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ABSTRACT 

This report presents briefly a nonlinear model originally proposed 

by the late Norbert Wiener for the characterization of general 

systems.   Three procedures are then offered for the identification 

of any given system in terms of the Wiener model.    Finally, this 

report presents the results of a digital computer simulation study 

(utilizing six somewhat arbitrary systems) which was designed to 

evaluate the various identification procedures as well as the model 

itself as a basis for system identification. 
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I.    INTRODUCTION 

The problem of system identification may be formulated somewhat ab- 

stractly as: 

Given some physical system S and a class C of system models, the 

identification problem is to determine that specific model M in C 

which is equivalent (in some sense) to S.   The identification is to be 

accomplished through the observation, often in the presence of noise, 

of the response of S to various probe functions. 

The identification problem may be represented schematically as in Fig.  1 

where the black box represents the unknown physical system with, in general, a 

noisy output.   The white box represents an indeterminate model from some class. 

The problem being to specialize the white box so that the resulting model is equi- 

valent to the black box.   The equivalence being in terms of the satisfaction of some 

criterion by some functional of the error between the system and model for some 

class of inputs. 

In practice the engineer usually chooses, and rightly so, some class of 

linear models for his white box.   Then, he is usually able to determine an adequate 

model from within some class of models - maybe not his original choice but at 

least a linear class - and all is well.   However, there are times when no linear 

model can be found which will meet one' s adequacy criterion.   Then one is forced 

to consider the identification of systems in terms of nonlinear models. 

As to possible nonlinear models, numerous ones have been proposed over 

the years and they are surveyed in the author's report [1].   One such nonlinear 

model for the characterization of general systems was proposed by Norbert 

Wiener [2] in 1949.   After a very brief description of the Wiener model in the next 

section, this report goes on to describe a simulation study (on the IBM-7094 digital 

computer) which was designed to evaluate the Wiener model as a basis for the iden- 

tification of real physical systems.   As far as this author knows, there has been no 
attempts to date to actually implement the Wiener model. 
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II.   THE WIENER MODEL 

In 1949 Wiener [2]   specialized an orthogonal functional decomposition 

technique of Cameron and Martin [3]   to obtain a general model for nonlinear 

systems.   Specifically, as a basis for the generalized Fourier decomposition of 

[3] , Wiener chose the Laguerre functions [4] which are most appropriate for the 

modeling of physical realizable systems.   The resulting model is given schematically 

in Fig.  2. 

Structurally, the Wiener model is a decomposition of a nonlinear system 

into a linear system with memory followed by a nonlinear no-memory system.    The 

linear system which contains the memory portion of the Wiener model is realized 

by a Laguerre network [4]   which at any instant in time  t  yields at its output taps 

the Laguerre coefficient for the infinite past history of the input  x (    ): 

\(t)    =     /0    *k(T)X(t-T)dT (2.1) 

By the orthogonality of the Laguerre functions   •£,  (    ) and the linearity of the 

Laguerre network, the outputs v   (t) will be uncorrelated ( for zero lag) Gaussian 

variates (and hence statistically independent) when the input probe function is 

white Gaussian noise.    For the zero memory nonlinear functional of the independent 

Gaussian variates v (t), the natural decomposition is a multi-dimensional one in 

terms of Hermite  polynomials.   The joint probability density function of the v  ' s 

provides the necessary exponential weighting factor for the orthogonality condition 

of the Hermite polynomials. 

Specifically, the output for the Wiener model is 

y(t) = lim 
K 

m        > )   ...      )   A. H. 

jo=°     jl=°        jK=° 

vjt) H. 
Jl 

-               — 

v^t) ...H. vK(t) (2.2) 

where the v, 's are given by (2. 1).    The characterizing (or Wiener) coefficients are 

determined by the time averages 
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i =y(t)H    [v  (t)] H    [v (t)]...H     [v 
JoJl---JK Jo      ° h     1 JK     K 

(t)] (2.3) 

where the probe function is white Gaussian noise.    (For additional details, see [1] ). 

On the practical side the Wiener model (2. 2) may at first glance appear 

hopelessly complicated.   However, as with all infinite expansion models, the 

engineer must truncate the model to a finite number of terms.    Fig. 3 gives a 

Wiener model truncated to only the linear and quadratic terms on a three stage 

Laguerre network.   As one can readily see from the figure, the structure is not 

beyond ordinary engineering synthesis, and yet, the half dozen nonlinear terms 

may be all that is needed in some situation to obtain an adequate description of the 

system. 
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Fig. 3.      The truncated Wiener model. 



III. IDENTIFICATION PROCEDURES 

A.   The Direct Method 

In order to identify a given unknown system in terms of the Wiener model, 

the direct method is to excite both the system and model with a white Gaussian 

noise process  x   (    )    of unit intensity and then measure the various time averages 

indicated by equation (2. 3).   In theory, each of the functional output taps of the 

model, 

4> 
ij- 

. =H. 
I       l 

vjt) H v4(t) ...HJLvK(t) (3.1) 

are orthogonal and the determination of each of the characterizing coefficients 

A..       .is independent of the others.   See Fig. 4. 
1J...-C 

C22-2206 

Fig. 4. 



In greater detail, for the truncated Wiener model of Fig. 3, the coefficients 

are determined by the time averages 

Ck = ^ Vk(t)' (3.2a) 

Cij=y(t) (vi^vj(t) "6ij}' (3-2b> 

^- i. = y(t) Xthird degree term in ijk V (3. 2c) 

C.jU .....etc. (3. 2d) 

In practice, however, only finite time samples are used and as noted in 

[4] , for moderately large samples, even the linear functionals v,  (    ) are cor- 

related for zero lag.   This non-zero correlation of the outputs from the Laguerre 

network for finite averages results in a loss of orthogonality for both the linear 

and the nonlinear terms of the model.   The poor results obtained by this technique 

are illustrated in Section V. 

B.    A Modified Technique 

To mitigate the problem resulting from the sizeable sample correlations, 

the coefficients of the various degree functionals may be determined in some 

definite order from a residual error function; rather than from the system's out- 

put.   Ideally, the various functionals should be determined in the order of their 

significance.   However, this information is not generally available and one must 

choose some order.   A reasonable choice is to assume that the linear functional 

is most significant.   Then the linear coefficients C  , C  , C  . . . , .C    of Fig. 3 may 

be determined by 

Ck = y(t)vk(t) (3.3) 



Hence, define an error function e   (t) by 

e4(t)  =  y(t)   -   2_,    Ck
Vk(t)' <3'4> 

k = o 

Then, assuming that the quadratic functional is the second most significant one, 

one can determine the quadratic coefficients C.. by the time averages 

\   =  e4(t) (v.(t)v.(t) a^J. (3.5) 

Having now the linear and quadratic coefficients, define a second error function 

K K      K 

k=o i=oj=o 
e2(t) = y<t>-£    VkW-Z   I   C« {'iWj* •* J <3' 

and with the assumption the third order functional is next most important, deter- 

mine 

cijk=e2(t>{vi(t)vj<t)vk(t' -Vk(t) "W" - \ivM   <37> 

By now, the technique should be quite clear.   Also, it should be realized 

that the technique can be segmented even further.   That is, each coefficient can be 

determined from a residual error function resulting from the best estimate (model) 

available before its determination.   In fact, for illustration of the technique, the 

sequence used in the examples of Section V is: 

First, the mean value y of the output of the system under white Gaussian 

noise excitation (of unit intensity) is determined.    Then, an initial error function is 

eQ(t) = y(t) -y~ (3.8) 



Next, all the linear coefficients C,  are determined from 

Ck  - ao(t,vt(t,, (3.9) 

The residual error after the dc. plus linear approximation is thus 

K 

V>-iW-y-^Vk* 
k = o 

Next, only the square terms of the quadratic set are determined from 

Ckk   "  6l(t^ (t)-4 

Finally, the cross-term coefficients C.   (i^) are determined by 

(3.10) 

(3.H) 

Cij = e*<0 vk(t) v (t)        {*i (3.12) 

where K 

%(t)  =  y(t)   -y-V     ck vi>-I v. (t) -1 kk   k 
(3.13) 

k = o k = o 

As will be seen in the examples of Section V, this technique does lead to 

a stagewise monotone decrease in the mean square error between system and 

model.   It also represents a considerable improvement over the direct method 

when the actual order of significance of the various functionals agrees with the 

order of determination selected. 

C.   The Gradient Technique 

The ability to identify an unknown system in terms of a Wiener model by 

either the direct or modified technique depends upon the Gaussianness of the input 

probe function and the resulting (in theory) orthogonality of the linear and various 
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nonlinear functionals   [1] .    In an adaptive situation, however, one desires a 

continuous real-time procedure that uses the existing inputs which generally are 

non-Gaussian.   Initially, the author settled upon a gradient technique which cir- 

cumvents the major objection of the previous techniques (i.e. , the Gaussian 

requirement) and which also provides a rather simple, yet continuous real-time 

procedure.   Moreover, the gradient technique has produced a bit of serendipity 

in that it overcomes the correlation due to finite sample size even for Gaussian 

inputs.   As we shall see in Section V, the gradient technique can, starting from 

all coefficients equal to zero, adaptively identify a better model in some time 

span than the direct technique which averages over the same but entire time span. 

Briefly, the technique is to define an error functional as 

E   (t)   =   f        2(r)dr (3.14) 
t-T 

where e (    ) is the usual error between system and model, 

e(t)  =  y(t) -YA   $ (3.15) 
L-i    a   a 
a 

Then to employ a gradient technique, one requires that [5] 

d        A      V= -/?     d       iE(t)V. (3.16) 
lla[ "8A"   I   T    J 

a 

Since the coefficients appear linearly in the model, from the above equations, it 

follows thar 

•fA,[=2MfTe(T)*a 
dt        *- f, x(    ); T dT (3. 17) 

11 



By formally integrating (3. 17), one has 

,t   ~t 

o L- 

d4d (3.18) 

If one adjusts the coefficients A    in a continuous fashion as indicated by (3.18), 
a 

the error functional (3.14) for a time-invariant system will be minimized and 

the final value A    (oo) will yield the required characterizing coefficients.   In an 

adaptive situation for a stochastically time-varying system, (3.18) can be imple- 

mented on a digital computer by 

A   (n+l) = A   (n)-£z   (n + 1) (3.19) 
a a. a. 

where the correction z    (n + 1) is equivalent to the inner integral of (3. 18) and 

may be implemented by a driving simple low-pass (recursive) digital filter with 

the product of the error and the specific functional *   , e.g. 

z   (n + 1)  =   Az   (n) + /ie(n + 1) * 
a a a 

n+1 (3. 20) 

for some A., JI.   For X almost equal to one, the time constant of the low pass 

filter is quite long and effectively evaluates the integral in (3.18).   The choice 

of n can be absorbed into the choice of /3 which does offer some problem.   Ideally, 

initially /3 should be large for rapid convergence but as the minimum is approached, 

one would like a smaller /? just to hold one's solution.   However, the author has 

worked only with a fixed /? who's selection has required at most three attempts. 
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IV.        THE UNKNOWN SYSTEMS 

Figure 5 represents the six systems which were chosen for the evaluation 

of the Wiener model.    For the purpose of identification, however, the selected 

systems are treated as unknown.   In this section, these systems are described 

briefly and some of the considerations which lead to their selection are discussed. 

SIX    SIMULATED    SYSTEMS C22-2205 

v> y(t) 

(a)   l.AGUERRE  FUNCTION 

s   +2£w   s+o 

(b)   COMPLEX CONJUGATE POLES 

»(0 

(c)   SECOND DECREE TERM 

v(l) _x(j]_ 

s +2£u   s+u 2 

n n <£y 
(d)   SECOND DEGREE VOLTERRA  FUNCTIONAL 

yft) 

»<•) 

(c)   FULL-WAVE LINEAR DETECTOR 

y(') x(t) v(l) 

(0   HALF-WAVE LINEAR DETECTOR 

Fig. 5. 

The first system selected to play the role of the unknown system was 

the linear system whose impulse response was the fifth order Laguerre function 

t A    ).   It was selected because it is a single constituent (linear) functional of 

the Wiener model and thus permits one to assess to some degree the correlation 

between the various linear and nonlinear terms of the model. 

The second unknown system was also a linear system and consisted of a 

pair of complex conjugate poles. 

2 
u) 

H(s)   = 
n 

2 2 
s   + 2| u> s + « 

n n 

(4.1) 
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The damping ratio £ was taken to be 0.1 and hence (4.1) represents a rather 

narrow band system.    This is the same system considered in  [4] and its further 

consideration here is justified in that it provides a non-trivial approximation 

problem for the Laguerre functions for even a linear model. 

The third system consisted of an isolated second degree term of the 

Wiener model.   Namely, the linear system with impulse response -t   (    ) fol- 

lowed by a square-law device.   Its choice was also motivated (as in the case of 

the first system) by a desire to assess the correlation between the various linear 

and nonlinear terms of the model. 

The fourth unknown system consisted of the second system above followed 

by a square-law device.   It represents an isolated second degree Volterra 

functional  [1] whose Wiener coefficients may be calculated exactly with some 

effort.   As will be seen in the next section, however, it affords a rather difficult 

system for approximation by the Wiener model. 

The last two selected systems were the full-wave and half-wave linear 

detectors.   They provide non-trivial systems for approximation by the Wiener 

model in that the first (full-wave) contains Volterra functions of all even order 

(0, 2, 4,  ...) and the latter (half-wave) contains functionals of all order in its 

repres entation. 

In all cases, the unknown systems were independently simulated on the 

digital computer and driven by the same sample of white Gaussian noise.   A 

typical set of input/output series (for the half-wave linear detector) is given in 

Fig. 6.   The parameters of all systems were also all adjusted so that the spectral 

content of the systems output were approximately equal and hence required a 

single fixed bandwidth for the Laguerre network portion of the Wiener model. 

14 
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V. RESULTS FROM THE COMPUTER SIMULATION 

A.   The Direct and Modified Technique 

For each of the systems of Section IV, a Wiener model consisting of an 

eleven stage Laguerre network with all linear and quadratic terms has been deter- 

mined by both the direct and the modified technique.   The model is, therefore, 

that of Fig. 3 except for additional linear and quadratic terms.    In all, there were 

eleven linear, eleven square, and fifty-five cross terms in the models. 

Since several of the systems contain functionals beyond the capability of 

the model that contribute a sizeable dc. component to the system's output, it was 

found necessary to first estimate this dc. component and then remove it before it 

was possible to obtain even a linear approximation.    For the results to be shown 

in the following figures (Figs. 7-18), this estimated dc. component is plotted on 

top of the system' s output given by the upper curve of each figure. 

After each model had been determined by either technique, the approximation 

resulting from each of the following was evaluated: 

1. dc. + linear terms 

2. dc. + linear + square terms (5. 1) 

3. dc. + linear + all quadratic terms 

The resulting responses of each of the three approximations are also plot- 

ted as successive curves in the following figures. 

The mean square error resulting for each of the approximations (5.1) has 

also been calculated and normalized by the respective system' s output variance. 

That is, the estimated dc. component yields a model whose normalized mean 

square error equals one (1.0).    All other approximations, hopefully, would be 

less than one.   However, the resulting normalized errors obtained for each of 

the systems via both the direct and the modified technique are given in Table 1. 

For the table, the legend for the system agrees with that of Fig. 5 and the various 

approximations are summarized in (5.1).   Note that for the first approximation 

16 



APPROXIMATION 

S 
Y 
S 
T 
E 
M 

1 2 3 

a 0.101 
(D)  0.257 

(M) 0.096 

(D)  2.674 

(M) 0.094 

b 0.176 
(D) 0.242 

(M)0.169 

(D) 0.415 

(M) 0.158 

c 0.959 

(D)0.064 

(M) 0.058 

(D) 0.747 

(M) 0.060 

d 0.961 
(D) 0.895 

(M)0.888 

(D) 1.071 

(M) 0.525 

e 0.976 
(D) 0.935 

(M)0.924 

(D) 0.817 

(M) 0.784 

f 0.302 
(D) 0.395 

(M) 0.276 

(D) 0.753 

(M) 0.228 

D = Direct 
Method 

M = Modified 
Technique 

TABLE   1 -  NORMALIZED MEAN SQUARE ERRORS 
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(dc. + linear), both techniques yield the same model and hence only one value is 

given. 

On the following twelve pages, the responses of each system and of each of 

its resulting approximations are given. The results for the direct method and the 

modified technique are given on facing pages for comparisons. 

In all cases, the curves represent 7000 values in time with a At whose cor- 

responding folding frequency (f      = ) was approximately one hundred times 

the band-width of the systems considered. 

18 
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B.   The Gradient Technique 

On the following pages, Figs. 19-24 give the results of an identification 

program employing a gradient technique to identify only a linear model plus 

bias [equivalent to approximation 1 of (5.1)] for each of the systems under con- 

sideration.   In all cases, the model was limited to the dc. bias plus the linear 

terms on an eleven stage Laguerre network.   Initially, all coefficients of the 

model were set equal to zero. 

In the figures following, as before, the upper curve gives the system's 

response.   The center curve is the response to the linear model (plus bias) and 

the lower curve is the instantaneous error (between system and model) plotted to 

twice the scale of the system.   The convergence of the model to the system is 

quite remarkable in several cases.   The plotted responses represent 7000 values 

(in time) in all cases. 

Since the gradient technique is adaptive in nature, one cannot calculate a 

residual mean square error until after the model has converged.   In order to 

circumvent this considerable waiting time with its greatly increased computational 

requirement, and yet still provide for some comparison of this technique with 

previous ones, the following calculations have been implemented. 

The square of the instantaneous error was driven into a low-pass (digital) 

filter whose time constant was twice that used in the averaging for the gradient 

technique.   The resulting filter's output gives a fair measure of the time varying 

average square error.   For comparison of the technique, the residual error in 

the previous techniques was also driven through the same squarer/low-pass 

filter combination.   After 7000 values in time, this technique yielded the relative 

mean square errors of Table II for the linear models to the linear systems. 

31 



Technique 

Modified Gradient 

System a 0.188 0.075 

System b 3.53 2.80 

TABLE II - RELATIVE MEAN SQUARE ERRORS 

Table II demonstrates the superiority of the gradient technique in even the case 

of linear models.   That is, the gradient technique can adaptively identify (starting 

from all coefficients equal to zero) a better model in 7000 values than the direct 

averaging technique can determine by averaging over the full 7000 values. 
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The gradient technique also has considerable merit over the direct or 

modified techniques in the case of the full truncated Wiener model, i.e. , ap- 

proximation 3 of (5.1).   The following limitation of the gradient technique which 

must be noted, however, is the following:  As the number of degrees of freedom 

(i.e., the number of coefficients) of the model increases, so does the time 

required for convergence.    Fig. 25 gives the results of the identification of 

system  c  employing the gradient technique by a model composed of six stages 

of a Laguerre network (28 terms) starting from only the dc. component.   The 

relative mean square errors for this model and technique and the model and 

techniques of part A is: 

Direct —4. 295 Modified—0.192 Gradient—0.159 (5.2) 

Because of the structure of the identification program, it was also a 

simple matter to iterate the program using the previous iterations estimate of 

the coefficients as initial values.   Moreover, the subsequent iterations can in- 

crease the complexity of the model.   Figures 26 and 27 illustrate this technique 

for the program in the case of system  f (The Half-Wave Linear Detector).    For 

Fig. 26, the model consisted of all linear and quadratic terms (plus dc.) upon 

a four stage Laguerre network.   Fig. 27 is the result of a second iteration of 

the program starting from the final values of Fig. 26 and with the addition of 

two more stages to the network with corresponding coefficient initially equal to 

zero. 
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VI.        SUMMARY AND CONCLUSIONS 

The general system identification problem has been presented as a fitting of some 

mathematical model to a given physical system.   The only model considered in 

this report is a nonlinear model originally proposed by Norbert Wiener in 1949. 

This so-called Wiener model and its truncated version, which is necessitated by 

practical implementation, have been described briefly.   Then three procedures for 

the identification of any given system in terms of the Wiener model have been of- 

fered.    Finally, the report has presented results from a digital computer simulation 

study (utilizing six somewhat arbitrary systems) which was designed to evaluate 

the various identification procedures as well as the model itself as a basis for 

system identification. 

Some of the major conclusions which may be drawn from this study are the 

following: 

1) The implementation of a truncated Wiener model is well within the capability 

of modern digital computers.    For systems of modest frequency response, the cor- 

responding Wiener model may well be run in real-time. 

2) Of the three identification procedures considered, the gradient technique 

consistently yielded a better approximation (Wiener model) for the system under 

identification.   This is primarily because the gradient technique does not depend 

upon the orthogonality of the constituent functionals of the model and hence miti- 

gates the effect of possible non-Gaussian inputs and of the finite averaging times. 

Moreover, the gradient technique is also ideally suited for use in an adaptive 

situation because of its ability to use existing inputs and because of the simple 

recursive nature of the required algorithms. 

3) For most of the systems considered for identification, the truncated 
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Wiener model has been somewhat inappropriate but then again, these arbitrary 

systems were purposely chosen to be difficult in order to evaluate the Wiener 

model as a basis for system identification.   Other systems could have yielded 

more impressive results. 
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