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SUMMARY

Exact solutions of several problems which involve finite deformations of
homogeneous {sotropic incompressible simple solids are obtained by the inverse
method. The deformations invelved include bending, stretching, shearing, torsion
and beth cylindrical and spherical inflation. The corresponding stresses are
expressed in terms of the functionals which describe the material response to
homogeneous plane deformations. The results obtained apply, in particular, to

incompressible viscoelastic soiids.

1. INTRODUCTION

A general theory of the nonlinear mechanical behavicur of materials with
memory was developed in a series of papers by Green and Rivlin [1, 3]* and
Green, Rivlin and Spencer {2), and in an alternative form by Noll [h;. The
theory applies equally to simple solids and to simple fluids and there has
been considerable subzequent development, by several workers, in each area.

A comprehensive account of the work prior to 1965 is contained in the book

by Tru2sdell and Noll [5].

*
Numbers in square brackets indicate references at the end of the paper.




Despite the extensive theoretical development, a body of exact solutions
comparable to that obtained in finite elasticity theory is not presently
available for materials with memory. 1In fact, the only area which has proved
to be at all fruitful in this regard is that of steady viscometric flow of
incompressible simple fluids. The simplicity of such flows compensates suf-
ficiently for the complicated nature of the material response, which is modi-
fied by the incompressibility assumption, so that several exact solutions have
beers cbtained (see {5), also the book by Coleman, Markovitz and Noll [(] and
the review paper by Rivlin [7]}).

Riviin [8] first observed the great simplification which results in a
nonlinear mechanical theory when the material is assumed to be incompressible.
This observation has led to the discovery of the above-mentioned viscometric
solutions and of several exact solutions in finite elasticity theory (Rivlin
[8, 9, 10], Green and Shield [11), Adkins, Green and Shield [12], Ericksen
and Rivlin [13], Ericksen [1L4], Klingbeil and Shield [15), Singh and Pipkin
[16])? These solutions involve deformations which are controllable for homo-
geneous isotropic incompressible elastic materials. A deformation is said to
be controllable for materials of a certain type 1If it can be supported without
body forces in every material of that type. Problems involving controllable

deformations can be solved by the inverse method, in which the deformation is
specified precisely at the outset.
The above-mentioned deformations of incompressible elastic materials are
exact solutions of the equations of equilibrium. Each deformation involves

some constant parameters, which may be replaced by functions of time (amplitude

»
Singh and Pipkin {17] have obtained corresponding exact solutions for an in-
compressible elastic dielectric.
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functions) to give quasi-static solutions, i.e., time-dependent solutions in
a theory in which inertial effects are not considered. The resulting deforma-
tions can then be specialized to yield exact solutions of the equations of

motion (quasi-equilibrated motions), by requiring the amplitude functions to

be such that the acceleration can be expressed as the gradient of a single-
valued scalar potential (Truesdell [18]). Two special quasi-equilibrated
motions, radial oscillations of cylindrical tubes and of spherical shells,
have been considered by Knowles [19] and by Guo Zhong-Heng and Solecki [20],
respectively.

It was shown in a previous paper {Carroll [21]) that every deformation
which is presently known to be controllable for homogeneous isotropic incom-
pressible elastic materials is controllable also for homogeneous isotropic in-
compressible simple materials. Consequently, the inverse method may be applied
to the solution of problems involving such deformations and this {s done in the
present paper, mainly with regard to simple solids. Homogeneous motions of in-
compressible simple solids have been discussed by Coleman and Truesdell [22],
and the torsion of a cylinder of isotropic incompressible simple material with
fading memory was discussed by Christensen [23].

The constitutive equations for homogeneous isotropic incompressible simple
materials are'presented in Section 2. These equations are specialized, in
Section 3, for a class of deformations for which the (time-dependent) strain
matrix may be expressed as a linear combination of four time-independent
matrices with special properties. The material response to such deformations
is determined by three functionals of four argument functions.

Following a brief discussion of the equations of motion, in Section L,

the class of homogeneous plane deformations, i.e., homogeneous plane strain

L s g o e WY W




supsrimposed on uniform normal extension, Is considered in Section 5. Such
deformatione are shown to belung to the class of deformation discussed in
Sectimm 3, and it is shown that the material response to homogeneous plane
defrrmations 15 determined by two independent material functionals of four
argument functions. Two special caszes are considercd, namely pure homogeneous
deformations {the material response being determined by one material functional
of two argument functlons} and simple shear {the material response being deter~
mined by three matexial functionals of one argument function).

It is shown, in subsegquent sections, that knowledge of the response of a

homogeneous isotropic incompressible simple material to every homogenecus plane

ceformation suffices to determine the material response to every deformation

which is presently kaown to be controllable for such materials. Consequently,

the stresses corresponding to every such deformation can be expressed in terms
of the material functionals which characterize the macerial response to homo-
geneous plane deformation, and this is carried out in Sections 6-10.
Extensional, flexural and shearing deformations of a rectangular block,
and of an annular wedge, are discussed in Sectioms > and 7, respectively)
{these deformations represent slight generalizations of the corresponding
deformations considered in elasticity theory). The extension, inflation, tenv-ng,
torsion and shearing of cylinders and wedges is discussed in T~ction &, and par-
ticular cases are considered in some detall. The inflation of a sphericél shell
is Jdiscussed in Section 9, and the extension, bending, and azimuthal shearing of
an annular wedge is discussed in Section 10.
The stresses corresponding to each of these deformations are expressed in

terms of the material functionals which chardcterize the response to homogeneous

plane deformation. Resultant tractions are calculated in some cases, but specific




T ET < TP ST YT

P

e e ]

deformation histories are not considered. 1In particular, it is shown that (a)

the material response to pure homogenecous deformaticn determines the response

to extension, inflation and bending of cylinders, (b) theresponse to simple

extension determines the response to spherical inflation and (c) the response

to gimple shesr determines the response to sure torsion, and to both axial and

azimuthal sheasar,

An alternativemehod of obtaining the go'utions discussed in Sectlons f-

10 1s outlined in Section 11, This method fnvolves consideration of the local
deformation and of the balance of torces acting on 4 suitably chossr valume
element. Finally, the various material functicnals which characterize the material
respongse to homogeneous plane deformations are calculated, in the Appendix, for a
particular simple material.

It should be emphasized that, while the deformaticns considered are time-
dependen:, inertlal effects are not considered, and in this respect the solu-
tions obtained are 1ot exact. However, exact solutions of the dynamic equations
(quasi-equilibrated motions) may be obtained by the procedure outlined above in
the elastic case. The appropriate restrictions on tphe amplitude functions for
the deformations considered in Sectinns -9 are listed in {5], and those for
the deformation considered in Section 10 are listed in [21]. The equations which
govern radial oscillations of cylindrical tubes and spherical shells of incom-
pressible simple material are displayed in Sections 4 and 9.

The emphasis in this paper is on deformaticns of simple solids and the
solutions obtained apply, in particular, to incompressible viscoelastic solids.
However, many of the results apply also to simple fluids. For example, it is
evident that several inhomogeneous flows, which are independent of material
properties, are possible — for exampla, radial {cylindrical or spherical) flow

with spatially uniform velocity.
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2, CONSTITUTIVE EQUATIONS

The motion of & body can be described by specifying the coordinates
xi(xA,1) at time 7 of the generic particle whose coordinates ln an undeformed
reférence state were xA, all coordinates being measured with respeét to the
same tixed rectangular Cartesiun frame x. Upper and lowur case Latin indices
have the range 1,2,3% and the usual summation convention is adbpted. £ will
somatimes be convenient to suppress dependence on the refnrence.coordinates
{ for example, to write xt(f) for xi(xA.T) ) and also to suppress dependence
on the presenc Lime ¢, thus x, denotes xi(t).

For a compressible simple material, the stress ¢,, at a given particle at

g a7

(= axt(r)/AXA) at that particle at all times up to and including the time t,

L3
time t is determined by the values of the displacement gradients x

For an incompressible material the displacement gradients must satisfy the

incompressibility condition

lxi.A(T)' -1, (2.1)
For such materials, the stress i{s determined only to within an arhitrary pressure,
gso that
qij N aij + Sij ’ - (‘J-E)

where p is arbitrary, aij denotes the Kronecker declta and thc cxtra streegs §

1}
is determined by the history of the deformation gradients, thus

s = Byylx WD, (&.3)

The condition that arbitrary superposed time-dependent rigid rotations of the

body shall leave the stress unaltered with respect to the body leads to (1], [4})

6,

Al kit

| .




——ry

t
Siy " % "j,a’gm [Eyq(")]r.-w '
where

Q!PQ(’) - Ki’P(T) xila(f) - aPQ .

If the materisl is homogeneous, then the form of the functionals 'éAB

the constitutive equation (2.b4) is the same for all particles. TIf the material

{s isotropic in the undeformed reference state, then (2.h) has the form {[1],
Wineman and Pipkin {24])

s =F % (01 _E

P
ro
-
~
-~

with -
i t t
Rrert, = ) B9 1y s e £ L))

=0 < T = 7 T, o=
- -] " o- “x
1’ ? 1) Y ﬂ

[0}
(5'1»---!6) ' (Li"'()

o)y 2P (n unin)) = B(r)) e Bl5g) + E(r,)anB(r))

Here S, F, E(1) and I are 3X% matrices defined by § = "Sij“ , F = u Bxi/axJ' ,
) T
E(7) = H EPQ(w)‘I and I = “ btj“ , £ denotes the transpose of F, tr £ denotes

the trece of f and the matrix functicnals Jg(a) are linear in their matrix

arguments f(a)(xl.---.xa) (a=0,1,---,5).

3, CONSTITUTIVE EQUATIONS FOR A SPECIAL CLASS OF DEFORMATIONS

Consider the class of deformations for which the strain matrix E(X,7, can

be expressed in the form

2E(X,7) = k(X,7) K(X) +£(%,7) LX) + m(X,7) MX) + n(x,7) (N(X) +NR)T) (3.1)




V,_ﬂ-_f  _,

»S_(;,:) = L%, OIR(K) + L%, OLX) +Mx, OMX) + A2(X,t) [NX) + E(E)T]

where the time-independent matrices K, L, M and N have the following propertivs:

S1Y the set

K, L,H,N,HN , 0 (5.

is closed under matrlx multiplication {7 is the null matrix), with multiplication

tahle

K L M N N'

K LS 0 9 0 0

L 0 L 0 N 0

M 0 0 M 0 N

N 0 ) N 0 L

N* 0 N 0 M 0
(it) tr K=trL=trMel , trN= (3.1)
(411) K+L+M=1 . (3.4

By virtue of these three properties, substitution for £(X,T) from (3.1) in

the conscitutive equation (...T)l gives

where

» (,77-‘7)




K%, 0) = Llk(x,1) 5 LX) 5 m (X7 ;5 n(k,0)]"

Zix,0) = Lz 5 x5 ;

3
>3
-
~
2
B
-
g
~

Mix,e) = Mlk(x, ) ; f(y) ;m (%,1) 5 n(X,1)is '

-

N t) = Ukex,t) 5 X7 5w (5,7) 5 a(x,T))E

- Tm~t0

The form of these scalar functionals {s determined by the form of the matrix
functionals ‘g(a) (a=C, 1, ---,5) of (2.7).
The following symmetry relations between the functionals JC, if, AN and {Z

are evident from (3.3), (3.4) and (3.4):

Klk; £;m;n =FKlkm; £;0] ,
Ll €;mi;nl =Mix;n;d;nl
Ak : €iminl =AAx;n;&;al

-e

-5[k;£;m;0]=£[m:k;£;01=/mff;m;k;0],

Ak ; €m0l =0

It foliows from (3.8)2 that only three of the functionals (3.7) are independent.
It is also evident from (3.3), (3.4) end (3.5) that K", lfand M axe even
finctionals of n(1), while ./} is an odd functional of n(t).

The response of any homogeneous lsotropic incompressible simple material*
to deformations such that the associated strain matrix can be expressed in the

form (3.1) is thus determined by three scalar functionals of four argument

*
In order to avold tedious repetition, the wourds '"simple material' will hence-

forth be used to mean "homogeneous ilsotropic simple material'.

(3.7

(3.8)

(3.9)

(%.10)




functions. It will be shown in eubsequent sections that the strain matrices

associated with a class of homogeneous deformations, and with all of the ip-
homogencous deformations which are presently known to be controllable for in-
¥ compressible simple materials, have the form (3.1).

i It follows from (3.9) that the material response to strains of the form
(3.1), uith n(X,7) = O, is determined by one scalar functional of three

argument functions.

L. EQUATIONS OF MOLION

In the absence of body forces, the equations of motion are

g, %P0 0 gyt %y o (k.1)
T‘ wheve p is the density of the material and ‘i are the components of #ccelera-
1 tion. The symmetry condition (4.1), was used in writing the constitutive equa-
! tion (2.7). For an incompress’ : material (h.l)1 becomes
Sij,j =Py +pa (4.2)
In & quasi-static theory, this equation 1s replaced by
= . 4,
515,57 P (4.3)

Most of the deformations considered here are quasi-static, i,e.,, solutiors
of (4.3). However, Truesdell [18] has shown that such solutions can be specia ized

so as to yleld dynamic solutions by requiring that the acceleraticn have the form

ai--g,i ’ (h")“’)

10.
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where f is a single-valued function, in which case the inertia term in (4.2) can

be incorporated in the arbitrary pressure gradient p T Some speclal dynamic
y

solutions are considered in Sections 8 and 9.

The traciions T1 on a surface with outward normal n, at t.me t are

i

5, HOMOGENEOUS PLANE DEFORMATIONS

The deformation described by

.

x(7) = A(7)X , (1) =c(7)Y +D(7)2, z2(7) = E(1)Y + F(7)Z

A(7) [ c(7) F(7) - p(7) E(7) ] =1 ,

'
’

where x(7), y(1), 2(7) and X, Y, 2 are rectangular Cartesian coordinates,

represents a homogeneous plane deformation, i.e., a homogeneous plane strain

superimposed on uniform normal extension, The deformation (5.1) carries the

rectangular block bounded in the reference state by the planes
X=X, x"; Y=ty , z=%2
into the narallelepiped bounded &t time t by the planes
X=AX', AX"; Fy -Dz=%tY'/o; Ey -Cz = 3 2'/A

The matrices K , L , M and N , defined by

11.
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K= 0 0 0 , L~ 0 1 0 ,
o 0 0 0 0 0
(5.4)
0 0 0 0 0 0
M= 0 0 0 N = 0 0 1
0 0 1 0 0 0

have the properties (i), (ii1) and (111) listed in Section %, and the strain matrix

agsociated with the deformation (5.1) is given by
2E(1) = k(T)K + L(T)L + m(*M + n(7) (8 + NT) , (5.5)
with

K1) = A(T)2 -1 8(<) = (1) +E(V)2 -1 ,

‘ ° o (5.6)
n(7) =D(1)" +F1)" -1 , n(7) = ¢(7) p(7) + E(7) F(7)

Consequently, substitution from (5.5) in the constitutive equation (2.7)1 leads
to an expression of the form (3.6), and substitution in (2.6) gives the extra

stress matrix § . The physical components at time t are

2
sc=A K syz.cg£+(cp+nz)42+vr'm,

s. =L +ecodl +0°M s_=0 (5.7)
vy X

s, we°d +cerfl +¥m Sey 0 s

zz xy

where -K z . ,m end /] are functionals of the argument functions (5.6). Since

12.
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the extra stress componunts are independent of position, the equations of motion
(4.3) are satisfied, p being an arbitrary function of t.

The extra stress components (5.?) may be expressed as functionals of the
amplitude functions ¢(71), B{7), E(7) and P(7), the normal stretch function A{7)

being determined by the incompressibility condition (S'I)h' thus

/]

o = B1q () p(7), B(r); KDL =A%,
L + eonfl+ 2L,

8,y = Bop [C(x); D(7); B(%); B(7)1g,

(5.8)
S, = B33 (C(0); D)5 B(x); xm]g_ J=EL vomr sl B,
Syz -/823 (e(7); B(7); B(T); B(D)IE,__ = e + (cF + 0E)/L + DB,
where A ,ét ,f” and Jz'are functionals of the argument functions (5.6). The
stress components &t time t are given by
Txx = -p + sxx , Tyy = -p + Syy s Tzz = -p + szz ,
(5.9)

T =8 , T =T =0
yz yz

Because of the arbitrary pressure p in ('5.9)1’2’3 it {s evident that the material
response to homogeneous plane deformation may be described completely by the
functional axpressions for two normal stress differences (Tyy - Txx and Tzz - Txx ,
say) and for the shear stress Tyz. These functionals Qfgg, 2133 and Qjé3, which

may be called material functionals, are defined by

13.
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By suitable cholce of the pressure p, the planes x=constant may be rendered

free of traction, in which case the stress components (5.9) become

Txx-o’ Tyy-yee’ Tzz-y_’;}' Tyz-?jz}’ sz-Txy-O

Thus, the material functionals (5.10) give the nonvanishing stress components
corresponding to a homogeneous plane deformation, when the fundamental plane is
free of traction.

The following symmetry relations, which are evident from physical considera-
tions, may be verified from (3.8), (5.6), (5.8) and (5.10):

A1 Lex)s p(n); B(7); RIS, m € (R(7); B(0); n(1); o(1E__

& om0 B(); B(IE, £ IR0 B 0(7); ()]

Twe

Tmec

Bosletn)s o0 w0 p(0IE m A Ir0)s B0 b w0l

A ulet)s 05 05 OIE, = £ (1/c(1)R(x); 05 05 o))t m

Tmeo

- fgﬂtsm; 0; 0; 1/¢(7)F(7)]"

Tue

b

(5.10)

(5.11)

(5.12)

(5.13)
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and

Tw=py

825[0(1'); 0; 0; H(7))i, . =0 . (5.14)

The corresponding symmetry relations satisfied by th. material functionals can be

read off from (5.10%, {5.12), (5.13) and (5.1k}. In parttcular,

Tople(m)s D00 B(x); B0 = Yy IR0, B(5), D005 e(n)]] (5.15)

Tmeon Tx=c0 '

so that only two of the material functionals (5.;0) are independent,

It will be shown that knowledge of the response of an incompressible simple

material to homogenecus plane deformation suffices to determine the materfal

response to every inhomogeneous deformation which is presently known to be con-

trollable for such muteiills. Consequently, the stresses corresponding to these

inhomogeneous deformations can be expressed in terms of the material functionals
(5.10), and this will be done in subsequent sections.
Two specisl cases of the deformation (5.1) will now be considered.

Case 1. PURE HOMOGENEOUS DEFORMATION
x(7) = A(T)X , y(7) = (7)Y, z(1) = F(7)Z ; A(7) €(7) F(7) =1 . (5.16)

The extra stress compenents corresponding to the pure homegeneous deforma-
tion (5.16) are obtained hy appropriaote specialization of (5.8), and may be ex-

pressed in terms of a single functional 42 of the principal stretch funcetions,

thus

5= Blc(); ®(0IE, Syy" ey a0t s, = Bl e(n)

T Tuwoy ’

(5 17)

Syz = Szx " Sxy =0 !

e e bRm— e K

Y
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; - where
Bicto; Ik, w B le(1); 0, 05 B, (5.18)

{s symmetric i{n its argument functions. The symmetry relations (5.12), (5.13)

and (5 14) were used in deriving {5.17). The corresponding normal stress

- differences con be expressed {n the form

T,y - T = Jle(x) B0 1, - T = FIKE); a0l (5.19)
Ylc(s); v, = Y le(x); 05 o B . (5.20)
S Thus, the material functional 2{ , defined by (5.20), completely describes

the material responsze to pure homogeneous deformation, Obaerve that
gf[C(T); F(T)]:__w gives the difference between the principal stress in the
direction with stretch function C(7) and that in the direction with stretch
function 1/¢(t) F(1) .

The special case when two of the principal stretch functions are the same

{A(%) = ¢(x) = P(1)"2 , say) corresponds to uniform extension in the z-direction

with stretch function F(71) The pressure p may be chosen so that the lateral

boundaries are free of traction, in which case the only nonvanishing stress com-

5
S
¢
3
g

ponent at time t is

SN

A
T, = J [R5 B2 )7 = YIRS : (5 1)

Tw~w
A
say. The functional expression %1 for the tension Tzz in terms of the stretch

T N T R A

n function F(1) , may be called the tension functional for the wmaterial

16.
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Case 2, SIMPLE SHEAR
() =X, y(s) =y +{N2, 1) =2 .

The normal stress differences and the shear stress, corresponding to the deforma-

tion (5.22), may be written as

cr s A, 01w Y o o 0

T
yy

T, - T = Y V1L = Wl 0000 1L

T~ Tm=t0

1, = G101« Glts o(0)i 05 117

The material functionals —92 , 9:5 and %', defined by (5.23), completely de-
scribe the material response to simple shear. Similar functionals were uged by
Colemen and Noll [25] to discuss viscometric flow of incompressible simple fluida.

It 1s easily verified that 42 and %/3 d4re even functionals of their srgument

function, while %o is an odd functional of its srgument function,

The pressure p may be chosen 8o that the plane of shear is free of traction,

in which case the stress components at time t are
T =0, T, =400 T = & [0(0))
%X ! yy 2 meos zz 3 Tu~ '

T, -{fln(r)]ﬁ e Ty Ty =0

The functional expression 9 for the shear stress Tyz in terms of the amount

of shear D(%) , may be called the shear functional for the material.

6. BENDING, STRETCHING, SHEARING AND TORSION OF A RECTANGULAR BLOCK

Bending and stretching of a rectangular block of elastic matérial was dis-

cussed by Rivlin [9), and was generalized by Ericksen [14] to include axial

1.

(5.23)

{5.2%)




shearing. The general deformation described by

P(1)Z maa(nx . o(s) = ()Y - D(R)Z,  a(%) = E(V)Y 4 r(t)z ;

{6.1)
A(7) [e(0)F(7) - D(O)E(5)] =1
where r(7), 6(1), 2(t) are cylindrical polar coordinates, carried the block
bounded in the reference state by the planes
X=X',x"; vYyewty . zatz (6.2)
into the solid bounded at time t by the cylinders and helicoidal aurfsces
ravoaxt, Voax"; Po-DzetY'/A; EA-CzmiZ'/A. (6.3)
SPECIAL CASES
(1) DuE=0O, This corresponds to bending and stretching of the block
into the annular wedge bounded at time t by the cylinders
and planes
ravoax', Vot e«tor'; zatrer . (6.4)
(1) Dw O , E ¥ 0 . This corresponds to & simple shearing of the annular
wedge (6.4) such that the bounding surfaces at time
t are
rvoax' , Veaxv ; e = toy' ; z-Ee/c=FE2 . (6.5)

*The associated deformation considered in [14] does not contain the torsion term
D(T). For an elastic material, such a deformation field is not less general than
that described by (6.1), since the form (6.1) can be recovered by a rotation of
coordinates. However, a more general deformation of a rectangular block is
obtained here, because the case D(7) = O corresponds to a special orientation

of the block, in its undeformed reference state, relative to the deformation
field.

18,
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(111) D4 O, Em= 0 . This corresponds to torsion of the annular wedge (6.L)

such that the bounding surfaces &t time t are
r =VeAR' , VEAX" , 6 - De/F =t BY' ; z=tEZ . (6.6)

The strain matrix sssociasted with the deformation (H.1) {8 glven by
2E(%,%) » k(x, 0K + E(X, 0L + alx, W + n(x,7) (8 + 8D, (6.7)
where the matrices X, L, M and N are defined by (5.h), and where

K(X,7) = ACT)/2X - 1, dix,7) = 2alx)c(n) % +E(0)2 -1,
(6.8)
a(X,7) = 2A()(3)°X + B(1)° « 1, a(X,7) = 2A(7)C(7) D(T)X + E(7) F(x) .

Consequently, substitution from (6.7) in the constitutive equation (:-_.T)1 leads
to an expression of the form (3.6), and substitution in (2.8) gives the extra
stress matrix 8 . The physical couponents of extra stress in the cylindrical

system, at time t , are
s, = A“KnS S, = [CEL + (CF + bE)/L + DF Mx

‘, L) .
I (c°€ + 2cpfl + DS 5,,=0 (6.9)

2 . 2
su-z.f+ezp/z+vm , S.o "0

where *A?, df y N and lz'are functionals of the argument functions (6.8).
Setting Twt in (6.1)1 gives X = r2/2A , 80 that the extra stress components
(6.9) may be regarded as functions of r and t . The equations of motion (hL.3)

are satisfied if p is slso a function of r and t , of the form

r
pus o+ f ()5, - 8,,) dr . (6.10)

1y.
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Observe that replacing the set of amplitude functions
Alz) , cfYy , pl=), (%) ad F{7) , {(6.11)

in the argument functions {5.6) and in thc componants of extra stress (5.7), by

the set
Als)/ Jea(nx , c(r) Yaa(e)x , (1) YaA(T)X , E(1) and ¥(7) (6.12)

respectively, vields the argument functions (6,8) and the physical components

of extra stress (6,9) Consequently, the extra stress components (6.9) are

given by
R MO RO DR OO R O M OO R ONOR OO I
Sep = BoplCOIE(RD(IR() (RIS, 8, =0 (6.13)

S, * Ay lCR(D(ON B DI 5020

where r(’r) - m , and the functionals ‘@n, '?22, 835 and /@25 are defined
by (5.8) Since the substitution (6.11), (6.12) is {nvertible, the following
obtains: knowledge of the response of an incompressible simple material to
homogeneous plane deformation suffices to determine the response of a block of
the material to bending, stretching, shearing and torsion, and conversely.

The physical components of stress, obtained from (6.10) and (6.13), are

X
I Ve MR MO O RO ORI L

" Tw=co

Top= Foa[CCT(5);D(M)x ()BT KDL,

Ton = T:y*?ﬂJE[C(T)r(T);D(T)r(T);E(T)5F(1)]:.-m v Tage =0 o)
T,p = Toet Vo lE(Or(0 D) ()DL W T gm0




where the maturial funciionals gfag’ 2{53 and Qfex are defined by {5.10). The

cunatant of integration in (6.1-‘4'}l 1s chosen so that the plane X = X" deforms

into a cylinder free ot tractfon The surface tractions which are requirved to

maintain the deformation (6 1) in the biock can be calculated from (h.s)l and (6.14).
The physical components of stress corresponding to bending and stretching of

the block (Case (1) above) are fournd by appropriate specialization of (6.1L),

They can be expressed in the form

X
v, = [ oY Kol &, 1, =0

” e b ’
Too = T + [ett)eln); FCT)]:,-m , T,, =0 . (6.15)
T =T+ JIRD; (DL, Tg =0

where the material functional tf is defined by (5.20). Thus, knowledge of the
material response to pure homogeneous deformation suffices to determine the re-
sponse of a block of the material to bending and stretching, and conversely.
The following formulae for the resultant tractions on the plane ends
e=to ety ' =JZaX' sz g " = J2AKY , and on the sides z ~ T F2' |
of a wedge are readily « ained from (4.5), together with the equations of
motion (4.3) written in terms of the physical components of stress (see, for

example, Truesdell and Noll [5], Bect. 56):

1 2 r" )
M=-3 r' T, {y =1'") *Jf rT, dr (6.16)
) Y




Here R and M denote the resultant normal force and the resultant moment about
the axis r = 0, respectively, per unit axial length on the ends, while N denotes
the resultant normal force on the sides. The condition that the cylinder r = ¢'

may also be free of traction is, from (6.15)1,

jf(um)ﬁwhhhnrhn‘ & =0 (6.17)

Tm-m
X

and the resultant force R on the ends vanishes whenever this condition is met.
Thus, {f the aapiitude functions are such that the condition (6.17) is met fur
all times t , the bending can be effected by terminal couples, together with

normal forcee on the sides of the block.

7. STRAIGHTENING, STRETCHING AND SHEARING OF AN ANNULAR WEDGE

Straightening, stretching and shearing of an sanular wedge of elastic

material has been discussed by Ericksen [14]., The deformation described by

x(7) = 2 AR, (%) = &)@ +D(1)z, 2(1) = E(x)e + B(1)Z ;

(1.1)
A{7) [c(7)F(7) - D(7)E(T)]) =1 ,
carries the annular wedge bounded in the reference state by the cylinders and
planes
R=R',K'; @=1g'; 2z2=1t2 (7.2)

into the parallelpiped bounded at time t by the planes




xetam? law?; pyomeetemiEy-czmtza (7.3)
SPECIAL CASES
(i) pb=E=0. This corresponds to straightening and streiching of the
annular wedge into the rectangular block bounded at time
t by the planes
o]
X = % AR'2 , % AR™ ; ywtce' ; z=trz | (7.4
|
» (it) D=0, E¥O. This corresponds to a simple shearing of the block (7.4)
such that the bounding planes at time t are
| X = é AR ) % AR"® ; ymtee' ; z-Ey/c=YrF2 (7.5)
(1) D¥# O , E = 0 . This corresponds to a simple shearing of the block (7.4)
such that the bounding planes at time t are
X = % AR'E , % AR s y-Dz/F=tce'; z=tF2 (7.6)

The strain matrix associated with the deformation (7.1) is given by

L 2E(R, 6,7) = k (R,%) K(8) + €(Rr,7) L (6) +

+n(R,7) ¥(e) + n(R,7) [N(e) + N(&)T] (7.7)

*The associated deformation considered in [14] has the form {(7-1) with
D(1) = O , which may be obtained from (7.1) by a rotation of coordinates.
However, a more general deformation of an annular wedge is obtained here,
because the case D(7) = O corresponds to a special orientation of the
wedge in its reference state relative to the deformation field (7.1).
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k(€)=

where

DR Lr, % = L2 B0 -1

mR, ) =0(n)2+RZ -1 ,  alr, ) = [c(+)D(1) + B(:)R(x)I/R

and the time-independent matrices K(8), L{8), M{&) and N(6) , defined by

c0329 8in6 cosB O 0 s£n29 ~5in€ cosf
2 2
5inB cos® sin"@ 0 , L(e)= 8in® cos® coB ©
0 0 0 0 0
! 0 0 o’ 0 0 -5in®
M(e)= Y 6 0 , N(e)= 0 0 cos®
' 0 0 0 0 o] ]
have the properties (i), (ii) and (1i1) listed in Section 3. Consequently,

substitution from (7.7) in the constitutive equation (2 7)1 yields an ex-

pression of the form (3.6) which, together with (2.6), gives the extra stress

matrix § . The physical components at time t are
=K Z/5° "
S, = AR . syz-cz /R + (CF + DE)-/2/R + DF#HL ,
2 2 ) 2 .
5, = C L /w° + 2cpf/R + DM, s, =0
2 2
© . K, s = 0
5,, = B /R + 2RF AR + - Sy ,

where K ,d( . ﬂ” and 4¢ are tunctionals of the argument functions (7.8).
Setting ¥ = t in (7.1)1 gives R2 = 2x/A , so that the extra stress com-
ponents (7.10) may be regarded as functions of x and t The equations of

motion (4.3) are satisfied 1f p is also & function of x and t ,of the form

2k,

(7.8)
0
Y ,
0
(7.9)
(7.10)




A
Pe=S., *+P . (7.11)

A
where p 15 an arbitrary function of t |
Couparison of (7.8) and (7.10) with {5.6) and (5 7) shows that the extra

stress components (7.10) may be written as

t

Twecs

MOV OOV ONSNNE T RCOVN OOV O

t
Twun

Syy" 'ggatc(f)lnw(");E(T)/R;F(T)] v 8" 0 (7.12)

5, " g)}[c(r)/n;n('c);E(T)/R;F(T)]:_.” » 5= 0

the functionals —Qn, »922, 433 and 423 being defined by (5.8). Thus, know-
ledge of the response of an incompressible simple material to homogeneous plane
deformation: suffices to determine the response of an annular wedge of the material
to straightening, stretching and shearing, and conversely. It follows from the
results of the previous section that there is a similar reciprocal relationship
between the families of deformations (6 1) and (7.1).

Planes x=constant may be rendered free of traction by setting p = C in

(7.11), in which case the stress components at time t are

=0 Ty~ YoslC(D/RD()E(/RF(DIL_,
Ty = Y op (M RD(E MBI Ty © (7.13)
T,,m & as (C(TV RO E(V R (W) I, Tey= O

The surface tractions which are required to maintain the deformation (7.1) in

the wedge can be calculated from (h.5)1 and (7 13).
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The stress components corresponding to straightening and stretching of the
wedge (Case (1) above) are found by appropriate specialization of (7.13). They

can be expressed in the form

TKK = 0 » T:'.y = 3 [C(T)/R; F(T)}:__w s T:z - y[?('l), C('g)/R]t

T=ww
{7.14)
Tyz ” sz " Txy =0
where the material functional Qf is defined by (5.20). Thus, knowledge of the
material response to pure homogeneous deformation suffices to determine the re-
sponse of an annular wedge of the material to straightening and stretching, and
conversely.
The resultant normal force Ty and moment M about the z-axis on the ends
y = ¥+ CO' , and the resultant normal force Tz on the sides z = ¥ F2' , at time
t , are given by substitution from (7.14) in
R" 2 Rll R"
T=2AFZ'f T RdR,M-AFZ'f T ROdR , T, = 2ACS' T _ RdR
y T R 2 R' 2%
In particular, the condition that the straightening can be effected without a
resultant force on the ends of the wedge is
Rll
f Yic(x)/r; F(1)]5. RAR =0 . (7.16)
R' Tm=

8. EXTENSION, INFLATION, BENDING, TORSION AND SHEARING OF AN ANNULAR WEDGE

The extension, inflation, bending, torsion and shearing of elastic cylinders,
tubes and wedges has been discussed by Rivlin {9, 10], Green and Shield [11],
Adkins, Green and Shield [12) and Ericksen and Rivlin [1%]. The general deforma-

tion is described by

26,
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()% = ACTIRS 4 B(1) , 8(7) mc(x)E + D(1)Z , z(7) = E(7)E + F(O)Z ;

(8.1)
Al7) [e(n)r(7) -« p()e(T)] =1
The strain metrix associated with this deformation has the form {7.7), with
, o
K(R,7) = A(DZRE/()2 -1, £ir,m) = (e(0)%e(0)2 + 80212 - 1,
(8.2)
o(R,7) = D(Nr(n)Z + B(x)2 - 1, n(R,7) = [c(1ID()r(1)® + E(TIE(T)I/R
vhere 1(%) is given by (8.1)1 and the matrices K(©) , L(®) , M(8) and N(©) are
defined by (7.9). The extra stress matrix S may be obtained by a procedure
similar to that outlined in the previous section. The physical components of
extra stress at time t are
5. e Ve So.= [CP& /RS + (CE + DE)/L/R + DPMMx
2 2 2 2
Soe= (C £ IR+ 2cDML/R + DSM)EE 5,0 (5.3)
2 2 2
s = E°L IR+ 2ERAI/R + PN, S =0 ,
zz ré
where -K , 6{ ,'”7 andf/z are functionals of the argument functions (8.2). Set-
ting T = t in (8.1)1 gives R® - (re - BY/A , so that the extra stress components
(8.3) may be regarded as functions of r and t . The equations of motion (h.3)
are satisfied if p is also a functlon of r and t , of the form (A, 10%, i.,e.,
r B
pesgt [ (U0 (5, - sy (8 1)

Comparison of (8.2) and (8.3%) with (5.6) and (5.7) shows that the extra

stress components (£.3%) may be written as

«r.
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where r(7) 1s given by (8.1)1 and the waterial functionals »fu, 422’ 'fb} and
4323 are defined by (5.8) Thus, knowledge of the response of an incompressible
simple material to homogenecus plane deformstion suffices to determine the response
of a cylinder of the same materisal to extension, inflation, bending, torsion and
shearing The substitution which maps the argument functions in (5.8) onto the
argument fun:tions in (8.5) can be inverted ln & number of ways, for example with
B{1) = O or with ¢{7) = 1 . Thus, knowledge of the material response to extension,
tergion and shearing, rogether witih either bending or inflation, suffices to

determine the respomes to homogeneous plane deformation.

'The physical components of stress at time t , obtained from (& 4) and (8.5),

are

R
Tm [ AR Y oo e () () B () 1S e

Topm L5 (W e(3) DV ()BT /R I,

Tweco
Togm Tt Yol C () RD(D) e (3 BV RR(DIE, ., T, =0 (8.6)
Tzz- Trr+'3;3[C(T)r(7)/R;D(1)r<T)BB(T)/R3F(T)J:--m ? TrG -0

The constant of integration in (8 6)1 is chosen so that the cylinder R = R"

deforms into 8 cylinder free of traction
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Some epecial cases of the deforwation (8.1) will now be considered.

Case 1. EXTENSION, INFLATION AND BENDING

r(1)% ACORR B(T) , 6(x) = 6(7)e , z(3) w F(7)z : A(FIC(3)D(%) = 1

.

the physical components of stress corresponding to the deformation /8 7), which

are obtained by appropriate specialization of /5.6), may be expressed in the form

R
T, -hl;" [(An/rg)] @f[c(f)r(w)/n; r(w)]:._m dr , Ty, = 0

2z ’
Tog = Tep +J [C((5) /R BT, T =0
T,, = T+ IR e(Oe(0R T,=0

where the material functional Qf is defined by (5 20). Thus, knowledge of the
material response to pure homngeneous deformation suffices to determine the
response to extension, inflation and bending. It can essily be seen that know-
ledge of the material response to extension gnd inflation, or to extensioh and
bending, suffices to determine the regponse to pure homogeneous deformation.

The resultant tractions which are required to support the deformation (8 7)
in an annular wedge can be obtained by substitution from (8.8) in (6.16) In
particular, the condition that the cylinder R « R' may also deform into a
cylinder free of traction is

R
f (aR/e®) Y Le()e(7) /rs l’(’-)]:,.q° dR = 0

and when this condition is met, the resultant tractions on tLhe ends
6 = f Ce' of the wedge vanish. Thus, 1f the amplitude functions are such
that the condition (8.9) is met for all times t , the extension, inflation

and bending can be effected by terminal couples, together with normal forces

on the sides z = ¥ P2’

(8.7)

(8.8)

(8.9)
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The deformation (B.7), with B(7) « 0 , describes extension and bending

withour inflation In this case, the material functional if tn (2.8} tg in-

dependent of posftion, and the phyeical components of stress at time ¢ are

glven by

1
+ Y 1enAE 5 RS

Tmem

i ¢
T~ SL()NDZ 5 P, log R/R", Ty T,

1
T, =T+ Y IR0 e(maozl,

Tez " Tzr - Tre -0

Case 2. RADIAL OSCILLATIONS OF A HOLLOW CYLINDER

Inflation, without extension, of a hollow cylinder is described by
(1) = K5+ B(7), (1) =8, 2(%) -2

The corresponding physical components of stress at time ¢ are obtained by ap-

propriate specializetion of (8.8). In particular, the pressure difference P

between the inner and outer cylinders is given by

Te-m

R'. "
P (R Y te(yms 1) ar
~/;| ) 21 r
with r(T) given by (8.11)1.

As mentioned previously, exact solutions of the dynamic equations fh.l)l

are obtained from the quasistatic solutions considered thus far by requiring

that the acceleration have the form (h.4). This requirement does not restrict

the form of the inflation function B{T) in (d3.11). The 2quation which governs

the radial oscillations of a hollow cylinder, subjected to a pressure diffcrence

B(t) , is obtained by including the appropriate inertia terms fn (&.1:).

Analysis similar to that in [4] leads to the equation

30,
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(8.11)

(8.12)
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dyqLc - 2
- w My + &Y 4+ £(x,4) = 2P/pR’ R

where

f(5) « e (VML u(7) ()RS, oy e mFART L

2
, 1 * 1 t
) = = fﬁf_ (/u(en)] Y(n? 5 118, o
vad!

and r'(7) denotes the inner radius of the tube at time %. Equations (5 13) and
(8.14) are the counterpart of the equations obtained by Knowles [19] for radial
pscillations of a tube 0f homogeneous isotropic 1ncompréssible ¢lastic material.
The relevant material property, in the elastic case, is the generalized shear
modulus. It can easily be seen, from (8 lh)h, that radial oscilluciuns of a
tube of incompressible simple material are not, {n general, determincd by the

shear functional for the material.
Case %, PURE TORSION
(1) aR, A1) =e+D(1)z, z(7) =2

The physical components of stress at time t , obtained from (8.6), may be

written as

R
t s [ Gm Gl a1, - Glntoml;

it

¢
199 = Trr + QZ[D(T)R]T-% ! Tzr =0

zz rr

t
T, ~T +?«§[n(-c)n]”_m° , T,g=9

where the material functionals ?'a’ *9«5 and anre defined by (5.23). Thus,
knowledge of the material response to simple shear suffices to determine the

response to pure torsion, and conversely.

3.
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(8.1h)

(8.15)
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The toréional couple T and the resultant normal force N on the ends of a

hoilow cylindar R' 5 R 3 RV , at fime ¢

T = om j;tf"SHD(T)n]:__m R ar

N = o 1F -rn_(n-n') + vj:"{ 9?5[:)(1)31:__“- g‘lz[n(x)nlimm} RdR

In general, a pressure

, are

(8.17)

R"
T (RR') fn (/8 G, I(nRI; ar (8 1)

on the inner cylinder R=R' , 15 required to support the deformation (8 15)
Christensen [23] has discussed the torsion of a solid cylinder of incompressible

simple material with fading memory, and he has observed that the normal forces

N are not necessarily compressive.

Case L. AXIAL SHEAR
1'(1') =R, 6(t) = e, z(T} ~ E(T)a + 2 . {‘819)

The physical components of stress corresponding to the deformation (8.19) are

obtained by appropriate specialization of (8.6), and may be written as

R
t , t
re = [m YlmE, e, 1, - Gl
Top = T, + %[zh)/nji_m , T_=0 (8.20)

t
Top ™ Top * 9/2[3(7)/3] e T =9

Thus, knowledge of the material respons. to simple shear suffices to determine

the response to axial shear, and conversely.

(]
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9. IFFLATION OF A SPHERICAL SHELL

The inflation of an elastic spherical .ell has been discissed by Green

and Shield [11]. This deformation is described by

21 =R +8(1), o(t) =8, H1)=o |, (9 1)

where r(7) , 8(7) , #(7) and R , ©, © denote sph rical polar coordinates at time
T and in the reference state, respectively. The associated straiiu matrix is

given by
2E(R, ©,%) = k(R,T) K(8,8) + q(R,7) Q(5,9) , (9.2)

where
k(R,7) = R/e(0)% - 1,  q(R,7) = r(0)2/R2 -1, (9 3)

r(7) being given by (9.1)1, and

sin29 c052® stnee sin® cosd sin® cos® cosd
2 2 2
K(8,8)= |l 8in“® sin® cosd sin"® sin“0 sin® cos® sind » Q(7,0)=1-K(0,9)
()
sin® cos® cosd sin® cos® sind cos“® (9.4)

It is easily verified that

.

K=K , trg=1 (9.5)

and hence
=9 ., KQ=QK=0, trg-=z (9.6)

It is evident from (9.&)2« (9.5) and (9.6) that the matrices K and Q , the latter
being identified with the matrix L + M , have the properties (i), (1ii) aud (ii1)
listed in Section 3. Consequently, substitution from (9.2) in the constitutive

equation (2."()1 yields an expression of the form (% 6) which, together with
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(2 6), gives the extra stress matrix § . The physical components in the spherical

system at time t , are
b L 2 2 - - .
Srr « R "{'/I‘ > 599 - Sgﬂ =T £/R ' Seg - Sﬁr SrO o , (.f 7)
where 44 and J: are functionals of the argument functions

k(R,7) = RY/x()Y = 1, €(R,71) = n(R,%) = £(3)2/R% - 1, n(R,x) =0 , (9.8)

1
and r(1) is given by (9.1)1. Setting T = t in (9.1)1 gives R = e - B)3 , so0

that the extra stress components (3.7) may be regarded as functions of r and t.

The equations of motion (L4.3) are satisfied if p is also a function of r and t,

of the form

T
p=5_+ ef (1/x) (s“ - see) dr . (9.9)

Comparison of (9.8) and (9.7) with (5.6) and (5.7) shows that the extra

stress components may be written as

5,0~ BLe()Rs (RIS, 0 Spp = S =BLe(m)/m 82/2(0)P15

’

Tw-oo
{9.10)
seg-Sgr-sts‘o ,
where the material functional 4g is defined by (5.18). The physical components
of stress at time t , obtained from (9.9) and (9.10), may be written as
4 A A
2 2.t 2, 1yt
Trr = -2‘/:" (1/r)%f[n /t(T) ]T--m dr TGO = ng = TTT-Q,[R fx 1) ]T“'m !
Tegn'rgr-'rrolo , (9(11)

A
where :f is the tension functional defined by (5.21) and the constant of inte-

gration in (9.11)1 ig chusen o that the sphere r=r" is free of traction. The

identities

3L
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Vi 0, = -Je0Z 501 = -"?[fh)'al.f._w ,

N
which are evident from the definitions of the material functionals '3 and H )
were used in deriving (9 11). It follows from (9 11) that knowledge of the re-
sponse of an incompressible simple material to uniform extension suffices to
deternine the reponse of a spherical shell of the material to inflation, and
conversely,

The pressure difference P, at time t , between the inner and outer surfaces

rmr' and rsr" of a spherical shell subjected to the deformation (9 1) is given by

T
P= -2~/\
!

The requirement that the associated accelerat.ion have the form {4.L4) does

L]

) A )
(1/0) Y R%/e()1E, ar

not restrict the form of the inflation function B(T} in (9.1). The equation

which governs the radial oscillations of a spherical shell, subjected to a

pressure difference P(t) , is obtained by including the appropriate inertia

terms in (9.13). Analysis similar to that of Guo Zhong-Heng and Solecki [20]

leads to the equation
1
d - +2 2 2
i { (1 -(1+ 7/x3) jj:v:5 x } + x° g(x,y) = 21’::{'/;311'2 s
where

x(1) = £'(F)/R' , u(7) = e(1)°/R7 . s = ROR? -1
3 A 5
g(x,y) = - —= . f‘ . ()] Y [u(n)3 35 au

3 pR'S Yyt b
741

Here R' and R" denote the inner and outer radii of the shell in its undeformed
state, and r'(7) denotes the inner radius at time 7 . Equations {9.13) and (9 14)
are the counterpart of the equations obtained in [2CG] for radial oscillations of a

spherical shell of homogeneous Lsotropic incompressible elastic material.

35.
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10. EXTENSION, BENDING AND AZIMUTHAL SHEARING

Azimuthal shearing of an elastic annular wedge has been discussed by
Klingbeil and Shield [15], and generalized by Singh and Pipkin {16] to in-

clude extension and bending. Such a deformation may be described by
r(7) = Al*)R, 6(1) = B(t)log R + €{1)e , =z2(1) = F(1)2Z; A(T)QC(T)F(T) =1
The associated strain matrix may be expressed in the form

2B(6,7) = k(1)K(8) + B(1)L(8) + m(T)M(8) + n(7)[N(e) + N(©)T] ,

with
K(7) = B(1)2 -1, L) « a1+ (0% -1,
(1) »a(0Ze(m? -1, a(1) = -A(MF B(Ve(7)
and
0 0 0 ' coseé sin® cos8 O
K(e)= || o 0 o) , L(8)= sin® cos® 8100 0
0 0 1 0 0 0
sinee «5inG cos® O sin6 cos® -cosee o]
-3in@ cos® c0528 0 , N(8)= sinee -sing cos@ O
0 0 0 0 0 0

Observe that the set of matrices K, L, M defined by (10.1), 2,3 is a permutation
» 3

of the set K, L, M defined by (7.9)) , .
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The matrices defined by {10.4) have the properties (1), (1i) and (1ii)
listed in Section 3. Consequently, substitution from (10.2) in the constitutive
equation (2.7)1 yields an expression of the form (3.6) which, together with (2.6},

gives the extra stress watrix § . The physical components at time t are

2
s, =A%, 8,, =0

Spo = A (%L - e le M) , s, =0 (10 5)

s, =K, S, = A (BX - C/)

where -K , Z R M and /L are functionals of the argument functions (10.3)
Since the extra stress components (10.5) are independent of position, it is easily

seen that the equations of motion (L.3) are satisfied if  is a function of t , 9

and t , given by

A
p=(S, -8y logr+2es +p , (10.6)
where % is an arbitrary function of t .

Comparison of (10.3) and (10.5) with (5.6) and (5.7) shows that the extra

stress components (10 5) may be expressed in the form

s = &, 1a(7);0; -A(T)B(¥):A(DC()]L__ + Sgp= O

Sgm Fy5lA(1):05 -A(DB(N MDD, o 8,20 (10 7)

S, Sulm);o; -A(1)B()A(VC(D) ] o S,om 423[.4(1);0;4(1)5(1);A(f)c(f)li

mmgy

where the functionals 4?11, 4?22,‘g 33 &nd ‘?;3 are defined by (5.8). The physical

components of stress at time t , obtained from (10.6) and (10.7), are given by

5T.




T (322' ‘733) log r + ze’.‘/,,3 P Too™ Tex” 3224- 33 0 Tpe® Top Jor
{10.8}
Tor “Tar =%+ Tyo ™ ':f23 '
where p* (=p ~ srr) f¢ an arbitrary function of t , and the argument functions
of the material functionals Efee, ff}} and o3 are
A(7); 05 - A(R)B(%); A()e(T) . (10.9)

Thus, knowledge of the response of an incompressible simple material to a restricted
class of homogeneous plane deformations (described by (5.1), with D7) = 0) suffices
to determine the material response to extension, bending and azimuthal shearing,
Since the pressure p in (10.6) is a function of both r and @ , the tractions
which are required to support the deformation (10.1) are, in general, rather com-
plicated. For exsmple, normal and tangential tractions, which depend on 6 , are
required on any cylinder r = constant, and the arbitrlry function p’ can be chosen

so that the normal traction vanishes on a generator § = constent

The special cace of (10.1) when B(%) = 0 was discussed in Section 8  The

special case

r(t) =R, 6(7) wmB(7) logR+8, z(T) =2 (10.10)

corresponds to azimuthal shearing without exteneion or bending. The physical com-

ponents of stress at time t , corresponding to the deformation (10.10), are

obtained by specialization of (10.8) and (10.9) and may be expressed in the form
R PO AR YOI SORREL O R R T
t t
Too= Tpp + GIB(OIE (01 T,." 0, (10.11)

t
T, Tpp " fB[B('f)],.-m ’ Tro™ ?[B(')]:--w '
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where the material functionals %«2, %o} and %nm defined by (5.23). Thus,
knowledge of the material response to simple shear suffices to determine the

response to azimuthal shear, and conversely.

11. AN ALTERNATIVE PROCEDURE

A description of the material response to several inhomogeneous deformations
in terms of the response to homogeneous plane deformations was e¢ffected, in pre-
vious sections, by demonstrating that each of these deformations belongs to the
special class defined {n Section 3, This description may also be effected by a
wore elementary procedure, based on considerstion of the associated local
deformations.

Every deformation is locally inhomogeneous, in the sense that the deforma-
tion of a material element which is swall in all of its dimensions is homogeneous,
when terms of the second order of smallness are neglected. Since the mechenical
response of a simple material iv & local action, it is not surprising that know-
ledge of the response to homogeneous deformations suffices to determine the
response completely {see Truesdell and Noll [5]). Each of the deformations dis-
cussed in Sections 6-10 is locally equivalent to a homogeneous plane deformation,
and the response to each deformation can therefore be expressed in terms of the
material functionals which characterize the response to homogeneous plane
deformations.

Consider, for example, the spherical inflation described by

r('r)5 - R+ B(t) , o6(x) =8, fHx)=2» . (11

1




This deformation carries the elementary cubold bounded in the reference state

by the coordinate surfaces
R,R+dR; B8, @0 +d0; &, & +d0 {11.2)
inte the cuboid bounded at time 7 by tho coordinate surfaces
v(r) , (%) #dr(7) 5 o(x) , o(x) +de(x) + A(x) . A(x) + d8{x) . (11.3)

The radial, longitudinal and latitudinal lengths of the cuboid in the reference

state, and at time % , are
d&, RdB, R sin 8 do (11 %)
and

dr(7) = (nzlr(r)e)da , r(7)de(z) = (z{7)/R)RdE , r(7)sin6(*)dR(%) = (r{71)/R)R sin® d® ,
(11.5)
respectively., Thus, the local deformation consists of a radial stretch Relr('r)2
and equal longitudinal and latitudinal stretches r(x)/R , i.e., spherical infla-
tion 1s locully equivalent to simple extension?

From this poiné of view, it is evident that the material response to spherical
infiation is determined by the response to simple extension. The extra stresses
(9.10) may be written directly and the pressure may be evaluated by considering the
balance of forces {including inertial forces, if desired) acting on the elementary
cubold at time t .

The various controllable deformations may be discussed irn this manner, and
the method of approach is particularly effective for those deformetions which are
locally equivalent to pure homogeneous deformation, or to simple shear. A similar

procedure was employed in the recent report by Rivlin [2(] on steady viscometric flows,

L
This may be seen more veadily by considering the deformation of the material element
bounded in the reference state by the sphercs R, K + dR and by the cone d6 .




g 12, APPENDIX: DETEIBMINATION OF THE MATERIAL FUNCTIONALS FOR A PARTICULAR MATERIAL

5_. The various solutions presented in thim paper sre expressed in terss of the

material response to homogeneous plane Jdeformation., The uavérial functionals
which charactarize this recponse may be determined from the general comstitutive
functionals (2.7), vith the analysis of Sections % and 5. This calculation will

now be carrled out for & particular incompressible simple material, with constitu-

tive equations given by
ge-pr+rflEMl ¥,

(12 1)
t . \
'_g[x(r)]:_w -f #e-T)E(T)dx +ftft ¥ c-«i,tur,&)g_(_wl‘)t{'.E)dwl v, .

s where the kernel function ¥ is symmetric in its arguments Pipkin [27] has shown
that (12.1) represents the second-order approximation in & Green-Riviin expansion,
i.e., the integral expansion of {2.7) in which terms of the third and higher orders
_ in the strain rate matrix E(T) are neglected. An experimental program involving
homogeneous strains, for the determination of the kernel functions in (12.1). was

described by Lockert [28].

It will be uvseful to introduce the notation

tmg(r), £ me(r); (a=1,2) (12.2)

Substitution from (5.5) in (12.1), and use of the multiplication table (% 3)

together with (3,6) gives

L1




Kik i€ mn Bt ;‘i’(rﬂ Yk dt, + & ¢ t'»‘f(c-ﬂr t-1, )k, k. d7,d1
: R R N A 11.1!4___’ 1 R 20 RS - S

1’
(12.3)
émn,_mef Qt‘fl;md'l /;“f ¢(t-~c t‘()(m+n 2)d11d12 ,
t A : AL Lo
Aty FI;_ml;nIJTI__w.;J:“ ﬂ(t-_‘rl)nld‘fl . E/;j; CRNTE AT NN
quscitution'ffém (5.6) ihl(12.3) leads to
f gt 1'1) d, (Al)d’r + f f ¥(e- Tl,tT)-—;(Af)%rf(AS) dv,dv,
c
: t
{'%f:“g(t"fl)g;; C +!l)d" +hf f o(t'rl,t'r)[d—,r—(c +z) (c +g)+
d (cn +xr) (cn +BP)}d‘rd‘r J
1M1 7R '
(12.4)
/ﬂ--f #lewr)) & (D + F)ar +1;ff &(H,.t-f,,)[ of + F%) S o (05 + F) +
d
+Eﬁ<°1”1*z1p)dr (c2n +!F)]d11d12 ,
/. t;a(:- ¥—(c.p +E,F))d ur(c cr)———(c2+n2+zd+r2)2—(c0+zr)
wrad., "13?(1 1t E_“ IS ST 1dr % e
drld1?

e — v
N A

t pt .
f[k ‘el.iﬂl. 11 . ’EJF ,G(t -7 {dt +%;~/:,,s[:.,. 'w"(t--:l,r--'ze)(eieE +n n,,)d“ v,

The material functionals VEQ' and '323 are given (see (5.8) and {5.10)) by
substitution from (12.4) in

L2,




s I . T s t <2 ATy 2 2 %
. ‘b‘eziulg D) By ?1}11__Q~c{*zcnﬂ*nﬁ1-n Ko,
{12.5)
. * : ]
- f o5lCy5 Dy By rlln__--cxf+(cr+m:)ﬂ+orm ,
and :f}3 is then given by (5.15),
The material functional tf , which characterizes the reponse to pure homo-
geneous deformation, is defined by (5,20) and may be determined by specialization
of (12.4) and (12.5). It is easily seen that
t ¢ 2 2, :
Yle; rll,rl__“ o [ plet))(ce e, - ATKA)) dr 4
-0
t t 2 « . ) o
+_/;j:“ ¢(:~11.:a12)(c €,C,CCy - A AIAEAlAE) d'rld're , (12.6)
A
- where A(7) = 1/¢(7)P(t) . 1In particular, the tenston functional 3 , defined by
(5.21}, is
4 t t 2 -
! . ” <A S
Y [r(x)l,‘_m -_/:. ﬁ(:-Tl)(r B, + 1/,_xw1)xvldrl +
t pt o o oes .
. . (12
'*Jf Jf W(FRF, 1/&?31 2)F1F2d11d12 . (12.7)
-0 -oe
The material functionals 32, ‘?5 and ‘gr characterize the reponse to simple shear
and are defined by (5.23). Appropriate specialization of (12.4) and (12.5) gives
¢ t , 1 Pt Pt
?Q[D(T)]T'-n ..,/':m ﬂ(t-'l’l)(l + DDI)DDIdTl +T;./:ﬂ‘/‘_w "(c-‘fl,c—'ta)[]_ + hDDl +
2 v e
+ D°(1 + unlne)lnlne d‘rld‘fe ,
¢ t , 1 Pt .
?3“’(*)]1--@ -f_m fd(c-fl)nlnld'c1 +Ef.,,f.,, ?(t-‘ll,t--'fe)(l + hnlr>2)|>1n,dawlcl'r2 , (12 8)

t . t t.
'9[0(1)]2__“ - :_1; f Ae-1,)(1 + zDD,)D dT, + {f f ¥(e-1,,r-7,)02D, +
v : - e~

+ D(1 + "91D2)1°1°¢ dv, d,

1
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