir.)    ,       S   +    1 
X w s 

and 

1       -P q0  +  o^  +   ...   + qn . YTprTT n    L(n)   »    n •♦    «0 

Theorem 2.2.     Let    t e  [0,1].    Then 

lim /£ 
n , A  +y 00    n    n 

C(Xn+yn)t]-l 

k=0 :LU 

t 

Proof 

We shall consider the power series 

Qn(w)  =     I    wk/JT P^Q^n)     ,     (n >  1,   0  < w <  1)     .        (33) 

From Theorem 2.1, we see that 

t a(x) - b(x), x -► c implies that 

a(x) 
RxT lim ^124 = 1 

x -^ c 

1 iimmm I 

implies the other . 

This lemma is due to Karmata, and a simplified proof is 

given in Feller [8], p. 423. A modification of this lemma is 

needed in Chapter III and is presented there as Lemma 3.1. 

Now, we prove the following. 

__—____^__ ^^_________ 



17 

Qn(w) = T^T An(w)  »  <0 < w < 1)   . (34) 

where 

xn  ^ [Cn(w)]
i+1(l-w) 

A_(w) = ~ .  n .. . f..i  ,  (0 < w < 1) 
n w-Cn(w) 

(35) 

By differentiating Equation (31) with respect to w, we get 

';n(w) " hn " gn^n(w) c(Cn(w)) + wCn(w) c(^n(w)) 

+ wCn(w) C Un(w)) ?n(w)} = 0 

Since Cn(w) ■►I as w t 1, and C (1) = a, we get 

^ Cn(w) = K-rl w + 1 n 6n 

XnX (36) 

Hence, from (35) we have 

lim A (w) = -ü . /H lim -4^ 
w i 1 n    u n w t 1 w-?nCw; 

= r— /n lim —^nr  > using L'Hospital's Mn   w t .1 l-;n(w)       rule 

TTT • -^-  , using (12) and (36) 

  .-■——— 
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0 
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n  a+ 
•n 

/n+i 
(37) 

it follows from (34) that 

.-1 Qn(w) * (1-w)  An , as w f 1 , for all n 

.(k) Since /n P:0
y(n) > 0 and 0n(w) < « for 0 < w < 1, the 

hypothesis of Lemma 2.; 

Hence, it follows that 

hypothesis of Lemma 2.1 are satisfied by Q (w), with p = 1. 

I    /n P!n)(n) - K A^  as K 
k=0 iO n (38) 

for each fixed n. 

Fow, fix e > 0. Due to (37), we can find a M,  such 

that 

-4T- - ^ < A < -i 
a+1 H        n - a+ for n > N, (39) 

Since 
! 
•■ :> 
i 

ini »»»^MM^M^^^M^^BMaMBB^M^MMBMMItBaMMMMMBBMBtMMMMMMMMMi 
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we can  find a    11«    such that 

19 

t    -    T>   < 
e  .  ^V^n^-1 

4-   "V^T 
< t    for    n >  M 

2 
(40) 

Because of (38), we can find a    N3    such that 

1 - ^ < 

cannin)t]-i 
I 

k=0 
/HP^Cn) 

(CXn+Mn)t]-l}An 

< 1 + ^  for n > M- (Ul) 

Now , let V-  = max(N1,N2,N3).  From (41), it follows that 

C(Xn*„n)t]-l 

ca •u )t]-i 

n n 

,(k) I        /HP^(n) 
k=0 1U 

n pn 

[(X„+yr,)t]-l es   *   t       n n  j  for n > n 
<   (1V Ani-X^ n n 

Using (39) and (40), it follows that 

(14)<äT - V^"^ < 

[(Xn+un)t]-l n n 

k=0 
/n P^^n) 

< (1+|) —Y t  for n > N 

By  some   simplification,  we  get 

—aaa—aaua 
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- e < 

[(Xn+yn)t].l 

I 
k=0 

/FT PiQ^n) 

n n a+T + e 

for n > N 

Since e was arbitrary, the theorem follows. 

Now, we are ready to prove the convergence of the distri- 

butions of the sequence Y (t).  We shall accomplish it by 

showing the convergence of the corresponding characteristic 

functions and then appealing to the Levy continuity theorem. 

IJe define the following notation. 

The characteristic functions of Y (t), X (k) and N n     n 

are denoted by 

4» (s,t) = E{ei5 Yn(t)}  (n > 1, t > 0, s  real)  ,   (U2) 

\p (s,k) = Eje13 X (k)}  (n > 1, k > 0, s  real)  ,   U3) n        l    n  '    ~     — 

and 

4)(s) = E{e1SN} (s  real) (U4) 

We prove the following. 

m^mammimt 
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Theorem 2.3.  Let  t e [0,1] and -» < y < *. Then 

lim Pr{Yn(t) < x|yn(0) = y} = Pr{X(t) < x|X(0) = y} 
n •♦ « 

(2Trt) -% x 
(z-y) 

/ e 
f: 2ofct dz  , 

(-« < x < ») 

Proof 

From (15) and (1+3), it follows that 

is 
Qn(k)-n 

ij) (s,k+l) = E{e    a/" } , (k > 0) 

Using (16), we have 

i{»n(s,k+l) = ^n(s,k) {gn Pr{Qn(k) > 0} <}.(—) 

is 

+ h^ Pr{Qn(k) > 0}e a/E + Pr{On(k) = 0} $(-^-)} 
n    n "        a/n 

= ^ (s,k) G (s,k)  ,  (k ^ 0) (U5) 

where, using (17), we have 
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is 

a/n 

IS 

s v     a/ni 

a/n 

(k > 0)  . (i+6) 

From (45), we obtain by recursion. 

k-1 
*n(s,k) = { n Gn(s,j)} ^n(s,0)  ,  (k > 1)   .      (i+7) 

j=0 n      n - 

Substituting the values of  X  and y  from (12) in (46), we n       n ' 

get, by using the Taylor series development of the characteris- 

tic function, (Ms/a/n), of N , 

is 

{(a+l)n + a/n} G^s.k) = n <|)(—) + a(n+/n)e a^ 
a/n 

is 

+ a(n+/n) Pr{On(k) = 0} {^(-^) - e a/"} 
a/n 

= n {1 + ii - -fib + o(h} 
/n      2a n     n 

2 
+ a(n + /K) {l - -Ü - -i*- + o(i)} + a(n+/n) Pr{Q (k) = 0} 

r.^r  o r> ^^    n n a/n  2a n 

{^ (14) - -4-(b+i) + o(k^ • /K   a   2a^n n 

t o(-)  means n o(-) ■♦ 0 as n •*■ <*, n n 

 , .  ..      ..■■. — i  mmaamlllmamm^immilimimmtmmi^mmmmiajmgä 
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s  ,b     ,   1, {(a+l)n + a/H}   Gn(s,k)  r   (a + l)n  + a/n - is - j-^ + -) 

+  is(a+l)(/n+l)  Pr{Qn(k)   =   0} 

|-.(b+l)   (/"^1)     Pr{0„(k)   =   0}   + 0(1) 
/K n 

Dividing by     ((a+l)n + a/n)    and using the Taylor expansion 

for Änd+z)     as     z -»• 0, we have 

in G  (s,k)   * 
(is + 1~{K + i)) 
      a2 +  is(an)(/Hn)     ^5  (k) 

(a+l)n + a/n (a+l)n + a/n n 0} 

f       (bn)(/Hn) Pr{Qn(k)  = 0} 
{(a+l)n +  a/n}/n 

0(1) 
(a+l)n + a/n 

as    n -► <» (U8) 

Takinn  logarithms  of Equation  (H?),   it  follows  that 

k-1 
in ^J   (s,k)   =  In ty   (s,0)   +     J     £n Gn(s,j)        . (49) n n J.Q n 

t    a    =  0(1)     means    a      is  bounded by    1    as    n -»• «. n n 



2U 

Using (19), (42) and (47), we get 

An ^n(s,t) = In  ^n<s,[(Xn+wn)t]) 

[(Xn%)t]-1 

= An tjf Cs,0) +     I in  G„(s,j)  .  (50) 
n j = 0        n 

Taking Y (0) = y and substituting from (48) in (50), 

2        ,:(Xn+vn)t]"1 

£n ^n(s.t) *  isy - (is + ^-(^ + i))      J 
a'  Q      j=0    (a+l)n +/n 

[(Xn+yn)t]-l 
is(a*l)(^+l)       ^    pr{- (j) = 0} 

(a+l)n + a/n       j = 0       n 

|i    i^uj^i)—       ^      Pr{5 (j) = 0} 
2  {(a+l)n + a/H}/n     j=0       n 

 ^^— {[(X +y )t]-l}  as n * »    .      (51) 
(a+l)n + /n     n n 

Now, using Theorem 2.2, we have from (51) 

2 
lim 4» (s,t) = isy - l-t^w + ht .      (52) 

n ■► » n *    *        a 

Now, (11) and (52), alon.R with the Levy continuity theorem, 

completes the proof of the theorem. 

 i        ,^MIIMIIIIIII,iaiailllllllllMllllllllll^^ 
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2.2.     SOME PROPERTIES  OF THE    X  (t)    PROCESS n 

In this section, we shall study asymptotic properties of 

the random variable N (t) defined as n 

N (T) = number of jumps of the X (t) n r n 
process in the time interval 

C0,T], T finite .      (53) 

Since the processes 0 (t) a'hd X (t) are just translates n n 
of each other, we could replace X (t) by 0 (t)  in (53). c n n 

Let us denote the mean and the variance of    N  (t)     by n 

Un(t) = E{Nn(t)|On(0) = [n + a/ry]} 

V (t) = VarJN (t) |Q (0) = [n + a/ny]}   ,       (5U) n        v n   ' n J   , > 

respectively.  'Je show (Theorem 2.5) that  lu (t)-(X^ + Mv,)t} *  0 ^ J * n     n n ' 

as n ■♦• «; similarly for V (t).  Before we can prove Theorem 

2.5, we need an initial result that is contained in Theorem 2.^, 

For this, we need a result of Luchak [19] presented in the 

following. 
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Lemma 2.2. We have 

/ e-et E{z n  IQ^CÖ) = t}dt 
0 n 

,i+l  (1-z) _i+l 

_   l    '^7C° 
(9+Aw+W„;2 - A„2 C(Z) - U n n    n       n 

(0 < z < 1, 6 > 0)  , 

where z=C(6)rC  is the unique root of the equation 

(e+X +vi )z - Xz C(2) -u =0 in 0<2<1 n n n —  — 

The proof can be  found  in Luchak's paper and shall not be given 

here.    Based on this lemma, we have the following. 

Theorem 2. U.     For any    T    finite. 

lim    n    Pr{Q  (t)  =  0|Q  (0)   =   [n + a/ny]}   =  0     , 
n -► »       " 

almost everywhere on the set {t|0 ^ t <_ T} 

Proof 

The time transform of n PrlO (t) = 0|Q (0)}  is obtained 1   n '^n       ' 

by  substituting       z   =   0     and multiplying by    n    in the result 

of  Lemma 2.2.     It   is thus 

MMHMüMHHBaMHMi 
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-et 
/ e"c   n Pr{On(t)   =   0|Qn(0)   =   [n  +  a/T\y]}dt 

n ;[n + a/ny] 
n 

n n 
6   >   0 (55) 

We  shall show that this transform converges  to    0    as    n -»• «. 

To do    so, we first  show that 

r   (9)   <  1 - --      for all     6  >  2a + £ +   2,   and  large    n   .   (56) 
/n £ 

Consider the function 

f(z) = (e+An+wn)z - Xz C(z) - un (57) 

at the point  1 - l//n.  Ve have, using (12), 

a^^-aaa—^M 
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f(l-i_) = (e + (a+l)n+a/n)(l-i-) - n(l~) C(l~) - a(n+/n) 
/n /n      /n     /n 

= e(l-i-) + n - (a+l)/n - a + (/n-n) C(l~) 
•n /n 

= e(l~) + n - (a+l)/n - a + (/n-n)(l-— + 777 + o(i))} 
/n /n 

by expanding C(l-—) about 1 for large n, 
/n 

= 9(1—) - (2a + £) + oCn"^)  for laree n 
/n        2 

> 9(1~) - (2a + £ + 1) 
/n        2 

2a ♦ ^ + 2 b 
> 1 i   for 6 > 2a + ^ + 2 

/n 2 

>   0     for    n>(2a+|+2)2 (58) 

Since f(5n) = 0, f(0) = - pn < 0, f(l) = e > 0 and 5n  is 

the unique root of f(z) =0 in  0 < 2 < 1, (56) follows from 

(58). Thus we have for 0 > 2a + b/2 + 2, 

HMHMMMn 
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n C Cn + a/ny] [n + a/ny] 
n 

T3^^- 
n 

aCl+i-Xl-;^) 
,  using  (12) 

•n(i-Mn + a/Hy] 

^ for large    n, 

using  (56)       .     (59) 

a(l+—) 
/n 

Now, taking logarithms, we get 

*n{/n(l-i-)n +  a/"y}   =  £n/H +  (n +  a/ny)  £n(l-i-) 
/n /n 

=   Hn/n -   (n  +  a/ny)(— + L. + o:-)) 
/n      ^ n 

=  Jn/n - /n -   (i + ay + 0(1)) 

-»as       n ■► • 

This means that 

/-.,   1   »n  +  a/ny      n /n(l-—) -^ * 0    as    n ■»• • 
/n 

(60) 

Hence  from (59),  we  obtain 

-   ■ wmät 
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lim 
n -♦■ • 

n(i.L.)n + a^y -1 

/n   
a(l+—) 

/n 

0   ,   using  (60) (61) 

Since n C[n + a/"y:i/y (1-c ) > 0 for all n, (55) and (61) n n   n — 

show that 

lim / e~et n Pr{Qn(t) 
n •♦ o» o 

0|Qn(0) = [n + a/ny]}dt = 0 

for 8 > 2a + y + 2 

Hence, it follows from the extended continuity theorem for 

Laplace transforms (see Feller [8], p. MIO) that 

lim / n Pr{0 (t) = 0|0n(0) = Cn + a/ny]}dt = 0 
n -♦• " 0       ' 

for all finite T. The theorem is then an immediate consequence. 

Now we are in a position to exhibit the following asymptotic 

behavior of U (t)  and V (t). n n 

• 

■ 

i 
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lim {Un(t) - (An+Mn)t} =0 for t e ro,T]  .   (62) 
n •* * 

Also 

lim {Vn(t) - (Xn+yn)t} = 0 for t e [0,T]  .   (63) 
n ■* » 

Proof 

l,'e denote the probability of a single jump of the Q (t) 

process (or equivalently, the ^ (t) process) in a small time 

interval by 

Pn(t,h) = Pr{one jump in (t,t+h)} 

From the definition of 0 (t), we have n 

Pn(t,h) 

Pr{Qn(t) = 0}.{Xnh+o(h)} + Pr{Qn(t) > 0}.{(Xn+un)h+o(h)} 

= (Xn+yn)h - hyn Pr{Qn(t) = 0} + o(h) (64) 

Here, we have suppressed the initial state  Q (0) = [n + a/ny] 

and shall do so the same throughout this proof. 

T The set  Täjb) denotes all points x such that a < x < b. 
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For small  h > 0, using (53), we can write 

M (t+h) = N (t) (l-P (1:,h)} + {N (t)+l} P (t,h) n       n   l  n    '   l n    *  n 

Taking expectations and simplifying, we have 

U (t+h) - U (t)  P„(t,h) n       n      n (65) 

Substituting from (6i+) and taking limits as h -•• 0, 

4r{UTi(t)} = (Xn+yn) - u  Pr{Q„(t) = 0} atl n  '    n n    n  ' n      ' 

= <Xn
+yn) - a(n+/n) Pr{Qn(t) = 0}   .     (66) 

Transposing and using Theorem 2.U, we get 

lirn ^Un(t)J " (Xn+yn^ = C) '  * e |:0'T]  '     (67) n -► * 

almost everywhere. 

The first part of the theorem follows from (63) by using 

the Lebesque dominated convergence theorem (see Rudin [25], 

pp. 2146-7) and noting that U (0) = 0. n 

For the second part of the theorem, we have by definition 

V (t) = E{(N (t) - U (t))2} = E{(N (t))2} - U2(t) .  (68) n      l  n      n    '    l  n    J   n 

   1 —~m*m 
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Also by definition of N (t), we have 

(Nn(t+h))
2 = (VCt))2  {1-P (t,h)} + {N (t)+l)}2 P (t,h) n n     l  n '  J   l n    '  n * 

From (68) and (69), it follows that 

(69) 

V (t+h) - V (t)  U*(t) - U2(t+h) + 2P„(t,h) U (t) + P„(t,h) n       nn     n        nn     n7 

TT 

- Pz(t,h) + P„(t,h) n       n ' 

using (65) and simplifying. 

Using (64) and taking limits as h -*■ 0, we obtain 

ätiVt)}   =   <XSVJ  - Mn Pr|Qn(t)   =  0} n n n ln (70) 

Noting the similarity of (70) to (66), the second assertion of 

the theorem is similarly proved. 

2.3.  CONVERGENCE IN DISTRIBUTION OF Xn(t) 

In this section, we show (Theorem 2.6) that the distribu- 

tion of X (t) converges to that of X(t) as n -»• ».  Besides n 

using the results of Theorems 2.3 and 2.5, we need the continuity 

(in t) of the distribution function of X(t).  This follows 

readily since the distribution function of X(t)  is given by 

.'->,-  . »»i*^" *" «■'" 

■M^M^^MHMM 
^^ 
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PrjXCt)  <   x|X(0)   =  y}   =   ÜI|>       /     exp{-(z~y^  }dz     , 
CT   -»       2o t 

(-• < x, y < •)  .  (71) 

Before proving Theorem 2.6, we mention the following 

relation that follows from the definition of the processes. 

Pr{Xn(t) < x|Nn(t) = j) = Pr{Xn(j) < x}   , (72) 

for all x, t and n > 1, 

Theorem 2.6.  Let t e [0,1]  and -» < y < <».  Then 

lim Fr{Xn(t) < x|Xn(0) = y} = Pr{X(t) < x|X(0) = y} , 
n -► » 

for -09 < x < «o. 

Proof1 

We have, using definition of conditional probability. 

t We shall omit the initial state y while writing the prob- 
abilities, to economize on notation. :ore that as n ->• <», 

X (0) = y <-=> 0 (0) = [n + a/ny], from (14). Also as n -»■ o», 

X (0) = y <=-> 0 (0) r [n + a/ny], from (15). 
n n 

aaaaaaaaH^a_ 
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Pr{Xn(t) < x} - Pr(X(t) <^ x} 

I     [Pr{X (t) < x|Nn(j) = j} - Pr{X(t) < x}] Pr{Nn(t) = j} 
jsQ ~ ""        n 

I  {Pr{x (j) < x} - Pr|X(t) < x}} Pr{Nn(t) = j}  , 
j = 0     n   ~ -        n 

using (72); 

I     CPr{Xn(j) < x} - Pr{Xn([(Xn+yn)t]) < x}] Pr{Nn(t) = j} 

+ Pr{Yn{t) < x} - Pr{X(t) <^ xj (73) 

using the definition (19). 

Fix x, t e [0,1] and e > 0.  By Theorem 2.5, we can 

choose a N,  such that for n > N1 , 

Pr{Yn(t) < x} - Pr{X(t) £ x}| < | (7tf) 

Now, choose K and IL    such that for n > N-, 

Hit)  - (An+yn)t 

T^x^" > ^ <| (75) 

This is possible because of the following argument, 

KaaMKBaaaMMHB 
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|Un(t) - (^n
+Vin)t| < 1 for n > N 3 (76) 

Choose N^ such that (Theorem 2.5) 

V  (t) 
.^i .3 \{TrZTTE}i*\<*7    for    n >Nl 

n n 
(77) 

Choose N5 such that 

V (t) > 1 for n > Nc n 5 (78) 

Let N2 = nvax(N3,Flf,ri5) and let K be such that 

#-i'2>| (79) 

Now, for n > N. and K, we have 

— ■ ■ ■ ■ MiMMMMMMHMMMHaHflMnMfaHia^a*. mmtmtm mimimmmmama4**U 
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< Pr{-^ 
|Nn(t) - (Xn+un)t|  9)f 

n v'  ■ > 1^} , due to (77) , n n 

(vjt)}15 

< p  lyt) - yt)] . |un(t) - (xn^n)t| ^ 2 

|Nn(t) - Un(t)|   _ 
< Pr{—U Er  > 4Ü - 1} , due to (76) and (78) , 

{V (t)p    6 1 n  ' 

# -1)2 

, by Chebyshev's inequality  , 

< | , by (79) 

Thus (7 5) is proved. 

Now, we are in a position to show that for large n, the 

first term on the right hand side of (78) is less than e/2. 

To do so, we shall define the set 

J = {j| I 
j - (X +u )t n n 

((X +u H)*5 

n n 

K} (80) 

Then, we can write 

^ - -■- 
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I.I     CMXn(j)  <  x}   - Pr{Xn([an+wn)t3)  <  x}]  Pr{Nn(t)   =  j}| 

<       I      2.Pr{Nn(t)   =   j} 
j  e J 

+       I       lpr{Xn(j)  <  x}   - Pr{Xn([an+yn)t])   <  x}|   Pr{Nn(t)   =   j}   . 
j 2 j 

(81) 

But, due to continuity (in t) of Pr{X(t) < x} and Theorem 

2.5, we can choose a Ng  such for n > Ng and j ^ J, 

|Pr{Xn(j) < x} - Pr{Xn([(Xr+yn)t]) < x} | < |   .     (82) 

Now, we are ready to put the pieces together. Let 

N = max(N1,
,:2,::6),  From (73), we have for n > N, 
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|Pr|Xn(t) < x) - Pr{X(t) < x}| 

00 

1 IE  Pr{Xn(j) < x} - Pr{Xn(C(Xn+un)t]) < x}} Pr{Nn(t) = j}| 

+ |Pr{Yn(t) < x} - Pr{X(t) < x} | 

<  l       2.Pr{N (t) = j} 
" j e J     n 

+  y  |Pr{Xn(j) < x) - Pr{Xn(C(Xn
+Vn)t]) < x}| Pr{Nn(t) = j} 

j t ^ 

+ l , due to (75) and (81)  , 

< ij- + TJ" + I '  due to (75> and (82) , 

= e (83) 

Since e  is arbitrary, the theorem follows from (83). 

Thus, in Theorem 2.6, we have shown that, given X ^0) = 7» 

the distribution of ^T^)  converges to that of X(t) as 

n -*■ *>,     Since p = n/n+/n , we can say, loosely speaking, that 

the phase length process at time  t is approximately distri- 

buted as 

i<iV2 + aÄx(t)i 

for p  close to but less than unity.  Since as mentioned before. 

•«laaMaMiMM ■■i 
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the results hold for t e [0,T], T finite, the statement remains 

true for all finite t. 

It should be mentioned that the M|M|l and the Erlangian 

MJEjJl systems are special cases of Luchak's model. Also, in 

M|M|l, the phase length process is the queue length process. 

2.U.  SOME EXTENSIONS 

If we choose the set of parameter? X  and p   to be 

X,=n+/n , y =an 
n n 

(8"+) 

and the process X-^) defined in (1U), an analysis, similar 

to the one done up to Section 2.3, can be carried out.  With 

some changes in detail of procedure, a result identical to 

Theorem 2.6 is obtained. So we can say that the phase length 

process, at any finite time t, is approximately distributed 

as {(p-1)  + a(p-l) X(t)} for p close to but greater than 

unity. 

We also note that the phase length process in Luchak's 

queuing system is identical to the queue length process in the 

following bulk arrival system:  customers arrive according to 

a Poisson process with parameter X, in bulks of random size N. 

Each customer has a service time which is exponentially dis- 

tributed with parameter p. Hence the results of this chapter 

apply to the queue length process of this bulk arrival system. 

  t—* 
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It seems that the technique of studying the convergence of 

a continuous time process via the convergence of the jump chain 

as done in our work, can probably be used to study more general 

situations. 

*d 



CHAPTER III 

THEOREMS FOR THE MAXIMUM OF PARTIAL SUMS 

In this chapter, we shall present some theorems that will 

be used to establish the limit theorems in the different 

queuing systems considered in the next chapter. These theorems 

are concerned with the maximum of a sequence of partial sums 

of independent and identically distributed (i.i.d.) random 

variables.  We shall use the following notation. 

Let  {X. ; k = 1,2,...} be a sequence of i.i.d. random 

variables with mean and variance given by 

E(Xk) = u  ,  Var(Xk) = a' (85) 

both of which we assume to be finite. Let us denote the partial 

sums of  {^O  by 

S = 0  ,  S  = M, + X0 + ... + X 
0        n   l   2 n (n > 1) (86) 

Let the maximum of this sequence be denoted by 

M    = max(Srt,S,,... ,S  ) n 0     1 n (87) 

We are interested in the limiting behavior of  M  as n 

n -♦• »,   in the case    y  >  0.     Spitzer  [27]  has  shown  in this 

case,  that,   with probability one,  M    "♦• «    as    n * •.     We 

42 
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shall be interested in suitably normin"  H  to obtain non- n 
degenerate limit distributions as    n + ».     For the case    y  >   0, 

we  shall show similarity  in the asymptotic behavior of    II      and n 

the partial sums Sn (Theorem 4,1). As a consequence, a central 

limit theorem will be shown to hold for M  (Theorem 4.2). n 

The case y = 0 shall then be considered in Theorems 4.3 and 

4.4, utilizing concepts from ladder variable theory. 

Now, we are in a position to prove the following. 

2 
Theorem 3.1.  Let  0 < y < », 0 < or < » and 

{c ;n _> 1} be a sequence of constants such that 

c > 0(n :> 1), c -*■ <*    as n * »j and 

c    ,/c     >  l(n _>   1).     Then,  with probability Qjne 

M    -  S n n 
cn 

-»•  0    as    n •*- «> 

Proof 

By the definition of M  in (87), we have J n 

M - S  = max(0,S, ,5»,...,S ) - S n   n 12     n    n 

= max(-Sn,S1-Sn,...,Sn_1-Sn,0) 

~ max(0,-S, ,-S.,...,-Sn) , for all n (88) 

t  Tor two random variables X and Y, we say X „ Y if  X 
and  Y have the same distribution. 

MMBMB mm 
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We note the fact that -S 's are the partial sums of -X.'s n i 

and    E(-X.)     =  - y <  0.    This enables us to say that with 

probability one 

sup    (-S   )   < 
n >  0 n 

this result  is due to Spitzer and a convenience reference  is 

Prdbhu  [20],   o.   2 20.    This means  that 

Pr{   lim    max(0,-S, ,...,-S   ) < »} 
n -»■ oe 

=  1 

Therefore,   from  (88), 

Pr{   lim  (M -S   )  <  «}   =   1 
. n    n n -»■ c-i 

(89) 

Now,   fix    e   >   0,  n  >  0.     Also,   let    A    be a  fixed constant, 

however larqe.     Due to  (89),  we  can  find a    ^T, ,   such that, 

for    n > FT, , 

Pr{Mn-Sn > A,Mn+1-Sn+1   >  A,...}   <  n (90) 

Let    Ho     be  the  smallest  index     n of    c for which    c     > A/e. l                                                                       n n 

This  is possible  by the hypotheses on    c   . Let    N  =  maxd1!,,^). 

Then,  we have 

■      ■■■—-      ■! | mmmm 
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Pr{MN-SN  >  ecN,MN+1-SN+1  >  ecr-|i-,...} 

N+l 
1 PriMN-SN  >  A»MNn-SN+l  >  A-c-^---} N 

since    ecM > A, 
N 

1 Pr-{MN-SN  > A,MN+1-SN+1  >  A,...} 

since     i >  i    for all    j   >  1, 
CN 

<  m  by   (90). 

Since    e.n    were  arbitrary and    H -S     >  0     for all    n,  the n    n — 

theorem follows. 

Now,  we prove  the asymptotic behavior of    M       in the 

following. 

2 + Theorem 3.2.     Let     0<vi<oo,   0<a     <«.    Then 

H-.-ny       ,   x      2 
lim Pr{-ii  < x} = — / exp(-^~)dy 

n -»- oo    a/n *"    /7x -« 

(-» < X < ») 

t While this thesis was under preparation, a paper by Heyde [10] 
came to the author's attention.  That paper deals with a similar 
theorem for the general case when the X.'s belong to the domain 

of attraction of a stable law. 
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Proof 

Let  us  denote 

1+6 

n        _ /- , V. o/n n        o/K 

Choosing    c     = a/n    in Theorem 3.1, we find that 

U-V+Oasn-»-« ; n        n (91) 

(actually a stronger result holds). The central limit theorem 

for the partial sums S  implies that the distribution 

function  (d.f.), Gj/•>» of    Vn converges to G(.), the d.f. 

of the standard normal distribution. It remains to show that 

the d.f., F (.), of IT  converges to G(.).  This fact n        n 

follows from (91) and has been implicitly used in the litera- 

ture, but was proved recently by Feller [8], p. 247.  His 

proof is reproduced here. 

We have, for e > 0, 

Pr{U < x} = Pr{U < x,U -V > -el 1 n — '    l n —   n n    ' 

+ PrjU^ < x.U^-V^ < -e} 1 n —   n n —  ' 

< PrW < x+e} + PrjU^-V,, < -el —   l n —   '    l n n —  * (92) 

t X -»• c as n-»-» implies that the sequence of random n 
variables {X } converge stochastically to the constant c 

as n •♦• o». 
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Since we have Un - Vn * 0, the last probability in (92) can be 

made < e  for large n. Hence we have 

F (x) < G (x+e) + e for all n sufficiently n   — n , J 

large. 

The same argument leads to an analagous inequality in the 

opposite direction. Hence F (,) converges to G(.) as 

n ■»• *. The theorem is therefore proved. 

When the basic random variables X.  have zero mean and 

finite variance, the distribution of the random variable >L//n 7 n 
converges to the normal distribution truncated at  zero.     This 

has been shown by Erdos and Kac  [6] by using an invariance 

principle  (see also Donsker [5]).     We  shall present  an alter- 

native approach,  mainly for its  intrinsic interest.     The proof 

uses the concept of ladder variables of the sequence       S     . 

The following  is  a brief sketch of the theory.     For details, 

see  Feller  [8]  and Prabhu  [20]. 
ue define the  sequence     i^^ik  =   0,1,2,...}     of  random 

variables,   called the ladder epochs  of    {S  }>  as  follows: 

M0   E    0 

Nk  =  minjn >  N^JS^S^  >  0} 

(k >  1) 

■MMi 



The  successive ladder heights are defined as 

HQ 

Z, = SKT - SM     (k > 1) 
k   Nk   Nk-1 

{fT, ,SN }  is a two dimensional renewal sequence.  Let the 

distribution and the generating function of N,  be denoted 

by 

and 

'n = Pr(N = n}  (n > 1) n 

P(t) = I    p  tn     ,  |t| < 1 
n=l 

(93) 

(9U) 

respectively. We also define 

V(n)   = max{k|Nk < n} 

N(n)  is the number of ladder epochs in  (0,n].  We have 

Mn = Z1 + Z2 + ... + ZN(n)  ,  N(n) > 0 

= 0 N(n) = 0 (95) 

To describe the asymptotic behavior of M . we have, therefore, 

to consider the behavior of N(n)  as n •♦ », and also the 

behavior of the partial suns  Z, + Z» + ... + Z .  Considering 

first N(n), v;e note that the occurrence of a ladder epoch 

is a recurrent event  E  (Feller [7]), whose recurrence times 

:.■'-■-   ■,.*;■:■■ 
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have the distribution {?„}•  The number of tines E occurs in 

an interval  (0,n] is given by the random variable N(n), When 

y s 0, it is known that with probability one, N(n) -► » as 

n ♦ OB.  In Theorem 3.3 we prove that in this case, N(n), suitably 

normed, has a limiting distribution. In order to prove this, 

we need the following. 

Lemma 3.1. Let the sequence |q I be monotonic 

and such that q^ > 0 and ^n _- 

Q(s) = ^ q s < oo for 0 < s < 1 

If L(.) varies slov;ly at infinity and  0 < ß < oo, 

then the relation''" 

rß 0(s) ^ (l-s)'p LCy—) s + 1 

is equivalent to 

qn ~ rTßT X 0-1 L(n) n ^ oo 

This lemma is due to Karmata. and a simplified 

proof is given in Feller [7], p. 423. 

Now, we prove the following. 

f(x) 
t f(x) - g(x) as x "♦• c  implies that  lim P(Z)   '  ! 

x 

—mm 



Theoren  3.3.     Let    \i   -  0    and     0  <   a     <  «>.    Then 
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lim    Pr{Ml!l > x} 
n ■* oo /n 

G, (^y-)     ,     x >  0 

=  1 ,     x  <   0 

where 

c  =     I    HCPriSn >  ^"T3  < 
n=l 

and 

G^(x)   =   2[1-(|)((~)15)]     ,       x  >   0 

,        x  <   0 (96) 

is the  stable   law with index    •*-.     Here     (|)(x)    i£ 

the distribution function of the standard normal 

random variable. 

Proof 

From the distribution of N,, given by (93), we define 

the monotonic sequence 

^0 = 1 '  ^n = Pn + Vl + '••    (ni ^ 

Then, using (94), we have the generating function of the 

sequence {q }  as 

, ■■. 
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Q(s) = I     q s 
n=0  n 

n  l-P(s) sl < 1 (97) 

The generating function of {p } has been obtained by Sparre 

Anderson [1] (referenced in Prabhu [20]) and is eiven as 

ee n 

p(s)  = 1 - expC-    I    ^ Pr{Sn >  0}] 
n = l 

(98) 

From  (97)  and (98),  we have 

Q(s)  = 

expC-    I    4{Pr{Sn >  0)4}   - ^    I    4] 
n=l n-i  
 TTi  

GO n 

=   n-s)'h exp[-     I    ~{Pr{Sn  >   0} 
n=l 

-ku (99) 

Now letting 

oo       n 

C(s)   =  expC-    I     i- Pr{Sn >   0}   - i}] 
n=l 

(100) 

the expression (99) reduces to 

0(s) = (l-s)"^ C(s) 

Now, v/e set 

n= i 

J  AMMMSaitaMMMHIaHMIMMBaiHilHM mmlmltmmmmlmmam 
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the series beim* at least conditionally convergent in the case 

y = 0, 0 < o2 < •  (see Feller [8], p. 575), which is a part 

of our hypothesis.  Using this fact in (99), we ^et 

lim  C(s) = e'c 

s f 1 

To apply Lemma 3.1, set 

L(x) = C(l-i) 

We have 

lim L(x) = lim C(s) = e 
x •*■ *> s 1- 1 

-c > 0 (101) 

Thus L(x)  is, trivially, a slowly varying function.  So, Q(s) 

satisfies the hypotheses of the lemma and, using (101), it 

follows that 

Hn 

or, by simplifying 

Q Mn 

r(^) 

e^ 

/nir 

n^ e   as n ■♦ « , 

as n -»• « (102) 

Now, from the theory of recurrent events as presented in 

Feller [7], the result (102) enables us to write the following 

asymptotic behavior of the random variable N(n): 

■ -v-JMHto- 
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(103) 
n ■*• « 

Using (102) and letting x = y/x e , we get the required result. 

It should be remarked here that in [8], p. 399, Feller has 

considered the power series Cl-P(s)]~  and has used the above 

technique to study the asymptotic behavior of its coefficients. 

Thus we could have obtained (102) from his results also. 

Furthermore, if the basic random variables X.  have a symmetric 

distribution, Pr{S >  0} = ■*• for all n and hence (99) would 1 n    'i 

reduce to 

Q(s) = (1-s) -\ 

Thus, 

ln 
-V 

n 
!(-l) 

n 2n 

n 

.-2n (n > 1) 

So we have an exact expression for q  and by Stirling's 

approximation for n», we get that q  is approximately 

(nir)   for large n  (compare with (102)). 

Now we consider the random variable M in the following. 

Theorem 3.1.  Let ii = 0, 0<o2<«>. Then 

M T x      ' 
lim Pr{—2. < x}  = /i / exp(-i-)dy , x > 0 

n - »   a/H ""     V1T 0      2 

= 0 , x < 0   . 

■ ■- ■B^MMHiHI mmm^ak 
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Proof 

From (95), we have 

z1+z2+...+zN(n)  N(n) 

WnT 
/n 

51 

(10U) 

Now, the first term on the right hand side in (lOU) can be 

written as 

z1+z2>...+z (n) 

Nl+N2+---+NN(n) 

W — ^NCn) 
 fTTFJ  

The first term in the above expression converges to ECX,) 

(see Feller [7], p. 38 0) and the second term converges to 

ECN.), since N(n) ■»■ • as n -»• « and the law of large 

numbers.  Thus 

Z,+Z,. + ...+Z.., »  p 
-i £ Nt(n) 

Ntn;  - EiX^   EtNj^)  as n - « 

ECZ,), by use of Wald's inequality 

From Feller [8], p. 575 we find that, in the case u = 0, 
2 

0 < o < o", this is given by 

ECZ^ = ^ e"c > 0 (105) 

Thus, we find that the first  ?rm in (10U) converges 

' ■i-.-Mmmsi 
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stochastically to a positive constant; also, by Theorem 3.3, the 

sequence of random variables N(n)//n converge in distribution 

to the stable law with index i.  Thus, using the result for 

the limiting distribution of the product of two sequences of 

random variables (see Fisz [9]), we have, 

M 
lim Pr{-£ > x} 

n * •   /n "" 

Um n-rW'-'^lUn)  M(n) > . 

- Gii
ilte      •  - 2 ) 

^ 2x 

GH(!L£7) 

,ir   2x 2 u 2[1 - ^((i . i^P)] ,  from (96) 

= 2C1 - ♦(^)] 

= y| / exp(-^-)dy  ,  x > (106) 

For x < 0, we have 

lim Pr{— > x} = 1 
\   •*■  a> n 

(107) 

t- 
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Taking complements of one in the Equations (106) and (10 ), 

the proof of the theorem is completed. 

With an eye towards the next chapter, we shall need the 

following modification of M , defined as 

MJ s max(Sn,S, ,.,.,S„ ,,1+3 ) (108) 
n      u i     n-i   n 

for all n and i > 0.  In the following theorem, we shall 

show that the asymptotic behavior of M^ is identical to that 

of H  . n 

2 
Theorem 3.5.    Let    0<y<<»,   0<o    <».    Then 

MJ-.nu , x 2 
lim    Pr{-2  < x}   = —i      /    exp(-^-)dy 

T\ •*■ <*> a/n /^TT      -w 

(-»   <   X   <   oo) 

2 
Also,  when    y = 0,   0 < a    < «>,  we have 

M1 nr   x 2 
lim    Pr{— < x}   =  /- /    exp(-t-)dy  ,    x >  0 

n * « a/n * ^7r  0 2 

=   0 ,     x  <   0 

Proof 

From (108), we can write 

M1  = max(M    -..i+S   )     ,     for    n >  1 . (109) n n-i        n — 

^ammmm 
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0  < MJJ - Mn <  i,     all    n,     i _> (110) 

To show (110), we consider the three mutually exclusive and 

exhaustive cases: 

!•  M - < S :  Here, M^ = i + S,, and Mrt = $„. n-1 — n      *  n       n       n   n 

Thus Mi - M = i. 
n   n 

2.  S <M .<i+S: Here, M1 = i + S  and n   n-1 — n      '  n      n 

M = M , .  Thus, Mi - 11 = i + $„ - fl . > 0 
n   n-i n   n      n   n-i — 

and < i, since S„ - M . < 0. n   n-i 

3.  i + S < H       -.     Here, M^" = Mn , 
n   n-1 n   n-i 

M„ = MM , .  Thus, M^ - M = 0. n   n-i n   n 

and 

Thus, (110) holds for all cases. Now, since i//n -»• 0 as 

n ->• », we have 

H_  M D n 

/n  /n 
_£ - -B * o (ill) 

i 

Now, usint* an argument similar to the one used after 

Equation (91), Theorems 3.2 and 3.4 complete the proof of 

this theorem. 

L* 



CHAPTER IV 

SOME QÜEUEING SYSTEMS 

In this chapter, we shall study some of the Markov chains 

imbedded in different queuing systems.  It is known that these 

imbedded chains can be written as the maximum of partial sums of 

mutually  i.i.d.  random variables. Hence, we use the results 

of the previous chapter to obtain limit theorems in the cases 

where the traffic intensity equals one or is greater than one. 

It will be shown that the former corresponds to the case y = 0 

and the latter to the case y > 0, in the terminology of 

Chapter III. We shall consider the systems Gl|G|l, Gl|E ll, 

and E |G|l (these shall be defined explicitly as we go along). 

The analysis in this chapter follows along lines similar to 

those used in the book by Prabhu [21]. 

We recall that the distribution function of the standard 

normal distribution is denoted by 

1 
<l>(x) = — /  exp(-^-)dy  ,  -» < x < 

/5¥ -»     <■ 
(112) 

Also,  from Equation (96),  we see   that 

TI 
1 - M—T) J~    r exp(-*-)dy   ,  x >   0 

=   0 ,   x  <   0 (113) 

We are now ready to start the analysis of the system GI|G|1. 

58 
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1.1.  THE SYSTEM Glldl 

This is a single server queuing system with the first-come- 

first-served  (FCFS) queue-discipline. Let u  denote the 

interval between the arrival times of the n   and the  (n+1) 

customer; v_  is the service time of the n   customer (n > 0) n — 

(the customer arriving at time 0  is labeled the zeroeth 

customer),  {u } and {v }  are independent sequences of posi- 

tive i.i.d.  random variables with their respective distribution 

functions given by 

Pr{u < x} = A(x)    (x > 0) 1 n —  ' — 

Pr{v < x} = B(x)     (x > 0)    . (11H) 1 n — ' — 

We assume the two distributions to have finite means denoted by 

Ua = E(un) and ub = E(vn)       . (115) 

VJe also assume that they possess finite non-zero variances 

o2  = Var(u  )    and    a2  =  Var(v„) (116) an on 

The traffic  intensity of the  system is then given by 

p  =  -£ . (117) 
a 



We define the sequence 

60 

n   n   n (n > 0) (118) 

and its partial sums by 

s0 = 0 , sn = XQ+X^^.+X n-1 (n > 1) (119) 

Since the arrival stream and the servicing mechanism are indepen- 

dent of each other, the X 's form a sequence of i.i.d. random 

variables.  We have 

y = E(Xn) = Ub - Ua = Ua(p-1) (120) 

so that 

y > 0 <-> p > 1 

u = 0 <-> p = 1 (121) 

Also, 

a  = Var(X„) n 
2 .  2 

aa + 0b (122) 

and it is finite and non-zero. 

th Let H  be the waiting time of the n   customer, i.e. 

the time from his arrival to the time when he commences service 

"* 
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(n _> 0). We have '^g s u — 0» the wäi'ti"? time of the zeroeth 

customer.  Me then have the following recursive relation: 

Wn+1 = max(0»wn
+v
n-
u
n
)     (n = 0,1,2,...) 

= maxCO^^+X^) ; n n 

from this we obtain successively 

W, 

W, 

W, 

max(0,u+Xo) 

max(0,W1+X1)  = maxCO^j^^j^+Xg+u) 

max(0,W2+X2) 

max(0,X2,X2+X1,X2+X1+X0+u) 

W^ = maxC0,X„ ,+X^ 0^...+X„ (1 < r < n-1) n      * n-l n-2     n-t —     "■ 

X ,+X^ 0+...+Xn+u] (n > 1) n-l n-2     0       — (123) 

From (119), we see that ^.i^r^** • •+Xn-r '  Sn'Sn-r; hence we 

can write (123) as 

W = maxCS„-S   (0 < r < n-D.u+S,,] n      n n-r   —  -    J  n 

Since S -S   = X ,+X . + ...+X  , and the X„ are identically n n-r   n-l n-2     n-r n 
distributed, it follows that S -S    has the same distribution 7 n n-r 

as S .  Therefore, we can write 

.MMMMHMHMMM^tf^^^^M 
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Wn * ma>c[0,S1,S2,...,Sn_1,u+Sn] (12«4) 

When V ^ 0, the waiting time W •► • with probability 

one.  We see from (108) and (12^)  that 

W  . I1u 
n   n 

and hence an easy consequence of Theorem 3.5 is Theorem U.l . 

Theorem H.l.  Let p = 1. Then 

W 
lim    Fr{-Jl <  x}   = 1 - G  (-1-)     ,     all 

n ■>' «        a/fi " 2x 

Also, when    p  >  1,  we have 

W    - ny 
lira    Pr{-2    <x}  = <pU)     ,    all    x 

n -► «     a/n 

Here, )j and a are defined in (120) and (122). 

Now, we shall consider the first passage time defined as 

T(u) = min{kiW. = 0,W  = u > 0} (125) 

t The part of the theorem for the case p > 1 has been obtained 

by Kingman [16], using different methods. 

. '•'•-m^'miMmm MS 
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T(u) represents the number of customers served in the interval 

of time between the commencement of a busy period initiated by 

W- s u, and the next busy period. This random variable satisfies 

the following relation: 

Pr{T(u) > n} = Pr{u+S0 > OJU+SJ^ > 0,...,u+Sn > 0} 

= PrlmaxC-Spj-S,,...,-Sn) < u} 

(n > 1). (126) 

From (136), it follows that 

Note 

max(-Sri ,-S,,...,-S) 
Pr{T(u/S) > n} = Pr{ — < u}  .   (127) 

/n 

that -S  is the partial sum of -X.'s.  Hence, when 
n       1 i 

U = E(X ) = 0 (-> P = 1, from (121)), -S^  is the partial sum n n 

of i.i.d. random variables with zero mean.  Thus, from 

Theorem 3.1*, we have Theorem U.2. 

Theorem 4,2.  Let 1. Then 

lim Pr{T(u/n) > n} = 1 - G, (1^)  ,  u > 0 
n ■* a> ^ 2u 

Here, a    is as defined in (122). 
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14.2.     THE  SYSTEM    GllEJl 
'   s' 

This system  Is a particular sase of the system    GI|G|1, 

wherein the  service time has  the gamma distribution 

dB(x) e-Ax X8 x8-1 

 (s-U! dx (0 < x < ») (128) 

The mean and variance of this distribution is 

_ s ,2 „ s 
'b " T ' öb " 77 (129) 

We denote the  Laplace-Stieltjes  transform    (L.S.T.)    of the 

interarrival distribution by 

iMO)   =  /  e"ex dA(x)      ,     (9  >  0) 
0 

(130) 

Thus, the mean and variance of this distribution are, 

respectively, 

1J  = - /(O)  , al   -  ^'(0) - [^'(O)]2 

The traffic intensity of this system is thus given by 

p = s[- A^ (0)]"1 

Ue can consider the servicing of customers as being 

(131) 

-■^.«-«„j,,^ M.„-. VWJI.V»,.^^^,; .;, dalMNI 
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accomplished in s consecutive phases, the time required for 

each phase having the exponential distribution Xe   (0 < t < «) 

independently of the others. Each customer adds s phases to 

the system and we shall study the imbedded chain obtained from 

this phase length process.  Let tQ,t.,t2,...  be the instants 

of successive arrivals and Q  denote the number of phases n 

present in the system at time t = t - 0.  Let X  be the 

number of phases of service completed during  ^n-l^n"0^ 

(n = 1,2,...); then X^X«,... are mutually independent random 

variables with the common distribution 

00 T 

k. = Fr{Xn = j} = /  e"Xt ^y}- dA(t)   (j > 0)  .    132) 

For its generating function, we have 

KCz) = I    k.zj ■• iMX-Xz)   (0 < z < 1)  .   (133) 
j=0  ^ 

Hence, the mean and variance of Xn are, respectively, 

E(X ) = K (z)|    = - XiMO) = f    ,     (134) 

and 

n        z=l 

Var(X„) = E(X^) - CE(X n2 n      n       n 

•»   .      •   •     s- 
K"(z)|    + K'(z)|    - ^y 

z=l        z=l   pz 

2 
xV^O) ♦ | - .£-      . (135) 

P 
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It is known that 0  is a Harkov chain end  satisfies the 

following recursive relation: 

0n = max(0,Qn_1+s-Xn)    (n > 1)   .    (136) 

We define 

Y„ = s - X..   (n > 1) n n (137) 

and its partial sums by 

Sn = 0  ,  S  = Y,+Y-+...+Y (n > 1)  . (138) u        n   i ^     n    — 

If the initial number of phases at time  t0 is OQ 
= "^ - 0' 

then (136) gives us 

Qn = max(0,On_1+Yn) 

- max(0,Yn>Yn+Yn_1+Qn_2) 

max[0,Sn-Sn_r (1 < r < n-l),i+Sn] 

max[Sr (0 < r < n-l),i+S ] (139) 

From (134), (135) and (137), it follows that 

-.,.■ 
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E(V = |(p-1) (ll+0) 

a2(p) = Var(Yn) = X2i|»"'0) + |. - ^    ,       (141) 

where p is used to denote the deoendence of the Var(Y )  on 
n 

the traffic intensity. 

When p >_ 1, (140) shows that E(Yn) ^  0; hence from (139), 

we see that, with probability one, Q ■* « as n ■♦• «.  By com- 

paring with (108), it follows that 

'n - Mn        • (1',2) 

Thus, an upshot of Theorem 3.5 is the following. 

Theorem 4.3.  Let  p = 1.  Then 

On 
lim Pr{ Ü- < x} = 1 - G, (-iy) ,  all x 

n ■»■ oo   o(l)/n ^ 2x 

Moreover, when p > 1, we have 

Qn - ns(^) 
lim Pr{^ 2— < x} = <{>(x) ,  all 

n -»• <»      a(p)/n 

Here,  a(p)     is as defined in  (111). 

New, we shall define the random variable 
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F. = min{k:|i+Sk < 0}    , (1U3) 

2 
lim Pr{N./- > n} = 1 - G, (^ Ül)  ,  i > 0 

n -► oo    1/n *5  2i 

Here, ad) is defined in (141). 

It should be noted here that the GI|M|1 queuing system, 

i.e. the system with exponential service times, is a special 

case of the above system GI(E |1, when s = 1.  In this case, 

the phase length process is the queue-length process since 

each customer demands one phase of service. The analysis of 

this section thus holds for Gl|M|l, with the word queue-length 

replaced for phase length, and 8=1. 

4.3.  THE SYSTEM E I G| 1 s' ' 

This system is the dual of the system GI|E |1, in the 

sense that here the interarrival times have the gamma distribution 

whereas the service times possess an arbitrary distribution. Here, 

which represents the number of phases served in a busy period 

initiated by i phases. The similarity between M.  and the 

random variable T(u) as defined in (155) is obvious, except 

that here the partial sums S  are defined by (138),  Conse- n ^ 

quently, a theorem similar to Theorem U.2 follows, and is stated 

here without proof. 

Theorem 4.»4. Let p = 1.  Then 

.. .—_^_-_ 
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dA(x) 
-X %s s-1 e  X x J^ZTP,— dx  (o < x < •) ,  (mu) 

and the L.S.T.  of the service time distribution is 

\Ke) = / e"ex dB(x)     (9 > 0)    .    (145) 
0 

Thus, the mean and variance of the two distributions are, 

respectively. 

^a = f  ' 'I'-Ji (146) 

Wb - -  MO)  , a^ = i|»"(0) - [^'(O)]2  .   (1U7) 

The traffic intensity is then 

M      s 
(148) 

In this system the customers can be assumed to pass through 

s different stages, the duration of the stages being mutually 

independent random variables with the distribution Xe~ dt 

(0 < t < »).  Let 0(t) be the number of stages completed by 

the customers at time t; then except in the special case 

E |M|l, the process Q(t) is non-Markovian. We shall study 

the imbedded chain  (0 }, where 0  = n(t +0) (n = 0,1,2,...) 1 n'        n     n 

and t0,t,,t2,... are the instants of departure of the 

successive customers. To define Q . we shall define X„ to n n 

■ 11   in   i it   ■     ii     /^^m^^imm 
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be  the  number of  stages  completed during     ^tn_i + ^»'tn^ 

(n  s  1,2,,..);  X,,X2,...     are mutually independent random 

variables with the common distribution 

k.   =  Pr{X    =  j}   =     /  e"Xt ÜU- dB(t) (j   >   0)       .     (149) 
J        ■        n n J • "* 

For its generating function, we have 

KCz) = I    k.zj = ^(X-Xz)      (0 < z < 1)   .    (150) 
j=0  ^ 

Thus, the mean and variance of X  are, respectively. 

E(Xn) = K^z)]    = - X\j/(0) = sp < » (151) 
2 = 1 

and 

Var(X ) = K,l(2)|    + K'U)!   - s2p2 n        z=l       z=l 

= X2^1^^ + sp - s2p2 .      (152) 

It is known that 0   is a Markov chain and satisfies the n 

recurrence relation 

k + x 
n+l " s if 0n " s 

0n+l = < 
xn+l if Qn 1 s  *    (153) 

! 
i 

«■■■^^M^a^^Hai ^■tf 
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Y = X - s     (n > 1) n   n — (154) 

and its partial sum by 

S0 = ^ Sn = Yl+Y2+,#,+Yn    ("11)   •    (155) 

From (151), (152) and (154), it follows that 

and 

E(Yn) = s(p-l) 

a2(p) = Var(Yn) =  ^"(0) + sp - s2p2 

(156) 

(157) 

Now, if the initial number of stages completed at time t0 is 

00 = i ^ 0, then (153) pives us 

{)  = max(XM,Or< ,+X^-s) n      n n-l n 

= Xn + max(0,Qn_1-s) 

(n = 1,2,...)  .     (158) 

Transposing X , (158) reduces to 

0 - X = max(0,0  ,-X .+Y .) n   n        n-l n-l n-l (159) 

h^MMMMflMMMH '        -     --- 



Proceeding as in (139), we get 

Qn ' Xn ~ maxCsr 
(0 1 r 1 n-l),i+S ] 

and hence 
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Qn ~ Xn + max[0,S1,...,Sn_1,i+Sn]    .   (160) 

When p > 1, (156) shows that E(Y ) > 0; hence (160) 

.es that, with probability one, 0 * 

paring (160) with (108), it follows that 

implies that, with probability one, 0 •* • as n ■>• «. Com- 

'n x + rr n   n 

or alternatively 

C)~ X, + Mx 
n   1   n (161) 

Since E(X1) = sp < «, for arbitrary e > 0, and 6 > 0, we can 

find a V    such that 

pr{-i: > 6} < e (n > N) 

Hence 

X  p 
— * 0 as n -»• » (162) 

^^^^^^^^^^^^^^■■^■MMMAi ~im 
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The following theorem thus follows from (161), (162) and 

Theorem 3.5, 

Theorem k,5.    Let p = 1. Then 

lim pr{ CL- < x} = 1 - G, (-iU)  , all x.  . 
n*»   o(l)/n" ^ 2x 

Moreover, when p > 1, we have 

Q - ns(p-l) 
lim Pr{-2  < x} = 4)(x)  ,  all x 

n * «     o(p)/n 

Here, a(p) is as defined in (156). 

As in the previous section, we can consider the special 

case M|G(l of the system E |G|1 and consider the queue 

length process instead of the phase length process by taking 

s = 1. 

i IM i"" 



CHAPTER V 

DIRECTIONS FOR FUTURE RESEARCH 

One possible extension of the work in Chapter II would 

be to consider the dual of Luchak's system, i.e., the system 

where service times are exponential and the interarrival times 

have a general Erlangian distribution. The appropriate process 

to consider would be the number of stages completed by the 

arriving stream of customers. 

Another possibility would be to consider a Markov process 

with a continuous state space, e.g. waiting time process in a 

M|G|l queue.  Maybe the concept of jump chain could be extended 

to this case. 

Finally, one could study the convergence in distribution 

of a denumerable state space, non-Markovian process (at each 

time point), as opposed to the Markovian process that we have 

studied. An example of such a process is the queue length 

process in a Gl|G|l system. 
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