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ABSTRACT 

This report is intended as an introduction to one possible approach to 
the seismic classification problem.    It develops a very general classification 
model using automatic nc n-parametric learning based on limited data of 
known classification.    Tie model accepts discriminants extracted from the 
seismogram and yields the probability that the input was due to an earthquake 
or an explosion.    Thus,   ;he discriminants are assumed to be available as 
inputs.   Pattern recognition as used here is defined, the classification pro- 
cedure is outlined, the adaptive estimation of joint probability-densities   from 
a finite number of multi-dimensional vectors of known classification (the 
learning model) is discussed, a simplified flow diagram of the learning 
model is presented, and the selection of necessary control parameters is 
investigated. 
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SECTION I 

INTRODUCTION 

A large number of seismic events are easily classified on the 

basis of single discriminants such as epicenter.  However, all of 

the events of interest cannot be categorized in this manner and 

there remains a subset of events for which a higher degree of 

decision-making sophistication is required.  It is these remaining 

events which are of interest in the following study.  For these 

events, the backbone of the classification model must be based on 

measurements related to the seismogram. 

It will be assured throughout that all events of interest have 

been a priori detected.  Thus, the input waveform to the classifi- 

cation model will be known to contain an event.  The objective will 

then be to separate the events into the dichotomy of earthquake or 

nuclear explosion or into even finer categorizations. 

The development of the classification model will be divided 

into two major components.  These are (i) the selection of a set of 

discriminants which .s capable of classifying the event and (ii) 

the development of a mathematical model utilizing these discriminants 

for accomplishing th<i classification.  This report will emphasize 

the latter. 

Accordingly, thi recognition system to be considered here will 

accept an appropriately chosen set of discriminants as its input and 

yield as its output, in the simplest case, the probability that the 

event was an earthquake or an explosion.  It will have the ability 

to utilize simultaneDusly discriminants taken from mixed domains 

such as time, frequency, and frequency-wave number and will 

accomplish classification using the concepts of automatic, non- 

parametric pattern recognition based on limited input data.  Thus, 

the system will be concerned with methods of automatically 



establishing decision criteria for classifying events a^ mt-nbers of 

one or another class, when the only information available abDut any 

class is that which is contained in a given finite set of samples 

(having unknown statistics) known to belong to the class. 

The recognition system will be developed with two distinct 

modes of operation; a learning mode in which the system is exposed 

to a sequence of events, each labeled according to the class or 

category to which it belongs, and a recognition mode in which new 

unlabeled events are classified as members of one or another of 

these classes. During the learning mode, the system develops 

class-criteria from the labeled events submitted to it, and during 

the recognition mode it uses these criteria for classifying unlabeled 

events. 

An event will be represented by an N-dimensiona1 vector or 

point whose components are the values of the N measurable discrimi- 

nants or parameters describing the event.  Events be. Longing to the 

same category will be represented by points scattered throughout 

some, region of N-dimensional space in accordance with an unknown 

(non-parametrically learned) N-dimensional probability distribution 

function.  For the case of two discriminants and two classes, the 

hypothetical two-dimensional probability densities generated from a 

limited set of samples are shown in Figure 1. 
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SECTION II 

PRELIMINARY DISCUSSION 

Learning and recognition problems of pattern recognition can be 

formulated in mathematical terms as problems of recognition of 

membership in classes.  The starting point of this method is to repre- 

sent an input (in our case the seismic signal) by a set of measurements 

variously called discriminants, clues, features, receptors, paramt-ti 

coordinate dimensions, properties or attributes.  Accordingly, in 

this report, the terms clues or discriminants will be used inter- 

changeably to describe measurements made on the time, frequency., 

frequency-wave number, etc., representation of the seismic signal. 

Each input that belongs to a given class (explosion, earthquake, etc.) 

will be regarded as a vector in a vector space which is located at a 

point defined by the discriminants.  The class will then be repre- 

sented by the collection of these points scattered in some manner in 

the vector space (often referred to as an observation or measurement 

space) . 

Members of different classes are distributed, in general, in 

different manners in the space.  Machine learning (i.e. learning 

the pattern) is regarded as the problem of determining the best shape 

and location (i.e. best partitioning) of regions in the vector space 

so that the classes are distinguishable.  This is illustrated in 

Figure 2.  Pattern recognition or classification is the act of naming 

the region in which measurements made on an unknown seismic input 

are contained. 

The three major parts of the pattern recognition system to be 

used here and their relationship to each other are illustrated by the 

block diagram of Figure 3. This shows the observation system that 

represents the seismic input by a set of measurements on this input 

or its transformations (discriminants) . The choice of these. 
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discriminants is an important problem which is presently being 

studied.  It shows the "learning machine" in which seismic inputs of 

known classification are processed (for developing a good partition 

of the vector space). And, it shows the classification or recognition 

system which evaluates an unknown seismic input to decide in which 

partition of the spsce it is contained. 

There are many ways of partitioning the vector space into 

regions. However, statistical methods (in particular, statistical 

decision theory) seem to be a leading contender for affecting good 

partitions.  The applicability of decision theory in the design of 

pattern recognition systems is readily appreciated by considering its 

basic characteristics.  Once input seismic stimuli are expressed in 

terms of a set of discriminants, we want to design a classification 

system with the best performance; i.e., one that makes the least 

number of mistakes.  In addition, we recognize that the classification 

system will have to render decisions on inputs that are not identical 

to those from which classification was learned (although they will be 

similar, in general/.  It is well known that if we wish to minimize 

the risk, the probability of error, or the maximum error due to the 

decision we make, then we should make our decision by comparing 

likelihood ratios to fixed thresholds.  That is to say, if we mus- 

choose between two «lasses, explosions and earthquakes, as giving 

rise to the seismic stimulus which we observe through a set of 

measurements on the seismic waveform or its transformations 

(discriminants), then the optimum decision is based on the comparison 

of the ratio of conditional probability densities with an appropriately 

chosen constant,  li mathematical form, this expresses the notion 

that if the set of liscriminants is a more likely occurrence under 

the assumption that the seismic stimulus belongs to the class of 

explosions than to the class of earthquakes, then common sense (and 

statistical techniqaes) advises us to decide that an explosion 



probably gave rise to our observations.  Thus, decision theory 

provides us with a design procedure which reflects ultimate syscem 

performance as the basis for system design, and it also agrees with 

intuition. 

There is a fundamental difference between the answers that are 

derivable from standard statistical techniques and the answers 

sought here. Usually, decision theory assumes knowledge of the 

relative frequency of occurrence of every observable set of discrim- 

inants from all classes of interest. Here, this state of knowledge 

is missing and estimates of the required quantities will be auto- 

matically made from a finite number of class samples.  Thus, we 

recognize the fact that sparse seismic data with unknown statistics 

may be available and we design our system to account for this. 



SECTION III 

CLASSIFICATION BY LIKELIHOOD FUNCTION ESTIMATION 

Consider the problem of deciding which of M classes has given 
—♦ 

rise to an observed event,  x ■ (x , x_ , ..., x ) , and suppose that 

the statistics of events and classes are known, i.e., the joint 

probability density function of x and m is known, where m 

denotes the class l*bel  (m = 1, 2, ..., M) .  The decision 

theoretical optimum method for processing a measured event  x  to 

render the classification is well known.  Specifically,  x  should 

be regarded as a menber of the k-th class if the cost of deciding in 

favor of the k-th c.ass is less than that of deciding in favor of 

any of the other classes.  This is stated in Equation 1. 

M 

m=J 

where 

■V< xU)[cK(™'-Cz^],0 for all z 4  k, z = 1, 2, ...,   (1) 

(m) 

m 

p(x|m)  = 

th<i cost associated with deciding that x belongs 

to the z-th class when in fact x  belongs to the 

m- :h class, 

th> a priori probability that an event from class 

m will occur, and 

th2 conditional probability density functions of 
—♦ —* 

x , given that x belongs to the m-th class. 

This method of decision-making minimizes the average risk associated 

with the classifications.  If, as is appropriate with many practical 

classification problems, the cost is the same for all misclassifica- 

tions, then Equation 1 reduces to the following decision rule: 

decide x  is a member of the k-th class if 



P,P(x|k)   * P P(K|Z)     for  all     i 4 k,  I «  1,  2,   ...» 9 . (?) 
K Z 

rther,   if   the  a  priori  probabilities  are   the  same   fcr  a I'   classes 

(P     ■   1/M    for  all    m)   ,   then Equation 2  bee m 
de;idfc    x     is  a  member  of   'he  k-th class   if 

(P     ■   1/M    for  all    m)   ,   then Equation 2  becomes  the   following 
m 

UJM1   * 1>.SZ)     ^r all    iO)Mli2  1, '3; 
x x 

where     L  (m)   =  p(x|mN     is  commonly  called  the   like!ih:rd   function   :f 

i\    given the  event,     x   .     When class a  priori  probabilities  are   the 

sane   the   likelihood  funct.irn  is  equal  to  the a  posteriori probability 

:f   class  occurrence:   i.e.,     L  {nO  = p(x|m)  = p(m|x)   . 
x 

In the event that H  of the dimensions of the N-dimensional 

input vector x are not available (this corresponds to the cast 

vherc  H of the selected set of N discriminants cannot be extracted 

from rhe seismogram) and the classifier has been designed to operate 

a- ^n N-parameter processor, it is not obvious what the optimum 

vlassification decision based on the N-H observed measurements 

.insists of.  However, a study has been carried out in the appendix 

f:r determining the method of making optimum decisions in this case. 

It 1- c included from this study that the. optimum decision based on 

N-H  observed measurements consists of comparing the ratio of a 

posteriori probabilities of the actually observed N-H measurements 

with a threshold and that no useful purpose is served by knowing to 

what higher-dimensional process the N-H measurements belong.  This 

agrees with intuition. 

Thus, we see that if the statistics of the events in classes are 

known, then an optimum (from the standpoint of minimizing risk) method 

of establishing classification decision boundaries in observation 

»pace is known., and the only hurdle which remains is implementation of 

this procedure.  Unfortunately, however, this result can only be used 

10 



as a guide to solving :he seismic classification problem, because 

the statistics of the seismic input are usually not known precisely. 

In particular, in seismic classification, all of the information 

available on the statistics of the seismic signal is contained in the 

values of a finite number,  N 9   of labeled samples from each of the 

M classes or categories.  However, one can still proceed in this 

situation by generating estimates, using the available data samples, 

of the likelihood functions (or equivalently, the probability density 

functions) of the different classes over the observation space, and 

rendering classification decisions in a manner dictated by decision 

theory using the estimated quantities in lieu of the "true" functions. 

This is the basis for ^he classification method to be discussed in 

this report. 

The process of estimating the probability densities from labeled 

samples of known classification can be regarded as "learning", while 

the evaluation of like.Lihood ratios according to optimum decision 

theory is called "recognition". 

Some parametric learning methods assume that the functional 

form of the densities is known (except for a set of undetermined 

parameters), while non-parametric learning methods deliberately 

assume no knowledge of the form of the densities (although some 

assumptions of their "well-behaved" character is implicit).  Because 

of the complicated natire and uncertainty of the form of the conditional 

joint probabilities involved in seismic signal-processings expression 

of the densities in analytical form does not seem to be a reasonable 

classification solution.  Instead non-parametric methods seem to be 

a more realistic approach. 

Thus, the complexity of the seismic problem leads us to consider 

adaptive (non-parametric) methods of estimating the unknown (multi- 

modal) densities.  In ^articular, classification might be accomplished 

by storing non-parametrically determined values of the densities to 

be estimated at a sufficiently large number of points of the vector 

11 



space, determining the stored point nearest to the unknown input  x 

Irrking up the value of the density at the nearest point cr  perhaps. 

Lnterpclating among stored values of the densities near  x . and 

rendering a classification decision based on the value of the observed 

density. This can be visualized in the one-dimensional case as shown 

in Figure 4.  Note that, fewer points can be used to represent the 

density in the region where the density does not vary much, and more 

p:Lnts can be used where the density varies rapidly.  Here the one- 

dimensional probability density p(x.)  is approximated with a 

staircase approximation p(x.) .  Similarly, an N-dimensi^nai density 

involving the joint probability of occurrence of N different 

numerical values can be approximated by the N-dimensiona1 equivalent 

oi   a staircase, approximation.  Such an approximation of a probability 

density is a histogram in N dimensions. 

Since the density function p(x)  is approximated by a constant 

in each interval, it is obvious that only boundaries of the intervals 

and the values of the. approximation must be stored.  A simple method 

of evaluating a histogram approximation at an arbitrary point can 

Lhus be devised.  The procedure hinges on the ability to determine 

simply the identity of the cell or interval,  V , in which the input 

to be c LassIfled is contained and then retrieving p  , the corres- 

ponding stored value of this approximation. 

By storing the location of the centers of the cells as a set of 

points,  IS } , where S   is the stored center of the V-th cell, the 

interior of an arbitrary cell  t       is readily defined as the locus of 
—> 

prints "nearer" to S»  than any other stored point.  The classifica- 

tion procedure thus implied is: 
—* 

1. Determine the stored point S.  that is "nearer" to the 
—» —♦ 

input vector x than to any other point S  (v not equal 

i). * 
2. Retrieve the stored probability density p(S.)  (approximately 

equal to p(x)J to estimate p(x) . 

L2 
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3.  Repeat this procedure for all classes and compute the likeli- 

hood ratios, joint probabilities, etc. necessary for classi- 

fication. 

One can place this construction of histograms with unequal cell 

sizes on an exact mathematical basis by asking (and solving) questions 

cf the type "What is the optimum choice for the location, size and 
—• 

height of the cells to minimize the expected error between p(x) 

and its estimate,  p(x) ?" However, since in practice p(x)  is 

unknown and must be obtained from samples, this is the same as 

attacking the problem of how to obtain a good histogram directly from 

the samples.  It is readily appreciated that cells representing the 

distribution of a set of known samples of class k must be located 

in those regions in the vector space where members of class  k are 

observed.  Thus, it seems desirable to have members of the class 

create and determine the locations and dimensions of the histogram 

cells.  Since the cell centers thus obtained typify the distribution 

of class k , the stored points  IS } will be called "typical samples" 

of the class. 

Since the interior of an arbitrary cell I    in the histogram is 
—• 

defined as the locus of points "nearer" to S.  than to any other 

stored point  S    (V not equal to £)   one should postulate distance- 

measures which stretch when they measure "nearness" to a stored point 
—■» 

Sv whose cell is wide, and shrink for a narrow cell. A squared 

distance measure exhibiting this property is expressed by the quadratic 

form Q^OO  given by 

QV(*> ■; H*—-i  . (*) 

where V identifies the cell and  i is the specific dimension of the 

space under consideration.  This quadratic form expresses the notion 

14 



that the approximated density varies differently in one cell than in 

another, and it also expressed coordinate-direction-dependent 

differences in the rate of variation of the function.  It is an 

expression of the location and also the shape of the cells of the 

N-dimensional histogram.  Thus, a difference between parameter values 

of the input x and the stored sample S.  may be judged more 

significant in one neighborhood of the vector space than in another. 

In the event that a new input vector does not fall within any 

cell, it will be assumed that the probability density is well behaved 

and exhibits Gaussiar decay in regions where the probability density 

is small. 

15 



SECTION IV 

THE ADAPTIVE APPROXIMATION OF PROBABILITY DENSITIES FROM LIMITED DATA 

In the method of evaluation of probability densities described 

above, the approximated density was described by a set. of typical 

samples and cell shapes determined by quadratic forms specified by 

means   £sv-5  and variances   {o" .} .  In the following, an 

algorithm is described for generating the cells from data in an 

adaptive manner by accepting input samples of known classification 

sequentially. A simplified flow chart illustrating the procedure is 

shown in Figure 5. 

When the first learning sample is introduced, a cell of pre- 

ehosen size and shape is created and is centered on the first learning 

sample.  The initial size and shape of the cell is determined by 

prior analysis of the data (to be discussed in the next section) as 

part of the initializing procedure.  The interior of the cell is 

defined by Equation 5? the equation of an ellipsoid in N dimensions. 
2 

where the squared radii of the ellipsoid are expressed by  av-(t) , 
2 X 

and T   is a threshold control parameter.  In Equation 5, the symbol 

t  signifies the fact that the cell center and shape are functions of 

the number of learning samples contained in the n-th cell up to the 

present time.  T will denote the total number of inputs to the 

present. 

v»-. * - tp&pi ■ < 
The first input vector becomes the first typical sample.  This 

plus an estimate of the density, given by Equation 6, is stored.  The 

density is estimated by the ratio of the fraction of the total number 

of input vectors that fall in a cell to the volume of that cell. 

16 
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Except for a constant  k  (given in the next section) that depends 

on the number of dimensions, the volume of the cell is expressed by 

the product of the standard deviations in the quadratic form used to 

define the boundaries of the cell. 

tl"N 
- no (t TL=ivi P(SV, t) «-I  0„(t) 

-1 
(6) 

The second learning vector is used to generate a second cell, 

similar to the first, if it falls sufficiently outside the first cell. 

However, if the second vector falls inside the first; cell, the center 

of that cell is shifted to the mean of the two learning vectors, the 

shape and size of the cell is adapted from a better knowledge of the 

local distribution of members of the class, and the local estimate of 

the probability density is updated accordingly.  If the second vector 

falls outside the first cell, but by not a large amount, it is stored 

temporarily to be reused at a later time according to a procedure to 

be described in subsequent paragraphs. 

The third and subsequent learning vectors are processed similarly, 

either generating new cells, updating old cells, or being stored 

temporarily for later use.  The cells so generated for each class are 

located only in the portion of the vector space where members of the 

individual classes have been observed. 

It is seen through the above discussion that as learning vectors 

are introduced sequentially, the cell in the immediate, neighborhood 

of the input vector changes shape, size, location and height.  It is 

therefore important to examine the time-dependency of these cell 

parameters.  Accordingly, the variances that de*.ermine the cell shape 

are given by Equations 7 and 8. 

<4(t) = max [^(0), ?v.(t)] , (7) 
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v^&hi«-8^]2 • (8) 

where 

xvi(r) 

Svi<c> 

denotes the number of input vectors that fell in the 

v-th cell up to the present time, 

is the i-th coordinate value of the r-th input vector 

falling in the V-th cell, 

is the i-th coordinate value of the n-Lh cell center 

after  t  contributions to the cell. 

Equation 7 expresses the manner in which the i-th coordinate of 

the V-th radius  T O     (t)   grows if the sample variance  § .(t)  of 
w vi _VI 

the  t vectors in the cell exceeds the initial variance 0.(0) • 
Vix ' 

The cell radius is never allowed to shrink to less than the initial 

value  TO   . (0) .  The reason for defining the cell in this way is 

to encourage the cells to increase in size as more inputs are received, 

thus keeping the total number of cells used in the approximation of 

the probability densit/ small. 

To insure that ea:h ceil can grow while reducing the chance for 

an overlapping coverage of the same region of the vector space by 

several cells, an outer control parameter  (6 ^ 1) is introduced. 

Thus, a vector x not falling within an existing cell (as defined by 

the threshold T ) is ised to generate a new cell only if it is outside 

the larger concentric :ell defined by Equation 9. 

Qv(x, t) * (9TN)^ (9) 

It is seen that the quantity 9 expresses the ratio of the outer to 

inner diameter of a "guard zone" within which input vectors neither 

create new cells nor update old ones. 
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The input vectors which neither create or update ceils are stored 

temporarily for later use. As the cells grow in size, these stored 

vectors can be forced into the existing cell structure without the 

need to create new cells. 

After a cell structure is obtained by the procedure described 

above, we may find that the number of cells created is larger than 

the number we would like to have in the N-dimensional generalized 

histogram.  We may force the reduction of the number of cells created 

by altering the cell growth controlling parameters T  and 8 .  In 

most cases, however, it can be expected that a significant percentage 

of the cells created will contain very few input vectors, and, in 

general, these sparcely populated cells will surround the more 

populous cells.  This will happen because each cell center (typical 

sample), after the cells initial creation, will migrate in the vector 

space and tend toward the nearest mode (local peak) of probability 

density to be approximated.  This is readily seen from the one- 

dimensional illustration shown in Figure 6. 

This figure shows a small range of the variable x.  and the 

probability density  p(x.)  in that interval.  The point  S .(t) 

represents the cell center of i-th coordinate of the V-th cell after 

t members fell into the cell.  The probability is greater that the 

next input is to the right of S .(t)  than that it is to the left of 

that point.  This implies that the cell center will move to the right 

after the  t-plus-first input falling within the v-th cell is intro- 

duced.  It is thus seen that cells migrate in the direction of the 

nearest modes. As cells move toward modes, and later inputs create 

cells at places from which older cells have migrated, there will 

always be some cells which contain few members.  Thus the number of 

cells can be reduced by forcing cell locations containing few 

members into the nearest cells whose members exceed a predetermined 

number. 
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Figure 6. MODE SEEKING PROPERTY OF CELLS 



SECTION V 

CONTROL PARAMETER SELECTION THEORY 

In the following paragraphs, some of the properties of the cell 

growth mechanism will be discussed.  It is desirable that the indi- 

vidual cells be adjusted by the data so that a good approximation to 

the class probability density function should be obtained with a 

minimum number of cells.  Furthermore, the size and shape of the 

individual cells should be determined by a reasonable and automatic 

procedure from the data in order to relieve the. experimenter from 

the almost impossible task of picking appropriate cell sizes. 
—♦ 

For simplicity, consider an isolated cell  V  and let x(t) 

be the t-th observation point (known class member) that falls in the 

cell, let S (t) be the sample mean of the first t. observations 

that lie in the cell (i.e. S (t) is the center of the cell at the t-th 

step) 3 let °v,(t)  be a vector weighting parameter determined 

according to Equations 7 and 8, indicating the cell shape, and 

finally, let T  be a scalar constant (the constant T__  is the 
N N 

control parameter being studied here). Then., the cell is defined at 

the t-th step to be the set of points in the observation space defined 

by Equation 5 (repeated below for convenience). 

N 2 
V|Xi_SVi(t)\    2 V*> O = )        * - i (5) 

Thus, the cell is the (ellipsoidal) locus of points "closer" to the 

cell mean  S^C11)   than 'W^  in the i°th direction- lt  should 

be emphasized again that such a cell is "mode seeding" in that it will 

move (as a function of t) in the direction of the greatest concen- 

tration of data points.  This is a very desirable feature. The cell 

is first established according to some rule by a data point which 
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does not fall in any other cell so that S (L) = x(l) , i.e., the 
V ' 

cell is initially centered about the first or establishing data 

point.  If av,(t) ■ \,(0)  f°r aH t , the cell size and shape remains 

the same throughout :he estimation process. Then the choice of 
a
v(0) > which is bas«id largely on physical considerations and intui- 

tion, is very critical and an intelligent choice is very difficult. 

But, if a
N.(t)  is made to depend on the data sample, the volume of 

the cell may be made to grow to an "optimum" size by proper choice 

of the constant T  . Although the cell might alternatively be made 

to shrink if the data indicated this were desirable, it is assumed 

here that the initial, cell size is small compared to intervals in 

which the class probability density function changes greatly and, 

hence, only cell expansion is discussed below. 

The rule for upc.ating the vector Q (t) ■ |G , (t), 0 „(t), > 1v      I VI       vz 
is found from Equations 7 and 8 as 

avi(t) = max {,. (0), ?v„.(t) vi -f^viCD-s^t)]2]. (10) 

Thusy  cr ,(t.)  begins at a preset value and normally grows to be tie 

sample standard deviation of the sample vectors in the cell neighbor- 

hood. 

The radius of the cell3 defined by Equation 5 in the i-th coordi- 

The constant T  is chosen according. nate direction, is c
v-(t)T1a 

to the theory to be developed here, however, the initial cell radii 
G
V-(0)

T
N must still be selected on the basis of physical considera- 

tions . 

The cell volume might be considered optimum if it is as large 

as possible and still yields an estimated probability density function 

consistent with that obtained by estimating over smaller cells.  If 

a cell is located in a region of the observation space over which the 
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class probability density function is a constant, the cell size 

should expand until it covers the region of uniform distribution. 

Furthermore, once the cell is "firmly established" in the sense 

that a number of observations have fallen in the cell, the rate of 

expansion should be fairly rapid provided it does not grow substan- 

tially beyond the region of constant probability density function. 

On the other hand, if the cell is initially located in a region over 

which the class probability density function is changing , the cell 

should not expand rapidly but should migrate toward a node.  There- 

fore, the rule for updating ^(t)  and the choice of  T   should be 

such that the expected cell behavior obeys these two intuitive rules. 

Using the above notions, we are. now in a position to construct 

a model of the cell growth mechanism through a study of the random 

behavior of the cell. Accordingly, the volume of an N-dimensional, 

ellipsoid is (the t and V designators will be temporarily omitted 

for convenience) 

VN = \*°i   ' (11) 

when 

N x, 

(—\  a. 
i=i l 

= 1 

specifies the N-dimensional ellipsoid and 

(12) 

TT 
.N/2 

in* i 
(13) 
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A short table of  k^  is given below 

N 1 2 3 4 ,5 6 7 8 9 

"H 
2 TT 4TT 

3 
TT2 

2 
*r2 

2 
n3 

6 

3 
16TT 

105 
n4 

24 
32rr4 

945 

A slice perpendicular to the x.-axis at x.  is an  (N-l)-dimensional 

ellipsoid specified by 

of volume 

t 
i=L     / 

= l , (14) 

X 

N-l 
2 i  2 

fr-i« no. (15) 

Assuming a uniform probability distribution over the N-dimensional 

ellipsoid specified by Equation 12, the probability density function 

of the x.  coordinate is 

g^Xj) = N 

1=1 

25 
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However, since the volume V  can be obtained by integrating Equation 

15 ever x. , it is found that 
J 

°i        / 2 ft x.     \   2 

'■ = \la<= 2 ^-{ - ^) .n.aidX]   ' 

:T 

\ - Vi ß(l • T1)£ ai  • <l7> 

where 

'III rl^l e   i    N+i   _ ru, ,, . , 
l2'   2 )-r(|+1) 

is the beta function. Accordingly, 

N~l 
2 

N   n\     /^ 2     2 

, if -a   * x   * a   , (19) 
J      J     J 

„ (x ) = El2. L_ J_J 1 %  j     r|^)r|I| 

= 0 , if |Xj| > a . 

Making the transformation of variables x. = X.Q.  , the probability 

density function of X.  is 
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w rlf- 
r(N±l)r 

1 - X. 

N-l 
2] 2 

j 
for 'V*1' (20) 

• 0 , for  |* | > 1 . 

The maximum value of g (x.)  is  ^.I/SJ0'  ancl ojf- *Hi^-)  is 

NJ-IAN * Examples of h^(X.)  for several values of N are shown 

in Figure ?.  It will be shown later that for small  X. , h^(X.) 

is approximately gaussian. 

The mean and variance of  X..  are easily found to be 

Xj = 0  , (21) 

and 

V 
N-l 
2 

\    \2    N-l r   ,2 /.   ,2     _, Var A.. = A.. =  I   A,  1 - A     dA  , 
J    jle.J-.lj      j      j 

TT 

V ir.« in2 6 CosN 9d9  , 

\    L 

+ pfe f  Cos» 9d9 

1  „,  i „   N+lc 
5^2 Sin Ö Cos   ^ 

-TT 

2 

-TT 

2 
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Figur« 7.   P.O.F. OF  ONE COORDINATE OF POINTS UNIFORMLY 
DISTRIBUTED OVER AN ELLIPSOID OF N-DIMENSIONS 
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TT 

Thus, 

V: 
\ 

N+2 

2 

38      ödü 

■\ 

_ _jL_ 
" N+2 

_ _1_ 
" N+2 

h-1 

• 

11 
(22) 

To show that h^(X.)  is approximately gaussian for small . X.. 

rewrite Equation 20 as 

N-l 
i 2 

1 - M (23) 

The first factor tends to unity as N -* °° by Stirling's formula. 

The logarithm of the third factor is 

¥U(^)=¥H- X
4  V6 

1 + i-+ 3 +-- 
N-l 

Hence, for any fixed  X..  such that  1 » I —j- + -J— + 
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2 

1 - K —  exp (2*) 

Accordingly, in this region, h (X.)  is approximately normal with 

probability density function given by 

w * exp 
X* (N- 

*] (25) 

./N-I . The mean of this distribution is zero and the variance is  1 

The tails of the distribution of \.    decreases much faster than for 
J 

the gaussian distribution (i.e. where  X..  is large) and h (X..) 

g:es to zero at ± 1 . 

Letting 

öjCt) = 

0 ,    t = 1 

X (t) - S (t - 1) , t > 1 , 

(26) 

the f.-th cell center is located at 

Sj(t) = Sj(t 
1) + 7 6j(t) (27) 

Thus, substituting Equation 27 into Equation 8, the cell sample 

variance becomes (omitting the v  index but including the  t  index) 

vr=l 

12 4« ..»l* 
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Let     t = t1     be  the  index of  the  first  sample  point  for which 

a.(t') > CJ.(O)   ,   i.e.,   the  first  time cell growth  occurs.     Then  for 

t   -  t'   ,   by Equations  5  and  22,   the expected value  of     §.(t)     is 

GT-iSw *t-o 5, 
J - r=o 

2 2       t-2 

N + 2     t   La     t-r     '   C       C     ' ^'y; 

r=0 

or 

2 2 

5j(t)    -    I + 2      as    t -- . (30) 

From Equations 10 and 29 it is seen that a necessary condition for 

Q.(t)  to b 

to begin is 

a.(t)  to be greater than a.(0)  so that cell growth may be expected 

?j(t) * aj(0) ' 
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.2   2    t_2 
i(0>TN   1 y   t-r-1 
N + 2 '  t   L-»    t-r 

r=0 
* o*(0) 

T > N + 2 
N oo 

s ir.:t 

t-2 

t ^ t-r 
r=0 

< 1 

for r < °° . 

Furthermore, the choice of T  determines not only Whether the 

may be expected to grow, but also the number  tf  of observations 

that, must fall in the cell before cell growth can be expected to 

begin.  It is desirable that  t.  be chosen sufficiently large to 

establish a firm cell location before the cell may be expected to 

gr:w„  On the other hand3 since the amount of data available for 

probability density function estimation is always limited in practice, 

t1  must not be too large. 

Having chosen an appropriate value for tl   , the choice of the 

control parameter T  becomes automatic. Writing T  - ß yN + 2  , 

and considering  ß as an unknown, Equation 29 can be solved for  ß . 

ß - 
?JCt) 

^(0) 
t-2 

1 r-* t-r-1 [ 
t 2^ t-r J 

r=0 

t * t (32) 
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However, since t1  is the index of the first sample point for which 

a^(t') > a*(0)  or  S.(t') > a2(0) , it is seen that for 

1 
' 2 

(33) 

the choice of 

TN = ß'^N + 2 (34) 

will result in a beginning of cell growth after an average of t' 

sample points fall in the cell. 

A curve of  ß1  as function of  t'  is shown in Figure 8.  For 

the particular choice of  T  = 1.4 yN + 2     , the curve in Figure 8 

indicates that the average value of  t will be approximately 4.7 

before cell growth begins. 

Since the probability density functions of greatest interest will 

more than likely be non-uniform over the entire space, there will, 

in general, be a wide spread in the range of cell probabilities. 

Therefore, the cells with high probabilities will normally begin to 

grow before the majority of the other cells have collected  t1 

observations.  Since the growth of an individual cell is limited by 

the presence of surrounding cells, it is reasonable to expect that in 

many instances the cells located near the modes of the distribution 

will have grown to their maximum limit by the time an average of  t1 

points have been processed for each of the cells in the entire cell 

structure.  This phenomemon requires further investigation. 

An investigation of the dynamics of the growth mechanism should 

be carried out to shed more light on the method of selecting control 

parameters as discussed here. Experimentation should be of value in 

indicating if modifications to the above theory are necessary. 
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SECTION VI 

SUMMARY 

A very general classification model has been developed using the 

concepts of non-parametric pattern recognition based on limited data 

of known classification.  The fundamental difference between decisions 

derivable from standard statistical techniques and decisions based on 

this model is that decision theory assumes knowledge of the relative 

frequency of occurrence of every observable set of discriminants from 

all classes of interest, while here, this knowledge is missing and 

estimates of the required statistical quantities are automatically 

made from a finite number of known class samples. 

The model has two distinct modes of operation, a learning mode 

and a recognition mode.  In the learning mode, partitioning of an N- 

dimensional parameter space (using discriminants derived from the 

seismic signal as coordinates) is accomplished by estimating the 

joint probability densities of the parameters for each of the input 

classes in question.  In the recognition mode, maximum-likelihood 

ratio decisions on the estimated joint densities are made.  It is 

significant that;, in the learning mode, the estimates are formulat 1 

with cells which adjust their size automatically according to the data 

so that a good approximation to the class density function is obtained 

with a minimum number of cells.  It is also significant that the cells 

are mode-seeking in that they move as new data is introduced in the 

direction of the greatest concentration of data points. 

The entire development has been of necessity introductory, 

intended to give insight into the broad concepts involved.  Thus, many 

of the problems of implementing the model and integrating it as a 

working part of a seismic signal processor require further theoretical 

studies as well as experimental verifications. 
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SECTION VII 

RECOMMENDA7.IONS F^R FURTHER STUDY 

Only a few of the. many study problems which come to mind as a 

result, of this study are listed below.  In general, one is Interested 

in developing clustering transformations, determining the quality of 

decisions rendered by the model, and gaining knowledge about the 

habits of the model's performance.  In particular: 

1. The cell growth mechanism should be studied theoretically 

in much more detail.  For example, the effects cf selecting 

O   ,(0)  and 8  should be explored as a function :f Tbr size 

of the data sample. 

2. An experimental study of the control parameter selc Lou 

problem should be undertaken. 

3. The accuracy of probability density estimation should be 

experimentally determined using real and synthesiztd data. 

4. The quality of the estimation procedure, both for the purpose 

of determining the reliability of the decision rendered in 

any one instance and for the purpose of modifying the 

learning procedure to yield decisions with lower error 

probabilities, should be theoretically investigated. 

5. The proposed model should be compared to other techniques 

on the basis of error probabilities, complexity of imple^enta- 

tion, etc. 

6. Transformations on the original space should be considered 

for increasing apparent class separability.  One sach trans- 

formation might be concerned with mir^mi^ng entropy. Thus, 

for the. density p.(y) , one might minimize 
l 

Hi(y) = - J Pi(y) log px(y) dy 
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7. 

since H.(y)  is a function only of the manner in which 

class members are distributed in observation space. 

The order dependency of the probability density estimation 

technique should be investigated. 
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APPENDIX 

CLASSIFICATION DECISIONS BASED ON INCOMPLETE SETS OF 

OBSERVATIONS 

The problem of classifying signals is generally treated as a 

problem of optimally deciding, on the basis of N  observed measure- 

ments on that signal  (x., x_ , ... x„) , which of several classes 
1  I N 

produced the particular set of N measurements.  If the joint 

probability densities of the  N measurements are known under all 

assumptions of class membership for the set of  N measurements, 

classification decisions can be rendered by computing the N-dimensional 

likelihood ratios and then comparing these ratios with each other or 

with a threshold.  With the joint probability densities not known, 

but a finite number of measurements of each class available, decision 

rules can be devised which approach the likelihood ratio computation 

in the limit, as the number of measurements approaches infinity. 

The problem which will be considered in this appendix concerns 

the method of making the optimum decision when not all of the 

N~measurable parameters of an N-dimensional process are available. 

It will be assumed for simplicity that the incomplete set of measure- 

ments may be a member of only one of two classes, class E (earthquake) 

or class N (nuclear explosion).  It will also be assumed that the 

cost of deciding that the set belongs to E when indeed it is a member 

of N (the cost of false dismissal) is c. , and that the cost of 

deciding in favor of N when actually the set belongs to E is c« 

(the cost of false alarm). 

If all the N-measurements on an input were available, and c. 

were equal to c~ , then a reasonable way of making classification 

decisions would be to decide using the following equation. 
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P(EIXL,  X2,   —,  XJJ) 

(x   ,  x0,   ---  x)   e E   if   —::r|   ■ r >  I   . (tV 12 N p(N|xl5  x2,   —,  xN) 

This decision states  that   if,   given    x. ,  x„,   ...  x     ,  E     is mere 

likely than    N   ,   then  one   should decide,  that  the N~dimensi:na 1 

vector    x    belongs  to    E,     The  opposite decision  is made   il 

inequality does  not. hold.     By applying Bayes3  Rule    Equation   35 

may be written as  shown  in Equations  36 and  37, where  F      and    P 
h        N 

are the a priori probabilities of occurrence of class E and N- 

respectively. 

p(EJx   ,  x   ,   —,  x   )       PF(x,,  x   ,   —,  x  )P(E) 
x £ E     if       *M| ^T " "V^ ^TST^T > l   >   06) 

PVN|X   ,  x,   —,  x  )       PN(
X

1>  x2>   """a  X
N)P(N) 

PE(xr   x   ,   —.,   x   ) - p(N^ 

PN(xl5  x2,   -,-^ " ^X> > pfcf = T "  «"«• 

The function of £(x)  is the N-dimensional likelihosd ratio. 

Several other likelihood ratios will be introduced later and will be 

distinguished from each other by subscripts which will indicate the 

decision rule with which the likelihood ratios are associated. 

Suppose now that of the N»measurable parameters on which 

decisions should be based, only N-H are available.  In the f rllowing, 

four of several possible, decision rules are discussed for deciding;, 

from available measurements which of the two classes  E  or  N , is 

most likely. 

Dc cis ion Rule One (Decisions Based on Marginal Densities) 

This rule states that, given the measurements  (x-, x?, ..., x   ) 

decide that these measurements belong to E  if E  is more likely 

than N  as follows, 
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p(E|x1, x2, —, 
X
N_R) 

«v v -» VH> e E if P(N|XI,X2, -,X,.;)
> I •   <»> 

by employing Bayes1 rules, this equation can be rewritten as, 

p(E xr x2> ~-, xN^H) ^ p(E) PE(x1? x2, -—, xN^H) ^ 

p(N|x1, X2, —, xN^H) " P(N) PN(xx, x2, ---, xN H) 

or 

(x,, x0, —, xXT J e E if E, V     V   N"H, > |ffil = T .   (40) 
!■ 2* N-H'       PN(X1' V """, XN-H)  P(E) 

If we let 

PE(X1? V "*"' "N-H* _ ,  , . 

be the N-H dimensional likelihood ratio, abbreviated as I  (x)  to 

simplify the. notation, then decision rule 1 states that we should 
-* —-» 

compare t  (x)  with a threshold to determine if  x  should be 

classified in E or N .  This, in effect, means that if x.. , x_, ..., x 

are the only measurements made, these measurements alone should be the 

basis for decision. 

Decision Rule Two (Decisions Using Most Probable Values of Missing 

Measurements x^  ,  through x ) 
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After  the    N-H    measurements     (x_ ,   x        ,.. ri  x       )   arf   Tiadt     tbr 

probability density of  the missing    H    measurements     [x Lhrough 

x  )     car. be  calculated  and  the   most   probablt-  values   :f   the    H 

measurements  chosen for use  in the N-dimensional  likelihood  raT •.: 
—» —* 

l\x%i     can be determined,     Tht   vaiut   zi   the  ratio    -t«V)    when the  m:-r 

probable  values  of  the    H    missing  measurements are used  is    £«(x)   - 

The  most  probable values are  those which maximize   tht   probability 

density given  in Equation 41. 

plXN-H+l/   VH+2   '••   VV   V   ' Vh ' (41' 

p<V»r X
N
|X

I — W * ^*r ""' X
N

1X
I.   ••" *N V ■    C42) 

r
dingly. the decision rule states that one should decide 

(x1? —, xN_H) £ E  if 

V*> - pEixr ""' I""' *™+V
TT^- > fgj- - T  •        (4J) 2     PN'.xr —, xN_H+1, ...,«„)        P(E; 

This rule predicts the most likely values of the missing measurements 

and uses them as if they had actually been measured. 

Decision Rule Three (Decisions Using the Most Probable Value of the 

Likelihood Ratio) 

When only N-H measurements  (x.. , x_, . .., x   )  are made, the 

likelihood ratio ^(x)  is a function of the unmeasured random variables 

x__ ,.,.     through    xXT   .     This   is  denoted  by    ^(x)     and  is defined   in N-H+l N ^       3 
Equation 44, 
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.  -   PE(V ••', *N-H' XN-H+r -"  V ,//N j, rx) = —-. r  .       (44) 
j     PNUr ..., xN-H, xN_H+1, ..., xN; 

Accordingly, there is a probability density p(^(x))  associated with 

£_(x)  so that the most probable value of the likelihood ratio, given 

the observed x , ..., x^   measurements can be determined.  Thus, 

p(£3(x)| * pj^OOJ . (45) 

The decision rule is therefore, decide 

(X1' """' XN-H} £ E if Vx) > T * (46) 

Decision Rule Four (Decisions Based on the Average Value of the 

Likelihood Ratio) 

In this decision rule, the likelihood ratio is again treated as 

a function of the missing H measurements.  However, instead of using 

the most probable value of  £~(x)  as in rule number 3, the average 

value of this likelihood ratio is used as the basis for deciding 

between E and N.  Thus, 

(xr —, xN_H) e E if l3(l) >  T , (47) 

where 

l3 w ■ I S GO p£*3 oo ^l
3 (*») 

Further, if  ^o(x) is a monotonic function of  x      through x  , 

Equation 48 may be written as 
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Vx'' = I "".{1*3 Vu+r  "" V 

P(XN-H+1' •••' V«l  WdXN-H+l' — %        <"9) 

To compare the different decision rules, the probabilities of error 

are computed and that rule which yields the smallest error probability 

is sought.  The two error rates, the probability of false alarm and 

the probability of false dismissal, P(FA)  and P(FD) , are given in 

Equations 50 and 51, where Y  is the region in N-dimensional space 

in which the decision rule in question decides that the set of measure- 

ments  (x1 , x_, ..., x^ „)  belongs to N , and Y'  is the region in 

which the decision favors class E .  If there are only two classes, 

Y1  is the complement of Y . 

F \£A> = J J — PE(x1, x2, —, xN)dx1> dxr —, d>N (50) 

F;FD) « J J --- J pN(xr x2, —, xN)dxr —, dxN (5i; 

However, given the values  (x , x , ,.., x  ) , the likelihood 

ratios t  (x)  through £~(x)  are all functions of N-H given measure- 

ments alone.  Thus, no matter how complicated the likelihood ratios 

may be„ they are. for a specified choice of P (x , ..., x )  and 

P (x , ...j x ) 3 deterministic functions of x , x , ..., x   . 

Thus, the integrals of Equations 50 and 51 may be written as shown in 

Equations 52 and 53, where the region,  y denotes the region of N-H 

dimensional space in which the measurement values are assigned to 

class N by the rule in question.  Similarly,  y3  is the complement 

of  y 
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r  <-       i« 

P(FA) = j j   j pE(Xl, x2, —, xN_H)dxx, dx2, —, dxN-H    (52) 

y 

P(FD) = j j ... j pN(x  x2, .-, xN_H)dXl, dx2, ~-~, dxN-H    (53) 

y 

If the positive constants  c  and  c~  are the costs of false alarm 

and false dismissal,  PE(
X
X> —■ XN„H)  and  %(*!' """» ^-H^  are 

the marginal densities of the random processes E  and N , and y 
S 

and  y  are the regions in the N-H dimensional subspace of measured 

values in which decision rules  s and g , respectively decide that 

the observations should belong to N , then rule  s  is better than 

rule g  if the inequality of Equation 54 holds in the specified 

direction.  Each side of the inequality expresses the probability of 

error according to the corresponding decision rule. 

P<E> ci J J ••• j PE
(xr •••• xN-H)dV —• dxN-H + P(N) V 

y0 

Jj    ,— J   PN°V   — •  XN-H)dV 
y s 

— •   %-H 

< P(E)   CX J  J   — j   PE(xr   —,  xN.H)dx1,   ...,   dxN.H + P(N)   c2. 
yg 

J   i    ,•••  J   PN(V   •••'   XN-H)dV   •••'   %-H (54) 

y
g 

Furthermore, given the densities  PN(
xi> —> XN_H)  

and  PE^X1'  ■ XN-H^ 
it is seen that the decision rule which minimizes Q  is best. 
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Q  =  P(E)  cx j j   — j   PE(xr   ...,  xN...H)dxr   ....  dx^ 
ys 

+ P(N)  c2 j  j   --- j   pNU1?   ....  xN.H)dxr,   ....  dxN_H <Y5} 
y' 

However,   since there are only two classes,  Equation 56 allrws  si-nplifL- 

.ation  of Equation 55  to Equation 57. 

j   J   — J   PN
(xi'   •••'  XN-H)dxl'   •••'   dxN-H 

"J   J    •"  J   PK(X1'   •••'  XN-H)dXl'   ••••   dXNH (56) 

y„ 

Q  =  c2  P(N)  + j  j    ...  j   [c,   P(E)   pE(xr   ....  xN_H) 
y„ 

C2  P(N-)   PNU1'   '••'  XN-H^  dXl'   "••'   dXN-H ^57^ 

It   is  seen that    Q     is  smallest  of    y       is  in the region  in which the 
s 

integral,   is always  negative.     In this  region, 

c2  P(N)   pN(Xl,   —,  xN_H) >  cx P(E)   pE(xr   —,  xN^H)   . (58) 

Further, for the case where  c. = c_ , this reduces to the decision 

rule; decide N  if 
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PN°V V ""' W > P£E1 = 
PE(xr x2, —, xN_H)   P(N)     * K*y> 

We recognize that this is just the decision made by the marginal 

densities of decision rule 1. 

Thus, it is seen that the optimum classification decision based 

on N-H observed measurements of the set of N measurements consists 

of comparing the ratio of a posteriori probabilities of these observed 

measurements with a threshold and that no useful purpose is served by 

knowing to what higher dimensional process the N-H measurements 

belong. 
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