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CHAPTER I

INTRODUCTION AND SUMMARY

In this thesis, we obtain 1limit theorems for some sto-
chastic processes arising in single server queuing systems,
These systems are described in terms of the arrival and
service mechanisms besides the priority rule used for the
servicing order of the customers. The ratio of the mean
service time to the mean interarrival time of the customers,
called the traffic intensity and denoted by p, plays an
important role in the analysis of a queuing system. When
p < 1, the stochastic processes (queue length, waiting time)
associated with the system, converge in distribution to
non-degenerate limiting distributions; this fact is expressed
by saying that the system attains a steady state. On the
cther hand, no such steady state exists in the case p > 1.
0f course, one could introduce some mechanism, such as finite
waiting room or customer impatience, which would keep the
system stable even when p > 1., However, these mechanisms do
not have any relevance to this thesis. Also, throughout this
work, we deal solely with the first-come-first-served priority
rule.

Our objective is to investigate the cas. p > 1 by
exhibiting some properties of the behavior of the afore-

mentioned stochastic processes. We shall demonstratethat

these processes, suitably translated and scaled, possess

4
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non-degenrrate limit distributions. The limit theorems are
obtaineu by considering limiting operations on the two varia-
bles, traffic intensity and the time parameter. We give below
a brief account of the work done in this area.

The area of research in the case of so-called heavy
traffic, namely, when the traffic intensity p 1is less than
but close to unity, was initiated by Kingman [15] in 1961. He
considers the distribution of the waiting time in the single
server queue with general independent input and general service
time; this system is usually denoted by the symbol GI|G|1.

Let us denote the service time of the nth customer by v

th

n

and the interval between the arrival times of the n and
(n+l)St customers by up.e The sequences of independent and

identically distributed (i.i.d.) random variables, {un} and

{vn}, are assumed to be independent of each o“her. Consequently,

the random variables defined by X0 3V = U form an i.i.d.

sequence, Let 02 = Var{xn} < », and set
E(X )
- n
65 - — 3 (1)
Letting wn denote the waiting time of the nth customer,
Lindley [18] has shown that, if wl = 0, then
Pr{”n+l < x} = Pr{max(Sl,Sz,...,Sn) < x} , (2)
where Sj s g Xy Starting from this result, Kingman's

i=1
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result states that

e~ X y X >0
. a
lim Pr{s W(a) > x} =
a+ 0 o8 x <0 ) (3)
where W(a) = 1lim wn(a), o being used explicitly in the

n $+ o
symbol wn(a) for the waiting time, Stated in words, this

means that for small, but positive a, the limiting waiting

time has approximately the negative exponential distribution L

with mean 0/2a, The traffic intensity and the parameter o

are connected by the relation

E(vn) E(Xn)
D=W-Rﬁ;’-+l . () 1

Thus, @ = 0 corresponds to o = 1, and o small but positive
corresponds to p close to but less than unity,

Subsequent to 1961, a number of authors have obtained more
general results in heavy traffic theory. Notable contributions
have been made by Prokhorov [24] and Borovkov [2,3]). Prokhorov's '
work exhibits the interplay between the two limiting operations, !
n+® and p * 1 (equivalently, 6 = 1l-p + 0). He exhibits 1
a number of possible limit theorems depending on whether n 62 i

converges to zero, a positive constant or plus infinity. The

¥"X ¥ ¢ means that x approaches c¢ from above. Similarly,
X ¢+ ¢ denotes the approach from below.




limiting distributions are obtained in terms of the probabilities
of Brownian motion. Kingman's result follows from the last of
the abovementioned three cases.

Ir [2], the author considers batch arrivals in the GI|G|1
system, He furthermore generalizes this system by letting the
interarrival time and the service time depend on o = l-p., For
such a system, the author obtains estimates of the remainder
terms in the asymptotic exponential behavior of the waiting
time. In his second paper [3], Borovkov considers general
multiple channel queues and shows that the results in this case
are of the same form as those obtained for single channel
queues, e.g. by Prokhorov,

Among other contributions to heavy traffic theory are the
following. Samandorov [26], who considers Pcisson arrivals,
single server systems. Pressman [23] considers multi-channel
systems with exponential service times. Viskov [28] obtains
some results based on Prokhorov's work. Brody [4] and Iglehart
{12) consider the case when p 2 1 in an M|G|l queue (single
server, Poisson arrivels and general service time). Iglehart
obtains limit distributions for certain functionals on the
queue length and the waiting time processes. For an expository
paper on heavy traffic, the reader is referred to Kingman [17].

A feature of the above results is that they provide limit
theorems when the time parameter goes to infinity. Also, in
most cases the stochastic process considered is discretely

indexed by time. Our aim will be to consider a stochastic




process that has a continuous index (time t > 0) and show the
convergence of its distribution at each time point. As far as
the author is aware, the only work done in this area in queuing
theory is by Iglehart [11). He considers a M|M|n system and
shows that the queue length process, suitably translated and
scaled, converges weakly to the Ornstein-Uhlenbeck process as
the interarrival time goes to zero and the number of servers
grows large, the traffic intensity being fixed at a value less
than one. A feature of this process is that it is a birth and
death process (B-D process)., Further, the author exhibits a
similar convergence for a B-D process arising in the machine
repairman problem.

Now, we are ready to give an outline of the work done in
this thesis. It is organized into the following chapters. In
Chapter II, we consider the continuous time phase length process
in a Poisson input, generalized Erlangian service queuing model
(Luchak's model). This is a Markov process with a denumerable
state space; this process has a lower barrier at 0 and it
takes upward jumps of random magritude and downward jumps of
1 (B-D process takes upward and downward jumps of magnitude
1), We look at a sequence of these Luchak systems and exhibit
the convergence of the distribution of the phase length process
to that of Brownian motion (at each time point) as the traffic
intensity goes to unity (from above and below). This conver-
gence is obtained by considering the corresponding convergence

of the jump chain associated with the phase length llarkov




process. This approach of considering the jump chain has been
used in genetics by Karlin and McGregor [13) and Kimura [1u4].,

In Chapter III, some theorems for the maximum of a sequence
of partial sums are proved. Two cases are considered depending
on whether the mean of the basic random v;riables constituting
the partial sums is zero or positive. We utilize concepts from
fluctuation theory and ladder variables. The random variable,
maximum of partial sums, occurs frequently in studying imbedded

Markov chains in queuing systems., e find that the two cases

mentioned above correspond to the cases when the traffic intensity

is equal to or greater than unity,

In Chapter IV, the results obtain:d in Chapter III are used
to obtain 1limit theorems for some single server queuing systems.
The queue length and the waiting time are two of the processes
considered when the traffic intensity is fixed at a value greater
than or equal to one.

Finally, in Chapter V, we mention some possible directions

for future research,




CHAPTER II

LUCHAK'S QUEUING MODEL

Luchak's queuing model is described as follows. Customers
arrive according to a Poisson process at rate X > 0. Each
customer demands N phases of service, where N is a random

variable with the distribution

Pr{N = n} = ¢ (n> 1) ; (5)
The service time for each phase has the negative exponential
distribution upe ™™V dv (0 < v < ), Thus, the service time

for each customer has the density function b(v), where

n-1

®
= n -uyv v -
b(v) = Zl Cn H e G- (0 < v <w) (6)

which is commonly called the general Erlangian density. The
queue discipline is first-come-first-served.

This system has been studied by Luchak [18], who considers
the transient behavior of the phase length process; this pro-
cess is the number of phases present in the system, waiting to
be served. Prabhu and Lalchandani [22] have ana'.ysed the
transient state of this system via the bivariate process
{Q(t),R(t)}; 0(t) is the queue length at time t and R(t)

is the residual number of phases present at the service counter




at time t,

In this chapter, we shall study the behavior of the phase
length process as the traffic intensity approaches unity. We
assume the existence of the first two moments of the random
variable !l and denote them by

-] -} 2
a= ] nc <o, b= J nc <o (7)
n=1 d n=1l d
The moment generating function (m.g.f.) of N is
denoted by
(- -}
cz) = | ¢ 2" (0<z<1) (8)
n=zl -
The traffic intensity of the system is given by
AC (1) _ A
a
= = = % 9
. W u e

e define a sequence of Luchak systems indexed by n
(n > 1); the parameters for the nth system are An’ Mo and
P Ana/un. The number of phases present in the nth system

at time t is denoted by Q_(t) (n > 1,t > 0); {(%(t);t > 0}
is a continuous time Markov process with the denumerable state
space S = {0,1,2,...}.

The method of approach used in this chapter is as follows.




We choose the parameters kn and M, so that PN l as

n + o, Also, we suitably translate and scale the process On(t)
so that the distribution of the normalized process onverges

to a non-degenerate distribution, for all t. The limit distri-
bution is the Brownian motion process X(t) with infinitesimal
variarce

2 _ 1 b
(o} -a-+;7 . (10)

The characteristic function of the process X(t) is defined as

ve;t) = E(e ¥ g0y = y)

2_2
s 0t .
-—7__+ isy
e (s real, t >0) . (11)

For Sections 2.1 through 2.3 we choose

Ay =0, u T a(n+/n) , (n > 1) " (12)
so that
Ana n
p_ = = 41 as n+ o . (13)
no M n+v/m

Also, the normalized process will be defined by

On(t)-n
X (t) = —— (n>1l, t > 0) . (14)
n a/n
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To study the convergence of distribution of the Xn(t)
process as n + =, we define the sequence {&n(k); k = 0,1,...}
(n > 1) of Markov chains, called the jump chain of the Markov

process Xn(t), as follows:

-~

Qn(k)-n
av/n

(k s 0’1,...; n = 1,2’...) (15)

Xn(k) =

-~

where On(k) is the Markov chain with the following transitions:

Q) + 3 wpt g el (5>1))

N . if (k) > 0
Qn(k+1) z Qn(k) -1 w,p. h

n
QUK + 3  w.p. 1 (3> 1) if Q (k) =0
(k = 01,0003 N 2 1,2,,00) s (16)

‘n
F!n = W (n ot 1) ’ (17)

n'n

and
- - Mn
hn-l-gn-w (n_>_l) . (18)
t+

We also define the continuous time process

t+ w.p. mnedns "with probability."

t+ [x] denotes the largest integer less than or equal to x.

o




L1

Y () = X (L +p)tD) (n>1,t>0 .  (19)

Yn(t) is the step process obtained from Xn(k).
To economize on notation we shall restrict our analysis to

the case*

t € [0,1]. The results obtained in this chapter
hold for t e¢ [0,T)] as well, for all finite T.

We shall organize our work intoc four sections. In Section
2.1, we show the convergence of the distributions of the
sequence Yn(t) to the distribution of X(t). In Section 2.2,
we study some properties of the process Xn(t)' These enable
us to show that the limiting distributions of Xn(t) and Yn(t)

are identical as n + « (Section 2.3). In Section 2.4, we

consider a different set of values for Xn and W They

i are chosen so that pn +1 as n +» o,

2.1, THE PROCESS Yn(t)

To obtain the convergence of the distributions of the
sequence {Yn(t)} (n > 1) (Theorem 2.3), we need the asymptotic
behavior of a certain probability associated with the Markov
chain {6n(k)}. This is done in two consecutive steps
(Theorems 2.1 and 2.2). For this purpose, we introduce the
following notation.

Let tre single step transition probabilities of the Markov

chain {0_(k)} be

+ [(a,b] denotes the set of all points x such that a < x < b.




K ~ - .
ng)‘"’ = Pr{Q (k) = 3|Q(0) = i}

(k >0, 3>0,i>0,n>1) .

We shall denote the m.g.f. of ng)(n) by

H (z) = Z 2 Pig)(n) (0<z<D), (k>0 ,

j=0

and its power series by

G(z,w) ) 5

W Hk(z) (0 <w<l)
k=0

«®©
T
k=0 j

ne~18

j p(k)
. p Pij (n) .

From (20) and (21) it follows that
3l

Ho(z) Tz .

(

12

(20)

(21)

(22)

(23)

(24)

le shall be interested in the behavior of Pjg)(n) as n + o«

and to do so, we study its power series in the following.

Theorem 2.1, Let 0 < w < 1. Then

g i
S IS b

- ]
Y w
k=0 n

where 2z = cn(w) is the unigue root in 0 < z < 1,

?

L R S N ik W)
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of the equation

f(z) = z - whn - wg 2 c(z) =0 ., (25)

Proof

The Chapman-~Kolmogorov equations of the Markov chain

(an(k)}, which follow from (16), are

plks 1)(n) + c P(k-l)(n)

(k) .
pij (n) = hn i,5+1 5 Pig

e, i kDiny e, G322
(k) - (k-1) (k-1)
(n) = h P12 (n) + cy PiO (n)
(k) - (k 1)
PiO (n) = hn i1 (n) for all k > 1

(26)

Upon simplifying the set of Equations (26), we obtain, by

using (22)

h

M (k=1)
H(z) = {—+ g_ C(2)}H_,(2) + {C(z) - g C(2) - }P {n)

(k> 1) . (27)

Using (23), (24) and (27), we obtain

IS r o B o 4————“




1y

24 . {1-wc(z2)} § Wk ng)(n)
k=0 :

Tk (k)
(28)
Now, consider the function
f(z) =2 - whn - Wg2 c(z) 5 (29)
"le have f(0) = -whn < 0, f(1) = l-whn-wgn z l-w > 0, for
0 <w<1l, Also,
3%£(2) X '
S -wgn[zC (z) + 2C (2))1 <0 ,
9z
for 0 < 2, w<l .

Hence, f(z) 1is concave for 0 < z <1 and thus f(z) = 0 has
a unique root 1z = cn(w) in 0< 2z< 1 for a fixed w,
0 < w < 1,

Now, since G(z,w) converges in the region 0 < z, w < 1,
the roots of the numerator and the denominator in the last

term in (28) must coincide. Thus,

(RCIE

k p(k)
1-w CZ_Tw)) )

W i0 (n) =

0

(30)

ne-18

k

From (29), we have bv substituting 2z cn(w),
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Cn(w) - wh - WE cn(w) C(cn(w)) = 0 3 (31)

or alternatively,

hn w-(n(w)
l - w C(Cn(W)) - -g— W . (32)
n n

The theorem thus follows from (17), (18), (30) and (32).
Before we proceed to Theorem 2.2, we shall need the

following lemma.

Lemma 2.1, Let q, > 0 and suppose that

Q(s) = Q <w for 0<s<1 ?

ne-18
n
3

n

If L(.) 1is slowly varying at infinity* and 0 < p < @, then

each of the two relations

+" A positive function f(x) defined on (0,®) 1is said to

vary slowly at infinity if

f(ex) _ 1
X

lim
x-)w

s, for all ¢ > 0 .




s) ~ (1-)° L(gZ) , s 41

and

1
QO+Q1"'...+qn~man(n), n-+o®

implies the other*.

This lemma is due to Karmata, and a simplified proof is
given in Feller [8], p. 423. A modification of this lemma is
needed in Chapter III and is presented there as Lemma 3.1.

Now, we prove the following.

Theorem 2.2. Let t € [0,1). Then

[(An+u )t]-1

: /n ¢ (k) t
1 W ITRE P:a'(n) = 33T n
n imw n+un kZO 10 at

Proof

We shall consider the power series
0.(w) = ] wk/ﬁ ng)(n) , (n>1, 0 <wc<l) . (33)
n =0 10 - -

From Theorem 2,1, we see that

t a(x) ~ b(x), x + ¢ implies that

”~~

lim & x) = 1

X * C

g
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Qn(w) = I%W An(w) s (0 < w< 1) 3 (3u4)

where

A, /A [e (01w
A_(w) = =2, Ll
n un

M) » (0 <wel) . (35)

By differentiating Equation (31) with respect to w, we get

' U
Ea(w) = h - g {g (W) C(z (W) + wg (W) C(L (w))

+wg () C (g (W) g (W)} = 0 :

]
Since cn(w) +1 as w+t+l, and C (1) = a, we get

lim g, (w) L A“+§“ (36)
im g _(w) = ~— :
wtl D hh-8p3  up-Aqa

Hence, from (35) we have

A

. . l-w
lim A (w) = -2 . /A 1linm —TaT
wtl D Mn w4t 1 WEptw
An 1l
= — /n 1lim —~—=3—— , using L'Hospital's
M w4t ) l-Cn(W) rule
e L0 using (12) and (36)
/n+l
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Letting
1 /N
A = (37)
n a_+-1' m+1 ’
it follows from (34) that
Qn(w) ~ (l-w)'l An s 48 w4+ 1, for all n .

T N A Tt

Since vn ng)(n) >0 and On(w) <o for 0<wc<l, the

hypothesis of Lemma 2.1 are satisfied by Qn(w), with p = 1, {

Hence, it follows that

LA Pn) kA as Kee, (38)

for each fixed n,

Mow, fix € > 0. Due to (37), we can find a My such

that

1 € 1l

T ¢ An < T for n > Nl . (39)
Since

(An+un)t-2 ) [(An+un)t]-l (An+un)t
— ’ ]
An+un Aptu xn+un 1

nn
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we can find a H2 such that
[(x_+p )t])-1
t - % < ? +n <t for n»> N2 . (40)
n'¥n
Because of (38), we can find a N; such that
+ -
((An un)t] 1 -
) /A Pig(n)
LA k=0 : <1+ & for n> N (41)
g T '3 o

{OA +u )t)-1}A_

Now, let M = max(Nl,Nz,Ms). From (41), it follows that

[(An+un)t]-l 0
K
- [O_+u )t]-1 kgo /i Py (n)
A-p) A {— } < —~—
nun nun

[(An+un)t]-l

€
< (1+p) A { for n > N .

[y n anun
Using (39) and (40), it follows that
+ &

[(An un)t] 1 m
1 /i Pg"(n)
€ 1 [ € k=0
(1-5) (m - Tb)(t-n-) < )‘nﬂ‘ln
€ 1l
< (l+n-) m t for n > N .

By some simplification, we get

— T—.
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+ -
[(An un)t] 1 =
/n Pio (n)
LI k=0 < L4
a+l A+ a+l

n™n

for n > N .

Since € was arbitrary, the theorem follows,

Now, we are ready to prove the convergence of the distri-
butions of the sequence Yn(t). We shall accomplish it by
showing the convergence of the corresponding characteristic
functions and then appealing to the Levy continuity theorem.
le define the following notation.

The characteristic functions of Yn(t), in(k) and N

are denoted by

v (s,t) E{eiS Yn(t)} (n > 0, s vreal) , (42)

v
—
-
t
jv

0, s real) , (43)

|v

v (s,k) = E{e’® X ()} (n > 1, k

and

6(s) = E{eiSN} (s real) . (44)

We prove the following.




Theorem 2.3, Let te [0,1] and -» <y < «  Then

lim Pr{Yn(t) < x|y (0) = y} = Pr{X(t) < x|X(0) =
n -+ ®® 2
(z-¥)
. 'k x -
3 (21?;) f - 207t o ,

(=2 ¢ X < »)

Proof

From (15) and (43), it follows that

Qn(k)-n
a’/n

is

V,(s,k+1) = Efe b, (k>0 :

Using (16), we have

;n(s,k+l) z &n(s,k) {gn Pr{an(k) > 0} ¢(—§:)
avn

T

a/n

+ h Pr{Q (k) > O}e

wn(s,k) Gn(s,k) , (k> 0)

where, using (17), we have

y}

+ Pr{0_(K) = 0} ¢<—§:>}
avn

TR UTI AT

21

(45)

ey




-1 s
G_(s,k) = (A_+u ) {A_ ¢(—==) ¢+ u e
n 2 n n n a/ﬁ n
is

n

(k > 0)
From (45), we obtain by recursion,

E k-1 -
v_(s,k) = {jr=10 6 (s} ¥ (s,0) , (k> 1)

Substituting the values of A, and ¥, from (12) in (u46), we

+u Pr{d_() = o0} {¢(i/_) - e a0

22

(46)

(47)

get, by using the Taylor series development of the characteris-

tic function, ¢(s/a/n), of N*,

is
{(asThn, + a/B) E.Co,K) 21 5 $L-2wy ¢ alne/mye B0
n a/n
_ _is
= Yn
+ a(n+/n) Pr{0_(k) = 0} {¢(==) - e 2"}
n a/n
= n {1+ is _ 5"y, o(2)}
Yyn 2a‘n

0 2
+atne/m) {1 - =2 - 2 4 o(P)} + ala+/d) Pr{Q (k) :
a/n  2a‘n 1 n

. 2
is 1 S 1
{—-n (143) - 2= (b+1) + o(R)]

t o(%) means n o(%) + 0 as n > @«

0}

PR o




Further simplification givesf

/4
{(a+1)n + a/f} 6_(s,k) = (a+ldn + a/f - is - §-<§7 + 3

+ is(a+1)(/A+1) Pr{Q (x) = 0}

2

s (/n+l)
- T(b"'l)

n

Pr{0_(k) = 0} + 0(1) .

Dividing by ((a+l)n + av/n) and using the Taylor expansion

for &n(l+z) as =z + 0, we have

2
5 s°,b 1
(is + T(-Q' + 'a-))

23

n (a+l)n + a/n (a+l)n + a/m
2 -

{tatl)n + a/m}v/m

+ (1) as n + o . u8)
(a+l)n + a/mn
Taking logarithms of Equation (47), it follows that
& - k=1
&n wn(s,k) 3 In wn(s,O) + jZO Ln Gn(S,J) ; (49)

t a, s 0(1) means a, is bounded by 1 as n + =,
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Using (19), (42) and (47), we get

in ¥ _(s,t) = &n ¥ (s,[(A +u )t])

[(An+un)t]-1

tn ¥ _(s,0) + .20 tn G (s,3) . (50)
J:

Taking Yn(O) = y and substituting from (48) in (50),

[(An+u )t)-1

in ¥ _(s,t) ~ isy - (is + %3(27 + 1)) g =N
n a 2 j=0 (a+l)n +/n
' [(An+un)t]-l .
+ lS(&"’l)(V’H"‘l) z pr{nn(j) = 0}
(a+l)n + a/n j=0
[y _+u Jtl-1
_ st () (/AL "N eea () = o)
{(a*+1)n + a/m}v/m j=0 d
0(1)
+ {Cx_+u )t)-1} as n =+ i (51)
(a+l)n + +/n n-n
Now, using Theorem 2.2, we have from (51)
lin ¥ (s,8) = isy - Su(By + Lye (52)
S ¥pts,t) = 1sy - == J? a )

Now, (11) and (52), along with the Levy continuity theorem,

completes the proof of the theorem.

| et e s i 5
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2.2. SOME PROPERTIES OF THE Xn(t) PROCESS
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In this section, we shall study asymptotic properties of

the random variable Nn(t) defined as

Nn(T) = number of jumps of the Xn(t)

Since the processes On(t) and Xn(t) are just translates

of each other, we could replace Xn(t) by Qn(t) in (53)%

Let us denote the mean and the variance of Nn(t) by

v (t)

Vn(t)

respectively,

as n + o3 similarly for Vn(t). Before we can prove Theorem
2,5, we need an initial result that is contained in Theorem 2.4.

For this, we need a result of Luchak [19] presented in the

following.

process in the time interval
(0,T), T finite . (53)

E{n_(t)|0_(0) = [n + a/nyl}

Var{Nn(t)lQn(O) = [n + a/myl} ’ (54)

e show (Theorem 2.5) that {U (t)=(A_ +u )t} + 0
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Lemma 2.2, We have

o

0.(t)
/ e E{z ” lQ,t0) = t}at
0

LAt (1-2) it
ll-;ns n

= (0 <cz<1l, 6>0) ,
(H#An+u;7z - lnz C(z) - M -

where 2z = cn(e) 4 is the unique root of the equation

(1]
o

(9+An+un)z Az C(2) - Mo in 0<z2¢<1 .

The proof can be found in Luchak's paper and shall not be given

here, Based on this lemma, we have the following.

Theorem 2.4, For any T finite,

lim n Pr{Q (t) = 0|0 _(0) = [n + a/nyl} = 0

’
nN =+ ®

almost everywhere on the set {t|0 < t < T}

Proof

The time transform of n Pr{0_(t) = 0|Q (0)} is obtained

by substituting z = 0 and multiplying by n 1in the result

of Lemma 2.2, It is thus
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-0t _
é e n Pr{Qn(t) = OIQn(O)

[n + a/Myl}dt

n c[n + avny)

n
- — , 8>0 . (55)
un(l';n

We shall show that this transform converges to 0 as n + =,

To do s»n, we first show that

£ (8) <1-L  forall o> 2 +2+ 2, and 1arge n . (56)
n /I'T 7

Consider the funection

£l = (6+An+un)z - 2z C(2) = Mh (57)

at the point 1 - 1//n. "e have, using (12),
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£(1-1) = (e+(a+lyn+a/m (1-1) - n(1-1) c1-i) - a(n+v/m)
Yn vn YR vn
= 8(1-12) + n - (a+1)/F - a + (/A-n) C(1-1-)
/N /n
= 0(1-3) + n - (a+l)/A - a + (/A-n)(1-2= + 3= + o(3));
/R mcn
by expanding C(l-l-) about 1 for large n,
/N
= g(1-2) - (2a + g) + o(n'k) for large n
/N
> 8(1-20) - (22 + 2 + 1)
/1
b
\ l 2& + 7 + 2 f b
- or 6 > 2a + 3 + 2
/n
>0 for n > (2a + % + 2)2 . (58)
Since f(cn) = 0, £(0) = - My < 0, f(1) = 8 > 0 and t is

the unique root of f(z) 0 in 0 < z < 1, (56) follows from

(58). Thus we have for 6 > 2a + b/2 + 2,




(n + a/ny] [n + a/ny]
n Cn Cn .
un(l-cn) = a(l+l—)(1-; ) y using (12)
VS n
/H(l-l_)[n + a/ny]
< ] T for large n,
a(l+=)
/n

using (56)

Now, taking logarithms, we get

(/-2 * MY} L nE - (n + admy) gn(i-i)

/n /n
= 4nvn - (n + a/ﬁy)(l— + %ﬁ
/n

= ¢n/n - /O - (% + ay + 0(1))

This means that

/F(l--l---)n + a/ny + 0 as n + @
/n

Hence from (59), we obtain

et st 4 opde- perr

29

. (59)

ol
+ O‘H))

(60)
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N ” an + av/ny) N n ;: + a/ny -1
im < lim
nos e WL CI-E) - e W (1= )
n(1-2" ¥ a/fy -1
= lim o/ T
n-+o a(l+=)
VR
= 0 , using (60) . (61)

Since n an * a'/ﬁ.y]/ul_l(l-l;n) > 0 for all n, (55) and (61)

show that

lim [ e %t Pr{Q (t) = 0[Q, (0) = [n + a/fyl}dt = 0
n-+o3 0

for 0 > 2a + ; + 2 :

Hence, it follows from the extended continuity theorem for

Laplace transforms (see Feller [8], p. 410) that

T
lim [ n Pr{o_(t) = 0]Q_(0) = [n + a/Ryl}dt = 0
n+ooi

for all finite T. The theorem is then an immediate consequence,

Now we are in a position to exhibit the following asymptotic

behavior of Un(t) and Vn(t).

4
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Theorem 2.5, Let 0 < T < », Then

lim {U () - (A +u_ )t}

n +$ «

0 for t e [0,T] " (62)

Also

lim {V_(t) - (A +u )t} =0 for t ¢ [0,T) . (63)

n <+ @

Proof
e denote the nrobability of a single jump of the Qn(t)

process (or equivalently, the Xn(t) process) in a small time

interval by*

Pn(t,h) = Pr{one jump in (t,t+h)} ;
From the definition of On(t), we have

Pn(t,h)

Pr{Q, (t) = 0}.{A h+to(h)} + Pr{Q (t) > O}.{(A_ +u h+o(h)}

(A *udh = hy Pr{Q_(t) = 0} + o(h) : (64)

Here, we have suppressed the initial state Qn(O) = [n + aymyl

and shall do so the same throughout this oproof.

T The set (a,b) denotes all points x such that a < x < b,

I .

ey
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For small h > 0, using (53), we can write
Ho(t+h) = N (t) {1-P (t,h)} + {N_(t)+1] P (t,h) .
Taking expectations and simplifying, we have

Un(t+h) - Un(t) Pn(t,h)

" = 5 s (65)

Substituting from (64) and taking limits as h =+ 0,

Flu (o} = (A_+u) = u_ Pr{Q (t) = 0}
= (kn+un) - a(n+/n) Pr{Qn(t) = 0} . (66)
Transposing and using Theorem 2.4, we get
: d
lin {Fg{u (O} - ( *ud} =0, tel0,T] , (67)

n =+ o

almost everywhere,

The first part of the theorem follows from (63) by using
the Lebesque dominated convergence theorem (see Rudin [25],
pPp. 246-7) and rnoting that Un(O) = 0.

For the second part of the theorem, we have by definition

- 2y . 2 2
v (t) = E{(N (6) - U (£} = E{(N_(£))7} - U () . (68)




Also by definition of Nn(t), we have

2
(N (esh)? = (v e ? {1-p_(t,0)) + {N_(0+D}? P_(t,h) .

(69)
From (68) and (89), it follows that

2 2 '
vn(t+h) - Vn(t) Un(t) - Un(t+h) + 2Pn(t,h) Un(t) + Pn(t,n)
h h

2
h ?

using (65) and simplifying.
Using (64) and taking limits as h =+ 0, we obtain

d{v(t)} = (A+u) - u_ Pr{Q (t) = 0 : (70)
dt''n n'n n n

Noting the similarity of (70) to (66), the second assertion of

the theorem is similarly proved.

2.3. CONVERGENCE IN DISTRIBUTION OF Xn(t)

In this section, we show (Theorem 2.6) that the distribu-

tion of Xn(t) converges to that of X(t) as n + «», Besides

using the results of Theorems 2.3 and 2.5, we need the continuity

(in t) of the distribution function of X(t). This follows

readily since the distribution function of X(t) 1is given by
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-k X 2
Pr{X(t) < x|X(0) = y} = SZlgl__ / exp{_LE:Z%_}dz ’
- t
(- ¢ X, y < @) ., (71)

Before proving Theorem 2.6, we mention the following

relation that follows from the definition of the processes.
Pr{Xn(t) < x|N (t) = i} = Pr{Xn(j) < x} . (72)

for all x, t and n > 1,

Theorem 2.6, Let t ¢ [0,1] and -» < y < », Then

lim Pr{X_(t) < x|X (0) = y} = Pr{X(t) < x|X(0) = y} ,

n » @

for -o» < x < o,

Proof+

We have, using definition of conditional probability,

t+ le shall omit the initial state y while writing the prob-
abilities, to economize on notation. ’:te that as n + o,

Xn(O) =y <=> On(O)

{n + a/nyl, from (14), Also as n + =,
[n + a/nyl, from (15).

X (0) =y <=> Q_(0)

oy
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Pr{X (t) < x} - Pr{X(t) < x}
[ 4
z jzo [(Pr{X (t) < x|N (3) = j} - Pr{X(t) < x}] Pr{y_(t) = j}
= jzo {Pr{X (3> < x} - Pr{X(t) < x}} Pr{N_(t) = j} ,
using (72);
|
z jzo [Pr{X (3) < x} - Pr{X ([ +u )t]) < x}] Pr{N_(t) = j}
+ Pr{yY (1) < x} - Pr{X(t) < x} (73)
using the definition (19).
Fix x, t ¢ [0,1] and ¢ > 0. By Theorem 2.5, we can
choose a Nl such that for n > Nl’
|Pr{Y_(t) < x} - Pr{X(t) < x}| < & . (74)
Now, choose K and N2 such that for n > N2, !
N (t) - (A tu )t
Pr{ |- “%“ | > X} < & : (75)
{Otu )t}

This is possible because of the following argument.




Choose

Choose

Choose

2

! | .

Let N, = max(N

N such that (Theorem 2.5)

3

IUn(t) - A +u))t] <1 for n > N,

Nq such that (Theorem 2.5)
vV (t)
3
oyl 'l <3 for no>w,
n'n
N5 such that
Vn(t) >1 for n > N5 .
3,I\'u,Ns) and let K be such that
2K 2 8
(T-l) >E .

Now, for n > N and K, we have

2
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(76)

(77)

(78)

(79)




Nn(t) - (Xn+un)t

Pr{| > K]}
%
{O tu )]
[N _(t) = (A _+p_)t]
< Pr{—= Bn L > %5} , due to (77) ,
{v (B}
< [N (6) = U ()] + JU () - (A +u )t 5y
= r'{ L9 >§—}
{v ()}
IN_(t) - U (1)}
< n > £ -1}, due to (76) and (78) ,
{v (t)}
£ L , by Chebyshev's inequality ,
(2K - 1)E
= -
< % s DY (29) .

Thus (75) is proved.

Now, we are in a position to show that for 1large n, the
first term on the right hand side of (78) is less than ¢€/2.
To do so, we shall define the set
i

j - (kn+un)

&5
(A e )t)

J = {3l | > K} : (80)

Then, we can write
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|j§0 [Pr{X (3) < x} - Pr{X ([a_+u )t]) < x}3 Pr{r () = j}|

< 1 2.pe{N_(©) = i}
jed

+ j E |Pr{X_(3) < x} - Pr{X ([ +u )t]) < x}| Pr{N_(t) = j} .

(81)

But, due to continuity (in t) of Pr{X(t) < x} and Theorem

2.5, we can choose a Ng such for n > Ng and j ¢ J,

|Pr{X_(3) < x} - Pr{X ([0 +utD < x}| < . (82)

Now, we are ready to put the pieces together. Let

e

N = max(Nl,d2,36). From (73), we have for n > N,
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|Pr{xn(t) < x} - Pr{X(t) < x}|

i
=0

+ Pe{Y_(t) < x} - Pr{X(t) < x}|

< | Pr{X (3) < x} - Pr{X (L +u )t]) < x}} Pe{N_(t) = 3}

3

< 2.Pr{N_(t) = j}
= Z J “
+ E |Pr{§n(j) < x} - Pr{ﬁn([(xn+un)t]) < x}| Pr{N_(t) = j}
58 hl =

+ % , due to (75) and (81) ,

s, due to (75) and (82) ,

A
£o

+
£to

+
~ojem

= ¢ s (83)

Since ¢ 1is arbitrary, the theorem follows from (83).

Thus, in Theorem 2.6, we have shown that, given Xn(O) vy,
the distribution of Xn(t) converges to that of X(t) as
n + «, Since I n/n+/n , we can say, loosely speaking, that
the phase length process at time t 1is approximately distri-

buted as

{(1-23)2 +a g x(0)

for p close to but less than unity. Since as mentioned before,
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the results hold for t € [0,T], T finite, the statement remains
true for all finite t.

It should be mentioned that the |M|l1 and the Erlangian
MIEkll systems are special cases of Luchak's model. Also, in

MIMII, the phase length process is the queue length process.

2.4, SOME EXTENSIONS

If we choose the set of parameters xn and My © be

Ay = n+ /n Wy = an " (84)

and the process Xn(t) defined in (14), an analysis, similar

to the one done up to Section 2,3, can be carried out. With
some changes in detail of procedure, a result identical to |
Theorem 2.6 is obtained. So we can say that the phase length

process, at any finite time t, is approximately distributed

as {(D-l)2 + a(p-1) X(t)} for p close to but greater than
unity,

We also note that the phase length process in Luchak's
queuing system is identical to the queue length process in the
following bulk arrival system: customers arrive according to
a Poisson process with parameter A, in bulks of random size N,
Each customer has a service time which is exponentially dis-
tributed with parameter u. Hence the results of this chapter

apply to the gqueue length process of this bulk arrival system.
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It seems that the technique of studying the convergence of
a continuous time process via the convergence of the jump chain
as done in our work, can probably be used to study more general

situations.

.\"




CHAPTER III

THEOREMS FOR THE MAXIMUM OF PARTIAL SUMS

In this chapter, we shall present some theorems that will
be used to establish the limit theorems in the different
queuing systems considered in the next chapter. These theorems
are concerned with the maximum of a sequence of partial sums
of independent and identically distributed (i.i.d.) random
variables. Ve shall use the following notation.

Let {¥X ; k = 1,2,...} be a sequence of i.i.d. random

k?
variables with mean and variance given by

E(X) = u , Var(X) = o’ , (85)

both of which we assume to be finite. Let us denote the partial

sums of {Xk} by
S0 5 S.%= M FE, P .. X (n > 1) ; (86)
Let the maximum of this sequence be denoted by

Mn z max(So,Sl,...,Sn) . (87)

We are interested in the limiting behavior of Mn as
n -+ o, in the case u > 0. Spitzer [27] has shown in this

case, that, with probability one, Mn +® as n+ o, e

42
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shall be interested in suitably norminq Moo to obtain non-
degenerate limit distributions as n % ®, For the case u > 0,

we shall show similarity in the asymptotic behavior of My and

the partial sums S (Theorem 4,1), As a consequence, a central

n
limit theorem will be shown to hold for Mn (Theorem 4.,2),

The case u = 0 shall then be considered in Theorems 4.3 and
4.4, utilizing concepts from ladder variable theory.

Now, we are in a position to prove the following.

Theorem 3,1, Let 0 < y < o, 0 < 02 < o gnd

{esn > 1} be a sequence of constants such that

c, > 0(n > 1), C, > ™ a n * =, and

G /cn > 1(n > 1). Then, with probability one

n+l

Proof

By the definition of B in (87), we have*

4
]
w
"

maX(O,Sl,Sz,...,Sn) - Sn

maX(-Sn,Sl-Sn, ¢ o0 ,Sn-l-sn’o)

t

maX(O"Sl"SZ”""Sn) , for all n . (88)

+ For two random variables X and Y, we say X . Y if X
and Y have the same distribution.




Ly

lie note the fact that -Sn's are the partial sums of -Xi's
and E(-Xi) = - 4 < 0, This enables us to say that with

probability one

sup (=S ) ¢ = ;
n»>0o0 Lz ,

this result is due to Spitzer and a convenience reference is

Prabhu [20], »n. 220. This means that

Pr{ lim max(0,-S;,...,-S ) < =} =1 ;

n + «

Ther«fore, from (88),

Pr{ 1lim (M -S_ ) < } =1 : (89)
n-)tﬁnn
Now, fix € > 0, n > 0., Also, let A be a fixed constant,
however larce. Due to (89), we can find a Nl’ such that,
for n > ﬂl’

Pr{M -S> A’”n+1‘sn+1 > A,...} < s (90)

Let ﬂz be the smallest index n of c, for which c, > Ale.,

This is possible by the hypotheses on c . Let N = max(Nl,Nz).

Then, we have

o SE N )

ved 14304
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M-S My =S
N N+l
= Pr{M, -S ML =S Shel
= Pr{My=Sy > eopaMy, Sy, > ecy. e vees)
< Pr{M S, > A,M,.-S AL
Z ryTey NN ReTerTre e
since ecy > A,
< Pr{My-Sy > Aty =Sy 0 > Ayl
CN+.
since -E-l >1 for all 3 > 1,
N =
< n, by (90).

Since ¢,n were arbitrary and Mn-Sn > 0 for all n, the
theorem follows.
Mow, we prove the asymptotic behavior of My in the

following.

Theorem 3,2, Let 0 <y < o, 0 < 02 < w, Then*

M_-np p.d 2
lim Pr{ < x} = = i exp(-%—)dy
b n -+ o o'/ﬁ - ﬂ)-( -0l

(-00<X<°°) .

+ UWhile this thesis was under preparation, a paper by Heyde [10]
came to the author's attention., That paper deals with a similar
theorem for the general case when the Xk's belong to the domain

of attraction of a stable law,
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Proof
Let us denote
_Mn'm‘l S - np
Un s vV = 2
9 - .
Ov/;l- n Ufﬁ
Choosing e = o/n in Theorem 3.1, we find that
P ,
U -V +0 as n =+« 3 (91)

(actually a stronger result holds). The central limit theorem
for the partial sums Sn implies that the distribution
funetion (d.f.), Gn(.), of V, ~converges to G(.), the d.f.
of the standard normal distribution. It remains to show that
the d.f., Fn(.), of U, converges to G(.). This fact
follows from (91) and has been implicitly used in the litera-
ture, but was proved recently by Feller [8], p. 247. His
proof 1is reproduced here.

We have, for ¢ > 0,

Pr{U_ < x} = Pr{U_ < x,U -V > -¢}
+ Pr{U_ < x,U -V < -¢}
< Pr{v_ < x+ec} + Pr{Uu -V < -e} . (92)

p
t Xn + c as n -+ o implies that the sequence of random
variables {Xn} converge stochastically to the constant ¢

as n + o,
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p
Since we have U, - Vn + 0, the last probability in (92) can be

made < € for large n. Hence we have

Fn(x) < Gn(x+e) + € for all n sufficiently
large,

The same argument leads to an analagous inequality in the
opposite divection., Hence Fn(.) converges to G(.) as
n + ®», The theorem is therefore proved.

When the basic random variables Xy have zero mean and
finite variance, the distribution of the random variable Mn//ﬁ
converges to the normal distribution truncated at zero. This
has been shown by Frdds and Kac [6] by usinz an invariance

principle (see also Donsker [5]). We shall present an alter-

native approach, mainly for its intrinsic interest. The proof
uses the concept of ladder variables of the sequence Sn .
The following is a brief sketch of the theory. For details,
see Feller [8] and Prabhu [20].

We define the sequence {Nk;k = 0,1,2,...} of random

variables, called the ladder epochs of {Sn}’ as follows:

R = 0

—
=
(1]

min{n > N ,|S =S > 0}
k-1'"n Nk-l
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The successive ladder heishts are defined as
Z, =S - S (k > 1) ’
kN TNy =
{Nk,SN } is a two dimensional renewal sequence. Let the
distribution and the generating function of Ny be denoted
by
p, = Pr{N_=n} (21 (93)
and
T n
P(t) = Z p.t s Il <1 (94)
ns
respectively., We also define
M(n) = max{k|N, < n} 5
N(n) is the number of ladder epochs in (0,n)]. We have
= 0 N(n) = 0 . (95)

To describe the asymptotic behavior of Mn’ we have, therefore,
to consider the behavior of N(n) as n » o, and also the
behavior of the partial sunms Zy + 22 AETRI S Considering
first N(n), we note that the occurrence of a ladder epoch

is a recurrent event E (Feller [7]), whose recurrence times

o

st
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have the distribution {pn}. The number of times E occurs in
an interval (0,n] is given by the random variable N(n). %hen
y = 0, it is known that with probability one, N(n) + «» as

n + o« In Theorem 3.3 we prove that in this case, N(n), suitably
normed, has a limiting distribution. In order to prove this,

we need the following.

Lemma 3.1, Let the sequence {qn} be monotonic

and such that q, > 0 and

qnsn <cw for 0<¢s <l 3

Q(s) =

n

nue-1 8

0
If L(.) varies slowly at infinity and 0 < g < =,
then the relation?

0(s) . (1-s)7B L(-li—s-) s 41

is equivalent to

qn ~ FT%T AB-l L(n) N » w .
This lemma is due to Karmata. and a simplified

proof is given in Feller [7], p. 423,

Now, we prove the following.

t f(x) ~ g(x) as x + ¢ implies that lim ;%%% =1 .

X+ C
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Theorem 3.3. Let w =0 and O < 02 < =, Then
2¢c
: N(n) e
lim Pr{—= > x} = G, ( ) x >0
nH‘,{m_} oo plll
=1 alf ,Xio
where
-]
- 1 1
c = nzl =Pr{s > 0}-3] < =
and
- LY
GE(X) c 2[1~¢((7§) ) S x >0
=0 R x<0 (96)

is the stable law with index %. Here ¢(x) is

the distribution function of the standard normal

random variable.

Proof

From the distribution of Nl, civen by (93), we define

the monotonic sequence

Then, using (94), we have the generating function of the

sequence {q_} as
n

e N

.




5l
% n _ 1-P(s)
. Q(s) = nZO Q8 = =y===~ , sl <1 . (97)
/4 The generating function of {pn} has been obtained by Sparre
Hv : Anderson [1] (referenced in Prabhu [20]) and is given as
. & n
p(s) = 1 - exol- | 2 Pr{s_> 0}] . (98)
&, n n
n=1
From (97) and (98), we have
i o n o« n
" 1 1 s
3 expl- ] EH{Pr{Sn > 0}-3} - = I =)
‘ adis) - n=1 n=1
l-s
% v s” 1
i = (1-5)7°% expl- |} _H{Pr{sn > 0} - 7}] : (99)
£ n=1
4
; Now letting
C(s) = expl- } = Pr{s > 0} - 5}] . (100)
n=1
the expression (99) reduces to
0(s) = (1-8)7% C(s)
Now, vie set
Tl 1
c= J ={Pr{S_> 0} - =} p
R n 2
]
L i

T
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the series being at least conditionally convergent ia the case
u=0,0c¢< 0% < @ (see Feller [8], p. 575), which is a part

of our hypothesis. Using this fact in (99), we get

-C

lim  C(s) = e ;
s 41
To apply Lemma 3.1, set
L(x) = C(1-3) ,
We have
lim L(x) = lim C(s) = e ¢ > 0 ; (101)

X * ® s 41

Thus L(x) is, trivially, a slowly varying function. So, Q(s)
satisfies the hypotheses of the lemma and, using (101), it
follows that

il %—le-c

q ~ n
n r(,zI)

ar, by simplifying
-C

S S as n -+ o (102)
/nn

9

Now, from the theory of recurrert events as presented in
Feller [7], the result (102) enables us to write the following

asymptotic behavior of the random variable N(n):
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lim Pr{i(n) > L} = 6 (y~?) : (103)
n+ e U &

v

Using (102) and letting x = yv¥X ec, we get the required result.

It should be remarked here that in [8], p. 399, Feller has
considered the power series [1-P(s)1"Y and has used the above
technique to study the asymptotic behavior of its coefficients.
Thus we could have cbtained (102) from his results also.

Furthermore, if the basic random variables Xk have a symmetric

distribution, Pr{Sn > 0} = % for all n and hence (99) would
reduce to
; Q(s) = (1-s)~* .
| ' ThUS Y
4
{ -3 A 2n\ o 3
- q, = (-1)" = 2 (n > 1) - {
n n

l So we have an exact expression for a, and Dby Stirling's
approximation for n!, we get that qp, is approximately
%

(nw)~° for large n (compare with (102)).

Now we consider the random variable Mn in the following.

2

i Theorem 3.4, Let uw =0, 0 < 0° < », Then
(=2 < x) = /2] expt-p
lim Pr{— < x} = /= exp(-%—)dy x>0
n+w ovn T o T ’

0 y x <0 .




54

Proof

From (95), we have

2,42, 4...42
S %270 TON(n) N(n)
- N(n) . . (10'4)

/n

RNis™

Now, the first term on the right hand side in (104) can be

written as

Zy¥lotestlyiny  NptNo*eoo#Ny(h)

N1+N2+...+Nn(n) ' N(n)

The first term in the above expression converges to E(Xl)
(see Feller [7], b. 380) and the second term converges to
E(Nl), since MNM(n) * » as n +» «» and the law of large

numbers., Thus

Zy¥Zp% ety

N(n)

+0

E(Xl) E(Nl) as n + o

E(Zl), by use of Wald's inequality .

From Feller [8], p. 575 we find that, in the case u = 0,

0 <o < o, this is given by

E(Z,) = % e € >0 . (105)

Thus, we find that the first “2rm in (104) converges
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stochastically to a positive constant; also, by Theorem 3.3, the
sequence of random variables N(n)//n converge in distribution
to the stable law with index %. Thus, using the result for
the limiting distribution of the product of two sequences of

random variables (see Fisz [9]), we have,

lim Pr{-= > x}

n+o /n
e M MG (.Y ¢ VP
ni & H{n) s =
2 =-2¢
b G%("eZC . o'e )
2%
2
= ¢, (1%
% 2xl

2
201 - o((5 . %)7)1 ,  from (96)
o

X
2[1 - ¢(5)]

p—

I3

@ 2
/ exp(-%—)dy y X >0 ;
X

o
For x < 0, we have

M
lim Pr{-% >z} = 1 :
n+ « n
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Taking complements of one in the Equations (106) and (10 ),
the proof of the theorem is completed.
With an eye towards the next chapter, we shall need the

following modification of Mn, defined as

My = max(S;ySyseessS_1i4S) (108)

for a1l n and i > 0. 1In the following theorem, we shall
show that the asymptotic behavior of M: is identical to that

of Mn’

Theorem 3.,5. Let 0 < y < o, 0 < 02 < », Then

Mi-nu X /4
lim Pr{— < x} 0 [ exp(-%—)dy
n-+o o/n I -

(- ¢ X ¢ =) A

Also, when y = 0, 0 < 02 < o, we have

M; } 5 & ¥_2_
lim Pr{— < x V/: exp(-%-)dy x>0
n+o {o/ﬁ - m g ’

=0 y X < 0 F

Proof

From (108), we can write

i .
Mn = max(Mn_l,1+Sn) » for n>1 3 (109)
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Vle now claim that

0 < M; -M <i, all n, i>0 ; (110)

To show (110), we consider the three mutually exclusive and

exhaustive cases:

i

1, Mn-l < Sn: Here, Mn =i+ Sn and Mn = Sn'
Thus MI - M = i,

2, S <M . <i+S: Here, M zi+5 and
M= M .. Thus, M- =di+sS -M >0
and < i, since Sn - Mn-1< 0.

1 13 . 1Y =
3. 1+ Sn < in-l' Here, M Mn-l and

i -
. Thus, Mn - M - 0 .

Thus, (110) holds for all cases. Now, since i/v/n + 0 as

n + o, we have

+'0

0 . (111)

3 |55
3 ==

Now, using an argument similar to the one used after
Lquation (91), Theorems 3.2 and 3.4 complete the proof of

this theoremn.




CHAPTER 1IV

SOME QUEUEING SYSTEMS

In this chapter, we shall study some of the Markov chains
imbedded in different queuing systems. It is known that these
imbedded chains can be written as the maximum of partial sums of
mutually i.i.d. random variables. Hence, we use the results
of the previous chapter to obtain limit theorems in the cases
where the traffic intensity equals one or is greater than one.
It will be shown that the former corresponds to the case u = 0
and the latter to the case u > 0, in the terminology of
Chapter III. We shall consider the systems GI|G|1, GIlEsll,
and ESIGll (these shall be defined explicitly as we go along).
The analysis in this chapter follows along lines similar to
those used in the book by Prabhu [21].

We recall that the distribution function of the standard

normal distribution is denoted by

X 2
$(x) = = [ exp(-%—)dy y =® < X< q (112)
2T -
Also, from Equation (96), we see that
m e XE
1l - G%('_T) == f exp(-2 Jdy , x > 0
2x 0
= 0 y X < 0 (113)

We are now ready to start the analysis of the system GI|G|1.

58
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4,1, THE SYSTEM ¢I|c|1

This is a single server queuing system with the first-come-
first-served (FCFS) queue-discipline. Let u, denote the

interval between the arrival times of the nth and the (n+1)St

customer; v = is the service time of the n*®  customer (n > 0)
(the customer arriving at time 0 is labeled the zeroceth
customer). {un} and {Vn} are independent sequences of posi-
tive 1i.i.d. random variables with their respective distribution

functions given by

0)

Pr{un < x} = A(x) (x

v

Pr{v < x} = B(x) (x > 0) . (114)

Iv

We assume the two distributions to have finite means denoted by
M, G L(un) and My = E(vn) " (115)
WYe also assume that they possess finite non-zero variances
02 = Var(u_ ) and 02 = Var(v_) (116)
a n b n

The traffic intensity of the system is then given by

U
oz 2 i (117)

Fa
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We define the sequence
X = v =-u (n > 0) (118)

and its partial sums by

S 20 5 5o = Ry e ec TR (n>1 . (119)

Since the arrival stream and the servicing mechanism are indepen-
dent of each other, the Xn's form a sequence of 1i.i.d. random

variables. We have

- y_ = ua(p—l) R (120)

so that
U > 0 <=>p>1
us=0c<m>p=1 : (121)
Also,
s . .2 2
0 = Var(xn) = W + Op > (122)
and it is finite and non-zero.
Let Wn be the waiting time of the nth customer, i.e.

the time from his arrival to the time when he commences service

et




(n > 0).

We have wo s u
customer, Ue then have t

. Mhe1

from this we obtain succe

wl z max(O,u+X0)
w2 = max(O,wl+x1) z max(O,Xl,Xl+X0+u)
Wy = max(O,w2+X2)
= max(O,Xz,X2+X1,X2+X1+X0+u)
W, o= max[O,Xn_1+Xn_2+...+Xn_r (1 <r <n-l)
Xia1t¥popteeet¥Xgtul  (n 2 1) . (123)
‘ { From (119), we see that xn_l+xn_2+...+xn_r s Sn'sn-r; hence we
L can write (123) as
wn s max[Sn-Sn_r (0 <r< n-l),u+Sn] .
Since Sn-Sn_r = xn_1+xn_2+...+xn_r, and the Xn are identically
distributed, it follows that Sn'sn-p has the same distribution
as Sr' Therefore, we can write
g.
} '
. i

max{(0,W_+v_-u_)

61

> 0, the waiting time of the zeroeth

ha following recursive relation:

max(O,wn+xn) §

ssively
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W, ~ maX[O’Sl’S2""’Sn-l’u+sn] s (124)
When 1 > 0, the waiting time e with probability
one. We see from (108) and (124) that
WY 3
n n
and hence an easy consequence of Theorem 3,5 is Theorem u.l*.
Theorem 4.1. Let p = 1. Then
W
lim Pr{—=2 < x} =1 -6 (-17) y all x .
n+ w o/n ~ 2x
Also, when p > 1, we have
W - nu
lim Pr{——— <x} = ¢(x) , all x .
n+ o o/n
Here, y and o are defined in (120) and (122).
Now, we shall consider the first passage time defined as
T(u) = min{klwk = 0,Wy = u> 0} : (125)

t The part of the theorem for the case p > 1 has been obtained
by Kingman [16], using different methods.
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T(u) represents the number of customers served in the interval
of time between the commencement c¢f a busy period initiated by

Wy = u, and the next busy period. This random variable satisfies
Ei . the following relation:

. Pr{T(u) > n} Pr{u+so > 0,utS; > 0,...,u4S > 0}

Pr{maX('So,’slgoo.’-sn) < u} .

(n > 1), (126)

From (136), it follows that

maX(—S ,-S o s » "S )
Pr{T(u/n) > n} = Pr{ L ;: it PR (127)
n

Note that =S, is the partial sum of -Xi's. Hence, when
U= E(Xn) =0 (= p =1, from (121)), =S, is the partial sum
of i.i.d. random variables with zero mean. Thus, from

Theorem 3.4, we have Theorem u.2.

|

1 Theorem 4.,2. Let = 1, Then

E

f oz

% lim Pr{T(uvn) > n} = 1 - Gk(l-Y) , u>~o .
] n -+ 2u

b Here, o is as defined in (122).

=




6Y4
4,2, THL SYSTEM GIIESIl
This system s a particular case of the system GI|G|1,
wherein the service time has the gamma distribution
dB(x) = B} dx (0 < x ¢« ») . (128)
The mean and variance of this distribution is
M, = ¢ ol = 8 (129)
b X b7 '
We denote the Laplace-Stieltjes transform (L.S.T.) of the
interarrival distribution by
® -9
wee) = [ e VX qa(x) , (8 > 0) . (130)
0
Thus, the mean and variance of this distribution are,
respectively,
] 2 ] t 2
My ==V (0) , o, =V (0) - [y (0)) : (131)

The traffic intensity of this system is thus given by
! -1
p = S[- Aw (0)] L]

Ve can consider the servicing of customers as being
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accomplished in s consecutive phases, the time required for
each phase having the exponential distribution e At (0 < t < »)
independently of the others. Each customer adds s phases to
the system and we shall study the imbedded chain obtained from
this phase length process. Let to,tl,t2,... l'e the instants

of successive arrivals and Qn denote the number of phases
present in the system at time t = t, - 0., Let Xn be the
number of phases of service completed during (tn_l,tn-o)

(n = 1,2,...)3 then Xl,X2,... are mutually independent random

variables with the common distribution

® 3
kg = Pr{x, = 3} = AT SL}L dA(t) (5 > 0) . +132)
0 ¢ -

For its generating function, we have

K(z) =
j

Hne~-18

kaj L v(eAz) (0 <z < 1) . (133)
0

Hence, the mean and variance of Xn are, respectively,

E(X) = K (2)] : o ap(0) = 2 . (134)
n z=1 e
and
Var(X_) = E(x%) - [E(x)12
n n n
2
te [ ]
= K (2)] + K (2)] = 2
z=1 z=1 ;7
2

2.t s

2 %o v 2.5, : (135)
P
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It is known that q} is a !'arkov chain ad satisfies the

following recursive relation:

Qn z max(O,Qn_l+s-Xn) (n > 1) . (136)
We define

Y =5 X {(n > 1) (137)

n n -

S0 =0 , sn z Y1+Y2+"'+Yn (n>1) . (138)

If the initial number of phases at time to is 0p =120,

then (136) gives us

O = max(O,Qn_1+Yn)

max(O,Yn,Yn+Yn_l+Qn_2)

max[O,Sn-Sn_r (1 <rc< n-l),1+Sn]

e

max[SP (0 <r< n-l),i+Sn] . (139)

From (134), (135) and (137), it follows that

TR s e e it T

T A Sl T e, AP
- R e Nl e e, ML e T [ gy okl e L Y RN e Nl P o Ry i i S
Py e O e I — - T e (T S [ N P N el Ty Pl T T, g
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- S
E(Yn? z E(O-l) (140)

and

2 - e 2 Za''y s s
o (p) = Var(Yn) =AYy 0) + o ?- s (141)

where p 1is used to denote the dependence of the Var(Yn) on
the traffic intensitv.

then p > 1, (140) shows that E(Yn) > 03 hence from (139),
we see that, with probability one, Qn + ® as n + », By com-

paring with (108), it follows that

i
Qn ~ Mn . (142)

Thus, an upshot of Theorem 3.5 is the following.

Theorem 4,3, Let p =1, Then

0
lim Pr{—=D0— < x} = 1 - Gy () all x .
n+ e a(1)vn LIPYE A

Moreover, when p > 1, we have

Qn - ns(gli)
lim Pr{ B < x} = ¢(x), all x :
n-+ o(p)v/n -

Here, dg(p) is as defined in (141).

New, we shall define the random variable
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N, o= min{k|i+S,_ < 0]} ; (143)

k
which represents the number of phases served in a busy period
initiated by i phases. The similarity between M, and the
random variable T(u) as defined in (155) is obvious, except
that here the partial sums S, are defined by (138), Conse-
quently, a theorem similar to Theorem 4,2 follows, and is stated

here without proof,

Theorem 4.4, Let p = 1. Then

. i
nl-:l;ma° Pr{Ni/ﬁ >n} =1 - G%(Engfl) ; > 0 |,

Here, o(l) 1is defined in (141).

It should be noted here that the GI|M|1 queuing system,
i.e. the system with exponential service times, is a special
case of the above system GIIES|1, when s = 1. In this case,
the phase length process is the queue-length process since
each customér demands one phase of service. The analysis of
this section thus holds for GI|M|1l, with the word queue-length

replaced for phase length, and s = 1,

4,3. THE SYSTEM EslGll

This system is the dual of the system GI|ES|1, in the
sense that here the interarrival times have the gamma distribution

whereas the service times possess an arbitrary distribution., Here,
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-A .5 s-1
X

e™ A
il = Ts-1)7

dx (0 < x < ®») (144)

and the L.S.T. of the service time distribution is

v(e) = [ e~®% aB(x) (8 > 0) . (145)
0

Thus, the mean and variance of the two distributions are,

respectively,
. S 2 _ s
ua = X- ’ Oa = ;—7 (1u46)
t 2 te ' 2

The traffic intensity is then

o = - Ap'(0) . (148)

s

In this system the customers can be assumed to pass through
s different stages, the duration of the stages being mutually

Atdt

independent random variables with the distribution e~
(0 <t <®), Let 0(t) be the number of stages completed by
the customers at time t; then except in the special case

ESIMIl, the process Q(t) is non-Markovian. WWe shall study
the imbedded chain {On}, where 0 = 0(t _+0) (n = 0,1,2,...)

and tO’tl’tZ"" are the instants of departure of the

successive customers, To define Qn’ we shall define Xn to
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be the number of stages completed during (tn_l+0,tn)
(n = 152503 0)5 Xy»Xys++. are mutually independent random

variables with the common distribution

® 3
ks = Pr{x =3} = e~Mt Sﬁgﬂr.da(t) (5 >0 . (149)
\ 0 L[]

For its generating function, we have
®© o
K(z) = § k.23 = p(r-az) (0 < z< 1) ' (150)

Thus, the mean and variance of Xn are, respectively,

E(X) = K(2)| = -y (0) =sp<w (151)
z=z]
and
L ] | ] 2 2
Var(X ) = K (2)| + K (2)] - sp
z=1 2=1
= 22" "(0) + sp - 822 : (152)

It is known that Qn is a !Markov chain and satisfies the

recurrence relation

(Qn + Xn+1 - s 1if Qn > s

n+l %

if Q <s . (153)

n+l




e

We define the sequence

Y =X - s (n > 1)

Sg = 05 Sy = Yy¢¥ . .4 (n>1) .

From (151), (152) and (154), it follows that

E(Yn) = s(p=-1)
and

cz(p) = Var(Yn) z w"(O) + sp - 5202 .

Now, if the initial number of stages completed at time

0g = i > 0, then (153) eives us

O
"

max(Xn,On_l+Xn-s)

Xn + max(O,Qn_l-s)

(n 21,2,..4) &

Transposing Xn’ (158) reduces to

0, = X, = max(0,0 gy .

-l.xn-l+ n-1

71

(154)

(155)

(156)

(157)

is

(158)

(159)
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Proceeding as in (139), we get

Qn - X~ max(Sr (0 <rx< n-l),i+Sn]

and hence

Q. ~ X+ max[O,Sl,...,Sn_l,i+Sn] . (160)

n

When o > 1, (156) shows that E(Yn) > 03 hence (160)
implies that, with probability one, O, *+® as n+ =, Com-
paring (160) with (108), it follows that

i
Q, ~ X, *+ M ,
or alternatively

9~ X. + Mi . (161)

Since E(Xl) = sp < », for arbitrary € > 0, and 6§ > 0, we can

find a M such that

X1
Pr{—= > 6} < ¢ (n > N) :
n
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The following theorem thus follows from (161), (162) and

Theorem 3.5.

Theorem 4,5, Let p = 1. Then

Q n
lim Pr{—O—< x} = 1 -G (—y) all x. .
n+ o o(l)/n ~ % ox ’

Moreover, when p > 1, we have

= ns(p-1)

Q
lim Pr{ < x} = ¢(x) , all x .
n+ o a(p)v/n - |

Here, 0(p) 1is as defined in (156).

As in the previous section, we can consider the special

case M|G|1 of the system E;IG|1 and consider the queue

length process instead of the phase length process by taking

O

s = 1.




CHAPTER V

DIRECTIONS FOR FUTURE RESEARCH

One possible extension of the work in Chapter II would
be to consider the dual of Luchak's system, i.e., the system
where service times are exponential and the interarrival times
have a general Erlangian distribution. The appropriate process
to consider would be the number of stages completed by the
arriving stream of customers.

Another possibility would be to consider a !larkov process
with a continuous state space, e.g. waiting time process in a
M|G|1 queue, Maybe the concept of jump chain could be extended
to this case,

Finally, one could study the converzence in distribution
of 4 denumerable state space, non-Markovian process (at each
time point), as opposed to the Markovian process that we have
studied. An example of such a process is the queue length

process in a GI|G|l1 system.

4
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