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Abstract

Crack tip strain singularities are investigated with the aid of an

energy line integral exhibiting path independence for all contours surround-

ing a crack tip in a two dimensional deformation field of an elastic material

(or elastic-plastic material treated by a deformation theory). It is argued

that the product of stress and strain exhibits a singularity varying inversely

with distance from the tip in all materials. Corresponding near crack tip

stress and strain fields are obtained for the plane straining of an incom-

pressible elastic-plastic material hardening according to a power law. A

noteworthy feature of the solution is the rapid rise of triaxial stress con-

centration above the flow stress with increasing values of the hardening

exponent. Results are presented graphically for a range of hardening expo-

nents, and the interpretation of the solution is aided by a discussion of

analogous results in the better understood anti-plane strain case.
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Introduction

Elastic-plastic analyses of deformation fields near cracks are of obvious

relevance to the mechanics of fracture. Little progress has been made on the

important problems of tensile loadings opening a crack, although the anti-plane

strain case is now well understood for both perfectly plastic (Hult and

McClintock, i190) and strain hardening (Neuber, 1961; Rice, 1967a) materials,

and some useful approximate models (Dugdale, 1960; Rice, 1967b) have been pro-

posed for tensile cases. A recent analytical technique developed by Rice

(1967c) identifies a line integral which has the same value for all paths en-

circling the tip of a crack or flat surfaced notch in two dimensional deforma-

tion fields of linear or non-linear elastic materials. Appropriate choices of

the integration path have led to approximate estimates of strain concentrations

for a variety of notch problems; we here employ the method as a starting point

in the analysis of near crack tip deformation fields in the plane straining of

materials which harden according to a power law relation between stress and

strain.

Let

E

W(c) = iJ d1i.

0

denote the energy density of an elastic material. Then considering a homogen-

eous body of this material containing a traction free crack and subjected to

a two dimensional deformation field (Fig. 1, all stresses depend only on x

and y), the line integral

J [W(E)dy T -" ds]

r

has the same value for all paths r surrounding the tip. Here the path is
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traversed in the contra-clockwise sense, T is the traction vector on r

defined according to the outward normal, T. .= .n. , u is the displacement

vector, and s is arc length. Path independence is readily demonstrated in

a standard fashion by choosing two separate integration paths rF and r2.

Since the integrand vanishes on the crack surfaces, J 2 -J1 is the above

integral carried around the boundary of the area between rF and r 2 , and a

Green-Gauss type transformation of a line integral to an area integral immedi-

ately leads to J2 -1 = 0, proving path independence. As no success has been

met in finding similar path independent integrals for incremental elastic-

plastic stress strain relations, we are here forced to consider a deformation

theory of plasticity which is in reality a non-linear elasticity. In parti-

cular, we consider an incompressible material with a relation between devia-

toric stresses and strains of the Mises form

2TS.. : E.. (2)

where T : / ½ s..s.. and y = V2cijEi. and with the hardening following
2 1) 1) 1] 1

a power law of the form

T
T Gy - for r < Y

Yo

(3)

N
T T (Y for y >y

0

Here Toyo are the yield stress and strain in shear, and N is the

hardening exponent. As our concern will be only with the near crack tip

strain singularity, incompressibility is not expected to be a poor approxima-

tion for moderate strain hardening as plastic strains are incompressible.

Also, the resulting near tip solution involves proportional flow so that a
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deformation theory is less objectionable than usually the case.

The utility of the path independent integral lies largely in the fact that

its value may be simply determined for a variety of cases and configurations

(Rice, 1967c). For example, the integral has the same value as for the linear

elastic solution to a given problem when the yield zone is small compared to

geometric dimensions of the problem. This is because such small scale yielding

solutions may be obtained through a boundary layer approach (Rice 1967a,b) in

which actual boundary conditions are replaced by the requirement of an asymp-

totic approach to Irwin's (1960) characteristic linear elastic inverse square

root stress distribution at large distances from the tip. An extension of the

integration path to infinity then requires that only the asymptotically

approached field contributes, and the small scale yielding value of J is

(l-v 2 )K2

E (4)

Here KI is Irwin's stress intensity factor, and for the well known problem

of a crack of length 2a subjected to a uniform remote tension 0,

W(l-v 2 )a~aJ E (5)
E

Approximate evaluations of J for large scale yielding are possible due to

the relation of the line integral to the rate of variation of equilibrium

potential energy of a cracked body with respect to crack length. One such

approximation is given and others are suggested by Rice (1967c).

Crack Tip Singularities

Choosing a circular path of radius r for the evaluation of J, Eq. (1)

becomes



+W1

J={W~c(r,e)]cos. - T(r,e) • au (r,e)} de (6)
r --W

Evidently the bracketed integrand 1...} must exhibit a singularity at the

crack tip which, at least in its angular average, depends inversely on distance

from the tip. Since -all terms within the integrand are of order stress times

strain (assuming rotations to be of the same order as strains) one is tempted

to conclude that crack problems in all materials result in a 1/r singularity

in the product of stress and strain,

a function of 8
o.. .. -as r + 0 0 (7)
13 1) r

While attempts at a rigorous proof of this assertion have not been successful,

its validity in solved cases is noteworthy. The inverse square root linear

elastic stress singularities are in agreement, as is also an approximate

analysis of perfectly plastic plane strain (Rice, 1967c) where a 1/r strain

singularity results from the centered fan slip line field (Hill, 1950) charac-

teristic of analogous punch problems. Further, the validity of Eq. (7) may be

verified in all elastic-plastic anti-plane strain crack solutions (Rice, 1967a).

For power law hardening materials, Eq. (7) implies near crack tip stress

and strain distributions of the form

-N/(I+N) E-/(1+N)E (8) (8)13 i] i3 z]

Conversely, we may turn our procedure around and prove the following: If

stress and strain components have the singular structure of powers of r

times functions of 8, then traction free crack surface boundary conditions

(which lead directly to path independence) may be satisfied only if the powers
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of r are as in Eq. (8). This converse procedure is essentially a concise

adaption of Williams' (1957) eigenfunction expansion to the non-linear case,

but here we determine the eigenvalue (exponent of r) directly, and have left

only the problem of determining the corresponding eigenfunction.

To achieve this latter task, we introduce an Airy stress function U to

satisfy equilibrium and give the correct dependence on r:

U = (1+N)2 r( 2+N)/(I+N) f(8) (9)2÷N

Near crack tip stresses are then

a2 u -N/(I+N f(e)Ve8 ar2 -. ,fe

%e
a aur+Nl(l+N) f)(e)

(10)

1 au 1 a2U+ -rr r ar r 2 a02

(-+N) r-N/(l+N) rf(8) + N )3
- ~ -~~'' +2+N

In a similar fashion, incompressibility and strain compatibility are satisfied

by introducing a stream function

S r(1+2N)/(1+N) g(8) , (11)

resulting in displacements

U -1 3T rN/(l+N) g'(6)r r W8

(12)

U 3 1+2N N/(I+N) g(e)e - r - 1+N
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Near crack tip strains are

= N -1/(1+N) g'(e)
ee rr I+N

(13)

_ 1 -1/(i+N) 1+2N e ,,(Cr0 r [ g(e) + g"e)]
(I+N) 2

The functions f(e), g(e) are not independent, but must be chosen to satisfy

the one independent stress-strain relation of Eqs. (2) and the hardening law,

Eq. (3), giving the following two equations

[f,, + N(2÷N) f] [g,, + 1+2N g] _ 4N

(lIN) 2  (l+N) 2  (l+N) 2

Ef,, + N(2÷N) f] 2 + 4 f, 2  (14)

(1+N) 2  (l+N) 2

4r2  Nj2 [, I2N N
42NN

2N (1+N)4 (1+N)2 (l+N) 2

0

Solving for f(8) from these two equations give, after some algebra, the

following fourth order differential equation for f.

fIV + N(2+N) f 1 N {+ N [4Nf" + 1 h] [h 2+4f' 2 ]
(l+N) 2  h2 +4Nf' 2  (l+N) 2  liN

4(1-N) 1hN

+4(-N) f'[hh'+4f'f"] + 1N( [3hh' 2 8h'f'f"+4h(f"2+f'f'")]
(l+N) 2

+ (I-N)(l-3N) h [hh' + 4f,f,,] 21 = 0 (15)
N2 (1÷N) h 2+4f, 2

where, for brievety's sake we have put
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h = (l+N)f" + N(+N f (16)

Note that the governing differential equation for f(8) has an

equi-dimensional character, in the sense that if f(9) is a solution, then

so Is any constant times f(e). The unknown multiplicative constant is

determined in terms of the value J of the path independent integral by

inserting our solution into Eq. (6). The equation is solved over the interval

O,w subject to boundary conditions which insure a solution corresponding to

symmetric deformations relative to the crack line. Note that f(O) may be

chosen arbitrarily, say as

f(O) 1 , (17)

with the solution subject to a later normalization. Symmetry requires that

ar8' aarr/ae, and au88/a8 all vanish on 8 0, leading to two further

conditions

f'(0) = f,,'(0) = 0 . (18)

Finally, traction free crack surfaces require 0 88 and ar8 to vanish at

e = w, so that

f(W) = f'(w) = 0 . (19)

Five boundary conditions appear at first sight to overspecify the fourth order

equation for f(O). Actually, they do not, for the two conditions at 6 = V

imply one another. This is because the assumed forms of dependence on r in

Eqs. (9, 11) necessarily result in path independence for the integral J and,

recalling the proof of path independence sketched out in the introduction,

this means that
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u aue (r,r) aur(r,ir)
T(r,w) • (r,w) a- (rw) -a + (1 (r,w) a- 70 (20)

for all solutions of the equation for f(e). Thus the vanishing of are on

the crack surface implies the vanishing of aee.

Numerical Computations and Graphical Results

For the numerical solution of the differential equation for f, Eq. (15),

a fourth order Runge-Kutta integration was used. Since this method can only

be used for initial value problems, and ours is a two point problem, as seen

from the boundary conditions Eqs. (17), (18) and (19), starting values of

f"(0) had to be guessed until two values of "'(") were found, one giving

f(w) < 0 and the other giving f(w) > 0, and a linear interpolation procedure

could be used. After some trial runs a step size equal to 0.90 was found to

be a good choice and for all values of N, except for N > 0.9, rapid conver-

gence was obtained. For N > 0.9 the solutions were very sensitive to changes

in f"(0), reflecting the breakdown of Eq. (15) for N = 1, in which case one

obtains expressions of the form 0/0. Consequently, instead of using the

interpolation procedure where N > 0.9, the appropriate interval for f"(0)

in these cases was run through by using small increments in f"(0) and the

right solution was chosen by inspection of the results.

Because of the complicated form of the differential equation for f(8),

no attempts have been made to make any error estimates of the numerical calcu-

lations. However, since all results for N = 1, in which case the analytic

solution is easily obtained, are very close to the results for N = 0.99, as

can be seen from the figures, it is believed that the numerical results can

be accepted with great confidence.

In determining the correct multiplicative constant for f(8), i.e.
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performing the integration of Eq. (6), a 5 point formula was used.

All computations were performed on an IBM-360 and the average computing

time for a run was 3.5 min.

In Fig. 2 the power hardening law, Eq. (3), has been drawn for some

different values of the hardening exponent N.

From the expressions for the Mises equivalent shear stress T and shear

strain y one finds

r E [R(O)/r]N/(I+N) [R(O)/r]I/I+N (21)

0 0 Re/

where R(O) is an expression containing f(O) and its derivatives, or, when

using the normalized form of f(e), R = R(e;J,N).

From Eq. (21) one immediately sees that R(8) gives the shape of constant

equivalent strain lines very near the crack tip and that R(e) can be inter-

preted as an approximate indication of the distance from the crack tip to the

elastic-plastic boundary; approximate since our solution gives the singular

term only, and not of necessity the complete solution in the plastic region.

In Figs. 3 and 4 the nondimensional distance y0T 0R(e)/J is shown for different

values of N; the latter figure amplifies detail near the crack tip through a

twenty five times larger scale. In these figures the extreme closeness between

the results for N = 1 and 0.99 is readily demonstrated.

In Fig. 5 it is demonstrated how the elastic-plastic boundary in front of

and behind the crack tip strongly depends on the hardening exponent. In this

figure is also shown how the maximum distance from the crack tip to the

elastic-plastic boundary, yoTo R max/J, varies with N.

Using the expressions for the stresses one easily finds that the mean

stress, p = (oee+a rr)/2 divided by T is a function of e only. Figure 6

shows this e-variation of p/T together with the mean stress distribution

in the perfectly plastic case, N = 0. The latter distribution is easily
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obtained from the condition of two regions of constant stress state, one in

front and one behind the crack tip, with the regions being built up of

isosceles right triangles thus forcing any slip line leaving the crack surface

and ending up at the symmetry line in front of the crack tip to swing through

an angle of w/2 giving p/T = 1 + w at 8 = 0 (Hill, 1950 and Rice, 1967c).

In this figure again is demonstrated the closeness of the results for N = 1

and 0.99 as well as how close the results for N = 0.005 and N = 0 are to

each other.

In Fig. 7 is shown how the ratio of the maximum normal stress to the

equivalent stress along the symmetry line ahead of the crack, a e/2T 1=0

varies with the hardening exponent. The rapid rise over the l+w/ 2 value

anticipated from perfect plasticity is notable and of interest when, for

instance, discussing fracture.

For the displacements one finds, when using the normalized f(8), that

u r o/J and U To/J can be expressed as a product of (r/R)N/(I+N) and

functions of 0. These normalized displacements were calculated and in

Fig. 8 the shape of the deformed crack surfaces in the plastic region are

shown for some values of N. An arrow in the figure indicates the displace-

ments at the elastic-plastic boundary behind the crack tip as well as the

direction of the displacements at the crack in the plastic region. At

the bottom of the figure is also a scale showing the nondimensional distance

from the crack tip to the elastic-plastic boundary behind the crack tip,

y7o0R(v)/J. As seen from the results in Fig. 8, the crack opening is very

insensible to the value of the hardening exponent and for N < 0.2 the crack

opening 6t can be taken to be

6t z 0.58 J/t (22)
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From Fig. 8 one sees also how the blunting of the crack tip varies with N.

However, since our numerical results do not give a clear indication on

whether the distance from the crack tip to the elastic-plastic boundary behind

the crack is zero or not when N = 0 (see Fig. 5), it is not possible to say

anything definite about the deformed shape of the crack surface in that case.

A displacement discontinuity results at the tip according to the slip line

analysis of Rice (1967c).

Finally, Fig. 9 shows how the maximum shear direction varies around the

crack for different N. The straight line segment limit results from the slip

line construction noted earlier for the perfectly plastic case, N = 0. In the

elastic case, N = 1, there is a hydrostatic stress state in front of the

crack thus leaving the maximum shear directions indeterminate for e = 0. For

all other values of N the maximum shear directions in front of the crack are

in the 45 0 -directions relative to the symmetry line, and the figure nicely

demonstrates the transition of the distribution of the maximum shear direction

between the two limiting cases, N = 0 and N = 1.

TEOE•IOAL 1IBRK97BLDG 313

Discussion Ag3;DzEJ FOVEG GU0U33

We emphasize that our solution gives only the structure of the crack tip

singularity. Thus, for example, predictions of the elastic-plastic boundary

location are approximate. Since the anti-plane strain crack problem (Rice,

1967a) is well understood, some insight into the proper interpretation of our

solution might be obtained through an examination of that case. Anti-plane

stress and strain singularities in the form of Eqs. (8) can be found and,

indeed, the complete solution does reveal a deformation field dominated by

such a singularity near the crack tip. It turns out that for small scale
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yielding (the boundary layer approach noted in the introduction), the singular

forms of Eqs. (8) give the complete solution in the plastic region. Elastic

fields can be found which continue the solution across the elastic-plastic

boundary predicted by the singular terms, and which meet the asymptotic boun-

dary conditions. This is a remarkable fact, but it is uncertain (and doubted)

that a similar role would be played for small scale yielding by the singulari-

ties in plane strain.

For anti-plane yielding on a scale comparable to crack length, the

elastic-plastic boundary begins to differ significantly from that predicted

by the singular term alone. Also, while mathematically the singularity

dominates in the limit as r -) 0, one finds for small N that strain magni-

tudes become excessively large and distances from the tip small before the

singular term dominates the complete solution. The limit of such behavior

results for perfect plasticity (N = 0). Then, while the strain field exhibits

a 1/r singularity, the distribution in 6 changes with remote stress level

in the large scale yielding range. No unique singular strain distribution

exists. A similar feature undoubtedly results for plane strain; the singular

term solution appears (from our figures) to have a unique limit as N -) 0 but,

in fact, our equations do not have a unique solution for the stream function

(Eq. 11) when N = 0. Nevertheless, the 1/r strain singularity would appear

necessitated and our solution gives the correct average (in the sense of the

J integral) 6 dependence of the strength of this singularity.

The very rapid rise of stress triaxiality with strain hardening exponent

(Fig. 6) over the practical range for structural metals, say N = 0.05 to 0.3,

shows that hardening can elevate stresses not only by increasing the flow

stress with increasing strain but also by modifying the stress state. Thus,

for example, a low yield strength metal may develop local peak stresses in
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front of a crack comparable to or in excess of those for a higher strength

metal, simply because lower strength materials tend to exhibit greater harden-

ing exponents. The presence of large tensile stresses ahead of a crack is

clearly important for the nucleation of micro-cracks in materials capable of

cleavage; they are also important for the promotion of ductile fracture mech-

anisms involving the large growth and final coalescence of voids. Although

the later mechanism may appear strain controlled, perfectly plastic calcula-

tions for simple configurations (McClintock and Argon, 1966) show a nearly

exponential dependence of the rate of void growth per unit of overall strain

on the ratio of mean normal stress to yield stress. The role of strain hard-

ening in slowing void growth and raising strains required for coalescence

cannot presently be assessed, so that a direct step from this analysis to a

crack extension criterion will require further work. Finite geometry changes

at the crack tip also influence the deformation state in separation prone

material. For example, analyses in the perfectly plastic case do not lead to

large strains directly ahead of the crack unless progressive blunting of the

tip is considered (Rice, 1967c). Another complicating feature is the distinc-

tion which must be made between strain increments due to load elevation and

strain increments due to crack advance in incremental elastic-plastic materials

(McClintock and Irwin, 1965). Ductile metals exhibit at least a limited amount

of stable crack extension prior to catastrophic fracture. The pertinent ques-

tion in fracture mechanics is more one as to the prediction of final instability

than to the prediction of the initiation of crack extension. While the adequate

modelling of fracture remains remote, our present solution should be useful for

the further understanding of the effects of yielding and hardening, providing

other pertinent features of the problem are kept in mind.

We have learned by private communication that Professor J. W. Hutchinson
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is conducting similar work on the structure of crack tip singularities, both

in plane strain and plane stress, basing his approach on a direct computer

assisted adaption of the Williams eigenvalue technique to the non-linear case.

He too finds a 1/r variation of stress times strain for both deformation

modes. Also, Professor J. L. Swedlow reports that a further analysis of exper-

imentally determined plane stress crack tip deformation fields, with data

obtained by Gerberich (1964), tends to support a 1/r dependence for the

product of stress and strain near a crack tip. Grateful acknowledgement for

support of this work is made to the Advanced Research Projects Agency

(Contract SD-86 with Brown University), and to the National Science Founda ion

(facilities grant GP-4825) for the support of computer time.
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boundary behind the crack tip as well as the direction of the dis-
placements at the crack in the plastic region. The scale at
bottom of figure shows the nondimensional distance from the crack
tip to the elastic-plastic boundary behind the crack.



Ca0

N= 0,0.005 140

0.1

0.3

0.5

1,0.99

100

80

60

Ip 40

20

I II I I I I I I 0
00 180 140 100 60 20 0

FIG. 9. MAXIMUM SHEAR DIRECTIONS.


