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ABSTRACT 

The main problem considered is:  Given a set of linear 
inequalities 

(1.1) Ax + By > d , 

which defines a set of  (x;y) , find and concisely 
define a set Y of  y  such that if  (x;y)  solves 
(1.1) then y belongs to Y and, conversely, if y 
belongs to Y then there exists an x such that 
(x;y)  solves (1.1). 

The solution to this problem involves finding the set 
of all extreme rays of the convex cone 

wA - 0 , w > 0 

and a method is given for this.  The method Is compared 
with other methods for finding extreme rays and points 
and finally some practical applications are given. 



PROJECTIONS OF CONVEX POLYHEDRAL SETS 

by 

David Köhler 

1.     INTRODUCTION 

Our main concern will be with  the problem: 

Given a  set of  linear  inequalities 

(1.1) Ax + By  >  d   , 

which defines a set of  (x;y) , find and concisely define 

a set  Y of  y such that if  (x;y)  solves (1.1) then 

y belongs to  Y and, conversely, if y belongs to Y 

then there exists an x such that  (x;y)  solves (1.1). 

(A , B and  d are assumed to be real arrays with 

..    ,     .mxn  _mxp   .mxl    , . 
dimensions A   , B   , d    and ra , n and p are 

assumed to be finite.) 

If we find the set.  Y  then we say  that we have "eliminated" x  from the 

system (1.1). 

The title of this thesis reflects the fact that a convex polyhedral set 

is by definition a set descr^bable by a finite system of linear inequalities 

and the elimination of x amounts in effect to the projection of a set In 

(x;y)-space onto y-space.  Practical problems which reduce themselves to the 

above problem abound in operations research and in other fields, and we will 

discuss some of them in Section 8. 

We shall develop the theory by proving in Section 3 that the set Y 

can be defined by the system consisting of all of those inequalities in y 

which are nonnegative linear combinations of the inequalities of the original 

system (1.1).  That is to say,  Y may be defined by the system of all 
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inequalities of the form 

(1.2) wAx + wBy > wd ,      w e C 

where C"{w|wA"0,w>0}.  If the only element in C is w = 0 then 

y is clearly unrestricted. Otherwise C is infinite—but we prove in 

Section 4 that there is a finite subset G of C such that Y may be 

defined by the system of all inequalities of the type 

(1.3) wAx + wBy > wd ,      w e G . 

In Section 3 we give a method for finding G (and simultaneously the system 

(1.3)) and in Section 6 we give som° computational results.  It will become 

clear, as the tneory of Sections 3, 4 and 5 is developed, that tho sets C 

and G are dependent only on A and that (1.3) is the most concise 

definition of Y which we can give if we have no prior knowledge of   B and 

d . 

But before we can develop this theory we must describe the Fourier- 

Motzkin Elimination Method. This has historical interest because it is to my 

knowledge the only method which is currently available and we must explain 

why it is not often used. However, the main reason for introducing it so 

early is because it is most useful as a tool for motivating and proving the 

theory of Sections 3 and 5. 



' . Ji.J.Jiäü,. JJJ,-.S 

2. THE F0UR1ER-M0TZKIN ELIMINATION METHOD 

Fourier first discovered this method and described it in 1824 in the 

paper "Solution d'une Question Particuliere du Calcul des In^galit^s" (7]. 

Later T. S. Motzkin drew attention to the method in his Doctoral Thesis 

"Beitrage zur Theorie der Linearen Ungleichungen" [11] (this is in German but 

a translation was made by D. R. Fulkerson [11]). A more accessible account 

may be found in Dantzig [5]. 

Essentially the method eliminates the unwanted variables X-.x^, ... one 

by one until linear inequalities in y alone remain. It is only necessary to 

describe the elimination of one variable—since the elimination of the other 

variables is just a repetition of this procedure—and we will select x.  for 

this purpose.  During the elimination of x1  the variables y^y-, ..., y 

do not play a role which is conceptually different from that of the variables 

Xp,x., ...» x .  It complicates the expressions to include them explicitly 

and so we will ignore the y variables and describe the elimination of x1 

from the system 

(2.1) 

all al2 •••' aln 

a21 a22 •••• a2n 

a . a „     a 
ml mi     mn 

■      "1 P    ^ 
xl dl 

X2 > 
d2 

• ■ • 
. • 
X n_ d 

We partition the set of row indices as follows 

{i 

U 

ail > 0} 

a., < 0} 

Iu - U '11 
0} 

and examine  separately  the  two cases 
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(A) I or    I     or  both are empty sets. 

(B) Both I  and I  are nonempty. 

Case A 

Here the elimination of x.  can be effected very easily, thus: 

The set of feasible (x.tX., .... x ) may be defined by the system of 

inequalities 

(2.2) ai2x2 + ai3X3 + +ainXn^di '      V i e ^ 

because if  (x^.x., ..., x )  solves (2.1) then it solves (2.2) and, 

conversely, if (x-,x., ..., x )  solves (2.2) and if I (I~) is nonempty 
z j       m 

then we can always choose an x.  so positively (negatively) large that (2.1) 

is satisfied ty (x,,x„,x_, ..., x ) . 
i    z    J n 

We draw special attention to the fact that the set of feasible 

(x2,x» x )  is unrestricted if 1  is empty. 

Case B 

In this case we proceed first by reformulating the statement of the 

inequalities (2.1).  If 

a11x1 + ai2x2 + + alnxn > d1 

is an inequality of (2.1) and If  1 e I  then we reformulate it as 

"a12x2 "a13x3    "alnxn ^ dl 
x. > ...  +  , 
1 '  all   all      ail   ali 

and let 1.  represent the expression on the R.H.S.; alternatively if i e I 

we reformulate it as 
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"a12x2 "ai3X3    "ainXn ^  di 
all   ail      ail   all " 1 

and let  u  represent the expression on the L.H.S. 

; r 

x. > 1. ,    Viel 

(2.3)        ^ ui i xi •    V 1 c r 

a12X2 + al3X3 + ''' + ainxn - dl '    Viel0. 

It Is now cxear that we can ae^rlbe the set of feasible  (x-,x„, ..., x ) , 

after the elimination of x.. , by the following Inequalities 

(2.4) 
u. > 1, , ^ 1 e I  and k e I 
k -  i 

al2x2+a13X3+ '•• + ainXn > ^ • V 1 e 1° 

That is, any set of  (x-.x,,, ..., x )  which sjclsfles (2.1) also satisfies 

(2.4).  Conversely, if  (x.  « )  solves (2.4) then we can always choose 

an x1  so that  (x.,x., ..., x )  solves (2.1).  The reason for the latter is 

that the inequalities (2.4) ensure that 

Max (1 ) < Min (u ) 
+        - 

lei       kel 

and so any    x      in the Interval     [Max  (i^)   ,  Min  (uu)|     will satisfy ["Max   (i^   ,  Min  (Ujfl 

Liel+ kel'       J 

x,   <  u.    , V   k e  I 
1  -     k 

and 

1,   <  x-   , Viel. 

/ 
i 

madt 
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This completes the description of the elimination of    x.     from (2.1). 

The ellminf.tlon of    x    from the system (1.1)   simply Involves  repeating this 

process for    x2,x-,  ..., x      in turn.     (Of course no significance Is attached 

to the aequenae of elimination of the unwanted variables.    Any ether sequence 

of elimination would serve the purpose equally well—but note that different 

sequences may yield different  sets of  inequalities defining    Y .)    One last 

point  Is worth emphasizing.     It Is  this:     if no Inequalities: are generated by 

Che elimination of one of the  unwanted variables then  this immediately Implies 

that  the set    Y    Is unrestricted and  that we need not.   Indeed cannot,  perform 

any subsequent eli -aations. 

An example will Illustrate the  general method.    We wish to eliminate    x. 

and    x7    from the sysvem 

- x1 +    x2 +    y1 >    1 

- x2 + 2y1 > -1 

-2x1 + Ax2 + 3y1 >    1 

- 3x2 - 4y1 > -1 

(2.5)                                                -  2x2 -  5y1  >    1 

5x2 -  6y1  > -1 

Ax2 -  7y1  > -2 

8y1 >    4 

The first column is all nonpositive.     So the elimination of    x      gives: 



(2.6) 

x2 + 2y1 > —1 

3x2 " Ayl > -1 

2x2 " 5yl > 

5x2 - öyj > -1 

4x2 - 7y1 > ~2 

8yl 
> 

- 9y1 > -2 

We reformulate this as 

(2.7) 

X2 i 
6 1 
5 yl- 5 

X2 ^ 
7 2 
4 yl " 4 

2 yi + 1 > X2 
4     1 
3 yl + 3 ^ X2 
5     1 
2 yl - 2 ^ x2 

8y1 > 4 

- 9y1 > -2 

and the elimination of x_ gives 

(2.8) 

' 

2 y 

4 
3 y 

5 
2 y 

2 y 

4 

+ 1 

l 
" 2 

+ 1 

i 

- 9y1 > 

5 yl 
1 
5 
1 

5 yl - 5 

6 
5 
6 
5 
6 
5 
7 
4 
7 
4 
Z     1 
4 yl " 4 

1 
5 
2 
4 

4 yl ~ 4 

5 yl 

= 4 ^1 

4 

-2 
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Or,   putting the variables on the L.H.S.  and the constant  terms on the R.H.S. 

we have 

(2.9) 

4 
5 yl 

> 6 
" 5 

38 
15 yl 

> 8 
15 

37 
10 yl 

> 
10 

1 
4 yl 

> - ^■ 

37 
12 yl 

> 
" 6 

17 
— yl 

> 0 

8 y, > 4 

9 y, > - 2 

The main problem which occurs when using this method is that Case B seems 

to occur more frequently than Case A in practical problems.  In Case B if m 

and m  are the numbers of indices in I  and I  respectively then the 

number of inequalities after elimination is 

m 'tn +(m-m -m) 

or  an increase of 

(m+ -  l)(m    - 1)  -  1   . 

Thus  the number of  inequalities generated by  the elimination of a variable 

can be,   and usually is,  much larger than the number before elimination.     After 

a few eliminations the number usually becomes impossibly large, even when    m 

is  quite  small.    For example,   if    A    is the matrix 



1      J 6 

1-4 4 

1    -11 10 

1         7 - 6 

1         3 - 7 

1-8 5 

1-9 1 

then  the elimination of    x,     generates 12  inequalities, 

the elimination of    x«    generates 27 inequalities and 

the elimination of    x_     generates 126  inequalities. 

However,   the Fourier-Motzkin Method has other uses.     In particular we 

can make  the following deductions  from it: 

(1) The Fourier-Motzkin Method demonstrates something which many people 

would regard as intuitively reasonable—namely that the set    Y    of 

feasible    y    can always be defined by a finite set of linear 

inequalities  in    y    alone;  or,  in other words,   the projection of  a 

convex polyhedral  set onto a vector subspace  is itself also a 

convex polyhedral  set. 

(2) The inequalities,   if any,  which are generated by an elimination are 

nonnegative  linear aombinations of the original  inequalities.     In 

Case A,  of course,   this   is obvious  since  the  inequalities after 

elimination are some of   the original ones.     In Case B it  can be 

demonstrated easily by  comparing  (2.3) with   (2.4).     Reformulating 

(2.3)  as 

(2.10) 

*llh' 
-x1  >-ui  , 

al2X2 + ai3X3 + + a.  x    > d    , 
in n ■    i 

Viel 

Viel' 

V  i  e  IC 
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we can see that each Inequality In (2.A) of the form 

Uk^ h 

Is the Bum of two  inequalities in  (2.10)  and, since the inequalities of  (2.10) 

are positive scalar multiples of some of those of  (2.1),  we have proved our 

assertion. 

This means that the elimination of    x    , if it does generate 

inequalities,   is equivalent  to premultiplying by a matrix    M^     the  system 

which we had obtained after eliminating    x .     The system we obtain after 

eliminating    x.,x-,   ...,  x      is therefore 

MJ   •   M^"1   •   ....   •   M2   •  M1  •  Ax + MJ   •   ...   •   M2  •  M1   •   By 

1 2 1 
> MJ   •   ...   •  M    •   M    •   d 

The matrices    M      have a special  form and may be constructed easily and 

in an obvious manner from the column of coefficients of    x,   ,  the variable 

about to be eliminated.     Let 

'Ij 

J2j 

l3) 

be the column of coefficients of x  before elimination. A row r of M^ 

is constructed from each pair of elements a,,  and a,,,. , one of which 

is negative and the other positive.  The row (m .,0 2,m _, ...) has the 

form 



'         ' ~T 

11 

I • 

1 1 rk 

ivji'1   lf 

la^.j 

k - i' 

if       k - i" 

0     otherwise 

there Is also a row s of M  corresponding to each element a.,  which is 

zero.  In this case 

m si 

1  if 

0 otherwise 

v. = i 

For example if the coefficients of x  before elimination are 

then 

2. 

3 

-4 

-5 

0 

OJ 

M^ = 

1 1 
2 A 

1 1 
2 5 

1 1 
3 4 

1 1 
3 5 
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We are now In a position to state the following definition and prove 

the subsequent lemma: 

Definition of F 

Apply the Fourier-Motzkin Method to the elimination of x from (1.1) 

and if the method does generate inequalities then define F to be the set 

of all rows of the matrix 

M11 • M0"1 • .... • M2 • M1 

Alternatively  If no inequalities are generated define    F    to be the vector 

w =  0  . 

(N.B.     F    is dependent not only on    A    but also on the order of the variables 

eliminated.     It  is assumed in defining    F    that this sequence  is known.) 

Lemma 2.1 

Y may be defined by the system 

(2.11) wAx + wBy > wd ,      V w e F 

Proof; 

The Fourier-Motzkin Method generates the system (2.11) if it generates 

any inequalities at all.  On the other hand Y is unrestricted and may be 

defined by the inequality 

O-Ax+0- By>0- d 

Q.E.D. 
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j.  THE KEY THEOREM 

Consider the system of Inequalities (1.1). 

Let  S  be the set of all nonnegative linear combinations of the 

inequalities of (l.l) which annihilate A , i.e., the set of inequalities 

wAx + wBy > wd ,       V w c C 

where C={w|wA=0,w>0). 

Also, let  T  be the set of Inequalities 

wAx + wBy > wd ,        V w t F . 

As we showed  ir   the  previous section    F     is a  subset of    C    and  therefore    T 

is a subset of     S   . 

Now let    U    be  the  set of    y    which  satisfies  (1.1),   i.e.,   the set  of 

y    for which  there  exists an    x    such  that     (x;y)     satisfies   (1.1);   let     V    be 

the set of    y    which  satisfies    S    and  finally  let    W    be  the set  of     y    which 

satisfies    T  . 

Then the  following  statements  are  true whatever    B    and    d    may be: 

Any solution of a  system of  linear  inequalities also solves any  non- 

negative  linear  combination of   these   inequalities 

U C V 

Also     S  D T 

.*.     V C W  . 

And  the Fourier-Motzkin Method  implies that    W = U  .     This proves the 

Theorem 3.1 

Whatever     B     and     d    may  be,     U  H   V  r  W 
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The Importance of this theorem should be clear after reading the next 

sections but we may hint at It now.  Although the set  S may be infinite, we 

only require a relatively small number of these inequalities in order to 

adequately define U .  These Inequalities are necessarily a subset of T , 

the Inequalities generated by the Fourier-Motzkln Method. 
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A.  THE CONVEX CONE: wA - 0 , w > 0 

Let C denote the set of all solutions of 

(4.1) wA - 0 , w > 0 . 

It is Important to see that if a particular element w  of C Is a nonnegative 

12  3 
linear combination of other elements  w ,w ,w , ...  of C  then the 

corresponding inequality 

w By > w d 

is a redundant inequality in the set  S .  This is because If 

o  .1 1 4 .2 2 J . 3 3 J w =AW +Aw +Aw +.... 

12  3 
for some nonnegative scalars A ,A ,A , ...  then 

w0B = A1(w1B) + A2(w2B) + ... 

and 

w0d « A1(w1d) + A2(w2d) + ... 

Thus it is natural to search for the smallest subset  G of C which 

possesses the property that every element of C is a nonnegative linear 

combination of the elements of G .  Theorem 4.2 below provides the Information 

we need in order to describe G but before we can state and prove it we need 

I 
the  following notation,  definitions and lemma: 

(i) Let     C.     represent  the    k row of    A  .     (A     has  a  finite 

number of rows.) 

(ii) If    w       is a given m-vector then we define  the  subset     I(w ) 

of  the  indices     {1,2,3,   ..., m}    as 

■ 
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I(w0) - {i I wj^ 0} . 

(ill)  If w  Is a vector in C we define the subset K(w0)  of rows 

of A as follows 

K(w0) - {q | i e I(w0)} . 

(iv)        We will use  the notation    (w )     to represent  the set 

{Aw0   |   A   >  0}   . 

(v) A let of     s     rows  of    A    is said  to possess     r    dependent  rows 

if  it 

(a) contains a set of (s-r)  independent rows, and 

(b) does not contain a set of  (s-r+1)  independent rows. 

(Note that the row of all zeros alone constitutes a dependent 

set.) 

(vi)   If w  is a nonzero element in C and if  K(w ) contains 

exactly one dependent row then w  will be called an extreme 

vector  of C and the set  (w ) will be called an extreme half- 

line  of C . 

(vii)  A sufficient set of extreme vectors of    C is a subset of C 

consisting of exactly one extreme vector from every one of the 

extreme half-lines of C . 

(viil) Lemma 4.1 

Let w  be a nonzero solution of wA ■ 0 and let 

U  | 1 e Kw )}  contain exactly one dependent row.  If w 

is another solution of wA ■ 0 and if 

{^ | i e Kw2)} C {^ | i e Kw1)} 

2 1 
then    w       is  a  scalar multiple of    w 
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Proof; 

Consider the system 

(4.2) I w 5    - 0 
1 

leKw1) 

'. 

where {(,     \  1 c I(w )} contains one dependent row.  If 1 

Is some i  in  l(w )  and If we are given the value of w B .o 
1 

in a solution of   (4.2)   then the values of  the other variables 
i 

required to  solve   (4.2)   are  precisely determined. 
i 

2 1 Therefore  if    w o ■ w    « kw o    in a solution of   (4.2),   tht; 

other variables must be 

w,  = w    = kw, V   i e  I(w )   . 

Q.E.D. 

Theorem 4.2 

If    C    contains a nonzero element and if    G    is a  sufficient  set of 

extreme vectors  of    C    then    G     is   finite and every element  of    C     is a non- 

negative  linear  combination of  the  elements of    G  .     Furthermore   if    G'     is 

any other  subset  of    C    which has  the  property that  every  element  of    C    is a 

nonnegative  linear combination of  the elements of    G'   ,   then each element of 

G    is  a positive  scalar multiple of  some  element of    G1     and  therefore no 

smaller  set  than    G    has  this property. 

Proof; 

Let     w      be any nonzero element of     C  .     K(w )    must  contain at least one 

redundant  row since    w      would necessarily be zero if    K(w )    were an 

independent  set.     If    K(w )     contains exactly one dependent  row then    w      is 
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itself a scalar multiple of an element of G by Lemma 4.1,  Alternatively, 

if K(w ) contains more than one dependent row, we select any row in K(w ) , 

say  £.. , and define the subset  I(w ,1) of the indices  {1,2,3, ..., m} as 

I(w0,l) - U | w° > 0 , i ^ 1} 

and  then form  the  following  system of  linear  equations: 

(4.3) I 
itl(w0,l) 

Vi -w0f 
I'l 

(Notice that  {v  | i c I(w ,1)}  is a set of variables but w  is a 

constant.) 

Demonstrably (4.3) has a nonnegative solution and the Simplex Method of 

Linear Programming can be used to show that if there is a nonnegative 

solution of a system of linear equations then there is at least one non- 

negative basic  solution.  Let  {v  | i e I(w ,1)}  be such a nonnegative basic 

solution of (4.3) and define w as 

v1  if 

w°  If 

i E I(wV) 

1 = 1 

0  otherwise 

o , -. 
We next find the largest (positive) scalar k such that  (w -kw)  is non- 

negative and we caa then form w  as the sum 

w = (w - kw) + kw 

where 

(i)  w is a scalar multiple of an element of G , and 

(ii) K(w0 - kw)  is a strict subset of K(w0) . 
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We repeat the above process, using  (w -kw) where above we used w  , 

until we have expressed w  as a nonnegative linear combination of elements 

of G .  Tho phrase "if C contains a nonzero element" is inserted in the 

statement of the theorem in order to ensure that G be nonempty and when 

this is the case it is trivially obvious that the zero vector is a nonnegative 

linear combination of the elements of G .  So we have proved that any 

element of  C  is a nonnegative combination of the elements of  G . 

G must be finite because there are only finitely many combinations of 

rows of  A which have one dependent row. 

Only the last assertion remains to be proved and this depends on the 

fact that if an element, say w , of  G is a positive  linear combination of 

-1 -2 -3 
some other elements w ,w ,w , ...  of  C then these elements are nonnegative 

scalar multiples of w .  We show this as follows: 

Let 

1  .1-1  .2-2 u  ,3-3 _, 
W  =AW  +AW  +AW  +.... 

-1-2-3 12  3 1-1 -2 -3 
where w ,w ,w , .... t C and X ,A ,X , ..•, > 0 .  Since w ,w ,w ,w , ... 

12    3 1 
are all nonnegative,  K(w ),K(w ),K(w ), ...  must be subsets of  K(w ) 

because w. > 0 =-■ w^ > 0 .  But  K(w )  contains exactly one dependent row 

-1 -2 -3 1 
and so by Lemma A.l w ,w ,w , ...  must be scalar multiples of  w  and any 

set  G'  which possesses the property described in the statement of the 

theorem, must therefore contain at least one element from each extreme half- 

line.  Since G possesses only one element from each of these extreme half- 

lines there can be no subset of C  smaller than G with this property. 

Q.E.D. 
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5.  A CONCISE DEFINITION OF Y 

We now have a solution. In theory at least, to the problem of finding 

a concise definition of the set Y which we stated in Section 1.  We may 

express the solution as follows: 

Given the system 

(5.1) Ax + By > d 

we examine the associated system 

(5.2) wA = 0 , w > 0 . 

If the only solution of (5.2) is w E Q then the set Y is unrestricted, 

i.e., for any y whatsoever we can always find an x such that (5.1) is 

satisfied.  Alternatively if (5.2) has more than one solution then the system 

(5.3) wAx + wBy = wBy > wd ,       V w e G 

where G is a sufficient set of extreme vectors of  C , is a concise 

definition of Y .  In fact if we have no prior knowledge of B and d then 

there can be no more concise definition of Y than (5.3)—as we can show by 

letting B = I  and  d = 0 .  Then (5.3) reduces to 

wy > 0 , V w c G 

which clearly does not contain a redundant inequality because, by Parkas' 

Lemma [6], a member of i  system of homogeneous linear inequalities is 

redundant if and only if it is a nonnegative linear combination of the other 

inequalities of the system and we have deliberately chosen G so that this 

is not the case. 

In this section we will describe an adaptation of the Fourier-Mot.kin 
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Method which determines whether C has more than one solution and, if so, 

produces a definition of Y in the form (5.3).  It makes use of the following 

theorems: 

Theorem 5.1 

Let  C contain more than one solution and let  H be a subset of  C 

such that if  (x;y)  so.Ives (1.1) then it solves the system 

(5.4) wAx + wBy - wBy > wd ,      V  w r H 

and if y solves (5.4) then there exists an x such that  (x;y) solves 

(1.1), whatever B and d may be. 

Then H contains a sufficient set of extreme vectors of the set C . 

Proof: 

The solution sets of the system (5.4) and of the system 

(5.5) wAx + wBy = wBy > wd ,      V  w c G 

are identical, whatever    B and    d may be. So we may legitimately allow 

B and d  to take on the special values I and 0 respectively in order 

to examine the relationship between G and H .  Then (5.4) and (5.5) reduce 

to 

(5.6) wy > 0 , V w e H 

(5.7) wy > 0 , V w c G 

respectively.     Each  inequality of   (5.7)   is satisfied by  every  solution of  the 

system  (5.6)  and  therefore,   by  Parkas'   Lemma,   each  element   of    G    is  a non- 

negative   linear combination of  the  elements of    H   . 

The   required  result   then  follows  as  a direct   consequence  of  Theorem 4.2. 

Q.E.D. 
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Theorem 5.1 tells us,   for example,  that we may restrict our search for a 

sufficient  set of extreme vectors  to  the  set     F    which we  defined at   the end 

of Section 2.     The problem is to distinguish them from the other vectors in 

F  .    Theorems  5.2  and  5.3  below describe  the tools with which we may 

conveniently do this. 

Theorem 5.2 

w  is an extreme vector of C if and only if 

(i)  w  is a nonzero element of C , and 

(ii)  there does not  exist a nonzero element w  of C such that 

I(w )  is a strict subset of I(w ) . 

Proof: 

Assume that w  is an extreme vector and that w  is an element of C 

such that  I(w )  is a strict subset of  I(w0) .  Then U  | i c I(w0) } 

contains one dependent row and by Lemma <.l w  is a scalar multiple of w , 

say w = kw  .  But  I(w')  is a strict  subset of  I(w )  and therefore 

there exists an  i , say  1' , belonging to  I(w )  but not to  I(w ) .  This 

Implies that  w , = kw., = 0 which In turn implies that  w  must be zero. 

Therefore if w  is an extreme vector there cannot be a nonzero  element w 

of C such that I(w )  is a strict subset of  I(w ) . 

Arguing in the opposite direction, assume that w  is a nonzero 

element of  C  and that there does not exist a nonzero w t C  such that 

I(w )  is a strict subset of I(w ) .  By Theorem 4.2 every nonzero element 

of C is a positive   linear combination of one or more members of some given 

12 3 
sufficient set of extreme vectors  {w ,w ,w' , ...} 

o    1-1 x 2-2 J ,3-3 J .1  2  3 
w  *Aw +Aw +Aw +      A,A,A,... >0 
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-1 -2-3 12 
where w »w ,w , ...  are elements of (w ,w , ...} .  But our assumption, 

together with the fact that w ,w (W , ...  are nonnegative, Implies that 

I(w ) r I(w ) = l(w ) = ...  which In turn implies, by Lemma 4.1, that 

w ,w ,w , ...  are scalar multiples of one another.  Therefore w  Is an 

extreme vector (and Is in fact a positive scalar multiple of exactly one 

element of a sufficient set of extreme vectors). 

Q.E.D. 

This theorem is useful in the following way: We have established that 

F contains a sufficient set of extreme vectors.  So we simply search through 

F discarding any vector w  If there exists another vector w  In F 

such that  I(w )  is a strict subset of I(w ) .  I have been unable to prove 

that we can discount the possibility of the Fourier-Motzkin Method generating 

more than one extreme vector from the same extreme half-line.  Should this 

occur we need only keep one of them. 

Theorem 5.3 

If    A    contains    n    columns   then no  extreme vector  can contain more  than 

n+1    nonzero components. 

Proof: 

If w  is an extreme vector then {£.. | i c I (w ) }  contains one 

dependent row and a set of no more than n independent rows. 

Q.E.D. 

This means  that we may discard  those vectors  in     F    which have more  than 

n+1    nonzero components.     It  is  a  simpler and quicker method than the one 

derived  from Theorem 5.2 but,   unlike  the  latter,   it may not discard all of 

the  unwanted vectors  in     F  . 

It   is  important  to  realize  that we do not  have  to wait  until we have 

eliminated all    n    variables     x^x-,   ....  x      by  the  Fourier-Motzkin Method 
1     z n 
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before we can apply these methods.  They may be applied at any time and as 

often as we like during the elimination of the variables because, although 

the theorems were stated with regard to the complete matrix, they are of 

(k) 
course equally true when applied to a matrix A    containing any k 

columns of A , for k ■ 1,2,3, ...» n  (or any other matrix for that 

matter). 

Now we can describe the method for finding a sufficient set of extreme 

vectors.  It goes as follows: 

Beginning with the system 

(5.8) Ax + By > d 

we eliminate x-  using the Fourier-Motzkin Method and if this generates any 

inequalities at all it is equivalent to premultlplying (5.8) by a matrix 

M , as we showed in Section 2.  (If the Fourier-Motzkin Method generates no 

inequalities at this or a later stage we deduce at once that Y  is 

unrestricted.)  We examine the rows of M  to see if there are any which do 

not belong to a sufficient set of extreme vectors of the convex cone 

(w ,w , ... , w ) 
l'^ 

lll 

'21 

m L ml. 

w. > 0 , 
i = 

i = 1,2, ..., m 

using the criteria of Theorems 5.2 and 5.3. Actually each row of M is a 

member of a sufficient set of extreme vectors, whatever A may be, because 

a row of M contains either one nonzero element which is the only nonzero 

element in its column or  a unique combination of two nonzero elements, and 
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therefore each row of M  is an extreme vector by Theorem 5.2.  We define 

M  to be M  and proceed to the elimination in turn of the other variables. 

The procedure for x2,x_, ... etc. is the same for each and we will describe 

it for the general case,  x : 

(5.9) 
(M J-l . 

_4_i  -1-2        -2  -1 
(MJ   • MJ   •   • M  • M ) • Ax + 

-2  -1        -1-1 
  • M  • M ) • By > (MJ   •   M ) • d 

is the system we have obtained by eliminating x-.x«, ..., x. . .  Actually 

it is more convenient not to carry this system explicitly.  We only need the 

matrix (MJ 
-2  -1 
M  ■ M )  and the original A , B and d and we can 

th 
obtain updated columns as we require them.  The j   column of (5.9), 

(MJ-
1 -2  -1 

.. • M  • M ) 
mj 

is computed and the Fourier-Motzkin Method is applied to eliuinate x.  from 

(5.9).  If this generates any inequalities it is equivalent to premultlplylng 

(5.9) by a matrix M  giving 

(5.10) 
M-^SJ'1   •       •   M1)Ax + M^M-^"1   •        '   M1)By  > 

M1(MJ  
1 • -2       -1 M     •   M )d 

By Theorem 5.1  the   rows  of   the matrix 

. MJ(MJ~1   .   MJ"2   •       •   M2   •   M1) 

contain a sufficient set of extreme vectors of the convex cone 
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(w. ,w w ) 
i /      m 

all a12 •*•• alJ 

a21 a22 ••" a2j 

aml am? 

«i > 0 . 

mjj 

1 * 1»2, •••• m 

and therefore we can apply the methods of Theorem 5.2 or Theorem 5.3 or both 

of    tf^'1  •       •   M2   •  M1, in order to detect  them.     If a row ")     is detected 

to be not a member of a t'jificient  set  of extreme vectors  then  the corres- 

ponding  row of    MJ     is deleted.     The  result,  after all deletions  have been 

made  to    MJ   ,   is defined  to be  the  matrix    Fr   .     This  completes  the 

elimination of    x      and we are  ready  to  repeat  the process  on  the variable 

Xj+1   * 

At the end, when x  has been eliminated (assuming that the method has 

generated inequalities at every elimination), the rows of the matrix 

M11 • M" r.n-1 
.... • M2 • M1 

constitute a sufficient set of extreme vectors of the set C . 

Some remarks, mostly concerning computation, are relevant at this point, 

(1)  Computational experience seems to indicate that it is preferable 

to apply the method of Theorem 5.3 after the elimination of each 

variable in order to delete rows of M  and to use the method of 

Theorem 5.2 periodically, say after every 10 eliminations or when 

the number of rows remaining after applying the former method is 

still large. This is recommended because the criterion of 

Theorem 5.3 is so easy to apply and seems to eliminate most of the 

unwanted rows.  However the work involved in the method of 

Theorem 5.2 is also quite small—especially when programmed for a 
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computer—because  binary  bits may  be used to  indicate whether a 

component  of a vector is positive or not and most  scientific 

computers  have  logical  com   1nd8,   such as AND,  OR,   EXCLUSIVE OR, 

which would  facilitate  the  comparisons of  the    I(w),8   . 

(2)     It   is not necessary to calculate the actual values of  the elements 

of   the matrix 

\  _4_i       _i_2 -2       -1 
MJ(MJ        •   MJ        •       •   M     •   M ) 

before rows are deleted from >r .  The criteria of Theorems 5.2 

and 5.3 both rely only on whether elements are zero or not zero. 

The values of the elements should only be calculated for M . 

In fact, as the rows of M  are created, a test should be made to 

see whether they can be deleted immediately.  If so then it is 

unnecessary to keep them of course. 

Example 

Eliminate  x from the system 

(5.11) Ax + By > d 

whert 

A = 

r 2 
1 

-1 

-3 

-1 

1 1 7 

2 0 -3 

-1 0 -1 

2 0 3 

0 0 9 
4 

-2 0 1 

''it is not necessary for this purpose to know what B and d  are). 
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(1)   Elimination of x. 

Column 1 of A is 

0 

2 

1 

-1 

-3 

-1 

and so 

M1 M 

I 
2 

1 
2 

I 
2 

1 
3 

(ii)  Elimination of x. 

r.l Premultiplying the second column of A by M  we get 

M1 

1 

2 

-1 

2 - -1 

0 

.-2. -1 

and so 
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M 

1 
3 

1 
3 

i 
3 

1 

1 

1 

2      -1 
The  strictly positive  element?  of    M    •   M      are   located as 

follows: 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ + 

+   + 

+ 

+ 

+ + 

+ + 

+   + 

+ 

+ 

+ 

DELETE 

DELETE 

DELETE 

DELETE 
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By Theorem 5.3 we  can delete rows 5,  6,  9 and 10 of    M      because 

they contain four positive elements.    The  remaining rows form a 

sufficient set of extreme vectors as can be seen by applying 

Theorem 5.2 

.M^ 

1 

1 

and 

A2  '   M1 

1 1 
2 

1" 

1 1 1 
3 

1 1 
3 

1 
3 

2 
3 

1 
3 

1 

1 1 
3 

1 

1 
2 

1 2 
3 

2 1 1 
3 

4 
3 

1 1 
3 

(ill)  Elimination of x 

-2  -1 
Premultiplylng the third column of A by M • M  we get 

J 
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This is all nonnegative and so we can delete the first three 

inequalities of the system 

_2-i    -2-1    -2-1 
MM Ax + MM By > MM d 

-3   3 
M = M = 

0  0  0  1 

and 

-3  -2  -i 
M • M • M 

2 
3 

4 
3 

1 
3 

2 
3 

1 
3 

(iv)   Elimination of x. 

-3  -2  -1 
Premultiplying the fourtli column by M • M • M  we get 

mk 
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5 
4 

-  1 

7. 
4 

•.   MH 

4 
5 

4 
5 

4 
7 

4 
7 

1 
2 

'A 

the positive elements  of    M  (M M^M )     are 

0 + 0 + 0 + 

0 + + + + + 

0 + + + + o 

0 + + + + + 

0 + + + + +. 

DELETE 

DELETE 

DELETE 

By Theorem 5.2  we  can delete rows 2,   4  and  5 

.'.   M"   = 

M4M3M2M1  = 

1 0 0 0 0 

0 0 1 
4 
7 

0 

J 

0 
2 
3 

0 
1 
3 

0 

0 
1 
2 

15 
7 

4 
7 

6 
7 

mam 
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and  the  set    Y    may  be  defined by the  two  inequalities 

(M4M3M2M1)By   >   (MVM^H 

The unmodified Fourier—Motzkin would have generated 16 

inequalities had  it been applied to this problem. 
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6. COMPUTATIONAL RESULTS 

Some tests hav*» been made to compare the method with the Fourier-Motzkin 

Method and the test problems are given below.  Following a short description 

of each problem there are two rows of figures, e.g., 

12  25  154 

12  10    8 

The first  of  these  rows  gives the number  of   inequalities generated  by  the 

Fourier-Motzkin Method after each elimination,   i.e.,   in this case  12 

inequalities are  generated when    x1     is eliminated,  25 when    x_     is  eliminated, 

etc.     The  second  row gives the number of   inequalities generated  by   the method 

described  in Section 5.     An asterisk,   e.g.   1632   ,   indicates  that   1632  is  a 

lower bound and  the actual number  is almost  certain to exceed  1632. 

Problem 1:     7 Rows 

12      25       154 

12      10 8 

Problem 2;  15 Rows 

14  19  46  425 

14  19  26   31 

Problem 3;  9 Rows 

8  9  14  41  112 

8  9  10   9    9 

Problem 4:  10 Rows 

10  9  17  3  2 

10  9  15  3  2 

IHM. 
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Problem 5:  15 Rows 

14  19  39  38  56 

14   19  24  23  32 

Problem 6:  20 Rows 

20  23  21  20  26  53  494 

20  22  20  19  23  44  176 

and on the next elimination the number of inequalities exceeded 186—the 

capacity of the machine for this problem. 

Problem 7; 20 Rows 

19  38  136  177 

19  38   90  106 

and on the next elimination the number of inequalities exceeded 502—the 

capacity of the machine for this problem. 

Problem 8;  20 Rows 

29  28  48  170  1632   5810*  12391*  27930* 

29  28  42   97   195    224     619     288 
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7.     COMPARISON WITH OTHER METHODS 

There  are other methods  for  finding  extreme vectors or  points  of a 

convex polyhedral   cone or set,   the  main ones being Balinski's method  [1]  and 

Motzkin's Double  Description Method   [12]   (see  Balinski   [1]   for  a  discussion 

of  the  literature).     The  remainder  of  this  section will  be  concerned with a 

comparative  analysis of these  two methods  and will assume a  detailed 

knowledge  of   them. 

Motzkin's method has  been  virtually   ignored—perhaps  because   he  simply 

stated  a method with some  motivation  but  no  proof.     The   first   part   of  the 

paper  is devoted  to a specialization of  the Double Description Method  (to 

the problem of  finding all  solutions  of  a  two-person  zero-sum game)  which was 

arrived  at   independently by Ralffa,   Thompson and Thrall who  co-authored the 

paper.     The   general  Double Description Method is given  in  the  last   few pages 

which were  written  by Motzkin. 

Although reference is made  to Notes of a Seminar  on Linear Programming 

at  the  Institute  for Numerical  Analysis,   these contain  little additional 

information.     Motzkin assumes  that   the  reader shares his masterly under- 

standing of  polyhedral cones—consequently  some passages may  require careful 

examination  before   their meaning  becomes  clear.    Once  understood,   however,   the 

paper provides profound insight  not  only  into the nature of  polyhedral  cones 

and  the Double Description Method  but  also  into the method which  I  have 

developed  independently in  this  thesis.     Motzkin describes  three  versions of 

his method: 

(1) The general problem    Ax   >  0  .     This method  is very similar to 

mine  in  that  linear constraints are added  one at  a  time.     The 

main  difference   is   in  the   formation of  a  new extreme  vector of 

the cone    A,x  >  0  ,   i  =   1,2,   ...,  k    as a  convex  combination of 
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(ii) 

two extreme vectors of the cone A.x > 0 , i ■ 1,2 k-1 . 

Motzkin checks first to see whether the latter two vectors are 

adjacent before generating the new vector. Adjacency is a 

necessary and sufficient condition that the new vector be 

extreme.  In my method new vectors are formed from all pairs of 

the old extreme vectors which are on opposite sides of the 

hyperplane A, x ■ 0 because we have a "quick and dirty" means, 

in the form of the criterion of Theorem 5.3, of eliminating 

nonextreme vectors.  Then the criterion of Theorem 5.2 is used 

to remove any remaining redundant vectors.  It is difficult 

say which, of Motzkin's and my methods, is the more efficient. 

Possibly an Improvement over both would be to order the extreme 

vectors in some lexicographical manner, dependent upon the 

position of nonzero elements, so that we could have a "quick 

and dirty" means of determining adjacency. 

The special case Ax > 0 , x > 0 where A is "nondegenerate." 

Motzkin states at the top of Page 70 of his paper [12] that by 

"nondegenerate" in this context he means that "no n+1 of the 

(inhomogeneous) linear functions vanish at the same point, which 

is always the case after a small change of the coefficients." 

By this I am sure he means that no n  (or more) of the m+n 

functions 

^ ' 

AjX , 

j = 1.2 n 

1 *  1,2, ..., m 

may vanish at  the same point,   i.e.,   each solution     (x,s)     of  the 

system 
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X    >    0    ,     8    >   0    , 
IB * * * 

Ax + Is  -  0 

must  have more than     ((m+n)-n)  ■ m    nonzeros.     Now this 

condition of  nondegeneracy would mean that  if  we were  to apply 

our method to  this problem  it would be unnecessary to use the 

criterion of Theorem 5.2 because the criterion of Theorem 5.3 

would eliminate all of   the  redundant vectors;   and  in  fact  this 

version of  the Double  Description Method   is  a  variant  of our 

method without Theorem  5.2's  criterion, 

(iii)     Ax  >  b  ,  x >  0  ,  A    nondegenerate and    A  > 0   .     Although 

Motzkin doesn't  say  so  the condition    A >  0     is necessary for 

the computational method which he gives at the  very  end of his 

paper.    Without  It he  could  not assume as he  does,   that 

(a) In Step    s A  ,   P  k. 0 -  0    implies that     Pk    .     >  0 . 

(b) Ax ■ 0    has no nonzero  solution. 

Incidentally,  it is interesting to note that in his  1936 thesis Motzkin 

was within a hair of discovering  the relaticrship  between  Fourier's method 

and his own Double Description Method but made an error in  the  logic of 

Section 86   (assuming that     (vCjp..      is  identical  to    v(G p..))   .     We can see 

now that  the Double Description Method and my method both become,   in essence, 

Fourier's  method  if new vectors generated  by two old ncwadjacent  vectors are 

not eliminated at each iteration. 

Ballnski's method is not  strictly comparable with our method since  it 

is designed  to  find only  the vertices  (i.e.,  ncwhomogeneous   extreme vectors) 

of  the system    Ax  > b    where  the columns  of    A    are linearly  Independent.     By 

putting  this system in the  form 
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(7.1) 
Ax' - Ax" - I» - b« - 0 

x1 , x" , s , z > 0 

we see that our method could solve Balinskl's problem (merely select those 

extreme vectors in which z > 0) .  However, Balinskl's method does not find 

homogeneous solutions and so it does not directly solve our problem.  I feel 

It can be modified to do this but has not been to date.  Balinski has 

written a computing code for the special problem 

Ax > b , x > 0 

and an attempt was made to compare efficiencies with actual problems using a 

computer.     The tests were inconclusive as we will show below. 

Test Problem 1 

When stated in the form (7.1)  the    A    matrix of this problem had IS 

columns and 4 rows.    The CDC 6400 computer was used and it required 2.359 

seconds to produce the 248 extreme vectors using my code.    82 of these were 

vertices.     Balinskl's code on the same machine required 5.655 seconds and 

1503 points  (Iterations) were examined.    However, there was some degeneracy 

which caused some vertices to be generated many times by Balinskl's code. 

Altogether his code generated 126 solutions which it classed as "vertices;" 

44 out of the 126 were duplicates.     So although Balinskl's code required 

more time it was in effect doing unnecessary work.    The problem of degeneracy 

is a significant one for Balinskl's method because most practical problems 

are degenerate and,  although this cap be eliminated by perturbing the 

coefficients  slightly, my experience has been that this increases the number 

of extreme vectors   (and hence vertices) enormously. 
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Test Problem 2 

A had 11 columns and 8 rows.  My code required 20 seconds to generate 

the 336 extreme vectors of which 90 were vertices.  Balinski's code required 

285 seconds and 45,370 iterations to solve the problem.  However, again 

there was much duplication of vertices—but not caused by degeneracy this 

time.  Since theoretically vertices cannot be repeated I conclude that there 

is an error in Balinski's code. 

In conclusion, the indication—not  definite—is '■'"at Balinski's method 

is less efficient for generating all  vertices.  However, there are certain 

problems in which one is looking for one  vertex with certain characteristics 

and for this Balinski's method seems well suited because it passes 

progressively from one vertex to another. 

• 
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8.     APPLICATIONS 

(i)     Linear ProRrammlng With Varying; Cost CoeffJclents 

Consider  the problem 

41 

(8.1) 
Minimize ex 

Subject  to    Ax = b   ,   x >  0 

which  is   to be  solved many  times   (say  every day)  with  fixed    A    and    b    but 

varying     c   .     We  can  find  the  set  of ail  extreme  points  of    Ax =  b  ,  x >  0 

by   finding all  extreme vectors of   the  cone 

x  >   0   ,   X   >  0   , 

Ax -  bX   = 0   , 

using our method, and discarding those extreme vectors for which X » 0 . 

Then the linear program may be solved by simply choosing the extreme vector 

x which yields the smallest ex .  This method is suited to a problem of this 

sort because, although considerable work is involved in generating all extreme 

points, this need only be done once. 

(11)  Linear ProKramming With Varying Right-Hand Sides 

Consider the problem 

Minimize   ex 

Subject to Ax > b , x > 0 

but this time we will assume that A and c remain fixed while b varies. 

Then by eliminating x from the system 

Ix    > 0 , 

Ax    = b » 

-ex + z > 0 , 
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we can solve all   subsequent problems very simply.     To be  specific we need  to 

do  the  following: 

(a) Obtain all extreme vectors     (s   ,w ,X   )   ,   i ■  1,2,   ...     of  the  cone 

si + wA -   Ac  =  0   , 

s   ,   w   ,   X   >  0 

for which    X1  > 0  . 

(b) For each    i    compute  and  store    —-w     ,i=l,2,   ... 
X 

Then for each b we simply form the inequalities 

z > —r • w b ,      i = 1,2, ... 
X 

and choose the i which gives the largest value of  — • w b .  The 
A 

corresponding value of x may be formed using the method of (iii)c below. 

(ill)  Finding All Solutions Of A Linear Program 

This can be achieved in at least three ways 

(a) By use of (i) above and by selection of all extreme vectors x 

which yield the minimum value of ex . 

(b) Solve the problem first by the simplex method giving, say, 

Mm ex = z  and then find all extreme points of the polyhedral 
o 

set 

x > 0  , 

Ax = b  , 

ex ■ z 
o 

(c) Eliminate x from the system 

k 
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(8.2) 

Ix    > 0 

Ax    > b 

-ex + z > 0 

yielding a system of inequalities in the variable z , of the 

form 

(8.3) z > wb 

where w is an extreme point of the polyhedral set 

(8.4) 
-c + wA < 0 

w  > 0 

(i.ü.,   if     (w ,w,s)     is  an  extreme vector of  the polyhedral cone 

-wc+wA+sI"0, 

w    >0,w>0,s>0 

we select only those extreme vectors for which w > 0 and insist, 

for them, that w  be equal to 1). Now let  z  be the minimum 

value of z .  It will satisfy some of the inequalities (8.3) as 

equalities. Taking each of these equalities 

z = w'b 
o 

in turn we notice that it is a positive  linear combination of some 

of the equalities of (8.2) which must therefore also be satisfied 

as equalities by the optimal value of x and z  .  Now (w ,w,s) 

.s an extreme point and therefore the subsystem of equations contains 

no redundant row, is nonsingular and may be solved by inverting its 

matrix of coeffic.ents. 
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Incidentally, logic similar to the above may be used to derive the 

Duality Theorem of Linear Programming. 

(iv)  Finding All Solutions Of Bimatrix Games 

0. L. Mangasarian [10] has given a method for finding the set of all 

equilibrium points of bimatrix game.  His method uses Baiinskl's algorithm 

for finding all vertices of a convex polyhedral set.  Our method may be 

substituted for Baiinskl's in this context. 

(v)  Bilinear Programming 

As Mangasarian and Stone showed [9], finding an equilibrium point of a 

bimatrix game is equivalent to finding a solution of a certain type of bi- 

linear program.  The general Bilinear programming problem may be stated as 

Minimize   xCy + px + qy 

Subject to    Ax = b 
(8.5) 

By = d 

x > 0 , y > 0 

and it may be solved by two methods at least: 

(a) As is well known, there is a solution  (x ,y ) of (8.5) such that 

x  is an extreme point of 

(8.6) Ax = b , x > 0 

and y  is an extreme point of 

(8.7) By - d , y > 0 . 

And so we can take all possible pairs of extreme points, one of 

(8.6) and the other of (8.7), and choose the pair(s) which give the 
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minimum value of  xCy + px + qy .  This is basically what 

/ 
Mangasarian did   (see   (iii)   above). 

(b)     (K Murty  is  responsible   for  the  following  idea:)     In   (8.5)   let us 

''  ' 
assume  for  the moment   that we have   fixed    x    and we want to  choose 

the optimal    y   .     (8.5)   then becomes a  linear  program whose  dual   is: 

Maximize z 
u 

Subject to  ud - z - 0 

(8.8) uB - xC < 0 
m 

Ax = b 

x > 0 . 

Now for fixed x , the system (8.8) defines a convex  set in u and 

* z which means that Max z  is a oonaave  function of x .  The 
u 

problem (8.5) therefore becomes Minimize  {Max ud | uB - xC < 0 , 
x      u 

Ax = b , x > 0}  that is to say, a problem of minimizing  a aonaavf 

function,  (Max ud I uB - xC < 0) , over a convex set  (Ax = b , 
u " 

x > 0) .  One approach to this problem is to first eliminate u 

from the system (8.8) giving a system in z and x ; then find the 

extreme points of Ax = b , x > 0 substituting each time to find 

the minimum possible value of z , 

(vi) Minimizing A Concave FMiiction Over A Convex Polyhedral Set 

Mangasarian in his forthcoming book on Nonlinear Programming gives the 

following theorem (Section 5.1, Theorem 8): 

Let  R be convex and let g(x)  be concave on R .  If g(x)  is not 

constant on R then no interior point of R can solve the problem 

/ 

Minimize g(x) . 
xeR 
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This implies that if R is defined by linear  constraints and if g(x)  is 

not constant then the minimal value is achieved at an extreme point. Therefore, 

our method can again be used to generate all extreme points and thereby solve 

this problem. 

s 



f 
47 

REKKRENCES 

1]   Balinski, M. , "An Algorithm for Finding all Vertices of Convex 
Polyhedral Sets," J.Soc.Indust.Appl.Math.. Vol. 9, pp. 72-88, 
(1961). 

[2]   Chernlkov, S. N. , "Contraction of Systems of Linear Inequalities," 
Dokl.Akad.Nauk.. (SSSR), Vol. 131, pp. 518-521, (1960). 
Translation in Soviet Mathematics. Vol. 1, No. 2, pp. 296-299. 

[3]  Chernikov, S. N. , "The Solution of Linear Programming Problems by 
Elimination of Unknowns," Dokl.Akad.Nauk.. (SSSR), Vol. 139, 
pp. 1314-1317, (1961).  Translatioii in Soviet Mathematics, Vol. 2, 
No. 4, pp. 1099-1103. -  ~ 

[4]   Chernikov, S. N. , "Contraction of Finite Systems of Linear 
Inequalities," Zhurnal Vychlslitel'noi Matematiki i Matematicheskoi 
Fiziki. (USSR), Vol. 5, No. 1, pp. 3-20, (1965). Abstracted in 
Mathematical Reviews. Vol. 32 and in Cybernetics Abstracts. No. 7, 
T-153, (1965). 

[5]   Dantzig, G. B., LINEAR PROGRAMMING AND EXTENSIONS, Princeton University 
Press, Princeton, New Jersey, (1963). 

[6]   Parkas, J. , "Über die Theorie der Einfachen Ungleichungen," J. Reine 
Angew Math., Vol. 124, pp. 1-24, (1902).  (Or see References 5 or 
8.) 

[7]   Fourier, Jean Baptiste Joseph, "Solution d'une Question Particuliere du 
Calcul des Inegalites," (1826), and extracts from "Histoire de 
l'Academle," (1823. 1824), Oeuvres II, pp. 317-328. 

[8]   Gale, David, "The Basic Theorems of Real Linear Equations, Inequalities, 
Linear Programming and Game Theory," Naval Res.Logist.Quart. . 
Vol. 3, No. 3, pp. 193-200, (September 1956). 

[9]   Mangasarian, 0. L. and H. Stone, "Two-Person Nonzero-Sum Games and 
Quadratic Programming," J.Matli.Anal, and Appl.. Vol. 9, No. 3, 
(December 1964). 

[10]  Mangasarian, 0. L. , "Equilibrium Points of Bimatrix Games," J.Soc. 
Indust.Appl.Math.. Vol. 12, No. 4, (December 1964). 

[11]  Motzkin, T. S., "Beitrage zur Theorie der Linearen Ungleichungen," 
Jerusalem, (1936), (Doctoral Thesis, University of Zurich). 
(Unapproved translation by D. R. Fulkerson, "The Theory of Linear 
Inequalities," RAND Corporation, Report T-22, (March 1952).) 

[12]  Motzkin, T. S., H. Raiffa, G. L. Thompson and R. M. Thrall, "The 
Double Description Method," in H. W. Kuhn and A. W. Tucker (eds.), 
CONTRIBUTIONS TO THE THEORY OF GAMES, Vol. II, Annals of 
Mathematics Study, No. 28, Princeton University Press, Princeton, 
New Jersey, pp. 51-73, (1953). 



^^^^ 
Tl 

^.8 

[13] Motzkln, T. S. , Lecture notes for a seminar on Linear Programming, 
Institute for Numerical Analysts, University of California, 
Los Angeles. 

[14]  Wets, Roger J.B. and Christoph Witzgall, "Algorithms for Frames and 
Lineality Spaces of Cones," Journal of Research of National Bureau 
of Standards, B—Mathematics and Mathematical Physics, B, Vol. 71, 
No. 1, (January-March 1967). 

[15] Wets, Roger J.B., "Programming under Uncertainty:  The Solution Set," 
Boeing Document D1-82-046A, Boeing Scientific Research LaboratorICK, 
Seattle, Washington, (August 1965). 

J 



^m^^mmm ^m^^ ^~m~> mmmmmm 

Unclasslfted 
Security Classification 

DOCUMENT CONTROL DATA • R&D 
(Steurlly i Imttitlctnan of (III*   body ol mbtlrmcl mnd mrlmtint annolalion mu»( b» mnffd wh»n Ih» ontmll report i« cUttlllmd) 

I    OWIGIMATING *CTIuiTV rCorporaf* aurhor; 

University of California, Berkeley 

2a    ncPOHT  (f CUMITV    C LAttlFICATION 

Unclassified 
lb   snour 

3    nEPOUT TITLE 

PROJECTIONS OF CONVEX POLYHEDRAL SETS 

4   DESCRIPTIVE NOTES   7vp« ol »port mnd Inchitlv dmf} 

Research Report 
S   AUTMOHfS> iLaainam«. Ilni nmm». Inlilml) 

KÖHLER,   David A. 

• REPO ml  DATE 

August 1967 

7a    TOTAL NO    Of   PAOKt 

48 
7b  NO OP mtw» 

15 
Ba     CONTRACT   ON   SRANT   NO 

Nonr-222(83) 
b    PROjeC T   NO 

NR 047  033 

INfSJ 

ORC 67-29 

Research Project No.:     RR 003  O? 01 
16   OTHCR MBPONT   HO<S) (A ny olhtr numb»n »i»t msy b» a»»l0\*d 

ml» rmporl) 

10   A V A IL ABILITY/LIMITATION NOTICES 

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED. 

ii SUPPLEMENTARY NOTE» Also supported by 
the National Science Foundation under 
Grant GK-1684. 

12   SPONSORING MILITARY ACTIVITY 

MATHEMATICAL SCIENCE DIVISION 

13    ABSTRACT 

The main problem considered Is:     Given a set of linear  Inequalities 

(1.1) Ax + By  > d   , 

which defines a set of  (x;y) , find and concisely define a set Y of y such 
that if  (x;y)  solves (1.1) then y belongs to Y and, conversely, If y 
belongs to Y then there exists an x such that  (x;y)  solves (1.1). 

The solution to this problem involves finding the set of all extreme rays of 
the convex cone 

wA - 0 , w > 0 

and a method is given for this.  The method is compared with other methods for 
rinding extreme rays and points and finally some practical applications are 
given. 

DD -^ 1473 Unclassified 
Security Classification 

—■'- m mmrtm 



r^^^Mi 

Unclassified 
Security Classification 

14 
KEY monoi 

LINK A LINK a LINK  C 

ROLI «KT 

Projections 

Linear Inequalities 

Extreme Points 

INSTRUCTIONS 

1    ORIGINATING ACTIVITY:   Entar th« name and addreaa 
of the contractor, aubcontractor, grantee, Department of De- 
feme activity or other organization (corpotmt» author) iaaulng 
the report. 

2a.   REPORT SECURTY CLASSIFICATION:   Enter the over- 
all security claaaification of the report.   Indicate whether 
"Restricted Data" ia included.   Marking ia to be in accord- 
ance with appropriate security regulations. 

2b.   GROUP:   Automatic downgrading is specified In DoD Di- 
rective 5200.10 and Armed Porcea Industrial Manual.   Enter 
the group number.   Aleo, when applicable, show that optional 
markings have been ueed for Group 3 and Group 4 as luthor- 
tzed. 

3. REPORT TITLE:   Enter the complete report title in all 
c vpital letters.   Titles in all casea should be unclassified. 
If s mtaningful title cannot be aelected without classifica- 
liun, show title claasification in all capitals in parentheaia 
imnicdiately following the title. 

4. DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a apecific reporting period ia 
covered. 

5. AUTHOR(S):    Enter the name(s) of suthoKs) as shown on 
or in the report.   Entei last name, first name, middle initial. 
If military, show rank and branch of service.   The name of 
the principal aithor ia an absolute minimum requirement 

6. REPORT DATL:    Enter the date of the report aa day, 
month, year; or month, year.   If more tht\n one date appeara 
on the report, uae date of publication. 

7a.   TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 

7b.   NUMBER OF REFERENCES:    Enter the total number of 
references cited in the report. 

8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 

fib, 8c, & id. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc 

9a.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number must 
be unique to this report. 
Ob. OTHER REPORT NUMBER(S): If the report has been 
askigned any other report numbers (either by the originator 
or by the aponaor), alao enter this numbers). 

10    AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than thoae 

impoaed by security classification, uaing atandard statements 
auch aa: 

(1) "Qualified requesters mny obtain copies of this 
report from DDC " 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall request through 

(4)     "U. S. military agencies may obtain copies of this 
report directly from DDC   Other qualified users 
shall request through 

(5)    "All distribution of this report is controlled.   Qual- 
ified DDC users shall request through 

I» 

If the report hss been furnished to the Office of Technicsl 
Services, Department of Commerce, for sale to the public, indi- 
cate this fact snd enter the price, if known. 

1L SUPPLEMENTARY NOTES: Use for additional explana- 
tory notea. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay- 
ing for) the rescsrch snd development.   Include address. 

13. ABSTRACT:   Enter an abstract giviig a brief and factual 
aummary of the document indicative of ihe report, even though 
it may also appear elsewhere in the '^ody of the technical re- 
port.    If additional spsce is required, a continuation sheet shall 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclassified.   Each paragraph of the abatract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented aa (TS). (S). (C). or (Vj 

There is no limitation on the length of the abstract.   How- 
ever, the suggested length is from ISO to 22S words. 

14. KEY WORDS:   Key words sre technically meaningful terms 
or abort phrases that characterize a report and may be uaed as 
index entries for cstaloging the report.    Key words must be 
selected so that no security classificstion is required.   Identi- 
fiers, such ss equipment mooel designation, trade name, military 
project code name, geographic location, may be used aa key 
worda but will be followed by an indication of technical con- 
text.   The assignment of links, rales, snd weights is optional. 

J L/      <   JAN  «4 1473 (BACK) Unclassified 
Security Clataification 

Maas 




