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SUMMARY

Exact solutions of several problems which involve finite deformations of

homogeneous isotropic incompressible simple solids are obtained by the inverse

method. The deformations involved include bending, stretching, shearing, torsion

and both cylindrical and spherical inflation. The corresponding stresses are

expressed in terms of the functionals which describe the material response to

homogeneous plane deformations. The results obtained apply, in particular, to

incompressible viscoelastic solids.

1. INTRODUCTION

A &eneral theory of the nonlinear mechanical behaviour of materials with

memory was developed in a series of papers by Green and Rivlin 11, 31* and

Green, Rivlin and Spencer [2), and in an alternative form by Noll (4'. The

theory applies equally to simple solids and to simple fluids and there has

been considerable subsequent development, by several workers, in each area.

A comprehensive account of the work prior to 1965 is contained in the book

by Tru~sdell and Noll (5).

Numbers in square brackets indicate references at the end of the paper.



Despite the externivc theoretical developmenL, a body of exact solutions

comparable to that obtained in finite elasticity theory is not presently

available for materials with memory, In fact, the only area which has proved

to be at all fruitful in this regard is that of steady vicometric flow of

incompressible simple fluids. The simplicity of such flows compensates suf-

fLciently for the complicated nature of the material response, which is modi-

fied by the incompressibility assumption, so that several exact solutions have

been cbtalned (see (5], also the book by Coleman, Markovitz and Noll [6] and

the review paper by Rivlin [71).

Rivlin [8] first observed the great simplification which results in a

nonlinear mechanical theory when the material is assumed to be incompressible.

This observation has led to the discovery of the above-mentioned viscometric

solutions and of several exact solutions in finite elasticity theory (Rivlin

9, 9, 101, Green and Shield [I1, Adkins, Green and Shield [12], Ericksen

and Rivlin (13], Ericksen [i], Klingbeil and Shield (15], Singh and Pipkin

[16])* These solutions involve deformations which are controllable for homo-

geneous isotropic incompressible elastic materials. A deformation is said to

be controllable for materials of a certain type if it can be supported without

body forces in every material of that type. Problems involving controllable

deformations can be solved by the inverse method, in which the deformation is

specified precisely at the outset.

The above-mentioned deformations of incompressible elastic materials are

exact solutions of the equations of equilibrium. Each deformation involves

some constant parameters, which may be replaced by functions of time (amplitude

Singh and Pipkin [17] have obtained corresponding exact solutions for an in-
compressible elastic dielectric.

2.



functions) to give quasi-static solutions, i.e., time-dependent solutions in

a theory in which inertial effects are not considered. The resulting deforma-

tions can then be specialized to yield exact solutions of the equations of

motion (quasi-equilibrated motions), by requiring the amplitude functions to

be such that the acceleration can be expressed as the gradient of a single-

valued scalar potential (Truesdell (18]). Two special quasi-equilibrated

motions, radial oscillations of cylindrical tubes and of spherical shells,

have been considered by Knowles [19] and by Guo Zhong-Heng and Solecki [20],

respectively.

It was shown in a previous paper (Carroll [21]) that every deformation

which is presently known to be controllable for homogeneous isotropic incom-

pressible elastic materials is controllable also for homogeneous isotropic in-

compressible simple materials. Consequently, the inverse method may be applied

to the solution of problems involving such deformations and this is done in the

present paper, mainly with regard to simple solids. Homogeneous motions of in-

compressible simple solids have been discussed by Coleman and Truesdell [22],

and the torsion of a cylinder of isotropic incompressible simple material with

fading memory was discussed by Christensen [23].

The constitutive equations for homogeneous isotropic incompressible simple

materials are presented in Section 2. These equations are specialized, in

Section 3, for a class of deformations for which the (time-dependent) strain

matrix may be expressed as a linear combination of four time-independent

matrices with special properties. The material response to such deformations

is determined by three functionals of four argument functions.

Following a brief discussion of the equations of motion, in Section 4,

the class of homogeneous plane deformations, i.e., homogeneous plane strain

3.
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sup-rirmposed on uniform normal extension, is considered in Section 5. Such

deformations are shown to belung to the class of deformation discufewd in

Sectiin 3, and it is shown that the material response to homogeneous plane

deformations is determined by two independent material functional of four

argument functions. Two speci-i cases are considered, namely pure homogeneous

deformations (the material response being determined by one material functional

of two argument functions' and simple shear (the material response being deter-

mined by three material functionals of one argument function).

It is shown, in subsequent sections, that knowledge of the response of a

homoReneous isotropic incompressible simple material to every homogeneous plane

ceformatinn suffices to determine the material response to every deformation

which is presently known to be controllable for such materials. Consequently,

the stresses corresponding to every such deformation can be expressed in terms

of the material functionals which characterize the macerial response to homo-

geneous plane deformation, and this is carried out in Sections 6-10.

Extensional, flexural and shearing deformations of a rectangular block,

and of an annular wedge, are discussed in Sectiont and 7, respectively)

(these deformations represent slight generalizationa of the corresponding

deformations considered in elasticity theory). The extension, inflation, 1,enu-ng,

torsion and shearing of cylinders and wedges is discussed in Inction 8, and par-

ticular cases are considered in some detail, The inflation ol a spherical shell

is discussed in Section 9, and the extenston, bending, and azimuthal shearing of

an annul&r wedge is discussed in Section 10.

The stresses corresponding to each of these deformations are expressed in

terms of the material functionals which characterize the response to homogeneous

plane deformation. Resultant tractions are calculated in some cases, but specific



deformation hiptories are not considered. In particular, it is shown that (o)

the material response to Pure homogeneous deformaticn determines the response

to extension, inflation and bending of cylinders, (b) theresponse to simple

extension determines the response to spherical inflatioa and (c) the response

to simple shear determineg the response to pure torson and to both axial and

azimuthal shear.

An alternative method of obtaining the solutions discussed in Sections '-

10 is outlined in Section 11, This method involves consideration of the local

deformation and of the balance ot torceb a ,.:LWSon j suitably cho,.- ,il im.

element. Finally, the various material functionals which characterize the material

response to homogeneous plane deformations are calculated, in the Appendix, for a

particular simple material.

It should be emphasized that, while the deformations considered are time-

dependenz, inertial effects are not considered, and in this respect the solu-

tions obtained are L.ot exact. However, exact solutions of the dynamic equations

(quasi-equilibrated motions) may be obtained by the procedure outlined above in

the elastic case. The appropriate restrictions on the amplitude functions for

the deformations considered in Sections (-9 are listed in [5), and those for

the deformation considered in Section 10 are listed in (21]. The equations which

govern radial oscillations of cylindrical tubes and spherical shells of incom-

pressible simple material are displayed in Sections i and 9.

The emphasis in this paper is on deformations of simple solids and the

solutions obtained apply, in particular, to incompressible viscoelastic solids.

However, many of the results apply also to simple fluids. For example, it is

evident that several inhomogeneous flows, which are independent of material

properties, are possible - for example, radial (cylindrical or spherical) flow

with spatially uniform velocity.



2. CONSTITUTIVE EQUATIONS

1he notion of a body can be described by specifying the coordinates

xi(XA, ) at time v of the generic particle whose coordinates in an undeformed

reference state were XA, all coordinates being measured with respect to the

same fixed rectangular Cartesian frame x. Upper and lower case Latin indices

have the range 1,.2,3 and the usual summation convention is adopted. It will

sometimes be convenient to suppress dependence on the refitrence coordinates

(for example, to write x i(v) for xL(XAv) ) and also to suppress dependence

on the preseuL LiLue L, thus xi deiloLes x i(t).

For a compressible simple material, the stress c at a given particle at

time t is determined by the values of the displacement gradients xiA( )

(= x1(T)/2M ) at that particle at all times up to and including the time t.

For an incompressible material the displacement gradients must satisfy the

incompressibility condition

For such materials, the stress is determined only to within an arbitrary pressure,

so that

oi " P i t 2
~~~ 1 (.2)°ij i+ i

where p is arbitrary, i denotes the Kronecker delta and thc extra stress Sii i

is determined by the history of the deformation gradients, thus

S Ex .01sij I, , o0

The condition that arbitrary superposed time-dependent rigid rotations of the

body shall leave the stress unaltered with respect to the body leads to (E1], [ ])

C,,
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where

2 (I) " , r .) xi~Q) ".0 (M)

If the material is homogereous, then the form of the functionali AB in

the constitutive equation ( .s) is the same for all particles. If the material

is isotropic in the undeformed reference state, then (2.,) has the form ((I),

Wineman and PipkIn (2h])

S M F E(i)]L. FT ')

with t t
"g#-[ (') -- o " ( Q fc)( t,..,-- ) tr f(13)(Zl..,)

f(0o): - , f!()(-... ,) " E( 1)---E( ) + 0_( --_

Here S, F, E() and I are 3X3 matrices defined by S - I il , _ - a.x/XII

K_(') - W 11( )Il and I - 1 5jl , FTz denotes the transpose of F, tr f denotes

the trace of f and the matrix functionals _ C) are linear in their matrix

arguments f(i 1,---,'O) (C =O,l,-.-,5).

3. CONSTITUTIVE EQUATIONS FOR A SPECIAL CLASS OF DEFORMATIONS

Consider the class of deformations for which the strain matrix E(X,%) can

be expressed in the form

2E(X.-) - k(,) K(x) +t(x,1) L(x) + m(X,&r) M_(X) + n(X,T) [(K) + N(x)T] , (.1)

f 7.



Where Lte tim¢,-independent matrices K, L, H and N h Lhs- f(A Iowing properties;

.' the se:t

•K , L. M , L_ ,_ '

is; closed under matrix mu1Liplication k' is the nil matri Y.), with multipIl cation

table

K L M N NT

K K 0 0 o

L 0 L 0 N 0

M 0 0 M 0 NT

N 0 0 N 0 L

N T0 N T 0 Q

(ii) tr K tr L = trM- I , tr N= ( ,h)

(iii) . . .M m l . ( 5~ )

By virtue of these three properties, substitution for F(X,'r) from (3.1) in

the conscitutive equation (,-.7), gives

4(Kt) 2j(x,t),K(x) + $(K,t)L(X) +-,(K,+12(j, tfN()_ + N(X)Tj (3.i;)

where

" 1



-7

.(xt) &k(x,r) ; (,) m (X,'[) n (_x, -)t

;C(X, t) = k(X, -) T ,); m (K, 1) ;n(X,'I) t

S-cc(3.7)

fX t k(X,T) ; (, ;mXz);n(2X,T)]t  I

-fl(x,t) = 92(k(x,r) ; . (x,r) ; in (X ; .X ]

The form of these scalar functionals is determined by the form of the matrix

functionals J(") (C-C,11,....5) of (2.7).

The following symmetry relations between the functionals and, , - nd

are evident from (3.3), (3.4) and (3.5):

-K(k ; ; n; n] -6ik; m;i; n)

S; m ; n] = [k ; m ; . ; n] (3.8)

17k; ;m ; nj [k; m; nl

k 'O-(m ; k ; ?; ) i[ ; k ; 0) , (3.9)

-41k ; ; ;0J 0 (3.10)

It follows from (5.8)2 that only three of the functionals (3.7) are independent.

It is also evident from (3.3), (3.4) and (3.5) that C, Zand Mare even

finctionals of n(s), while .J is an odd functional of n(').

The response of any homogeneous isotropic incompressible simple material

to deformations such that the associated strain matrix can be expressed in the

form (3.1) is thus determined by three scalar functionals of four argument

In order to avoid tedious repetition, the words "simple material" will hence-
forth be used to mean "homogeneous isotropic simple material".

9.



functions, it will be shown in subsequent sections that the strain matrices

associated with a class of homogeneous deformations, and with all of the it-

homogeneous deformations which are presently known to be controllable for in-

compressible simple materials, have the form (3.1).

It follows from (3.9) that the material response to strains of the form

(3.1), uith n(X,T) - 0, is determined by one scalar functional of three

argument functions.

4. EQUATIONS OF MOTION

In the absence of body forces, the equations of motion are

ij,j " i  , j 4J 1

whe-e p is the density of the material and a i are the components of accelera-

tion. The symmetry condition (4.l), was used in writing the constitutive equa-

tion (2.7). For an incompress4 material (4.1)1 becomes

S P + p a. . (4.2)

In a quasi-static theory, this equation is replaced by

Sj fi P'i "(4.3)

Most of the deformations considered here are quasi-static, i.e., solutiors

of (4.3). However, Truesdell [18) has shown that such solutions can be specia ized

so as to yield dynamic solutions by requiring that the acceleration have the form

10.



where is a single-valued function, in which case the inertia term in (4.2) can

be incorporated in the arbitrary pressure gradient p i. Some special dynamic

solutions are considered in Sections 8 and 9.

The troaions Ti on a surface with outward normal ni at t-me t are

Ti jnj -p ni + Sij nj

5, HOMOGENEOUS PLANE DEFORMATIONS

The deformation described by

x(T) A(r)X , y(Q) - C(r)Y + D('[)Z z(T) - E(T)Y + F(r)Z
(5.1)

A(T) C C(T) F(T) - D(T) E(T) 11

where x(T), y(T), z(T) and X, Y, Z are rectangular Cartesian coordinates,

represents a homogeneous plane deformation, i.e., a homogeneous plane strain

superimposed on uniform normal extension, The deformation (5.1) carries the

rectangular block bounded in the reference state by the planes

X - XV; Y Y, , Z t Z' (5.2)

into the parallelepiped bounded at time t by the planes

x-AX' , AX" ; Fy - Dz = Y'/A ; Ey - Cz - jZ./A (5.3)

The matrices K , L , M and N , defined by

11,



1 0 01 0 0 0

K- L 0 1 0

0 o 0 0 0 0

(5.4)

0 0 00 0 0

M0 0 0N0 0 1

0 0 1 0 0

have the properties (i), (ii) and (iii) listed in Section 3, and the strain matrix

associated with the deformation (5.1) is given by

2E(-T) - k(T)K + (T)L + m(r)t_ + n(r) (_ + N) (5.5)

with

k(T) -A() 2 - 1 , e( )-c(i)2 + E(r)2 - 1

m() - D(T)2 + F"T)' - 1 n() -c(I) D(T) + E(T) F(T) (5.6)

Consequently, substitution from (5.5) in the constitutive equation (2.7), leads

to an expression of the form (3.6), and substitution in (2.6) gives the extra

stress matrix S . The physical components at time t are

2S -A S .cE + (cF + DE)4 + DF,"l,
yz

Syy C2  + 2C 4 + D2 , S zx- o (5.7)

SZZ -E2jt + 2EF-fl + P',& .m -

where 4C - fl and f are functionals of the argument functions (5.6). Since

12.



the extra stress components are independent of position, the equations of motion

(4.3) are satisfied, p being an arbitrary function of t.

The extra stress uomponents (5.7) may be expressed as functionals of the

amplitude functions C( ), D(T), E("r) and F( ), the normal stretch function A( )

being determined by the incompressibility condition (5,14' thus

x ft 0It); D(T), E(T); P'0]
t  A 2

*y a [C(T); D(Tr); E(rT); C')3 Z + 20D4+ D~f
(.v.8)

4 z- 3 C'[) D(T); E(Tr); F(71'.. E.e +l,& + 2

Syz "23 [c(r); D(T); E(T); F(-)] .  C d + (CF +DE)I + DF-

where - ,id ,i and 4 are functionals of the argument functions (5.6). The

stress components at time t are given by

Txx M p + SXx T yy p + Syy T zz p + Szz

(5,9)
T =S , T =T at)
yz yz zx xy

Because of the arbitrary pressure p in (5 it is evident that the material

response to homogeneous plane deformation may be described completely by the

functional expressions for two normal stress differences (T - Txx and Tzz - Tx

say) and for the shear stress T . These functionals n22, i and 2 , which

may be called material functionals, are defined by

13.



V (C(T); D(T); E(T); F('V)O t. .* 5,c(i); u('); e(') F(T)), -

- CT~ D(T); E') (Ij

V33[C(0); D(,); E(t); F(t)].. 3 2,c(,); D(,); ,(T); 7(T)]tm

By suitable choice of the pressure p, the planes x-constant may be rendered

free of traction, in which case the stress components (5.9) become

.0, T . '22 T - , T 25 - T -z o (5.11)T xx - 0 , Tyy -z 22 ' Tzz 33 , Tyz 23 1 zx - Txy - 0 - ( -1

Thus, the material functionals (5.10) give the nonvanishing stress components

corresponding to a homogeneous plane deformation, when the fundamental plane is

free of traction.

The following symmetry relations, which are evident from physical considera-

tions, may be verified from (3.8), (5-6), (5.8) and (5.10):

(C(T)D(T); E(T); F( ))% a 1 1(F(T)- E(T); D(T); C('). t

( ); E(T); F(T)t" c33[F( ) (T) (512)
22T.-Ce mc

t t
S(C..);0; 0; (T) E 22t1/c()(); 0; 0; c(i) t -

14



and

The corresponding symmetry relations satisfied by thK, material functionals can be

read off from (5.1o), (5,12), (5.13) and (5.14). in particular,

( 2[c( ~~~~1>('T); E( T); F(,') t  3[(. , )c() '
I2 I

so that only two of the material functionals (5.10) are independent.

2 It will be shown that knowledge of the response of an incompressible simple

material to homogeneous plane deformation suffices to determine the material

response to every inhomogeneous deformation which is presently known to be con-

trollable for such materials. Consequently, the stresses corresponding to these

inhomogeneous deformations can be expressed in terms of the material functionals

(5 10), and this will be done in subsequent sections.

Two special cases of the deformation (5.1) will now be considered.

Case 1. PURE HMOGENEOUS DEFORMATION

x(') = A(T)X , y(r) m C()Y , z(r) - F( )Z ; A(T) C(T) F(T) - 1 (5.l6)

The extra stress components corresponding to the pure homogeneous deforma-

tion (5.1) are obtained by appropriate specialization of (5.8), and may be ex-

pressed in terms of a single functional - of the principal stretch functions,

thus

s - co); p - ) A l .. , .S (A(1); C( I)Jxx yy z
(5 17)

S -S -S -0
yz zX xy

15.



where

is symmetric in its argument functions. The symmetry relations (5.12), (5.l')

and (5 14) were used in deriving (5,17). The corresponding normal stress

differences can be expressed in the form

.ii t
T - T -fLC(-); F(.))t T ' - T I J(F('); C(')] , (59)yy xx I zz xX

where

"Jc();F ) t .  - "2[C(-T); 0; 0; F('r)] t . .  (9€.20)
1- 22 M0

Thus, the material functional , defined by (5,20), completely describes

the material response to pure homogeneous deformation. Observe that

rc( ); F(.t)Jt]=.® gives the difference between the principal stress in the

direction with stretch function C(T) and that in the direction with stretch

function i/c('r) F('r)

The special case when two of the principal stretch functions are the same
1

(A(r) - C(T) - F( )2 , say) corresponds to uniform extension in the z-direction

with stretch function F(') The pressure p may be chosen so that the lateral

boundaries are free of traction, in which case the only nonvanishing stress com-

ponent at time t is

I A
-[F(-(), F(I)' jt.. " Y[F(")It .  (5 l)

A

say. The functional expression V for the tension T in terms of the stretch
zz

iunction F(1) , may be called the tension functional for the material

16.



Case 2. SIhPLE SHEAR

X(T) -x, y() -Y + D( )z, z()-z . (5.22)

The normal stress differences and the shear stress, corresponding to the deform$-

tion (5.22), may be written an

T T. : 2 (r( t.. 211; D(T); 0; l]t.

" TtD-ooJ3[1; D (T)Z 0 ; l]t =.5

T V2-31; D(T)j 0; I].

The material functionals 42 and 4,defined by (52) completely de-

scribe the material response to simple shear. Similar functionals were used by

Colemen and Moll (25] to discuss viscometric flow of incompressible simple fluldA.

It is easily verified that #2 and , are even functional. of their argument

function, while is an odd functional of its argument function.

The pressure p may be chosen so that the plane of shear is free of traction,

in which case the stress components at time t are

T 0 , Ty - ,[D(,i')t T

Txx %- zz-
5,24.)

T . 4 D(T)]It ,T -T 0yz 'r ci x xy

The functional expression ~'for the shear stress T 5 in terms of the amount

of shear D(T) , may be called the shear functional for the material.

6. BENDING, STRETCHING, SHEARING AND TORSION4 OF A RECTANGULAR BLOCK

Bending and stretching of a rectangular block of elaestic mattrial was dis-

cussed by Rivlin (9), and was generalized by Erickeen [14] to include axial

1



shearing. The general deformation described by

A(T) [C(T)F(T) - D('T)Z(1) - I

where r(r), O(T), z(r) are cylindrical polar coordinates, csrried the block

bounded in the reference state by the planes

X - X ,X" Y Y' + (6.2)

into the solid bounded at time t by the cylinders and helicoidal surfaces

r =mx2AX ,r2AX" ; FO- Dz- .YI/A ; HO - Cz - . Z'/A (6.5)

SPECIAL CASES

(i) D E 0 - 0 This corresponds to bending and stretching of the block

into the annular wedge bounded at time t by the cylinders

and planes

r -/X' , 'Tdx" ; 0 - t ' ; - +z FZ (6.4)

(ii) D 0 , 0 0 Thib corresponds to a simple shearing of the annular

wedge (6.4) such that the bounding surfaces at time

t are

r - 2AX' , ,2AX, ; P - CY' ; z - H./C - ± FZ' . (6.5)

* The associated deformation considered in (14] does not contain the torsion term
D(T). For an elastic material, such a deformation field is not less general than
that described by (6.1), since the form (6.1) can be recovered by a rotation of
coordinates. However, a more general deformation of a rectangular block is
obtained here, because the case D(l) - 0 corresponds to a special orientation
of the block, in its undeformed reference state, relative to the deformation
field.

18.

m m m s -



(iii) D 04 0 , E - 0 This corresponds to torsion of the annular wedge (6.14)

such that the bounding surfaces St time t art

r-t2AV , 2AX" ,0 - Dz/F BY' ; z- t T

The strain matrix saseciated with the deformotion (O.) i& Biven by

21(X,%) , k(X, )_ + e(X, )L + m(X,t)N_ + n(X,r) (N + NT) (67)

where the matrices K, L, H and N are defined by (5.4), and where

k(Xr) - A('r)/2X - I ,(X,r) - 2A( t)C(.1) 2 X + E(1) 2 
- 1

(6.8)

m(X,r) - 2A(-r))(i) 2 X + F( t) 2  1 , n(X,rt) 2A( )C(%) D(Tr)X + E('T) F(t)

Consequently, substitution from (6.7) in the constitutive equation (L.7), leads

to an expression of the form (3.6), and substitution in (2.6) gives the extra

stress matrix S . The physical components of extra stress in the cylindrical

system, at time t , are

S Arr " 0- K/rl , Oz = [CEq- + (CF + DE)/ 2 + DF/Mr

P - (C2  + 2CD12 + D': )r- S zr a 0 , (6.9)

Szz - E +2EFn+F M , s .0

where -K, X , t* and it are functionals of the argument functions (6,8).

Setting 1-t in (6.1)1 gives X - r 2/2A , so that the extra stress components

(6.9) may be regarded as functions of r and t , The equations of motion (14.3)

are satisfied if p is also a function of r and t , of the form

p Srr + (1/r)(S - Sn) dr (6. 10)



Observe that replacing the set of amplitude functions

in the argument functions (5.6) and in the components of extra iress (5.7), by

the set

A(q)/ !-A()X , c(r) 'I'(TX , 0(1) 12A('r)X , E(,) and F(T) , (6.12)

respectively, yields the argument functions (6.8) and the physical components

of extra stress (6,9). Consequently, the extra stress components (6.9) are

given by

0 t

S -S z
S- 22 [C)r( );D(")r( );E( ),F(T)] , S - (

where r(i) - JqrZAi , and the functionals 11' *22' 3 and are defined

by (58)I Since the substitution (6.11), (6.12) is invertible, the following

obtains: knowledge of the response of an incompressible simple material to

homogeneous plane deformatfon suffices to determine the response of a block of

the material to bending, stretching, shearing and torsion, and conversely.

The physical components of stress, obtained from (6.10) and (6.i3), are

rr X(1/LX) t22[C(

ez 2

T =T 14+C())r();D()r(');E(1;F(')]t

OR r r v2 zr

T T[) , T - 0

20.



where the mateial functionis 22' j3 and 4, are defined by (5.1o). The

constant of integration in (6.14)i is chosen so that the plane X a X" deforms

into a cylinder free ot traction The surface tractions which are required to

maintain the deformation (6 1) in the block can be calculated from (4.5) 1 anid (6.14).

The physical components of stress corresponding to bending and stretching of

the block (Case (i) above) are found by appropriate specialization of (6.14).

They can be expresEed in the form

rr O
T - ( / X [C()r(); F()] dx , T = ,

T r - T +) o  zr

T T + j[F(T); C(T)r(T)] T ' 0

where the material functional I is defined by (5.20) Thus, knowledge of the

material response to pire homogeneous deformation sufficea to determine the re-

sponse of a block of the material to bending and stretching, and conversely.

The following formulae for the resultant tractions on the plane ends

0 + ' = .CY' , r' =12A _s r _9 r" - 'l , and on the sides z _ FZ',

of a wedge are readily ,ained from (4.5), together with the equations of

ruotion (4.3) written in terms of the physical components of stress (see, for

example, Truesdell and Noll [5], Sect. 56):

R - 'Tr (r =£'

M r2 T ( =r') r T ar (6.10)2 r

.-- r2 6' T (r r') + 0' (, T T r )rdrrr j , zz rr n
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Here R and M denote the resultant normal force and the resultant moment about

the axi r - 0, respectively, pWr unit axial length on the ends, while N denotes

the resultant normal force on the sides. The condition that the cylinder r - r'

may also be free of traction is, from (6.101,

f(l/2x) [C(-r)r(-.), F(T)) t  dX - 0 (6.17)

and the resultant force R on the ends vanishes whenever this condition is met.

Thus, if the a.-Aplitude functions are such that the condition (6.17) is met fur

all times t , the bending can be effected by terminal couples, together with

normal forces on the sides of the block.

7. STRAIGHTENVIG, STRETCHING AND SHEARING OF AN ANUAR WEDGE

Straightening, stretching and shearing of an onnular wedge of elastic

material has been discussed by Ericksen [I]. The deformation described by

x A('T)R2 y(T) - C( )G + D(T)Z , z(- ) - E(T)e + F(-,)Z(71
(7-1)

A(T) [C(T)F(T) - D(T)E(T)J - 1

carries the annular wedge bounded in the reference state by the cylinders and

planes

R - R' , K" ; E 9 . @' ; Z Z '  (7.2)

into the pVrallelpiped bounded at time t by the planes
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2 2 " Fy -Dz t '/A ; Ey - Cz = . Z'/A

SPECIAL CASES

(1) D E = 0 . This corresponds to straightening and stretching of the

annular wedge into the rectangular block bounded at time

t by the planes
1 2 A,2

x AR' 2, 1AR" ; y W Ce' ; z--t Fz' (7 4)
2 2

(ii) D = 0 , 2 d O . This corresponds to a simple shearing of the block (7,4)

such that the bounding planes at time t are
x 1 A ' 1 2 8 E/

X 1R '2 , 1 AR, 2 y + C ; z - Ey/C - t FZ' (75)

(iii) D 0 0 , E - 0 This corresponds to a simple shearing of the block (7,4)

such that the bounding planes at time t are

x = 1 AR' 2 , AR" 2 ; y - Dz/F S ce' ; - + FZ' (7.6)
2 '

The strain matrix associated with the deformation (7.1) is given by

2E(R, 8, ) = k (R, ) K(s) + e+R, ) L (e) +

+ m(R,,r) K(e) + n(R,-r) (!(e) + N( 5)TJ (7-7)

*The associated deformation considered in [14] has the form (7.1) with
D(T) - 0 , which uAy be obtained from (7.1) by a rotation of coordinates.
However, a more general deformation of an annular wedge is obtained here,
because the case D(T) - 0 corresponds to a special orientation of the
wedge in its reference state relative to the deformation field (7.1).
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where

AC, -( )2e R 1 , (, t)-[ c( ) + i(-i) 3/a
2 2 C

m(R , T) - D( )2 + F() - 1 n(R. T) - [C(k)D(") + B(I)FQ()]/R

and the time-independent matricte X(e), L(S). M(6) and a(&) , defined by

coo 2 e sine cose 0 0 sin 2a -sine cose 0

2 2(e)- sine cose sin e 0 , L(e)- sine cose coone 0

0 0 0 0 0 0

(7,9)

0 0 0 0 0 -sine

0 o 0 N(e)- 0 0 cose

0 0 0 0 0 0

have the properties (i), (ii) and (iii) listed in Section 3. Consequently,

substitution from (7.7) in the constitutive equation (2 7), yields an ex-

pression of the form (3.6) which, together with (2.6), gives the extra stress

matrix S . The physical components at time t are

S - A2 R2 R S = CE, /R2 + (CF + DE)./R + DFAf.

xx yz

Syy -c 2 0/ 2 + 2D71/R + D, S - 0 (7-.10)yy zx

S w'- 2 oE/R 2 + 2EF . /R + Y .S - 0zz xy

where t, , and are functionals of the argument functions (7.8).

2
Setting • - t in (7.1)i gives R . 2x/A , so that the extra stress com-

ponents (7.10) may be regarded as functions of x and t The equations of

motion (4.3) are satisfied if p is also a function of x and t ,of the form

24.



AA

p - xx +P ,(7 )

A
where p is an arbitrary function of t

Comparison of (7.8) and (7-10) with (5.6) and (5 7) shows that the extra

stress components (7.10) may be written as

S.c)/Dr)(r)RF'J , S =-2[(T/D-)E')RF-)'r
sx -1 C [C( T) /R; D( T) ; E(7) I/R; F() ]t ..* , Syzx 0 ()P;D ] / ()] .

, o

S • -,.3 [C()/R;D(&);E(.)/R;F(.r) S - 0

the functionals .11, 422' 33 and 33 23 being defined by (5.8): Thus, know-

ledge of the response of an incompressible simple material to homogeneous plane

deformationi suffices to determine the response of an annular wedge of the material

to straightening, stretching and shearing, and conversely. It follows from the

results of the previous section that there is a similar reciprocal relationship

between the families of deformations (6 1) and (7.1).

Planes x-constant may be rendered free of traction by setting p - 0 in

(7.11), in which case the stress components at time t are

Tx- 0 T -f25[C(')/R;D( );E(r)/R;F(r)]t
Xx yz 2

Tyy, /2[( )R;D('T);E(T)/R;F('[')]. ,o T T 0f
T~=0 ,(7.13)

T [ C(T) /R;ID(T) ; E (1)/R; F(T)] I , Txy= 0

The surface tractions which are required to maintain the deformation ('.1) in

the wedge can be calculated from (4.5)l and (7 13).
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The stress components corresponding to straightening and stretching of the

wedge (Case (i) above) are found by appropriate specialization of (7.13). They

can be expressed in the form

T x 0 , T y [ )/R; F(T) . T - [(-); C(-,)/..

xx Yy ZZ

(7.14)
T -T *T =0yz zx xy

where the material functioral is defined by (5.20). Thus, knowledge of the

material response to pure homogeneous deformation suffices to determine the re-

sponse of an annular wedge of the material to straightening and stretching, and

conversely.

The resultant normal force T and moment N about the z-axis on the ends
y

y + C6' , and the resultant normal force T on the sides z : FZ' , at time

t , are given by substitution from (71.4) in

Ty AFZJ T RdR M A2FZJ R R~dR ,T .PAC' T RdRyR yy JR0 Y z R' ZZ

In particular, the condition that the straightening can be effected without a

resultant force on the ends of the wedge is

R (C(")/R; F( )]t  RdR 0 o (y.16)

8. EXTENSION, INFLATION, BENDING, TORSION AND SHEARING OF AN ANNULAR WEDGE

The extension, inflation, bending, torsion and shearing of elastic cylinders,

tubes and wedges has been discussed by Rivlin [9, 101, Green and Shield [I1],

Adkins, Green and Shield [12] and Ericksen and Rivlin [13]. The general deforma-

tion is described by
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r -r ATI + B(T) , eIr) v'C(,)B + t)('r)Z , z E('T)e + F(I)Z
(8. 1)

The atrain matrix associated with this deformation has the form (7.7), with

k(R, ) -A('C) R /r(') 2 
- 1 . T(R,T) - [C([)2 r( r)2 + E(T)2]/R - 1 1

(8.2)

- D(T) r(r) + F(r) 2 - 1 , (,') -[C(T)D( )r( ) + E(Q)F(')]/R *

where t() is given by (8.1) 1 and the matrices K(e) , 1(e) , t_(E) and N(e) are

defined by (7.9). The extra stress matrix S may be obtained by a procedure

similar to that outlined in the previous section. The physical components of

extra stress at time C are

Srrm A2 R 2 kIr2  S 9z [Cr/R' + (CF + DE)4,&/R + DF/Mr

se- (C29/R 2 + 2CDft/R + D.M)r2, Szr- 0 (b._)

E3 mE R+ 2EF4/J + FL4Z S -O0
zz re

where at, ,Inf and Aare functienals of the argument functions (8.2). Set-

ting I - t in (8.1), gives R 2 (r2 _ B)/A , so that the extra stress components

(8. ) may be regarded as functions of r and t . The equations of motion (.5)

are satisfied if p is also a function of r and t , of the form ((. 1o'., i.e.,

p - Sr + (1/r) (Sr S o)dr (6 4)

Comparison of (8.2) and (8.3) with (5.6) and (5.7) shows that the extra

stress components (8..) may be written as



S -- [1 cT)Q)D(T)r(t); E(';)/R; F();)1)
rrLL-

S2sC toas
J \bP erL =, Sr (8.5)

Szzw433[C(T)r( r)/R; D(t)rr); E(T)/R, Ste))- 0

whore r(,r) is given by (8.1), and the material 1-unctionals andk '

'23 are defined by (5.8) Thus, knowledge of the response of an incomrressible

simple material to homogeneous plane deformation suffices to determi.e the response

of a cylinder of the same material to extension, inflation, bending, torsion and

shearing The substCitution which maps the argument functions in (5,8) onto the

argutrient fun:tions in (8.5) can be inverted In a number of ways, for example with

B(T) - 0 or with C(k') - 1 . Thus, knowledge of the material response to extension,

torsion and shenring, i-ogether witn either bending or inflation, suffices to

determine the responve t; homogeneous plane deformation.

The physiwal components of stress at time t , obtained from (8 4) and (8.5),

are

T = f (AR/r2) 2 [ C() )r()/R;D()r(');E()/R;F(i)]ti dR

Tee- T +T,C( r()/R;D( )r();(I)/R;F()3. =  , r - 0 , (8.6)

T- Tr 4 T~. 0Tzz Trr+  3[ r /;()rx;()RF ., rO-O

The constant of integration in (8 6)i is chosen so that the cylinder R R"

deforms into a cylinder free of traction
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Some ipecial cass of the deformation (8.1) will now be considered.

Case 1. EXTRNION) INFLATION AND BINDING

F r(r) - A(')R+B(T) , 0( ) - C(,) , z(;) r(-)Z A()C(!)D(-) 1 (8,7)

The physical components of stress corresponding to the deform tion (8 7), which

are obtained by appropriate specialization of f,86), may be expressed in the form

T r [(AR/r2 )] AtC('r)r(')/R; P(i '. dR Toz 0 (88

T~ - Trr +d[C(r)r(r)/R; F(T)I t  T 0

T -Tr + [F( T); C(T)r( )/R -I T o ,

where the material functional is defined by (5 20). Thus, knowledge of the

material response to pure homongeneous deformation suffices to determine the

response to extension, inflation and bending. It can easily be seen that know-

ledge of the material response to extension and inflation, or to extensioh and

bending, suffices to determine the response to pure homogeneous deformation.

The resultant tractions which are required to support the deformation (8 7)

in an annular wedge can be obtained by substitution from (8.8) in (6.16) In

particular, the condition that the cylinder R - R' may also deform into a

cylinder free of traction is

f(AR/r) '[C( )r('r)/R,, F!.) dRt 0 0A

and when this condition is met, the resultant tractions on ,he ends

0 t Co' of the wedge vanish. Thus, if the amplitude functions are such

*that the condition (8.9) is met for all times t , the extension, inflation

*and bending can be effected by terminal couples, together with normal forces

on the sides z - ± FZ'

L19.
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The deformation (8.7), with 3(0) 0 describes extersi4on and bending

withnut infletiov In this iaae, the material functional A in (J8.8) is in-

dependent of position, and the physical components of stress at tine t are

given by

T ()t.log R/R' , T 0  T~ + ~t()( F(-.)]~

i1

T z T rr + F(T ; - (8.i

T r TT -te

Case 2. RADIAL OSCILLATIONS OF A HOLLOW CYLINDER

Inflation, without extension, of a hollow cylinder is described by

2- R + B(0) , ( ) - e , z(T) - Z (..l)

The corresponding physical components of stress at time t are obtained by ap-

propriate specialization of (8.8)- in particular, the pressure difference P

between the inner and outer cylinders is given by

P :r(R,r2) ' tr(r)/R; 11t  dR ('.i2)

with r(T) given by (8,1).

As mentioned previously, exnct solutions of the dynainic equations (I,tJ~

are obtained from the quasistatic solutions considered thus far by requiring

that the acceleration have the form (4.4). This requirement does not restrict

the form of the inflation function B( ) in (6.i). The ,quaLion which governs

the radLal oscillations of a hollow cylinder, stbJected to a pressure difference

P(t) , is obtained by including the appropriate inertia terms in (b.I).

Analysis similar to that. in [L, leads to the E-quation
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2
+ki1+v~ /~ + ) + fx ' ~

where

X() - ')/R U() r()/ -'R' - l

f(,_) 2 tl/U(U-1)1 [u('V)2 z t . du

7+1

and r'('r) denotes the inner radius of the tube at time It, Equations (a 13) and

(8.14) are the counterpart of the equations obtained by Knowles (19] for radial

oscillations of a tube of homogeneous isotropic incompressible elastic material.

The relevant material property, in the elastic case, is the generalized shear

modulus It can easily be seen, from (8 l14)4 , that radial oscillatcniu. of a

tube of incompressible simple material are not, in general, determincd by the

shear functional for the material,

Case P. URE TORSION

r(-r) aR o (s) 9 + D( r)Z ( z(t) Z 9l~

The physical components of stress at time t , obtained from (8.6), may be

written as

1 rr . ,, + k([D(r)R]' .. T 0d(2, C)

T a T + D(I)R t T -TZZ rr Ta-a*

where the material functionals and are defined by (f'.'5s). Thus,

knowledge of the material response to simple shear suffices to determine the

response to pure torsion, and conversely.
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The torsional couple T and the resultant noral force N on the ends of a

hoilow cylinder K' R 5 R" , at time t are

Rfl
T [ TR. R' dit

Rff (8,17)

N -- R T (R-R') + ,r l (D )R] - [D('r)E } RdR

In general, a pressure

rr 41 2 I-T (-R') -f (/H 2(,),~d , (8,13)

on the inner cylinder R-R' , is required to support the deformation (8 15)

Christensen [25] has discussed the torsion of a solid cylinder of incompressible

simple material with fading memory, and he has observed that the normal forces

N are not necessarily compressive.

Case 4. AXIAL SHEAR

r(-C) - R , 0(r) -0 , z() - E(T)e + z ( 19)

The physical components of stress corresponding to the deformation (8.19) are

obtained by appropriate specialization of (8.6), and may be written as

rr - , (l/R) dR ,z = [E(T)/R].

T Tr + 4SfE(.)/Rj , T 0

0 rr T.,00 RJ

Tzz rr. ,-c Tre

Thus, knowledge of the maLerial respons to simple shear suffices to determine

the response to axial shear, and conversely.
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9. INFLATION OF A SPHERICAL SHELL

The inflation of an elastic spherical .,,ll has been df.-i:ussed by Gree1

and Shield [11]. This deformation is described by

r(T)3 - R3 + B(T) , 9(T) - e , ( ) - € , (9 1)

where r( ) , e(() , 0(r) and R , 6, 0 denote spl',rical polar coordinates at time

T and in the reference state, respectively. The associated straiin matrix is

given by

2E(R, 6 ,) - k(R, ) K(6,0) + q(R,'r) (SO) (9.)

where

k(R,T) = R'/r(r) 4 -1 , q(R,T) = r( )2 /R2 - 1 (9 3)

r(r) being given by (9.1)i, and

2 2os 2i8caCcsin G cos2  sin8a sinD cosD sine cos(9 cosO

K(, T)= sins sinsn cos sinsn sin, sine cose sin, _

sine cosS cost sine cos8 sine cos2e (9.4)

It is easily verified that

K , trK- ()

and hence

!2 _ , K j , tr q- (9.6)

It is evident from (9.4) , (9 5) and (9.6) that the matrices K and 2 , the latter

being identified with the matrix L + M , have the properties (i), (ii) aud (iii)

listed in Section 3. Consequently, substitution from (9-2) in the constitutive

equation (2.7)1 yield3 an expression of the form (3 6) which, together with
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(2 6), gives the extra stress matrix S The physical components in the spherical

system at time t , ate

S rr *(' 4./r', S op. S rr t , S00 - $Or w Sr0 - , ( 7)

where 4 and a are functionals of the argument functions

k(R,c) - R4/r() 4 - I , e(R,) - m(R,r) r(,t)2/R 2 - 1 , n(R,T) = 0 (9 8)

3
and r( ) is given by (9.1),. Setting I - t in (9.1), gives R - r3 - B , so

that the extra stress components (9.7) may be regarded as functions of r end t.

The equations of motion (4.3) are satisfied if p is also a function of r and t,

of the form

p - Srr + 2 (1/r) (Sra - S oe ) dr (9-9)

Comparison of (9.8) and (9.7) with (5.6) and (5.7) shows that the extra

stress components may be written as

Srwr4[r('T)/R; r(r)/R. ~ Se S 0 m'JIrr)/Ri R2 /r( T)2]t

(9.10)

S60 = Si r M S r O

where the material functional - is defined by (518). The physical components

of stress at time t , obtained from (9.9) and (9.10), may be written as

r A A y t
Trr .2 (1/rVCR /r( )2jt dr , T o -T - ,

ri

Too - Tor - O , (9.11)

where is the tension functional defined by (5.21) and the constant of inte-

gration in (9.11)1 it chosen w that the sphere r-r" is free of traction. The

identities

K4



It
.r[ - . (9)12)

which are evident from the definitions of the material functionals and

were used in deriving (9 11). It follows from (9 11) that knowledge of the re-

sponse of an incompressible simple material to uniform extension suffices to

determine the reponse of a spherical shell of the material to inflation, and

conversely,

The pressure difference P , at time t , between the inner and outer surfaces

rnr' and r-r" of a spherical shell subjected to the deformation (9 1) is given by

P w -2f (l/r) C (R 2 /r( )] t  dr (9.13)

The requirement that the associated acceleration have the form '4.4) does

not restrict the form of the inflation function B( ) in (9.1). The equation

which governs the radial oscillations of a spherical shell, subjected to a

pressure difference P(t) , is obtained by including the appropriate inertia

terms in (9,13). Analysis similar to that of Guo Zhong-Heng and Solecki [20]

leads to the equation

d [1 + 7/x3)- X3 .2 }
dhe e + x g(xy) 2 i x/pR'2  , (9.14)

where

x(r) - r'( )/R' u(r) - r(r)3/R3  - "3/ '3

X3 A 2 (9.15)

g(XP7) 4 h 2  3 l/u(u-l)) [u(,)r ]7 It du3 PR ' 2  L:2 fr-

7+1

Here R' and R" denote the inner anti outer radii of the shell in its undeformed

state, and r'(7) denotes the inner radius at time I Equations (9.13) and (9 14)

are the counterpart of the equations obtained in [20] for radial oscillations of a

spherical shell of homogeneous isotropic incompressible elastic material.
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10. EXTENSION, BENDING AND AZD(UTHAL SHEARING

Azimuthal shearing of an elastic annular wedge has been discussed by

Klingbeil and Shield [15], and generalized by Singh and Pipkin (161 to in-

clude extension and bending. Such a deformation may be described by

r(T) - A( ')R , e( ) - B( )log R + C(T)S , z(r) - F(r)Z; A() 2C('r)F(-r) - 1 (10.1)

The associated strain matrix may be expressed in the form

2E(8,-) a k(,r)K(e) + e(T)L(e) + m('r)M(e) + n('r)_(e) + N(e)T] , (10.2)

with
k(r) = F(T) 2 1 , , r(') - A( )2[1 ._ B(r) 2  

- 1

(10.3)

m(') , A('r) 2 C(T) - 1 n('r) = -A(-r) 2 B(,r)C(T)

and

2
0 0 o cos e sine cose 0

K(e),, 0 0 0 L(e)= sine cose sin2 e o

0 0 1 0 0 0

(lo.4)

2 2
sin2 6 sinG cos9 0 sin6 case -cos 8 0

-sinO cose cos 2 8 0 )sin -sinS cos6 0

0 0 0 0 0 0

Observe that the set of matrices K, L., M defined by (10.4)12, is a permutation

of the set K, ., M defined by (7 9),2, 3 '
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The matrices defined by (10.4) have the properties (i), (ii) and (iii)

listed in Section 3. Consequently, substitution from (10.2) in the constitutive

equation (2.7), yields an expression of the form (3.6) which, together with (2.6),

gives the extra stress matrix S. The physical components at time t are

Srr $ez,

See A , 2 (B - 2c.CA + c') szr m 0 (10 5)

Szz F2 " , S e -A 2 (B - c-6)

where JC , , and 1/4 are functionals of the argument functions (10.5)

Since the extra stress components (10.5) are independent of position, it is easily

seen that the equations of motion (4t.3) are satisfied if r is a function of r ,

and t , given by

A
($rr - Se) log r + 2 SerS + p (10.6)

A
where p is an arbitrary function of t

Comparison of (10.3) and (10.5) with (5.6) and (5.7) shows that the extra

stress components (10 5) may be expressed in the form

S =4o2[(1);0; -A( )B(')A(T)C() ] t  S
rr2 *-' 0 ,

See= 5[A( );O; - 0 (i 7)

Szz "1 [A(');0; "A(I)B(T);A(%)C(T)] t S 2,[()O-()()ATCT3

where the functionals -911' 922' 33 and 2 re defined by (5,8). The physical

components of stress at time t , obtained from (1O.6) and (10.7), are given by
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Trr 2 r + 0 3 O rrT
(lo.8)

To M Tzr T 23

where p (m p - $rr) is an arbitrary function of t and the argumer.t functions

of the material functionlal and are

A(T); 0; - A(T)B(1); A( )C('r) (10.9)

Thus, knowledge of the response of an incompressible simple material to a restricted

class of homogeneous plane deformations (described by (5.1), with D(T) - 0) suffices

to determine the material response to extension, bending and azimuthal shearing,

Since the pressure p in (10.6) is a function of both r and 0 , the tractions

which are required to support the deformation (10.1) are, in general, rather com-

plicated. For example, normal and tangential tractions, which depend on 0 , are

required on any cylinder r - constant, and the arbitrary function p can be chosen

so that the normal traction vanishes on a generator 0 - constant

The special case of (10.1) when B(T) a 0 was discussed in Section 8 The

special case

r( ) -R, e(T) -B(r) logR+8, z(T) -z (10.10)

corresponds to azimuthal shearing without extension or bending. The physical com-

ponents of stress at time t , corresponding to the deformation (10.10), are

obtained by specialization of (10.8) and (10.9) and may be expressed in the form

TrrW { [B(T)] t=._ - B(E t } log r - 20 .B(T)]_- p , Tez-

T +,[B()]t -3[B(r)It T (10.11)
Toe Tr PB( -It ,Tt 0,(0 I

TzzTrr - 3 ([B(T T B(T)]
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where the material functionals e2 ' a and are defined by (5.23). Thus,

knowledge of the material response to simple shear suffices to determine the

response to azimuthal shear, and conversely.

11. AN ALTERNATIVE PROCEDURE

A description of the material response to several inhanogeneous deformations

in terms of the response to homogeneous plane deformAtions was effected, in pre-

vious sections, by demonstrating that each of these deformations belongs to the

special class defined in Section 3. This description may also be effected by a

more elementary procedure, based on consideration of the associated local

deformations.

Every deformation is locally inhomogeneous, in the sense that the deforma-

tion of a material element which is small in all of its dimensions is homogeneous,

when terms of the second order of smallness are neglected. Since the mecheninal

response of a simple material ib a local action, it is not surprising that know-

ledge of the response to homogeneous deformations suffices to determine the

response completely (see Truesdell and Noll (51). Each of the deformations dis-

cussed in Sections 6-10 is locally equivalent to a homogeneous plane deformation,

and the response to each deformation can therefore be expressed in terms of the

material functionals which characterize the response to homogeneous plane

deformations.

Consider, for example, the spherical inflation described by

r( )3 - R3 + B(r) , 0(-C) - 8 , E (? ) - . (II 1)
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This deformation carries the elementary cuboid bounded in the reference #tat*

by the coordinate surfacrp

1*,R + dR ; 8 , A, + de ; 11 , 0 +. 0l.

into the cuboid bounded at time 'i by thc coordinate surfaces

r(r) , r(r) + dr(l) ; o(r) , 0( )+ dG(',) P(s) ,(t)+ d.f. ) (Il.)

The radial, longitudinal and latitudinal lengths of the cuboid in the reference

state, and at time IV , are

dR , R dB , t sin S dO (11)4)

and

2 2
dr(r) - (R /r(r) )dR , r( )de( ) - (r('a)/R)RdS , r()sin6(r)dO(C) - (r(T)/R)R sin8 d ,

(11.5)

respectively. Thus, the local deformation consists of a radial stretch R/r(a) 2

and equal longitudinal and latitudinal stretches r(')/R , i.e., spherical infla-

tion is loclly equivalent to simple extension.

From this point of view, it is evident that the material response to spherical

infiation is determined by the response to simple extension. The extra stresses

(9,10) may be written directly and the pressure may be evaluated by considering the

balance of forces (including inertial forces, if desired) acting on the elementary

cuboid at time t

The various controllable deformations may be discussed in this manner, and

the method of approach is part:icularly effective for those deformations which are

locally equivalent to pure homogeneous deformation, or to simple shear. A similar

procedure was employed in the recent report by Rivlin [?(I on st.eady viscometric flows.

This may be seen more readily by considering the deformation of the material element
bounded in the reference state by thc sphcrcs R , R + dR and by the cone dO
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12. APPlNDIX: DMTEIN4ATIOR OF THE MATERIAL UCTIONALS FOR A PARTMCULAR M ITEUAL

The various solutions ptesented in this paper are expressed in terms of the

material reasponse to homogeneous plane deformation. The w.terial functionals

which characterize this response may be determined from the general eonstitutive

functional. (2.7), with the analysis of Sections 3 and 5 This calculation will

now be carried out for a particular incompressible simple material, with conatitu-

tive equations given by

S. - P1 + I (!)1 0  FT

tJ (t- r)K( ) d + (t - 'rt .) ( i' ) d1  , 1)

where the kernel function * is symmetric in its arguments Pipkin (27] hat shown

that (12.1) represents the second-order approximation in a Green-Rivlin expansion,

i.e., the integral expansion of (2.7) in which terms of the third and higher orders

in the strain rate matrix *(r) are neglected. An experimental program involving

homogeneous strains, for the determination of the kernel functions in (12.1). was

described by Lockett (28].

It will be useful to introduce the notation

f amWra) , w f r a) ; (a, - 1,2) (122)

Substitution from (5.5) in (12.1), and use of the multiplication table (5 3)

together with (3.6) gives
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At k 1 1dr1 + I(tTt.l)( m + n 2)d d",

Substitution from~ (5.6) in (12.3) leads to

dA (A 2 d l p d 2 d-, 2~ A2d(- r) 4-(1 d 1  "f L~-1 t~ 2) -( - (A2) d'r d'rdr 1 12

[7 d 22 22 1 2

0( t- (C~ + Z )d 1 ++ [d ( 2 )] d~ C2 2) + (2I di 1 1 f 4 (t'r1 t- d2(t-(
2  +FE) +- ED ~

1 c 2

- ~ ~ ~ ~ ( m f0e01 ~-co + x F1)dC + E d ?l&L, F2

di 1~ 1 1 ~ 1. 1 2D 22

f f f2.124



D YSC20t+ I-U- + D& A 2 .
[22tc1; Dp I p + h --. (12.5)

" 3[c1; Dp; RI; V l"" " ;t + (CF + DE)f2 + DYF ,

and is then given by (5.15),

The material functional Y , which characterizes the reponse to pure homo-

geneous deformation, is defined by (5.20) and may be determined by specialization

of (12.4) and (12,5), It is easily seen that

+C1 ; F, t f(t-C,1 )(C 2CIC - A2 'Ai A 1  +

2A 2A A ii- 1  I dT

C11tr) C2CC 2  drdr2 (.6

A
where A(,r) - 1/C( )F( ) . In particular, the tension functional , defined by

(5.21), is

IF( )]. -t O(t-il)( 2F1 + 1/;FFj)ild-r1 +

ftft (F2 F 1/4FF 2 ,)i d-rd-+ ~ 1e 2 1 2 1 2(1)

The material functional. and 4 characterize the reponse to simple shear

and are defined by (5.23). Appropriate specialization of (12.4) and (12.5) gives

t( t 1 f t

2 ]t f (t-. 1 )(l + DD)6D1 dT1 + ff *(t" 1,t-t2)[ + DD1 +
C6 -0 -W

+ D2(l + I0D)]DID d Id 2

f 0(t" 1 )Dlbrd1 1 + ff *(t' 1 ,t."2 )(l + 0DD2)iID dTd1 V (12

D( .) = f (t 1)(1 + 'DD )Dld 1 + ff (t-'lt.-'yY2D1 +

+ D(1 + 4D0 2)]b1b dri dT,
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