L. Y4

AMERICAN MATHEMATICAL SOCIETY

AD658894

Lecture Notes Prepared in Connection with the Summer Seminar
on
Matbematics of the Decision Sciences
DDC
) 0CT 2 1967
balS1s

held at

Stanford University
Stanford, California

July 10 - August 11, 1967

Sponsored by: Atomic Energy Conmumission, Contract # AT(30-1)-3164 Modification No. 3
Air Force Office of Scientitic Research (with NIH), Contract #PH~43-67-712
Army Research Office (Durham), Contract #DA-31-124-ARO(D)-82
Offic. of Naval Research, Grant # Nonr(G)-00003-67
National Institutes of Health (with AFOSR), Contract #PH-43-67-712

National Science Foundation, Grant #GZ-403

Informally distributed manugcripts and articles should be treated as a
personal communication and are not for library use. Reference to the
contents in any publication should have the author's prior approval.

Jocumont has becn
for public reloase und acler B9
distribution is unllmited.




PAGES
~ ARE
MISSING
IN
ORIGINAL

DOCUMENT



L

TABLE OF CONTENTS

R. M. Thrall
Survey of Mathematical Programming

E, Polak,
Necessary Conditions of Optimacity in Control and Programming

George B. Dantzig
Mathematical Programming

Michel L. Balinski
Survey of Mathematical Programming -

Terry Rockafellar
Nonlinear Programming

Kenneth Arrow
Mathematical Economics

David Gale
Mathematical Economics

J. B. Rosen
Computational Aspects of Control Theory

i A.W. Tucker
Mathematical Programming

Richard Cottle
Mathematical Programming -

i D, R. Fulkerson
Networks and Graphs

Jack Edmonds
Combinatorial Methods

Ralph E. Gomory
Integer Programming

Carlton Lemke
Mathematical Programming

Arthur F, Veinott, Jr,
Optimal Inventory Control

i_ Donald L. Iglehart,
: Diffusion Approximations in Applied Probability

Herman Chernoff
Optimal Stochastic Control °

¥ 7




¥
Richard E, Bariow
Reliability Theory

Cyrus Derman
Markovian Decision Processes

M. Frank Norman,
Learning Theory j’

David Krantz
Measurement and Psychophysics °

Abraham Taub ‘
Computer Science‘

Andrze J, Ehrenfeucht
Perception Problems




e

LECTURES DELIVERED DURING THE SEMINAR BUT NOT
APPEARING IN THIS VOLUME

Alan Hoffman
Mathematical Programming

Samuel Karlin
Branching Processes

Victor Klee
Convexity

Harold Kuhn
Mathematical Economics

William Miller
Computer Science

Lucien Neustadt
Control Theory

Stanley Peters
Mathematical Linguistics

Herbert Robbins
Mathematical Statistics

Philip Wolfe
Nonlinear Programming

D, O. Siegmund

o S
#et

i ——— ——— b Ay o - ¥




SURVEY OF MATHEMATICAL PROGRAMMING

by
R. M. THRALL

at the
American Mathematical Society Summer Seminar
on the

Mathematics of the Decision Sciences
Stanford University
July - August 1967




l. Introduction

Optimization problems have been part of mathematics from its
earliest days. The general constrained optimization problem can be writ-
ten in form

min ©(X) for X € P

where P is some set and @ 1is a (real valued) scalar function whose
domain contains P. Linear programming refers to the special case in
wvhich P is a polyhecral subset of a vector space and ¢ 1is linear,

Let A = || a;, || ve & p-by-m matrix, let X = || X H,
c = || cill be m-by-1 Vectors, let B be a p-by-1 vector and let d
be a scalar. [In these lectures all scalars will be real numbers.]
Then the linear program

(1.1) minZ =4+ CF

(@]

subject to the constraints

AX = B
X20

is said to be in standard form. We sometimes call A the coefficient
matrix, X the activity vector, C the cost vector, B the constraint vec-
tor, and d the fixed cost or initial cost. Then

P={X|AX=B,X20}

is called the set of feasible vectors, If P is empty,the problem is said
to be infeasitle,

A problem in standard form can be presented as the tableau
matrix

(1.2) -d cT

or in more detail
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T, i ot

(2)
z 1 = x:L x.j xk Xn
z -d Cl eee CJ see Ck cee Cn
bl a..ll.-- aiJ.oo aikoca a:.ln
(105) bi &11000 ai,j... aikooo ain

?h a'rhlooo ?hj... ?hkoco ?hn

bp aplo-o &pJooo apkcoo ap‘n

and the i-th row as
bi=ailxl+...+ainxn (111,"',p)0

As a notational convience ve sometimes write

(1.4) s = -4 853 = € (d=1,..., ,,),amabi t=1,...,p)
For example,
(1.5) 0 .8 19 7 Y

25 3 L 1 1 o0

50 1 3 3 0 1

describes a program in standard form having p = 2 and m = 5.

The basic computational step involved ir the simplex algor-
ithm for solving linear progremming problems i{s the pivot operation of
Gaussian elimination. To pivot on a position (h,k) we must have the
pivot element apy different from zero. The pivot operation has tvo

steps:

Normalize: Divide the pivot rov (row h) by the pivo: element;
and Sweep out: Subtract suitable multiples of the pivot rov from
the remaining rows 80 45 to obtain zeros in all pousitions of the pivot
column (column k) except for the 1 in the pivot poeition (h,k).

P SRR <% o




(3)

Thus after pivoting on position (h,k) the matrix M of (1.2)
(or {1.3) becomes

J k
(1.6) - 1 ’iJ"ik‘hJ/“nx o
h “ny/ % 1
or
(1.7) 8l) = "hg/‘hx (J=0,1,...,n)

., - 8y 48,84 opg (1 = o,1,...,p3;1,ln;a ® 0,1,...,n)
For example, if we pivot on position (1,2) in (1.5) we get
brs/b | 2s/4 o -9/ 19/ o
(1.8) 25/4 3/ 2 /4 e o

15/k) -5/ 0O 9/ -3/ 1

Clearly, pivoting on position (h.k) represents solving equation
h for X and using this equation to eliminate X, from the remaining
equations.

lemma 1A, _lﬁ

Lo
’.\

(1.9) Mo
A®

be ocbtained from the M of (1.2) by a pivot operation on position (h,k).
oo ve have

(1.10) N* - QM
were . -
1. 'ck/'hl
1
(1.11) Qe :
Vapy
- "l.*/ ik 1 -

L




(4)

is a non-eingular (p + 1) - by - (p + 1) matrix differing from identity
only in column h, {.e.

————

qiJ = 513 (Kronecher's delta function)

3=0,1,e0.,p5 J # k

(1.12) qOh = -Ch/&hk
qih = _aik/ahk i = l, ¢ses y p; i * k
= 1l/a .
U = oy

Moreover, the problems described by M and M* have the same feacible sets
P and P* and for any feasible vector X we have

d* + o*TX = @ + cIX.

Theorem lB. let M* be obtained from M by a sequence of pivot operations
on positions not in the zeroth row or column. Then (1.10) holds for a

nonsingular matrix Q having the form

1 R
Q= '
0 P

i.e., the zero-th column of Q igs the initial unit vector. The linear pro-
grams defined by M* and M are equivalent in the sense that every con-
straint equation of either problem is a linear combination of constraint
equations of the other and that for any vector X which satisfies the

constraint equations AX = B or, equivelently, A¥X = B* we have also
d + C*X = d* + CxlX.

Note: the last statement is formulated to include vectors
X which may be infeasible in the sense of having some negative com-
ponents.

Proof: Using the theory of partitioned matrices we observe that a prod-
uct of matrices of the form (1.11) each having h 2 1 and k 2 1 has the
form (1.13). Moreover, ¢! 4lso has the form (1.13). The conclusions
concerning equivalence then follow from (1.,10). In particular we observe
that

[[-asexT|] « |]-acT]| + v||sa]]

ie.ythe cost rows ditfer by v linear combinstion of constraint rovs. Now
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(5)

1
a* + xTx = ||-axe#®| | ||2]] = |]-acT|] + B || Ba][{| X[ =
a +CTx + RO = d + CTx,

For later use we note that if

1 1 R*
(1.14) Q- ’
0 g
then
(lo 15) P“ - P-l ? R"‘ - -Rp’l .

'"he conclusion of theorem 1B states thst & sequence of pivots

leads from any linear programming provlem M to a new one M®* vwhich is
equivalent to it in a very strong sense of equivalence.

i}
I




2. Canonical form, Convergence

We introduce a notation for submatrices which will be useful
in what follows.

Jet A be a p-by-n matrix, let C be an n-by-1 column
vector, and let R = (ry. ...,rq) be any sequence of integers with
l1<ry £n . Then we derote by Ap the p-by-q matrix whose columns
in order are Arl, +o- AL, and we denote by Cp the q-by-1 column

vector whose cory-nents ?n order are Cpj,+-e+y érq, i.e.,
(2.1) Ap = HArl.,.Arqgl s G =] opy
er .
For example, let
1 0 -2 1 1 o0 2 3 311
a=l2 1 1 o -2 o 2f}, B=l7Ill, c={| ol|,
-3 0 2 0 1 1 3 2 -2
0
-4
0
7
)
a= 14 .
ard lev R = (2, 7, 3, 1);then
0o 2 -2 1 ,o l
AR= 1 2 1 e , CR= 7
0 3 2 -3 -2
3
and for S = (4, 2, 6) ,




Let
(2.2) S = (sl,...,sp)
be an ordered sequence of p different integers selected from the set

{1, 2,...,0} . The problem (1.1) is said to be in canonical form with .
respect to the basis sequence S if

(CL) Ag=1

H

canonical coefficients,

p L
() ¢Cg =0 , canonical costs,
(cC3) B 20 , canonical constants.

Note that Cl1 states that the system of equations has been solved for
Xg,»+++)X_ (the basic variables) in terms of the remaining (non-basic)
variables;p C2 states that ths equations have been used to eliminate the
basic variables from the cost functicn; and €3 states that in the
solved form cf the equations the constant terms are non-negative.

Associated with a problem in canonical form,there is a feasible
vector Xs and correspording cost 25 given by

S s
(2.3) xgy = b (= 1,..4,p)
xg =0 g é S
S

Z = 'i .

This solution is referred to as the basic solution associated
with the basic sequence S .

If we let G denote the sequence remaining when the elements
of S are deleted from (1,...,s) then (2.3) can be written as

(2.3') X5=8B, X3-0 2z5=4q.

The example (1.5) is canonical with respect to the hasic seguence
S=(4,5). Here G = (1, 2, 3) and the associated basic solution and
cost are

S x|, 25 x, 0
X3 0

P Rt




A vector F = llfl fo ... nt' is said to be lexicographically

positive, written F» O , if the first non-zerc comporent of F is
positive, i.e., if for some i, 1 £ig<n, wehave f1 = ... =1fy.1 =0,
£y > 0 . For example, [|2 -1 3||, |lo o 1|, ana [l0o 2 -3 k|
are all lexicographically positive whereas ||0 -1 7}| , ||o o o],
.and ||-1 7 8|] arenot. If F- GO we say that F is lexico-
- graphically greater than G , written F P> G .

If,for a problem in canonical form,the strict inequality B> 0
holds,then we have automatically that: Che-every row of ||B A|| 1s
lexicographically positive:. If some components of B are zero but the
first non-zero a;; is each such row is positive then (k Tholds. If,
in particular, S = (1, 2, ...,p), then Ch is a consequence of C3

and Cl . More generally, if C1 and 23 hold, a permutation of columns
i l’oon,n Will yield Ch °

ey swe w et

Theorem 2A. Consider a linear programming problem in canonical form.
Then one of the following alternatives holds:

(1) C2 O and the associated basic solution is optimal.

(11) There exists k such that ¢, <O and A £ 0 and the cost
function has no lower bound.

(111) There exists k such that ¢, < 0 and i such that a;, >0,
and if C4 holds there is a position in column k at which a
pivot transformation results in an equivalent problem in canonical

form, satisfying Ob, and for which the zero-th row |[-a* c*||
is lexicographically greater than that I1-a CI[ of the initial
problem.

Proof: To estabiish {i) we note that for any feasible X we have
- Ty . ~T Ty o Ty . - - S
(2.4) Z=d+CX=d+Cs%+CXom=d+Ci¥grd=2°

The inequality follows from the fact that Cg e O and XG 2 0 3 hence
XS 1is optimal and 25 is the minimal cost.

The matrix M in (2.5) illustrates case (i).

200 0 0 3 & 5
1 0 3 -2 7
0 1 3 -3 -2

(2.5) M=

[AS N o]




(9)

To establish (ii) consider the equations

(2.6) by = Xg +ag X i=1,...,p

i

z= 4 + Cx Xi

obtained from (1.1) by setting all of the non-basic variables equal to
zero except for x, . As xy ‘takes on larger and larger positive values ,
each Xgy either grows larger also (if 8y < 0 ) or stays constant

(if aj, = 0 ) and 2z either is initially or ultimately becomes negative
and takes on larger and larger negative values. Thus 2z - - © as

Xk @ and always with feasible vectors X . The situation is pictured
in Figure 2.1.

The matrix M in (2.7) illustrates case (ii) with k=4 .

(2.7) -20] 00 3 -4 5
M= 9] 1 0 3 -2 7T
2l o 1 3 -3 -2

Case (iii) differs from case (ii) since for ay > O, equations
(2.6) place an upper bound of bi/aik on xx . See Figure 2.2.

For feasibility, we must have
(2.8) Xx § min {bi/aik ‘ By > O} = bh/ahk .
If now we pivot at (h,k), the new basic solution is given by (2.6) with

Xy = bh/ahk, and if by > 0, the cost 2 is reduced by addition of
the negative amount by cy/ap, ; i.e.,

(209) z' =z - by Ck/ahk .
Th> matrix in (2.10) illustrates case (iii) with k = 3,
h=2;
(2.10) -20{ 0 0 -3 & 210 /ayy
M= 911 0 3 -2 T71]9/3
2o 1 3 3 -2|2/3

and after pivoting cn position (2,3) we obtain

\2.11) =181 0 1 0 7 3
Me 7{1 -1 0 -5 9

2/31 0 1/3 1 1-2/3
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(10)
Xs;
" om <0
2
.’ ¢ 04. s 0
xk
y 4
d
SLOPE = Cu <0
Xy
Figure 2.1. Geometry of Unbounded Case.
} 4

Pigure 2.2. Geometry of Bounded Case.

T




(11)

which is in case (i) and therefore the associated basic solution
- -

18

T

0
i (2'12) X = 2/3 ) Z
‘ 0

0

e

is optimal.

In this example we had B > O , ana hence reductiun in the
cost 5 (from 20 to 18). It sometimes happens that by = O and then
(cf. (2.9)) there is no improvement in 2z ; this is the phencmena
called degeneracy. To handle degereracy we look not jurt at -a* tut
at the entire row ||-a* ¢*T|!. For it we have

* ¥
(2.13) [[-a* ¢*T|] = |]-a 7| - X Ilbh &y -+ 8hpl |
and now because of our assumption Ch, together with the fact that
-ck/ahk is positive, we conclude from (2.13) that the transformed cost
row is lexicographically greater than the initial one; i.e.,we have
strict lexicographic improvement in the cost row.

However, in case there are ties in (2.8), i.e4if h 1is not
uniquely defined by (2.8) then we must choose h so as to preserve
condition Ch . This is achieved by the following requirement;

(2.lh) rlli_k' "bh ahl eo o ahnll lemin {"“"— llbi ail voe &in” O} .
This choice of h 1is unique since no two rows of M can be equal.

To see that M* now satisfies Cb we first observe tnat row
h of M* is

1
(2.15) ;;l“k" I'bh 8,y - thll

and is lexicographically positive because the h—th row of M was.
Next, if 1 = h we have for the i-th row of M

* * #* a
(2.16) llbi B4] e ainll a llbi 84) +oo 84y ll - ;;; I'bh 8p] e ‘hnll

1 1
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Now, if a4, § O the first line of (2.16) shows that row (i) is either
unchanged or is lexicographically increased; and if &y, > 0 our choice
of h via (2.14) quarantees that the difference in the second line of
(2.16) is lexicographically negative. Thus Ch holds for the transformed
matrix M* . This completes the proof »f Theorem 2A.

Lemma 2B, Let M and m* define equivalent linear programming probléms
(in the sense of TheoremlB) in canonical form with respect to the same
basic sequence S . Then M= M,

Proof: Suppose that (1.10) holds for @ given by (1.13). Then using
subscripts to denote columns of a matrix we have

*
My = QM5 3 J = 0pecasn

In particular, if JjeS , say J = Sy, We have M;h = MSh = Upy) The
(h+l)st unit vector and so

Uh+l=QUh+l=Qh » h=l’o..o’p .
But Qo =1Up ; hence Q=TI and M=M" .
Theorem 2C. (first convergence Theorem) Consider a linear programming

problem in canonical form. Then after a finite number of pivot operations
one of the terminal states (i) or (ii) of Theorem 2A is attained.

First permute columns, if necessary,so that (C4) holds. Then

Proof: Consider a sequence M= M,, M), Mz, ..., My of canonical tablesu
matrices all in case (iii) and satisfying (C4) and where for each

i(4 = 1,...,t) Mg is obtained from M, ; by pivoting on a position
(hy, ki) selected so that ck£i°1) is a negative entry ir the cost

row of M;.; and hy is determined using (2.14). Then, since by the
conclusion for case (iii) of Theorem 2A, there is lexicographic improve-
ment in the zero-th row at each stage, no two matrices in the sequence can
be equal. It follows from Lemma 2B that no two of the corresponding
basic sequences can be equal. Hence, t+l cannot exceed the number of
possible basic sequences. We conclude t is less than the number

P(n,p) of permutations of n objects taken p at a time and therefore
t 1is bounded. On the other hand,the sequence can be extended unless one
of the terminal states (i) or (ii) has been reached. We conzlude that

a terminal state can be reached after less then P(n,p) pivots.

B O e . -
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Fortunately, in practice the simplex algorithm has been found
to terminate after relatively few pivots,although there is a yet not a
mathematically established bound which comes close to explaining camputa-
tional results.




- PR

(1)

3. Reduction to Canonical Form

Having obtained a convergence theorem for problems in canonical
form, we now turn to the matter of reduction to canonical form. We organize
the question of reduction under sequence convergence theorems. each cover-
ing 2 more general case than the former, until we reach one which applies
to the most general form of linear programming.

Theorem 3A. (Second convergence theorem.) Let M represent a problem
in standard form for which Cl holds. Then there exists a finite sequence

of pivot operations which will terminate in an equivalent problem M"
which is in state (15 or (11) of Theorem 2B or which
(iv) has an infeasible constraint of the form "negative
scalar equals sum of products of non-negative scalars",

i.e.y M has a row of the form
(3.1) [lby agy «-- aypll
where by < 0 and 843 2 0 j=1,...yn .
We sometimes represent states (i), (ii), (iv) symbolically by

(1)

®

(11)

O el b




n

(15)

(1v)

- @

Proof: Conceptually, we may achieve C2 by using the equations to
eliminate the basic variables from the cost function. Analytically, we
proceed as follows. Let

(3.2) 2T = |lay oo 2ql] = CgT A, z,=¢c5TB;

then successive pivots on the p positions, ‘1, sl), (2, 52), ceny
(p, sp) will yield a new cost row |[|-d" C**|| where

(3.3) *=c-2, -d"=-4da-2,

and will not change any of the last p rows of M. Since Ag, 1=

the J-th unit vector in p-space, sz = Cgy 80 that z,J =0 (3 =1,...,p)3
hence, C2 is now satisfied.

Tables 3.1 and 3.2 give, respectively, a schematic representa-
tion and a numerical example of this process.

Next, if C3 is not satisfied, we consider an auxiliary sub-
probles,

ar o T

(3.4) M e

B. Al

whose zero-th rov is any row of M for which the constant term is
negative, and where ||B' A'{] consists of all rows of K for which
the constant term is positive or zero. Now M' 1is in canonical form,

and we apply the first convergence theorem t¢ MN' to obtain a sequence
of pivot positions leading to either state (i) or state (i1). We actually
pivot in all of N, so as 0 preserve (1 or C2 for it. Let

and M *l represent the resulting problem and suxiliary subproblem.
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TABLE 3.1 .

CALCUIATION OF CANONICAL COSTS

cg | | cT Zp = CSTB
B A 2y -CSTAJ (=1, ..., n)
Zo ZT J#t a - - z,
an | oot ctacy-zy  (Jml, .y m)
TABLE 3.2

CALCULATION OF CANONICAL COSTS, ILLUSTRATIVE EXAMPLE

B A Ay Ay, Ac
32 *? 5 -?L -2 Qf‘
32 ¢ 1 & 0 -5
k-1 0o o 2 1 2
113 1 o0 < o 2

(a) Initisl tadbleau, S = (3, 5, 2)

cs BA1A2A3N‘A5A6

~ 2 p) b 3 1
3 Tg 2 0 1 ¥ 0 5
214l 0o o 2 1 2
s11] 3 12 o 4 o 2
8 L9125 5 & 8 -2 -k
cy#[-6]23 0 0 5 0 15
(b) Calculation of canonical costs cJO
B A A A3 N A A
$1-23 0 0 S5 0 15]
3 2 0 1 LY 0 -5
Y -1 (o] (0] 2 1l 2
1] 3 1 0o & 0 2

{c) Canonical tableau

A
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If state (i) obtains for M' and -d*' < 0, then M* is

in state (iv) and, therefore, the problem is infeasible. If state (1)
obtains for M'% and -d** 2 0, we form a new subproblem, M'll
which is in canonical form and has at least one more row than M' had.
{Actually, if -4"1 2 0 arfter any pivot, we need not cont.nue to a
terminal state but can immediately pass to a "larger" M':l ]
#] »l

If state (ii) obtains with, say, o <0 and A0,
we choose the cost row*of the subproblem as pivot row and col'mun k as
pivot column. Then ckl is trhe pivot element. We claim that, after
pivoting, the resulting M*' will be feasible every row of M*L (including
its cost row) and, hence, we may form a "larger” M"*'l a: the continuing
auxiliary subproblem.

To verify this claim, we observe, first, that I Rt (-d'l)/
> 0, since by nypothesiz both numerator and denominatcor are negative.
Finally, if 1 1is any row of M , We have

C*l

I S iy M *

by =0y - a3y (-d '/‘k 20
since by hypothesis the first term in the fraction i; nonpositive (as
an element of A;l ) and tne other two are negative.

Thus, after a finite number of auxiliary subproblems of increasiny
size, we must either reach state (1v) or obtain an M* with B* > 0 and
hence, by Thec:-m .”, eventually reach state (i) or stute {ii) for the
full problem. This compiwui- & the proof of Theorem 3A.

Remarl:- If, serendipitously, rows of M not in M become
feasible before the <ust row of does, one can immediately pass to
a larger subproblem. The desirability of including the search for this
phenomenon in a computer program is still an open question.

Table 3.3 illustrates pivot defined by an auxiliary subproblem.
Note tiuat, in this example, one pivot achieves one more feasible row.

An additional pivot in position (3,1) will demonstrate infeasibility of
the problem,

Theorem 3B. (Ihird convergen:e theoreg:) Le’ M represent
& problem in standard form. Then there exists s finite sequence of

pivets whizh will termigete {p an eguivalent problen ™ , which cither

(v) has a constraint of the form "nonzero scalar
equals zero”,




(18)

TABLE 3.3

EXAMPLE ILLUSTRATING AUXILIARY PROBLEM

B A A, A3 AL A5 g Ay
41 o 0o 3 © 2 0 L
310 0 3 1 2 0 3
2{ 1 0 -1 0 2 0 2
2]l 0 0o 2 o0 -3 1 1
21 0 1 3 0 & 0 -l

(a) Initial tableau

n w
(@]
(o]
w
[
\V]
o
(OS]

(b) Auxiliary tableau

AFTER PIVOT AT (2, 5)

(21 o hH © 0 0 0
1|-2 o 2 1 o0 0 1
1112 0 -1/2 o 1 o 1
1|32 ¢ 12 ¢ 0o 1 &

-6 -2 1 5 0 0 0 -5

R




i.e., M* has a row of the form
(3.5) [lbg a3y -- aynll

where b; + 0 and 843 = ... = 8
of any zero rows.

in = 0, or_satisfies Cl after deletion

Proof: Suppose that S = (s}, ..., sq) is a sequence uof q distinet
integers, wher¢ 0 < q < p such that

(3°6) Asl = Iy, «vey Ag =1

Then let h =g +1 and consider the h-th row of M . If it satisfies
(v), the problem is infeasible and we stop. If the entire row is zero,
we delete it and proceed with the resulting tableau. Otherwise, there
exists k such that ap + 0 . Because of (3.€), k¢S . We now pivot
on position (h,k) to obtain a new tableau with one more canonical
column. We let s_, =k, §' = (Sl’“’°’sq+l) , and (3.6) holds for the
transformed tarleau relative to 2' . Since each stage either stops
with {v) or decreases p-q , the process cannot continue indefinitely,
and the thecrem is established.

The first three reduction theorems show that, for any problem
in standard form, there exists a finite sequence of pivots, which results
in an equivalent problem M* in one of the terminal forms (i), {ii),
(iv) or (v). Wc now define the general linear program snd show how tc
reduce it to standard form; thus, we will complete our proof of cocnvergence
of the simplex algoerithm.

The most general form of linear programming probiem has both
nonnegative and free variables and both inequalities and equations.
Suppose that there are n; nonnegative variables, 'n, free variables,
Py inequalities, and p, equalities. The problem takes the form

(3.7) Minimize 2z = d + Gy Xy + Cp> Xo
1 X +C Xe

subject to the constraints

(3.8) Ay Xy +A0X 28

| (3.9) ) Aoy Xy * Axp Xp = By o
(3.10) X3 20
(3.11) X, free

g
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We introduce a vector X3 with p; components, set C3 =0,
replace (3.7) and (3.8) by

(3.7") Minimize z=a+C " X +Col X + C3T X5,
(3.8") Al Xy + A2 Xp - Ip, X3 =By,

and add the constraint

(3.12) X320 .

We call X3 a slack vector.

The resulting problem would be in standard form were it not for
the free variables. A little reflection leads to the observation that
basic free variables present no difficulty but that nonbasic (i.e.,
independent) free variables upset the logic of the simplex method. This
suggests that we look for pivot operations which will bring as many free
variables as possible irto the basis. We will then be able to lay the
corresponding equations aside, temporarily, and deal with a smaller prob-
lem in standard form.

We proceed inductively and assume for some ¢ with 0< q £ ny
that there are q free variasbles in the basis and that by permuting rows
(if necessary) these free vaiiables are in rows 1,..., q and that the
basic free vuriable in row 1 1is in column si(i =1,...,q) - If q< no
there exists another free column k and for it there are three cases to
consider (set p = p; + o)

(&) aq+l'k B oeee = ap’k = Ck = O

0, ¢ 40

‘l (b) aq”'l,k F eee = Bpk

(c) for some h with q<hgp, &, $0.

If case (a) holds for every nonbasic free column, or if q = np ,
E : we consider the subproblem which remains when we delete all of the free

. columns and the first q rows. This subproblem is in standard form and
therefore can be handled by the methods already deyeloped. If the sub-
provlem has a basic optimal feasible solution (X;~, X37), we obtain a
basic cptimal feasibie solution (X%, %%, X3°) for the main problem

by setting each nonbasic free variable equal to zero and by setting

T ok A
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0 0
(3.13) Xg, = by - (847 X + eee ¥ 8in xnl)
0 0 -
- (ai,nl+n2+1xnl+n2+l et ai,n1+n2+n3 xnl+n2+n3)
i = l,caa,q .

Moreover, the minimum value of 2z is the same for the main problem and
the subproblem.

If case (b) holds, then either there is no lower bound for the
objective function or the problem is not feasible. For, suppose xX© s
any feasible solution with corresponding objective value 20 . Then
define a vector Y as follows:

(3.14) Ys; = -8k 1=1,.08g
Y =1
yy = O for all other i .

Then Y makes the left-hand sides of (3.7') and (3.8) zero, so that
the vector

x=x0 + ty

is (1) feasible for all real numbers t , and (ii) ylelds z = 20 + tey -
It is clear that the constraint equations (3.7') and (3 8) are satisfied
by X . Moreover, for all t, Xl = X 20 and X 0>o0 ; so that
X satisfies all of the feasibility requirements. ﬁb z=1co+ cTx

= (¢eg *+ cTx0 ) +cTy = z, + te,  (since Csy = 0, 1= 1,...,q). Now, by
giving t the sign opposite that of ¢, and by making the absolute
value of  t sufficiently large, we can make 2z take negative values
with arbitrarily large absolute value; i.e., the objective function has

no lower bound. Thus, if case (b) occurs, we stop knowing that the problem
has no sclution.

Finally, if case (c) holds,we (i) pivot at position (h,k), (ii)
permute row h and row q+l , (iii) set s,,; = k and thereby have com-
pleted an inductive step. We then iterate 2he process until eventually
we reach case (a), case (b), or q = no .

The three cases are illustrated, respectively, in Tables 3.4
3.5, and 3.6. The second tableau in Table 3.6 comes under case (a). In
all of the examples x;, xp are nonnegative variables, X3, Xy are free
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TABLE 3.4

CASE (a) TRANSITION TO SUBPROBLEM

B Al AQ A3 Ak AS

£ D W ion
~ O PO
nw PiFE
O O H|O

pl"l-'p2 -2, nl 82, ng =2,q=l’ Bl=3,k=h

0
X1 I 0
0 = - 0 P A £ -6
X3 |2
x,° 4
0
0
ol | | I
0]
X3O 2
TABLE 3.5

CASE (b) UNBOUNDED OBJECTIVE FUNCTION

B Ay Ay Ay Ay A

0 1 3 -2 0 4
3 1 2 3 1 1
2] -1 3 0 0 -3
-4 2 6 0 o0 3

plﬂl,pzlla,Dlnz,neﬂe,qul,!lah,knB

o

’ zO

1

1l
X = 0 -k,Y.

0

0

Ow = O

2 al -2t ww A8 t o4
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TABLE 3.6

CASE (c) INCREASE IN q

free slack
o
0 1 3 -2 0 I
3 1 2 3 1 1
2 | -1 @[3 o -3
-4 2 -6 -3 0 3
plal,p2=2,n1=2,n2~=2,qul,81 b, k

L -1 9 0 0 =2
-3 oot 0O 1 10
2 | -2 2 1 0 -3
2 -1 3 0 0 -6

Q =2, Slﬂh, 8p =3

FrgRed s
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varisbles, and x. 1is a slack (nonnegative) variable. The tableau o
corresponding to ghe subproblem in the first example is

B4 & A

6 0 4 0
2 0 3 1
Yy 1 -2 0
4
and 18 in optimal form with corresponding solution 0 as listed.
2

The subproblem obtained from the second tebleau in the third example is

L -1 9 -2
2 -1 3 -6 ’

After pivoting in position (1,2) of this subproblem, i.e., position (3,2)
of the corresponding full problem, we obtain

[2T =2 o 16
2/3]-1/3 1 -2

which is in case (1), so that the original problem has the optimal sclution.

0
2/3
z2=2 X=10

5/3

0 :

We summarize these results in cur final convergence theorem.

Theorem 3C. (Fourth convergence theorem.) Given a general linear program-
ming problem (3.7) through (3.11), there exists a finite sequence of pivot
operations which either leaus to an optimal solution, demonstrates in-

feasibility, or demonstrates unbounded cost.

Actually, we have done more, because we have glven an algorithm
which selects the successive pivot positions and which identifies infeasibil-
ity and unboundedness in several specific forms.
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There is an alternate method for handling free varisbles,
namely, the replacement of X, throughout

(3.15) Xo = X3 - X
where
(3.16) X220, X320

we thus have an equivalent problem with only nonnegative variables.
This alternate method is, for theoretical purposes, quite satisfactory;
however, it fails to take any advantage of the flexibility which free
variables afford via the reduction to a smaller problem after the free
variables are pivoted into the basis.
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ERRATA

7.2 Replace (1,...,8) by (l,...,n)

8.11 Replace is by in

10 Top figure. Replace bY by bj

11.3 Replaceizhbyigh

12.4 Replace negative by positive

19.9 Delete comma

14.4 Should read ...under a sequence of convergence.

26 (4.2) Replace d* by -d*
(4.4) Replace a;, by c)

Replace azk by a1k

Replace ¢, by 3pk

31.7 Replace M by >

36.6 Replace X;, by X,

37.12 Replace Cfby cf twice

41.5 Should read ... the protein illustration b'h
represents the...

41.11 Replace second 7 by t

41.20 Replace 7 by t
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4, A Computational Check; The Revised Simplex Method

Let

|-a ¢
(4.1) M= '
B A |

be the initial teblcau matrix for a problem in stendard form, &nd let

a* C‘r

(l‘oe) M¥* =
B¥* A%

be a second tableau mutrix for the same problem which we assume to be in
canonical form relative to some basic sequence S* = (sl*, ceey sp*).

For the case of a full tableau matrix M and any basic sequence
S = (sl, eeer S_) ve modify cur previous notation for submatrices slightly
and thus write

{“03) M =

to designate the square matrix of degree p + 1 consisting of %he first unit
vector of Vp o ) - folloved by columns S1r eren Sy of M (we consider
i 'g |l tc be column O of M).

The process of pivoting on position {(h,k}) of M can be regarded as
premul tipilcetion of M by the matrix

1 0 ... -a, /o ... ol
O l e -8 /ﬂ, doe 0
(k) roell. 2K’ "k .
- . };"Jﬂ -
hk
0 ? * e -C /5 ¢s e l
k' hx




]
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Here F differs from the identity matrix I ¢enly in column h + 1 n
which is indicated in (4.4), or in terms of E’+fih = 'mik/mhk for all

i + h and f =1 mh . It follows that a sequence of pivot operations

can be effectga by a s%ngle matrix multiplication, and the reverse se-

quence can be ackeived by multiplying by the inverse of this same matrix.

Suprose then that

(4.5) M* =QM, M = Q’l Mt

Since we never pivet in the initial row or columm.each pivot matrix F
has initial column 0 and hence so does their product Q as well as its

0
inverse Q‘l.
Now
1
6 % = * * =
(4.96) MS* O M¥_ .o M¥ ey
: 1 P
0
1l 1
It follows from (4.5) that for each j, M, = Q-lM * ; also ?‘\ = l N ;
J J 6 b
hence we have
= -1 % = -1
(4.7) Mo =Q7 MK =QT, or
/ ) -
(4.8) M= M, M¥

This equation provides a numerical check of the accuracy of M*
under the hypothesis that M*, but not necessarily M, is in canonical form.
We call it a reverse check since it goes from M* o0 M by premultiplication
with a "submatrix" of M.

If M 1is in canonical form with respect to a basic sequence
S=1{(s_, eee, s ), then
1 P

(4.9} M¥ = MX M, i, Q=M
We call (4.9) a direct check since it multiplies M by & "submatrix" of M*
to obtaln M*, If a check (either direct or reverse) discloses an error, one
can then check in intermediate stages and soon locate the source of the
error. For example, if M* is the result of 12 cycles, first check at Cycle
t. If this is correct,check at Cycle 9; if it 1s incorrect check at Cycle 3,
ete,
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We observe that when both M and M* are in canonical furm, then

i, - ;
(4.10) Me Mg =T, )

thus we may regard the simplex method as being a systematic procedure for
calculating inverses of the "submatrices"” Ms*of M and for specifying,by
selection of 5%, which submatrices to invert.

In applying (4.9), given M and §; there is no need to calculate
all of M*. Indeed, if we first calculate the initial row of M¥* we can
either (i) find an index k for which chk* < 0 or (ii) conclude the
M* is in optimzl form.

In case (i) we calculate column k of M¥ and conclude either
(111} there is some 85y >0 or (iv) ’the problem has no optimal solution.
In case (iii) we calculate column O (the B column) and apply the pivot
selection rule to determine the next pivot position (h,k) iet M' be the
matrix obtained from M* after pivoting at (h,k). Then

(k.11) M' = FaM*

where F* is given by (4.4) (calculated from M* rather than from M).
Then, from (%.5) we get

(4.12) M' = Q'M where Q' = F¥%Q,

This completes a full cycle of the algorithm. Note that this form of the
simplex algorithm requires (i) keepirg a perumanent record of the initial
tableau matrix M, (ii) keeping a temporary record of the transforming
matrix Q which is discarded in favor of ite successor Q' when it is
calculated, and (iii) calcwlating the final row, the initial colimn, and
one cther column of M¥, These are used to decide the state of M¥* and

to determine F* in case M* is nét in a terminal state and then are dis-

carded. One miguat also wish to (iv) keep a record of the basic sequence
S'.

[The revised simplex method is not recommended for hand calculation.
For that matter, hand calculation in any form is clearly hopelessly inef-
ficient for all but very tiny problems. Thus we must evaluate the revised
simpler method with machine calculation in mind.]

It is not particularliy difficult to devise a computer program
wvhich will put into effect the four parts (i) - (iv) of the revised

simplex method. This method has several important advantages for digital
calculation

- A«Mw
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(a) All calculations are based on the initial data, and
the accuracy of @ can be tested by reference to (4.7), i.e., Q .-
is the inverse of MS*;

(b) If the origiral data is sparse (i.e,»has many zero co-
efficients) the calculations will be simpler and quicker at every cycle
since this sparse matrix M 1s used throughout. In the ordinary algorithm
sparseness is rapidly lost, Moreover, very large sparse problems can
be bandled with a computer memory which could not touch nonsparse prob-
lems of the same size;

(¢c) The fact that not all of M* need be calculated gives
substantial computing economy,

In most current computer programs the method, as described, is
medified in several ways,of which we discuss only one, Instead of storing
Q we store only each factor ¥', and for F' we store only its non-identity
column together with & record of the pivot position., The algorithm in this
form is called the "product form of the revised simplex method" and several
computer algorithms for this method are in current use. We do not discuss
the details here.




s

(30)

5. Duality
We consider a pair of related problems
(5.1) DV<R, V20, maximize PT v
and
(5.2) D'UZP, UZ0, minimize 8T U,

vhere D is & p-by-n matrix and we assume that problem (5.1) has an
optimal feasible solution.

The introduction of slack variables Y in (5.1) leads to a
problem in standard form

(5.3) AX =B, X20, minimize z =d + CT X
where
(5.4) a=|p1|], x=] ¥, ¢=]] 5 ll, B=&, a=o0,

and Cl and C2 hold for the basic sequence S = (m + 1, .o., m + D).

Thus as initial tableau we have

-a cT 0 -pf 0
(505) M = = ;

B A R D I,
let the final (optimal) tableau te

-a® T -an CwL ch
(5'6) Mﬁ.‘ = G o

B¥* A# B* A% A%

G &

Next, we let
(5.7) Uo - Cf ’
and then from (4.9) we get

T T T T
(5.8) -d* = U, R, ca =-P" +U D,
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Now, since (5.6) is in optimal form,we have .

(5.9) C£20, C%¥20,

»*
G
or, equivalently,

(5.10) Uy 20, DU 2P,

Hence, tlo is a feasible vector for the dual problem.

let XO = v0 be the optimal vector for the primsl problem. Then
0
T T
* = = . .
(5.11) a% = CX = PV ;
herce
T T
<12 = 0] = gd¥* .
(5.12) on R°U, d
For any feasible vectors V and U for (5.1) and (5.2) we have
(5.13) RU =UR2 UV > ply,

From (5.13), (5.12) and the feasibility of Vor Up 5 it follows
that both V_and U are optimal. Since Iio appears as part of the initial
row of M*, we see that the simplex algorithm solves both of the related
problems simultaneously and that the objective values are equal.

The relationship between the problems (5.1) and (5.2) is an inter-
esting special instance of duality in linear programming. Ever this special
instance has a number of important applications; for example, the minimax
theorem of game theory is a consequence of (5.11). However, the special
form of (5.1) leads us to ask how to define duality for more general linear
programming problems. Indeed, we might ask ahout the characteristics of a
duality relation in still more general situations.,

Let X~ be a set of objects. A mapping T of L into itself is
sald_to be involutory ifvaeM , T(T(a)) = a. If ~ is an equivalence relation
on L, T 1is said to equivalence preserving if a ~ a' implies T(a) ~ T(a').

W2 say that T is meaningful relative to some relation R on L if
for all a€l, aRT(a).

For example, let L be the set of all linear programming problems
each of which has either form (5.1) or the form

(5.2') FU2 Q, U320, minimze STy
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and let T be the mapping used above which sends the problem of (5.1) into
(5.,2) and conversely. In more detail,if we let Z& denote the set of all
problems of form (5.1), let 22 denote the set of all problems of form (5.2'),
and let L = ZlUZ then T interchanges the two subsets Zl Z‘Z and when
applied twice to aﬁy problem in z gives back that same problem. The invol-
utory property of T depends on the fact that transposing any matrix twice
gives back that same matrix. This mapping T is not only involutory but
also is meaningful relative to the relation

(5.14) optimal value a = optimal value T(a).

More generally, a mapping T 1is meaningful if there are useful thecrems con
necting & and T(a); the duality theorems of linear programming are of this
nature.

A mapping T which has all three of these properties i.e.
vhich is involutory, equivalence preserving, and meaningful qualifies as
the very "best" type of duality. We obtain such a duslity for linear
programming under a rather general equivalence relation.

We now denote by L the set of all linear programming problems
in the general form (3.7) - (3.11). Given any such problem called the
primal problem, we show in Table (5.1) how to define a new problem in &
called the dual problem related to the given primal. We may characterize
the primal problem by the (pl *py ¥ 1) -by- (n, + ny + 1) matrix

1
~ T T
-d 1 C2
.14 =
(5.14) G Bl All A12
B2 A2l A22
together with the ordered set of integers p , n 1’ n.) which indicates

the nature of each constraint and variable. %hen the duaf problem is
characterized by the matrix - GT together with the sequence (nl, r?, pl, p2
Clearly, the correspondence between primal and dual is involutary, since,

in particular, -(-GT)T = G. Note that the dual is also & minimization
problem; each inequality in the primal system corresponds to a non-negative
variable in the dual; each equation in the primal system corresponds to a
free variable in the dual. Corresponding to each non-negative variable in
the primal system is an inequality whose coefficients are the negatives of
the coefficients of this variable and whose right hand side is the negative
of the coefficient of the variable in the primal objective function;

)e
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Primal Dual -;
min ClTXl + CETX2 +d =2 min -BlTUl - B2TU2 -d =2z
Pt ALK ALK DB U 20
L A21 X__L + A22 X2 = B2 U2 free
B xl >0 -Ap T u - Azlv? U, 2 -C,
n, X, free A T U - Ay, T U, = -,

Table 5.1. Dual Systems, General Case.

each free variable in the primal corresponds to a similarly defined equation
in the dual system. The dual objective function has as coefficients the
negatives of the right hand sides of the primal restraints. (The minus sign
attached to d in (5.14) is necessary for uniformity in reading relations
from the matrix; the initial row represents the equation 2z-d = ClTXl+ C2TX2),

This duality includes the previous one as a special case if we
observe that (5.1) is equivalent to

T
(5.21") -DV 2 -R, V2O, minimize - P V.

Two special cases of the general linear programming problems are
of frequent occurrence. The case p, = = 0 (cf. 5.1) 1is called the
Ezmmetric form and is the one that a?ises gaturally in many applications.
The case p; = qop = 0 1is called the standard form (cf. Section 1 above).
We recall t%at reduction to standard form is a first step in preparing the
problem for application of the simplex algorithm. The dual of a symmetric
problem is again symmetric; however, the dual of a problem in standard form
is not ia standard form.

We saw in Section 3 (cf. (3.7'), (3.8'), and (3.12)) how to change
from a problem in symmetric form to one in standard form via introduction
of slack variables. Thus,if we can show that a problem in general form is
equivalent to one in symmetric form,we will have established that each of
the three forms actually includes all problems. To do this we first replace
the free vector by the difference X3 - X3 of two non-negative vectors,
and then replace each equation by two oppositely directed inequalities.
This yields the symmetric system

(5.15) AX2P, X220, minz=4d+ClX

ey e B e S el v




where A11 A12 -A12

A = Aoy Ay -Ay

C X
5 1 1
-— -_— = ! .
B = Boll» C = c, X X
1"
B2 CE x2

It is easy to verify that the dual of (5.15) is equivalent to the original
dual; i.e.,our duality is equivalence preserving.

We might ask more precisely in what sense the general primal form
is equivalent to (5.15). Clearly,any feasible solution X of (5.15) defines

a feasible solution ’ X2 = Xé - xg of the original problem and with
the same z value. Conversely, if X, , X, 1is a feasible solution for the
original problem and if -t is smaller than any component of then

X; =X +tE,, Xg =t E, (where for any h , E, is the vector with h
components all equal to oge) gives a feasible solution X for (5.15) with
the same 2z value. Hence either the two problems have the same optimal
value or neither has an optimal solution. Alternatively, given X2 one can
find unique X3, X5 with XpT X!=0, X1 >0, XJ20, and X, = X - X" .
It can be sh » moreover, that the extreme solutions of the two sysé%nw 2
can be put into one-to-one currespondence; this means that the arguments
which justify the simplex method can be extended to show how to obtain all

extreme solutions of the original problem from the basic solutions of the
equivalent problem in standard form.

el
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We give an illustrative example in which p =1, p =2, q =3,
q = 2 1 2 1

Primal Dual

m1n2x1+3x2+2x3-3xu+ 7x5+2az min-5u1+7u?-2u5-2=z-

2:&+3x2-7x5-kxu+x523 ulio
Bxl - X, - 3x3 + 5xh + 2x5 = .7 u2 free
hxl + 2, -6nc5 -qu -hx5 =2 u, free
(5.16) x, 20 -2u, - 3u, - bu, 3 -2
xazO -3u1+u2-2u5:-3
Xy 20 Tu, + 3u, + 6u, % -2
x, free hul-5u2+8u3=-3
x5 free -ul - 2u2 + hu5 = -7

The corresponding primal problem in symmetric form has (cf. (5.16)).

2
2 3 7 4 1 b A 5 3
3 .1 -3 5 2 5 .2 -7 2

A= b 2 -6 -8 -4 8 W]}, D=} 211, ¢ =1}|-311.
31 3 5 -2 5 2] 7 7
4.2 6 8 4 .8 -4 -2 ' 3
7

We have shown that our duality is involutory and equivalence pre-
serving so far as transitions from general to symmetric to standapds forms
are concerned., We conclude the present section by stating and proving the
general duality theorem fcr linear programming thus showing that duality is
meaningful.

We recall that for a general linear programming problem there are
three mutually exclusive possibilities:

R e pup— R R
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(a) There is a basic optimal feasible vector,

(b) The problem is feasible but obJjective function has no finite
lower bound for feasible vectors,

(¢) There is no feasible vector.

The funcdamental duality theorem states

(1) If either primal or dual bas an optimal solution so does
the other,
(11) If both primsl and dual are feasible then both have optimal
solutions.
(111) If either primal or dual is feasible but with no lower bound
for the objective function then the other is infeasible.
(iv) Both primal and dual may be infeasible.
(v) If (1) holds then

(5.18) zopt + z'opt =0

(vi) 1t Xl, X ,and U, 02 are any feasible solutions to the
primal and dual, respec%ively, %hen

(5-19) z + 2! 2 0.

We first establish (5.19). We have

v (e T T (g T T
z +2 (cl xl + c2 x2 +d) (Bl ul + 82 02 +4)
T T T
>C * C'X -U° (A Xx A
= N T 1 ( 1t e x2 )
T
U2 (A Xy + Ay, Xp)
T T T
= (C U A U A )X
( 111 2 21) 1
ccTouTa JuTa )
2 112 2 22" 22
>0
-

Since the first term is a sum of products of non-negative factors and the
second is O. Note that we used all of the feasibility conditions for both
primal and dual in establishing this chain of inequalities.

Next, we assume that the primal problem has an optimal solution.

© s i e o - e e
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[ T T —1 RS
More precisely, let -d Cl C,) 0 o,
M = R -
1 A Rp Ipl
B, A2 A22 0
L 1 _
be the initial matrix, and suppose that
*» *T *T *T
-d Cl 02 65
M¢ = B * * A A %
1 11 12 13
B * A ® A * 2 =
2 21 22 3

f

%he optimel tableau. The optimality conditicn: ave T % 2 0,
= 0, C T 2 0. The equation c.* *T 2 ~ {s a‘consequence
of the conclus{on concerning case (b) (of thet section) proved in tne
argument following (3.14). Consider any free ‘ai-iable x o If 1t is
basic in M* then C{ = 0 because of (C2! sni if it .8 not bmsic C; =
because of our hypothesis of optimality.

Next let Q be the matrix ir which M = Q
partition Q by subdivisi Sns the same as Jor M giving, say,

-
1 e %
Q = |0 Qez iez’
0 e Y3
T T

and set U = .3 _,
optimality of M* “ve geg

A Ay =G
(5.20) 1 1 1 2 2r
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whence it follows that U_, U2 is a feasible vertor for the dusl with
objective value z' = g% = - zopt and hence

2 +2' =0
opt

This together with (5.19) shows that U , U is optimal for the dual w.:h
z' . z' so that (5.18) holds. ©.nde duslity is involutory this
est&1ishes (1) axd (v).

Next, we observe that if both problems are feasible then (5.19)
shows that neither can fall in case (b) and this establishes (ii). Finally,
(1i11) and (iv) together are merely the contrapositive statement of (1)
and (11). We give examples to illustrute possibilities (iii) and (iv).

The slef dual problam

(5.21) mn z = -X, subject tc the constraints Ox, 21, x

v
Q

1
illustrates (iv), and the problem

i5,22) min z = -x, subject to the constraints
1

v
<

>
Xy = 1, Xy

illustrates (ii1).
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6. Interpretation of Final Tableau j{

Suppose that the M of (4.1) is the final (optimal) tableau
mairix for a linear programming problem. Each number in M has an
interpretation in the language of activity analysis. The entire first
column, of course, gives the optimal vector and minimal value of the
objective function. ZEach other column can te used to descrive how to
adjust the optiinal program as a prescribed amount of a nonbasic activity
is introduced.

The optimal solution is, of course,

x§i=bi (i=l,...,p)
] .

(6.1) xy =0 ¢ s
25 - d

Here S = (sl,...,sp) is the optimal basi: sequence and as before we
denote by G the set of n-p indices not in S . Let k be a nonbasic
index and suprose that we wish to introduce t wunits of activity k

into our program. Then the new "best" sclution is

X'y = b1 - ekt

(6.2) x'j=oJ'eG, itk
X K =t
z' =d + Cx t

We consider two cases: (i) k is a slack index and (ii) k
is a natural index. Case (ii) is simpler and we treat it rirst.

Natural activities, e.g. building picture frames, eating steak,
are irreversible hence we restrict t to nonnegative values. The upper
bound for t is Jetermined by thc fact that if any a;  is positive
then t cunnot exceed bi/aik lest x'Si become negative. Thus, for
t we have

(6.3) 0<t g min {bi/aiklaik >0; 1= l,...,p}
If no ay), 1is positive there is no finite upper bound for t ; occurence

of this in a practical problem is an indication that some constraint may
have been overlooked in setting up the model.

i e ARG et aemm e s At
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A positive value for a slack variable indicates that not all
of some resource has been utilized or tha*® some requirement has been
more than met. A negative value for a slack variable represents an
infeasible solution to the original problem but may have a useful inter-
pretation for slightly modified problems. For example, to consider what
would happen if additional units of some resource became available we
consider negative values for the corresponding slack variable. Thus, if
Xj meacures labor units then xp = -2 would literally mean a program
which exceeded original labor availability by two units and thus (6.2)
with t = -2 can be used to describe how the optimal program should be
altered to take advantage of two added units of labor. If x, measures
excess protein then t = -2 would indicate how to best adjust an optimal
diet to account for a decision to reduce the minimum daily protein re-
quirement by 2 units.

For a slack index k the permissible domain for t is given
by

(6.4) max{v;/ajplajy < 0; 1= 1,...,p} £t < mia{bj/azy]lasy > 0;

i=1,...,0} -

Here as in (6.3) we may have one or both limits infinite. For any t
in this interval, (6.2) gives the best adjusted program.

In both (6.3) and (6.4) if t reaches its extreme value we
have the same result as would be given by a pivotal transformation which
brings k into the basic sequence. Any further changes in xy must
follow the rule which we develop below for changes in basic variables.

Before discussing changes in basic variables we consider the
effect of changes in an initial resource or requirement whose corres-
ponding slack variable is basic.

If a basic variable Xg), measures the slack in resource h
then, clearly, no increase in the initial supply of this resource can
effect the optimal program or its cost, nor will a decrease by t wunits
provided that

(6.5) t < x5
Similar reasoning applies to requirements. For examnple, if the h-th

constraint is the minimum protein requirement, then an increase by t
in this requirement will have no effect if (6.4) holds.

B ke g "‘-ﬁ‘
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The final tableau matrix does not indicate the amount of the
h-th resource that i1s used in the program. Let M' denote the initial

tableaux matrix. Then b'h is ghe amount of resource h that was
available initially and b'h - X is the amount used in the cptimal
program. Similarly, for the vitamin illustration b'h was the original
minimum daily requirement and b'h + x5 is the amount of protein

S
actually supplied by the optimal diet.

Next, let s, be any basic index and consider the effect of
changing xg by some positive or negative amount T . According to
(6.2) this can be done by choosing some nonbasic index k anc letting
T = -apy T . In this analysis we wish to preserve the criginal constraints

and hence require t 2 J .

For T > 0 we must choose k such that ap, < 0, then the
unit cost for increasing xg. is -cg/apk and hence the best k to
introduce is given by

(6.6) -ck/ahk = min {"Cj/&hjiahj < 0j jGG}
Similarly, for T negative the unit cost and best k are given by

(6.7) ¢y /%y = min {Cj/ahj’ahj > 0; jeG}

Whether T is positive or negative when t takes its upper
bound as given by (6.3) say T = bs/ask we have for the total increase
in cost

(6;8) le bs/askl

and for further change in Xgy we irepeat the entire process beginning
with the tableau M"* obtained from M after pivoting at (s,k) . We
must take into account the fact that M* is nct in optimal form but
this does not effect (6.2). The fact that one or more of the c¥*, may
be negative gives us no difficulty, provided that we add She requirement

ck > O 1in selecting the new k in (6.6) and (6.7.

We have discussed the effects of changing the original constant
terms b;' . Changes in a coefficient aik for k nonbasic has no
effect on the optimal program unless c¢i becomes negative when we multiply
M' by Q toget M. Of course, the aj, in (6.2) will have to be
adjusted, and if ¢, Dbecomes negative further pivots, beginning in column
k will be required to obtain the new optimal program. Changes in aik
for k basic require adjustments in Q and hence possibly in all of
M ; small changes may not change the optimal basic sequence.
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Changes in c'k for k nonbasic are reflected by exactly
the same changes in c¢x ; i.e, if c'k is replaced by c'k + t then
Ck is also replaced by Ci +t . The value t = -2 1s the breskeven
value and represents the amount by which c'k must be changed to make
the k-th activity competitive economically with the basic activities.

If Csn is replaced by Csp + t and we subtract t times
row h of M from row zero to restore canonical form c¢y 1is replaced
by cx -t ay for each keG . Hence, if t 1lies in the interval

(6.9) max {ck/ahklahk < 0, k€G} <t < min {ck/ahklahk >0, kGG}
the optimal basic sequence S and the corresponding optimal solution

(6.1) will remain unchanged except that 25 will be replaced by
S
z-tbha
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NECESSARY CONDITIONS OF OPTIMACITY IN CONTROL AND PROGRAMMING

E. POLAK, (UNIVERSITY OF CALIFORNIA, BERKELEY) !

I. PINITE DIMENSIONAL PROBLEMS

Statement of the Basic Problem

Let £:E" - ‘.r:1 and r:E® = E™ be continuously differentiable

functions, and let Q C E"” be a sutset of E®. The Basic Problem can

be stated as follows:

A
Find a2 vector z ¢ En suck that

A »
(i) 2Q, r{2) = 0,

(i) for all z «Q with r(z) = 0, £(z) S £(s).

We shall call a vector 2 satisfying (i) and (ii) an optimal solution to the

Basic Problem.

Necessary Condition for Optimality

The necessary condition to be derived will be stated in the form
of an irequality which is valid for all &z = (bzl. 6:2, . o ouy Gzn) ina
convex cone ''approximation' or 'linearization' of the set Q. We shall
make use of two kinds of "linearizations" of the set 1 at a point 3. The
first one will be defined now; the second one will be defined after the

proof of Theorem 1, to obtain an extension.




Definition. A convex cone’ C(z, ) C E™ will be called a

linearisation of the first kind of the constraint set R at z if for any
2

) v ey sz} of linearly independent vectors

in C(z, ) there exists an ¢ > 0, possibly depending on &z, 6:1,. 6:2,

finite collection {6:1, s

. s ey 6:k, such that co{z, 2z + ¢ 6:1. e o0y BHE sz} Ca.

1f the cone C (3, N) is a linearizstion of the first kind, then for
every 5z ¢« C(z, ) there exists an q > 0 such that z + ¢ §2 ¢« 1 for
all ¢« suchthat 0 S¢ S 9. The largest cone having this property is

given a special name.

Definition.  The radiel cone to the set Q at a point 2 ¢ 0 will be

denoted by RC (s, Q) and is defined by

RC(s, Q) = {65:% +¢ 62 ¢ Q for all ¢« such that
0'S ¢S ¢ (s, b2) > a}

FA set C is a cone with vertex xg if for every x ¢ C, x ¢ X0

Xg + A(x - xg) ¢« C for all A\ > 0. Since the vertex xg of the cone
C will normally be obvious, we shall omit mentioning it.

l

t co{s, s+e¢8s", ..., 3+« Sak} i{s the convex hull of 8, 8 + ¢ 6-1.

TR R X ask. {.e., the set of all points, y, of the form
y-uos+p1(l +4 6:1) tooo tup(ste 6:“). where
k

z 1 20 for al! {.
120 Bed iy
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 first kind, it contains all the other linearization of the first kind of the

Whenever the radial cone RC (%, Q) is a linearizationof the

set Q at z. Consequently, in the various theorems to follow, the
radial cone RC (2, Q) should always be used if possible, asince this will
result in stronger necessary conditions.

Next, we define the C‘l) mgap F:E" ~ Em+1
F(z) = (f(2), 7(2)) .

m+l Em-l»l

We shall number the components of E from Otom, i.e., y¢

is given by y = (y°. yl. o« ooy ym). The Yacobian matrix cf the map:

F (z), ( 2;%9). will be denoted by _8_1_"_6(;)_ .

For the Basic Problem s:ated above, the following theorem

gives a necessary condition for optimality.
Theorem 1. If % is an optimal solution to the Basic Problem, and

C(Q. £2) is a linearization of the first kind of 0 at :, then there exists

m+l

2 nonzero vector § = N:o, q}. .oy \pm) «E , with wo s 0, such

that for all 6z « C(Z, 0) (the closure of C (%, ) in EV)

1 <w !%-;‘ﬂ 62> 5 0.

Proof, Let K(:) C E:m'"1 be the cone defined by

A A
2 k@ = 35l i, g

St LT




A
K(ﬁ) is convex because C (3., 2) is convex and a—Fs‘zﬂ is a linear map.

Let 9 = F(i). We shall now show that the cone {9} + K(Q) must be

separated from the ray

(3) R={y:y=}+8(-L,o,...,0 ,p20},

i.e. that there must exist a nonzero vector ¢ Em+1 such that

(4) ) oy YD S0 for every y ¢ {§} +K(2)

(i) <¢. y - ;> 2 0 for every y ¢ R.

Suppose that the cone {y} + K(2) and the ray R are not
separated. Then the cone K(Q) mrust be of dimension m+l and R must
be an interior ray of {y} + K(2) (i.e., all points of R except y are
interior points of {y} + K(2)). -

Let us now construct in the cone {y} +K(2) a simplex I with

1 2 m+l

vertices ?, 'i+ Sy, y+8y, ..., ytby such that

(i) there exists a point y on R (which we shall write as
yzy+8yS 6y®= y(-1, 0, . . ., O) with y > 0), dif-
ferent from 9, which lies in the inteior of Z,

(i) there exists a set of vectors azi «C (:, Q) satisfying

b=




e i)

A .
(5) TR 2N U N

and such that

(6) cofs, 2+62), ..., £+6™N) Ca.

It is possible to satisfy (i) because R is an interior ray of the m+l dimen-
(i)
sional cone {y} + K(z), and it is possible to satisfy,because - C(§, Q)

is a linearization of the first kind. Note that the vectors 6:‘. i=l, ...,

m+l are linearly independent since the vectors ayl. 5yz. oo oy Wmﬂ
are linearly independent,

For 0 < a S, let SGC I be a sphere with center 9 +a by°
and radius or, where r > 0. This sphere can always be constructed
because 9 + 6y° is an interior pointof Z. Forafixed ¢, 0 < o S ],

we now construct a map G_ from S_ - {7 + aSy°} into E™™ as

{follows, For any x¢ S. - {; + a&yo) , let

™ G (x) = F(b + 2¥(aby® +x)) ~ (F + aby®)
where Y is a (m+]) X (m+]l) matrix whose Stk column {s by’, is=],
« « o, mtl, and Z is & n X (m#l) matrix whose ith cclumn is ng. The

matrix Y is invertible because the Gy‘ form a basis for Emﬂ. by

construction.

Expanding the right hand side of (7) about £, we get




]

A
G o =7+ Bl 2y sy ® e x) - +a &y
-l o
(8) + 0(ZY (a by +x))
where o(*) is & continuous f acticn such that lim molyl 0.

.. Hyl=Q HYn ’
Bj dJ.n.hcn‘ b%—'}iyz s Y . ond heace (g) a_,,n\?\,g.c', i

: 9) Gc(x) = x+ o:uZY.l (e 6y° + x))

Now, for x ¢« 3(S, - {; + a 65y°} ) (the boundary of the sphere) nxu = ar
and we may write x = ap, where Hpu = r. Hence, for x« a(sa-

{y + e &°})

(10) G, lep) = ap +o(a 2yl (sy° + o))

Consequently, there exists an a‘. 0 < a. S'1, such that for all

n e !Imﬂ. with upu =T,

@l 'o(c‘ LY .x(byo + pl))n <ar

We now conclude from Brouwar's Fixed Point Theorem

that there exists a X¢ S , - yea 8y°)} such that
e

u2) G & =0

(Fe «f, = -0k (Y dYsf, ) amsd bowcr «f,
' ot oof . 2 (3’

»t ,O‘.u.! pe 06 ola {2 v (8«1 ..,?‘ ) ) ‘

-6-




ie,,
(13) FE+2r 0 0" 6°+%)) = D + o sy°

Now ¥ + o 8y° = col (£(3) - «y, 0, 0, . . ., 0), where Y > 0. Thus,
expanding (13),

14) r(8+2Y 10" 6°4%)) = o
and
(15 Qi+v2v 0" 8% +%)) = 2(3) » o~y < 1)

Furthermore, because of (6) and the fact that for any 8y in the simplex
Z- {7}, thevector xx 42y by belongs to cofi, 3+ 8al, . . .,

A +
gJﬁ:m 1}.

- o

(6) be2vla® %48y 0a
Hence £ 10 not optimal, which {s a contradiction. We therefore con-

clude that the cone (9} + K(i) and the ray R must be npauud‘ ..,

there must exist a nonsero vector ¢ ¢ l'.‘ulﬁ such that

an W htr-N>s0 toreveryya (§) +xh)




A

v,

and

(18) () < {y-y)> 2 0 for every y«R

Subatituting (2) in (17), we have
”- :
19) < 2%-3‘9- 62 > S 0 for every 82 ¢ C(2, 0))

Clearly, (19) must also hold for every. 6z¢C (2, Q).

Substituting for y from (3) in (18), we have

(20) (L0 ..., 0y =-y°20.

This completes the proof.

2 :
It has been pointed out by Neustadt [ ] that Theorem 4 remains
valid under the relaxed assumption that C(z, ) is a linearization of the

second kind of Q at £, defined as follows.

Definition, A convex cone C(z, ) C E™ will be called a linearisation

of the second kind of the constraint set Q at 2, if, for any finite collec-

2. P 6zk} of linearly independent vectors in C(g, 0),

k

tion {6:1. Sz
there exists an ¢« > 0, possibly depending on s, 6:1. o o0, 837, anda

continuous map § from co{z, & +¢ 6:1, v e ey BHC G:k} into 1, such

that (s + 82) = s + 68 + 0(62), where lim -j—m = 0.
les-0 les]




Remark. We observe that if C/z, Q) is a linearization of the first kind

of R at 2z, then it is also a linearization of the second kind of O at z,
with the map { being the idertity. Thus, unless we have specific cause
to indicate whether a cone C(z, Q) is a linearization of the first or second
kind, we shall refer to it simply as a linearization of 2 at z. We now
restate Theorem 1 in this form.
FUNDAMENTAL THEOREM
If z is an optimal solution to the basic problem and
C (2, Q) is a linearization of 22 at 2,- then there exists a nonzero vector
Y= (\po, ¢l, o o ey q,m) « E™ with q,o < 0, such that for all 6z ¢ C (2, Q),
. 3F (2
(the closure of C(2, ) in E")) «< Us —-E(Z—Z-)- 6z> s 0.
The reader may easily modiys the proof of Theorem ! so as to apply to
Theorem 1'. Finally, it should be pointed out that all conditions such
as continuity differentiability, etc., imposed on the various functions

need only hold in a neighborhood of the optimal point.

We shall now show how a number of classical optimization prob-
lerns can be cast in the form of the Basic Problem, and we shall then
apply Theorem 1 or Theorem i' to rederive several classical conditions

for optimality, as well as to obtain some new ones.




Classical Theory of Lagrange Multipliers

The classical constrained minimization problem admits equality
constraints only. Thus, it is the 3asic Problem with 2 = En. the entire
space. Clearly, E™ is a linearizationof the first kind fo;- EY at any
point s « E®.

Thus, we conclude from Thecrem 1 that if = is an optimal
solution of the Basic Problem, with 1 = En. th?n there exists a nongero

vector | ¢ gmtl such that

() {w L‘i{ﬂsﬁ S 0 for all 5z ¢E®

This may be vewritten as

(22) CEET v, 8 50 forall b2 E°
]

Since for any 8z ¢« En, -6z is also in En, we conclude from (22) that
AT

(23) '_FA!L =20

Now, —1’-!— fe a n x(m+l) matrix with columne Vf(s). Vr (:). N

v: (), where V(i) = (-‘,(;').TU) vrld) = (-TU».

-.—-‘-l ) We may therefore sxpand (23) lnto the form
D




m
(24) ¢° Vi(2) +Z o Vr'(a) = 0

i=l

‘We have thus reproved the following classical result,

Theorem 2. Let f(*), ':1(-), rz(-), s e ey rm(-) be real valued, con-
tinuously differentiable functions cn E". If z ¢ E® minimizes f(z) sub-
ject to the constraints ri(z) =0,1i=1, 2, . .., m, then there exist
scalar multipliers, ¢°, ¢1, N ¢m, not all zero, such that the

function H on E® which they defire by
rn

(25) Hin = 4° e + ) o rhie)
1

has a stationary point at z = 2, i.e., {24) is satisfied.
It is usual to assurmc that the gradient vectors Vri(z). i=],
2, . «., m arelinearly incepciiicnt for all = such that (z) = 0. This
m
precludes z \pi Vx'x(%) = 0 and hence in (24) lyo # 0. Multiplying (24)

i=l
. .
by l/q;o and letting )‘i = qa‘/\t-". i=1,2, ..., m, wenow deduce the

more cornmonly seen condition.

Theorem 2'. If 2 minimizes f(z! subject to r(z) = 0, and the gradients
Vr‘(ﬁ), i=1,2, ..., m arelinearly independent, then thers exists

a vector A « E™ such that the Lagrangian L on " XEm. defined by

-11~
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m
(26) L(s, \) = f(2) +z A} rirz)
vy

has a stationary point at (3, Ak).
A A

A A ‘
Wae note that by (24) ﬂ‘-é-:—'-ﬁ = 0 and that 9_1"&1_}). = r(z) = 0,

by assumption.

Nonlinear Programming

k

Let £:E" - El. r:E" -Em, and q:En = E~ be continuously

differentiable functions. The standard Nonlinear Pro‘umminl Probllem

is that of minimising f(z) subject to the constrains that r(z) = 0 and

q(s) s 0.

This corresponds to the special case of the Basic Problem, with
N = {s:q(s) S 0}. We shall now show how Theorem 1 can be used to
obtain various commonly known necessary conditions for % to be

optimal.

Given a particular point 3 ¢ R, we shall often have occasion to

divide the compo;unn of the inequality constraints functions, q‘,
{=], ..., k into two sets; those for which q‘(l) = 0 and those for

which q‘(s) < 0. To simplify notation we introduce the {following

definition.

-12-




Definition. For s ¢, let the index set I(z) be defined by
N |
(27) Is) = {i:q(z) = 0}

The constraints qi. i ¢ I{(z) will be called the active constraints at z.

We shall denote by 1{z) the complsment of I(z) in {1, . . ., k}.

The set 0 = {z ¢ q(z) S 0} introduced above is assumed to

satisfy the following condition:

- of
Assumption (Al). 1 Let ¢ £ be an optimal salution the Nonlinear

Programming Problem. Then, there exists a vector h ¢ E® such that
(V,i(z). Y <0 forall ieI(z)

A sufficient condition for (Al) to be satisfied is that the vectors Vq‘(a),

i « I(s) be linearly independent (see Corollary to Lemma 3).

Definition: For any 2 ¢« R, the internal cone of i at s, denotad by

IC(z, ), is defined by

IC(s, Q) = {58 2 (Vii(z), 82) < 0 for all { « I(z)}

1

T When some of the functions qi, i ¢ I(x), are linear, it suffices to
require that there exist & vactor h ¢ ER such that < Vqi(s), b?> %0
!?r theae functions and ¢ Vqi{s), h> < 0 for the remaining functions

q!, 1« I(s). '

-13




By assumption (Al), the convex cone IC(z, Q) is nonempty. Itisa
simple exercise in fhe use of Taylor's Theorem to prove the following

lemma,
Lemmal. If IC(x, Q) # §, the empty set, then

(1) I1C(s, Q) is a linearisation of the first kind of 0O at s,

W) TCT, M = {62: {Vg'(z), 82> 5 0 for all 1¢X(x)}

When specialised to the Nonltaear Programming Problem, Theorem 1’

assumes the following form.,

Theorem 3. If s {s an optimal solution to the Nonlinear Programming
Problem, with (Al) satisfied, then there exists a nonsero vector ¢ Em“,
with (° S 0, euch that for all 82+ TC(E, &) = {8s; (Vq‘('i). 8s) s 0

for all {¢1(x)},

<Q"‘-?-l.61) 20

where H(s) = \po f(s) +§ ¢'£ ri(l).

=]
Using Theorem 3 and Farkas Lemma we obtain the
‘following necessary condition for optimality, ‘Which i# in & form more

familisr to specialists in mathematical programming.




Theorem 4. If z is an optimal solution to the Nenlinear Programming

Problem, with (Al) satisfied, then there exist a nonzero vector

m+l

¢« E 7, with \p° $ 0, and a vector u¢ Ek, with 4 S 0, such that

m k
(i) o° VE(z) + Z¢‘ vri(z) +Z W vdie) = o

i=l i=1
and
K
. ia
(i) Z»‘q(z) =0
i=1

Proof. From Theorem 3,

(%-g'l. 6:) <0

for all &z such that (ti(:}, 62) s 0, i¢I(3).
Iy
By Farkas Lemma, there exist scalars p* S 0, 1 ¢](s) such that

BH(2

i i,*
= +z» Vqliz) = 0

hl(;)

Let u‘ =0 for {« ﬂ_é) This ¢cn'ndetos the proof.

Most of (he other well- xnown recessary condiilons for Yon-
linear Programmiang Probleras caa be obtained frora Theorem 4 by
making additional assumptions on the functions r and q. For exa.mple,
the following corollaries 1o Theorim 4 are immediate consequences of

that theorem,




Corollaryl. If assumption (Al) is satisfied and the vectors Vri(Q).
i=]l, ..., m, arelinearly independent; then there exist vectors

m+] k

YeE ", g« E” which satisfy the conditions of Theorem 4 and such

that (¢°, p) #0.

Cozollary 2. It Vr{(g), izl, ..., m, together with ti(;),
ie 1(;), are linearly independent vectors, there exists a vector

$ e gmil satisfying the conditions of Theorem 4 with y° < 0.

The assumption in Corollary 2 is a well-known [ii] sufficient
condition for the Kuhn-Tucker constraint qualification to be satisfied.
When it is added to Theorem 4 we obtain a slightly restricted formT

of the Xuhn-Tucker Theorem [4].

Corollary 3, If there exists a vector h ¢ E" such that (ti(g). ) <0
forall 1o1(8), ¢ Vrl3), R) s 0forts=l, ..., m andthe vectors
V:‘(:), i=]l, ..., m, urelinearly independent, then thers exists a

vector y ¢ Emﬂ' satisfying the conditions of Theorem 4 with ¢° < 0.

The assumption in this corollary is a sufficlent condition for
the weakened constraint qualification [i3] to be satiafied. Augmented
by this umméﬁon, Theorem 4 becomes a slightly restricted formt

the Xuhr-Tucker Theorem with the weakened constraint qualification ,

Al in practige, the Kuhn-Tucker constraint conditions can rarely be
shown te be saziefied unless the restrictions impesed in Corollaries
2and 3 hod.




II1 THE MAXIMUM PRINCIPLE

To 1llustrate the applicability of the theory *ust develcped, we
shall use it to obtain the Poniryegin Mamimum Principle for optimal control

problems.

Consider a dynamical system described by the differential equation:

1. d
;% = h(x,u)

for all t 1in the compact interval 1 = [tl,tzl , vhere x(t) ¢  1s

the state of the system at time t, u(t) ¢ ¥ 1s the input or comtrol
of the system at time t, and h is & functivn defined an z"x £ vith

range in E° .

The Fixed Time Optimal Control Problem 1is thst of finding s control
0(t) , t € 1 , and a corresponding trajectory 2(t) , dJetermined by ( ) ,

such that

2. for t ¢ 1, 0(t) is & messuradble, essentislly

bounded fuuction

wli~




.whose range is contained in an arbitrary but fixed subset U of Em;

3. i(tl) = X

o’ where xo, a fixed vector in En, is the given

" initial condition ;

4. ;(tz)axz, where X2= {ernlg(x) =0}, and g maps E" into

- El (Xz is the fixed target set);

5. for every control u{t), . and corresponding trajéctory

x(t}), satisfying the conditions (2 ), (3), and (4),

t (/] ’ t P R
S; 2 §ixte), e e ¥ ft ETORICE:
| 1 ;

- £0
where f~ (.2,) 1s a cost function mapping Enx E® into EP

*

We make the following assuhptions:

6. Ttxe functions by aﬂd {.’O{.,.) are contindous in both x and

u, and are continuously differentiable in x,

1. “fhe function gl+) is continuously differentiable and the corresponding

Jacobian matrix Bglx) is of maximum rank for every x in X

9x 2’

To transcribe the control problem into the form of the Basic

Problem  we require the following definitions:




Let Ia denote the a X a identity matrix and let Oa‘e denote

the a X § zero matrix. We define the Eroj_gctién matrices P and P

1 2

as

. : \
8. PI: (IA’ o‘ n} ‘2 (\)O,Dl..JO/
and

. 'g) 0 '
9. P = (0 .,1) - 1 ,)
. 2 n, i n‘ . o O ‘-‘
Let B:E™Y x E™ ™" be the function defined by

o _. to '
10. h(ZDu) = (s(péz,u}, &(Pzz’ :Ak’-," ztE“v., utEmc
Now consider the diiferential equation
dz
110 dt - h(z' ")

for some ufll) e™ for tel.
It is clear that the optimal control problem is equivalent to the

problem of finding a control G(t), tel anda corrésponding_trajectory

2(t), determined by (11), such that

| ) for tel, G(t) is a measurable, esseniially bounded function,

whaose range is contained in an arbitrary but fixed subset U of Em;

j[ eto) E(tl) z (O,xo) s io; where x_, a fixed vector in E“. is the

0

given initial candition;
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o e

' 1%, 1 ' ;(tz)éX'z, wher'e..X'z = {» ¢E® | g(Pzz) - 0}, where g rAaps o
. E" mto Ef
A 157 . for every control u(t). vwith tel, and corresponding trajectory

_ l(t). satisfyi.ng ( 11) and the conditiom (12). @3), and (M) above.

z(tz) b P z(tz)

Finally, we cowplete the transcription of the optimal control

problem into the form of the Basic Problem by defining

16 §(z) = P 2(t,),

17. r{z) = g(P 22 )

51 bHr ng
18, and we-let, Q%e the set of all absolutely continuous functicns z

from 1 into E™*' which, for some mneasurable, essential’y bounded

function u from I into U C Em, satisfy the differential eq ation (11)

for .a,lmost all t in I, with z(tl) = (0, xo).

1$. Remark: It is clear that with §, r, and Q defined as in (16), (17),

and (18), respectively. we have trarscr'bed the optimal control problem
‘ LA

into the form of the Basic Problein | '. We shall call the transcribed

. . A

. optimal control "the optimal control oroblem ir ctardard form."

We still have not defined the linear topological vector space £ .

~From (18) it is clear that @ is a subset of the linear space of all

absolutely continuous functions from ! into ", However, since we

wish to use 2 linearization constructed first by Pontryagin et al. [

s
4 ?

we {ind it.ne'cessary to imbed 2 into a larger 1’nea: tcpological

-20-




‘space which we define below.

Let ;ube the set of all upper semi-continuous real valued
functionﬁ‘ defined onl, and let ;! ='\L-‘UJ. if‘rom the properties of
upper and lower ;emi-éontinuous fun.ci;.iona | .. it follov.va that
.J is a linear vector space. We then define ‘£ to be the Cartesian
product 4™ = 4 x)’ic o+ xpd , with the poir;twise fopgl.ogy, [15] f.e.,
the topology which is cdnstx;uctcd from tixg sub-base ;:on;tisting of the .
family of all subsets of the form {fe z :f(t)eN}; ﬁrhere t is a péint“ )
in Iand N is an open set in E”"..

It is easy to show that § and r, as respectively defined by (16)
| o~ £ .

. an .P"l.m.o

Let z(t), corresponding to the control u(t), be A solution to

and (179, are continuous, |

the optimal control problem in standard form (19).. We now proceed to
co;mtruct alinearization for the constraint set 0 at z .
Let IIC 1 be the set of all points t at which uft) is regular,

i..eo »

1m | meas (u -1 ™NT)

meas (T)

e ], for every

2.1 = {£|tl<.t_<tz.

meas(T)-0

neighborhood N of uft), teTC I1}.

.
~Definition: A real valued function f:El-' El is called upper semi-

" continuous at a point t_ in E‘. if lim lupf(t) : f(to). And it is called

0 -ttt
lower sermi-continuous if -f is upper geml-cont!nupus [ 1.

-21-
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‘linear differential equation

 Let &({t,T) be the (ne1d X (av) matrix which safisfies the

21. d

"o (m = 22 e, den e

for almost all tgl, with &(7,7) = I, the (p+n) identity matrix.

For any étll and v ¢ U we define
| 0fo£,t15t<s
22.. Sz"v(t). =

¢unuhﬁw»w¥héwhaﬂn.sgtgtz;

and

23, c(;bn) = {63 €£ |8,z(t) = Z'aiszl >V (t), {sl' 'zl % 'k}C H"
S A
i=1 S

_{vl'VZ'“"vk}C U.'aiz 0, for i=1, 2, *, k, k arbitrary

ﬂnlte} .

Because of its complexity, we shall delay the proof that the
set C(2,0) defined in (23), is a linearization for the set f st 2 until
the next gection. The linear maps £'(2) and r'(2), with F’(i) -

(£'(8), r'(8)), which we use with this linearization are

defined as follows. For every 8z :.8 '
£'(z)(62) = Pl6z (t,)

-22-




and

Bg(P, 2(t,))

25, x'(z)(62) = ™ P, bzt

2)'
Therefore, from Theorem (I1.Qthere .exist a vector g in EP
and a vector 7 in El such that

pi § 0 for i=1, 2, R - H

2. (kom) # 0;
9y(Px(t,)) | _
28. (1 Pyoz(t,)) + (n, —3—— P,b2(t,)) < 0 for all §22C(z,0).

. e
Since every 6z. v(t),/ defined in (22), is in C(z,R), (28) implies
»

that
9. {p, P oty s)[h(als), V) - h(z(s)als)]) +

8g(P, 2(t,)) . ..
t+{n, —5— P,o(,,0)[h(z(s),v) - Ba(s)ulsN] ¢ 0

for every stl, and vsU,

Hence,

a T,o =
' 0 (P, 2(t,) . -
0. (oT(cz.t)[Pfu Py —— n]. R(EE),v)- B(E), G € 0

for every t ¢ I,, and v c U. Let 4(.) = (4°(.), 4'(.),....4"(.))
MEMI defined by

-23-
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| R P,z(t,)) .
T, T, oTlE PRy

3. () = @ (tz.f}(Plp+ ?ZE—Te )m,

$.a.for almost all ¢ in I, §(+) s=ticfies the differential equafion:

: a ' L C T
D32, £ WY -(aii;ﬁ:ﬁi’_’g WO F Wb =T R (’_j!.?.;%‘iﬁ) ",

Combining (30) and {31 ), we obtain
33. ('.p('t),lr(E(t'),G(t))) ‘= Maximum (), b (;(t)','v)) | veU} for t_.e.fl.n

3. Since meas (L) = meas (I, (33) holds for almost all t in I. .

4. | 7 Bg(P,a(t)) ‘
Remark: By assumption (see(29)), 0% is of maximum rank,

!
and since (1,n) # 0, Y(t) as a sclution to (3?1 ) is not identically zero.

" Thus, we have proved the following the;)rem, which we state in

terms of the original quantities defining the optimal control procblem,

and in which we shall substitute (po,p), with p € " ¥ above.

=24~
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I1. INFINITE DIMENSIONAL PROBLEMS

We ahall now show how the Fundamental Theorem presente. .u Ssrt 1
can be extended to problems in infinite dimensional spaces. As an
application, we shall use our sxtemsion of the Fundasental Theorem to
derive the Pontrygin Maximum Principle [2], for fixed time optimsl comtrol

problems.

First let us formulate the equivalent of the Basic Problem in an

infinite dimensional space.

1. BASIC PROBLEM: Let L be a linear topological space.

Given a function f(.) mapping L into the reals, a function (.)
mapping L into E" and s subset ficL, find a vector i € 1 such that e(X)= 0

and such that for all X ¢ Q satisfying r(X) = 0,

2. £(X) < £(X)
We shall call any X with the above properties sn optimal solution.
The only difference between the formulations in the proceeding

section and (1) above is that before we specified that the functions £

and r are differentiable, which we do not do in (1), since dif!c}nnttability

is not s well defined concept in a general linear tcpological space.

However, to obtain an extension of the Pundamental Theorem we need
a lfnoar function from L into E.+1 to take the place of the Jacobian matrix
ggé!) in (I.1) and & nuitnb}c continuous function from L into !'+1 to take
the place of the function 0(.) in (1.9). Since we can no longer ensure

the existence of such functions simply by requiring that f(.) end r(.) de

differentiable, we take care of this situstion by incorporating the require!

functions into the definition of a conical approximation. As we shall see

later, this is not a restrictive practice.

B ey
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|
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3. DEFINITION: A convex cone C(X,R) C L will be called & conical

approximstion to the set 0 at 8 ¢ L, with respect to the map F A'(f.:l. if

1]
there exists a linear functior F (2)(.) from L into £'+1 such that for

any finite collection {§ xl.'s xz.....é xk} of linearly independent vectors

in C(%,R) there exists an E>0 a continuous map &6(.) from co{f, ®&Eéx%,

tﬂGﬁ“uAHGE}mmﬂ,mdawmmmmmqoﬁ)ﬁmLiMOfﬂ,

wvith E, §, and o possibly depending on R, 6x, ze..., Gx(k) which satisfy

4, lim || o(y) ||
=0

E+o E

uniformly, for all yeco (%, 2+6x1,..., 46 xk}, and,

5. F(6(x)) = P(R) + P' (%) (x-%) + o(x-%)
for all

x € co {8, x+6x1,....% +4 xk}.
We are nov ready to extend theores (2.3.9).

6. THEOREM: If R {s an optimal nélution to the Barre problem (.) and
c(%,Q) is a conical approximation to 0 at & ¢ Q with Tespect to the map F=(f,r),
then there exists a nonzero vector v °, vl..... ") fa !.*1. vith toip.

such that < y, F' (%) (éx)- < o for all 6:(6?;:—573, where i??;?ﬁ; is the

closure of ¢(%,) tn L.
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large-Scale System Optimization: A Review
by
George B. Dantzig

Mathematical programming is & generic ters for the xihfad fields of Linear
Programing, Network Flov Theory, Integer Progreaming, Convex and Nos-Linear Pro-
gramaing, and Progremming under thicertainty. Its research bas problems, parti-
cularly those problems vhere rendom events and dscision events osccur altermately
in successive stages. In problems vhere such vicertainty occurs, vhat is usually
dcone in formulating is t0 replace the uncertain eclements vith their expected va-
luea (uith possible an added safety factor). It is well known that a plan based
cn expected values of its coefficients and constreints can lead to answers that
are not correct. Although the use of expected value does not lead to the best an-
swar, it is entirely possible that it could leed {c excellent plans Mlﬂmilh-
&ble from the optimum ia the run-ol-the-mill epplication. Uhen cne considers in-
stead, a direct attack on uncertainty vis matbemstical progremming, it inevitably
leads to the consideration of large-sca’e systems. These, beceuse of their struc-

ture, have proven difficult of solution ¢o far, but, I believe, of intensive in-
vestigation in the future, '
Mathematical programming is & term invented by Robert Dorfman of Harvard a-
yound 1950. He felt that at that time, the fundamentals of linear programming
vere well enough known that the wvava-of-the-future lay in the extension of the
methods of linear programaing into the non-linear programming field., Certainly
we today, 15 years later, feel this is true. In the Calculus, the derivative
(or first order approximation) plays a key role. Applied to non-linear inequal-
ity systems, 1t leads to approximstion by linear inequality systems. This is one
way vhich these extensions have taken place, and illustrates vhy the various fields
“le
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conprised under mathematical programming are related. Here are some cther ways:

One attempte to extend the comoept of duality to nomslinear systems. Baving

done »0, mmutommmmmmumrormmuﬁm

classical steepest descent processes to solve non-linear progrems.

Oue attempts, ae ve have just noted, to reduce provlemse involvijg wiwertainty
to equivalent deterministic systems and to large-scale systems vith special struc-
ture.

One tries to solve an integer progrem by replacing it with an equivalent lin-
ear program; that is to say, by cleverly building up a set of linear inequalities
that are both necessary and sufficient.

In &ll of these developments, one characteristic stands out; namely in one
way or another, techniques for solving large-scale systems play a dominent role.

Accordingly, let us look first at direct methods for handling large problems.
Around 1954 or so, under the auspices of The RAND Corpo.etion, William Orchard-
Hays produced the first truly commercial linear programming code. It had many fea-
tures that helped amateurs to get their problem on the machine with & ressonabdle
chance of getting an ansver. Today, the building of a linsar programming code
(complete with all the special features) is & major undertaking vhich is expen-
sive to produce and to maintain,

As applications grov, there has been an increasing demand to handle truly e-
normous systems. The Rtu.hn, Kantorovich, in his 1939 pamphlet, envisioned such
& possibility. Already, linear programming models of industrial systems have been
solved with more than 106 variables and 10" equations, These models, of course,
do not have general matrix structure and it is not likely that any instance of a
large prabtical problem vill ever have general structure. The reason is obvious.
Just imagine the physical task alone of finding all the coefficients for & thou-
sand by ten thousand general linear progrems (there could be & high &s 10! mon-

-2-




zero coefficients).

Portunately, large-scale practicel models tend to have a low percentage of
non-gero coefficients; in fact, under 54, sometimes under 1%. Orehard-Hays' first
cods exploited this characteristic 5y making use of & "pricing vector”. This made
inexpensive the selection of the pivot column direqtly frum the origtual 'ndu-dense
data. The pivdt column here refers to one of the steps in the simplex method for
solving linear programs.

As systems have grown in size, every advautage has also been taken of the
characteristics of the improved computers. It has been discovered recently that
the size of the inverse representation of the basis in the simplex wethod could
have au importaant effect on running time., Therefore, compsct-inverse schemes a-
long the lines first proposed by Harry Markowitz of RAND have become increasingly
important. Recently, two groups working independently, developed this approach
with astounding results. For example, the Standard 0il Company of California
group reports running-time on some of their typical large problems cut to 1/k.

Hov to find the wost compact inverse representation of s sparse matrix is
still an unsolved problem:

Conjecture: If & non-singular matrix has K non-sero elements, it 1s

alvays possible to represent them as & Egd_u_r:t of elemen-

tary matrices such that the total number of non-zero en-

tries (excluding their d4i unit elements) is at
most K . ([Incidentally, the impiriocal schemes Just
mentioned often have no more than K ¢ 104X noa-seros

in the inverse representatiom.)

Dynamic structures are interesting in themselves, and could have important
applications. One such is the linear control prooesses proposed dy Fontryagis.

u3-




(I wvill speak of his problem later in connection with the decomposition prinm-

ciple.) As early as 1954, I published s paper on hov to compact the inverse

representation of *he basis with a ctaircase structure (see figure). Again in

1962, I discussed inother method which permitted onme to find a compnat inverse
and then efficiectly maintain this compactness in moving from one iteration to
the next. There have been several other proposals, all excellent, that seek
to apply the sinplex method to the full pgystom by compacting the inverse. As

far as I know, .one of theee direct proposals have been realized in computer

codes.,

1st period
{nput
-
1zt period I—and period
output i inpat

 e——— o e i .

’ 2nd period 3rd period
' cutput input

i S s —— o

large-scalc systema tave been attacked indirectly by means of the decompo-
sition principle. Several codes tave been vritten, and sone of the recent ex-
periences have been encouraging. J. F. Benders in his theois "Partitioning in
Mathematical Programming 19607, developed the dusl of the decomposition prin-
ciple, and shovs hov this appooach can be used to deal vitk the aixed-integer

programming problea. Roscn and Beale htve each proposed partitioning methods
-h-




for solving systems vhose structures fit into the fremework of & common hori-

zontal and/or vertical border vhile the remainder is & diagomal eet of indepen~
dent blocks.

‘ ]

|

FPurely combinmatorial problems form an important division of mathematioal
progremming. They fall briefly into two categories. The first ere thoss prod-
mmnmm.mmm--uhmmummm--um
aiatmm mmber of arce vhich "cover” nodes in & petwark (gragh). For these,
specisl methods have been sought.

One of the most tantalising problems of this type has been the travelling
salesman problem. It is 50 close to & network-flov type problem that cse would
Mptonummmmaut;notmm.otiumm“

sst. 850 far, nooe has been discovered. There is algo & close relation detween
-5-




covering probless and the famous four-color problem. The other approsch to com-
binatcrial problems is through integer progremming. This was first used in 1954
to solve & particular large-scale travelling salesman prodlem by Fulkerson,
Johnson, and myself. In 1958, Gomory laid the foundations of this field by
showing how to systematically determine a necessary and sufficient system of
linear inequalities.

The inter-relation between hrlge-sesle system methods &nd integer pro-
gremming was brought out in a recent paper of Gomory entitled "large and Non-
convex Problems in Linear W". Here, Gomory reviews in a unified man-
nar, hov the ideas of integer programming and those of the decomposition prin-
ciple can be combined to solve many important applications such as the paper-
trim problem, multi-commodity flows in networks, programming of economic lot
sizes, etec.

Integer programming methods are being experimented with in a number of
places. It seems likely that we are nearing a threshold, and that we will soon
see some excellent commercial codes produced and used successfully for certain
problems.

I will no™, in this presentation, describe the developments in nx;n-linear
progremming. Rather, I bave chosen to illustrate the power of certain non-
linear progremming ideas, such as the generalized linear prcgraam of Wolfe to
an interesting problem in linear control theory.

But first, I would like to review the contept of a Genersiised Progrem.

This differs from an ordinary linear program. Instead of coefficients in each

colum being known, the column P, may be freely drewn from & convex set, cJ .

J




PROBLEM: FPFind Min Xo » (XJ >0, PJGCJ) ’ Po“’o“‘cq such that

Poxo+--+ann-Q :

As an o’u‘h, consider the CONVEX PROGRAM: PFind (xl, x.‘,,...,,xn)c C com-

pact and convex such that

Ol(x) 0
*,(x) <0

o (x)go

Oo(x) = 2(Min)

vhere Oi(x) are continuous convex functions of X¢C . Let us assume an

x = x° 1s known such that 0, (x°) <O for 1 § 0. It can be ahovn that the

generalized progream on the folloving page is equivalent.




PROBLEM: Find MinZ and A, A, 20, p X O such that

Prices
; 1 1 1l el "o
Ol(x 1 01(10) Nty “0 %
. . "“2 =0 1
0.(:) 0.(10) u, =0 x
0(x) (") (-z) =0 1
® ® ® o ® ®

The position of en initial basic-set ol colums i3. indiocated by heavy dots.
The associated set Hf simplex multipliers are denoted by % initially,

xox’ vhere eoforigdo ama :g--o(x°). The next step is to form
the Iagrangien
|
oX)w» ¢o(x) ¢ Z 1101(8) + %,
sl

for x e «° and to miningse #(x) for xeC . Notios that the lagrengisn is
precissly vbat we get 1f we were to “prioe out” the generel columm of coeffi-
clents of the varisble A using the price vestor to form the inmer product.
Thus, ve vish to choose x such that this somlar product is sinimam.

4

0

Ist x®x be the valus of the minimising x . If 0(x°)-o,m

x° is ea optimm solutios. If 0(:°)<o,uumooh-u_t_=g_u_gnm

generalised progrem with oocefficieats (1.01(11)....,0.(:1).00(31)1 and vari-
8-




able ).1 . The problem, restricted to those variables vhose columms have

known coefficients, is then optimized using the simplex method. This gives
rise to & nev set of simplex multipliers x = x' . This gives rise to & nev
sdlution x = x2 , ete. At any stage, the approximate solution is x = &1:1

using for A, those Ay vhich solve the problem restricted to thoee vari-

1
bles vith known coefficients.

Let us turn to a problem in control theory. The application of mathe-
mtical programming methods to solve control problems has been studied by
Zadeh and Whalen, by Ben rosen, and others. I would like to confiss myself,

bowever, to Linear Control Theory as described by Fomtryagin, Botlyanski, Gem-

krelidge, and Mischenko in Chapter III of their book om this subject.
We consider an "object” defined by its n + 1 coordimates x =

(& » & »..-,8,) vhose "motion”, described as a finction of & "time" pare-

meter t , can be vritten as a linear system of differential equations

dx
(1) E-u’m

vhere u = (“1 » Wy ,...,ur) is & contol vector that must bhe chosen for esch

t from a convex campact set U(L) . The lnitial conditions at t » O are

L0, 4.6

veens8D) , (fxed) .
The terminal conditions at t =« T 1 obtained by setting

(2) X eXT ez




TTa (0, 8] , £ 4000s8l) , (fixed)

2, = (1,0,0,...,0)

and by requiring that u = u(t) to be chosen such that

(3) 2 is ninimm .

As given in Chapter III of the book "Mathematical Theory of Optimal Coo-
trol Processes” by Pontryagin, Boltyashii, Oeskrelidge, Mischenko, the fimal

state may be vritten in the form

T
(%) -ZE, + f Py Bu(t)t ed

tA

vhere b.!r- P,lxo is a knovn vector, and Pt-e mtrix that say bde com-~

waiently camputed as a fumetion of t , PFor example, for the case of real dis-

tinct charectaristic roots Ll of A :

-]
(s) Pg - ‘VA En‘.kxt
0

vhere l‘ Are square matrices independent of t . The latter formmla for the

LN is developed in "An Imtroduction to the Appliocation of Dymamic Progremming

to Linsar Control Systems” by F. T. Samith in RAND Report RM-3526-PR, Pebruary
1963.




We may formally write (4) as & generalized linear prograa.

PROBIAM: Pind Min Z, p > O such that

(6) B +Yued

wel

vhere Y may be freely chosen from the convex eet defined dy
[\'1‘

(1) Y> | Py Bu(t)dt
(4]

for all possible choices of u(t) € U(t) .

The method for solving the generalized linear progrem descridbed earlier
for comnvex programming can be applied. PFor brevity, we omit the question cf
hov to obtain the initializing basic set, except to say it is the amalog of he
phase I procedure of the ordipary simplex method.

As 5000 s x = x* 1s determined for iteration k we seek & solution of

the sub-problem such that the inner product

T
Ko «°Y « Kin & f P, Bu(tlas
0

T
- f [m(:‘r,_tu(t)lat for u(t) €'U(t) .
0

It 1s important to note that for each t,:'?,.tl is some knowa wector ct.

Thus, for each ¢t we ust s0lve:
SUB-PROBLEN: Pind Min ctu for u ¢ U(t) .

If U(t) 1s @ polyhedral set, the sudb-prodlam is oismply & linsar progrem. If

-11-
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U(t) 4s the same for all ¢ , then the lineer programs are the same for all ¢
except for the varying objective forms ctu . mte;'octing enough, the sub-pro-
gruiis turn out to he the eame as what Pontryagin o‘bﬁim using his 'ﬁxin]. prin-
ciple,

A control problem is an example of a dynemic system vhich, is t is treated
by the straightforwvard procedure of discretizing the time, would lead to a large-
scale computational problem., The generelized linear program {or deccmposition
principle approach), however, provides us with & procedure which does not re-
qn'i're the dﬁcretizing of the time interval,

The last twenty years have been marked by the accelerated trend toward suto-
m. Many believe that not omly simple control processes, but soon thc more
coplex coatrol processess will be mechanized. If so, whether we like it or not,
decisions will be made for us by machines. Whether or not they will bYe good de-
cieions will depend on how cleverly we have instructed the,-é.chines. This is
turn will depend heavily on hov clever w2 heve been in developing solution tech-
niques for solving large-scale systems.

To this end, we have sketched severel ideas: (1) taking advantage of the
low density of the non-zero coefficients in the original matrix, (2) finding a
compact inverse repr:sentation of the basis using the simplex method, dnd (3)
making us? of the generalized linear program or decomposition principle approach.
We illustrated the latter on & linear-control problem and found that it led to
the maximal principle with the added bonus, however, that it can be uged to con-

structively converge to an optimel solution.

-12-
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LINEAR CONTROL PROCESSES AND MATHEMATICAL
PROGRAMMING*

GEORGE B. DANTZIGt

Linear control process defined (8), [14). We shall consider an “object”
defined by its n + 1 coordinates X = (x,, 71, * - - , Za), whose “motion”
described as a function of a parameter, “time” (¢), can be written as a
linear system of differential equations

ax _
da

where A*, B' are known matrices that may depend on ¢ snd

(1) ‘X 4+ B'u,

u={(u, %, -,

is a control vector that must be chesen from a convex set, u € U(¢) for
every 0 St £ T. The time period 0 £ ¢ £ T is fixed and known ia ad-
vance. The coordinate To = z0(t) represents the “cost” of moviug the
object from its imtial position to zo(t). For this purpose it may be aszumed
that 2,(0) = 0. Defining

(2) X=(0,z;,z,,~--,z,,),

the object is required to start somewhere in a convex domain X(0) ¢ Syand
to terminate at ¢ = T somewhere on another convex domain X(7T) € 8- .

Problem. Find u € U(t) and boundary values X(0) € S,, X(T) € S,,
such that 2o(T) is minimized.

Assuming u € U(t) is known, the system of differential equations can be
integrated to yield an expression for X(T) in terms of X(0) and u € U(¢).
This is true in general but will be illustrated for the case when 4* and B‘ do
not depend on ¢; in this case

(3) X(T) = ¢™X(0) + fo ’ T By(t) de,

where u(f) € U(2) i8 a convex set and where we assume the integral exists
whatever be the cheice of the u(t) € U(t) for0 st S T.

Generalized linear program {2]. Our general objective is to illustrate

* Raceived by the editors January 12, 1965, and in revised form March 35, 19685.
Presented at the First International Conference on Programming and Control, held
at the United States Air Force Academy, Colorado, April 15, 1965.

t Operations Research Center, University of California, Berkeley, California.
This rescarch has been partially supported by the National Science Foundation under
Grant GP-2633 with the University of California.

56




LINEAR CONTROL PROCESRES 57

how mathematical programming and, in particular, how the decomposition
principle in the form of the generalized linear program can be applied to
this cless of problems. An elegant constructive theory emerges, [10], {11),
(12], (13].

A generalized linear program differs from a standard linear program in
that the vector of coefficienits, say P, associated with any variable s need
not be constant but can he selected from a convex set C. For example:

Problem. Find max A\, 4 2 0 such that

(4) UM+ Pu=Q, =1,

where U, , Q. sre specified vectors and P € C convex.

It is assumed that the elements of C' are only known implicitly (for
example, as some solution to a linear program) but that particular choices
of P can be easily obtained which minimize any given linear form in the
components of P.

The method of solution assumes we have initially’ on hand m particular
choices P; € C with the property that

U + Pun + Pun + - + Potim = Qo,
mtumt o+ oum =1,

has a uniqu~ “feasible” solution; that is to say, A = \°, u; = u’ 2 0 and
the matrix

®) O PR

is nonsingular (i.e., the columns of B’ form a basis). Because P, € C, the
vector P° = )_ P.u constitutes a solution P = P for (4) except that
A = A’ may not yield the maximal A.

To test whether or not P° is an optimal solution one determines a row
vector # =  such that

(5)

(7) ﬁoBo - (l, 09 e »0))
and then a value & and a vector Py, € C such that
(8) = iop...u = min i'op,

Pec
where we denote

9 P - [f]

If it turns out that & = O, then P = P’ is an optimal solution.

1 This is not a restrictive assumption since there is an analogous method for ob-
taining sucl. & rtariing solution, see [2].
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If P° is not optimal, system (5) is augmented by P.,;. After one or
several iterations k the augmented system takes the form of a linear pro-
gram:

Problem. Find max A, u; 2 0,

m+k m+-k

(10) U + ;Pm¢=Qo, ;m=l.

Letting B denote the basis associated with an optimal basic feasible solu-
tion w = m.' to (10), »* is defined analogous to (7) and &** and Pajsu
analogous to (8). If it turns out that § = 0, the solution

m+k

(11) ' P* = Zl:P.'M.'k

is optimal. If not the system is augmented by Pa..:41 and the iterative
process is repeated.

It is known under certain general conditions, such as C bounded and the
initial solution nondegenerate (i.e., .’ > 0), that #* — #* and P* — P* on
some subsequence k and that P = P* is optimal. The two fundamental
properties of #* are

(12) %0 and #*'P2 #*P* =0 forall P€C.

The entire process can be considered as constructive providing it is not
difficult to compute the various Pm 14 from (8) with # = #***, For ex-
ample, if C is a parellelepiped or more generally a convex polyhedral set,
then min #P constitutes the minimization of a linear form with known-
coefficients # = #™** subject to linear inequality constraints in the un-
known components of P, i.e., a linear program. In this case the iterative
process terminates in a finite number of steps and Pa..s constitute ex-
treme solutions from it. In all cases an estimate is available on how close
the kth solution is to an optimal value of A.

Application of the generaiizsd program to the linear control process. Let
us denote

r .
(13) P=f. eV Bu(L) di,

and note that P is an element of a convex set C, generated by choosing
all possible u(tj € U(t). We specify that Uy = (1,0, ---, 0), and denote
by A = — Xo(T), where Xo(T) is the coordinate of X(T) to be minimised.
Then

(1$) X(T) = ~U + X(T.
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We further drfine Qo by
(15) X(T) = ™X(0) + Q.

Subetitution of these into (3) formally converts® the integrated form of
the control problem into a generalized linear program (4).

Each cycle of the iterative process yields a known row vector, which we
partition
(16) =[x, 0],

where r representa its first n 4+ 1 components corresponding to P and 0 its
last component. Siice x is known, our choice for Py .y is

. T r
(17)  #Pats+1 = min { j re'" " Bu(t) dt} = [ [ min " "“Bu(t)} &,
0 0 weUL)
where clearly the minimum is obtained when, in (17), the integrand for
each t is selected to be minimum.
Note that

(18) b1 = I’C(T—”‘B

is & row vector that cau be computed for each ¢. For example, ¢;.. can be
represented by a finite sum of vectors whoee weights depend on ¢ and the
eigenvalues of A. The new extremal solution P44 is obtained by choosing
the control which minimizes the linear form in u for each ¢; i.e., find

(19) min (¢¢.u), u € U(?).

For example, if U(t) is a polyhedral set then (19) is a linear program. If
U(t) is the same for all ¢, then only the objective form, ¢, ,u, varies for
different ¢; except for the objective form the linear programs are the same
for all ¢.

It optimal =* is used, then the optimal control u (except for a set of
measure sero) satisfies

(20) min [¢°(t)u], u € U(0),

where ¢°(t) = »°¢'"""*B. Pontryagin refers to this as the mazimal prin-
ciple. It is, as we have just shown, also a consequence of the decomposition
principle of linear programming.

Conclusion. In our approach the general control obtained for each cycle
is a linear combination of exactly n + 1 special controls obtained by mini-

$ Actually @y in not given hut is sn eiement of a convex set. To simplify the dis-
cussion which follnms we assuine Q, is a fixed vector.

-
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'mizing for each ¢, the linear expression (19) in « for n 4+ 1 cnoices of .
These special controi~ may he referred to as extreme ~ontrois. The latter
ench in themselves do not maintain feasibility, that is to ssy, guarantee
that the object will move from X(0) to X(T). Each new linear combina-
tion of these special controls will, however, generate a new feasible control
with a lower value’ for the total cost Xo(T). Unde: the conditions stated
this iterative process is known to converge.
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ALL SHORTEST ROUTES IN A GRAPH

by

George B. Dantzig

A shortest route is sought between every pair of nodes (i, J)
in a graph when directed arc distances a 13 are given, where the
13 may be positive, negative, or zero except a, = 0.
If the graph is incomplete so that an arc (i, J) 4is missing, the

values of a

value of 85y =% - This problem (as is well known) includes the

travelling salesman problem since the route for (1,8) 1s a cycle
and one cen solve a travelling salesman problem with distances
- K]

d,, > 0 by finding a minimum cycle in a graph [a,J= a

1§ 1]

vhere K > }:i td di 4 - Our objective, therefore is more modest,
o
it 1s to find a negative cycle in a graph if one exists, if none

then to f£ind all the shortest routes.

The procedure 1s inductive and was stimulated by a remark of
Ralph Gomory's that an inductive approach was probably as en’ici;nt
as any other. It is not certain, however, whether this procedure
has appeared elsevhere in the literature and so is presented here.

It is shown that n{n-l)2 additions and an equal number of comparisons

are required to solve an n node problem. This number can de

reduced to _n(n-1)(n-2) if negative cycles are knowvn aot to exist.

This method is therefore as efficient as the dest result known,

that of Murchland (3] .




It is similar to many proposed schemes in that entries aiJ in the
matrix are replaced by 8y + akJ if the latter sum is smaller

for some choice of k . After replacement the nevw matrix ie

operated upon in the same way until no improvement can be found. The
various methods differ only in the rules for scanning the various

(1, J) and k . 1In order to keep track of the routes as well as

their values, it is also necessary to record for each (1.J) either the
rirst arc of the minimum route from 1 to J or the last arc. With

this information it is easy to generate all the arcs along the

route. Aside from the efficiency, the second advantage of the

method 1s the simplicity of the proof of its validity.

Assume for nodes 1, 2, . . . , k - 1 that optimal distances

are given, we wish to determine optima. distances a%*, 6 for

a 1

1)
nodes 2, 2, . . . ., k. We shall show that

Forb=1, ..., (x-1)

(1) a;l - M}n (akJ + ail) J f 1, 2,...,k-1

(2) azk = Min (ask + alj)

(3 a;k = H&h (o a;J + °3x ]
For (L =1,..., k-1)and (J = 1,..., k-1)

(%) s, « Mia ( ild » 8+ o, )

The inductive procedure begins vith a,. = O and stops if at any

11
time a diagonal value 'Ii < 0 appears in vhich case a negative




cycle has been obtained; or if step k = n has been completed.

Proof: (1) states that a minimum route from k to y starts
with some arc a 3 followed vy e minicmm route from J to Ia that
does not go through k . Hence the minimum of these alternative

routes 18 the one desired.

Formula (2) is the same idea except the alternative routes
are defined by the last arc a 3k cf the route and the beet
route from /Z to J that does not go through k

Formula (3) states that either 8y = O 18 the best route
from k to k or there is a negative cycle consisting of going

along some begst route from k to i1 and then 1 back to k .

Formula (4) states that either the best route from (1, 5)

does not go through k (and has value Eid) or does go through k

* *
(and has value ady +%\: ) -

The count on additions is
n
C=I [(k-1)(k-2) + (k-1)(k-2) + (k-1) +(k-2)%)
X +1

vhere the four terms are the count of (1), (2), (3), (&)
respectively. RKote that ve omitted from the count (for exasple)
the addition a4 ;iﬂ- because ‘LJ. is knovn to be
zero. In the case that negative cycles are known not to exiat, the
third term may be dropped and the last term reduced dy (k-1) since
the diagonal ‘:1 = 0 . 1In the latter case, the count is

C e n (n-1)(n-2) sdditions and an egual number of

comparisons.




(1]

(2]

(3]

(4]

(51

(6]

(7]

(8}

(91

(10]

f11]

(12]

REFERENCES

Farbey, B. A., land, A. H., '"i~cnland, J. D., "The Cascade
Algorithm for Finding the Mirnimum Distances on & Graph. "
Transport Network Theory Unit, London School of Economics,
October 1966.

Dantzig, George, B., "On the Shortest kcute Thrcugh a Network,"
Management Science, Vol. 6, No 2. January, 1960.

Dantzig, George. PB., Linear Programming and Extensions,
Princeton University Press. Princeton, N. T.. 1963, pages 361-66.

Bu, T. C., "Revised Matrix Algorithms for Shortest Paths,”
IBMM Watson Researst Cernrer Research Paper, RC-1478
September 28, 19€5.

Hu, T. C., "A Decompoasitior Algori*hm for Shortast Paths 1n a
Network," IFM Watson Re:zearch (er=er. Research Paper, RC-1562,
Pebruary &4, 196€6.

Murchland, J. D.,, "Ap Inductive hatrix Method for Finding All
Shortest Paths in a Directed Srapk.” LSE-TNT-25, March 25, 1966.

Murchland, J. D., "A New Methsd f3r Fiprding Ali Elemerntary
Paths in & Complete Direcred Jrapt,"” LSE-INT-22. Oc-oYer 26. 1965.

Murchland, J. D.. "An Algol Procedure for all Shortest Paths
in a Symmetric Graph.” LSE-INT-35, March 7 1966

Murchland. J. D.. "An Indictive Marrix Method for Finding all
Shortest Paths in 8 Directed Graph " LSE-TNT-29, March 29, 1966.

Murchland, J. D., "Ire Extension of tie Cascade Algorithm to
large Graphs,® LSE-TNI .20 Sepreater. 1966 (Revised)

Murchland, . D. "Bicliograpny »f *hc Shortest Route Probleam,”
LSE-TN?-6  June 1955. (Revisior)

Murchland. J. D.. "A New Metnois €ir Fiuding all Elementary
Paths ir a Complete D.rect~d Sraph.” LSE-TVT-22, uctober 26, 196S.




ALL SHORTEST ROUTES FROM A FIXED ORIGIN IN A GRAPH

BY

G. B. Dantzig*, W. O. Blattner,** and M.R. Rao**

TECHNICAL REPORT NO. 66-2

November 1966

*Operations Research House
Stanford University
Stanferd, California

**nited States Steel corporation

Research Of G. B. Dantzig parrislly supported by Office of Naval
Research, Contcact ONR-N-(MiQli-67-A-0112-0011, U. S. Atomic Energy
Commfssion, Contract “o. AT(04~3)-326 PA #]18, anc National Science
Foundation Grant GP 643]1; reproduction in whcle or in part for &ny
purpose of the United States Government is permitted.




ALL SHORTEST ROUTES FROM A FIXED ORIGIN IN A GRAFH

by

G. B. Dantzig®, W. Blattner** and M. R. Rao**

A shortest route is sought between a fixed origin node 1 = 0

to n other nodes in a grauph when directed arc distances ¢ are

i

given and the values of ¢ may be positive, negative, or zero

1

i ﬁ J . No values c1J are specified unless there is an arc from

i tc } . This problem (as is well known) includes the

travelling salesman problem with distances diJ > 0 because one can

. - K] where K>Z and look for a mindimum

13 = 94 1 %y 9
route from O back to itsclf. Therefore our objective will be more

set [c

modest: To find a negative cycle in a graph if one exists or if none

exists then to find all the shortest paths from the origin.

The method is inductive. On step k , there is a set Sk
consisting of the origin and k - 1 other nodes. Restricting arcs
to those that belong to the subgraph of Sk ; the minimum distances
from the origin along these arcs to nodes 1 € Sk are assumed

known and have value Hi . 1t 1s also assumed that no negative

cycles exist in the subgraph of Sk . It follows that

(1) ni"'ci.j?-nd forall 1€8§ , Je€s.

* Stanford University
#* U, S. Steel




Theorem 1: Let D denote the length of the shortest route from 1

13
to J along arcs of the subgraph of Sk containing no negative

cycles and let (1) hold, then

(2) o,,> W, -I

iJ J i

Proof: Let the sequence (i ; i cody J) denote the nodes

12 1o
along & minimum route from i to J in S, then by (1),

Adding these inequalities together ylelds the desired relation.

1 for Sk ’

we wish to augment Sk by including & node gq £ Sk . We denote

Assuming now that we know the minimal distances 1I

= »*
Si41 = {Sk , } and vish to determine minimal distances N} from
the origin along arcs of the subgraph of Sk+l to nodes
*
ie sk+l . The theorem below permits us to determine Hq

immediately.

Theorem 2: Let q £ Sy ané S = {Sk ) q} then a shortest

k+l

route from 0 to q in S has as last arc of the route

k+1
(p, q) where pe¢ S, satisfies

)

(3) T, +c . = Min (m,

ile Sk

is the minimum distance from the origin to q

+ éiq

a M =T 4
w;E TgT T

in sk+l '

»q




Proof*® Suppose false and a shorter route is via 5 € Sk s then

contradicting (3) . This theorem is true even if Sk has negative
cycles. The II; and I 1 would then represent the shortest

distance without cycles from the origin.

Knowing II; , Theorem (4) below may now be applied to

determine for another node A € Sk+1 , its minimum distsnce II*

L

from the origin along arcs of the subgraph of Sk+1 « Knowing II;

and IIE we reapply Theorem (4) again and again, each time

finding a least distance for another node in Sk ac This is done

until all nodes are exhausted in Sk a °r the optimality condition

5,, 20 of Theorem 3 below is satisfied in which case the

1
remaining I 1 values are also optimal for Sk a’ °F the negative

cycle condition of Theorem 5 1s satisfied.

Theorem 3: Let T be any subset of nodes 1 whose minimum distance

I from the origin along routes in the subgraph of S, ., 1s known,

let q€T; let S

and T contain no negative cycles; let

X
(k) Byg= Moy, -y 1eT, JET
then, if
(5) 85 20 forall 1 €T, J AT

the minimum distance for all remaining nodes is

(6) n;-nJ for all J AT




This theorem is true even if T contains negative cycles but requires a

different proof.

Proof: The conditions for optimality in §, ., analogous to (1) are:

(7) 51.1‘_“;”1.1'“.)?-0 1 €T, 3¢ T
n1+c1J-n'jzo 1 fT, 34 T
T+ -M20 1 €T, Je T
My +cyy =T 20 1 fT,3¢ T

The first of these holds by hypothesis (5), the second by (1), the
third by hypothesis that the T set is optimal in Sk +1 (and there

are no negative cycles in T); finally the fourth because

n; < nJ end (1) holds.
On the other hand if the optimality conditions & 13 >20o0f
Theorem 3 does not hold for all 1 €T, J £ T, then 8,y = Min °1J< 0

holds for some t € T and L # T. It will be shown in Theorem b,
that the minimm dintance from the origin along arcs of the subgraph

» .
of 8 ., to node L 1s glvenby P = M, + Thue Theorem 4

) A tL
may be reapplied until there are no longer any nodes in Sk 4 not in
T or condition (5) holds, or a negative cycle is detected, but we

vill speak more about this later in Theorem 5.

Theorem L: Let Sk and T contain no negative cycles vhere T 1is

any subset of nodes i whose minimum distances from the origin in




*
Sy, 18T} . If for some te€T, L

(8) 8, -Min61J<0 1em Jf

then

is the minimal distence from the origin along arcs in the subgraph of
Y

S0 tomode [ .
Proof: On the contrary, if there is a shorter route to l » then this
route must include the node gq and perhaps some other nodes of T
(othervise HL would be minimum but we know nl < ri by (8) end
(9). Along this shorter route let (t , .Z) be the last arc such
that t €T, J £ T. Then the distance along the route from J

to /z, may be denoted by Dll (see Theorem 1) because

the nodes rroml to [ are all elements of sk . By Theorem (1)

10 Dy, 21, = I=

(10) oy 27 - 1

On the other hand by virtue of the assumed shorter route through
t, |

(11) nE +epp ey, <M ec,,

l)mil theorem also holds if T coatains negstive cycles and II:
are the shortest distances from the origin along routes without
cycles.




Subtracting (10) from (11) and rearranging

»
- —y - * -
Ip +cpg -My <IOE+c,) -1

or 551 <5t9, by (4) which contradicts hypothesis (8) of

Theorem 4.

Theorem 5: If Sk’ T contain no negative cycles and the shortest

distance from the origin in Sk+l for 1€ T is n*i* <I 1 and T is

augmented to T* =1(T,£§ where [ i3 as defined in Theorem 4, then a

a necessary and sufficient condition that T* contain a negative

cycle is

(12) nz + g m 5£q <0

:
’ Proof: Since III <1, holds the optimal route from the origin to ,ﬁ

i
i in 8, ., passes through q . If (12) holds, then the cycle
consisting of the optimal route from gq to { and then arc (,(7,, q)
fas negative length. This may be seen by summing the relations
) n; + ¢y 5= II3 along the route from gq tof and then adding it
| to (12). | If, on the other hard, (12) does not hold, then
we will show that II¥ + °4y > II‘J' for all 1€T* JjeT* which
implies that no negative cycle in T* exists (as one can see by
summing such relations over the arcs of a cycle.)

We need now only rule out for some i and J £ q that
[ ]

III +c 1 < II“; . This would mean we could lower the value of II3

L4 [ ] [ ] L4 e

by making 1. the node that precedes J' along the optimal

route instead of some 1, . This deletion of the arc (11 J.) from




the treee) of optimal routes and entering the arc ( i.J.) into the
tree either would provide a shorter route to J° or it would cause
a cycle to form which (by an earlier argument) is negative.

However neither 1s possible because the former implies a shorter
route to ,j° (because IIB' was lowered) while the latter implies
a negative cycle not invols"ing q . The cycle cannot involve ¢
because all shortest routes 1 € T* from the origin pass through q
and there are no directed arcs into q along the tree of optimal
routes in T™ . But a negative cycle in Sk ig contrary to

assumptiocn.

Thus a negative sycle will always be found if there is one by

(12). If one is found the inductive process terminates.

The following theorem due to M. Sakarovitch (verbal
communication) permits one to £ind the minimal distance in Sk + to

several nodes at once.

Theorem 6 (Sakarovitch): Last L be the nodes in the tree of

optimal routes in Sk whlch are successors” of l as defined in

Theorem 4, then

*
(13) Hi ni+5tL for 1 €L.

HNot;e: If there are no negative cycles in and T in Sk 4

there is a tree of optimal routes to 1 € T dbranching cut

from the origin; also the added arc (t, L) with teT, LT stild
yields a tree of shortest routes without cycles in {1 € T* .

3)'I'he tree of optimal routes from the origin forms a partially ordered
set. The “"successors" of { are those nodes reached through L.




Proof: One notes first that the distance Iif:l + atl can be realized
by first going along the optimal route to L and then along the
former route from l to 1 €L . Now assuﬁe on the contrary that
there is a better route to 1 . As in proof of Theorem 4, let tlL
be the last arc of a better route such that t € T and I g T,
then If + cgy + Dpy <My + 8,y . Subtracting Dy >N, - Ty,
yields °€l< 61:), contrary to (8) .

For completeness we give the following well known theorem, [3].

Theorem 7: If °1.13° and M, of S, _are known to be the

minimal distances from the origin for the k nodes of Sk using

arcs of the full n-node problem, then II“1 = I[p + ch is the minimal

distance for q f 8, wvhere

(1%) IIp +cpq=Hin (II;l +c

1e$.k
J£8,

Proof: If not, then q is reached via some shorter route that

1J) » P €8,

has nodes in common with S (since ak includes the origin). Let

(t , Q) be the last arc on the shorter route vith { ¢ 8, and

a4 , then

(15) M ¢ cpr + (min distance q to q) < LI

but this relation contradicts (14) because minimum distance from

a to q is non-negative vhen c,, 20 .

S
We are nov in a position to give a count on the mmber of




additions. Associated with each set of additions such as for (14)

is the same number of comparisons (or possibly one less). In the case

¢y > 0, the same sums occur in S,  and § ., for the same (1, 3).

Since at step k¢l we d0 not need to consider the arcs back to Sk ’
the total additions do not exceed the total number of arcs. We will

denote this total by A . The procedur: 18 to sort thell, + ¢

1 1
values as generated from low to high. Let the lowest sum on this

list be Hi + cij . This sum on the list is deleted if HJ
L ) [ ]

has previously been determined; if not then I'I‘3 - Hl + cij
[ - L ]

Next the sums II +

J

made part of the sorted list. The process is then repeated. Sorting

©4 k are computed for all arcs (J, k) and
[ J

requires effort, however, and so that the two theorems that follow

are misleading.

Theorexn 8: If all distances Sy > 0, then the number of additions

using formula (1L) does not exceed A , the number of arcs.

Theorem 9: The number of additions in the general case, when

formula (3) anc (8) 1is used does not exceed

(16) A+ af, + (n - 1) f,+. .- f

vhere n 4iC the number of nodes, rk is number of arcs directed

forvard from the k-th node to enter the induction.

This suggests preordering from low to high the nodes by the

number of their forward arcs. If this is done, the bound reduces to

(x7) A+nf +(n-1)f,+...0 <(n+3)AN2




(1]

[2]

(3]

(4]

(3]
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Finding & Cycle in a Graph with Minimum Cost to Time Ratlo

with Application to a Ship Routlng Problem

by
G. B. Dantzig¥, W. O. Blattner**, and M. R. Rao**

Asgociated with each arc (1,3) of a greph are two numbers ¢ the

1

"cost" and t, 3 the "time" per unit flow. In our application the unit flow

is a ship making one trip from 1 to J at & cost ¢ and teking ¢

13 i
hours. In another example, a vessel for hire can make a profit pn each
time it goes from 1 to J ; eventually (if there are a finite number of
ports) it must complete a cycle with a total profit P and a total lapsed
time T where P 1is the sum of the profits and T 18 the sum of the times
on the arcs of the cycle. For a maximum rate of return, the shipowners should

use that cycle which maximizes the ratio of P/T . Later we shall describe

" & more complex linear programming model which we solve using a column

generaiion scheme (a variant of the d:composition principle). The
subproblem turns out to be one of finding a cycle in a greph tﬁat hes the

minimum ratio of total cost to total time.

Consider the following linear program:

Find Minz, x,, 20 such that

i

2 ) n

(1 Z CiaXya= 2
i,3=1 S

n

(2) L ¢t,,%,=1 t,, 20
1,400 1 U 1

(3 n n

3 8 X - z X = 0 J - 1,2,...,!1
w1 MW e I

*Stanford University
I, S. Steel




Theorem 1: Associated with an extreme minimizing solution to (1), (2), (3) 1s
a cycle whose total cost to time ratio 1s minimum.

Proof: lLet §11 =1 ir (4,)) is an arc of some cycle and Xx,, = O otherwise.

1)

13 §id =T , then Xyy = iiJ/T satisfies (2) and {3) and z = C/T 1is

the ratio of total costs, C=Z L ¢

let £ ¢t
1 iij , to total time T .. Accordingly we
can always associate with a cycle one of the solutions of (1), (2), (3).

Consider now the class of minimizing solutions to (1), (2), (3). We can now

see that to an extreme minimizing solution corresponds a simple cycle. This

follows because the flows xi3

eirculations. If any of these circulations had by itself a lower ratio

> 0 can be represented as a sum of simple

/Zt than another one, the solution could not be optimal. Indeed

Tey g%y Fo15%1y
an improved solution could bz obtained by building up the circulation around
that cycle with the lowest ratio and decreasing the flow around the one with
a higher ratio. Nor could a solution be extreme if there were two simple
cycles with the same ratio because one could represent such a solution as a
convex combination of two others by first bullding up and then building down
the circulation in one of the cycles while adjusting the other go (2) holds.

THE SIMPLEX ALGORITHM

A simple algorithm for solving {1), (2), (3) can be derived from the
si-plex method. A basis involves n columns (one equation is redundant).
The corresponding arcs in the graph must consist of a tree and one out-of-tree
arc. To see this we note that since a basis is non-singular, there must
be at least one non-singular (n-1)x(n-1) submatrix formed by deleting the
row assoclated with the time equation and deleting some column of the basis.
Non-singularity implies that the n-1 arcs assoclated with the remaining

columns form a tree. The arc associated with the variable of the deleted




column together with a subset of the arcs of the tree form a cycle.

In fact, this implies that every basic feasible solution to (2) and (3)
mst consist of one tree spanning all nodes end one simple cycle forméd by
a subset of the arcs of the tree augmented by one additional arc. This
additional arc completes the cycle making possible the positive flow forced
by the time equation. |

It is easy to see (a) that the basic

AN

(4) Case IT (IN)

olt——
/ N N Case 1 (OUT)"’

- -EN(.C-a;e
I1T)

 \ \IN( Case 1)

variables other than the cycle variables have zero value in a basic

- solution, (b) that each nods in the simple cycle has one cycle arc pointing

into and the other away from it, and (c) the values of the cycle varisbles

are the same and equal to 1/T where T is the total time around the cycle.
It is also easy to compute the simplex multipliers (prices) essociated

with the basis. Indeed if we let p be the the multiplier associated with

the time equation (2) and let II, be those associated with the node

J
equations (3), then for each arc (1,)) associated with a basic variable

HJ -H1+p tiJ-CZU

Summing these relations for all arcs (1,J) € Cycle yields
(5) pmC/Tw I Sy 1t tiJ (1,3) € cycle arcs

3




R e 1

Knoving p , one may arbitrarily choose the value of any one node (there
1s a redundant equation) and determine the remainder by

(6) KJ =1, + (c:‘.J -p tid) | (1,3) € tree arcs

by branching cut from the selected node along arcs (1,j) of the tree
until all nodes are reached.

To obtain an improved solution the simplex multipliers are used to
eliminate the basic variables from the cost equation. The resulting

coefficlenta for the non-basic variables are
If all 8, 3 > 0, then the value of p given by (5) 1s the minimum cost

to time ratio and the prcilem is solved.

If not, let

(8) apq <0 for some (p,q)

We now make a special Inductive Assumption: at each iteration, there is a

basic feasible solution consisting of a directed tree spanning out from a
single node that is its root, augmented by one additional arc to form one

simple cycle .1

T If a feasible cycie exists in the graph we can satisfy the inductive
assumption by taking any node of the cycle as the root of the tree and
spanning out from the nodes of the cycle using forward ares to other
nodes, and then iteratively, repeating the process with all nodes reached.

If nodes still remain they can be reached by introducing high cost artificial

arcs as required. If there is no feasible cycle in the graph there is
obviously no feasible solution to the problem; if such is indeed the case
this fact will be discovered by the algorithm that follows.




I (p,q) 1s the dotted arc marked "IN (Case I)" in the figure, then it 1s

easy to see that entering (p,q) 4nto the set of basic arcs does not form
& pew cycle and we must drop out of the basic set the one which is also
directed into q . A new basic feasible set of arcs is obtained with the

values of II, decreased to I, + BP q for node 1 = q and all nodes 1
‘.

1 i

that are followers of gq in the new tree. All other II N remain
unchanged. In Cases II and III a new cycle is formed and we must drop
out of the basis any one arc (r,s) which is in the 0ld cycle and not in

the new cycle.

Theorem 2: If the inductive assumption holds, and if [p,q) 1s entered
into the basic set in place of the basic arc directed into q , then the
inductive assumption holds after the change except when a new cycle is

formed.

Theorem 3: If a new cycle is obtained as a result of changes in the basic

set of arcs, its o* = C/T ratio is less than the previous one.

Theorem Li: If d:lJ = (cij -p t“) is used as distances on arcs
(1,J) 1in the graph, then any cycle in the graph whose sum of distances
around the arcs of the cycle is negative has a lower C/T ratio.

The simplex method accordingly reduces down to finding & negative cycle

in a graph vhen arc distances 4, g are given: Starting with II, = O for some

node of the cycle, the other I, are simply the distances from this origin

1
node along arcs of the tree to node 1 . The eimplex iterative process is
seen to be the standard one for determining the shortest route from the

origin to all others, terminating when either




(9) dgy - (M, -7) 20 forall 4,

or on some iteration a negative cycle like in Cases I or II 1s found. In
the former case, it is seen by sumuing (9) for all (4,)) earound eny
glven cycle that distance around any cycle is non-negative so that the

p used to determine d1 P ¢y e ti J is the best ratio. In th‘e latter
case; & new cycle with a lower value of p 1s gbtained and new d:I.J

values are computed.

ALGORITEM: In the following algorithm the pairs (i,J) represent directed

arcs defined in the graph:

?

0: ZLet SO be any starting cycle. If none available, set

p, = Max [ciJ/tiJ] in Step 2 below

1: FOI' k= 0,1,...

2: Compute p, = I cid/ZtiJ (1,9) € 8,

3: Compute dki,j = ciJ - pkti,j for all 1, )
4

Set l'lll‘ = 0 and set predecessor of node 1 as *

' (meaning none).
Set III;_ = ® and set predecessor for 1 £ 1 as 1.+t
k
5: For 2ach 1=1,2,...,n form Bi.j = dl;J +1r‘; - Il'l; for
J=1,2,...,n JpL.
k
(a) Ifbi.1

fixed 1 and then repeat increasing 1 to 1 + 1 until

> 0 return to (5) and continue scanning J for

i=n,J=n-1, If 4i=n, J=n ~1 terminate.

Cycle Sk is ontimal.

ttThese are devices to initiate the computation without effort and to
construct the starting directed tree necessary to satisfy the inductive
assumption.




k

(v) 1r 8, <0 go to (6).

i}
6: Determine the nodes in reverse order along the route
R from “he origin to 1 by back tracing the predecessors
of 1 .
(a) If J 4s not a predecessor of i , thenchange
predecessor of J to 1 and replace value of
n’J‘by rr'J‘ * al;J , return to (5) with 1 = 1,
=2
(b) If J 1is a predecessor of 1 , then let
sk +1 be the cycle along the route R from
node § to 1 and back to J along arc

(1,3). Return to 1 increasing k to k + 1.

For programming simplicity the above algorithm does not maintain a
directed tree. I it is modified to do so, the nodes can be priced
sequentially along the tree and the return from step 6 (a) to step (3)

modified to take advantage of this.




COMPUTATIONAL EXPERIENCE

Set I

Problem Nodes Arcs S(l;:gﬁs dJ.:: mﬁimﬂ
A I 12 3.60
B 4 12 2.16
c 5 20 3.96
D Y 7 2.52
B 6 13 6.84

Set I

(Excluding input-output)
F 5 20 1.8
G 10 90 T.92
: 15 210 14 .04
1 20 380 33.84
J 25 600 36.00
K 30 870 103.68

For prcblems in Set ITI, the ti 3 values for each arc were randomly
generated integers between 10 and 60. Similarly, the cm values vere
randomly generated between 20 and 120,

Ve 4o not hava an upper bound on the number of operations except the
kind that one could derive from a standard proof of the simplex algorithm.
In another paper where a variant of the scanning procedure given here is
used an uppe: bound of (Nodes + 3) (Arcs) additions-comparison operations
is given for finding a negative cycle, [1].




Application to a Ship Routing Problem

Amounts bi.j ar: required to be shipped from portsa 1 to ports J§ .
There are n ports (nodes). The shipping can either be done by charter
at a cost vy 3 per unit shipped or by using one of a fleet of m veusels
under the control of the shipping company. If vessel k da used‘the amount
that it carries between (1,)) depends on the kind of ship and on the
pattern of ports forming 2 cycle g that 15 assigned to the ship. We
denote this by aﬁé . Thus 1f arc (1,3) 1s not part of cycle g , then

a;i =0 and if it is its value is the capacity v, of the vessel. TIT

1]
Material balance =quations: For i, J=1, 2,...,4

n

(10) : y“-l-E:l Ea:g xkg-bi.)

where yi,j is amount chartered and xkg is the mumber of times that ship

k 18 employed in the g-th type cycle. We allow xks to have fractional
values vwhich we interpret as rate of use of the ship in some given period of
time.

Vessel hour constraints:

(11) itkg*kg"'sk'hk k=12...,m

vhere hk is the total hours available on the k-th vessel, L is the umised

hours of the ship, "ks is the time to complete one cycle of type g.

Gbjective to be minimirzed:

(12) fi,J) Vey Yy " f 6 8 =2

411 Dependence on (1,3)) 1is possible if type of cargo on route (1,)) is
different from that on other arcs. In case of airplanes, cepacity depends
on distance.




Here we are assuming that the cost to operate vessel is ck Per unit time

used, hence there is a savings of ¢, per hour not used.

K
In an ore shipment application which we were interec3ted in there were

too many possible cycles to explicitly list all the coefficients of the

problem. Accordingly we decided to generate the column of coeffisients

as needed. Using yij and 8, as basic variables, one has a starting

basic feasible solution. We now assume we have introduced into the dbasis

several other columns ard we have a set of simplex multipliers pid

associated with (10) and g vith (11). Ve wish to "price out" the

column associated with xkg and to find that column g for each k

that prices out most negativ=. The relative cogt coefficient of xkg

becomes

B el Py CH (1,0 FOREt

Our subproblem becomes one of choosing that cycle in the network of ship k

for vhich (13) 4s a minimum. Since aié = v§ 18 the ship's capacity, 1if

J
the arc (i,J) 1s used in the cycle g and zero otherwise, the sum in (13)
is simply the sum of the ship capacities on ares (1,)) weighted by Pyy
and the times weighted by % around the cycle g . Note that tks is the
sua of times on arcs (4,)) around the cycle. Unfortunately the problem

in this fcrm is that of finding a most negative cycle in a graph vhose arc

distances are given. This class of problems includes as a special case

the difficult travelling saicsman prohlen.




We got sround this difficulty by a change of units. We set

‘kg = ;kg/tkg' The relative cost coefficients for the nev problem become
) 4

(24) 9 - (Frgyviy/eg)

vhere g denotes the (1,)) € cycle g

1
Since qt for fixed k is constant and tkg = E tl:J the subproblem

becomes one of finding that cycle g* that minimizes the ratio
k k

vhich fortunately, as ve have geen, is & solveable problem!




{1] Dentzig, G. B., Blattner, W., and Rao, M. R., "All Shortest Routes

from a Fixed Origin in a Graph,"” Research Report No. 66-2,

Operations Research House, Stenford University, November 1966.
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1. Pivot Transformations

The achema
o N* .o .
*l.. a .. v .. &y’
(1.1) . . . .
x ee € 0 4 .. [mey
L S
conveniently exhibits two systems of linear equations, a
rov _system . . .
.o + .hn. + (X + bn + oo - -y.

(1.1r) . . .
4 LX) +Cq’+ (K] *dq* ee ..y

a8 linear combinations of the independent n-labels; and a

column system
v +x" 4+ .. +xc+ .. ="
(1.1c) : : .
v +x+ ve +xd ¢ ., =¢§

iu vbich the dependent {-ledels are expressed as linear combinations of the
independent x-labels. (1)

A pivot transformstion vith pivot entry & § O simultanecusly re-
expresses the pair of linear systems by solving the -y®-equation of the row
system for n* and the {"-equation of the column system for x* , and then °
using these equations to eliminate n" and x* as independent labels from
the remainiug rov and columm equations. y" and {* thereby bencme

in which the dependent -y-labels (variables or numerical values) are expressed

\



independent lsbels. Solving for n* 4in the rov system

ve ¥ n. + .0 ¢ ..].bn LY '.-ly.
or
X .-ly‘ + o0 ¥ ..1b'| + 40 = "n. ]

and hence,by substitution,

se C(.- ".ly’ - e -‘-lbq - .a) + .0 +dﬂ ¢ e = -y

or

X} .c‘-ly’ + e + (d-u.lb)f]'l' es B -y Y
8olving for x" 1o the coiumn oysten

¢e + x‘. + o + xu-l + se = {'&-1
orx

ee *+ t“-l ® e = xca-l ® o0 @ x’

and hence, by substitution,
ee * (-c + g.‘-l - o0 = xca-l - Ol)b+0.. "'ﬁ = !

ot tha e cetx(d-cab)r.. =g . |

Therefore, the result of making a pivot transformation with pivot entry a § 0
can be summarized in the transformation of the schema (1.1) into the schema
(1.2)

‘e _l’ X N XX
et .. et .. ah .. wn®
(1.2) : : : :
b 4 a0 -“-1 ve d-c‘-% ') ’-y
oo -x' X} 't X

In vords the schema (1.2) 1s obtained from the schema (1.1) by
1. Exclanging labels corresponding to the pivot entry a; nasely,
replacing n* with y*, and -y* vith -5* 1n the rov system,
and replacing x* with ¢*, and ¢* vith x* in the column
system.




3.

2. Keeping all remaining lebels (e.g., 1, ~y; X, ¢) unchanged.

3. Replacing the pivot a by its reciprocal 1/a; replacing ocach
remaining entry in the pivot's rov b by b/a; replacing each
remaining entry in the pivot's column ¢ by -c/a; and replacing
each other entry 4 4o b's column and c's rov by (4 - :_c_) .

Ciearly the only :=sult of making a pivot transformation is to re-
express or re-pregent a pair of lineer systems in terms of different sets of
independent and dependent labels.

Example. (* denotes the pivot)
']1 ']2 n 'h‘
xt3 - -}} 1
2 2*1 o
xg [+ 1 0 -3 x| 5 1/2 1f2 -3
sgl :gg -13 -fu -gl '412 -ca ‘lk

2. Dual Linear Prograws.
The scheme

(3 0) (a v)
Yl ) y" 1

8y o Ny bl-o

N
(2.1) :
AM | lm cee R b" =0
1 & .. gy 4| = v (mdn)
« o s U
(3 0) (3 0){max)

convens satly cxhibits a dual air of linear programs in standard fors

Rov_(or Primal) Progrem Column (or Dual; Progrem
Minimise Maxini ze

v-clyl+...+e,y'+d “"1"1"’"’\”)("
constrained by constraiped by

- )&uy1+.u+g‘mv'+bluo ":.‘u""’\hn“‘l'ﬁ?°
AT, C

a7t et t0 Ahgt et hagt et 320

1120,..., y‘zo




Theorem 1. If (v; yl,...,yn) satisfies the rov equations and
(u; MNoeeorNg xl,...,x‘) satisfies the column equations then

(2.2) XYy b s t XYy RV UL

Thecrem 2. If (v°; y:,...,y;) satisfies the rov corstraints (2.1r) (is
“yovw feasidble™) amd (u'; ){,...,))'4; "i""”‘i) satisfies the column con-
straints (2.1c) (is "column feasible”) then

u’ € minimum v < v!
and o

u <madmmu <V,

Corollary 1. If feasible (vo; yi,...,y:) and (u'; ).1,...,)}'4; x‘i,...,x‘i)
can be found such that v° = u' , then they constitute (optimal) solutions
to rcv and column programe. This can happen only 1f (dy (2.2)) R A =0

for all 1, that is, ooly if x, =0 and for y 0.

3. _Reduction to Canonical Form.

In order to solve a dual pair of linear programs (2.1) which are in
standaxd form the first task is to eliminate the unrestricted A-variables
from the column program, and re-exprees the rov program in terms of the
smallest possible set of independent y-variablas. This is accomplished by
using the .

Reduction Rule. Make pivot transformations on (2.1) and its suc-

osssive representations vith pivot entries corresponding to

O-dependent and y-independent rov program labels and x-depeundent

and A-independent column program labels until no Jounger possidle.

Vaen such a pivot entry cennot be chosen then a representation has been
obtained vhose schema is such that either

(a) every entry vhich corresponds to O-depsndent and y-independent
rov progrem labels and to x-dependent and A-independsnt columm progras
labels is & serv and thus cammot ba chosen as & pivot; or

(v) no row progrem dependent labels are Ofe and no column
progrem independent labels are \'s .
It (a) occurs ve must bave obtained a schema of the form

VL Y R




-~ .

1
Yoo ** yx;ﬂ-n 0 vss O 1l
' 1 ' '
R B SRR TI P PYO NI T T L R a1
. .. . b . . .
' e ! t _—
I e W W A VO TN
(3.1) '

' ' t s -
)\ﬂ 0 (3 : am-i-l,nﬂ"' & 1N b?'_l 0
. . . i . . . [}

() ’ ’
A'M 0 eee O ;“Nn#l cas am b)l =0
t . o
1 ci ces cl'1 |c&+l voe ci 4 v
] ] | a)! =
'xml “’m-n )h 4

vbhere the primed var .sbles are & rearrangement of the original veriables in
(2.1) and the primed entries are determined t the succession of preceeding
pivot steps. If any of the entries b;»l,...@b!" is different from zsro thean
the rov program constraints are incompatible, for some rov equation corre-
sponding to a depsndent O-label would read "a pon-sero quartity equals sero."
Then po optimal solutinns exist. Othervise, 1f el b;ol""’bl'( « 0, the
Tov equations corresponding to ¢rpendent O-labels reed "sero equala sero”

and can thus be cmitted. Clearly the columns correspoading to the indepsndent
O-labels can also be caitted from the point of viev of the rov program. These
same rovs and columns may be amitted from the point of viev of the colusn
pogran: the equations corresponding to the unrestricted Li,...,)" oan de
put aside since they represent no constraints; then, the occefficients ocorre-
sponding to the independent )b'bl'””)\'l are all seros and hance their rows
may be anitted. Notioe that the argument mede from the occlumm progras point
of viev holds vbether or not all b;n,...,b," are 30710; bovever, if ecme

of these are not serv then, clearly, even if there exists & colum progrea
feasible salution, the valus of the odbjective, maximise u , ocad be made

arbitrerily large (vhyt).

In summary if (e) occurs and all b;u,...,b," are sero ve odtain
s smaller representation for the dual pair of lineer progrems (2.1) vhose
schama 1




(30)
yx;»l ot yx;-m
{8y - 4a [P |™N
(3.2) (>0) ' : (5 0)
7’; alh « oo al;m bm =-yl;
1 ci . s e c!; dt |{=v (min)
-x;»l “ e e =xr;»n =
(>0) {max )

Such a representation is referred to as being in canonical form: all variables
(except u,v) are restricted to be nonnegative, and each equation expresses
some varisble as o linear combination of others,

Alternative (b) is a special case of (a) with m =M, 1i,e., all
A-labels are dependent, all O-labels are independent.. Therefore, for either
alternative, we can state

Theorem 3. If solutions exist to (2.1) then s representation in canonical
form (3.2} for the dual pair of linear programes can be cbtained by the
reduction rule aspecified above,

h, The Main Theorem of Linear Programmiag

Theorem 4. (Main Theorem) Given a dual pair of linear programs in canonical
fors there existe a finite succession of pivot transformations which obtain
a representzstion for the progrems vhose schema bas exactly cne ¢f the
following four forms (@, 9 denote nonnegative and nonpositive entries,
respectively, snd margiael variabies have been amitted):

1
6
(4.8) . exhibitiog optimal solutions
) . to both progrens;
8
lie ... o -y
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1l
.3 o exbibiting a feasible solution to
o the rov program and the unboundedness
Y f . (from below) of v ; and showing
(4.5) [ the noncompetibility of the column
g 9 constraints;
1 b =y
-y
1
. exhibiting a feasible solution to
‘;""“ """" ; : the colum program and the urbound-
(4.c) cdemntalalelacnandar edness (from above) of u ; and
shoving the noncompetibility ..f
the rov constraints;
l . L L] * L4 . w
=
D
‘e,
sessmespiamncencte- shoving the noncompatibdility
(B¢ N SPGRPRIRTI % 1 of both rov and column ccnstraints.
| Y
8.
1 ’ " }!V

(Proof of Theorem 4 vill be given beiow)

(2)
Qorc. ary 2. If there exist feasidble solutions tc both rov and column

prog) ms then there must exist optimal sclutions.

Proot If there exist feasible solutions 1o both programs then cases (b),
{c), 11) cannot occur, and hence ca:2 (a) must occur,

Corollary 2 is ususally referred %0 as the fundamsntal duality
theoren of linsar progrsmming.

3. _Staplex Metbods {3

A simplex metbod for solving & pair of dual lineer progrems (3.2)
in cancnical form is & finite sequence of schimata or equivalent representa-
tions for the progrnms obteined by successive pivot steps, vith prescrided
pivot entry choice rules, vhich ottain & schemm exhiditing optimal solutioos
to both programs, or the nou-compstidility of the rov and/or the columm
constraints.
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(%)
A ov (or primal) simplex methbod is a simplex method beginning with
& scheme exbibiting rov feasibility with pivot stepe which maintain row

feasibility in each succeeding schema. Thus, at any stage, a schema

T 1
Yl cc Yrvn

S R

(5.1)

N VN LM L A
1l

e e s G 1dV]lms v

[ g
[}
%]

o]

-1

1
Tl 0 T ™
vith b! < 0,...,0' <O is at hand.
1= ns=
A row {or primal) pivot choice rule is as follows:
If a schema (5.1) does not exhibit optimal solutions to both progrums

{tfora 4.a) there must exist a c3 <0 for some J . PEither (i) every entry
in the column of cj < 0 is noopositive or (11) there exist positive entries.

(1) Toe schema ie in form (4.b)
(11) Chose as pivot entry al';d > 0 satisfying

1

%o
4

akJ saJ>0 “sJ

Notice that if bx" € 0 & nev rov feasible solution is exhibited after pivoting
vhich gives & value to v strictly less than the previous exhibited value of v.

Boanple. Solve the linear programs
(>0)

30 04 1 |3 ey
(2 0) Xx: 1 3. 2 1 a-y: (5 0)
103 6 2 ]olev (un)
=X -

3 ’xh =X
(>0)




Y3 Y2 Vs 1 Yy Yo Y¥s 1

x| 5/3 -4/3 -5/3]-5/3|=-¥y, 515 -3 <51 0 ey,
® 47 : ——p
x| 1/3* 1/3 2/3|-1/3{=-y, 3,03 1 2} =73
11 -1 2 21 -2 |I=vw 113 3 & 3=V
SR g =
(5

A column (or dual) simples. method is & sinplex metaod beginring with e
schema sxhibiting colugm feasidility with pivot steps which maintain colusn
feasibility in each succeeding Jcheaa. Thus, at euy stegs, a schema (%5.1)

vith ci 2 0,...,c;2 0, 18 =t bard,

A column (or dusl) pivot choice yule is as Follows:
If a scheme {5.1) does not exhibit optimel solutions to both progrems
(form 4.,2) there must exist a bl >0 for scme 1 . Either (1) every entry
is the rov of bi > 0 is nonnegativc - (41} there exist scme negative
entries,

(1) The schema 23 in forw (4.c).

(11) Choose as ;ivot eucry a/, <0 satistying

c} x c.'
i ' - L .
®p 84y <0 &y
Notice that if ¢! > 0 a rev column feuii:le solution is exhidbited after

"3
pivoting which givee a valus to u strictly greater than the previous ex-
hibited valus of u .

Bample. BSolve the linear p

2 0)
n Y2 Y 1
xh -3 -1 0 3 "'y"
20) xg)-b  -3% -1 ]6 [y, (50)
Xe -1 2 +11}2 =Yg
112 1 1]o0]=v (uin)
(2 0) (max)
x,|=5/3" <1/3 1/3 |1 |=y, x|[-3/5 1/5 <1/5|-3/5 =¥,
Xy %3 <13 1/3 |-2 |=ey, Z) 4/5 -3/5  3/3|-6/5 |=-3,
xg| 5/3 -2/3 5/3 |-2 |=-¥g xl 1 <1 2] ey
12 3 /32 |=v 1 {2/5 175 W3[E)% (=v
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The rov and column simplex methods described sbove can be spplied
oaly to & pair of pilg.ems whose schems exhibits, respectively, a rov or s
column feasibdle asclution. Thie is not alwaye the case, of course. A method
for cbtaining a scheme exhibiting a row feasible solution (if one exists)
can bs descrided ae tonowa.(é)

Buppose that the schema (5.1) does not exhibit a row feusible
solution; i.e., b! >0 forsome 1 . Assume that the nonpositive bi

i

T bi S 0yeeesdy S0 (this 1s not a limiting aseumption for the rows of

(5.1) could be rearranged to accomplish this). Then, by replacing the bi
vith their signs, the schema (5.1) can be exhibited zs

H ?
Yper * . . ymn 1

* ' i =y}
X (% - ¢+ %, e,

! p- %
xk ----------- L L R T DL LY. mgn yi

L zey

{5.2) X541 * Ykl
x‘ .;l . . . a;nn + ="yé
Y| Y 1=
cl . o . cn d_‘ v

-m&_l . e e -x;_m =
In (%.2) tho sub-schema above the double line can be thought of as speci-
fying & peir of subprograms inm canonical form in which a rovw feasible
soclution obtains. Therefure, & row zimplex xatuod pivot choice rule can be
used Sirectly in (tesporesiiv) minimizing 'yl'u-l subject to the constratuts
a3 specified above the "y)'u-l row, If, eftar ous or weveral pivot steps,
the sign of the entry corresponiiug to b}'ﬂl Lacomes nuopusitive, then
one more rov with "correct” sign has been genersted and there is a larger
subschema (perhaps the entire schema) which can be thought of as specifying
a pair of subprograms in vhich a row feasivle solution obtains. Otherwise,
one of the two following forms can be reached (by Theorem L):




1 =v 1 ay
=u =

I (5.3a) occurs a pivot step with pivot entry starred leads to a larger
subschema in which a rov feasible solution obtains (vhy?). If (5.3d) occurs
no rovw feasible solution to the (complete) row constraints exists.

Example. Obtain a schema exhibiting a row feasible solution to

o)
B ¥ ¥

|43 13 /3|2 |y,
3[-3/3 13 -1/3 11 |=-y,
x| 5/3  5/3 -2/3 |1 |=-yg

1{-7/3 2/3 1/3f{2|=v
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A method for obtaining a column feasible soluticn (if ome
exists) can be described anslogously {(the description is left to the
reeder).

6. Proot of the Main Theorea. '’

Suppose, as in the statement fo the theorem, that a dual pair
of linear programs in canonical form (3.2) is given with m+ n + 2
the number of rows plus columns. DBefore precqeding to a proof notice
that two corcllaries are impediate consequences of the theorem.

Corol . (Given a dual pair of linear programs in canonical form
(3.2) there exists a finite succession of pivot transformations

vaich obtain a representation for the programs vhose schema has exactly
one of the following two forms (where the identity of the column

with label 1 is not distinguished):

(6.¢) (6.2)

—— - e ﬁ

© -+« O
b -t 32 .

(=
[ J
®
]
<
-
KL

[ ]
<

Proof. 1f (k.s), (4.b) or (4.d) hold then either (6.e) or (6.f)
obtains. If (Y4.c) holds, but (6.e) does not obtain then

------------- -

wemcscswsvnantage

obtains; but wvith one pivot step vith pivot entry designated, (6.k)
obtains.
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Corollary b. Givern & dual pair of linear programs in canonical form
(3.2) there sxisis a finite succession of pivot transformetions waich
obtain a representation for the programs vhose schema has exactly

one of the following two forms (where the identity of the rowv vith
label 1 is not distinguished):

(6.8) 1 (6.n) 1
9
. or 2 I Ty Y ¥ YY)
* meecccanasensbama
)
su -y

Proct. The proof is analogous to that for corollary 3 and is
left to the reader.

The proof of the Main Theorem is acccmplished by induction on
the number of rows plus columns. If there is sither only ons row
or only one column in (3.2), one of the forms of the theorem obtains.
Suppose, ther, the theorem true, and hence Corollaries 3 and & true,
for the number of rows plus columns less then m +n ¢+ 2 .

Applying ths inductive hypothesis to (3.2) with the laat row
ignored we must obtein, by corcllary 4, either (after rearrengssent of
rovs and columms according to signs)

(6.1) ) (6.3 1
: PRI S
: ( '

b
"
Q o Q
[ ]
«
(——____,'\N__,
-

4
{

L 4
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iz. & finite mmber of pivot steps. Notice tha’t the induction at this
point corresponds to obtaining a rov fessible solution or showiung nons
exist (compare vith the constructive procedure in Seciica 5, and, in

particular, with (8.3a,b)).

I? (6.)) obtaine, spplying Corollary 3 to the part of (6.1)
vhose rovs and columns are bracketed {(apd are less than m+ u ¢ 2 in
aumber) we must obtein either fors (U.c) or form (4.4} or

(6.k) ~A—

[
ee Ol4 0 4+ ]+
- W 0 S W L----‘---- pomos
% 1
9
4
]
’
»
¥
L]
'
d
]
l.
R
1 . (X ‘ 5 =V
k—/“y—s——J =u

in a finite mumber of pivot steps, where (6.k) contains one or more
negative entries in the bottcm row pf the bracketed columnes. But then
it 1s possible to pivot on a positive entry of the top row of the
bracketed colums avd obtain form (4.c) (why?). Notice that the
induction st this point corresponds to obtaining a column feasible
solution or shcwing none exist (compare with the analogous orstructive
procedure mertioned in Section 5 for cobtaining column feasibility in

the brecksted columms).

If (6.1) obtains, applying Corollary 3 to the part of (6.1)
whose rows and colums are bracketed (and are legs than m+n + 2 in
mmber) we must obtain either form (U4.a) or form (4.b) or




(6.8)

R
- - -
[]

ceoosmas YT T Y )

O ees OV s

0
o

- e - . -
- - — -

_.)

in a finite numbter of pivot steps, where (6.Z) contains one or more
positive entries in the column indicated by an arrow. But a row simplex
method pivot choice rule can be applied to (6.4) and the valus of the
southeast entry strictly decreased after pivoting. Continued application
of a rov gsimplex method pivot choice rule or of the inductive hypothesis
as &pplied to a form (6.1) then assures that the valus of the southeast
entry is never incressed and is successively strictly dscreased

withir finite mumbers of pivot steps. Since there are at most a finite
number possible different schemata (et wost (B * 2) ) and the south-
east entry must successively decreasz, & schema must be reached after
a finite number ,¢ pivot steps in which application of the pivot choice
rule or of the inductive hypcthesis 1s irpossible, that is, form (4.a)
or form (4.b) obtains. Notice that the induction at this poiut
corresponds to obtaining e row feacible solution or showing none exist
{compare with & row simplex method ).

This completes the proof. Hotice, however, that to every
appllcation of the inductive hypothesir: there corresponds a constructive
corputational set of rules for choice of pivot entry vhich achieve the
sane rosults. Thrse rules are row and column simplex method pivot
choice rules applied to appropricte suhsets of rovs and colt-u.(a)
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7. Matrix Gemes

A metrix geme A (or two-person zero-sum game in normslized form)
is specified by any matrix of real numbers

%1

5
|
|

-

wvith the rule that in a play of the gaue players I and II simultaneously
choose same yov i (1 = 1,...,m) and column J (J = 1,...,n),
respectively, with the result that II pays I an amount a

(7.1) A=

iy

A pure strategy for player I is the choice of some one row
of A ; o pure strategy for player II is the choice of scme one column
of A . Amixed ptretegy for player I is a probability vector
X-(xl,...,&) ’ xizo all 1 , i'.xi =1 (in a great many plays
Of the game I chooses rov i with probability x,); a mixed stre
for player II 1is & probability vector Y‘- (yl,...,yn), yJ 2 0 eall J,
)ij = 1 (in a great many plays of the geme II chooses column J with
probability yJ).

If X = (x.l,...,x‘) and Y = (yl'”"yn) are any tvo mixed
strategies for players I and II, respectively, the schama

Y1 Ya
x.l ln R T A ‘1
(1.2) Sl : '
x- m e .. .‘ - [.
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conveniently exhibits, in the column system, players I's expected gains

!.1 ‘ll + ..+ x‘ ‘l.l-sl

(1.2,1) :

ﬁlln'f ...#x“m"n

against each of II's columns (or possil’e pure strategies); and, ln the
rov system, playsr II's expected losses

'11 _yl + L.+ Ah yn -‘1

(7.2,11) : :

agsinst each of I's rove (or possidle pure stretegies).

The retionsle of the theory of games requires that player I
choose his mixed stretegy X 0 ea to maximize his minimm expected
fain against any choice of column by II, and that player II choose his
mixed stretegy Y 80 as to minimize his maximm expected loss against
any choice of rov by I. Letting

(7.3) u=ming, and vemax s ;
3 9 1

this means pisyer I's objective {s to chooss an X tO meximize u ,
and player II's objective i3 to choose & Y to minimize v . Clearly
WSv . Thusifan X and e Y can be found such that u = v tbey
wust constitute optimsl stre‘egies. The cammon velus u = v 1s then
called the value of the game A

he objectives of the players may bs formulated as lioeer
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programs. Namely, player I's objective ie to

Maxinize u

constrained by b4 + ...+ Xa =]

(1.5,1)

and player II's objective is to

Minimize v

constrained by Yy

8, N 4 e *.lnyn-‘lsv

(7.5,11)
1 Ny + e +|myn=lnfv
Y20, - 4y, 20

(2 0)
-v yl o o yn
R TS SRS SO Y Bl
o S BB LOPY i
t
(7-“) (2 O) . . 0 . . . (S 0)
. » . . . .
.
® .,
7\ 1 X I‘l . u‘ -t.
3 ..l .'n

(3 0)
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vhere the column system, with “slack™ variables ‘J - 3.) -u>0 ,
refers to player I's program of maximizing u , and the rov system,
vith "slack" variables L, =V -‘1 >0 , refers to player II's progrss
of minimizing v .

Two successive pivot transformatiomson the starred +1 and -1
of (7.4) obtainc the representation for the programs exhibited in the

schema
(3 0)
*a "1 ! 1
s ({01 e 1 -1 e
q |t e ®n-1 |4
(1.5) (30) . . I ) . (<0)
x.-l -l aé"hl vt . “‘llln‘l .;-l,n * .t"l
1 1 el .. “apa e = v (ain)
”$‘1 « e e ‘su-l -rmx)
where
ni.J.‘iJ-‘in %t e {1 §m, Jfn)
(7.6) and

nm-am-a‘(ifu), 8 " %ay " *m (3 #n)

But (7.5) exbidits equivalent representations of the linear progrems
(7.‘*(1 and (7.4,II) as & dual psir of linear progrems io canomical
form. This observation permits us to state

(10
Thecrem 2\1 )(luuhnx Theurem). There slvays exist optimel mixed
strategies X and Y for piayers I and 1I, respectively, for
which uev
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Proof. Toe dual pair of linear prograams (7.4,I) end (T7.4,II) each
have feasible soluticn, as 1c essily verified directly. Therefore,
by Theorem 4, form (4.a) must obiain, establishing the theorem.

o _find optimal mixed strategias and the vslue of the gmme A
ve ne3d only to solve the -.cal pai: of linear programs exhibited im (7.4)
or (7.5) by applying & eirplex method. Notice, however, that if
L mjn %y than (7.5) exhibits a column feasible solution, while

|n
i 8y  WEX 8, then (7.5) erhibite a row feasible solution. There-

fore, if the rows or colimna of A ..e rearranged so that one of
these conditions hold & -Jolumn or a rov simplex method can be applied
directly.

Purthermore, 4f
7.7 m?’n Spq ™ Sy * TEX &y

then optimal soiutions obtain in (7.5) with x " 1, 7, =1 aud

u=vas am that 1s, ths optimal strategies are pure strategies. The eatry

&N is called a gaddle point, and we can state
Theoren 6. If s , 1aa saddle point of A , i.e., if

7.8) °. < a4 < a;J (a1l 1,3)

then opuvimal pure stragies exsit with x = 1 and i 1 , and the
valua of the game is 8,5 °

Exanples.
Solve the matrix game A specified by
0 -1 1 - 7
ae [T 13 26
3 @ 2 6 3
L2 ® 3 4 5

s
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The circled entries are saddle points; therefore player I will

use pure strategy rov 3 or rov L (or any mixed strategy using only

& combination of yows 3 and L), and player II will use pure stratsgy
column 2 . The value of the game 1s 2

ive the matrix game spacified by

4 42 -3
Ae |2 2 3 2
-1 -2 11 3

2 -1 1 0 2

Notice, first, that row 2 dominates row i+ it the sense that playsr I
can opl’ gein more by playing row 2 rather than row 4; moreover, given
thet player I never plays row § , column 2 dominates column &

ané column 3 dominates colwn 5, hence plsyer II should never play
column 4 or column 5 . Thus xh-o and yh-yﬁ-o in optimsal
mixed strategies. Rearraage rovs and colummns in A with rov 4 and
columns 4 and 5 omitted sc that the southeast entry is & maximm
in ite column end comstruct the schema correspcnding to (7.4) end
pivet as indicated:

(2 0)
-V yl y2 y3
L S 4 -0 T Bl int
max: e u
> o) n {1 S L U 4| = -ty (< 0)
- 13 1l : sl «2 1| = -t3 =
"2 1*: 2 3 2 . -t nininige v
=) =g =g =g 2
1 "2 73
(2 0)
£
- -1 s3f'o T T [1}s -y,
4
= -ty . x [ 1@ lt-6--t2
- -t3 ) -1 2% b l-l]s -t3
- v 1 [ -4 112l v (ain)

X2 "81 %2 "Ypax)
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b ts b, 1
sy |T728 " B/28 ~3]2B[-172] - -y,
o, | 5/26 -6/2e% 1/28| 0 |e ¥y
8 {-4/28 2/28 2fe8 -l[g--yl
1oL/ 12 u/hio s v
uxa -x3 -xl -1

Thus optimel mixed strategies are

X =(1/4, 1N, 1f2,0) ada Y= (12, 0, 1/2, 0, 0)

and the value of the game is zero (it is fair). Notice, however, that
another pair of optimal mixed strategies can be found by pivoting as
indicated to obtain

t 2 Y Y 1
4 33 {172 &6 -1/12]-1/2]= “Y,
) -5/6 -28/6 -1/6 |0 |= -t
E s, |=1/2 26 1/12l-1/zi= -y,
| 1 L2f3 /6 1/3j0 |= v

o T2 T M

Thus optimel mixed strategies are

X = (1/3, 2/3, 0, 0) end Y = {1/2, 0, 1/2, 0, 0).
Thcrefox;e

X = a(1/3, 2/3, 0, 0) + (1) (1/4, 1/, 1/2, 0), O0<a< 1

constitutes an optimal mixed strategy for player I for any choice
of G Dbetween zero and one. (Way?).




Footnotes.
(1)

(2)

(3),(k)

(5)

(6)

(1),(8)

(9)

(10)

Also krown as complete elimination, or Gsuss=Jordan
elimination., See: E. Stiefel, "Note caaJordan Eliminatiom,
Linear Programming, and Tehebycleff Approximation”,
Numerische Mathematik vol. 2 (1960), pp. 1-17.

Corollary 2 is lnown as the "fund ‘mental duality of
linear programming”. Its first explicit statement is
contained in D. Gale' B. W. Kuhn, and A.W. Tucm’ "mnlll'
Programming and the Theory of Games"”, in Activity A_gggi_l
of Producation end Allocation, (dited by T. C. Koopmans),
John Wiley and Sons, inc., New York, 1951. The cotion of
a duality theory arose from the Minimax Theoxrem of

J. vou Neumann(see footnote(10) ).

The discovery of a (primal) simplex method (1947) is due

to George B. Dantzig. His original paper "Maximizatioa of

a Linear Function of Variables Subject to Linear Inequalities”
is contained in Activity Analysis of Production and Allocstion.

A dual simplex method was first explicity advanced by
C. C. Lemke in "Themalmthodotsolvingmunnr

Programuing Problem”, Neval Research Logistics Quarterly,
vol. 1, (1954), pp. :’.6-37

This method 1s described by M. L. Balinski and R. E. Gomory
in "A Mutual Primal-Dual Simplex Method" to appear in
Proceedingsof Symposium on Mathemstical Progreamming held

in Chicsgo, June, 1962.

The proof given here dapends on the basic idea sdvanced

in the paper referred to in (6), vhere the proof is completely
constructive. The inductive proof found here is dus to

A. W. Tucker.

The formulation of the players' problems as linear programs
given here follows A, W. 'Pucker'l, "3Solving a Matrix Game

by Linear Prograrming”, IBM Journal of Research Devejop-
ment, vol. b (1960), pp.307-B7. aud

The Minimax Theorem was discovered and first proved by
d..ron Bpymann.in "Zur Theorie der Gesellschaftespiels”,
Mathemstische Annalen, vol. 100 (1928), pp.299-320.




ERRATA
for

Pivot Transformations, Dual Linear Programs, and Simplex Methods

P". 4,

Page 12,

Page 4,

Page 15,

Page 19.

p‘.. 20,

Page 21,

Lines 1, 12,

Line 5.

Line 2 from bottom,

Line 4.
Line 9.

Line 7 from bottom.

Bottom line,

Instead of:
*y; = 0

x = 0

yi =0

fo

(6. 4)

(S. 3a,b)

pt

ToWw
appropriete

Under schema (7. 5) insert

Line 9 from botitom,

Line 15,
Line 190

Line 7.

Footnotes, Line 3,

Line 18,

Q$m, §$0)

nn that is,
exait

moras by

Tebebycleff
C. L. Lemke

Read:
=0
x; =0
yp=0
of

{6.9)
(5.3a,b)
of

«.olumn
appropriate

o
(i$m, j$n)
L | that ie,
exist
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DUALITY IN NONLINEAR PROGRAMMING
R.T. Rockafellar*

l. Introduction

A nonlinear program in n variables is usually described
as a problem of minimizing (or maximizing) a quantity fo(x)
subject to constraints fl(x) < O,...,fm(x) < 0, where
fo""’fm are certain real-valued functions of the vector
X = (xl,...xn) e R®. The problem may pe interpreted broadly
or narrowly, however,

In the narrower sense, one is only interested in the
infimum of a certain function given on a subset S of
R™, The elements x of the subset S are the so-called
feasible solutions to the problem., Typical questions are
the following, Is the infimum finite? ©DC there exist
o: timal solutions, i.e. feasible solutions at which the
infimum is attained? Is there only one optimal solution?

One sceks conditions which guarantee '" yes' answers to these
questions, as well as algorithms for actually computing the
infimur and optimal solutions,

In the broader sense of the problem, one is also concerned
with the sensitivity of the infimum and ortimal solutions to
slight changes in the constraints, This is where duality and

La 'range multipliers coce in., Let p(ul.....um) denote the

infimum of fo(x) subject to fl(x) < ul,...,fm(x) < up.

*This work was surrvorted in part by srant AF-AFOSR-1202-0L7
from the Air »orce 0¢fice of Scientific Pe.carch,
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One is interested in the properties of p as a function of
the perturbation u = (ul,...,um) € R® near u = O, For
instance, is p continuous or differentiable at u = 07

It is especially important to look for numbers

ul‘,...,um' such that

(1.1) p(ul,...,um) > p(O,...,0)-u1'ul-..;-um‘um, \/(ul,...,um)cnm.
Such numbers can be interpreted as ' eguilibrium prices," if
the objective function fo is interpreted as a rost function,
Suppose that in trying to minimize cost we are allowed to
perturb the given problem by any amount (ul....,um), but
that this perturbation must be paid for, the price being
ui‘ per unit of variable u . The minimal cost attainable
in the problem perturbed by (ul,...,um), plus the cost of
this perturbation, is
p(ul,...,um) +uptuge e s tu

If the prices satisfy (1.1), this is never less tnan tre
minimal cost p(0,...,0) in the unperturt:d problem, so ail
the incentive for perturbation is neutralized and there s
an ' equilibrium’.

Observe that (l.1) is satisfied if and on'y if

fo(x) + Uty cosuptal 2 a0, 0,0)

for every choice of x an. (ul,...,um) suc: that . {x)

1 -

ER

for i =1,...,m. Assuming p(0,...,0) 1is finite, tnis

"3

condition is equivalent to the coudition th«t u,* >0
i=1,..., and

£.00) o uy 0 () e o wuptf (x5 2 F(0,..,0), Vx . =%

|
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In other words, the equilibrium prices are the same as the
non-negative Lagrange multipliers ul‘,...,um‘ such that the
unconstrained infimum of fo + ul‘ f1+ oo *“m‘fm coincides
with the infimum of fo subject to the constraints
fl(X) 5 O’ o s o0 .fm(X) S Oo

Thegse reflections on the nature of a classical nonlinear
program lead us to propose a new concept of a generalized
nonlinear program as, not just a single minimization protlem,

but a minimization problem with a built-in class of perturbations.

In such a program, one is to study not only the infimum in the
problem corresponding to zero perturbation, but also the sensitivity
of the infimum with respect to perturbations to neighboring
problems. The Lagrange multipliers are to be the ' equilibrium
prices' for the perturbations,

Suppose that for each vector u ¢ R® we are given a pair
(Su, Fu), where Su is a subset of R? (possibly empty)
and Fu is a function on Su with values in [(-®, +®].
The correspondence

F: u - (Su, Fu)

will be called a bifunction from R® to R". A bifunction
ic to be regarded as a generalization of ' nultivalued mapping" :
the image of u wunder F is not just a set, but a set with
a distinguished function attached to it. One can interpret
the function Fu as assigning a relative value or cost

"Fu)(x) to each element x of the set Su.
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For any bifunction F from R® to Rn, we define a
generalized program (P): minimize the function FO on the
set SO. The problem is to include the local analysis of
the properties of the function p = inf F at u = O, where

(inf F)(u) = inf {(Fu)(x) I x ¢ Su}.
(By convention, an infimum is +m® if the set over which it
is taken is empty.) A vector x € R® will be called an

optimal solution to (P) if (inf FY(O0) is finite and

attained at x. If (inf F)(0) is finite, we define a
Lagrange multiplier vector for (P) to be a vector vu* ¢ r®
such that
(inf F)(u) + <u*,u» > (inf F){0)

for every perturbation u ¢ RE, (Here < -,+ > denotes the
ordinary inner product of two numerical vectors.)

Under simple convexity assumptions on the bifunction
F, a comprekensive duality theory is jpossible for such
generalized programs, as will be explained telow. A dual
program (P°*) may be constructed which is of the same type,
oxcept that it involves maximization rather than minimization.
The dual of the prosram (P*) 1is in turn (F). The extrema in
(P) and (P*) are generally ejual. ‘he ort mal solutions
to (P*) are g nerally the _agrange multiplier vecters for
(P), while the optimal sulutions to (F¥) are the Lagrange
zultiplier vectors for (F*). The rairs of ortimal solutions

‘- (P) anl (#°*) are the .addle-points of a certain

Kuhn-Tucker function.
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An intriguing mathematical feature of the theory to he
explained is that it constitutes a new '' convex algebra'
closely parallel to linear algebra. The convex bifunction
F plays a role analogous to that of a linear transformation.
Duality is obtained by the construction of an adjoint bifunction
F* in terms of Fenchel's conjugacy correspondence. Whereas
a linear transformation and its adjoint are related by a
bilinear function, a convex bifunction and its adjoint are
related b. a convex~-concave function, and the formula
<Fu, x*> = <u, F*x*> appears as an " inf=sup' theorem for
a dual pair of programs. Minimax theory is associated with
the ' inverse' operation tor bifunctions.

The results in this paper are basced on the general
theory of convex functions and especially on the very imporcant
noticn of conjugacy due to Fenchel [17]. The elementary faucts
about convex functions aic Teviewed in §2. Further details
can be found in the works of Fenchel, Brgndsted, Moreau
and Rockafellar listed among the references.

The com:ilete rroofs of the new duality theorems and of
the theorems about bifunctions are all contained in a forth-
coming book l44], Lome of the rain i'evas have already
appearesd irn othier :rapers c¢f the author, iiowever. A perturbaticnal
n:proech to duality theory is given in [47] and (28], The
correspondence betwecn concave-convex functiona on R" X R®

4 &
and convex functions on R-"D

(nere the -~reph functiors of
convex bifurctions) 1s establiished in {28). A sirilar
'"" convex aleebra' for multivalued ma pinsc has been levelojed

i (26] and described in (37).
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Some applications of Fenchel's theory to general nonlinear

programming have also been described by Ghouila-Houri [2],
Dennis (7], Dieter {8,9], Falk and Thrall [15], Karlin [23],
and Whinston [46],

An excellent discussion of general Lagrange multipliers
as " equilibrium prices has been given by Gale [19] in the
case of concave maximization problems depending outside

parsneters,

2. fConvex functions andi their conjugsates.

The cbject of the finite-~dimensioral theory of convex
functions is the study of pairs (C,f), where C 1is a
noa-expty convex sef in R® and f is a real~v§lued COrvex
function on C, i.,e. a function from < to R vsstisfying
(2.1) F-A)x+Ay) € (1-1) £(x) + A £(¥), C <A <1,
for any x e C and y € C, There are technical advantages,
however, in representing each sucn talr by a function which
is defined on all of R® but which may have infin.te values,
namely the function obtained by defining I(x) to be
+@ for x £ C.

In general, let f be any function defined on all of
Rn and having values which arc real numbers or +w . The
epizraph of f, denoted by epi f, is the set of pairs

(X’M) in Rn‘l'l

such that x € Rn, L€ R and W > f(x).
(Thus epi £ can bte remarded ac the set of all " finite"
points lying on or above the graph of f,) W%e define f

to be a conver function on R® if epi £ iec convex as a
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subset of Rn+l. If there is no x such that f£(x) = -o,

this definition of coavexity is equivalent to inequality
(2.1) being satisfied throughout R? (with the obvious
rules for manipulating +® ).
If £ 1is counvex, the set
dom f = {x I £(x) < +m},
which is the projection of epi £ on Rn, is convex; it

is called the effective domain of f. A convex function

f on R® 1is said to be proper if dom f is non-empty

and f 1is finite on dom f, in other words if £ is not
the constant function +®m and there is no x such that
f(x) = - . The restriction of f to C = dom f is then
a pair (C,f) of the type mentioned above, and every such
pair arises in this way. Thus the study of the pairs (C,f)
is rerlaced by the study of the proper convex functions

£ on R,

Convex functions which are not proper can arise
naturally as the result of certain operations, and they do
have some technical uses., The fundamental fact about an
improper convex function f on R® is that f must be
identically - on the interior of dom f.

A useful example of a convex function is the irdicator

function $(-1C) of a convex set € in Rn, where $(xIC) = 0

for x € C and $(xI1C) = +@ if x £ C. If f, is a finite

convex function on R®, the convex function f = £+ $¢-10)
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agrees with fo on C and is +m® elsewhere. Minimizing
fo on C 1is equivalent to minimizing f over all of R™.
We shall use this device to re-express all constrained
extremum problems as formally unconstrained problems.

Let f ©be a convex function on Rn, and let D
dencte the collection of al® nairs (x*, u*) such that
x* e Rn, u* € R and

£(x) > <x, x*> - u*, VX e R,

The pointwise supremum of the corresponding collection
of affine functions h(x) = €x, x*> - u* 1is called the
closure of f and is denoted by cl f. Thus by definition
(2.2) (el £)(x) = sup<{ <x, X*> - u* | (x*,u*) € ﬁ} .
When ¢l f = f, one says that f 1is closed. If f |is
proper, it can be shown that the epirsraph of ¢l f 1is simply

the closure in R

of the epigraph of f. Then ¢l f is
8 closed proper convex function on Rn, and

(2.3) (el £)(x) = lim inf £(y), Wx € R".
y-x

In particular, a proper convex functior is closed if and orly

if it is lower-semicontinuous, i.e. has the property that the

convex level set {x I £f(x) < u} is closed in R® for each
real u.

For a proper convex function f, (¢l f)(x) must
actually coincide with f(x) for every x in the interior
of dom f or outside the closure of dom f, Thus f - cl f
may be regarded as a regularizing operation which simply
redefines f at certain boundary points of its effective

domain, so as to make f lower-semicontinuous, For an
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improper convex function f, ¢l f is the constant function
-®» or the constant function +® , depending on whether or
not dom f is non-empty.

Fenchel's important notion of conjugacy is obtained by
further consideration of the set D introduced atove. Clearly
D consists of the pairs (x*,u*) in Rn+1 such that
u* > £*(x*), where
(2.4) £*(x*) = supx{<x,x‘> - f(x)‘} .

Thus D is the epigraph of a certain function f* on R™.
This f* 1is called the conjugate of f.

It can be se~n that f* 1is a closed covex function on
Rn, proper if and only if f itself is proper. The conjugate
f** of f* 1is in turn given by

f**(x) = SUP . { <Xy x*> - f‘(x‘)} .
But this supremur is the same as the supremum in (2.2) Thus
f** = cl f. 1In particular, if f is closed it is the
conjugate of its conjugate f*.

Conjugacy therefore defines a one-to-one symmetric
correspondence in the clasgs of all closed convex functions
on K°.

As an example, the conjugate of the indicator function
$ (-1C) of a convex set C in R® is given by

Se(x*IC) = eup{ <X, X*> - S(xlc)} = sup <x,x°*>,
b ¢ xeC

The function $°(-I1C) 1is called the support function of C.

A convex function f on R" is necessarily continuous

on the interior of its effective domain. It is differentiable
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almost everywhere on any open set where it is finite,
Assume that x 1is any point where f 1is finite,
The (one-sided) directional derivative

(2.5) £'(x;y) = lim fbmqr% - £(x)
A0

exists and is a convex function of y (possibly with the
values +® ). Of course, if f 1is actually differentiable
at x, we have

(2.6) £'(x3y) = <Vf(x), y>,

where Vf(x) is the gradient of f at x,

TL(x) = ( §§1(x>.....%§ (x)).
n

If £ is not differentiable at x, the directional derivatives

can still be described in terms of ' subgradients'' . A
subgradient of f at x 1is a vector x* ¢ R" such that
£(z} > £(x) + <z-x, x*>, Wz ¢ RE.
The set of subgradients x* at x 1is a certain closed
convex (possibly empiy) set denoted by f(x). The case
where ¥f(x) consists of just one x* 1is rrecisely the
case where f is finite and differentiable at x, the
unique subgradient then being Jf(x). It can be shown tnat,
if x 1is actually an interior point of dom f, &f(x) is
non-empty and compact, and
(2.7 £'(x3y) = max {<x'.y> I x* € kf(x)}- ey (X))
for each y ¢ R®. In general, 3f(x) is empty and only if

f'(x}y) = -o for some y.
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When Bf(x) is non-empty, one necessarily has
(cl £)(x) = £(x). On the other hand, when (21 f)(x) = £(x)
one hag x* € 3f(x) if and only if x € 3f‘(x‘). Thus
the multivalued mapping 9Of*: x* - 3f*(r¥*) is the inverse
of the multivalued mapping af: x - &(x), when f is a
closed proper convex function,

Note that O € &f(x) if and oniy if f attains its
minimum at x. We shall use tuis fuct iater in a slightly
different form: when (cl £)(0) = £(0), the vectors x*
in Qf(0) are the same as those for which 0 € 9f*(x*),

i.e, for which f* attains i%s minimum,

The conjugate of a differentiable convex function
f on R® is closely relat»d to the Legendre transform of
f. Let C* be the cet of all gradieuts x* of f, i.e.
the image of R® urder the mapping x - Wf(x). UGiven any
x* € C*, the vecttrs x for wiich the supremum in (2.4)
is attained are piecisely those for which x* = \Jf(x); thus
(Z.8) £*(x*) = <x,x*> -f(x) when x* = Jf(x).

If the mapping VWf 1is one-to-one, we get
(2.9)  £o(x*) = <(UDTHx0) x> -£((IHH(x*)), x* € oL

This is the formula for the Legendre transform of f,

If Vf 1is not one-to-one, we can still conceive of
parareterizing C*®* in tcrms of x by means ot the nonlinear
substitution x* =« Yf(x); the substitution yields the formula
(2.10) £o(VI(x)) = <x, Yr(x)> ~f(x).

This function of x 1is one which is comron in the literature
of nonlinear progracming., It is generally not convex, of

course, and it generally does not expres:. f°* completely.
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The set C* need not be convex in Rn, and there may be
points outside of C®* where f* is finite and the Legendre
transform is undefined.

It will be convenient in what follows to pilace concave
functions on an equal footing with convex functions. A
function g from R® to [-m, +al is said to be concave,
of course, it f = -g is convex. Ail the above tacts
and definitions for convex functions have obvious analogues
for concave functions, in which the roles of +@ , inf and
< are interchanged with those of -, sup and ">, 1In
particular, the conjugate ot a concave function g is
defined by

g*(x*) = infx <x,x*> -g(x)]g .
It should be noted that g* 1is not the same as -f*, where

f = -g. Instead one has g*(x*) = -f*(-x*).

3. Dusl programs and adjoint bifunctions.

By a corvex bifunction from Rm onto Rn, we shall

mean a correspondence F which assigns to each u € R
a function Fu from R® to [-o, +x ], such that

(Fu)(x) is a (joir*tly) convex fuaction of (u,x) on

mM+Il
R m+n

o This function on R is called the greph function

of F. We shall say F 1is closed or proper according to
whether its gravh function is closed or proper. The effective

domain of F 1is defined to be the (convex) projection on

m

R~ of the effective domain of the graph function, i.,e.
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dom F -{u [ ax, (FPu)(x) < +m}.
If F is closed, proper and convex, then in particular
Fu is a closed convex function on R" for every u, proper
for u e dom P but identically +m® for u £ dom F.
For example, let fo' fl"“’fm be finite convex

functions on R, and for each u = (ul,...,um) define

the function Fu by

(3.1) (Fu)(x) = fo(x) if fl(x) < ul,...,fm(x) <u
+@ 1if not.

It is easily demonstrated that F is a closed proper convex
bifunction. Note that dom F consists of the vectors u
such that the corresponding inequality system
fl(x) S Uppeee I (x) < W,
has at least one solution x.
For another example, let A be a linear transformation

from R® to R? and let

(3.2) (Fu) () ={o if x = Au,
+@ if x £ Au,

This F is a closed proper convex bifunction which we call

the indicator bifunction of A. We shall see that the

"' convex algebra' below reduces to ordinary linear algebra
when the bifunctions are taken to be such indicator bifunctions.
Henceforth we assume for simpnlicity that F is a
certain closed proper convex bifunction from R™ onto R®.
The program (P) associated with F, as in the intro-
duction, is that of minimizing PO on R®. oOf course,
minimizing FO omn R" is equivalent to minimizing PO

over the convex set dom (FO), since FO has only the
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value +® outside this set. The elements of dom (FO)

will be called the feasible solutions to (P). This is

suggested by tne case of (P) where F 1is given by (3.1),

which we refar to as the case of a classical coavex program.

Feasible solutions to (F) exist if and only if O € dom P,
in which event we say (P) is consistent. If 0O is actually
an interior poirt of dom F, we say (P) is strictly
consistent. In the classical case, (P) is strictly con-
sistent if and only if there exists an « such that
fi(x) <0 for i =1,...,mn.
The fundamental and easily proved fact on which our
analysis of (P) depends is that the function inf P, where
(inf F)(u) = inf(Fu) = inf (Fu) (x),
is a convex function on R® whose effective domain is the
same a8 dom F. The theory of closures, conjugates,
directional derivatives and subgradients of convex functions
can therefore be applied to the study of inf F at u = O.
For example, if (P) is strictly consistent, QO is
in the interior of the effective domain of inf F, so we
may conclude at once that (inf F)(u) depends continuously
on u for sufficiently small perturvations u,
Assume that (inf F)(0) is finite. By definition,
u®* 1is a Lagrange multiplier vector for (P) 4if and only if
(inf F)(u) > (inf F)(0) - <u,u*>, Wu ¢ R®,
in other words if -u® 1is a subgralient at O:

(3.3) -u® ¢ d(inf F)(0).
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If (P

is strictly consistent, so that O 1is an interior

point of dom (inf ¥ ,

we know from the general theory

that o(inf F)(0) is a non-empty compact convex set in

Rxn

function

(3'“)

whose suppert function is the directional derivative

A0 A

In particular, a Lagrange multiplier vector u® = (ui,...,u;)
does exist when (P) 1is strictly consistent., This u* |is
unique if and only if inf F is actually differentiable at

0O, in which case one has

(3.9  uj - 1§%i(1nr F)(0), i = 1,..,m.

(Thus, for example, in a classical convex program the
Lagrange multipliers, if unique, give the rates of change of
the infimum with fespect to changes of the constant terms in
the corresponding constraint inequalities.) By the general
theory of subgradients, a Lagrange multiplier vector fails
to exist for (P) 1if and only if there exists a u such
that (inf P)'(0; u) = -@ . The interpretation of this case
is that there is some direction of perturbatio.. in which the
" minimal cost' drops off infinitely steeply, so that 10
finite ' prices' for the perturbation variables can bring
about a atate of equilibriua.

To get the program dual to (P), we need to introduce
the adjoint of F. This is the vbifunction F* (ros R®

onto R® given by x* - FP°x°®, where
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(3.8) (P*x*)(u*) = inf {(Fu)(x)-<x,x‘>+<u,u‘>)r.
u,x

Note that, for the graph function f of F, one has

(P*x*)(u®) = -sup{<u,-u‘>+<x.x'>-f(u,x)}- -f*(-u*,x*),
u,x

where f* 1is the conjugate of f on R®D, Thus F* is a

closed proper concave bifunction in the obvious sense.

The adjoint of a concave bifunction is defined in the
same way, except of course that ' sup'' replaces " inf" .
Thus the adjoint P** of F* is defined in turn by

(P**u)(x) = sup {(F‘x‘)(u‘) -<u,u'>+<x,x‘>}
x*,u*

= sup <“'“'>*<x:x'>'f‘(u°.x‘i} = £20 (0,
u. 'x.

Since f** = f under the conjugacy correspondence, we have
F** = F.

It is easy to see that, when F 1is the convex indicator
»ifunction of a lineer trarncformation A from R® to Rn. F*
is the concave indicator bifunction of the adjoint linear
transformation A°® from R" back to R® (correaponding to
the transpose matrix), i.e, (F*x*)(u*) is 0 {f
u® = A* x* and -® if u® A A* x*. In tiis sense, the
adjoint operation for bifunctions generalizes the one for
linear transformations. Further justification of the " adjoint"
termineciogy will be given in the next section.

We define the dual rrogram (P*) to be thut of
maximizing the concave function F*0 on R®, In (F*)

we are algo interested 1n the properties of the fun~%ion

i I
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sup F* at x* = O, where
(sup P*)(x*) = sup (FP*x*) = supu.(F'x‘)(u‘).
Thus x* is taken to be the perturbaticn variable in (P*),
wiile u® is the vector variable over which one maximizes.
Of course, sup F* turns out to be a concave function
on R®, All of what we have just said about inf F in (P)
applies to sup F* in (P?) with only the obvious changes,
The dual of (P*) is in turn (P), inasmuch as F** = F,
As an example, let A be a linear transformation from
R® to Rm. fix a € R® and a°® ¢ Rn, and set

(3.7) (Fu) (x) ={<x,a‘> if x>0 and Ax > a-u,
+@® if not.

(This is the case of (3.1) where the functions fi are ail
affine,) Mirimizing FO in (P) is then tne same as
miniwizing <x,a*®> subject to x> 0 and Ax > a, an
ordinary linear program. By a straightforward calculation

from the definition of F°*,

(2.8) (F*x*)(u*) = {fa,u') if u* >0 and A*u® < a® -x*,
- if not.

Thus maximizing F*0 in (P®*) 1is the same as maximizing
<a,u*> gubject to u®* > 0 aad A®u* < a®, the ordinary
dual linear program,

The dual programs of Fenchel, extended bty the present
author in (4%], may also be represented here &s a special
cagse, Agsain let A be a linear tranuformation from R"
to Rm, let f be a cloesed proper convex function on r"

an? et g be a closed proper concave function on R®,




Define F Yy
(3.9) (Fo){x) = £(x) ~g(Ax + a).

Then F is a clozed preper convex bifunction, and (P)
consis ‘5 of minimizing 1(x) -gAx) in x = R®, Hcte that
the perturbation u heve correaponds to a tramslation ¢f the
function g on R™. By elementary calculaticn,
(5.10} (P*x*){u*) = g*(u®) -f*(A%u*+x*),
so that (P*} consists of maxirizing g*(u*) ~£*(A*u*)
in u* ¢ R, Fenchel's origial programs are the case where
A 1is the identity transformetion.

For the classical convex program, the adjoint bifunction
is given by

(F*x*)(u*) =.{—(fo+uifl+...+u£ fm)‘(x‘) it u‘=(u£,.,.,u&) > 0,
~{D if u‘ ’ OO

Thus the dusl program (P*) is to raximize -(fo + u} fl*“'*“ﬁfm)‘(o)
gubject to uf >0, i = 1,...,m. To calculate the conjugate
of f = fo + ui fl Youot u& fm explictly, one wculd have
to know more about the given functions ri. However, if
every fi is differentiable one can apply the Legendre trans.
formation in the weakened form of {(2.10) to f to get a
problem which is ' almost' ejuivalent to (P*). Since
~£*(V£(x)) = £(x) by (2.10) when Wf(x) = 0, and

Vf = V2, + ug Vrl tooet ur V£,
the '' approximate' problem is that of minimizing

fo(x) + uf fl(x) +>e0+ Up fm(x)

in u* ¢ R® and x € R" subject to the counstraints

u* > 0, Vf, (x) + uf ‘7f1(x) tooot ué‘aﬁh(x) = 0.
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This is the well-known dual problem which was discovered by
Wolfe [47],

It should be pointed ocut that the classical coavex
program can be modified in many ways by introducing add-
itional perturbations. For instance, one can perturb the
constraint fi(x) Su bya translation y; to the con-
straint fi(x-yi) < u. The dual problem would then turn out
to involve an additional Lagrange multiplier vector y{ dusl
tc the perturbation variable y; ¢ R7; this would essentiaily
be the dual problem for the classical convex program given
by the author in [40)]. The possibilities for perturbation
are endless. The perturbations can be chosen to suit the
situation, according to what ' equilibrium prices' one is
interested in, To apply the duality theory described here,
it is only necessary that the perturbations be '' convex ",
in the sense that the dependence of the problem on the
perturbations be representable in terms of a convex
bifunction F,

All the results relating the general dual pair of
programs (P) and (P*) are based on one elementary fact,
which follows directly from the definitions: the convex
minimand FO in (P) is the conjugate of the convex function
-sup F* on Rn, while the concave maximand F*C in (P*)
is the conjugate of the concave function -inf F on RT,
This implies that

(FO)* = (-sup F*)** = -cl (sup F*),
(F*0)* = (- inf F)** = -cl (inf F),




and hence that

(3.12) cl(sup F*)(0) = ~Sup_ <x,0> -(FO)(x{} = (inf F)(0),
cl(inf F)(0) = -inf {<O u*> =(F*0)(u* )} = (sup F*)(0).

The infimum (inf BF)(0) in (P) is thus elways greater than

g

b
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or equal to the supremum (sup F*)(0) in (P*), and any
possible discrepancy between these extrema is completely
explained in terms of the closure operations for convex
and concave functions,

Let us call (P) normal if cl(inf F)(0) = (inf ) (0).
if (P) is consistent, this is equivalent to the semicontinuity
condition that

1im inf (inf F)(u) = (inf F)(0).
u-0

Similarly, let us call (P*) normal if cl(sup F*)(0) = (sup 7*)(0)
in the sense of the closure operation for concave functions.,
Formulas (3.12) then yield a good duality theorem: (P) is

normal if and only if (P*) is normal, Moreover the normal

case is precisely the one where the extrema in (P) and (P*)

are equal, i.e.
(3.13) (inf F)(0) = (sur F*)(0).
For brevity, we shall say that normality holds when both

programs are normal and the 'inf" and ' sup' are equal.
Normality holds in particular, then, when (P) is strictly
consistent (since then inf F 1is continuous at 0), or when
a Lagrange multiplier vector exists for (P) (since then

D (inf F)(0) # ¥, implying that cl(inf F) agrees with
inf ¥ at 0). Likewise, normality holds when (P*) is
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strictly consistent, or when a Lagrange multiplier vector
exists for (P*).

Suppose that normality holds, and that the common
extremum value in (3.13) is finite. As we have already
pointed out, u* is a Lagrange multiplier vector for (P)
if and only if u* ¢ O(-inf F)(0). Since (-inf F)* = PF*0,
this is equivalent to the condition that O € W(PF*0)(u*),
i.e. that the concave function F*0O attain its maximum at
u*. Similarly, the Lagrange multiplier vectors x for
(P*) are the vectors where the convex function FO attains
its minimum. This gives us another duality theorem:

assuming that normality holds, the Lagrange multiplier

vectors u* for (P) are precisely the optimal solutionms
(if any) to (P*), while the optimal solutions x to (P)
are precisely the Lagrange multiplier vectors for (P*),

This type of duality has previously been known only in the

linear programming case,

4, Kuhn-Tucker functions and minimax theroy.

We shall now describe the correspondence between convex
bifunctions from R®™ to R® and concave-convex functions on
R® XR® which is analogous to the correspondence between
linear transformations from R® to R" and bilinear functions
R® xR%, This correspondence gives further insight into the
nature of the adjoint bifunction. It enables us to construct
for each dual pair of programs (P) and (P*) as in the last
section a certain convex-concave function whose saddle-points

correspond to optimal solutions to the programs much as in the
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classical Kuhn-Tucker theory [24].

Let K be a concave-convex function on R™ XiRn, i.e.
a function with values in |(-®, +® ] such that K(u,v) is
concave in u for each v and convex in v for each u,
Closure operations may be applied to K for the sake of
regularization. Let cvi be the function on RT xR"
obtained by closing K(u,v) as a convex function of v for
each u. Similarly let cluK denote the function obtained
by closing K as a concave function of u for each v.
Then cluK and cvi are concave-convex functions on
R® XR® too.

We can proceed now to form the corc.v~ - :v:x functions
clv cluK and clu cvi. The first of these is called the

lower closure of K (since the final regularization involves

lower-semicontinuity), and the second is called the upper
clogure of K. If K coincides with its lower closure,

it is said to be lower-closed, and so forth. It turans out

that clg clux is itself always lower-closed, and cl, cvi
is upper-closed, but these two functions may disagree at
certain points of R® xRrM,

Since the operations clv clu and Clu ::1v do not
quite produce the same result, there is not a unigue
natural closure operation for concave-convex functions,
Nevertheless, there is an important phenomenon of pairing of
clogures. It may be shown that, if K 1is any lower-closed

corcave-convex function on RT XR%, then K = cl K is an

upper-closed concave-convex function such trat cvi = K.
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Thus there is a simple one-to-one correspondernce between
the lower-closed functions and the upper-closed functions,
Corresponding functions X and K generally have the same
values, except at certain points, and K < K.

For example, let C and D be closed convex sets in

m

R~ and Rn, respectively, and let K be any continuous

finite concave-convex function defined on C X D. Set

(4.1) K(u,v) it u e £ and v € D,
K(u,v) = +@ if ueC an. v ¢ D,
- if ug C,

K(u,v) if ue C and v e D,
R(u,v) = {+o if v£0D
—® 1if ugC and v e D.
Then K and K are lower~closed and upper-closed concave=-convex
functions, respectively, which are paired together in the manner

just described., Observe, incidentally, that

it

sup inf K(u,v) = sup inf R(u,v) = sup inf K(u,v),
u v u v ueC veD

inf sup K(u,v) = inf sup R(u,v) = inf sup K(u,v).
u v u v veD ueC

Thus the minimax analysis of K with respect to C XD can
be represented b: the formally unconstrained minimax analysis
of K or of K (or of any extension of K to all of
R® XR" such that K < K < K).

In order to arply these facts to the study of bifunctions
in a manner su-’ cstive of linear alretra, we introduce an

S inner product notation for the conjugate of a convex

b
)
|
[
f
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(or concave) function f:

<f£,x*> = <x*,f> = £*(x*).
Then, for any convex bifunction from R" onto Rn, we
can form
(4.2) <Fu,x*> = <x*,Fuw> = (Fu)*(x*)
as a function of u e R® and x* ¢ R". Note that, if F
is the indicator bifunction of a linear transformation
A: R%R" as in (3.1), then <Fu,x*> is simply the btilinear
function <Au,x*> associated with A,

The basic theorem is the following, If F is any
closed convex bifunction froz R® onto Rn, then <Fu,x*>
is a lower-closed concave-convex function on R® X RFD,
Conversely, given any function K of the latter type, there
exists a unique closed convex bifunction F from R® onto R"
such that K(u,x*) = <Fu,x*>, namely the F given by

(Fu)(x) = Sup . {<x,x‘> -g(u,x‘)} .
The upper-closed E on R™ XR® paired with K is precisely
the concave~convex function associated with the adjoint
bifunction F*, i.e.
R(u,x*) = <u,F*x*> = (F*x*)*(u).
Thus the formulas
(4.3) cl  <Fu,x*> = <u,F*x*>,
<Fu,x*> = cl_.<u,F*x*>,
hold for any closed convex bifunction and its adjoint,
Formulas (4.3) generalize the familiar formula
<AUu X*> = <u,A*X*>
relating a linear transformation and i1.s adjoint, Since

the closure operations in (4.3) mecrely redefine the functions
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at special points, one will actually have
(4.4) <Fu,x*> = <u,F*x*>
for " most'" values of u and x*.

Observe that (4.4) expresses a duality between two
different extremum problems, because by definition
(4.5) <Fu,x*> = sup, {<x,x‘> -(Fu)(x)}

<u,F*x*> = infu,{<u,u‘> -(F‘x‘)(u‘)} .
In particular, we have
(4.6) -<Fu,0> = infx(Fu)(x) = (inf F)(u),

~<0,F*x*> = 8P, . (F*x*)(u*) = (sup F*)(x*).
The equality of the extrema in the programs (P) and (P*)
in the last section is therefore expressed simply by
<FC,0> = <0,F*0>.

Minimax characterizations of duality are obtained
through the introduction of inverse bifunctions. The
inverse of a convex bifunction F from R" onto R" is
the concave bifunction F, from R" to R® defined by
(4.7) (Fox)(u) = =(Fu)(x).

If F is closed, F, 1is closed too, The inverse of a
concave bifunction is defined in the same way. It is
easily seen that F,, = F and (PF*), = (F,)*. The latter

n

bifunction from R® to R" will be denoted simply by Fs.

As an example, if F is the convex indicator btifunction

of a non-singular linear transformaticm A as in (3.2), then

F, is the concave indicator bifunction of A‘l, i.e. (Fox)(u)

1 1x

is 0 if u=A"x and - if u £ A" "x. Likewise, F?
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is the convex indicator bifunction of A"l.

Given eny closed proper convex bifunction F from

R~ to Rn, we define the Kuhn-Tucker function of the

corresponding program (P) to te <u*,F,x> as a function
of u* and x, Since PF,x 1is concave, we have by definition
(4.8) U, F X = infu{<u,u‘> -(F,)Ku)}

= infu{<u.u‘> +(Fu)(x)} .
This is, of course, an upper-closed concave-convex function
on R® xXRP by the correspondence theory already outlined.

In the case of a classical convex program, where F is
given by (3.1), the Kuhn-Tucker function is evidently given by
(4.9) <u*,F, > = fo(x) + u} fl(x) +ooes u2 fm(x) if u‘:(ui,...,ui)zo

-0 if u* ¥ 0.
Except for the convenient concave extension by means of -wm,
this is the function associated with (P) by the familiar
Kuhn-Tucker theory.

In the case where F 1is given by (3.9), the Kuhn-lucker
function is given by
(4.10) <u®,F,ax> = f(x) + g*(u*) -<Ax,u*>,
with -®+® taken to be .o,

A saddle-point of the Kuhn-Tucker function is, of course,

a vector pair (u®,x) such that

(4.11) <u®',F,x> < <u®,F0> < <u*,Fx'>, Wur', Wx'.

The main result is this: a vector pair (u°®,x) i a

saddle-point of the Kubn-Tucker function of (F) i d

only if u® is a Lagrange multiplier vector for () and
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x is an optimal solution to (P). In this event normality

holds, and the minimax value <u®,F,x> coincides with the
infimum in (P) and the supremum in (P*). Moreover, as
explained in the last section, u* is then dually an optimal
solution to (P*), and x is a Lagrange multiplier vector
for (P*).
Given any upper-closed concave-convex function

R on R® xR" (for instance a X of the type in (4.1)),
there is, as we know, a unique closed concave bifunction
G from R® onto R® suc.. that R(u®*,x) = <u*,Gx>. Hence
there is a unique program (P) having X as its Kuhn-Tucker
function, namely the (P) corresponding to F = G,. The
inverse operation for bifunctions tnerefore corresponds to
a general minimax theory for concave-convex functions in the
same way that the adjoint operation for bifunctions corresponds
to a general duality theory for convex programs, It is clear
from the definitions thut the P and F* here are expressible
in terms of K by
(4.12) (Fu)(x) = supu.{x(u‘.x) -<u,u'>} ,

(F*x*)(u*) = inf §R(u*,x) -<x,x*>} .
In particular, the minimand in (P) is riven by

(FO)(x) = sup JR(u*,x),
and the maximand im (P°®*) 1is given by

(Pe2)(u*) = inf R(uix).
The dual programs of Dantzig, Eisenberg and Cottle (6],
Stoer {45), Mangasarian and Ponstein {26], Falk and Thralgflay be

obtained in this way, for instance br applying the Legendre
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transformation formula (2.10) to (4,12) and similar devices,
The pair of fumctions <Fluix>, <ujF,x>, is conjugate
to the pair of functions <Fi,x*>, <u,F*x*>, in the following
sengse, If K 1is any one of the concave-convex functions
such that
(4.13) <Fu,x*> < K(u,x*) < <u,F*x*>
(such functions all being essentially the same, except at
special points), one has, according to the definitions,
(4.14) inf, sup.. {<u,u‘> + <Xyx*> - K(u,x‘)i’ s Ut T a0,
sup,., infu-{<u,u‘> + SX,x*> - K(u,x'f} = <Fsu~,x>,
On the other hand, if K* 1is any one of tue functions
satisfying
(4.15) <Fiu*,x> < K*(u*,x) < <u*,7,0,
one has in turn
(4.16) inf . sup {<u,u'> + <X,xX*> ~ X(ur,x)p o« <u,F*x*>,
sup infu, {<u,u‘> + <xyx*> - E*{u*,x)¢ = <Fu,x*>,
Applying (4.3) to the convex bdifunction F? in rlace of
P, we have
{(46.17) clu.<F:u‘,x> = <u*,F, x>,
CFu®,x> » cl Sut,F x>,
and this makes possible a detailes ccrvarizon of the ** inf sup"
in (4,14). 1In particular we see Lhiat these two extrema are
" usually' equal the fact that iney can b+ different in some
cases is exactly dual to the fact tnat the u yer and lower
closure operations for concave-corvex functions do not always
coincide, A wminimax theory from t: i35 roint of view was

developed by the author in {35},
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APPLICATIONS OF CONTROL THEORY TO ECONOMIC GROWTH

Kenneth J. Arrow

Review of the Basic Theorems of Optimal Control Theory: Finite Horizon

The basic criteria for optimization of dyremic processes in continuous
times, as stated by L. S. Pontryagin and associates [1962] will be restated
in this and the following lecture. Some emphasis will be placed on special
features appropriate to the use that will be made of these theorems in growth
theory, in particular the assumption of an infinite horizon and the presence
of constraints on the choice of control varisbles.

The object of study is a system, economic or other, evolving in time.
At any moment, the system is in some state, which can be described by a
finite-dimensional vector x(t). For an economic system, the amount of
capital gocods of each type might constitute s suitable state deseription.

In an optimization problem there is some possibility of controlling
the system. At any time, t, there is & vector v(t) which can be chosen
by & declsion-maker from some set which may, in general, vary with both t
and the state x(t). The vector wv(t) 15 frequently referred to as the
decision or control variable; following the terminology of Iinbergen [1952,
p. 7], the term instrument is used here. 1In an economic system the in-
struments are typically the allocations of resources to different rroductive
uses and to consumption or perhaps taxes and bond issues which at least
partially determine allocations.

It is assumed that the state and the instrument variables at any point
of time completely determine the rate of change of the state of the system.

Thus, for a given technology and labor force, the capital structure (state)




together with its allocation amung different uses (by some of the in-
struments) determine the outputs of all goods. These in turn are al-
lccated between consumption and capital accumulation (through other compo-
nents of the instrument vector). In symbols, the evolution of the state

of the system is governed by the differential equations

(1) ;(= T[x(t), v(l), tl,

which will be referred to as transition equations. The time variable ¢t

may enter into T to allow for the possibility that the transition rela-
tions may vary over time due to technological progress, labor force grcwth
or other exogenous factors.

Given, chen, the state of the system at some time, say O, and the

thoice of instruments as a funztion of time, v(¢), the whole course of

the system is determined. To begin witn, let us suppose that the analysis

ls carried out only untll a finite horizon 7T, after which the process ceases.
By suitable choices of the values of instruments over time, alternative

nistories of the process can be achieved. A:s usual in economic analysis,

we assume that these histories can be valued in some way, i.e., we can

express preferences as between alternative hlieztories, and these preferences

san bte pgiven numerical value, 2 uwility functionsl with arguments x(t),

t < T). [Ihe opuimization problem is to chcose the values of

FAN

v(e), (O

tne instrument variables cc as to maximize the utility functional subject

to the constraints Implied by (1), the constraints on the choices of the
instruments, and the initial valuesz of the stuzte variables.

More specifically, it will be assumed tnat the utility functional is
additive over time. That is, at each moment t there is a return or

felicity (to use a term due to Gorman [19%7, P. 43]) which depends only on

2



the values of the state variables and instruments at time t, such that
the utility of a whole history is the sum or integral of the values of the

felicities at each moment of time. Let

(2) U(x,v,t) = felicity at time t 1if the state is ~x and the
instrument vector is v.

In additition to the felicity generated at eacﬁ moment of time during
the process, the decisicn-maker may 8lsc assign a value to the state
achieved at the end of the pfocess, T. In an industrial application
the stock of machines may have a8 scrap value, and we will use thié term
generally. In a broader eccnomic context, if T 1s not literally the
end of the world but only the end of the planning period, the capital
stock left over at T will have some use in the future. The scrap value
will be denoted by S[x(T)].

The general form of che optimization problem in %time is then, with

finlte horizon.,

(3) Maximize Jg Uulx(t), v(t),tldt + s{x(T)] with respect to cholce of the
instruments over time subject to (1). some constraints on the choice
of instrurents rossibly depending on the current values of the state

variables, and the initial conditions x(0) = x.

Then Pontryagin and ussociates [1962] (see also Halkin [196L4]) have shown

Proposition 1. let v¥*(t) be a choice of Instruments (O <tg T)

which maximizes (3). Then there exist auxiliary variables, functions of

time, p(t), with the same dimensionslity ae the state x, such that,

for each t,

() v*(t) maximizes H{x(t), v(c), p(%),t], where

H(x,v,p.t) = U(xsvit) + pD(wn,v, )i




the function p(t) satisfies the differential equations

(v) ii = -5H/axi, evaluated at x = x(t), v = v¥{t),
p=p(t);

and the transversality conditions

(c) pi(T) = bs/axi, evaluated at x = x(T),
hold.

The function H 1s known as the Hawlltonian. The auxiliary
variables p can be given an economic interpretation: Consider the
maximization of the utility function from any time to to the horizon T
the past history, befcre to, affects this prcblem only thrcough tiue state
at time to’ as can easily be seen from (1) aud the additive nature of

the maximand in (3). Let this maximum be

() V(x,t) = mex ([T Ulx(t), v(t), £)dt - SIX(T)]), where xit)) = x
Then the auxiliary variables are defined so that

An auxiliary variable measures the marginal contridution of tie :orrespond-
ing state variable to the utility functional at time t - Then Fi %,

= piTl is the rate of increase of utlllty due to the Jurrent rate of

increase of the state variable x and therefore H (s the current

{
flow of utility from all sources, poth enjoyed {mmediateiy, ua: expreased
by U, and inticipated to be enjoyed in tne future, as expresied vy pT.
The current instruments are chosen then to maximize H. The cengltion {b)
is an equilibrium condition for holding the state variables constant (at

an instant of time); the increment in utility plus speculative galn shouid

be zero; i{f not, the individusl would have wanted tiy have gess or omorie o F

4




that sc:cate variable (read, stock of s capital good in the economic context).
Finally, at time T, V(x,T) = S(x); hence (c) holds by (5).

In the sequel, a slightly different formulation of end-of-period
conditions will %e useful. Instead of a scragp value, require simply that
the end-of-period values of the state variatles be non-negative. Now
approximate this coundition by 2 scrap valie function; that is. permit

negative values but impose a very large penslty. Formalily, let

s(x) - ¢ 4 min (xi,O),
BET

where min (xi,u) means the smaller of %, and O, and the P,'s are

chosen very large. For x, <O, as/axi = B3 for x >0, 3S/ax1 = O.

If X, = G, the right-hand derivative {s zero and the left-hand derivative

F;» & fact which may be expressed lcosely by the statement 0O < as/ax1§ P, .
Now let the P, 's approach + @, 0 that we may be sure that the

i
optimal policy will zever lead to a final negative value, xi(T):

x(T) > 0.

From the preceding discussioz, as/ax1 > 0, and further if xi(T) >0,
then as/axi = . In view of Propusition i(c). p,(T) >0, p,(T) xi(T) R

all i, or

2(T) >0, p(T) x(T) = O.

Proposition 2. Let +v*(t) e a cholce of instruments (0 <t <T)

which maximizes jg Ulx(t),7(t).,t1dt szul:ect to the conditions

(a) X - T{x(t), v(t),t]).
some constraints on the choices of instrie 2nts pessibly favolving current
values of the state variables, and the terminal conditions, x(T) > 0. Then
there exist aux'linry varfablie=. v(1), <ot +thut (a) and (&) of Proposiilcn 1

p



hold and for which

(v) B(T) >0, p(T) x(T) = O. 3

The optimal path is the solution of the differential equations (1) and
Proposition l(b); the values of the instruments which ehter into them are
determined as functions of x, p, and t by Proposition 1(a). The number
of these equations is twice that of the nurber of state variables. The
solution is usually only determined when an equal number of initial condi-
tions are specified. The values of the state variables at the beginning
of the process, x(0), are taken as known, but these constitute only half
the needed conditiorns. The 4ransversality condi*ions, Proposition 1(c) or
Proposition 2(b), constitute the remaining conditions, but from a practical
voint of view they suffer from the severe difficulty of being defined at
the end of the process, while the other initisl condltions are defined at
the beginning. The computation can proceed by guessing 1aitial values,
p(0), solving the system of trazasition and auxiliary egquations with the
hope that the transversality conditlons are satisfled, and correcting the
initial guesses 1f not. It can also proceed by guessing the firal state
x(T) and solving the equations backward in +he hope that the initial condi-

»

tions are satisfied.

Now consider more explicitly the ccng%raints cn the instruments. In
general, they may depend on the values c¢f the state variables. Thus,
amounts of resources allocated to particular productive purpcoses are
constrained by the tdtal amounts available, which in turn are determined
by the state varliables. The following discucsion is based on that in
Pontryagin [1962, Chapter VI] and on the theory of rcnlinear programming

due to Kuhn and Tucker [1951].



let the chcice 5I instrume:..: at any time t with state x satisfy

a vector of inequailty ccustralnts,
{6) F(x,v,t) > O.
For exumpie, if outpu*t is a funstion of the stock ¢f capital, F(K), and if
cuuput 1s e be divided botween consumpticn (C) and investment (1), then
the instruments € and 1 satiszfy the conditicu,

MK)-C-1>0,
which involves the state variable K. Some cf tne constralnts in P
might not in: ude state variatbles, for exarmple, ucn-negativity wondizions

on the instruments.

It is well K¢uwn from the general thenry ot n linear programring
that if v# maximizes H  aubject to the conditions (6), and 1f these

N

constraints satlsly s certelsn conditlicn Knowa as tne Constraint Quaiifica-

tion (see Xuhn and Tucker, [1951, rp. 483-L]; Arrow, Hurwicz, and Uzawa

f N o
theore exdst maitipliers 3 ush that

(3) '&-L;‘J‘V,‘ 2 9t voovTigo. .
vhere

(9) L« HegF

It can e snown that  Sox, . OL O, when eviluated at v o ve,
@~ q .
With the oxpilolt formuletion (€) of cinstrainis, the conditions

for optimizaticn over tine be:iome




Proposition 2. ILet v*(t) be a cholce of instruments (0 <t < T)

™)

which maximizes Ig Ulx(t),v(t),t]dt subject to the conditions,

(8) x = Tx(2),%(t),8],
a set of constraints,

(8) F(x(£),¥(t),¢] 2 0,
on the instruments possibly involving the state variables, initial condi-
tions on the state variables, and the terminal conditions x(T) >0. If
the Constraint Qualification holds, then thzare exist auxiliary variableg
p(t), suca that, for each t,

(c) v*{t) maximizes H[x(t),v.p(t),t] subject to the
constraints (b), where H(x ,v,p.t) = U(x,v,t) + pD(x v,t),

(a) ﬁi = -BL/axi, evaluated at x = x(t}, v = v¥(t), p = p(t),
where

(e) L(x,v,a,t) = H{x,v,p,t) + aF(x,v,1).
and the Lagrange multipliers gq are such that

(£) bL/avk = 0, for x =x(t), v=v¥(t), p=p(t),

1 >0, gf[x(t),v*{(t),t] = 0,

and

(g) »(T) >0, p(T) x(T) = O.

In many circumstances it is reasonable to consider in addition
restrictions on the state variakles in which the instr.ments do not enter.
In particular, if the state variables are stocks of capital, negatlve values

have no meening. Here, non-negativity condltions on the state variables,

(10) x(t) > e,

wlll be considered; the terminal condition x(T) > 0 is implied.




For any 1, if xi(t) > 0, then the correspunding constraint (10) is
ineffective and can be disregarded. Suppose that xi(t) = 0 over some
interval. Then, to avoid violation of (10), the instruments must be so
constrained that ;i(t) : 0, and this constraint is clearly effective
over that interval. But ;i = T,, so that the constraint Ti(x,v,t) >0
is effective cver that interval. Then, in Proposition 3, this constraint
can be regarded as added to the original set of constraints (b). Let q
be the Lagrange multipliers associated with the original constraints (b),
and let r, be the multiplier associated with the new constraint Ti 2 0.

ry > 0. Define, in addition, r, = O for each state variable

for which xi(t) > 0. Then clearly r >0, rT= 0, rx = O.

As before,

Proposition 4. Let v#(t) be a choice of instruments (0 <t < T)

which maximizes fg U[x(t),&(t),t]dt subject to the conditions,
(8) x = Tx(t),v(t),t],
a set of constraints,

(b) Flx(t),v(t),t] 2 0,
involving the instruments and possibly the state variables, initial condi-
tions on the state variables, and the non-negativity conditions,

(c) x(t) 20,
on the state variables. If the Constraint Qualification holds, then there
exist auxiliary varisbles p(t) such that, for each ¢,

(d) v#(t) maximizes H[x(t),v,p(t),t] subject to the
constraeints (b) and the additional constraints Ti[x(t),v,t] >0 for all
i for which xi(t) = O, where H(x,v,p,t) = U(x,v,t) + px,v,t);

() pa -OL/x,, evaluated at x = x(t), v = v¥t), p =

p(t), ¢ = g(t), r =w r(t), where
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(£) L(x,v,p,q,r,t) = H(x,v,p,t) + aF(x,v,t) + rB(x,v,t), .
4 »
and the Lagrange multipliers q and r are such that )
(g) BL/avk =0, for x = x(t), v = v#{t), p = p(t),

a(t) >0, a(t) F{x(t), v¥(t),t] = 0,

u

r(t) 2 0, r(t) x(t) = 0. r(t) T{x(t),v*(t),t] = O;

(n) (7 >0, »(T) x(T) = 0.

it

So far the propcsitions stated have been necessary conditions for the
optimality of a policy. The situaticn is precisely analogous to the usual
problem in calculus; the concdition that a derivative be zero is necessary
for a maximum but certainly not sufficient in general. However, the
condition is sufficient if “he function being maximized is concave. A

basic property of concave functions is the following:

(11) If f(x) 1is a coacave function, then for any given point x#*
and any other point x in the domain of definition, f£(x) 51
£(x*) + f;(x-x*), where f* 1s the row vector with components
af/ax1 evaluated at  x*.

Define the function

(12) H°(x,p.*) = max H(x,v,p,t), where v is constrained as in
any cf the Perositionu 1.k,

Then the concavity of #° as a function of x, for given p and t,

implies that the Pontrysgin conditions are sufficient for optimality.

(This is a minor variation of a theorem of Mangasarian [1966].)

Proposition 5. If H°, as defined in (12), is concave in x for
glven p and t, then any choice of instruments satisfying the condltions

of any of Propositions 1-4 is optimal for the corresponding prcblem.

10
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Lecture 2

Optimization with Infinite Horizon

For many purposes it is more convenient to introduce the fiction that
the horizon is infinite. Certainly processes of capital accumulation for
the economy as a whole have no natural stopping place in the definable
future. At any given future date the state of the system (its capital
structure) will have implications for the further future. If we choose
to stop our analysis at any fixed date, it will be necessary, as already
noted, to include in cur vtiility functional some scrap value for the stock
of capital at the end of the period. But the only logically consistent
way of doing so is to deterrine the meximum utility attainable in the
further future starting with any given stock of capitai. Of course, the
astronomers assure us tnat the world &s we know it will come t0 an end
in some few billions of years. But as elsewhere in mathematical ap-
proximations to the real world, it is frequently more convenient and more
revealing to proceed tc the limit to make a mathematical infinity in the
model correspond to the vast futurity of the real vorld.

Formally, the only charge in the statement of the model is to let
Ta +® But going to the iimit, here 8g elsevhere, involves some risks.
The utility functionsl, now un !{mproper integral, might not converge at
all; and even i{f 1t does, there might not exist an optimal policy. How-
ever, it is still possible to state necessary couditions and sufficient
conditions for optimaiity, though existence of an optimel policy may be
difficult tobguarantee, and 8lgo it 15 not yet knowa how to state the ap-
propriate transversality conditions. An extensive dis:ussion of & case of

non-existence of an optimal path is given by Koopmans {1965, pp. 2%1-3].

i




If an optimal policy exists, then it can be shown that the arguments
for the necessity conditions of Propositions 1-k, except for the trans-
versality corditions, are still valid. In the cases of interest 15
economics, the transversality conditions (Propositions 1(c), 2(b), 3(g),
or 4(g) sare in fact valid, but so far it is necessary to verify this in
each case. The infinite-horizon statement of the transversality condi-

tions of Propositions 2-4 is:

(13) im p(t) >0, 1im p(t) x(t) = O.
t 4o = t - 400

The sufficiency theorems remain completely valid, with the trans-
versality condition (13).

It is customary and reasonable to assume that future felicities are
discounted; i.e., the felicity obtained at time t 1is multiplied by a

discount factor oft), which is ordinarily taken to be & decreasing

function of t. This corresponds to the intuitive idea that future pleas-

ures are counted for less today. The utility functional 1s rewritten:

(14) j’: oft) Ulx(t),v(t),t]at.

Ordinarily, it is assumed that if the chcsen policy leads to a
constant felicity, (1L) will converge. This is equivalent to the condi-
tion,

(15) I;‘ oft)dt coaverges.

If ve follov the esrlier line of argument ve would be interested in

the maximum utility obtainable starting at scme time t,: analogous to

(4);
(16)  ¥(x,t) = max ['* o(t) Ulx(t),v(t),t]at, vhere x(t) - x.
o)

12




However, this means that felicities for times beyond to are being dis-
counted to time O. It is more natural to discount them to time to.
Since one unit of felicity at time t is equivalent to o(to) units at
time O, it is necessary to divide V(x,to) by O(to) to obtain the

current-value return function,

(17) Wix,t0) = V(x,t)/a(t,).

Previously we obtained the auxiliary variables, p(t), as the marginal
contributions of the state variables to the utility functional, P =

3V/3xi. In the present context it seems more reasonable to define

(18) py = ad/axi = (av/axi)/a .

In applying Proposition 4 (apart from the transversality condition)
to the discounted infinite-horizon case, it is then necessary to replace
u(x,v,t) by. oft) U(x,v,t) and p(t) by oft) p(t). The Hamiltonian
becomes

(19) oft) U(x,v,t) + ot) p(t) Hx,v,t) = oft) H(x,v,p,t),

where we now define the current-value Hamiltonlan:

(20) H(x,v,p,t) = U(x,v,t) + PI(x,v,t) .

Then (L) B must replace H throughout the restatement of Proposition &.
Since oft) > 0, the choice of instruments to maximize oft) Hb

is the same as that to maximize H, so that Proposition 4(d) remsins

unchanged. If we interpret the Lugrange multipliers q and r as

referring to the maximization of H as now defined subject to the

constraints, then L must be replaced by a{t) L. Proposition b{e) be-

cones
dfo(t)p ] ofat)L)
——Tt~ n - dx

13
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ap +ap = - Ad/x) .

Divide through by «, and define

(19) p(t) = -aft)/a(t) .
Then -
(20) B = Ae)p, - (3/3)

In economic terms, p(t) is a short-term interest rate, correspond-
ing to the syster of discount factors oft). Tre definition (19) can be
integrated back to yleld the familiar form:

t )
(21) oft) = e ko p(’)du,

1f ve adopt the conventicn that ofC) = 1. If (2C) is written

p + (3/3,) = o(t) py(t),

it is the familiar equilitrium reiaticn for i{nvestment {n cap!tal goods;’
the sum of capital gainsg and wargiral predictivity should equal the {nteregt
on the investment.

The {nfini te-horizon analogue of Propositicn « (apart from transversal-

ity conditions) becomes:

Proposi tion 6. Let v*(t) be a chcire of instroments (t > 0) whick
f:’ oft) 0[x(t),v(t).t]dt subject ¢ the conditicnz (), {t), snd (c) of
Proposition 4. If the Constraint Qualification holds, then thenk exist
suxilisry variables p(t) satisfying (4) of Frcpositica &;
(e) ;1 - PP - (a!'/a‘t)' evaluated &1 X » :(t)f vevdt), pa
(t). q = ale), r - rl2), ‘
vrere p(t) - -d*.)/’dt). snd (f) and “} of Prepaiition b oid

ale
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The sufficiency theorem, Proposition 5, remains valid if the trans-
versality condition is replaced by (13) where, however, p(t) is replaced by

ot) p(t).

Proposition 7. In the notation of Propositions 4 and 6, if

o
H (x,p,t) = max B(x,v,p,t),
v

vhere the maximization is over the range specified in Proposition 4(d),
is & concave function of x for given p and t, then any policy
satisfying the conditions of Proposition 6 and the transversality

condl tions,

Ln oft) B(t) 20, lim oft) Bt) x(t) = O,
t -4 t =+

is optimal.

It is frequently apprcpriate to make an assunption that the basice
conditions of the optimization problem are stationary; the sequence of
conditions to be encountered in the future is much the same as today or
can be made so after some simple renormalizations. This property will be
heavily exploited in our subsequent discussicns. The basic stationarity -
assumptions are tnat the functions U(x,v,t), Nx,v,t), P(x,v,t), snd p{t)

are all independent of time. With p constent, it follows from (21) that

(22) oft) « e,

and the convergence coudition (1%) becomes
(23) p>0.

Under the stationarity assumption, the current-value retura functioa,

w(x,to), defined by (17), is in fact independent of ts this can de seen

TR

by vriting, in view of the previous remarks,
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W(x,to)

(1/e'°t°) max j; ) e Pt Ul{x(t),v(t)]at
(o]

max J:o e-Plt-tc) ulx(t),v(t)]at.
o

Since the constraints F(x,v) >0 and the transit:cn relations, X = ™x,v),
do not involve time exrlicitly, it is clear that replacing to by O, say,
leaves completely unaffected the form of the cptimsl policy. Trnis is an
illustration of Bellman's [1957] well-known "principle of optimaiity "

But if w(x,to) = W(x). 1independent of t, trer from (38) p is
completely determined by the state x in the folliowing sense: Suppose

we have two optimization problems of the tyre aealt with in Prorcsition 6
(but also satisfying the stationarity ass.zmptions) which are identical in
all respects except for initial conditions. Let xl(t) and xz(t) be

the paths of the sta-e variables alcrng the crtimal solutions for the two
problems, respectively, ard let pl(t) and pg(t) be tre correspcnding

paths of the auxiliary variables. Then if xl(t) . xat‘). pl(t) = pa(t').

Note that since p 1is determined by x. azd U and T do not
depend on t, along the cptimsl path H(x,v.p,t) is 8 function of x and
v alone, and therefore the value of v which maximizes H depends only
on x. The optimur policy can be represented as 8 strategy or feedback
geptrol, vith v 8 functicu of x.

Alsu ncte that, fcr given X, v, snd p, H 18 independent of t,
and therefcre Prcpositions 4 and 6(c), by itself implies that «+% {g
determived by x and P inderendent of t. Tre statiocnarity ;ssunp-
tions then {mply that t does ont enter exprifcitly 15to the system of dif.
ferentisl equhtions defined by (u) snd (e). S.ch 8 systsm ia termed

sutonomous .

HS




Proposition 8. Under the assumptions and in the notation of

Proposition 6, suppose in addition that
(a) U(x,v,t) = U(x,v), K{x,v.t) = Ax,v), F(x,v,t) = F(x,v), and
p(t) = p, 8ll independent of t.
Then
(v) the optimal policy, v* = v#(x), &nd the values of the
auxiliary varisbles, p, along the optimal path, are functions
of x alone, independent of t for ziven x;
(c) the system of differential equations defined by (a), (4), and

(e) 1is autonomous.

For an autcnomous system, considerable interest usually relates to
its stationary point or equilibrium, where all motion ceases, i.e., the
values of x &and p for which ;cz 0 and £)= 0. This nntion in
economics is that of loag-run stationary equilibrium (as opposed to
temporary cr short-run equilibriuu in which capital stocks are given).
In the present system an equilibrium is defined by x*, p*, v* satisfy-
ing the conditicns: |

T(x*,v*) =« 0,
opp = L¥
. 1
v* maximizese H(x*,v,p*) under the constraints PF(x¢,v) >0,

Ti(x*,v) >0 1r Xy - 0.

If the initial state of the system is x*®, ther all the condlitions
of Proposition 6 can be satisfied by setting x(t) = x¢, v(t) = v¢, p(t) =
p* for all t. It may be asked under what conditions tils solution is
optimal. More geaerslly, suppose ve can find 8 path satisfying the condi-

tions of Proposition : which converg:s to t%w stationary values; wvhen is

17




this optimal? o>

Ein X

For simplicity of reference, define a Pontryagin path as a system,

x(t), p(t), v¥(t), satisfying the conditions of Proposition 6.

Proposition 9. ILet x(t), p(t)., v#{t) bYe a Pontryagin patk for

the problem of Proposition 6. Suppose further that the concavity hypoth-
esls of Propcsition 7 and the stat:ionarity Lyrothesis of Propositicn 8,
with p > 0, are satisfied. Then, if x(t) and p(t) ccnverge to an
equilibrium, x*, p*, where ¥ 2 O, they constitute an crtimal path.
SProof: From Propositicn 7 it suffices to note that the transversal-
ity condition oft) p(t) x(t) -0 is satisfied. 3ut p(t) and x(t)

converge to finite limits, and ot) = e Pt

arproaches z2rc since p > C
It should be remarked. however, that (a) there may be more than one
equilibrium, and (b) there may exist optimal paths which de not converge

to any finite equilibrium; for examples. see Kurz [1965 and 1967, Section B].
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Lecture

Optimal Investment Planning ir a One-Commodity Model

In this lecture we review in detail the simplest possible capital
accumulation model, first studied by Ramsey [1928]; for further important
contributions, see Mirrlaes [1967] and Koopmans [1965]. We assume there
is only one commodity, which can be elther consumer or invested. We take
the viewpoint of & government which is in a positioa to control the economy
completely and to plan perfectly so as to optimize with respect to all pos-
sible instruments of the economic system - in this case, only investment
and consumption (which are subject to the constrsint that their sum not
exceed total output).

We first assume a constant population .nd a constant labor force.

The felicity at any moment is tuken to be a function of consumption, C,

only. Then the ain of tuae economy is to .naximize
(24) Ve [T 7P ulo(n) e,

where p 1s the rate of interest on felicity, C(t) 1is consumption at
time t, and U(C) is the felicity derived from consumption C. It is

assumed that
(25) U(C) 1is strictly concave and increasing.

The output at any moment of time is a function of the stock of capital
and of the labor force. Since the latter is assumed constant, we assume

simply

(26) Y(t) = F[K(t)],

19
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where Y(c) is output at time t and K 1is the stock of capital. With
the labor force held constant, incresases in cepital may be supposed to
yleld lower and lower returns; also it is assumed that capital 1s indispens-

able to production.

(27) F is strictly concave, F(0) = 0.

It is not necessarily assumed that F(K) 1is increasing; for example, if
the stock of capital depreciates at a rate proportionsl to its quantity,
then the depreciation ought properly to be subtracted from the gross out-
put to get a true measure of net output available for consorption and net
investment (increase of the capital stcck). It is possible that if K 1is
very large, the marginal gross output of an additional unit may be less
than the depreciation on that unit

Finally, the accumulation of capital is precicely investment, I,

.

(28) ¢ =1,

and the conservation of product flow implies that cconsumption and invest-

ment, together, do not exceed output, i.e., C + I < Y or, in view of {26),
(29) F(K) - ¢ - I >0,

It also follows from the very definition of capital that it cannot
be negative; K(c) >0, all ¢t

At present it will be assumed that 1 mey be positive, zero, or
negative; the latter means that existiag cupital can be turned into
consumption guods. The case where I 1is necessarily non-negative will
te considered later. It will be assumed that C Z 0; %btut to simplify

matters 1t will be also assumed for the moment that

(30) U'(O) = + @,
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which, as will be seen, implies that the choice of the instrument C at

any moment of time will necessarily be positive, so that the non-negativity
constraint is ineffective.

Propositions 6-9 can be applied to this model. The state of the
system is represented by the single variable, K. There are two instru-
ments, ¢ and I. The felicity function depends only on the one instru-
ment C; the transition function (28) depends only on I. The choice of
¢ and I 1is constrained by (29), which corresponds to Proposition 6(b)
or 4(b). There will be one auxiliary variable, p, so that the current-
value Hamiltonian is

H=1U(C) + pI,

and the lagrangian, L, is

U(c) + pI + q[F(K) -C - I]

[u(c) - qC] + (p-a)I + aF(K) .

(31) L

By Proposition 6(g) or 4(g), C and I must be chosen so that
/3¢ = 0 and OL/3I = 0. The latter implies that
(32) p=q
The former implies that U'(C) = q &nd, by (32),
(33) u'(c) = p.

Because of (30) and the concavity of U{C), it is sssured that the solu-
tion to (33) will be positive.
The auxiliary equation, Proposition 6(e), becomes
P = op - a(3L/X),

(34) p = [p - F'(K)Ip,
in view of (31) and (32). 8ince U' >0 by (25), »p >0 by (33), and
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a >0 by (32); the constraint (29) is effective, so that from (28)

(35) K = F(X) - ¢(p),
where
{36) c(p) 1is the solution of (33).

Equations (34) and (35) are a pair of autonomous equations. An
equilibrium is defined by p = 0 and K = 0. But p 0 means

Pp=0 or F'(K) =

Since U' >0, the first alternative is impossible from (33) Let K,
p“ be the equilibrium values of K and p, respectively, snd let c”
«

and I Dbe the values of the instruments at the equilibrium. It has just

been shown that
(37) F'(K“) = p.

Bince P 1is strictly concave, F' is strictly decreasing. It will be
assumed that (37) has a solution with K* > 0. This is equivalent to
sssuming that F'(0) > p, F'(K) < p for K sufficiently large.

From (28) and the definition of equilibrium,

(38) )

From (35) and (36), with K - 0,
(%) ¢® » ¥(x"),

(40) P U(c”).

Consider nov all solutions of the differential equations (34) and
(35). Their movements may be represented in 3 phase disgram (Figure 1).
Bince P'(K) 1is decressing, p - P'(X) 1s increasing; from (34), then,

p>0 12 X>K", p<0 1f K<K®. 8ince U' is s decreasing function,
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optimal grajectory

o— p = 0

Pigure )




!t follows from (36) and (33) that C(p) 1is a decreasing function of p.

<>
The curve for which K = 0 1s, from (35), defined by the equation b

F(X) = ¢(p).

This equation can be solved uniguely for r in terms of K; call the
solution n(K). Since PF(X) 1is concave, and F' () = p >0, F(K)

1s either always increasing or increasing up to a value K > K; there-
fore, n(K) 1is decreasing for all K or else decreasing to K and
increasing thereafter. Further, fur fixed KX, é » F(K) - ¢(p) is an
increasing function of p so that i > 0 adove the curve snd ﬁ <0
below. The components of the directions »¥ movement in the four quad-
rants into which the dlagram is divided by the curve k . 0 and the
vertical line ﬁ > 0 are indicated {n Figure 1 by arrows: note that

i > 0 1is a movement tc the right, and ; >0 an ipward.mcvement.

Reglons II and IV 3sre traps in the sense that s Pontryagin psth
which enters either of these regions never ieaveg {t  Further, any path
which comes to a boundary of ei{ther regicn muet enter that region and
then remain in it permanently. It will now be shown that a path which
enters either region cannot e optimsal.

Consider first region IV. Without lcss of generality, suprose that
the path is in region IV 3t time O Then ﬁ >0, k >0, all t Since
K(0) >K~, K(t) >K(0) >K”, all t. Since F' 1¢ decressing,
F'ik(t)] < F'[K(0)) < F'(K®) ~ p, sc that, from (34), p/p = p - F'[K(t)]
>exp- F'[K(0)] >0; p(t) > p(0) e nv tntemration, so that,
certainly,

p(t) > p  for ali t>t_.

for some to' Since C't) C.optt) e a decreazing function of .,

Y



c(t) < olp”) = ¢® for t >t

8ince K( to) >K", 1t folloiu that we can aiveys improve on the given
path by consuming the capitsl stock (diq_invevéfung) in come interval begin-
ning at t, until K diminishes to K”, after vhich the equillbrius
policy, C =« € « P(X™), K =« K~, 18 mintaii_md. perpetuelly.

Now consider any trajectory in region II. By the ssme reasoning
];/p <€, wvhere nov €= p - F'[K(0)] < 0. But then p(t) =0, which
implies C[p(t)] =+ ». Since F(K) is uniformly bounded on the closed
interval <0, K~ >, K = PIK(t)] - clp(t)] < 8<0 from some time on.
Then K(t) must become zero at some finite time. Since C > 0, then,
I=MO0)-C<0, and K will become negative, violating the non-
negativity of K.

Consider now & path starting in quadrant I. If it stays in quadrant
I forever, then both p and K are bounded from below. S8ince both are
decrsasing, they approach limits which, by a genersl the.om on differential
equations, can only bz the equilibrium values. By Proposition 9 such &
path is necesssrily optimal. If the path did not remain in quadrant I
‘ for all ¢, then it reaches either the boundary with quadrant IV or that
with quadrant II; then, as already noted, the path cannot be optimal.

Similarly, any path in quadrant III which remains there forever
approaches the cquinbrimi and is optimal; sny other path is non-optimal.

It only remains to argue that,for any initial X = K(0), there is a
corresponding p(0), with the point (X, p(0)) in quadrant I or quadrant
IIT according as K <K" or K >K", such that the Fontryagin path start-
ing at that point approaches the equilidrium. Such s peth is certainly
: optimal.
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The approach makes use of the fact that, under the stationarity
assumptions of this problem, p and the optimal instruments C and I

are functions of K. Divide (34) by (35) to see that
(41) dp/& = p{p-F'(K))/[(K(K)- c(p)].

Consider, for values of K < K", solutions of (k1) vhich intersect
the 1ine K = X° above the equilibriuwms, i.e., for pX") & prescrived
value greater than p". Such a solution can be continued for smaller and
smaller values of K. We first note that it can never cross the curve
l.( = 0, vhich has been written p = a(K). lLet p(K) be the solution
of (k1), and suppose it intersected the curve p = n(K) at X <x™
Then p'!X) +-® as KK + 0. But p{(K) > «(k) for K 1in & right-
hind neighborhood of KX, ~sad therefore p'(K) > x'(l‘('), a contrsdiction
since x'(K) 1is certainly finite.

Slm the denoainstor of (41) is finite and the numerator is bounded
from ehove ,‘ it. is clear Wt the solution of (41) can be continued for all
positive values of K < K". There is one such solution for each value of
p(x") > p°. These solutions never cross because of the uniqueness of
solutions of this differential ejquaticn svay from the equilibrium point.
Hence, for any given K < k", there is a lower bound, R(K), oo the
values 0f p for which there exists & solution of (‘1) passing through
(X,p) and for which P(X") > p". It 1s obvious and can essily be
dsmonstrated that p(K) aleo satisfies (A1), and that p(K”") = p". Tis
path in (p,K)-space defines the optimel trajestory. If K({0) <K,
choose P(0) = p[K(0)]. Then the pcints of the time solution, p(t),
K(c), for (34) and (35) move along the trajectory p(K) and converge
to the equilibrium.

26




The solution in this form is very convenient, for the choice of the

instruments, C and I, is determined as a function of K by (33) and
(29) (vith equality).

The analysis in quadrant I1I is the same, except that we find for
each K > K~ the upper bound of p-values for which the solution of (41)
passes below the equilibrium.

It should, however, be noted that we could apply the same proc: lure
in quadrants II and IV; but then the limiting solution would be the
divergent dashed curves marked in Pigure 1.

The optimal solution, then, is defined by s solution of (41) which
passes through the equilidbrium; but there are two such solutions. The
equilibrium is a singular point of (4l), so the solution through that
point need not be unique. In this case it is clear that the optimal
solution is identified as the one with the negative slope at the equilid-
rium.

We vill snalyze the non-uniqueness at equilibrium & little more
closely. The right-hand side of the differentisl equation (4l) is,
strictly speaking, not defined at K =« l(', D= p', since both numerstor

and denominator vanish. 8ince p 1s to be a function of K, bdoth

numerator and denominstor are functions of K, directly and through p.

at ~ v
(%2) %K) « plo-P'(X)], ¥(K) = P(X) - C(p),
(43) p'(K) « HK)/¥(K) .

Since both § and ¢ vanish &t K = X, we can define p'(K)(«dp/&)
there by L'HOpital's rule:

(W) p'(K") « HK")/9'(x"),

27
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and it remains to evaluate these derivatives.

p'(K) = p[-P"(K)] + [ p- P'(K)] P'(K). t
9' (") = -p” P"(K").
v'(K) = P(K) - C'(p) p'(X).

Again make use of (37).
| v'(K) = p-c'(p )P (K).

Substitute into (ub).

o - a " ™
p(K7) -« ~—RELE)
p-C'(p)p'(K)
or, clearing fractions,

(43) <'(8™) ('K + o p'(K°) + PF(K") = O,

& quadratic equation in the aslope of the solution to (k1) which passes
through the equilibrium. Since C(p) 1is decreasing, the coefficient
of the quadratic term is positive. Since P" < 0, the constant term is
negative. Thus, the product of the roots is negative, vhich implies that
both are real, with one positive and one negative. As already noted, the
negative root is the appropriate one.

S8ince C(p) 1s defined by (36) and (33), ve must have
utle(p)) c'(p) = 1, so that C'(p") = 1/U(C™).

Proposition 10. Suppose the aim of the economic system i{s to mexi-
nite ]:" e"’t uf{c(t))dat, where o > 0, sudject to the conditions

K=I,CeI<PHK) K20, vhere U(C) 1s a strictiy concave incressing

function snd P{K) 1is s strictly concave function sith F(0) « O, and
28




also assume K(O) given. Define X, C, p~ by the relations F'(K*) =

p, C"=PF(K"), p = U'(C7).

Then the cptimal strategy can be characterized by finding that solu-
tion p(X) of the differential equation (41) for which p(K") = p~ and
for which p'(X") is the negative root of the quadratic -:quation
[-2/u™(c™)] (p' ()12 + 0 ' (K°) + P° P"(X”) = O. Then, for any K,

C 1is so chosen that ''(C) = p(K), and I = F(K) - C.

Proposition 10 has been stated without the hypothesis, U'{0) = ¢ =,
which vas used in the proof. It will be an interesting exercise in the
use of Proposition 6 to consider the case where U'(0) is finite. In
this case the constraints C 2 O and & 2 0 may become effective.
Ccnsider the first for regions in which X > 0. Let w be the muitiplier

sssociated with the constraint, C > 0. Then (31) 1s modified to read

(46) L=UC)+pI +qlF(K)-C-1I]+wC
= (U(C) - (q-v) C] + (p-q) I + qF(X),
vhere

(47) v 20, v a0

If C = 0, then the condition OL/XC « O Dbecomes
U'(0) « U'(C) = q - v < 4.

¥We still have the condition paeq, oo that C =0 1if ng'(O). The
system (34) and (35) is still valid, but the defiunition of C(p) s
slightly modified;
C(p) 1is thue solution of the equation, U'(C) = p
it p <v'(0),

¢(p) =0 12 p > U (0).
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The rrevious analysis is completely unchanged; in Figure 1, the
curve i = 0 intersects the p-axis at p = U'(0) instead of being
asymptotic to it. &ince the optimal trajectory lies above the curve
é = 0, there will be a k >0 for which p(k) = U'(0). For k <k,

C will then bc zero.

Now consider the possibility that the constraint K = O becomes
effective. .s has already been seen, this question arises only for paths
which start in or have ent:red region II. It will be shown,even with
U'(0) finite, sucn paths are non-optimal.

Recall the basic definition (18) of p as dW/dK, where W is
maximum value of the utility functional if the initial state is K.
Clearly, in this model an increase in K 1is always beneficial; given
an increase in K, one can always consume a somewhat higher amount for
some period until the value of K(t) falls to that on the criginal path,
and then follow the latter thereafter. Hence, p must be positive.

New consider a path that has reached the p-axis at time to from
reglon II. Since the initial value of p was finite, the time to reach
the p-axls was finite, and the rignt-hand side of (3%) is bounded over
this path, p(to) is finite. Now the constraint K > O becomes ef-

fective and therefore the constraint I > 0 1is imposed. The constraints,

Q
[(AV4

0, 1>0,C+I<FK)=FO) =0,

imply that ¢ and I are O0; from the latter, it follows that K(t) = O
for all t >t . The Lagrangian (46) is modified by the addition of &

term corresponding to the constraint I > 0, with multiplier r.

r
F

U(C) + pT + q[F(K) - C =~ I] + wC + rI

fu(c) - (a-w) c] + (p+r - q) T + qF(X),
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where r >0 when I = 0. No longer does the equeiity p = q hold;

instead,
pP=gq-r<aq.
Equation (34) is modified to

P=p2-aF'(K)=pp-aF'(0) for t>t.

Recall that ¥'(0) > p. Use in turn the inequalities p < q, U'(0)

UA
=

p=pp-a(c) alo - F(0)] S UNO) [o - F(O)].

The last term is a negative constant. Hence, 1 must become negative in
finite term, which is a contradiction to the assumption of the optimality
of the path being studied.

It may be asked what happens if the initial stock of capitai is O.
The only feasible path is that of zero investment and consumption. The
argument just given would show that for any finite »(0), p(t) would
become negative eventually. The an.wer evidently is that p(0) must bve

chosen + = initielly, and theu p(t) would remain + .
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Lecture 4

Further Aspects of the Ramsey Problem: Irreversibility;

Growth of Population and Labor Force and Technical Change

It is sometimes reasonable to argue that investments, once made in
physical form, cannot be converted into consurer goods. Hence, invest-
ment should be irreversible, i.e., subject to the constraint I 2 0. On
the other hand, there is in real life & somewhat more subtle way in which
capltal can, within limits, be run down and permit more consumption;
namely, capital goods depreciate and failure to replace them constitutes
8 way of increasing consumption at the expense of capital.

A reasonable assumption about depreciation is that a fixed fraction
of the existing capital becomes useless in each time period. Thus, the
net rate of increase of capital is the amount of (gross) investment, i.e.,
new output devoted to capital uses, less the amount of depreciation. This

amounts to replacing (28) vy

(w) K=I'8K,
for some % > 0. We also assume that investment is non-negative,

(49) I>0.

Otherwise the model is identical with that of the last lecture,
including (24) and (29), with the assumptions (25), (27), and (30)
(though the last is dispensable). lLet p be the auxiliary variable
corresponding to (48), q the multiplier corresponding to (29), and s

that corresponding to (49). The Lagranglan becomes

(50) L=UC)+p(l -8K)+q[F(K) -C=~1I]4+sl

= [U(C) - aC) + (p+s-q) I + qF(K) - p B K,

s




where

) ? (51) s >0, s8I = 0.

? Equating derivatives with respect to C and K tc zero ylelds

(52) U'(C) = 4q,
Q=P+ 5,

which can be combined with (51) to yleld
(53) p<q if p<gq, then I =0,
The auxiliary equation is

(54) p=(p+8)p- ar(K) .

Since the problem is stationary, we know that the instruments and

the auxiliary variable are functions of K. From (53), for any given K,
there are two possibilities: either p=gq, or p<q with I = O.
Therefore, the K-axis is divided, in general, into alternating blocked

and free intervals:

f (s5) I=0,C=PFK),q=U[PK) >p on adblocked interval;

(56) I>0, C<F(K), q=p>U'[F(K)] ona free interval.

Prom (48), k m-35K<O if I = 0. Hence, the system cannot have
an equilibrium in a blocked interval. Then p « ¢ at an equilibrium
and, from (54), (48), snd (29), the following relstions hold at equilibrium:
. (57) P'(x°) - 8 = o,
) A '
¢® « (") - & x",

P = u(ch).
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It will be observed that the equilibrium is the same as that for

the reversible Ramsey problem, where F(K) is replaced by F(K) - & K. o
Indeed, if we define

I.,=I1-08K,

R
then, if the constraint (49) is ineffective, the problem is identical with

the reversible Ramsey pr¢ 2lem, with I replaced by I For the revers-

ible Ramsey problem the ~o.im2i policy would have I 2 0 for K < K',

N
and therefore 1I = In + 5. 0. Hence, starting with any such K, if

the optimal policy for the reversible Ramsey problem is followed, it will

alvays satisfy constraint (49) and therefore remain feasible under ir-
reversibility. It will therefore remain optimal. Indeed, the same must

be true for K in some right-hand neighborhood of K' , for wvhile I, = O,

I, +3K>0 for K=K and, by continuity, I >0 for K <K<K

R
for some K (which might even be + ®). On the optimal path K decreases

in this interval, and therefore K never goes outside the interval, so

. that the optimal path for the reversible Ramsey path is still feasidble
and therefore optimal for K <k.

The general method for finding the optimal strategy can now be
sketched. As before, ve are interested in the differential equation
defining p'(K) = dp/daK. Prom (48) and (54),

(s8) P'(X) « [(p+3)p - qF'{KX))/ (1-B X).

Here q and 1 can be determined as functions of K and p from (9%5)
and (56). In the neighborhood of the equilibrium, the solution, as roted,
is the same as for the reversible case. Prom (%5) and (%), (58) special-

1zes in the tvo kinds of intervals as follows:
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(%9) p'(K) = pip + & - F'(K)]/IF(K) - 8 K - ¢(p)] in a free interval;

(60) p'(K) = [(p+8)p - U'[F(K)] F'(K)]/(-86 K) 1in a blocked
interval.

Let

(61) r = U'[F(K))/p .

From (55) and (56),

(62) r <1 on a free intervai, r > 1 on a blocked interval.

wé know there is a free interval, <0,K>, with K >'K.. We there-
fore soive (59) around the eg:iiibrium and cortinue it first for all
smaller values ¢f K. Then continue it for larger values of K until
r reaches 1 Tre K-value where this occurs is 5, and there is a
calculsted vaive of p, p(K). We then solve (60) with this starting
point until r comes down to 1 from above. At this point we start a new
free interval, and soive (59), but with the starting point being that
achieved at the end of the previous biocked interval. This process can

be continued indefinitely.

Thus, the protlem ig capable of numerically meaningful solution.
Analytically shsrper characterization cannot te obvtained in general,
though more specific hypctheses imply some limits on the numbers of
blocked and free intervels. In particular, though, it can be shovn that
it 1s rossibie to have a denumerable or ardbitrarily large finite number
of alternstions betveen free and blocked {ntervals. For these and bcher
results, see Arrov and Kurz {1967].

Ar-:oer modificstion of the Ramsey model consists of ullowing for
grovth 1in populstion and ledbor force and for technolugical change.

Under certain simpie but bty no means sdsurd assumpticns, these factors
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can be introduced into the Ramsey model by a simple reinterpretation of

variables. -3
Population by itself affects the utility functional. Let N(t) be

the number of individuals at time t. Assume for simplicity that the

aggregate amount of consumption at any time t 1s divided equally among

the existing population. Assume also that each individual has the same

felicity function. Then the felicity of any individual at time t 1is

ulc(t)/m(t)]. Since there are N(t) individuals, it is reasonable to

cbnclude that the total felicity of society at time t is

N(t) Ulc(t)/N(t)], and the utility functional then is

(63) [ e™PtN(e) ule(e)/n(e)lat.

The production possibilities of society are of course inflluenced by
the size of the labor force. This effect has been ignored until now
because the labor force has been assumed constant. The growth of the
labor force is roughly proportional to that of population, but it will
be convenient to ignore this relation for the moment. We assume in any
case that the size of the labor force is 8 known function of time,
independent of the instruments or the state variables. Let L(t) be the
number of workers at time t¢. For any given supplies of capital and labor,

output is determined by the production function

(64) Y = KK,L),
vhere it is assumed that

(65) P is concave and homogeneous of degree 1, and F(O,L) = O.

The property of homogeneity of degree 1 is known to econcmists as

constant returns to scale; if labor and capital are varied in the same
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proportion, then the same productive methods can be employed, with only

theor scale changed, and therefore output can be changed in the same
proportion. This assumption is not fully true but may be accepted as an
approximation. The assumption F(O,L) = O amounts to saying that capital
is indispensable in production.

The transition equation of the system is still
(48) K=1I-58K.
The constraint on the instruments, C and I, 1is now
(66) F(K,L) > C + I.

Technological progress can be stated formally as
(67) Y = F(K,L,t),

that is, the output obtainable from fixed amounts of capital and labor
varles with time, presumably increasing. A particular hypothesis about
technological progress for which there is some evidence is that it is

labor-augmenting, which has the more specific form:

Y = F[K, A(t) L],

that is, each worker at time t can do, in every way, exactly vhat A(t)
workers could do at time O. 1In this form, however, we can see that we
may as well retain (64) where, however, it is understood that L now
represents not the number of workers in the usual sense but the number
of efficiency-equivalent workers. Thus, in the new definition, L can
and usually vill be incressing more rapidly than N.

The lagrargian is

(68) B = Nt) Ulc(t)/N(t)] + (I - & K) + q[R(K,L) - C - I].
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The necessary conditions, with I wunrestricted as to sign, become

(69) p=aq, U[c(t)/N(t)] =p,
(70) p = plp + 8-(F/X)].

The system looks much as it did before, but it is not autonomous
since time enters explicitly through N(t) and through L(t) in OF/X.
It 1s possible to use a non-autonomous system, but autonomous systems &re
much more convenient; with appropriate changes of variables, together with
additional assumptions, it is possible to state the system in autonomous
form.

Since labor is growing we can hardly expect an equilidbrium in terms
of the original variables, but it is reasonable to suppose there will be
one in terms of ratios to the labor force. Divide all variables by L,

and let small letters denote the resulting intensive magnitudes:

(n) c=C/L, k =K/L, 1 =I/L.
Let
(1) £(k) = F(k,1).

Then, from (65),
(73) £(k) is concave, f£(0) = O,

(7“) P(KDL) = U"(K/L,l)a Lf(K/L),

so that f(k) expresses the cutput per (effective) vorker as a function
of the capital per vorker. Differentiate (74) partislly with respect to

K.
(75) Fy = L(1/1) £'{K/L) = £'(K/L).

(70) can then be written




(76) p/p =+ 8 - 2'(K).

Since log k = log K - log L (natural logarithms),
k/k = (K/K) - (1/L) .

Multiply through by k, note that k/K = 1/L, substitute from (48),

and use the definitions (71).

(17) kK =1-{y+8)k,
vhere
(18) y = L/L,

frequently referred to as the natural rate of growth of the economy

(remember that L has b2en so defined as to reflect technical progress
as vell as labor force growth). Divide through in (66) by L, and use

the definition (71) and (72).

(719) f(k)zc + 1.

The equality will certainly alvays hold in (79). Elimination of i
vetween (77) and (79) yields

(80) k= 2(k) - (7 + B)kec.
Nov define
(81) &(x) = £(k) - (r + B)k;

from (73), ;(k) is concave, g(0) = 0. Then {76) and (80) can be

written:
(&) p/p =~y - g(k)
(83) i.dn-c.

Pinally, (62) can be written

(8%) v'i(/n)e] = p.
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The system (82-84) would be autonomous if the following two condi-

tions are satisfied: :
(85) y constant,
(86) L(t)/N(t) constant.

This is the case of no technclogical progress and a constant rate of
population and labor force growth. Then the equations hLave exactly the
same form as those for the Ramsey model, with K, C, F(K), and p replaced
by k, ¢, g(k), and p - y, respectively. The importance cf the last
substitution must be stressed. The optimality analysis of the Ramsey
case made use of the hypothesis, p > 0 to show that the transversality
conditions wvere satisfled. This condition seems reasonable. But in the
case of growth, the corresponding condition 18 p > y; this is somevhat
0dd because the value of p 1is & value judgment while that of 7y is an
empirical fact. There seems no intrinsic resson vhy the inequality should
hold in one direction or the other.

It must be remarked, moreover, that the hypothesis cannot be es-
sentially weakened. In the Rausey model without grovth it can be shown
that 1f p < 0, there is no optimal path in any mesaningful sense; for a
detailed analysis see Xoopmans [19€5, p. 2%51-2 and 279-3%); as Just seen,
the same result holds if the eccnomy is groving st s constan: rste 7y and
p < 5. The borderline case. p =« 0 in the model without grovth or p = ¥y
in a groving economy, has been studied in consideradble detail by Ramsey
{1928]), Xoopmans {1965, pp. 239-k3 and 269-7%), von Weizsllcker [1965).
Alternative definitions of optimality are possible since the utility
functional need not converge, and in general the existence of an opt.L-l

program in the borderline cease depends on the specific properties of the

&0
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production function.

To allow for technological progress, we wish to relax (86) and allow
the ratio L(t)/N(t) to be increasing. We still wish to arrive at an
autonomous system. In the system (82-84) it is (84) which will no longer
be autonomous. In general there is no transformation of the variables in
(82-84) which will make the system autonomous, but such a transformation
is possible if U' 1is homogeneous of some degree. Note that U' must
be decreasing; therefore it must be homogeneous of some negative degree,

sgy -0.

(87) Assume that U'(:) is homogeneous of degree -o, o > 0.
We also assume, to replace (86).

(38) L(t)/N(t) has 8 constant rate of growth, T,

vhich may be interpreted as the rste of (labor-augmenting) technological

progress.

From (37) and (84),

(Le)/Me)1%u () » p,
or

U'(c} - p{L(t)!N(t))c.

I.. an effort to reach an a.tonomous system it is then a good i{dea to

definc

29) ? = plL{t)/N(2))°,
80 ixat

(90) U'(s) . p,

and then seek & differential equution for p 20 replsce (82). Teke the
logarithm of both sides {n (32), Qiffereniiate witr respert to time and

ki

.
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substitite from (82) and (88).
(91) P/o=pt+tot1-y- g' (k).

The system of equations (83), (91), and {90) is now again of the same
form as the Ramsey model, with K, C, p, F(X), and p being replaced by
k, ¢, p, &(k), and (p + 0 1) - 7, respectively. The last conditions

mean that for optimality we need

(92) pP+oTDY,

with some possible cases of optimality when equality holds. It is also
worth noting that, trom {91), the equilibrium capital-labor ratio, k°,
1e defined Yy

g (k) =p+o1-7.
From (81), this can be written
(93) £' (k") -6=p+a0 1.

The left-hand side is thus the equilibrium net marginal productivity of
capital (net of depr=ciation, that is) and so, in usual economic terminology,
the right-hand side is an equilibrium rate of interest.

Remark 1. The existence condition (92) amounts to saying that the
equilibrium rate of interest exceeds the rate of growth.

Remark 2. ™he equilibrium rate of interest is higher, the higher
the rate of technolcgical prcgress. Notice also that if 7 = 0, then the
entire equilibrium does not depend in any way on the felicity function
but only on the producticn function and the utility rate of discount, p.
With technological progress, on the other hand, this ceases to be true;

other things being equal, the marginal productivity of capitai is higher

b2




(and therefore the capital-labor ratio, k, is smaller) the higher o,

i.e., the more rapidly the individual becomes surfeited with goods.

Remark 3. Note also that c¢ 1is consumption per effective worker,
not consumption per capita. As the optimal path converges, c¢ converges
to a limit; but since L/N increases at the constant rate T, it follows
that asymptotically consumption per capita will grow exponentially &t the

rate T.
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Lecture 5

Optimal Growth in a Dual Economy

It is a common hypothesis among economists that in underdeveloped

countries there exist side-by-side two economic systems, one advanced

and the other backward. The economic significance of this separation

is that workers in the advanced economy receive a wage which may be
much higher than anything received in the backward sector. At the

same time, it is assumed that these workers save nothing, so that any
capital accumulation must come out of the surplus of output over wage
payments. For simplicity, assume there is no relevant product at all
in the backward sector. It still may not be optimal for the economy to

have full employment of the labor force in the advanced section; each

additional worker creates more product, on the one hand, and a claim to
P a fixed portion of that product on the other. Thus capital accumulation

might be lower under full employment thsn with some unemployment,

¢ For simplicity, it is assumed here that the population and available
| labor force are constant and that there 1s no technological progress;
generalization in these directions can easily be carried out by the
methods of the last lecture. The following discussion is based on the
vork of Marglin [1966] and Dixit [1967). The Ramsey model is modified
by adding one instrument and two constraints. The additionel instrument
is the amount of labor to be employed, L; the additional constraints

are that there is a fixed parameter, w (wage rate in terms of goods),
such that,

(%)  C-wL=o

and that the amount of labor employed not exceed the fixed amount

available,
Ly

< »




(95) T-L2o0.

Otherwise, the Ramsey conditions remain:

(24) maximize f:” e tulc(t)) at,
(28) k=1,
(66) F(K,L) - C - I 20

(66) is substituted for (29) since the labor force is a variable of the
problem; the function F is assumed to satisfy (65).
The Legrangian can bte written,
(%) u(c) + pI + q) [P(K,L) -C -I] + g, (C-vL) + g5 (I-L).
Equate to zero the derivatives of the Lagrangian with respect to
the three instruments, C, I, and L.
U'(C) = q)- ap P = ap Fy(K,L) = qy w + gy
or,
(91)  0C) = p - qp
(98) PFp = GV * g,
vhere F, = d F/d L. Of course,

Y
(99) ) =0, q,(C-vL) = 05 qy 2o, q’(f-m = 0.
Since the constraint (66) is certainly effective, (28) and (66)

imply,
(100) K = P(K,L) - C.
The auxiliary equation, as before, is
(101) We=op- Fy(K,L).
From (100) and (101), at an equilibrium,
(102) Fy (K°,L7) = o, C7 = F(K",17).
To be an equilibrium of this system, hoigver, (94) must be satisfied.
Since F kis homogenecus of degree 1, it 8 .gaﬁy to prove that ’K is

homogeneous of cegree O; tke first equation ia (102} can therefore be

b




solved for K/L”., Write the second equation as,

¢/L° = P(KY/L,1),
since F(K,L) 1is homogeneous of degree 1. We will assume then that,
(103) cY/L®>w.

Then the constraint (9%) is not binding at equilibrium, and

[ ]
%
there is full employment. Thus, for K in the neighborhood of K”,

4 = 0. Then, from (98), > 0, so that (95) is binding, i.e.,

the optimal path is identical with that for the Ramsey problem. Since,
in the Ramsey problem, p is a decreasing function of K, and therefore
C 1is an increasing function cf K, it follows that the constraint (9u)
1s fulfilled and ineffective for K 2 K°. It follows that there is

K <X° such that the optimal solution for the dual economy coincides
vith the Ramsey solution in the interval <K + >, which will be
termed interval I.

X 18 defined by the condition that (9h) becomes effective there.
Since p(X) 1s the same as for the Ramsey solution for K : K, 1t is
nov known for K = K, Also, q,(R) = p(X) PL(R,!:) >0, As K decreases
belov K, it must be that q; remains positive, at least for some inter-
val, vhile q, rises above C. Then constraints (o) and (95) are both
effective in an interval to the left of K — termed interval 1I, in which
C = L, K F(X,I) - vL, so that, from (101),

(103)  aw/ax = plp - B (K,T)V/([F(K,L) - vI] 1n interval II.

Since p(K) is known, this equation can be solved rather easily for
smaller values of K.

Also in interval II, q, = P - U'(vE), from (97), so that, from (98),
(108)  qq = PIF(KE) - v) & Wit (uEj,

Thus the lower end of interval II is defined by the condition qy = O.

ag
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Since F(O,L) = 0, all L, by (65), there exists % eo that,

r(xl,t) = vL,
As K approaches K, + 0, the denominator of (103) is ssymptotically
equivalent to FK[Kl,f] (K - Kl)’ so that clearly ©(K) approaches
infinity. Also, from Euler's theorem on homogeneous functions,

WL = F(xl,‘ﬂ) = FL(xl,E) L+ Fx(xl,'ﬁ) K, > FL(xl,f) I,
80 that FL(Kl,f) <w. The first term of (104) then approaches - w,
while the second is constan%, Hence, q5(§) = 0 for some K > 0.

Interval III is the interval <0, K>. Iu this interval, the full
employment condition, (95), ceases to be binding, and 95 = 0. From
(94), (97), and (98), we deduce,

(105) U(wL) =p {1 - [FL(K,L)/V}] .

which defines L as a function of X and p. The basic differential
equation takes the form in interval I1I,

(106) ap/dK = plp - Fy (%, L)/ [F(K,L) - wL],

It is to be noted thet dL/dK > C in this interval (the more
capital, the mare labor cun be employed). This means that, as we push
the sclution to lower vulues of K, the full employment constraint will
never become binding again. To see that dL/aK > O in interval III,
fi1st note, from (105) that

1- [F (X,L)/%] > 0 in interval III,
Differentiate (105) totally with respect to. X and group terms.

(107) {uU™(wL) w + (g/w) Fi; (K,L)] (a/aX) = - (p/w) P (K,L)
+{1 - [F (K,L)/v]}{ap/aK).

From the concavity of U and F, it follows that U" <O, F

LL<O.
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Since F

L is homogeneous of degree O,

Frp L+ Fpy K =0,

by Euler's theorem; but since Fip, <0, and L, K>0, Fre >0,
It is then easy to calculate, from (107),
(108) if ap/dK <0, then dI/dK > O in interval III.
Since K < K, FK(E,'L') > FK(K",E) = p, 80 that p'(K) < 0. Suppose
p'(K*) = O, for some K*, O <K* <K. Take the largest such. Then

p'(K) <0, K* <K 55, so that FK(K,L) > p in that interval, or,

K/L<KJ/T for K* <K Sk

-t

vhile K*/L* = Kwﬁ « Since F.., >0, F. increases with K for fixed

LK L
L; but since F. 1is a function of K/L, F, increases with K/L. Hence,

I-‘L(K*,L*) > FL(K,L) for K 1in a right-hand neighborhood of K¥,
vhere, it will be recalled, L 1is & function of K defined by (105),
and L* is its value at K = K*, Therefore,

dFI/dKSOat K = K*,

But, dFy/dK = Py, (al/aK) + Fy,.. Compute dl/dK from (107), and recall
that dp/dK = 0 at K = K*, Then,

er/dx = (K*,L*) U"(wL*) «/ [U"{wL*)w + (p/w)F__(K*,L*)] > 0 at K=K*,

FLK LL
a contradiction. Hence, p'(K) <O for 0 <K <K; by (108) L is an
increasing function of X in interval III (capital permits employment),

and consumption is proportional to L.

L8
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Analysis of a One Good Model of Economic Development

1. Introduction

In these notes we are going to analyze an idealized,
or better, an lmaginary economy in which there is only
one good. This good can be used for two purposes;

(A) 1t can be consumed, thus creating satisfaction or
utility for the people who consuime it, or (B) 1t can
be invested, in which case it creates additional amounts
of 1tself. We will be concerned with an operation of
this economy throughout time and therefore the problem
at each instant will be to decide how much to consume
and how much to invest in order to maximize utility
throughout time in some su!tably deflined sense.

What 18 the purpose in considering this sort of
imaginary situation which bears little resemblance to
any actual economy, living or dead? The answer is that
in analyzing this model we shall run into certain
mathematical and economic techniques which turn out to
be basic not only for the study of this make-believe
economy but alsc for the more realistic (but more
complicated) models which may come up in practice. Our
aim 18 thus to isolate this techhique in a simple context.

The technique we refer to is what economists descridbe as




the use of a price system and what mathematicians refer

to as the method of dual variables. By whatever name
one calls 1t, this subject is the central one both in
eccnomic analysis and modern optimization theory.
Mathematically it enables one to answer such questions
about optimal development programs as: do they exist?

Are they unique? What are their gualitative properties?

Economically it allows one to give a competative market
| interpretation to these optimal paths along which, it

turns out, producers are maximizing profits and consumers

are maximizing utility subject to thelr budgetary
limitations.

The above is a rough preview of what will be found
in the rest of these notes. The overture is now ended

and the show will begin.

2. The Model; Finive Time Horizon

The model will 1lnvolve a single commodity which we
will refer to as "goods". It is described by two functions,
a production function ft(x) and a utility function ut(c)
where ft(x) is the amount of goods produced at time
t+1l from an investment of x units of goods at time ¢,
and ut(c) is the satisfactlon gained by consuming ¢

1‘ units of goods at time t. The domain of t 1is the




non-negative integers and that of x and ¢ the

non-negative reals.

DEFINITION 1. A program with initial stocks s 1is a
sequence of pairs <« XpsCy > finite or infinite such
that
(2.1) Co = 8 ~ X,
(2.2) ey = y(x ) —x, for t> 0.

Ir <,xt’°t > 1s a program the corresponding
utility seguence is given by < ut(ct) >.

Clearly, conditions (1) and (2) state that the sum
of consumption and investment in period t 1s equal to
the amount produced in tne previous period. If the
sequence < L > 1is finite with t = 1,...,T then
it is called a T-period program and 1f fpn(xp) = s' we

refer to the program as a T-period program with initial

stocks s and final stocks s' or, more briefly, a

T-period program from s to s'. The yalue of such a

T

program is 2 ut(ct).
t=0

DEFINITION 2. A T-period program from s to s' is
called optimal if it has maximum value among all such
programs.

Although our principal interest will be in infinite

rather than finite programs it will be necessary first




r———

to develop the basic propertieg of finite cptimal
programs.

Vie now intrcduce the central concept of these notes.

DEFINITION 3. The program < X¢sCy > 1s called
competitive if there exist non-negative numbers (prices)
Py such that

(8) ut(c) — pic 1is maximized at ¢, for all ¥,

b

(B) pt+1ft(x) = pyx 1s maximized at x, for all t.

These conditions have an important economic interpre-
tation. Regarding Py as prices we see that P¢X is the
cost of investing x units at time t, while pt+1ft(x)
is the return or value of ft(x) units at time t+1.

The difference, therefore, represents profit and condition
(B) requires that investment be chosen at each time ¢
80 as to maximize profits.

To motivate condition (A) we note from (2.2) that
ey = Pelfioq(xgq) = x¢)

and the right hand side here might be thought of as
disposable income since it represents the value of goods
Just produced minus the cost of goods to be invested.

If we then require consumers to spend no more than the

amount p.C. (budget constraint) condition (A) says




that consumers will then consume so as to maximize their

utility subject to this constraint.

The following simple result is the starting point

for the theory.

THEOREM 1. If < XysCy > 1s a T-period program from
8 to 8' which is competitive, then it 1s optimal.

Proof. Let (pt), t=1,...,T+1 be the competitive
prices and let < xé,cé > Dbe any other program from s

to s'. Then from (A) and (2.1) and (2.2)

A

vy o 1. = — 'Y - - = - 1
ug(eg)-uley) < poleg-cq) = pyls=xq) - py(s-xg) = ~poxq +PoX,

t 1 t [ ]
ugey)-uley) < peleg=cy) = pelf_y e 3 )=xp)=py(fy o (xp_q)-x¢)
for t=1,...,T
and 0 = Py (8'=8") = Ppyy fplxg) = Ppyyfplxgp),

and summing on t gives
§ (cf)-u,(e,)) §t( £ (%)) "pexe ) =(PyyqFy (X, ) -Pex, )
Zoeleg)uleg)) & 2 UpgyyTelxg)-pexy)=(peyy fyxy )Py

where we have collected terms in xt. But since each
term in the sum on the right hand side above is non-

positive from (B), it follows that

2ugley) ~2ugle,) g0

so 2 ug(c,) 1s a maximum as asserted.




What we have here shown 1s that competitive programs

are optimal. We need a converse to this theorem and for
this purpose must make some assumptions about the
functions f and u. These are
(I) The function f 1s non-negative, concave
and increasing in x (for each t) and ft(O) = 0,
(II) The function u 1s concave and increasing
in ¢, but possibly ut(o) = - ®,

The last condition of (II) is important for we would
iike to permit functions such as u(c) = log c, ¢ 2 O.
The condition u(0) = - » would mean that to consume
nothing (starvation) is "infinitely bad". Unless
otherwise stated it will be assumed henceforth that
conditions (I) and (II) are satisfied.

We now recall the fundamental mathematical result
needed for this work (which may well be the fundemental
result of all optimization theory), namely the Kvhn-Tucker
Theorem. We can get by with the following weak form:

Kuhn-Tucker Theorem. Let wu(x) and fi(x), 1= 1,°°,m,

be convex functions defined on a convex set X and let

x minimize u(x) 4in X subject to
(203) fi(X) -< o’ 1 = 1,"',“\.

Then if (2.3) has a strict solution there exist numbers

Py 2 0 such that




(2.4)  u(x) =2 p,fy(x) 1s minimized at X.

Suggestion for a Do-It-Yourself Proof: Let Y be ;
the set of all y = (yl,-..,ym) such that the 1inequalities

£, (x)

A

Yy

have a solution. Show that Y 1s convex and has 0 as
an interior point (here we use the strict solution
hypothesis). Now let u(y) = min u(x) and show that

K 1s a convex function of g?(X)éyi Then use
the fact that a convex function ¢ has a gsupport at
every interior point x of its domain, i.e. there is

a linear function p-x such that p-(x-x) < o(x) — o(x)
for all x 1in X. The support of u at O 1is the p
we are looking fcr.

We can now get the desired converse for Theorem 1.

THEOREM 2. Let < it’at > be an optimal program from

g8 to s8!' and assume
(2.5) Et > 0 for at least one t.

Then < it,E > 1s competitive.

t

Remark. Without (2.5) the Theorem would not be

true. Suppose f.(x) = px for some fixed p (i.e. f

is linear) and suppose u{c) = logc, s =1, s8' = pT.




Then clearly the only program from s to s' 1is

< xp,cp > = < pt,o >, but condition (A) requires there

exist P such that
log ¢ — pic = max at ¢ =0

and clearly no such Pt exlst. The fact that log 0 = - =
is not cruclal here. The same situation would occur for
u(c) =~c . The difficulty comes from the fact that the
slope of u 15 infinite at c¢ = O.

Proof. Replace conditions (2.1) and (2.2) by

cO + xo - 8 é 0

(2.6) cy + X

A

e = fooq(xeg) 0 t=1,00,T

s! —-fT(xT) <0

Now clearly < it’at > satisfies (2.6) and it also
maximizes iawnt(ct), since each ug 1s non-decreasing

in c¢. Hence the Kuhn-Tucker Theorem applies provided

we can show that (2.6) has a strict solution. Assuming
this for the moment we obtain numbers Py 2 0, t=20,...,

T + 1 such that
T T
(2-7) tzout(ct) 'po(co"'xo) 'tzlpt [ (°t+xt)'ft-1(xt-1) ]+pT+1rT(xT)

18 maximized at < it’at >. Rearranging (2.7) gives




T T
(2-8) tgo(ut(ct) - ptct) + tgo(pt"'lft(xt) - ptxt)

is maximized at < Et’it >, but note that the terms of
(2.8) are independent, hence (2.8) is maximized at
< it,at > 1if and only if ut(ct) — pec, 1s maximized
at Et and p,.f (x.) —px, 1is maximized at it
for all t, and these are precisely conditions (A)
and (B).

To show that (2.6) has a strict solution we consider

the new program < it,o > and note that we have

Xg =8 & 0
(2.9) X, = £ (X q) 0
st - fT(iT) <0
and at least one of the above inequalities 1s strict by

assumption (2.5). We therefore reduce the problem to

the following:

LEMMA 1. If (2.9) has a solution with one strict

inequality then it has a strict solution.
Proof. Inductionon T. If T = 0O we have
xo -8 g 0
| Jp—
8 r(xo) £0

If X — 8 < 0 then by slightly increasing Xq if
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necessary we can assure that s -f(xo) < 0 also, since
f 1is increasing. If s! —-f(xo) < 0 then by slightly
decreasing X, We can assure X, — S < 0 as well.

Now suppose one of the inequalities (2.9) is
strict for some to > 0. Then by induction hypothesis
there is a solution x; giving strict inequality for
all but the first inequality, and to get a strict
solution we slightly decrease x6 if necessary. 1In
the other case we have Xqg — S < 0 so inductively there
is a solution xL satisfying all but the last inequality
strictly and this will be satisfied too by a slight
increase 1in xé .

The fact that the class of optimal and competitive
programs are identical is of economic interest in itself
as it shows that if the 'prices are right" optimality
is attained by allowing producers and consumers to act
purely selfishly and maximize profits and utility
respectively. We shall now show how the price theorem
can be used to gain qualitative information about the
nature of optimal programs. For the rest of this
section we will assume that the functions f and u

are independent of the time.

DEFINITION 4. The function f will be called productive
for any x > 0, h> 0, f(x+h) > £f(x) + h. In words,
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increasing the input by some amount will increase the

output by more than that amount. For f differentiable

thic it equivalent to f'(x) > 1.

THEOREM 3, If f 1s productive then for any competitive

program < xt,ct;pt >

(a) prices p; are positive and decreasing in t.

(b) consumption cy (and hence utility) is

non-decreasing in ¢t.

(¢c) stocks X, are non-decreasing up to some time

to and decreasing thereafter.

Broof. (a) Ve first note from (A) that c,
waximizes uf(c) - p,c. This shows that p, > O since
otherwise u, being increasing, would have no maximum.
Next, frcm (B)

pt+1t(xt) = PX, 2 pt+1f(x) = px for all x20

Pgyy * T Xy

or for all x > Xy

but since [ 1s productive the right hand side above
is greater than 1, hence Peey € Pg-

(v) From (A)
ule,) —ule,,,) z peley —eeyy)

ulegyy) —uley) 2 Pyyyflegyy = o)

el Wt oo o S

Seno o
Hpo R o
i e e
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hence
03 (py = Ppyp)ley —cpyy)

(this relation is sometimes called La Chatelier's

principle, I think). But from (a) Py ~ P4y > O hence

Cy ~ Ceyy £ 0 as asserted.

t

i
|
]
i
|
!
i

(¢) It will suffice to show that if x_ < X, .. then

xt+1 < xt. Now

-

Prom (B)
O - “ -
Pyl (xt) Py 1 %¢ R ptf(xt-l’ | D TN
80 flx,) = £x,_3) & (ppoy/P)(x, =%, 4) <O

80 xt+1'~ xt <0,

3. lnfinlte Programg.

The finite horizcn programs zre net of great interest
in economic development. It is iru2 that if one were
devising, say a five year plan and had decided on the
final stocks s' *then it would be natural to try to
solve the problem of the previsus section. However, the

important decision would in this case already have been

L e s e

Xegp ~Xg = Flxg) =flxg ) = (epy =ep) & £lx,) - fx,y) from (b).




made, namely the choice of s'. The main problem in

economic planning is to set reasonable goals for
capital #ccumulation and it appears that the only way to
attack this is to consider infinite programs. The first

thing needed is a notion of optimality.

t
infinite programs we say that < Xy ,Cy > ogvertakes

DEFINITION 5. Ir < x.,cy > and < x;,c > are

< x;,ct > 1if there exists a time T such that

T T
> ue,) > > ugle)) forall T'>T.
oZo Ueleed > 2 uglcy 2

We say that < x.,c > caiches up to < xé,cé >
{at infinity) if

vis

am 2>
Toe  t=0

A program will be called gptimal (strongly optimal)

if it catches up to (covertakes) every other program.

'a ) = ufe!
u(ct, J(Ct) 2 0.

We remark that if i* should happen that the series

> “t(ct) converge for all programs (as may occur, for
t=0

inatance if future utilities are suitadly discounted)

then Definiilon S corresponds to choosing as the optimal

} ~ogram the one whose utility sum 15 greatest, Just as

in the finite case. However, Delinition 5 is more general

for, as we shall see, optimal programs in this bdbroader

sense may exist althcugh all the utiiity series are
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divergent. 1In the next section we shall give a specific
rather general existence theorem for the case when u
and f are independent of the time. 1In the present
section we shall obtain infinite analogues tc Theorems

1 and 2 relating optimal and competitive programs. Note
in this connection that the definition of a competitive
program requires no modification for the infinite case

Since ccnditions (A) and (B) carry over as given.
THEOREM 4, Any optimal program < XesCy > 1s competitive.

Proof. We first dispose of a trivial case in
which Cy = O for all but a finite number of times t.
This means that all stocks are completely consumed by
the end of T time periods for some T, so0 we are
back in the finite case of Theorem 2 where the
final stocks s' are zero.

In all other cases Cy > 0 for infinitely many ¢t.
Note that if e truncate the program at t = T we have
an optimal T-period nrogram (with final stocks fT(xT)),_
80 for each T there exist prices ptT which satisfy
(A) and (B) for ¢ < T. Denoting by H%
such prices one verifies that Hi 1s a closed interval,

the set of all

possibly unbounded above, of non-negative numbers. Also
HE+1 Cﬁnf since if (A) and (B) are satisfied for
t < T+1 they are satisfied for ¢t ST, 8o it remains
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to show Ht = (2\ nz is non-empty, and this will follow
T=1

from the nested interval theorem 1f we can show that for
any t there exists T such that HE is bounded. We

first note that ng is bounded 1f c¢p > 0, for from (a)

if pg € ng then

upleq) = Prop 2 up(eqp/2) = Pren/2
or pg < 2(uT(cT) -uT(cT/2))/bT .
Now for any t from (B)
p€+lft(xt) - p%‘xt 2 0 (since ft(o) = 0)
80 P < (£,(x,)/x,)Pr,; -

Letting g = ft(xt)/'xt we have

T T
Py £ 9944 *Qp-3 Py
and thls establishes the desired bound, and shows the

existence of the competitive prices.

We would like now to establish some sort of
analogue of Theorem 1 asserting that competitive programs
are optimal, but since we do not have the concept of
final stocks some additional condition will be required.

Before continuing we consider a concrete example.

ans




[

EXAMPLE 1. Let u(e) = - % , f(x) =px, s=1,

where p 1s some positive constant.

Proposition 1. The sequence < XgsCy > 1s a program

-]

if and only if 3 o /p® ¢ 1.

Proof. We have
c0 = ] -xo
Ct = PXg) T Xg -

Multiplying the equation by 1/'pt and summing gives

§C/t-l-x T
<y /P = /P -

& ¢ T
Conversely, let qp= 2 c,/p° and let xp = p (1-qq).

T T-1
Then x0 = l-cO and xT-pr—l = p (l-qT)'pp (1‘QT_1) =

= pT(qT-qT_l) = C¢p, S0 < Xp,eqp > 1s a program.

Proposition 2. Competitive programs exist if and only
if p > 1.

Proof. Let P, Dbe competitive prices. Then from (A)

u(e) - PC = -1/c + P¢ 1s inaximized at Cis

2
thence u'(ct) = P, = 1/'ct or

(3.1) cy = LA
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and hence ¢, and x, are positive for all t. From (B)

(pt+1p-pt)x is maximized at Xx,, SO Py . = pt/p, hence

_ t
(3~2) pt - PO/P .
Letting o =+~p we have from (3.1) cy = O‘t/prO
=]
and ct/pt = 1/@Jpo at). The series 9. ct/pt will converge
t=0 ~
if and only if p > O, 1in which case
< £
(3.3) 20 c./p’ = oApy (0-1),
so < XysCy > 1s competitive if and only if Cy = l Po ot
where
Py 2 (0/0-1)% .
Proposition 3. The optimal program is < it’at >

where ¢, = of - o1,

If there is any optimal program it must be competitive
by Theorem U4 and clearly the best of the competitive
programs (3.1) is the one for which Py = (q/o-l)a.
However, we can prove directly that this program is
optimal. Let <« Cy s Xy > be any other program. From
(A) and (3.2) we have

uley) = (pg/p%ey § ulGy) = (py/p*)3, or
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(3.4)  ule,) —uld,) § pyley/p” = ap/p%) .

Further if for some t Et # ¢, then (3.4) 1s strict.

Summing on t gives

Z - Z t _ = ,t
(3.5) 2 ule) -ule,) < py t)__l(ct/p —cy/p’),

t=1

o0
but from Proposition 1 and the fact that . 5t/pt =1,
t=1 "

i1t follows that the right hand side of (3.5) converges

to some non-positive number and hence the left hand

s v reotecy ot o M o

side must eventually become and remain negative, proving

| the asserted optimality.
We now prove a converse of Theorem 4.
THEOREM 5. If < X.,c.;p, > 1s competitive and
(3.6) 1im p.x, = O

t >

then < it’at > 1s optimal.

Proof. Let < Xy:Cy > Dbe any program from 8
and let Ty denote the profit from this program at
prices 5t in period t; that is

Te = PyfXg ) = PygXgoys Ty = PefiXgy) = PpogXgoq:

From (A) we have

‘" (3 7) “(co) ’“(Eo) S po(co'ao) = po(s'xo) 'po(s'io) - 'po(xo'io)
y " T uley)ulSy) § peley-gy) = pe(flxg_y)xy)py (£(X, 1) x,), t2 1,




80

T T T . _
(3.8) 1Elou(ct) -tz.ou(ct) £ tgl("t‘”t)“‘l’tt"‘T“PT"T :

From (B) Wt £ ﬁt so the sum on the right is non-positive
and since pTET + 0 it follows that the entire right

hand side becomes less than any preassigned positive
number for T sufficiently large, which 1s the definition

of optimality.

Corollary. If u 1is strictly concave then < it,at >

is strongly optimal.

Proof. In this case if ¢, # ¢, for some t then
the corresponding inequality of (3.7) becomes strict

and the argument above shows that (3.8) becomes negative.

We now gilve an important equivalent interpretation

to condition (3.6).
We define Pys to be the initial wealth of the

economy. We define

T
Woo=ps+ O m., the ted weglth up to period T
T= Post & T gccumulated wealth
T
E,= 3 p.c., the expenditure on sonswmption up to period T
TT & Pttt

PpXp = value of stocks in period T.

Then we have the following obvious identity




E

which is obtained by multiplying the tgg equation of

which 1s an obvious budget inequality, stating that
expenditure on consumption cannot exceed accumulated

wealth. Condition (3.6) now becomes

so that "at infinity" all wealth has been used up in

consumption.

optimality. However, it is not a necessary condition.
One can show that for cases in which the function f 1is
not procuctive, so that eventually f(x) < x, then

PpXq converges to some positive value rather than to

zero.

20

Ppxp = Wp — Eq

(2.1), (2.2) by p, and adding.

In particular we have

(3.9) Ep < Wp

(3.10) 1im (wT - ET) z0

T-»00

The condition seems like a reasonable one for

We call a program efficienc if it satisfies (3.10).




k., The Time Independent Case

In this section we confine ourselves to the case

where f and u are independent of time. We need one

more assumption which 1s a strengthening of Definition 4.

DEFINITION S. The function f 1s strongly productive
if there is a constant p > 1 such that

f(x + h) > £(x) + ph.
For f differentiable this is equivalent to f'(x) > p.

EXISTENCE THEOREZM. If £ 1s strongly productive there

exists an optimal program if and only if u 1is bounded.

This theorem was originally proved by D. McFadden
for the case of f a linear function. We first prove

the necessity of the boundedness condition.

LEMMA 2. If < XysCy 3Py > 1is competitive then
t
P, < Py/P -
Broof. From (B)
pt+lr(xt) = PyX¢ 2 pt+1r(x) = px for all x2 0

or Py (flxe) = £(x)) 2 py(x, = x)

(x, = x) 1
or pt""l/pt -< f(xty — ﬂx—)' S p for x> xt

S ey
i
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from which the result follows.

LEMMA 3. If < X¢sCe 3Py > 1s competitive then 28

approacheg 0 and Xy and Cyt approach « monotonically.

Proof. The first assertion follows from the
previous Lemma. Suppose (ct) were bounded. Then
there would exist ¢ such that ey < ¢ and

u(c) —ue,) 2 6> 0 forall t. But from (A)

p.(c —c.) 2 ulc) —ule,) >6 forall ¢

and we have seen that the left hand side above approaches
zero, giving a contradiction. Since Cy becomes infinite

so does X4 and monotoneity follows from Theorem 3.

THEOREM 6. If there is an optimal program then u

must be bounded.

Proof. Let < x,,c. > Dbe an optimal, hence

competitive, program. From (A)

U(Cl) "u(co) < po(cl'co) = po(f(xo)'xl) - po(s“xo)

u(egyy)-uleg) € plegpy-eg) = Pylflxg)xgyy)-py(flxgy)-x¢).
Summing from t =1 to T

u(eqyy)-uleg) & pplxp-xqy,))+ éll("cr("t)‘pt-l"c) -

- (ptr(xt"l) -pt“lxt"l)) + po(f(xo) -8)

*




but, the first term above 1is non-positive by Lemma 3

and the terms in the summa®ion are non-positive from (B).

Hence
u(ep, 1) S uleg) + plfixg) = 8),

so u(ct) is bounded for all t, but since ¢ + =
this means that u 1s bounded.

If u 1is bounded we establish the existence of an
optimal program by taking the limit as T + « of T-period
programs, as follows:

T T T.T
Let P = < XysCei Py > be a T-period program which

maximizes Q. u(e,) (the final stocks in this case

are zero). Now for a fixed t, the sets (le and [cf)
are bounded for all T. If in addition vwe knew that

(pg] was bounded, then a standard "diagonal process"
argument would establish the existence of a competitive
program P, a point-wise limit of the programs PL. Our
procedure will be first to prove the boundedness of (pgl
and then to show that P 18 efficient and hence optimal,
by Theorenm 5.

We first need a fundamental inequality.

LEMMA 4. If < XysCyiPy > 18 competitive then

§ PCy § Pp Cp + pluleq) =ulep )1/(p-1)
1 101 1

t=T




.
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Proof. From (A)
T~ T-1
“(cT) "\l(ch) - gl (U(Ct+1) -U(Ct)) é g pt(ct'l'l - ct)
1l 1
T=-1
™ ;.1: (Py = Pyyylepyy + Proqp = P, °1y
1
b5}
R (1 = pyy/Pe)pecy + Prop = P 1)
l
so from Lemma 2
u(cT) —u(cT ) s (1 - %) 2 P.Cy — Pp Cp
l Tl i S |
and we obtain (#) by rearranging.

We need a simple property of bounded functions,

DEFINITION 6. The member P, 1s a gupport of the

function u at the point ¢ 1f wu(c) —ulc) g pc(c-E)

for all c¢. (If u is differentiable then Pe * u'(e).

Note that Py is a support of u at ¢y in any competitive

program. )

LEMMA 5. If u 13 bounded and P is a support of
u at ¢ then 1lim P.C = 0.

¢

. Let u = sup u(c) and choose ¢ 8o that
c20

u(c) 2 u=¢/2, hence u(c) —u(c) g €/2 forall ¢ O.
Then




e T —

/2 2 u(c) —u(c) 3 ple —¢) = pe(1 =c/e)
ez 1f ¢ > 2¢ then p.c £ €.
C "RULLARY. The set of numbers P.C is bounded.
We now m2t a first economic application.

THEOREM 7. If u 1is bounded there exists a number M
such that for any competitive program < X¢sCyiPy > the

udantity En = c, <M for aii T.
q y Er éﬂ Pyl 2
Proof. Apply {»} with T, = 0 to get
Er £ Potq + p/p~1luleq) = ulcy)]
tut the right hand side is bounded by hypcthesis and
the precadirg Corollary.
COROLLARY. If < Xe»Cyp;Py > 15 an infinite competitive

[
program then O p,c, converges.

LEMMA 6. For the programs pT the prices p; satisfy
T
P S W/s .

Proof. Since the final stocks xqo = O in P.r
inequality (3.9) becomes

§ ?{-ET
t=]l

DgB + T $ M by Theorem 7,
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ct 3

and since T g 0 the result follows.

COROLLARY. The prices py satisfy

T T
Py < M/sp

Proof. Lemma 2.

THEOREM 8. There exists an infinlte competitive program.

Proof. Take the point-wise limit of the programs

T

P’ and call this 1imit P. It is a standard exercise

to verify that P 1is a competitive program.
To complete the existence theorem we must prove

00
that P 1s efficient. Let E = 2 ﬁtét which exists
t=0

[+ ]
by the Corollary to Theorem 7. Let U = pys + 2, Te.
t=1

We must show that this expresslon converges and that

E=W.
It will be convenient to consider the program P‘Il
to be infinite with the convention that for t > T

Xy = ¢y = 0.

LEMMA 7. For any € > O there exists ¢ such that

€
[- - [
z chz <€ and 2, w{ < e forall T.
t=t€ t-te

Proof. From Lemma 6, we can choose t, so that

pz is arbitrarily small, but as Pg 0, we have
1




pr e e

a7

cy > (Lemma 3) hence u(ct) -+ u = sup uf{ec) and
c20

Picy > O since p_ 1is a support of u at c (Lemma

T T

then we can choose t_. so that pg ¢y < €/2 and
: € €

p/p=1(p — u(crtl_: )) £ ¢/ for all T. Now apply (#) and
€

5)

we have
I o270 o7
> pecy S Py ¢ + [ulep) —ufe, )] g€ forall T.
t=t - € € €
€ t_- t. -1
&S TT _ T & LT
Finally, by (3.9), S p.cy < p.s+ 2 T, 8O
t¢t £ Po 2 Ty
t=0 t=1
o0 T T @
S =S ¢S pler= S plesge
t=t, b ot FT gy Tttt o VPSS
€ € € €
THEOREM 9. The program P 1is efficient.
00 [}
Proof. Let ET = > p%’cz and let W< = pgs + 2 TT%‘
t=0 t=1

8

and let E = 35 PiCy. Now for T',T > t_ it follows
=0
{ !
from Lemma 7 that E.T - ET L € and wT —wT <€,
T

so (ET) and (W are Cauchy sequences and converge

to their point-wise limits & and W. But EX = W'

for all T, hence E =W, completing the proof.

o, G
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APPENDIX. The Cgse of More than One Good.

In these notes the entire analysis of cptimal
programs has been based on the use of competitive prices,
and the existence of these prices therefore played a key
role. To establish their existence we were at some pains
in the proofs of Theorems 4 and 8 to obtain an a priori
bound on the values of prices for finite horizon programs.
This boundedness requirement is no mere mathematical
technicality but is quite essentlal to the understanding
of the models. We will here illustrate this further by
considering a very simple two good mcdel in which there
is an obvious optimal program which, however, is not
competitive.

The model involves both a production good P and
a consumption good Q , and there is a single joint
process for producing both. Namely from x wunits P
invested in period t one obtains px units of P and
x units of Q@ 1n period t + 1. Assuming initial stock

of P is 1 a program < XysCy > must satisfy
Xq Sy X S Xy and ¢, < x, for all t.

The inequalities here simply have the meaning that
one can throw away either production or consumption goods.
Now, it is perfectly clear that by any reasonable

definition of optimality the only optimal program is

s, -
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Xg = Cp o= pt since any other program involves needless
throwing away. It also follows from the Kuhn-Tucker
Theorem that every T-period optimal program is competitive

for any utility function u. However

THEOREM 10. If p > 1 and the utility function u 1is

unbounded then the optimal program is not competitive.

Proof. We must first write down the competitive
conditions. Let P and g be the prices of P and Q
in period t. Condition (A) then remains

(A')  ule) - qee 1s maximized at c, ,

and the profit condition (B) at time t 1is clearly
(B') QX + Py P, — PeX 1is maximized at x,.

Suppose now that < pt,pt > 1s optimal. Then from

(B') we must have
(1) Q. = (pt = ppt+1)
and from (A')

u(p®) = u(p™) 3

a,(p° = 0**1) = (1-p)p%(py = pPyyy)-

Summing from t = 0 to T-1 gives

u(1) = u(p?) 2 (1 =p)(py - prT) or

R A A e TR Y
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e, ’

(p-1)p 2 u(pT) = u(1) + (p-1)pTpg 2 u(p’) ~u(1) for a11 T

but if u 1s unbounded this is impossible since Po would

have to be infinite.
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Optimal Control and Convex Programming’

J. B. Rosexn
University of Wisconsin

INTRODUCTIONM

The problems arising in optimal control theory are similar mathematically
to those met in the calculus of variations, with additional requirements
in the form of inequality constraints which must be satisfied. The subject
received its initial impetus from problems arising in the area of guidance
and control, and the basic results of Pontryagin et al. (1962) are developed
from this point of view, as is much of the subsequent work on this subject
(Leitmann, 1962). However, as emphasised by Beliman, Glicksberg, and
Gross (1958), a continuous spectrum of problems enoountered by systems
aualysts, operations researchers, economists, and nianageraent consultants
in various phases of industrial, scientific, and military activity can be
included in an appropriate formulation of control theory. Two such
potenticlly important applications are dynamic economic models (Usawa,
1964) and long-range capital investment studies.

As a greatly simplified example of the Iatter application, suppose that
the control u(¢) is the rate of investment at time ¢. The state of the aystem
£(t) is described by the quantity of the sth product z,(f) produced by
time {. The z,(t) are determined for any given u(t) by the system of dif-
ferential equations

d = fz,u, ), 20 =2, 00T
The rate of investment is, of course, nonnegative and also may not exceed a

specified upper bound, 80 that 0 < u(f) € a. Furthermore, it is required that
the production aschedule satisfly the state constraints p,(f) < z.{t) < ¢.(0),

'Mhmzﬂmthﬂwthme
Ressarch Center, United States Army, Madison, Wisconsin under Contraet No.
DA-11022-ORD-2080.
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where the p,(t) and ¢,(t) are spccified, and that this be done so as to
minimige the total discounted investment

oful] = f “Pu(e) dt

over a finite time T. Because of the presence of the state constraints,
this problem is of & type which is difficult both theoretically and computa-
tionally (see Berkovits, 1962, and Pontryagin et al., 1962, chap. 6). In
actual practice the investment decisions would not be made continuously
but rather at discrete intervals, say, once a month. This is typical of a
dynamic process which can be formulated as continuous but which is
more usefully considered as discrete, since this gives both a more realistic
model and a computational method of solution.
The two important questions to be answered are:

1. Will any admissible (0 < u(f) < a) invesiment program satisfy the
production constraints? That is, does an admissible control exist?
2. If there are admissible controls, how do we find one which is optimal?

The remainder of this paper is devoted to answering these two questions
for a general class of discrete optimal control problems.

Someofthemammlherembasedonputsofanmherreport (Roaen,
1064). The author has also had the benefit of several discussions with
J. Abadie, whose work in this area has been most stimulating.

DISCRETE PROBLEM WI1TH BTATE CONSTRAINTS

It will be useful to give a further motivation for the approach taken
here for the solution of optimal control problems. Such problems fall
oaturally into two classes depending on their initial formulation, namely,
nontinuous and discrete. In general, we will solve the continuous problems
on a digital computer; this will require the numerical integration of systems
of differential equations—in fact, a discrete approximation to the contin-
uous process. We may therefore asmume, at least for computational pur-
poses, that we will always be dealing with discrete problems.

To be specific, wowi!!eonsidertdilcmtopmblemufollom: Letz, e E*
represent the state vector at time ¢, ( = 0 1, ---, m)and u, ¢ E" the
ocorresponding coatrol vector fors = 0, 1, - n—lTbenmualvdm
ahmﬂed,nndwevahwdet«mmthemtonz.mdu.nuw
minimise

‘zv(z..m). )
Mtboz.ﬁdu. must satisfy the recursion relation
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Ty ~ 2o = f(zi, us), i=01,:--,m-1, 3@

where each u, must be selected from a convex, compact subset U C E*
and where z, must lie in a convex, compact subset X, C E*. We acsume
that ¢(z, u) is a function from £* X U to E' with 7 ¢ C' on E* X U and
that f(z, u) is a function from E* ¥ U to E” with fe C' on E* X U. We
ascume, further, that the sets I/ and X_ are each specified by a system
of inequality constraints, that is,

¥, = [z]g(z <0} @
and

U= {u|hw) <0}, @

where g(z) is & function from £™ to E* with g ¢ C' and convex on E* and
where h(u) is a function from E’ to E' with A ¢ C' and convex on E".
The sete X, and U are assumed to be nonempty; by the convexity of
g(z) and h(u), they are convex.

We may think of this discrete problem as arising from a finite difference
approximation to vhe continuous problem

End

min ]' #(z(t), u()) dt, | (5)
where
2= flz,uw), $[0,T),
z(0) = z,, z(T)eX., (6
u() e U, tel0, T)

The sum (1) is the simplest approximation to the integral (5) with
At = T/m, (. = 1At, and ¢ = Até. The recursion relation (2) is the simplest
finite diference approximation to the differsntial equation (6) withf » At].

We may now consider the discrete problem as the minimisation of a
convex function on a finite-dimensional Euclidean space subject to the
equality constrainta (2) and the inequality constraints (3) and (4). For
problems of this type, the apprepriate theory is that devaloped by Kuhn
and Tucker (1951); see also Xarlin (1950) and Pesgs (1963). For our
purposes, the most convenient statement of this theory is esenticlly that

given by Berge.
Welet ¢ = m(n + r) and denote by 2 ¢ £* the vector s’ = (z}, --- , 32,
ug -, wL_,), where unprimed vectors are column vectors and where

the prime denotes transpose. We will call 2 an admisndis point if the
2, (i=1, - ,m)uatisfy (2), z e X, andu, e Ui =0,), --- , m = 1).
Suppoee we have an adminsible point 2°, determined by 28,8 = I, .-, m,
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ut,+ =0, -+, m — 1. We will denote by g,(z*) the k X n Jacobian
matrix of g(z) evaluated at z% and by A,(u%) the I X r Jacobian matrix
of A(u) evaluated at u%. We will also denote by ¢.(z¢) the matrix in which
we have replaced by zeros the jth row of g,(z2) if the jth element of g(z2) < 0.
Thus, we bave g'(z*)f.(z®) = 0. The matrix A,(u*) is defined similarly -
fors =01, ,m— 1,80 that ¥ (uDh(u®) =0 (3¢ = 0,1, -+, m ~ 1).
We also let f.(z, u) and f.(z, u) denote the n X n and n X r Jacobian
matrices of f.

An admisstble direction 2 at z* is given by vectors £, 1 = 1, -+ , m)
and 4, (1 =0, ---, m — 1) such that

B — & = [t u)E + flzfut, 1=0,---,m-—1,
£, =0
and
0.(z2)2. < 0,
hw®i, <0, $=0,1,---,m~1,

It follows that if y ¢ E° is not an admissible direction at z*, then it points
outward from the set of admissible points at z*; that is, 2* 4+ ay is not
an admissible point for every sufficiently small « > 0.

The sum (1) to be mininiized is given in terms of z by letting
m-1
40 = 2, o(zi, u). )
We will say that an admissible point z* is a relative mintmum if
$(*) < ¢(* + o) ®

for every admissible direction 2 at z* and sufficiently small « > 0.
We can now state the necessary Kuhn-Tucker conditions for a relative
minimum.

Thecrem 1A: If an edmissible point z* is a relative minimum, then
there exist vectors \, e E" (i = 1, - -+ , m), a vector vo > 0, ». ¢ E*, and

vectors 5, > 0,7, ¢ E' (1 = 0,1, -+, m — 1) such that
vag(za) = 0, ()
nh@?) =0, $=0,1,--,m—1, (10)
and such that the Lagrangian function

() = ¢(2) + Zo NalZin =z = (2, w)] + vaglza) + g nih(w) (1)
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has a stationary point st z = 2z*, that is,
6,:*) = 0. {12)

Proof: The proof is essentially that given in Kuhn and Tucker (1851)
or Berge {1963) and is based on the Farkas lemina,

Corollary: At a relative minimum z*, the value of the Lagrangiar funec-
tion ®(z) and the sum (1) are equal. Furthcrmore, the vectors A, 7,
and n, must satisfy the following system of equationa:

Aiep — A = -ﬂ-(-t:"p u‘;))\-’u + U:(z?n u‘i)y 3 == L eeoym— 1, (13)
= "9-(2 )Vlu (l*)

and

K@n = {@h wdhn — ozt v?), ¢=0,1,---,m—1. (15

Proof: Because of tr. .. plementary requirements (9) and {10) and
the fact that the - 'missible point 2* satisfies (2), we have

m—1

) = ¢*) = 3 o(z¥ u?).
=0
The arstem (13) thiough {15) is equivalent to (12) and is obtained by
g‘.ttmg :0 gero the partizl derivative of $ with respect to each component

of 2

It i8 clear from the form of (13) that this recursion relation for the A,
is closely relat«:d to the usual adjoint equation for the continuous problem.
The termiaal value A, for,the’adjoint vector is specified by (14).

In Thenrem 1A, necessary coaditions for a relative minimum were
given with no conditions on ¢(z, u) and f(z, ) other than differentiability.
We now show that if ¢(z, u) is convex on E* X U and if f(z, u) is linear
on E* X U, then the conditions are also sufficient for a global minimum.

Theorem 24: Let o(z, u) be convex and f(x, u) be linear on E* X U.
If 2* is an admissible point and there exist vectors A\, and nonnegative
vectors v, and g5, such that (9), (10), (13), (14), and (15) are satisfied,
then z* is a global minimum.

Proof: We will denote by Z C E"* the direct product of the sets z, ¢ &I*
¢=1 -, mandu,elU (@ =01 ---,m — 1). Then the function
¢(2) is convex on Z, since each term is convex on E* X U. The first sum-
mation in (11) is linear in z and therefore also convex on Z. The remaining
two terms are convex by assumption and by the fact that », and the y;
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are nonnegsative, Therefore, ®(s) is convex on 2. Now a staticnary point
of & convex function is » global minimum, 30 that

$(¢*) = min &(@). (10

[1} ¢

As above, we have ¢(z*) = &(s*). Furthermore, for every admissible
peint 2, we have from (2) through (4) that

) < ¢(0). an

Then, from (18) and (17), ¢(¢*) < ¢(2) for evety admissible point z,
so that z* iz & global minimum.

By means of a straightforward modification, the previous resulis can
be extended to include the case of constraints on the state vectors z,
(=1, ---,m — 1) in addition to the constraint z, ¢ X,,. To show this,
let us require that '

zicxjv i=1,--‘.m, 1.18)
where each X is a convex subset of E", specified in terms of convex func-
tions ¢‘(z) from E” to B*, fori = 1, --- , m, with g™(z) = g(z}. Ve thers-
fore have

X;,={z|gd@ <0}, i=1,.---,m (19)

Note that X, is identical to that given by (3). Ap admissible poiat is
now one which satisfies (2), (18), and u; ¢ U.

The extension of Theorem 1A to tkis state-tounded prubiem is given by:

Theorem 1B: If an admissible point z* is a relative minimum, then there
exist vectors A\, e E" (§ = 1, - -+ ,m), vecters »; 2 0, v, e B* ' (§ = 1, -+ - , m),
and vectors 9, > 0, n; e E' (t = 0,1, .-, m - 1) such thai

Ffﬂ‘(ﬂ) 00 § - L, y M, (m)
2Au%) =0, t=0,---,m~—1, (21)
and such that the Lagrangian function
m=1

®(2) = o(s) + Z: MNalTies = 20 — f(z4, 4]
(22)

[ )

3 rta'e) + X wihtw)

hss a stationary point at £ = 3*,
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Similarly, the corollary to Theorem 1A now becomes:

Corollary: At a relative minimum 2z*, we have

(%) = ¢(*) = X, o(zh ut).

Furthermore, the vectors A,, »,, and 5, must satisfy (14), (15), and
N = N = =iz uthivy + olzt, u¥) + g2z,
i=1+--,m-1 (28
Finally, the extension of Theorem 2A gives:

Theorem 2B: Let o(z, u) be convex and f(z, u) be linear on E* X U.
If z* is an admissible point and there exist vectors * and nonnegative
vectors »; and g, such that (20), (21), (23), (14), and (15) are satisfied,
then 2* is a global minimum.

CONVEX PROGRAMMING SOLUTION

We are now in a position to consider the computational solution of the
discrete optimal confrol problem with state constraints. We limit our
discussion here to problems for which the optimality conditions are suffi-
cient, namely, ¢(z, ) convex and f(z, 4) linear. In the interest of simplicity,
we will also assume that the constraint sets U and X, are defined by linear
inequalities, that is, that the functions h(u) and g‘(z) are linear. The
method for f(z, u) linear discussed here is the basis for a convergent
iterative procedure for solving the more general case where f(z, u) is
convex. This more general case is described in another paper (Rosen, 1966).

The general, variable coefficient linear case will be considered, that is,
a discrete approximation to the differential equation

=AWz + B(@)u, ¢te[0,T). (24)

We will let-4; = A(t,) and B, = B(t;) ( = 0, --- , m) and use the finite
difference approximation

Livg — Xy = At[*‘nﬂut + (1 - o)Aizi] + Ath‘“h
{=0,1--,m~1 (25

where 0 < 6 < 1. For 8 = 0, this gives the explicit (forward) scheme (2),

while for § = 1 it gives the fully implicit (backward) scheme. The value

@ = § gives a numerically stable method with minimum truncation error.
The relation (25) may be solved for z;.,, to give

z“‘l-K‘z¢+B‘“h ‘.-orlo"'om—lo m




230 J. B. Rosen

where
and '
B, = —:-[1 - %A,+,]_'B‘. (28)

The solution to the finite difference equation (26) is given by
=1
Ty = Y.'zo + Y‘ Z A,"HB,"“;, g = 1, s, M, (29)
=0
where the matrices Y, satisfy the homogeneous equaiion
YH!"K(YH Yo'=lp i=0,l,"',m"l. (30)

and where the matrices A, satisfy the homogeneous adjoint equation

A{BK:Ai+h Y.A:.=I, i=m—lv"'vl' (31)
It follows from (30) and (31) that YA} = ¥Y,,,A’,, = I, so that A} = ¥’
(¢ = 1, ---, m). Furthermore, the actual calculation of ¥z, and of the

coefficients of the u, in (29) requires only the inversion of an n X n matrix
to get each K, and the multiplication of n X r matrices. These quantities
are therefore readily calculated from the specified values of xz, A(?),
B(t), m, and 6.

Because of the linearity of (29), we can use these relations to map
the original problem into the control space, that is, the product space
of the u,. This reduces the original problem to one of minimizing & convex
function subject to linear inequality constraints in the space E™. Since
the original problem involved 8 = m(n + r) variables, and sincer < n
(often with r = 1 or r = 2), this may effect a considerable reduction in
the number of variables. To accomplish this reduction, we replace each
z; in the sum (1) and in the linear inequalities g*(z;) < 0 which define
the X, by the corresponding righthand side of (31). Each vector g‘(z,)
thus gives rise to k; linear inequalities on the u;. We also have the original
set of ! linear inequalities A(u;) < 0, which ensures that each u, ¢ U.
We therefore have a system of

mi+ 3k = m(l + )

(=]

linear inequalities which must be satisfied by any admissible set of vectors
u,;. Because of the way in which these inequalities arise, they have a
special structure which can be used to advantage. We will represent the
inequalities obtained from the g‘(z,) by
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jZo D;ul -D < 0, (32)
where each D, is an r X m£ matrix and where p ¢ E*X. Because z,., involves
only values of u, for j < 17, the matrix D’ = [DiD} --- D._,] has a lower
triangular structure. The matrices D, will depend on the matrices 4,, B;,
and the matrices which define the linear transformations g‘(z,), ns well
as on 8 and m. The vector p will also depend on z,, as well as on these
other quantities, The important point, however, is that the matrices D,
and the vector p can be explicitly computed with a reasonable amount
of computation. '

In order to simplify the discussion, we will denote by w ¢ E™" a vector
which specifies the control for ¢ = 0, 1, .- , m ~ 1, that is, w’ =

(uf, uf, -+, u..,). Two subsets of E™" are then given by
m—-1 )
W.={w!2D5u;-—p50} (33)
§=0
and
Wig{wlh(ul)sov j"oo"'vm-l" (34)

Since it is determined by linear inequalities, W, is closéd and convex
if it is not empty. Since W, is the direct product of compact convex sets,
it is compact and convex. Then

W W, N\ W, (35)

is:compact and convex if it is not empty.

The first important question about the discrete problem can now be
answered: Does there exist any admissible control? This is equivalent
to the question: Is W an empty set? Good computational methods are
available for determining if a solution to a system of linear inequalities
exists and, if so, for finding such a solution. Since the inequalities of (33)
and (34) have the natural form of constraints for a dual linear programming
problem, a dual simplex procedure can be used for this purpose (Dantzig,
1963). The starting procedure for the gradient projection method (Roasen,
1960) is equivalent to this and may conveniently be used for this purpose.
Another approach would be to use the duality theory of linear programming
and to consider the primal problem corresponding to the dual constraints
(33) and (34) and an arbitrary linear dual objective function. This objective
function can always be chosen so as to give an initial primal feasible
solution. The duality theory then says that if the primal problem has a
finite maximum, the corresponding dual solution is dual feasible (that is,
an admissible control). Auy  mtable linear programming code can therefore
be used for this purposc. :
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Once we have determined that an admissible control exists, and in
fact have actually determin 3 such a control, we can proceed to find
an optimal control. We do this by once again csing (29) to eliminate
the z,, this time in the sum (1), to get a function p(w) to be minimized.
Since convexity is preserved by a linear transformation, the function p(w)
is convex. We have now reduced the original discrete problem to that of
finding

p(w*) = !il.i,l'l p(w),

that is, the minimization of & convex function subject to linear inequality
constraints. Furthermore, we have an admissible control ©° (determined
a8 discussed above) with which to start the minimization procedure., A
number of computationally tested methods are available for the solution
of such convex nonlivear programmingiproblems (Rosen, 1960, and
Hadley, 1964). In the special case where o(z, u) is Linear on E* X U,
the problem can be solved in the dual! form by a dual simplex method or,
in its primal form, by any primal simplex code. The possibility of formulat-
ing a discrete linear optimal control problem as a linear programming
problem has been considered by Zadeh and Whalen (1962), An efficient
method of solution for linear problems with large values of m has been
proposed by Dantzig (1966), based on his generalized upper-bounding
technique.

Once the optimal control w* = (u?’, u?’, - -+, u%’,) has been calculated
in this way, the optimal state vectors z* ( = 1, - -+ , m) are immediately
given by (29). The Lagrange multipliers (or shadow price vectors)
»w(@E=1---,m)andn, (1 =0, ---, m — 1), corresponding to the state
and control constraints, are also available as part of the convex pro-
gramming solution. These quantities may be of considerable interest since
they give the rate of decrease in the function value with relaxation of
each constraint. The influence of parameter changes on the optimal solution
can also be obtained by use of the parametric solution features of many
codes. Finally, if desired, the optimal adjoint vectors satisfying (23,
with f(z, u) linear can be calculated from

xl - K:xiﬂ - U:(Z.’, u‘!) - 9:’(3'.')’“ t=m-— 1' "t lv

starting with A\, = —g7’/(z%)..

COMPUTATIONAL EXAMPLE

The previous discussion will now be illustrated by means of a variable
coefficient linear problem with four state variables and a scalar control.

et i ——— -
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In addition to bounded control, we also impose state constraints on one
of the state variables. The system considered is in the form (24), with

and
ro 1 0 0 0 1- 0 0
A=l 0 0 1 0 A=| 0 0 1 0
! 0o o 0 1) ’ 0 o 0 1y
| -4 -10 -10 -5 | -8 —18 -12 -5
-0 0.5
B(t) = b = ‘1’.0, z.-g .
| —4.5 0

The control must satisfy |u(t)] < 1, so that h(u) = (_: : i) We also

impose the terminal constraints z,(T) = z,(T) = 0 and the state con-
straint |z,()] < 0.5for 0 <t < T. These give

a"(z(t.-»-—{ "“‘)“"5}. i=1, 0, m— 1,
"xg(‘;) - 0.5 .
i 3:(7')-
o) = |~
34(T)
L"‘-Tc('r)

We wish to minimize the terminal Euclidean norm ||z(T)||. This system
is similar to a constant coefficient system for which a numerical solution
has previously been obtained (Ho and Brentani, 1963).

The optimum solution to this problem, using the finite difference
scheme (25) with @ = §, is shown in Figures 1 and 2. The values T = 2.5
and m = 25 were used so that At = 0.1. The optimum control is shown
in Figure 1, and the trajectory as given by the four state variables z,(t,)
G=1--,4,1=0,---,25) is shown in Figure 2 for the case with no
state constraint on z,({;). The minimum value of the objective function
attained is ||z(7)||* = 0.008456. The optimal solution to the same problem
with the state constraint |z,(¢,)] < 0.5 is shown in Figures 3 and 4. The
distinct. change in the control required to satisfy the state bound should
be noted, s well as the increase in the terminal norm squared to 0.026922,
which is due to the fact that the admissible control set W is smaller because
of the state bound.

Figures | through 4 appear on pages 234-6; lexl resumea on page 239)
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These solutions were obtained by using a progra... based on the scheme
described by (25) through (34). The convex programming problem ob-
tained in this way was solved by using the gradient projection computer
program (SHARE distribution $1399). The solution time required for
each of these problems on the 1BM 7090 was approximately two minutes.
The program and its use to obtain the optimal solution to a variety of
typical problems will be described elsewhere (Rosen and (’Hagan, 1968).
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DISCUSSION

H. Haixin: At the beginuning of your paper, you said that the condition
was necessary and sufficient. At that time you did not specify exactly
the case where this would be true.

J. B. Rosex: The question is: When are the Kuhn-Tucker conditions
sufficient for the discrete control problem? The answer is that in general
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they are only sufficient for a linear system of differsnce equations, that is,
when f(z, u) in (2) is linear. This is because for sufficiency the admisaible
space, over which the minimization is carried out, must be a convex set. The
admissible set consists of those pointsze E*, 2’ = (z{, -+« ,z., ul -+ ,u%1),
which satisfy (2), 7. ¢ X, aud u, e U (§ = 0, --- , m — 1). This cannnt
be convex if f(z, u) is nonlinear.

J. Moskr: Is there any analysis which tells you or gives you an indica-
tion whether the discrete problem really approximates the continuous
problem?

J. B. Rosen: The guestion of convergence of the discrete problem
optimal solution to an optimal solution of the corresponding continuous
problem is closely related to the set of reachable pointa z, ¢ E* given
by (29) with u, ¢ U. For specified values of z,, A(t), and B(t), the reachable
set will depend on m and 6. What we would like is that the reachable
set expands as At — 0 or m — . It can be shown that this will, in fact,
be the case under certain conditions if @ is correctly chosen in (25). On
the other hand, simple ex: nples can be constructed by using the explicit
scheme (§ = 0), where the reachable set shrnnks as m —+ o, In such a
situation, one may find that, as the grid sise is decreasec (m — =), &
value exists such that for all larger m it is no longer poasible to reach
the terminal manifold. In such a case, one clearly does not have convergence.

J. Moszr: I think it would be an interesting question to investigate
the conditions which would ensure couvergence.

H. HaLxiN: There is a paper by Professor Markus (paper 6) on the
stability of solutions of optimal control problems with respect to changes
in the data of the problems. I think that if a problem is stable in Professor
Markus' sense, then the solution of a discretisation of this problem will
tend to the solution of the problem itself as the discretisation is made
finer. Professor Markus gives an answer to such a problem in the case
of a linear system with constant coeflicients.
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ITERATIVE SOLUTION OF NONLINEAR OPTIMAL CONTROL
PROBLEMS*

J. 8. ROSENt

Abatract. The solution of nonlinear, state-constrained, discrete optimal eontrol
problems by maihematical programming methods is described. The iterative selution
consie*s essentially of Newton's method with a convex (or linear) programming prot.-
lem solved at each iteration. Global convergence of the iterative method is demon-
sirated provided a convexity and constraint set condition are both satisfied. The
computational solution of nonlinesr equation control problems makes use of a previ-
ously developed method for state-constrained linear equation problems. The solution
method for nonlinear problems is illustratc 4 by means of two numerical examplee.

1. Introduction. The optimal control problem considered here is a rather
general type of discrete problem. We wish to minimigze a convex function of
the state and contro! vectors, where the control vectors must lie in a speci-
fied convex set. In addition the state vectors must also satisfy apecified
constraints at each discrete time, as well as initial and terminal conditions.
Furthermore, the system dynamics may be given by a nonlinear recursion
relation provided that the nonlinearity is convex in an apprepriate way. A
discrete system of the type considered here may represent s process which
is actually discrete (see, for example, {3, [1]}, or it may be obtained from
a finite difference approximation to a continuous system in which we wish
to minimize a cot.vex functional. Such an approximation is always required
when a numerical .nvegration, using a digital computer, is part of the
solution process.

The purpose of this report is to describe a computational method for
solving this general type of disc.cte problem, and to show by means of the
relevant theorems that the method will always work when the appropriate
assumptions are satisfied. The method is an iterative procedure that deter-
mines a sequence of admissible trajectories (state and control vectors
satisfying all consiraints); the sequence converging to an admissible tra-
jectory that satisfies the necessary conditions for optimality. The method
has been used to obtain numerical solutions to several small nonlinear test
problems. In addition to showing that it is not difficult to implement the

* Received by the editors June 28, 1965. Presented at the First International
Conference on Programming and Coutrol, held at the United States Air
Foree Academy, Colorado, April 15, 1965,
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tional Aeronautics and Space Administration under Research Grant NGR-50-002-028
and in part by the Mathematics Research Center under Contract No. DA-11.022-
ORD-2059.
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scheme described here, these numerical results show that, at least for the
test problems considered, the number of iterations required is small.

In a previous publication [14] a statement of the Kuhn-Tucker condi-
tions was given for the nonlinear state-constrained problem considered
here. A computational procedure for systems described by linear recursion
relations was also given based on a convex (or linear) programming com-
puter code. Numerical results described there show that this computational
procedure is efficient for typical linear systems. The method described in
the present paper takes advantage of this efficiency by solving a sequence
of such linear problems. From this point of view the method of the present
report may be thought of as Newton’s method (see, for example, [9]) with
a convex (or linear) programming problem solved at each iteration. The
use of various forms of Newton’s method for the numerical solution of opti-
mal control problems has been proposed in a number of earlier publications
[4), [6], [10], [12]. The two important differences between the method de-
scribed here and these earlier proposals are that (1) in the present method
global convergence is assured when a convexity and constraint set condition
are both satisfied, and (2) large changes in both the control and state
vectors may take place at each iteration until these vectors are close to their
limiting values, thereby greatly accelerating convergence during the early
states. The limiting convergence rate is quadratic, as expected in Newton’s
method.

Another way of looking at this method for nonlinear problems is that at
each iteration we get an admissible and optimal trajectory which satisfies
a linear recursion relation which differs to some extent from the true non-
linear recursion relation. At each iteration the amount by which the lineari-
zation is in error decreases, so that in the limit the trajectory obtained is
an oplimal solution to the linearized problem obtained by linearizing about
the limiting trajectory. Since it is the recursion relation which is linearized,
the limiting trajectory is the optimal solution to a contrel problem described
by linear recursion relations. It therefore follows that for the class of dis-
crete nonlinear problems considered, the optimal solution has the properties
of a solution to a discrete problem with linear recursion relations.

The requirement that the state vectors satisfy specified constraints
usually increases the difficulty of the optimal control problem (see, for
example, [5] and [13, Chap. 6]). In the approach used here to solve the
state-constrained discrete problem, the convergence proof usecs the fact
that the state vector at each discrete time belongs to a convex compact set.
In this sense then, the liability of the state-constrained problem has now
become an asset. The existence of state constraints also introduces a sym-
metry into the problem, so that the usual sharp distinction between the
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(independent) control vectors and (dependent) state vectors largely
disappears.

The method described here applies to a recursion relation in the form of
a system of inequalities, and might represent a finite differenck approxima-
tion to a system of differential snegualities. By the use of a modified objec-
tive function, the problem usually considered corresponding to a system of
differential equations can be handled. The “classical” two-point boundary
value problem can also be solved in this fashion by allowing the control
vector to represent the error in the difference equations and minimising
this error.

It should be emphasiged that while the convexity assumption is negded
in order to prove convergence, the computational method can be applied
even when this assumption is not satisfied. In many such cases the iterative
method will still converge, and if 80, the trajectory obtained will satisfy the
necessary conditions for an optimal trajectory. Furthermore, at each itera-
tion a linear constraint minimigation problem with either a convex or linear
function is solved. Because of this, the method will almost always converge
to a trajectory, which is at least a local minimum of the objective function,
rather than an arbitrary stationary trajectory. It should also be mentioned
that the method considered here requires only the Jacobian matrix (first
partial derivatives) of the system equations, and does not need the Hessian
matrix (second partial derivatives) as required by some other computa-
tional schemes [6], [10], [12). For many nonlinear problems this may permit
a great reduction in the computation required.

While the iterative method described was developed for problems arising
in control theory, it may also be used to solve any f£nite-dimensional con-
strained minimigation problem of the general type considered. In this
respect the method is also a contribution to the solution of nonconvex
mathematical programming problems.

2. Problem formulation. The discrete optimal oontml problem we shall
consider hem is to determine m + 1 state vectors z,* € E" and m oontrul
vectors u,* € E’ which satisfy (2.2), (2.3) and (2.4) md such that

m=1 m-1
(2.1) Z“ o(z:’, u') = min ; o(z, %)
for all vectors z; and u; that satisfy the recursion relation
(2-2) z“H-z"-l(z"ui)' 1.-0, li“'tm- lp
with
(2.3) w € U;,CE, t=0,1,---,m—1,
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and ,
(24) € X,CE", i=0,1,---,m

The subsets X, and U, are assumed to be compact and convex., We assume
that o is 8 convex function from each direct product X; X U to E'. We
also assume that f is a function from each X; X U, to E". An additional
assumption on the differentiability and convexity of the components of f
will be needed later. It should be mentioned that the results obtained
actually hold (with obvious modification) for the more general case where
o and f may depend explicitly on the index 1. When the discrete problem is
obtained from a continuous problem, this corresponds to the explicit
dependence of ¢ and f on time. However, in order to avoid the complication
of additional subscripts we will limit consideration to the simpler case.

A discrete problem of this type may arise directly, or it may arise as a
finite difference approximation to a continuous system. For example,
suppose that in the original continuous system we wish to determine a
control u(t) with range U(t) for each ¢ € [0, T), and a trajectory z(t)
with range X (¢) for each ¢ € [0, T}, such that the functional

(25) [ 260, w0

is minimised, and z(¢) and u(t) satisfy the system of differential equations
(2.6) t=J(z,u), €[0T

The sum (2.1) then represents the simplest approximation to the integral
(2.5), and the recursion relation (2.2) the simplest finite difference approxi-
mation to the system (2.8), if we let Al = T/m, ¢ = At 2, and f = At].
The form of (2.2) may be retained even when more sophisticated finite
difference schemes are used to approximate (2.6), but the relationship
between f and J will become more complicated. The use of a more accurate
implicit finite difference scheme when f is linear has been considered in
(14). It should be emphasised that in this paper we solve the discrete
problem for a fixed value of m, and that we are interested in convergenoe
(for fixed m) to an exact solution of the nonlinear discrete problem. The
oonvergence to the solution of the continuous problem as m — « will not
be considered here,

In order to show convergence of the iterative procedure we will consider
the discrete system (2.1), (2.3) and (2.4), with (2.2) replaced by the
system of inequalities

(2.7) T -2 8 flzi,w), =01, ,m~1

Buch a system of inequalities may arise as a discrete approximation to a
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system of differential inequalities of the form % S f(z, u). On the other
hand, if one really wants to solve (2.2), this is accomplished by obtaining
an optimum solution tc (2.7) with an appropriately modified objective
function, as discussed at the end of this section.

In order to simplify notation we proceed as in [14], and denote
a specific control (u ,w’ , -, %my) and corrasponding trajuctory
(xo ,2,’, -,z ) by & single vector z € E’, where 8 = m(r + n) + n.
Thus, a solution to the discrete system ir specified by the vector

(28) z'-=(:co',x,',---,z..',uo',ul',---,u:,_,).

We will also denote by Z C E* the direct product of the sets X; and U,, so
that o

(2.9) Z = II()X{XII"’Uc.

Since the sets X; and U, are convex and compact, Z is also convex and
compact. We can now represent the objective by means of the function

m—1

(2.10) #(2) = 2; o (2, us).

It follows from our assumption concerning o that ¢(z) is convex on Z.
Finally we represent the | = mn equations (2.2) or inequalities (2.7) by
means of a function v(z) from E' to E'. We let

Vi = [i(Z, %) + Zij — Zinrg,
(2.11) . )
t-o’l"."m—l’ J-li.'.'n.

The equations (2.2) are then given by v(z) = 0, and the inequalities
(2.7) by v(z) 2 0. In this notation we can restate our problem (2.1),
(2.3), (2.4) and (2.7) as follows:

(2.12) ¢(z%) = m'in {¢(z) |2 € Z,0(s) 2 0.

Some remarks on the nature of the admissible set
S={z|2€2Z,v(z) 20}

are in order here. The set Z is by assumption convex and compact, and in
fact will usually be a polyhedral set in E°. The admissible set correer .ndiny
to the original discrete problem (2.2), (2.3) and (2.4) is given by

Si={z|z2€ 2Z,v(2) = 0.

The sev 5, is convex only if v(2) is linear in 2, that is, f(z, ) is linear in z
and u. If one or more components of f are nonlinear in z or u, the set S, is
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nonconvex. For a general nonlinear function f(z, ), the set 8 is also non-
‘convex. The iterative procedure of the following sections can be applied to
such problems and will, in fact, often converge. However, there is no
guarantee in the case of a general nonlinear f that the procedure will
always converge. In order to prove convergence we require that each
component of v(z) be a conver function. It should be emphasized that
this is not the requirement which makes S a convex set (except in the
limiting case where v(z) is linear). The set S is convex if each component
of v(z) is a concave function. Thus the convergence argument holds for the
minimization of a convex function over a certein kind of nonconvex regioa.

If we actually want to satisfy (2.2) we must obtain a solution to the
“problem ¢(z") = min,s, ¢(z); that is, we require v(z*) = 0. In order to
achieve this and still solve a problem in the form of (2.12) we let

(2.13) o(z) = ¢(z) + az Vij,

where a is & sufficiently large positive constant. Since each component
v;,; i8 a convex function, ¢(z) is a convex function. We then solve
min,¢s $(2), which is in the form of (2.12). It is shown in the Appendix
that provided the constraint set S satisfies a certain condition (essentialry
the same condition which insures convergence) there will always exist a
value of « such that any local minimum of ¢(z) for z € S is also a local
minimum of ¢(z) forz € S, .

We are now able to describe the iterative method for solving the discrete
optimal control problem in terms of the (in general, nonconvex) mathe-
matical programming problem (2.12).

8. Linearized problem. Let Z be a compact convex subset of E*, and v(z)
be a function from Z to E' with v € C'(Z). We assume that for some
2* € Z we have v(2’) > 0 and define a subset of E’ by

(3.1) S=f{z]z2€¢ Z,v(z) 2 0}.

Since 2° € &, the set S is not empty. Also since S is a closed subset of Z
it is compact but, in general, not convex (see Fig. 1).

If we let ¢,(y) be the ! X s Jacobian matrix of v evaluated at z = y, we
can define for each fixed y € Z the linear function on Z,

(3.2) w(z, y) = v(y) + v(y)lz — yl
For each y € Z we obtain a subset of £’ given by
(3.3) Wiy) = {z|w(z,y) 2 0}.
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v(s)=0
F16. 1. The conver set Z and subset S

Now we consider the point-to-set mapping

(3.4) r:2-12,
given by
(3.5) Iy=W()NZ

This is illustrated in Fig. 2.

‘TuroreM 1. The set Ty is compact and convex. Furthermore, {f each com-
ponent of v(z) 18 convex on Z, then for each y € S,
(3.6) yeErycsS.

Proof. For each y, the set W(y) is the intersection of ! halfspaces, a
closed convex set. Therefore the intersection of W(y) and the compact
convex set Z is compact and convex. Next we note that since y € 8,

(3.7) w(y,y) =v(y) 20,

so that y ¢ W(y). Then since y € Z, we have y € T'y.
Furthermore, by the convexity of v(z), we have for any (y,2z) € S X S,

(3.8) v(2) g v(y) + v(y)e — y) = wiz y).
Then for ench z € W(y),
(3.9) v(e) & wiz,y) 20,

so that for every 2z € W(y) N Z we havez € S,or Ty C 8.

s o it it i R

i
1
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w(s,y)=0

F1G. 2. The conver subsetTy C Sfory € S

Directly from (3.6) we get the following.

COROLLARY. I'y maps S onlo S.

The constraints for the problem have now been defined in terms of
the convex subset Z and the function v(z). The objective function is given
by a function ¢(z) from Z to E' which is continuous and convex on Z.
The iterative procedure, starting with an initial point " € S can now be
stated in a concise form. A sequence {y’] is obtained which satisfies

(3.10) o(y™t') = min ¢(2), j =01,
s¢Ty?

Such a sequence is obtained by solving a well behaved convex constrined
minimisation problem with z ¢ I'y’, to get the minimum ¢(y’*') at a
point y’*' € Ty’. The convexity of the subset I'y’ and the function ¢(2)
insure that a global minimum of ¢(2) for z € Ty’ is attained at z = y'*'.

Suppose that the sequence |’} converges to a limit point y°*. We would
like to be able to state that the point y° is the optimum solution to the
partially linearized problem obtained by linearising the constraints
v(2) 2 0, about z = y°* That is, we want
(3.11) ¢(y°) = min ¢(2).

s¢Ty*

In terms of the original discrete optimal coutrol problem (2.1), (2.3),
(2.4) and (2.7), this is equivalent to the statement that the control
u'i=01,---,m—1, and tmjeciory r,°, 1 =0,1,---,m, give an
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optima.l solution to the problem obtained by linearising (2.7) about w,’
and z; .
However, without some further sssumption, the relationship (8.11) may

not hold. This is shown by the following simple two-dimensional example.
Let

(3.12) Z2=2{08§%51,085ns1)
and
(3.13) v(s) = 4(s;, — §)' — &,

so that the feasible set S is given by

(314) S=(z|4a-1'-22003n51,05ns1).
This is illustrated in Fig. 3. Also let ¢(2) = 5, . We have

(315)  wiz,y) =v(¥) +8(1— Ha —n) — (8 — 0),
s0 that for y* = (1,0) we get

(316) Iy’ ={z(/4—56—-320,052 351,058 31}
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The solution to (3.10) for j = 0 is easily seen (from Fig, 3) tobe y' = 3.
The sequence {y’} obta.med in this way converges to y* = (3,0), with
¢(y ) =} But I'y* is the interval [0, 1] on the z, axis, so that
min,erys ¢(z) = 0, and is attamed at z = (0,0) » y°.

In order that the limit point y* always satisfy (3.11) it is sufficient that

the mapping I'y be continuous. The mapping I'y is continuous (both upper
and lower semicontinuous) if for any point ' € S and any point 4’ € S
in the neighborhood of 3!, there is some point of I'y' close to each point
of T'y’. The continuity of I'y follows from two assumptions we make con-
cerning the set S.

(1) For each y € 8, the Jacobian matrix v,(y) has full row rank, that is,
rank =[] S s.

(2) For each y € 8, the convex set T'y contains interior points.
These two assumptions are essentially the Kuhn-Tucker constraint qualifi-
cation for the set S (see, for example, [2]). The proof that (1) and (2)
imply the continuity of I'y is given in the Appendix. A slightly stronger
assumption than (2), which however invslves only the rank of an aug-
mented Jacobian matrix, is also given there.

The difficulty in the prevxous two-dimensional example occurs because
the assumption (2) above is not satisfied. In pamcular, for y* = (4,0),
Ty is just the interval [0 1). As a result the mapping I'y is not continuous
in the neighborhood of y*.

The first assumption above is always satisfied when the function v(z)
is defined by (2.11), as shown in the following.

LeMMA. If v(z) corresponds {o the discrete recursion relalion, as given by
(2.11), then assumption (1) is satisfied.

Proof. Directly from (2.11) we have that

8v.~ g

0T+, =-1

dus 5
3.17 o=, % j,
(3.17) FEwo p*J

I,

5;;;"'0 q>t+1 p 1, 'y
fort=0,1,---,m—1;5=1, .- n Thercfore the Jacobian matrix v,

contains a square (mn X mn) lower triangular matrix with elements —1
along its diagonal. Since such a matrix is nonsingular and since v, has mn
rows, v, has full row rank.

4. Convergence of iterative procedure. The iterative procedure will now
be considered in more detail, We again consider the convex function ¢ from
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Z to E', with ¢ € C'(Z). Since S is compact, ¢(z) is bounded and attains
its minimum for z € S. In particular, let
(4.1) 4 = min ¢(z).

2€8
For each y € S, the set I'y is compact so that the minimum of ¢(z) for
z € T'y is attained. We let C

(4.2) ¥(y) = min ¢(z).
s€ly

We now show that because of the continuity of I'y, the function ¥(y) is
continuous fory € 8.

LEMMA. ¥(y) 18 continuous for y € S.

Proof. For y' € 8, let ¥(y') be attained at 2 € I'y', that is
¥(y') = ¢(z'). Now choose * € S close to 3, and let ¥(*) be attained a¢
2, 80 that ¥(3") = ¢(2). Suppose ¢(z*) S ¢(z'). Now by the continuity of
I'y we can choose 2 € I'y' close to z*. Then by the continuity of ¢(z) we
have ¢(2') close to ¢(2?). But since ¢(z') S ¢(z) for every z € Ty', we have

(4.3) o(2) S () 5 #(2),

so that ¢(2') is close to ¢(2*).
A similar argumeat holds for ¢(z') S #(z2').
Starting with ° € S we generate a sequence of vectors {y} as follows:

(4.4) ¢(y’"') = ming(e), j=0,1,-.-,
syl

Note that if Z is a polyhedral set then I'y’ is a polyhedral set determined
by specified linear inequalities. Furthermore, ¢(2) is a convex function, so
that for each y’ we solve a straightforward convex programming ‘problem
with linear constraints,

Tueoreym 2. Every veclor of the sequence {y’} is in S. The corresponding
sequence of values [¢(y’)] is monotonically decreasing. The sequence {y’)
conlains a convergen! subsequence converging to a point y* € S such that

(45) TR ¢’(y‘) S ¢(y!)v j - ot 11 Tt
and
(4.6) ¢(y") = min ¢(z).

Proof. By Theorem 1, we have y’ € I'y’ © 8, so that each y is in S.
Also since ¥’ ¢ Ty’ we must have

4.7) o(y™*") = min é(2) S ("),
scly!

0 that {¢(y")] is monotonieally decreasing.
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Since S is bounded the sequence {y’} contains a convergent subsequence.
Let 3" be the limit point of such a convergent subsequence. Since § is com-
pact, y* € 8, and #(y*) = u. Furthermore, from the monotcnicity of the
sequence {¢(y”)} the relation (4.5) must hold.

To demonstrate (4.6}, we observe that since y* € §, we have y‘ € l‘y*,

80 that
(48) ¥(y7) = min6(2) < By,
Now suppese that ¥(3*) < ¢(y*). Then by the continuity of ¥(y) we can
pick % suficiently large se that ¥(3*) < é(y*). But from (4.2) and (4.4)
we have ¢(y*") = ¥(), o that ¢(3*"") < ¢{(z*), which contradicts
(4.5). Therefore we must have ¥(y*) = #(3*).

TureorREM 3. Lef y* be a limit poini of {y’). Then y* is the global minimum
of the partially linearized problem asou! the point y*. Furthermore, the opti-
malify conditions (the Kuhn-Tucker necessary conditions) which must be
satisfied at a global menimum of the problem (2.12) are, in fac!, satisfied at y*.

Procf. The set Ty" is the intersection of Z and the convex set W(y*)
obtained by linearizing the constraints ¢(z) 2 0, about 2z = y*. It follows
immediately from (4.6) that y* is a global optimum selution to this partielly
linearized problem.

As mentioned in the previous sectior, the assumptions (1) and (2) on
the set S are equivalent to the Kuhn-Tucker constrairt qualification. It is
shown in their origina! paper [11] that with this qualification the optimum
solution 2* to a general nonlinear problem has the property that the gradient
V¢(z*) must belong to the convex eone of inward normals to the active
constraints at 2*. The solution ¥* to the partially lirearized problem about
y* will, of course, also have this property. Therefore, V¢(y*) belongs to
ihe convex cone of inward normals to the active constraints at y*, i.e., the
Kuh:l-Tucker necessary conditions for a global minimum are satisfied
aty .

8. Computational! solution. The computational solution of the nonlinear
discrete oplimal control problem (2.1)-(2.4) is considered in this section.
We will assume that the convex compact sets U; and X; are convex poly-
topes defined by specified linear inequaiities (see Appendix). In order to
apply the computational method we need only make the additional assump-
tion that the functions s(z, u) and f(x, u) are of class C' on each X; X U;.
However, in order to insure ihe validity of the convergence proof (Theorem
2) we must make an additional assumption concerning f and an assumption
about- the linear inequalities defining the X, and U, . We assume that each
component f; of f,j = 1, ---  n, is either convex or concave on X; X U;.
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Fori=0,1,--- ,m~1landsi=1,. - nwelet
Ui = filzi,u) + Zij — Zing,

(G.1) T = i;,; for f; convex on X; X U,,
"5 7\ —#;,, for f; concave on X; X U;.

The functiea v(2), with componenis v;,;, is thus a convex function on Z.
Furthermore, the equations (2.2) are now equivalent to v(z) = 0.

As discussed in the Appendix ¢he lirear inequalities which defire the
X; and U, are specified in terms of the vector z by a,z — b; 2 0,
1 =1, -,k giving the polyhedral set Z. We make the following assump-
tion about these linear inequalities. Let § € S be a boundary point of Z,
ie, v(§) =0, and @/ —b; =0, =1, .-,k Then the {+ k) X s
matrix consisting of v.(j) augmented by the rows @, , i =1, --- , k, i8 of
full row rank { = + k). According to the I.mma at the end of §3, v.(y)
is always of full row rank, so this assumption is essentially a condition on
the vectors a,. As shown in the Appendix it foilowz from the full runk
condition that T'y is a continuous mapping. The convergence proof of
Theorem 2 is applicable because v(z) is convex and I'y is continuous.

At each iteration we wish to solve a mathematical programning problem
of the form,

(52) min{e(z)|aiz—b:20,i=1,---,kwizy) 20.

This is a linear constraint problem with m(r ) -+ n variables and
k + ! constraints. For small problems a direct computsational solution of
(5.2) causes no difficulty. In many practical cases however, the number of
state variables is greater than the number of control variables, e, r < n.
In such a case there is a considerable computational advantage in treating
the linearized problem (5.2) as the linear problem was treated in [14]. In
eifect, the linear relations w(z, y) = 0 are used to solve explicitly for the
vectors x;,% = 1, - -+, m, in terms of xp and the %;,7 = 0,1, -+ ,m — 1.
Substitution for the vectors z; in ¢(z) and the inequalities a;’z — b; 2 0
reduces the original problem (5.2) to one in only mr + # variables, This
reduced problem may then be solved by an appropriate Lnear constraint
method which takes advantage of the particular form. of ¢. For example, if
¢ is quadratic, a quadratic programming method may be used.

In the important case where ¢ is linear, a further efficiency is made
poesible by treating the reduced problem as the dual problem, snd solving
the corresnonding primal linear programming problem. This permits us to
take advantage of the fact that the variables of the reduced problem (the
control variables) are not required to be nonnegative, and that there are
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more inequality constraints than variables. The corresponding prima!
problem consists of mr 4 n equations in mn -+ k nonnegative variables.
The numerical examples discussed below are of this type.

The use of the linear equality relations w(z, y) = 0 has the additional
computational advantage that no modification of the true objective function
is required. On the other hand a possible theoretical difficulty may arise
since even with v(z) convex it is usually not true that ¥’ € I'y’ when I'y is
determined by w(z, y) = 0. Thus the monotone behavior of ¢(y’) is not
guaranteed. However, no such difficulty has been observed in the actual
numerical calculations.

In order to illnstrate the application of the iterative method we will
discuss two numerical solutionis to a nonlinear problem. The problem con-
sidered is a discrete approximation to the following continuous scalar
(n = 1) problem: i

1
min/ u(t) dt,
o

subject to £ = f(z, u), |u(t)| £ 1, for t € [0,1], and 2(0) = 1, z(1) = 4,
where f(z,u) = —3%zr + ' + u(t). An additioral state copstraint is
imposed in the second example. The initial trajectory used to start the
iteration was z°(¢) = 1, for t € [0, 1].

For these examples the simplest (forward) finite difference scheme was
used, namely,

(5.3) Ty — & = At f{x:, ui), i=0,1,.---,m—1,
so that
(5.4) ve = Atf(zi, u) + 20 — 2ip = (1 — 340z + Al(z,)?
+ Alu; — Tip, t=01---,m—1.

For z./ known, the linearized system which must be satisfied by z,/*' and

r e
uiis

wi = -zl + (1 + a2z ~ Pl + A - Az’
(59 =0, i=01-,m—1
This system is solved using the specified initia! value for z(0) to give the
z.”*" explicitly as linear functions of the u;’™*",
(5.6) M= a0, W™, =1 m,
The following linear programming problem (in the dual form) is then

solved at each iteration to give the new optimal control u;*',
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101, .- ,m—1:

m—1
min{z u.-l—l Su S 1,1:-0,1, e ,m — l;

v, =0

(5.7) .
i 5 dm»l(um—l)“h—!) e )u') S §}°
The corresponding state trajectory 2/, i=1,..-,m, is then given by
(5.6).
The iteration was started with 2= 1,1 = 0,1, --- ,m, and a value

of m = 20 (Al = 0.05) was used. The results for the first numerical
example are shown in Figs. 4 and 5. Convergence was achieved (within the
desired accuracy) in three iterations. However, the difference between z*
and z* = z' is too small to be shown graphically (Fig. 4). Note the rapid
convergence even though the initial guess, z.’, for the trajectory was very
poor and did not even satisfy the terminal boundary condition. The
corresponding optimal control u;* is shown in Fig. 5. The monotone be-
havior of the function value is verified by the successive values of
¢’ = 2.7 u/. These were ¢' = —0.286, ¢' = —0.946, and ¢' = —0.950.
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Fia. 4. Initial and oplimal state trajectories for nonlinear numerical example
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+ 14— r

TIME 10

CONTROL
<
+

F1a. 5. Optimal control for nonlinear numerical exomple

For the second example the state constraint, z(3) S -}, was imposed.
This of course eliminates the solution shown in Fig. 4. The sequence of 5
state trajectories obtained i8 shown in Fig. 6. The corresponding function
values were ¢' = 2792, ¢’ = —0.144, ¢’ = —0.656, ¢* = —0.972, and
¢* = —1.008. The control from the first iteration u,' and the optimal
control u;* are shown in Fig. 7. All of the state trajectories (except for the
initial guess) are seen to satisfy the state constraints. It is interesting to
observe that the method not only converges to a different trajectory z.°i
but that the added state constraint is not active for this limit trajectory.
Thus the state constraint forces the solution away from its previous se-
quence and allows it to converge to a different local minimum. On the other
hand, in some other nonlinear state-constrained cases which have been
computed by this method, a atate inequality constraint of the type imposed
here has remained active for the limiting trajectory. Finally, it slwould be
noted that for both cases the limiting control has the properties of an opti-
mal control for a discrete linear problem, that is, n(=1) switchngs and
m — n(=19) values of u,* = +1.

Appendis. In this Appendix we prove that the assumptions (1) and (2)
of §3 imply the continuity of I'y. We also show the validity of the modified
objective function (2.13).
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1.50

TIME 10
F1G. 6. Sta’z trajectories for noniinegr example with added state constraing,

We first ciate a condition on the rank of an augmented Jacobian matrix -
which insures the satisfaction of the assumption (2) of §3. In order to
state this condition we must have an explicit statement of the constraints
which define the compact set Z.

We will assume that Z is the polyhedral set determined by the system of
k linear inequalities
(A1) as—b 20, i=1, ..k
or
(A2) Z=(s|As~-b20

where A is an & X k matrix with specified columns a,, and b € E* is
specified. Let 2 denote a boundary point of Z. Then we must have at least
one active constraint at 2, that is, a/2 — b; = 0 for at Jeast one value of s.
We will denote by A(z) the matrix whose columns represent the active
constraints at z. Similarly, let ¥'(s) represent the Jacobisn matrix of the
vector 8(s) which contains all onmponents of v(z) for which v(s) = N
That is, 8(z) = 0, and V' (z) = 8,(z).
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F16. 7. Controls for nonlinear example with added state constrain!

We will denote the boundary points of S by 38. It follows that for every
y € 98, the matrix

(A.3) B(y) = [P(y) AW)

is defined and has at least one column. We will say that B(y) satisfies the
full rank condition at y € 88 if the columns of B(y) are linearly indepen-
dent.

Assumption (1) implies that B(y) satisfies the full rank condition at
every y € 88 which is also interior to Z. This is true because for such a
point A(y) = 0, and P(y) certainly has full column rank since it consists
of selected columns of v,”. Furthermore, assumption (2) is implied by the
full rank condition on B, as shown by the {ollowing.

Lemma. Let B(y) satiafy the full rank condition for every y € 3S. Then
for each y € S, the convex set Ty contains inlerior points.

Proof. First suppose § € S is an interior point of S. Since S C Z, § is an
interior point of Z. Furthermore, w(§, #) = v(§) > 0, so that § is an
interior point of W(g). Therefore § is an interior point of T'§.

Now suppoee § € 3S. The set I'g is the polyhedral set determined by the
k + 1 linear inequalities

(A4) Ig={z]w(z,§) 20,42-b20.
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Now consider the point z = §. We may assume without loss of generality
that

¢ .
(A.5) wl’(ﬂ; ﬂ) = v‘(ﬂ) ig?: :' - zl'-i- l, ,'l"s,::
and
oy [=0, i=1,-- ESk,
(A6) “‘ﬂ_b"{g?, imEt1, Esl’:

for some ¢ > 0. Then the columns of V() are the gradient vectors Vv,(§),
¢=1,---,] and the columns of A(§) are the vectors a;, i = 1, --- , k.
Since B(j) satisfies the full rank condition, its columns are linearly in-
dependent and there exists no vector r € E‘"', except r = 0, such that
B()r = 0. Then by a variation on the Farkas lemma (see [8, Theorem 2.9,
p. 48)), there exists a vector Z € E° such that

(A7) £B(g) > 0.
Now consider the point
(A8) I=9+4,

where ¢ > 0 is chosen sufficiently small so that
W) <e t=l4+1,-.-,1

A9
(49) dai<e, i=Fk+1, .-,k

Now consider wi(§,§),s =1, ---,], and a;/§ — b;, ¢ =1, --- , k. From
(A.5), (A.8), (A7) and (A8) we have wi(§,§) > 0,i=1,-.-,], and
a;if —b;>0,i=1,---,k From (A5), (A.8), (A8) and (A.9) we have
wi(yvﬂ) >0: ’-,'*'l, "',l, and 0{'9 "‘b.‘)O, |—E+1’ e ,k_
Therefore, § is interior to every constraint of I'f§ and is an interior point of
ry.

TaEorEM 4. The mapping Ty 18 continuous for y € 8.

Proof. Because v(z) € C* on the compact set Z a uniform bound v exists
such that for any (z, ¢, ') € S X S X S,

(A.10) lw(z, ¥') — w(z, V)| S vly' - &Il

Also since v,(y) is of rank ! for y € S, the symmetric matrix v,v,’ is positive
definite at every point of S. Therefore a uniform bound # exists such that

(A.11) (') S 6

for every y € 8.
Suppose we are given ' € S and #' € Ty'. Then given any ¢ > 0, we
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now show that we can choose § > 0 so that, for each 3' € § wiih
ly' = v'll S 8, we can find 2' € 'y’ such that ||2' — 2| S e

If 2 € Ty, the theorem is true with 2 = 2'. Now suppose 2' ¢ T'y’, ihat
is, at least one component of w(z', y*) is negative. Without loss of generality
we assume that w,(z',y") <0, fori =1, .-,k =1, and wi(z',y’) 2 0,
for i=k<4+1,-.-,l. Since z' €Ty, we have w,(Z,y') =20, for
=1 ..., Let ®€E be the vector with @, = w,(z'.y') <0,
t=1 .-, kand® =0, =k+ 1, ---,L Then

(A.12) 1B S w2, y') — wil2, ¥'), i=1,-,1
so that
(A.13) 18] < flw(z', y") — w2, ") < +ly' — 4l

where the last inequality follows from (A.10).

We first assume z' is an interior point of Z. Then there is an ¢ with
0 < aSesuchthat 2€ Z for ||z — 2'| S ¢ . Choose § = /By, and let
y' be any point in S with [ly' — y'|| < 8. Now choose i as above, and let

(A.14) 2=z — v (") (W) e,
From (3.2) we have
w(2, y") = v(y") + 0. () - ¥ — w (e (WD) () e
=w(Z,y) - 020,
so that 2 € W(y'). Furthermore from (A.14) and (A.11) we have

(A.15)

(A.16) I = 2'1F = o'l ()e) (W) 'R 5 8Dt
Since ||y’ — ¥’ S «/fy, we get from (A.16) and (A.13) that
(A.17) -2 spla sy — vl S a.

But this shows that 2 © Z, and therefore ' ¢ T'y'. Finally since ¢ S ¢, we
have [|2' — z'| S ¢ 28 was to be shown.

The other possibility we must consider is that ' ¢ I'y' is a boundary
point of Z. Since I'y' has interior points and is a convex set there are interior
points in the neighborhood of every point of T'y' (sce, for example, [7)).
In particular there exist e, 0 < & S ¢/2, and 2 ¢ Ty', such that
Il — 2'' § /2 and Uz — 2" S ¢ implies that 2z is interior to Z. Now
choose 8 = /8y, and replace 2' by 2! in the previous argument. This gives
a point 2! € Ty with [l — 2" § ¢/2. It follows that 'z’ — 2] §

We now prove the statement about the modified objective function
(2.13) made at the end of §2. We define the s X (I + £) sugmented
Jacobian matrix Biy) = [r,/ty)  A(y)]. Let ¢(2) be as in (2.13).




NONLINEAR OPTIMAL CONTROL PROBLEMS 243

TaeorEM 5. Let B(y) have full column rank for every y € S. Then o value
of a exists such that every local solution of

(A.17) mir. {$(2) |z € Z,5(2) 2 0}

18 also a local solwtion of
(A.18) min{¢(z) |z € Z,v(z) = 0f.

Froof. Since ¢ € (' and B(y) has full column rank on the compact set
S, there are constants a, and « such that for any y ¢ §,

(A.19) 'Vo(y) S e,
and ;
(A.20) B(y)r 2 qlrt, re BV

We choose a > a,'¢. Let y° be a local minimum of (A.17). Because of
the rank condition en Buyj, the necessary Kuhn-Tucker conditions are
gatisfied at y°. The relevant conditions are that there exist vectors pe0
and ¢ 2 0 such that

, A
(A2D) o' (Wp + Ag = vey®) = vey*) + a}; Vo (y*)

and

(A.22) rayipe =0, i=1,--,1

Weltr =y —a, - .p. —a, ¢, - ,qi), and write {A.21) as
(A.23) Riy®ir = Toiy®).

From (A19}  nd ¢ A.20i 1t follows that

(A.24) ar 5 By = iTey’)i S,

or [r' Sa ¢« But this rquires ja— pj Sava <a, t =1, A,
or p,> 0,8 = 1, l Then from (A.22) we must have v, (y° ) -0

i=1 - [ s lhnt v* 1 a fessible solution of (A.18).

Now suppose ° is not a local minimum of (A.18). Then for some point
v' € Z, arbitranly close to y°, we have r(y') = 0 and o(y") < o(
But then ¢(y') < é(3*), a0 that y° is not a Jocal minimum of (A.17).
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Summary

I. The discrete optimal control problem to be considered is as

foliows:

r
Let xl € En denote the state vector at time ti , and u1 €L

the corresponding control vector, The system dynamics are given by

X X ¢ I(xl.ul). t = 0,...m=1l (L. 1)

whoere the contruis ul must be selected so that

u ey < . 0= 01,...m-!
! (1.2)

x €X ‘- E , 1
1 1

0,(,,..m

i

{t is assumed thatl the sets Ux and )(i are compacti and convex; and
that { is continuous on U‘x X Xl. We call the sequence (x.x] the
“tate trajectory, the sequence (ut; the control, and we denote by
ro (xx' u ) the direct product of these iwo sequences. We say that
¢ is admissible if (x' and [ul; satisfy (1.1) and (1,2). Note

that we can ( pecify the Initial and terminal values X, and X by

setting X =2x and X _ =x_,
o o) m m




We assume ¢ to be continuous on U1 X Xi. and define

®e = T oty (1.3

We wish to fing an admiscible z* such that ¢(z) attains its minimum,
over all admissible z, at z = z¥ ,
Now let us consider the following continuous optimal control

problem. Let x{t) and u(t} satisfy

o _ aX
M ax

T odt
u(t) € U(t) te [0,T] {1.4)

= ?(x, u)

x(t) € X(t)

Find x%(t) satisfying (1.4} such that

T
o{u] = f o (x(t), u(t)) dt (1.5)
0

attains its minimum over all x(t) and u{t) which satisfy (1.4} . Suppose
that we choose a finite difference step 4t = T/m, and use the simplest
approximation x (iAt) = (le - xi)/At. We also evaluate the integral
(1.5) by the trapezoidal rule and let f = At and g=Ata®. We then
formally obtain the equivalent discrete problem (1.1, (1.2} and (1.3).
The terminal time T is assumed to be specified in the continuous
problem as given by (1.4) and (l.5). We can however put a problem with
variable terminal time into this fixed time formulation by introducing an
additional state variable. To illustrate this, suppose the variable time

problem is given by




s 4

dy _ n-1
dT = g(Y. u)v Y.g € E

T
f n{y;u} dt = min, 7 variable
o

We introduce & new state varisble £ > 0, and let v =#£t, te [0, 1],
We require that £ satisfy £ = 0, and that its initial valus £(0) be

determined, If we define the vectors in En ,

() - (%)
and let #{x, u) = gn (y, u), the resuiting problem given by (!.4) and
({.5) with T = | is equivalent to the variabie time problem,

It should also be remarked that explicit dependenceon t of »
and f can be handled with no essential difficulty. Such dependence
leads to functions o and f" in (1.1} and (1.3) which depend explicitly
on the index i . To simplify the presentation, we will not consider such

dependence.

II. We will now shuw that the discrete optimal control problem can be

considered as a mathematical programming problem (in general, nonlinear}
with a special structure [1]. We let s = mr + (m+1)n, and consider the
vector z in the product space E® . we denote by Z < Es. the compact,

convex subset

ui e U‘) 1 0! l! wtom-l
Z = z (2.1)

x1 € xi. 1i=014,,...m

We also define a vector mapping v: E® Emn’ so that the recursion




relations (!. l)' are all given by v(z) = 0. That is we define

v = f(xl.u1)+x_ 1=0,1,...m=1 (2.2)

1+l i~ X0
and let vy represent the components (i-i)n+l, .,..in, of v. The
discrete optimal control problem can now be stated as that of finding a

z%* which solves the mathematical programming problem

min {cp(z) 3(;) :zo } (2.3)
z

where ¢(z) is given by (1.3) .

The admissible (feasible) set S < E® is given by

s =4 2| *°°% (2.4)
v{z) = 0

The set S may be empty, in which case no control and corresponding

trajectory exist which satisfy (1.1) and (l.2). In many practical situations
the existence of an admigsible control and trajectory with the given dynamics
and imposed constraints is the primary question. If no admissible solution'
exists it is necessary to relax the control constraints (by increasing the
allowable range on some of the controls, for example) or relax the state
constraints {by increasing the size of the target set xm. for example)
before the determination of an optimum solution can be considered. In
some cases an admissible solution may also be achieved by an appropriate
modificaticn of the system dynamics. In any event, the determination of
whether or not an admisgsible solution exists has been reduced to finding
any feasible solution go the problem (2,3) .

If S is not empty, it {s a compact set, so that ¢ attains its

minimum on S . If the null space of v s convex, then 8§ is also convex,

]




o e

If 9 is convexon Z (o convexon X X Ui)’ then {2.3) is a convex

i
programming problem for which both necessary and sufficient optimality
conditions can be stated, and for which efficient computational methodg
of solution are available. It follows from (2.2) that for linear f,

f=Ax +Bu+q, where A and B are matrices and q 1s a constant
vector, the null space of v will be a linear manifold (and therefore
convex). Thus linear dynamics and a convex functional lead to a reason-
ably well-understood convex probiem. In general, however, if f 13 not
linear, the set S will not be convex. Necessary optimality conditions
will be given for S nonconvex, but in general, conditions which are
also sufficient are not known for such problems, Furthermore, for non-
convex S a problem may have many constrained local minima eveﬁ with

@ linear, Thus even if a method finds a local minimum such a minimum may be

far from the desired global minimum,

III. We will nowcongider optimality conditions for the problem (2. 3),
and use these to obtain the adjoint equations and a "minimum principle”
for the discrete opﬂmal control problem. We assume that ¢ and v are
in C'(Z), and that S {s nonempty. We denote by vz the Jacobian matrix
of a function v, and p transpose by p' so that p'v denotes an inner
product.
Sufficiency Theorem
Let @ be convex and v be linear cn Z . A sufficient condition that

z* € 8 solves (2.3) is that there exists p € an such that




[0, (%) + 'V (2%)] (z-2%) 2 0, ¥ z €S8 (3.1)

Proof: Since ¢ is convex and v linear, the function y = ¢ + p'v is
convexon Z . Then forevery z € Z, y(z) - y{z¥) 2 wz(z*) [z-z*] 2 0,
by (3.1). Since z* € S, v(z*) =0, so that we have

?(z) -~ 9(2*) 2 -p'v(z) =0, V¥ ze€S§.

Thus, z#* is a global minimum on § .

Necessity Theorem

Assume that the compact, convex set Z has interior points. Let
z* solve (<.3). Then there exists a scalar |, =2 0, and p € Emn’ not
both zero, such that
¢z(z*)(z-z*) z2 0, ¥zeS : (3.2)
where
®(z) = po(z) + p'v(z) (3,3)
The procf of this theorem is too long to be included here, and is given
in [2]. It should also be noted that if an appropriate constraint qualification
is satisfied we can choose ; = 1.
If we restrict the functions ¢ and v as in the sufficiency theorem,
we obtain a Minimum Principle.
Let ¢ be convex and v linearon Z, and let z#* solve (2.3).
- Then there exist multipliers , > 0, and p, not both zero, such that
®(z) attains its minimum over z € S at z*, where @(z) is given by (3.3).

The proot follows immediately from the convexity of ¢ and (3.2) .




We are now in & position to apply these results directly to the
discrete optimal control problem. If we denote by p1 € En. the
multipliers corresponding to v1 , we obtain from (1.3) and (3.3).

m-1 m-l
®(z) = X, u ' -
@2 2y op )+ TR (e u) dx - x4

% = * ] '
We will let fxi fx(;x1 .ur). etc., and p°= 0. Then the necessary

condition (3.2) can be written

* ' ® 4 _ ot ~—®
[‘“’xi + P (04 fxi) o 1] (x,~x}) 2 0, ¥x eX (3.5)
‘=°. l. ) om-l
'} ¥
P (xm X m) 2 0, me € Xm (3.6)
» ' * -y ol
oy * Py Byl tyupz 0 ¥u €Uy (3.7)
1=oll. loom-l

If we agssume that the initial state is specified as a point, i.e., )(o = ;o"

then x%§ = X and (3.5) is satisfied for 1= 0 . Now suppose further
that no state constraints are active except for the terminal constraint, i.e.,

x': €int X, t=1,...m-1. Then (3.5) requires that the expression (]

vanish, That is
'o- : p' * L J - -
pi p.f'*l pl+l fx1+u-°x1 ’ f=m ‘D m 2. ouoOo (3.8)
The multipliers p are therefore determined by the recursion relation

(3.8) starting with a vector P satisfying (3.6) . For x‘m

on the
boundary of xm v P must be parallel to the (outward) normal vactor
to a supporting hyperplane at x'm. The recursion relation (3.8) is seen
to be a finite difference approximation to the adjoint differential equation

=Pt = P tuTE (3.9)




for the continuous optimal control problem..
Let us now define
H(x, u,p, q) = p'f(x,u) + (p-q)'x +  ofx, u) (3,10)
By rearranging terms we obtain from (3.4)

1

m—
®(2) = 1=zo H"‘i’ U Piype pi) =P Xm (3.11)

For g convex and f linear on Xi X Ui , the previous minimum principle
*
_appues. The optimal trajectory [xi] and control [ur] must therefore

satisfy the following

Discrete Minimum Principle

If [x“l and [u;] are optimal, then

* %
H(x1 ,ui, pi+l’p1) < H(xi. ui, le.pi). ’d-x1 € Xi, u € U1 (3.12)
i=0, 1, ....m-1l

where the adjoint vectors p, are determined by (3.6) and (3.8) .

1

IV. In order to describe the computational solution of the discrete optimal
control problem we first consider a linear recursion relation with

f = Ax + Bu, and also give a more explicit statement of the constraint

sets )(1 and Ui . To simplify the discussion we will assume that xo = it'o.

and that the )(1 and U‘ are polyhedral sets defined by the linear inequalities

l' ceeoM

1]

X, = { x| G‘xx-ﬁico}. i

U1 ={ u| H'u—gzo}, 1

(4.1)
0,.0,.m=i

where G1 and H are constant matrices and Ul and i are constant

vectors, If these sets are just upper and lower bour.ds we have




Gi = (In -In.) ‘and H = (Ir -Ir) .

The problem (l.1) - (1.3) now becomes

r x =%
xo = Xo
min { 3 a(xl. "t) i ) i “~ '
xl' Ul 1=0 G’1x1 - a‘ e o- i=1,,,.m
L | H‘ul-hzhp. 1i=0...m-1"

N

Y 2

/

If o is convex, this is 8 convex programming problem with liness sauality

and inequality constraints., It consists of m(n+r) variables, mn equality

constraints, and - 2m(n+r) inequality constraints if they are bounds. This

could be solved directly, but will be a large problem {f m is lsrge. A

more efficient method of solution is to use the linear equations to eliminate

the state vectors x, and map the entire problem into the contral space.

1
This is done by means of the following

Lemnd

Let X, satisfy the recursion relation

x‘+l L] K‘x1 + b‘p is= ‘0. ‘. ooon-:
with x, specified and xl nonsingular. Then

i1-1
X .Yx *Y A. '] IR X}

1" %1% 1,{0 ,ﬂb’ i{sl,..,.m
where the matrices Y‘ and A‘ satisfy

Yl'ﬂ..KtY]O Yo s, 180,),,.,.m=]"
and .

A.‘.A"+l“. Ah.yao "-.‘loooo’

(4.3)

(6.9

(4.8)

* (4.6)




10

If we apply this to the equality constraints with l(1 =]+A, and

b1 = Bu1 we obtain
i-1

x =Yx + 3 Q
i 170 y=0 i

The important point to note is that given the

‘ I ’ LI LN 0:

matrices A and B, we can explicitly compute the matrices Y1 and Q1j

by operations with (nxn) matrices. Since n (the dimensionality of the
state vector) is usually small compared to m , this is an efficient
computation.

We now use (4.7) to eliminate the X, from the state constraints

and o in (4.2). The state constraints can then be written
i-1
D. u -d 2 0| 1:' l' 'onm 408
,fo R R (4.8)

LI 1 ] = - .
where D“ G1 i and di Ei G1 Y1 X, - A similar substitution in
gives an objective function p(u) depending on the controls u = [ulk.

only. If ¢ is convex, p(u) will also be convex because of the ilinearity

of (4.7). The problem (4.2) has therefore been reduced to

i-t \
D ulzdl. it=z1,...m

= “
min p( u) y=0

u H‘uiai. 1=0,...m-1

This reduced probl~r \as mr variables, no equalities, and the same

number of inequalities as {(4.2). In most control problems r < n, so that

we have cut the problem size at least {n haif. Since there are more inequality

consgtraints than variables. and no nonnegativity requirements, this is best




i1

solved by a convex method in the dual sp-ace (such as gradient projection).
Computational efficiency is also improved by taking advantage of the
upper triangular sticcture of the first 2mn constraints and the block
diagonal structure of the remaining 2mr constraints,

In the important case where ¢ 18 linear, (4.9) should be considered
as the unsymmetric dual problem. The equivalent primal, with mr rows
1s then efficiently solved by any standard LP routine, which of course
gives the desired dual variables (the controls) as the elements of the
wricing vector. For a mor» complete discussion of the linear recursion

relation problem, see [1],

V. The method of the previous section can cnly be applied directly when
the system dynamics are described by a linear recursion relation. However,
with appropriate convexity requirements on f ., the nonlinear problem can
be soived by arn {terative solution of linearized problems. At each iteration
function t is linearized about the previous state and control. and &
ineartzed problem ot the kind discussed above s solved., This method is

tuily described 1n |3,

T s
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| J. B. Rosen, "Optimal control and convex programminy”, Froc.
i IBM Symp. on Control Theory and Appl., Yorktown Heights,
| N.Y. (Oct. 1964) pu. 223-237,

t~

! O. L. Mangasarian, Nonlinear Programming, McGraw Hill
‘; (to be published in 1968), Chap. 1,

3, ]J. B. Rosen, "lterative sclution of nonlinear optimal control ovroblems”,
J. SIAM Control 4 (1966), pp. 223-244,




COMPLEMENTARY SLACKIZSS IN DUAL LINZAR SYSTIMS

The first part of this paper develops a convenient iechnique for working with a
pair of dual (i.e., complementary orthogonal) linear subspaces, = and X, in a
linear space of n-tuples (frcm an ordered field). The second part deals with the
fundamental existence tueorem that the dual subspaces = and X must contain n-
tuples § and x such that &4 >0, x4 20, §4x4 =0, and & + x4 >0 for
i =1,...,n. Applications of this "complementa. s slackness" are given.

(x) (x}
xl « o xn x;:r * s X.a-
all e o » aln =Q . E'i' 4y oo mls =~ XT .
e I R OV I (8) 2 )3 G S
ND &I‘.ﬂ. . e &mn =0 E-I-; mrl “ s e mre 5 o Yo
=a . o 0 =E =E;"‘I . “..' gE_
I , ™o T
(n=2, n=h; r=2, s=2)  exammle (T=2, 2=3 and J=1, Leb)
Ml 2 3 <3 ]=0 3 Fl/4 -6/4 =X,
)\2 -1 6 1 '9 =0 §3 2/4 Q 5'x3
=§l =t '§3 =€y =1
(stendard fors) (canonical form)

The atove A-schera exkibits two dual systems of homogeneous linear equations
in (Dantzig's) “standard form." The "greek” svetem M = ¢ determines the rov-
space of the matriv A, I.e,, the iinear subspace = of all row-vectors & ex-
pressible, via parameters A, as linear combinations of the rows of A, The Matin’
oystem Ax = O sietermines the orthogonal complemest in n-apace of the row-gpace of
A, 1l,e,, tie linear subspace X of all column-vectors x orthogonal to each row
of A -— and therefure to esch t of =, aince Ex = (M)x = A(Ax) = 0. Let rank
A=rT; then dim X =r and dim X = n.r = s, [Any matrix X that is row-equiva-
lent to A (including insertiup or deletiorn of rows of eros) yields an X-schena,
vith its ovn parometric X, which deternynes the same dual subspaces = and X.)

—

Now partitior Ax = 0 fato Ax + ii'x' = 0, vher: the submatrix A consists of
r linearly independest columns of A. [There are at most n!/ris! such parti-
tions,] Since A provides a basis for fhe columms of A, there exists an r by s
RALrix M, sugy that the supmatrix A = AM, Gauss-Jordan (cosplete) elimination
jeducgs Ax + A% = 0 to Ix+MC =0, f.e,, M¢ = -x, and reluces M = { to
£ = L. The adve M-schema exhibits these reduced aysteas, which are dual linear
systems 1g (Etant:is’l)__~"c anonical form"; note that I,...,F index the (basic) .ol-
uw2ns ¢ A end that r+4l,..,,0 index the (noo-b.sic) columns of A,

Pivot .7 any nenterc en e tc exchange x. with g
iy - chang 5 Xy and i vith

=g (but with uo other marginal changes) to get an H-schems vith entries a5
follows: ® = 1l/nm 2, =n -] -2, im E = -

pa " Mg By Ey/mg, B 12770 By T Byy - Byg my/Ag
(fcr each § fp and each § 3). Rote the sign changce from B, to Eiq if
a_ >0, snd froo m , to m . if < { 3 1 .
” , - 254 g 0 {85 exemplified belov). By a finite
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cuccession of such pivot steps (and rearrangements of rows and/or columns) we can
pase from any M-schema for = and X to any other (in the "combinetorial
equivalence" class), For exemgple,

q %
> g, (L/6_-4/6}=-x,

=§ =§
1 <6
N x, %, 7
b/l 61 ==Xy
, =2 h
3 % P N X "?
e, [/2 o |- g l_o 6/3}=-
1 X ¢ S 1 !
E,(1/2 -3/2 < &, 1-2/3__-1/3

=-xh

X

= =g3 =§l} "§2 =§3

The double errows indicate pivot steps (in either direction) and eppropriate rear-
rangement. There are just five M-schemata in this case (not Li/2i2! =6)
bercause the 2nd and U4th columns of the initial matrix A are lineerly depen-
dent,

* * *
We now turn our sttention to the (polyhedral) cones =* and %* in which the
dual subspaces = and X intersect the (closed) orthant of all ronnegative n-

tuples. Borrowins a conveiient term {rom_Linear Progrsmming, we say that any ¢

in =* or any x in X* is feasible; i.e,, £ is feasible if M = £ >0 for
some A, and x is feasible if AX =0 and x 2 0. DNote that ¢&x = O implies,

for any feasible ¢ and any feasible x, that §ixi = 0, 1i.e., gi = Q0 or

x, =0 (or both), for i =1,...,n.

.. We say that a feasible { or x 1is basic if, fog any partition of A into
A, A (as specified above), exactly one compcnent of £ or X is positive and if
£ or x 1s normalized so that the sum of the ccmponents is one, Hence a basic
feasible § or x corresponds t¢c & nonnegative row or nonpositive column of

some M-schema:
]
0 .. 0

+
5] .« e oa 2] =D

Oeee O +

) =0

H ... =D

where +, ®, 0, 9, - denote numbers that are positive, nonnegative, zero, non-
positive, negative, respectively. In the above example ¢ = (1/3,0,2/3,0) and
xT = (0,3/5,0,2/5) are basic feasible UL-tuples. Clearly the set of basic feas-
ivle ¢'s (or x's) is finite, since the class of M-schemata is finite. [The
reason for the term "basic" in this context is that it can be shown that the basic
feasible &'s or x's determine the "extreme rays" of the cone =¥ or x*;
i.e., that ans feasible € or x 1s expressible as a nonnegative linear combina-
tion of the basic feasible ¢&'s or x's.]
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LEMMA, itier there is an all-positive (feasible) & or there ia a basic
feasible x. -

Proof, Let L(r,s) assert this Lemms when dim = =r and dim X = 5. We
use induction on r+s = n, L(1,s) and L(r,1) are trivial to prove.

We prove L(r,s) for r>1 end 8 >1, assuming L(r-1, &) and L(r, s-1).
Using L(r-l, ) for the first r-l1 rows, we gei

+ O ves 1
+ ) a B
Y | first r-1 rows or . .
+ l é =D
o] ? = 7

=+ * e & =g

In the left alternative, perturd O to asmell ¢ > 0 to get an all-positive .
In the right alternative, there is a basic feasible x showing, unless the cormer
entry marked ? 1s positive. If this corner entry is positive, pilvot on it and
then use L(r, s-1) on the last s-1 columns to get

Ol+ 0 40 O
+] O & =P
. last . .
. e B=l e or . .
+!l © columns ° ap
+|_+
= |8+ .es =

In the left alternative, there is an all-positive §, and in the right alternative,
a basic feasible x. L(r,s) is now inductively established for all r sand s.

The abeve Lerma is essentially "the theorem of the alternative for matrices"
used by J. von Heumann and O, Morgensiern to prove the Main ("Minimax") Theorem in
their THECRY OF GAMES AND ECONGMIC BEHAVICR. There is & dual Lemma with § and x
interchanged (i.e., using -M® in place of M). The two Lemmas combine to show
that there is either a basic feasible ¢ or a basic feasible x (or both).

COMPLEMENTAPY SLACKNESS THEOREM. There exidsts a feasible ¢ and a feasible
x such that & + x= > 0 (in all components).

Jo the exarple above, = (1,0,3,0) eand xT = (0,3,0,2) yield
£+ xt = (1,3,3,2) > 0.

Proof (by T. D, Parsons), Let T(s) assert this Theorem when dim X = s,
We use induction on s. T(1) dis trivial to prove,

We prove T(s) for s > 1, assuming T{s-1). Apply L(r,s) to get
+ 0 ... O

+ =@
. or . .
+ ) =D

=+ « o 1 o

In the left alternative, taking x = O we have ¢ + xT = £ > 0, In the right
alternative, we take the two cases




+ 4+ L.+ + O ... @
of - k- (+) &0 =0
: : ‘ : : use T(s-1) .
ol - L. (+) @lo )
=0 e o =0 ol ,_(+)
0= == (+)

=o @ LN @

In the left case, we get ¢t =0 and x > 0 by taking the first + at the top
large enough, after the remaining +'s at the top are taken arbitrarily. In the
right case, we use T(s-l) opposite the O's in the first column and then make
the first + at the top large emough. Thus, as indicated, we get & + xT > 0

because of T(s-1) for the components @, T(s) is now inductively established
for all s,

This Theorem is Theorem 1 (and 3) in Paper 1 by A. W. Tucker in LINEAR IN-
EQUALITIES & RILATED SYSTEMS, ed. by H. W. Kuhn & A. 1. Tucker (Princeton, 1956)
and, with a geometric proof, "Key Theorem" in R, A, Good, "Systems of Linear Rela-
tions," SIAM REVIEY 1 (1959) 1-31. Complementary slackness refers to the existence
of feasible §{ and x with "slack" (> 0), for each column of A, in either ¢
or x (but not both)., The following are Corollaries (see papers cited above for
refernces ):

1. (Gordan, 1873) Ax = 0 has a solution x > O and $0 iff JA>0 for
no X, 2. (Stiemke, 1915) Ax = O has an all-positive solution x iff M >0
and 0 Tornmo A. 3. (Farkas, 1902) bA > O for all A such that M >0
iff Ax =D forsome x>0, U4, cx>0 forall x>0 such that Ax = 0 iff
M+c>0 for some ks 5. If M is gkew-symmetric (i.e., " = -M), then
§M = ¥ has a solution § > O such that § +E >0,

Corollary 5 (= Theorem 5 in Paper 1 citéd above) can be used to establish the
duality and existence theorems of Linear Programming (see A. J. Goldman and A, W.
Tucker, "Theory of Lineasr Programming,"” LINEAR INZDQUALITIES & RELATED SYSTaMS, pp.
53-62, and R. A, Good's paper cited above, pp. 17-21).

0.N.R. logistics Project, Princeton University, July 1967 A, W, Tucker
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FINDING TEE POINT OF A CONVEX POLYHEDRON NEAREST A GIVEN POINT

Problem: To minimize half tae square of the distance from the point (2,3,-1)
to the (solid) “etrahedron determined by

we-x-y-z+320, x20, y2 0, 220,
The "objective function” to be minimized subject to thesse constraints is
: o l,.2 .2 2
£(x,v,2) = %1(x-2)2 + (y-—3)2 + (z+l)2] =7 -2x -3y +2+ 5(x“+y +27) .

A necessary and sufficient condition that & point (:,y,z) of the tetrahedron
yield the required minimum is that the gradient of 1 ot the point (x,y,2) Ye
expressible as o nonnegative linear combination of the inward aormels to the con-
etraints that are "active” at the point (x,y,z). That is,

= - o]l

vwaere w, &, 7, § are each nonnegative and must be zero if the corresponding con-
straint is “slack" (> 0) at tke point (x,y,z). Hence

w20, E=uw+x-220, n=w+y~-320, ({=w+z+120
and
w + Ex+ny +8z=0,

Another wuy of getting the same information is to form the Lagrangiasn function
g =f-uw-Ex-ny-(2

with nonnegative Lagrange multiplie=s w, &, 1, { and take U = 0 with g=t
(i.es; W+ Ex + ny + £z = 0). Substituting for f, w, &, n, { from above, we get

#(x,y,2) =7 - 2x ~ 3y + z + :i-f-[x2+y2+z2] - w(3=x=y-2) = (W+x=2)x « (wty-3)y = (w+z+l)2
= 7 - 30 - $hFwPeR).

Hence
f+d=e3u-2x=-3y+2+2k,

The above linear equations for w, £, 1, {, and f + ¢ are exhibited most con-
veniently in the following schema:

wi O] 1 1 1 -3
x[[1[ I¥ 0 o0 -2
yl-1] 6 1 o -3
z{-1} o o 1 1
1| 3] -2 -3 1 14

-y af =1 -g uf
In addition wv,x,y,z and w,§,n,{ are all to be nonnegative and
fegmw+ix+ny+z=0 .

We seek, therefore, a solution of the linear systen in the above schema that is
nonnegative in oll eight variables (excluding f+d) and is such that ¢ = O or/and
we0, =0 orfand x=0, n=0 orfand y=0Q, { =0 orfand z = 0. For this
purpose we turn to schemata, such as the following, that are equivalent to the above
schema under nrincipal pivoting:




2.

wl{ 1 <211 1 -1 wf 2 -1 1] 1 2 R
El-1 1 1o o -2 gl -1 1 ol o -2
y[<1 o0 [ 1*¥ 0 -3 | -1 0 1] 0 -3 .
z{-l1 0] 0 1 1 z| -1 0 0] 1 1
1{1l 2 -3 1 10 1] -2 2 31 1 1
= =x =n ={ =f4g = =X =y =t{ =f+
w3 -1 -1 1] 1 gl1/2 -1/z {1/2 1/2 -1
El-1 1 o o] -2 nl-1/2 1/2 |1/2 1/2 -2
/-1 ¢ 1 0] -3 wl-I/2- =12 11/2 1/2 1
t{-L 0o o0 11} 1 z|-1/2 -1/2 |1/2 3/2 2
1[-I"2 3 I 0 1) 1 2 1 2 3
= =X =y =2, =f+¢ =X =y =W =§ =f+¢

We get the first schema above, which we dub the yz-schema (in terms of the latin
"inputs" y,z at its left margin), from the original xyz-schema by pivoting on its
starred principal (diagonal) entry. Pivoting on the starred principal entry of the
yz-schema ve get the z-schema above, and then by its starred pivot the null-scheme
above, Also, by pivoting on the principal entry 2 in the z-schema, and then rear-
ranging, we get the wz-schema above,

A solution to our minimum-distance problem can be read from the wz-schema: set
the fnputs € =0, n =0and w=0, 2=0 toget x=1,y=2andw=1,§ =2
and f+f =3, Also f-d = w + Ex +ny + 8tz =0, so f =¢ = 3/2, The point
(1,2,0), on the edge w = 0, 2z = 0 of the tetrahedron, is the point of the tetra-
hedron nearest to the given point (2,3,-1). Half the square of this minimal dis-
tance 1s 3/2,

In the z-schema set the inputs w =0, £ =0, n=0and 2 =0 to get w=-2,
x=2,y=3and { =1 and £+ = 1, Here again f-g=uwv + &x + ny + {z = 0. The
point (2,3,0) is the foot of the perpendicutar from (2,3,-1) to the.plane z = 0
boundins, the tetrahedron but w = -2 shows that the point (2,3,~1) lies on the
wrong side of the plane w = O, Also, in the yz-schema set the inputs w = 0,
t=0andy=0,2=0 toget w=1,x=2andn=-3, { =1 and f+ =10,
Again f-¢ = ww + Ex + 7y + {2 = O. The point (2,0,0) is on the y = 0, 2 = O edge
of the tetrohedron and is the foot of the perpendicular on this edge from (2,3,-1)
but the gradient ©f at (2,0,0) is unfavorably directed due to 1 = -3,

WXy >$ ) | / WYz Xyz (vertices)
/ ‘
WX vy b X2 yz
(edges)
W z (faces)
¥ null (3-cel1)

This diagram depicts the full equivalence-class of 15(= 2“-1) schemata [there
is no wxyz-schema, for otherwise w =x =y =z = C would be part of & solution].
Each node represents a schema and each arc a principal pivot step (Zn either direc-
tion). Arrows mark the four pivot steps used above to get from the xyz-schema to
the yz-, 2-, null-, and wz-schemata, At the same time the diagram depicts the
combinatorial (incidence) structure of the constraint tetrahedron!




DUAL QUADRATIC PROGRAMR

in )T, the "Latin
problem,” and to maximize ¢ for nonnegative ¢ = (gl,... ’§m+n) the "Greek
problem," subject to the quadratic equation

£- 4= ‘
and to any one of a finite class of equivalent systems of linear equations, eech

We seek to minimize f for nonnegative x = (x,,...,x

given by a schems

IR O S A @
mm| Ha * C * "%m 9 ¢+ %y a
l 'b Y Y . "b c 3 L * c Ed
1 m 1 n
'—‘:XI . . . =X:I-n- = %m . ° [] = gﬁ =f +¢
(=x) (=¢)

vhere I,... ,m+n  denotes a permutation of the indices l,eeo,m+n, P and @ are
rositive semidéfinite symmetric square submatrices. Note the bisymmetry: the
upper left and lower right "quarters" are symmetric, while the lower left is the
negative transpose of the upper right.

With each such schema there goes a pair of quadratic programs dual in the
sense of Cottle:
() meximize ¢=d+éb--l-EPET-%'£rq3( for £20, E=fA+XQ+c20;
(L) minimize f:=d+c>‘+--x¢2),x-4-l 33 gT for 'x‘go, i-PéT-ﬁ-bgO.
Avaue of ¢ (or f) is termed feas:!.ble if it arises from a solution ¢, x of
the schema having g 0 (or x>0) For any two solutions £, x and g',,x'

£' - ¢ > b(PE TAR D) + (EATure)R = gx'
since (§'-1)P(E'-8)7 30 ana G'-DTE'K) >0, If £30 and x' >0,
then f'> d. That is, each feasible f is an upper bound for «ll feasible ¢
end each feasible ¢ 15 a lower bound for all feasible £, Hence a solution of

the abeve schema such that ¢ 2 0, x20 and &x = C is optimal for both
programs, In this case f = ¢ = —(f+¢)




The class of schemata equivalent to the above is generated by three types
of pivotal exchange: (1) pivoting on a diagonal eniry 1 I # 0, which decreases
m by one and increases n by one; (2) pivoting on a diagonal entry 1 # 0,
which decreases n by ene and increases m by one; (3) pivoting on a nonzero
skew pair &, and °aij’
ing the schematic bisymmetry and the positive semidefiniteness of the symmetric

which does not change m &nd n., Under such pivote

square submatrices P and Q are preserved, Moreover, the submatrices P and
Q have constant nullities m = m-rank P and n = n-rank Q, Within this
(finite) class of equivalent schemata there must exist at least one schema with
m=m, i.ec, with P=0 orwith P, A, b vacuous if m, = 0, yielding a
"pure" Latin program:

(L) minimize f=d+c§+-]2=')€TQ3c' for ¥X>0, -x=AXx+b<o0.

This 1s the classic type of convex quadratic program for which Dorn (and also
Dennis) introduced duality. Also, of course, there is at least one schema with
n=un, ylelding a dual "pure" Greek program:

(6,) Igja:x_imize¢=d+éb-%éPéT for £20, E=EA+c20.

The twe programs become crdinary dual linear programs (in Dantzig's canonical
form) if m,=m and n_ =n, 80 that P=0 and Q= 0.

Recent work of Dantzig and Cottle, of Lemke, and of Parsons, shows that
within the (finite) class ef equivalent schemata there must exist a schema with
an obvious solution

£=0,X=0,Xx=-b>0,£=c>0,f=¢=2
or a schema with an obvious infeasibility (viz., a nonpositive column with its
bettom entry negative).

NCTE, The author gratefully acknowledges the collabsration of Dr. T. D.
Parsons, Princeton University, and of Dr. Philip Wolfe, IBM Research Center,

R. W. Cottle: Quart. Appl, Math. 21 (19€2) 237-243; SIAM Jeur. 12 23 64 ) 663-665.

G. B. Dantgig & R, W, Cottle: see J, Abadie (ed.), NONLIN. PROGR. (No. Holland
19671).

We 3. Dorn: CEIAM jour. 9 (1961) 51-54; Manag. Sci. 9 (1962-63) 171-208,

C. E, Lemke: Manag, Sci. 11 (1965) 681-689.

T. D. Parsons: Ph,D. Thesis (Princeton 1966).

E, L, Stiefel: INTROD. TO NUMER. MATH., Acad. Press 1963, l-lk,

A. W, Tucker: Oper. Res. 5 (1957) 24k-257; see R. Graves and P. Welfe (eds.),
REC. ADV. IN MATH. PROGR. (Wiley 1963) 320-3L7.

P, S. Wolfe: Cuart. Appl. Math. 19 (1961) 235-24k,

0.N.R. Logistics Pruject, Princeton University, April 1967 A. W. Tucker
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COMPLEMEN . ARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING

by

Richard W. Cottle and George B. Dantzig

1. Yormulation. Linear programming, quadratic programming, and

bima:rix (two-person, non zero-sum) games lead to the consideration

of the following Fundamental Problem: Given a real p-vector ¢

and a real p x p matrix M, find vectors w and 2z which

*

satisfy the conditions

¢9) w = q+ Mz, w>0,22>0
(2) zw = 0

The remainder of this section is devoted to an explanation of why

this is so. (There are other fields in which this fundamental

problem arises -- see for example [6] and [13] -- but we do not treat
them here.) Sections 2 and 3 are concerned with counstructive

procedures for solving the fundamental problem under various assumptions

on the data q and M.

.In general, capital roman letters denote matrices while vectors are
denoted by lower case roman letters. Whether a vector is a row or

a column will always be clear from the cont:xt, and consequently we
dispense with transpose signs on vectors. In (2), for example,

v reprelent% the scalar product of z(row) and w(column), The
superscript indicates the tianspose of the matrix to which it is
affixed.




Consider first linear programs in the symmetric primal-dual form
due to J. von Neumann [20].

Primal linear program: Find a vector x and minimum z such that
3) Ax > b, x>0, z=cx

Dual linear program: Find a vector y and maximum 2z such that
(4) yA<c, y20, z=yb

The duality theorem of linear programming [3] states that

min 2z = max z when the primal and dual systems (3) and (4),
respectively, are consistent or -- in mathematicel programming

parlance ~- "feasible." Since
2=yb < yAx < cx =z

for all primal-feasible x and dual-feasible y, one seeks such

solutions for which
(5) yb = cx

The inequality constraints of the primal and dusl problems
can be converted to equivalent systems cf equctions in non-negative
variables through the introduction of non-negative 'slack” variables,

Jointly, the systems (3) and (4) are equivalent to

(6) Ax ~ v = b, v - 0, x

0

[ %%

ATy +u=c¢, u>0, ¥ 0

'v

~s




a7} T T %

#ad the linear programming problem becomes one of finding vecteors

U, v, x, y such that

M u c ' 0 ATy« u>0,v>0
- +
v -b A 0 y x>0,y>0
and ( by (5) )
(8) xu +yv =0

The definitions

| T
- . -{ u) e '[ C\ 0 -A x
{

astsblish the ccrrespondence between (1), (2) and (3), (4).

The guadratic programming problem is typically stated in the

following mscner: Find a vector x and minimum 2 such that

1

(10) uib.x,o,i-cxw-?nx

>
-

In this formulation, the matrix D may be sssumed to be symmetric.
The minissnd z 1¢ 8 globelly convex function of x if and only if
the quadratic form xDx (or matrix D) {s positive semi-definite,
and wvhen thie is the case, (10) s called the csTvex quadretic

rarmir roblem. It is i{smediate that wvhen D 1is the zero mstrix,
(10) reduces to the linesr progrez (3). In this sanse, the linear
programming problem is & special case of the quadratic programming

probles.




TN

For any quadratic programming problem (10), define u and v

by
T
(11) u=Dx~-Ay+c, v=aAx-b
A vector x° yields minimum z only if there exists a vector yo

and vectors uo, v° given by (11) for x = x° satisfying

(12) xX*>0,u>0,y°>0, v

Oio

e 0 (o)

xu =0, yov =0

These necessary conditions for a minimum in (10) are a direct

consequence of a theorem of H. W, Kuhn and A. W, Tucker [14]., It is
well known -- and not difficult to prove from first principles --

that (12), known as :-he Kuhn-Tucker conditicns, are also sufficient
in the case of convex quadratic programming. By direct substitution,

we have for any feasible vector x,

zZ-2 = c(x - xo) + —%—xDx - -%—xoon

a uo(x - x°) + yo(v - vo) + —%—(x - xo)D(x - xo)
= x4 % + = (x = xO)D(x - x°) 2 0

which proves the sufficiency of conditions (12) for a minimum in the
convex case.
Thus, the problem of solving a juadratic program leads to a

search for solution of the system




)

et o o o

(13) u-Dx—ATy+c x>0, y2>0

vV = Ax -b u>20,v>0

(24) xu +yv =20

The definitions
u ;¢ D -AT x
(15) W . q -( . M= , Z =

v b A 0 y
establish (13), (14) as a problem of the form (1), (2).
Dual of a convex quadratic program. From (15) one is led naturally

T
D -A ) wherein E , like D ,

A E
is positive semi-definite. It is shown in [1] that the

to the consideration of a matrix M = (

Primal quadratic program: Find x and minimum z such that
(16) Ax +Ey >b, x>0, zZ=cx + —%—(xDx + yEy)

has the associated

Dual quadratic program: Find y and maximum 2z such that
T 1
(17) -Dx +A'y<c, y>0, z=hby- -5-(xDx - yEy)

All the results of duality in linear programming extend to these
problems, and indeed they are jointly solvable if either is solvable.
When E = 0, the primal problem is just (10) for which W. S. Dorn
[5] first established the duality theory later extended in {1]). When

both D and E are zero matrices, this dual pair (16), (17)

reduces to the dual pair of linear programs (3), (4).




REMARKS. (a) The minimand in (10) 1s strictly convex if and only
if the quadratic form xDx is positive def{nite. Any feasible strictly
convex quadratic program has a unique minimizing solution x°.
(b) When D and E are positive semi~definite (the case of
convex quadratic programming), @o is
M=
A E
A bimatrix (or two-person nonzero-sum) game, [(A,B), 1s given by
a pair of mxn matrices A and B . One party, called the row
player, has m pure strategies which are identified with the rows
of A . The other party, called the column player, has n pure
strategies which correspond to the columns of B . If the row player
uses his 1ith pure strategy and the column player uses his jth

pure strategy, then their respective losses are defined as a and

1)
bij » respectively. Using mixed strategies

m
x= (x,,...x) >0, z x, =1
1 m =1 i

n
Y= (yy0e00py ) 20, Jy, =1
1 n y=1 3
their expected losses are xAy and xBy, respectively. (A component
in a mixed strategy is interpreted as the probability with which the
player uses the corresponding pure strategy.)

A pair (x°,y°) of mixed strategies is a Nash [19] equilibrium

point of T(A,B) if




Q

onyo': XAy all mixed strategies x

xOByo :_xOBy all mixed strategies y

It is evident (see for example [15]) that if (xo,yo) is an
equilibrium point of T(A,B), then it is also an equilibrium point

for the game TI'(A” B”) in which

A" = | +K}], B = [bij + L)

aij
where K and L are arbitrary scalars. Hence there is no loss of
generality in assuming that A > 0 and B > 0, and we shall make this
assumption hereafter.

Next, by letting e, denote the k-vector all of whose components

k
are unity, it is easily shown that (x°,y°) is an equilibrium point

of TI'(A,B) if and only if
(18) (onyo)em :_Ayo (A >0)

(19) «By)e_ < 8'x° (8> 0)

This characterizaticn of an equilibrium point leads to a theorem

which relates the equilibrium-point problem to a system of the form
® Ok k%

(1), (2). For A>0 and B>0, if u ,v ,x ,y 1is a solution

of the system

(20) u-Ay-em u>0, vy

v-BTx-c v>20, x>0




(21) xu + yv =0

then

is an equilibrium point of T(A,B). Conversely, 1if (xo,yo) is an
equilibrium point of T[(A,B) then

0

o]
® %
(x,y)= X J

’
xOByO onyo

is a solution of (20), (21) . The latter system is clearly of the

form (1), (2), where

Notice that tlie assumption A>0, B > 0 precludes the possibility
of the matrix M above belonging to the positive semi~definite class.

The existence of an equilibrium point for TI'(A,B) was
establiched by J. Nash [19] whose proof employs the Brouwer Fixed-
Point Theorem. Recently, an elementary constructive proof was

discovered by C. E. Lemke and J. T. Howson, Jr. [15].

2, Lemke's iteretive solution of the fundamental problem. This

section is concerned with the iterative technique of Lemke and Howson

for finding equilibrium points of bimatrix games which was later

extended by Lemke to the fundamental problem (1), (2). We introduce




firset some terminology common to the subject of this sectiow snd the

next. Consider the system of linear equations

(22) w=gq+ Mz

where, for the moment, the p-vector q aad the p x p matrix M
are arbitrary. Both w and 2z are p-vectors.

For { = 1,...,p the corresponding variables z, and v1 are
called complementary and each is the complement of the other. A
complementary solution of (22) 1is a pair of vectors satisfying

(22) and

(23) 2V, - 0, 1=1,...,p

Notice that a solution (w;z) of (1), (2) 4is a nonnegative
complementary solution of (22). Finally, a solution of (22) will
be called almost-copplementary if it satisfies (23) except for one
value of 1, say 1 = 8, That is, z, ¥ 0, Vg ¢ 0.

In general, the procedure assumes as given an extreme point of

the convex set

Z. {zlw-q+m;0,l;0}

which aleo happens to be the .endpoint of an almost-ccmplementary

rsy (unbounded edge) of Z. Each point of this ray satisfies (23)
but for ome value of 1, say B. It is not always easy to find such
s starting point for an arbitrary M. Yet there are two important

realizations of the fundamental problem which can be so initiated.

) TR




The first is the bimatrix game case to be discussed soon; the second is
the case where an entire column of M 1s positive. The latter property
can always be artifically induced by augmenting M with an additional
positive zolumn; as we shall see, this turns out to be a useful device
for initiating the procedure with a general M.

Each iteration corresponds to motion from an extreme point Pi
along an edge of Z all points of which are almost-complementary
solutions of (22). If this edge is bounded, an adjacent extreme

point P is reached which is either complementary or almost-

i+l

complementary. The process terminates if (i) the edge is unbounded

(a ray), (i1) P is a previously generated extreme point, or

i+l

(141) P is a complementary extreme point.

i+1
Under the assumption of nondegeneracy, the extreme points of 2
are in one-to-one correspondence with the basic feasible solutions of
(22) (See [3] ). Still under this assumption, & complementarvy basic
feasible solution is one in which the complement of each basic
variable is nonbasic. The goal is to obtain a basic feasible solution
with such a property. In an almost-complementary basic feasible of
(23), there will be exactly one index, say B8 , such *hat both
v, and 2z, are basic variables. Likewise, there will be exactly one

B B

*
index, say v , such that both v, and z are nonbasic variables .

[
C. van de Panne and A. Whinston (21} have used the appropriate

terms basic and nonbasic pair for {"8 , 'B} and {wv , zv}
crespectively.

10
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An almost-complementary edge is generated by holding all nonbasic

variables at value zero and increasing either z, or w, of the
nonbasic pair zZ, 0, W, There are consequently exactly two almost~

complementary edges assoclated with an almost-complementary extreme
point (corresponding to an almost-complementary basic feasible
solution).

Suppose that z, is the nonbasic variable to be increased. The
values of the basic variables will change linearly with the changes
in 'zv . For sufficieutly small positive values of z the
almost-complementary soluvtion remains feasible. This is a consequence

of the nondegeneracy assumption. But in order to retain feasibiiity,

the values of the basic variables must be prevented from becoming
negative.

If the value of z, can be made arbitrarily large without
forcing any basic variable to become negative, then a ray is generated.
In this event, the process terminates. However, 1if some basic

varigble blocks the increase of z (i.e. vanishes for a positive

value of zv). then 2 new basic solution is obtained which 1e
either complementary or almost-complementary. A complementary
solution occurs only if s member of the basic pair btlecks e -

A nev almost-complementary extreme point solution is obtained if the
blocking occurs othervise. In the complementary case, wa have the
desired result: a complementary basic feasidle solution. In the

almost-complementary case, the nondegeneracy assumption guarantees

the uniqueness of the blocking variable. It will become nondasic in




place of z, and its index becomes the new value of v .

The complementary rule.  The complement of the (now nonbasic) blccking
variable ~- or equivalently put, the cther member of the ''new"
nonbasic pair -~ is the next nonbasic variable to be increased. The
procedure consists of the iteration of these steps. The generated
sequence of almost-complementary extreme points and edges is called

an almost-complementary path.

THEOREM 1. Along an aluost-complementary path, the only almost-
complementary basic feasible solution which cen re-occur 1is the
initial one.

PROOF: We assume that all basic feasible solutions of (22) are
nondegenerate. (This can be assured by any of the standard
lexicographic techniques [3] for resolving the ambiguities of
degeneracy.) Suppose, contrary to the assertion of the theorem,

that the procedure generates a sequence of almost-complementary

basic feasible solutions in which a term other than the first one

(Po in the figure below] is repeated (say Pl)' By the nondegeneracy
aspumption, the extreme points of Z are in one-one correspondence
with basic feasible solutions c¢f (22). Let P_ denote the successor

2

of P1 and let Pk denote the second predecessor to P1 namely

the one along the path just before the return to Pl'
&

PO,«/‘

4 P
Pl ‘\\\\‘\\\‘\\\\\* 7 k
./ .
P!

12




The e:treme points Pc’PZ’Pk are distinct and each is adjacent to

P1 along an almost-complementary edge. But there are only two such
edgee at Pl’ This contradiction completes the proof.
We can immediately state the
COROLLARY. If the almost-complementary path is initiated at the
endpoint of an almost-complementary ray, the procedure must terminate
efither in a different ray or a complementary basic feasible solution.
It is easy to show by examples that starting from an almost-
complementary basic feasible solution which is not the endpoint of
an almost-complementary ray, the procedure can recurn to the initial
point regardless of the existence or non-existence of a solution to
L, (2).

EXAMPLE 1. The set Z associated with

1 0O 0 O
q= -1 M= 1 0 0
3 -1 -1 -1

is nonempty and bounded. It is claar that no solutiocn of (1) can
also satiefy (2) eince '1'1’0' Let the extreme point
corresponding to the solution w = (1,0,0), =z = (1,0,2) be the
ianitial point of a path which begins by increasing 2, Thie will

return to the initial extrame point after & iteratioms.

EXAMPLE 2. The sst 2 aseociated with

13
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(1 (000 o o)
-1 l1 0 0 1

T3 T S S R S |

is likewise nonempty and bounded. The corresponding fundamentai
problem (1), (2) has a complementary solution w = (1,0,1,0),
z = (0,1,0,1). Yet by starting at w = (1,2,0,1), z = (3,0,0,0) and
increasing Zqg, the method generates a path which returns to its
starting point after 4 iterations.

Furthermore, even if the procedure is initiated from an extreme

pcint at the end of an almost-complementary ray, termination in a ray

is possible whether or not the fundamental problem has a solution.

EXAMPLE 3. Giver the data

1 6 0 o0 1

-1 ' 1 0 o0 1
Sl M= 11 -1 -1 1
1 0 0 o0 -1

the point of 2 correspending to w = (1,0,4,1), z = (1,0,0,0) is
at the end of an almost-complementary ray, w = (1,w2,4 + wz,l),
z= (1+ w2,0,0,0). Moving along the edge generated by increasing

z, leads to a new almost-complementary extreme point at which the

required increase of Zq is unblocked, 30 that the process terminates




in a ray, and yet the fundamental probelm is solved by
w= (2,0,1,0), z = (0,1,0,1).

EXAMPLE 4. In the problem with

q= N M=
-1 11 -1

the inequalities (1) have solutions, but none ¢f them satisfy (2).
The point corresponding to (w;z) = (1,0;1,0) 1is at the end of an
almost-complementary ray w = (l,wz), zZ = (wZ,O). When z, is
increessed, it is not blocked, and the process terminates in a ray.

Consequences of terminatlor .. rey. In this geometrical approach

to the fundamenta! problem, it ic useful to interpret sigebraically
the meaning of terminstion in an almost-complementary ray. This cam

be achieved by use of a standerd result in iinear inequality theory
{r11, [3].

LEMMA, If (w*;z*) is an almost-complementary basic feasible

solution of (22), and (w*;z*) is incident to an almest-~complementary

ray, therc exis* p~-vectors wh,zh such that
(24) Ve, Poo, Moo, feo
and points along the almost-complementary ray are of (he form

(25) oA, 2+ a0

and sitisfy

15
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* h,,6 * k
(26) (wi + Awi)(z + Azi) = 0 for all A > 0, and all1 {1 ¥ B

THEOREM 2, 1If M > 0, (22) has a complementary basic feasible
golution for any vector q.

PROCF. Select Wiseoos wp as the basic variables in (22). We may
assume that q } O for otherwise (w;z) = (q;0) immediately solves
the problem. A starting ray of feasible almost~complementary
solutions is generated by taking a sufficiently large vaiue of

any nonbasic variable, say 2. Reduce z, toward zero until it
reaches a value z;‘l 0 at which a unique basic variable (assuming
non-degenergcy) becomes zero., An extreme point has then beern
reached.\

The procedure has been initiated in the mannet described by the
corollary above, and consequently the procedure must terminate either
in a complementary basic feasible solution or in an almost-
complementary ray after scme basic feasille soiucion (w;z*) is
reached. We now show that the latter cannot happen. For if it does,
conditions (24) - (26) of tha lermma ohta’n wich B8 = 1, Since
M>0 and zh‘; 0, this inplies wh > 0. Hence by (26),
zI = z: = 0 for all 1 # 1. Hence the only variables which change

with XA are 2 and the components of w. Therefore the final

generated ray is the same as the initiating ray, which contradicts the

coroliary.

THEOREM 3. A bimatrix game TI'(A,B) has an extreme equilibrium point.




PROOF. Initiate the algorithm by choosing the smallest positive

o
say x such that

value of «x 1’

l)

To
(27) ve-e + lel >0

where B§ is the first column of BT. With

Txo
171

vo = - en + B
it follows (assuming nondegeneracy) that v® has -xactly one zero
component, say the r~th, The ray is generated by choosing as basic
variables Xy and all the slack variables u,v except for Ve
The complement of Vs namely Yo is chosen as the nonbasic
variable to increase indefinitely. For sufficiently large values of
Ypo the basic variables are all nonnegative and the ray so generated

is complementary except possibly x might not equal 0. Letting

11
Y, decrease toward zero, the initial extreme point is obtained for
some positive value of Y

If the procedure does not terminate in an equilibrium point, then
by the corollary, it terminates in an almost-complementary ray. The

latter implies the existence nf a class of almost-complementary

*
solutions of the form

* *
(28) u + Auh -e 0 Al |x + Axh

* *
v + Avh e, B'r 0/ \y + Ay

h

*
The notational analogy with the previously studied case M > 0 is
obvious.

17
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(29) (uI + (x: +ax) =0 alli#1

all » > 0
30) v Ay + Ay =0 all 4
¢ g T AP Oy + Ay

Assume first that xh ¢ 0. Then vh = BTxh > 0. By (30),

* *
yj + Ay? = (0 for all j and all X > 0. But then u + Auh --e < o,

h

a contradiction. Assume next that yh $#0 and x = 0. Then

*
uh - Ayh > 0. By (29), X, = 0 for all i ¥ 1; and x? = (0 for

*
all 1. Hence vh = BTxh =0 and v 18 the same as v defined by

(27) since x, must be at the smallest value in order that

1
X k k%
(u ,v ,x ,y ) be an extreme-point solution. By the nondegeneracy

* *
assumption, only v. = 0, and v:l >0 for all j ¥ r. Hence (30)
? = 0 for all j ¢ r. It is now clear that the

postulated terminating ray is the original ray. This furnishes the

*
implies yJ + Ay

desired contradiction. The algorithm must terminate in an equilibrium
point of the bimatrix game T (A,B).

A modification of almost-complementary basic sets. Consider the

system of equations
(31) we q+ epzo + Mz

where z Tepresents an "artifical variable' and ep is a p-vector
(1,...,1). It is clear that (31) always has nonnegative solutions.

A solution of (31) 1is called almost-complementary if

A 0 for {=1,...,p and is complementary if, in addition,
z, - 0. (See [16, p. 685] where a difterent but equivalent

18
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definition is given.) In this case, let

Zo- {(zo.z) |w-q+epzo+M;3_0. 2010.23_0}

We consider the almost-complementary ray generated by sufficiently

large z . The variables Wyseee,W are initially basic while
zo,zl,...,zp are nonbasic variables. For a sufficiently large value

of z a +
o’ W %y
w+ =q+e z+ >0
po

As z, decreases toward zero, the basic variables v, decrease. An

initial extreme point is reached when z, attains the minimum value

o
2] for which w=gq + €2, 20. If z =0, then q20; this

is the trivial case for which no algorithm is required. 1f

zz > 0, some unique basic variable, say v, has reached its lower
bound 0. Then z, becomes a basic variable in place of v, and
we have v = r, Next, z., the complement of L is to be
increased.

The remaining steps of the procedure are now identicel to those
in the preceding slgorithm. After a blocking variable becomas basic,
its complement is incressed until either a basic variable blocks
the increase (by attaining its lower bound 0) or else an almost-
complementary ray is generated. There are precisely two forms of
termination. One is in a ray as just dascribed; the other is in the

reduction of z, to the value 0 and hence the attainmment of a

complementary basic feasible solution of (31), 1{i.e. a solution of

19
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Interest now centers on the meaning of termination in an almost-

complementary ray crlution of (31). For certain classes of matrices,

the process described above terminates in an almost-complementary
ray if and only if the original system (1) has no solution. In the

remainder of this section, we shall amplify the preceding statement.

If termination in an almost-complementary ray occurs after the
k k&
process reaches a basic feasible solution (w 12,2 ) corresponding
to an extreme point of Zo, then there exists a nonzero vector

(wh;zg,zh) such that

! h h h h h
(32) W o= epzo + Mz, (w 32,52 ) >0

Moreover for every i > 0,

(33)
*
(w* + Awh) =q+e (z* + Azh) + M(z + Azh)
p o o
and
* h, , * h
(34) (wi + Azi)(zi + Azi) =0 4i=1,...,p

The case zh = ) is ruled out, for otherwis=z z: > 0 and then

wh > 0 because (wh;z:.zh) ¥ 0. Now if wh >0, (34) implies

* *
z + Azh =z = 0. This, in turn, implies that the ray is the
original one which is not possible.

Furthermore, it follows from the almost~complementarity of

solutions alcng the 1.y that

20
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(35) 2w, =2z wh - zhw - zhw:

Mgyt m vy =0 1=1L.0p

The individual equations of the system (32) are of the form

h h h
(36) w,om oz, + (Mz )i i=1,...,p .

Multiplication of (36) by z? leads, via (35), to

< S0 h h, h -
(37) 0 2,2 + zi(Mz )i 1=1,...,p

from which we conclude
THEOREM 4: Termination in a ray implies there exists a nongero

nonnegative vector zh such that

(38) 2z < 0 1®1,.00,p

At this juncture, two large classes of matrices M will be
considered. For the first class, we show that termination in & ray
implies the inconsistency of the system (1). For the second «lass,
we will show that termination in a ray cannot occur, so that for thie
class of matrices, (1), (2) always has a solution regardless of
what q 1is.

The first class mentioned above was introduced by Lemke [16].
These matrices, which we shall refer to as copositiv us, are

required to satisfy the two conditions.

(39) uMu > 0 for all u >0

21




(40) M+MIu=0 1f uMu =0 andu > 0

Matrices satisfying conditions (39) alone are known in the

literature as copositive (see [18], [12].) To our knowledge, there

18 no reference other than [16] on copositive matrices

gatisfying the condition (40). However, the class of such

matrices is large and includes

(1) all strictly copositive matrices, i.e. those

for which uMu > O when 0 ¥ u > 0
(11) all positive semi-definite matrices, i.e. those

for which uMu > 0 for all wu.

Positive matrices are obviously strictly copositive while positive
definite matrices are both positive semi-definite and strictly
copositive. Furthermore, it is possible to "build" matrices
satisfying (39) and (40) out of smaller ones. For example, if
M and Hz sre matrices satisfying (39) and (40) then so is the

block-diagonal matrix

Moreover, if M satisfies (39) and (40) and S 1is any skew-
symmetric matrix (of its order), then M + 5§ satisfies (39) and

(40). Consequently, block matrices such as

22




satisfy (39) and (40) 1if and only if Ml and M2 do too. However,
as Lemke [16]), [17] has pointed out, the matrices encoun. *red in the
bimatrix game problem with A > 0 and B > 0 need not satisfy (40).
The Lemke-Howson iterative procedure for bimatrix games was given
earlier in this section. If applied to bimatrix games, the
modification just given always terminates in & ray after just one
iteration, as can be verified by taking any example.

The second class, consisting of matrices having positive principal
minors, has been studied by numerous investigators; see for example,
(2}, [&4)], (8], 1[9), (10}, 1[22), (24]. 1In the case of
symmetric matrices, those with positive principal minors are positive
definite. But the equivalence breaks down in the non-symmetric

situation. Nonsymmetric matrices with positive principal minors need

not be positive definite. For example, the matrix

has positive principal sinors but {s indefinite and not copositive.
Hovever, positive definite matrices are a subdset of those with

poaitive principal minors. (See, e.g. [(2].)

23
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We shall make use of the fact that w = q + Mz, (w;z) >0 has

no solution if there exists a vector v such that
(41) vM <0, vgq<0, v2>0

for otherwise, ( < vw » vq + vMz < 0, a contradiction. Indeed, it
is & consequence of J. Farkas' theorem [7] that (1) has no
solution if and only if there exists a solution of (41).

THEOREM 5. Let M be copositive plus. If the iterative procedure
terminates in a ray, then (1) has no solution.

PROOF. Termination in a ray means that a basic feasible solution
(w*;z:.z*) will be reached at which conditions (32) - (34)

hold and alsc

(42) 0= zhwh - zheng + zhﬂzh

Since M is copositive and " 2> 0, both terms on the right side of

(42) are nonnegative, hence both are zero. The scalasr zh -0

o
bacause xhc > 0. The vanishing of the quadratic form tthh means
Hxh + HTzh -0

But by (32), z: = 0 implies that vh - Mzh > 0, whence Hrzh 20

or, vhat i{s the saze thing, zhH‘i 0. Next, by (35),
. " " »
Omz v o z th -2 (-Nrth) - -xhnz

and wve ottain again by (35)

24
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0= zhw* = th + zhe z* + zth* = th + zhe z*
po po
It follows that th < 0 because zhepz: > 0. The conditions (1)
are therefore inconsistent because v = zD' gatisfies (41).
COROLLARY, If M is strictly copositive, the p.ocess terminates
in a complercntary basic feasible solution of (31).
PROOF. If nnt, rhe proof of theorem 5 would imply the existence of a
vector zh satisfying thzh =0, 0¢ zh_l 0 which contradicte
the strict copositivity of M.
This corollary clearly generalizes Theorem 1. We now turn tc
the matrices M having positive principal minors.
THEOREM 6. If M has positive principal minors, the process
terminates in a complementary basic solution of (31) for any q.
PROOF. We have seen that terminaticn in a ray inplies the existence
of a nonzero vector zh satisfying the inequalitiss (38). However,
Gale and Nikaido [10 , Theorem 2] have shown that matrices with
positive principal minors are characterired by the imposaibilicy of
this event. Hence termination ir. a ray is not a possible outcome
for problems in which M has positive principal minors,
We can even improve upon this.
THEOREM 7. 1If M has the property that for each of {te principal

submatrices ﬂ, the system

Mz . 0, O¢2 -0

has no solution, then the process terminates in a complementary

basic sclution cf (31} for any gq.
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PROOF. Suppose the process terminates in a ray. From the solutiou

(wh;z:,zh) vf the homogeneous system (32), define the vector
%h of components of wh for which the corresponding component

*
of z + zh is rositive. Then by {(34) Qh = 0, Let 2h be the

vector of corvesponding components in zh. Clearly 0 ¢ 2h >0,
since N ¢ zh > 0 and any positive component of zh is a positive
component of P by Jdefi-ition of #%. Let M be the corresponding
principal submatrix of M. Since M is a matrix of order . >1

we may write

Hence

which is a contradiction.

3. The principal pivoting method. We shall now describe an
algorithm proposed by the authors [4] which predates that of Lemke.
It evolved from a quadratic programming algorithm of P. Wolfe [26]
who was the first to use a type of complementary rule for pivot
choice. Our method is applicable to matrices N that have positive
principal minors (ir particular to positive definite matrices)
and after a minor modification, to positive semi-definite matrices.
In Lemke's procedurc for general M, an artifical variable 2z,
is introduced in otder to obtein feasible almost~complementary

solutions for the augmented problem. In our appioach, only variables

of the original problem are used, but these can take on initially

26




negative as well as non-negative values.,

A major cycle of the algorithm is initjated with the complementary
basic solution (w;z) = (q;0). If q > O, the procedure is immediately
terminated. If q } 0, we may assume (relabeling if necessary)
that W, = ay < 0. Ar almost-complementary path is generated by

increasing 2y the ccmplement of the selected negative basic

variable. For points along the path, 2w, = 0 for 1 ¢ 1.
Step I. Increase 2z, until it is blocked by a positive basic

1

variable decreasing to zero or by the qegative w, increasing to

1
zer o,

Step II. Make the blocking variable nonbasic by pivoting its
complement into the basic cet, The major cycle is terminated if
w; drops out of the basic set of variables. Otherwise, return
to Step I.

It will be chown that during a major cycle w, 1increases to

1
zero. At this point, a new complementary basic solution is obtained.
However, the number of bagic variables with negative values 1s at
least one less thi.ui at the beginning of the major cycle. Since there
are at most p negative basic variables, no more than p major
cycles are required to obtain a complementary feasible solution of
(22). The proof depends on certain properties of matrices invariant

under principal pivoting.

Principal pivot transform of a matrix. Consider the homogeneous

system Vv = Mu where M is a squarc matrix., Here the variables

vlg...,vp are basic and expressed in terms of the nonbasic variables
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nl.....up. Let any subset of the A be made nonbasic and the

corresponding ug baegic. Relable the full set of basic variables

v and the corresponding nonbasic variables u. Let v = Mu

express the new basic variables v in terms of the nonbasic ones.

The matrix M 1is called a princinal pivot transform of M. Of

course, this transformation can be carried out only if the principal

submatrix of M corresponding tc the set of variables z; and vy

interchanged is nonsingular, and this will be assumed whenever

the term is used.

THEOREM 8. (Tucker [24]). If a square matrix M has positive

principal minors, so does every principal pivot transform of M.
The proof of this theorem is easily obtained inductively by

exchanging the roles of one complementary pair and evaluating the

resulting principal minors in terms of those of M,

THEOREM 9., If a matrix M 1is positive definite or positive semi-~

definite so is every principal pivot transform of M.

PROOF. The original proof given by the authors was along the

lines of that for the preceding theorem. P. Wolfe has suggested the

following elegant procf. Consider v = Mu., After the principal

pivot transformation, let v = Mu, where u is the new set of

nonbasic variables. We wish to show that uMu = uv > 0 if

uMu = uv > 0, If M 1is positive definite, the latter is true if

u ¥ 0, and the former must hold because every pair (Gi,;i) is

identical with (ui,vi) except possibly in reverse order. Hence

g- v, = Zuivi > 0. The proof in the semi-definite case replaces the
i

UiV
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inequality > by > .

Validity of the algorithm. The proof given below for p = 3 goes

through for general p. Consider

w - q1 + mllzl + m12:2 + m1323

¥, T 9y T Myy2y Y Wy2y tmyaZ,

Wy % Q3 tmy2) ¥ 0g,2, + myq2,

Suppose that M has positive principal minors so that the diagonal

coefficients are all positive:

m, >0, m,, >0, m,. -0

11 22 33

Suppose furthermore that some qy is negative, say q; < 0. Then
the solution (w;z) = (ql,qz,q3;0,0,0) is complementary, but not

feasible because a particular variable, in this case w which

l.
we refer to as distinguished is negative. We now initiate an almost-
complementary path by increasing the complement of the distinguished
variable, in this case Z)s wvhich we call the driving variable.

Adjusting the basic variables, we have
(wiz)! = (q, + m..2 +m,z +m,. 2 ;0,0,0)
; 17 Pafe G T BypFpe 93 T By 2500

Note that the distinguished variable w, increases strictly with

1

the increase of the driving variable z, becavse m,, > O,

11

Assuming nondegeneracy, we can increase £, by a positive amount

before it is blocked either by v, reaching zero or by a basic




variable that was positive and is now turning negative. 1

- ¥
L

In the former case, for some positive value z) of the

*
driving variable z,r ve have w, =q + m 4% " 0. The solution
24 (0 N Qs+ magz; 0,0,0)
(w;z)" = ( 'q2 + m21219 q3 m3131o Y,

is complementary and has one less negative component. Pivoting on
Byqo replaces vy by 2, asa basic variable. By Theorem 8, the
matrix M in the new canonical system relabeled w = q + Mz
has positive principal minors, allowing the entire major cycle to be
repeated.

In the latter case, we have some other basic variable, say
v, q, + Byy 2y blocking when z, - z; » 0. Then clearly
By, < 0 and q 0. In this case,

*

- 2 - * . *
(w;2z) (muz1 + ql,o, ™y % + q3,zl,0.0)

THROREM 10, If the driving variable is blocked by a basic variable
other than its complement, & principsl pivot exchanging the

blocking variable with its complement will permit the further increase
of the driving variable.

PROOF: Pivoting on LY generates the cinonical system
Y1 "t T Yy Y
! T Sy tEnt Rtk

V3 . Ay + B3 %) + @y,v, + w442,

30




The solution (w;z)2 must satisfy the above since it is an
®
equivalent system. Therefore setting Z; = z,V, " G, zy " 0

yields
2 - % - & &
(w;z2)" = (q1 + B2 0, 45 + Ba12y5 21,0.0)

i.e., the same almost-complementary solution. Increasing z,

*
bsyond 3 yields

(@) + B335 0, 8y + my2152),0,0)

which is also almost-complementary. The sign of n is the

21

reverse of m21, since 521 -‘.m21/m22 > 0. Hence zz incresses
*

with iucreasing 2, > 2y 3 i.e., the new basic variable replacing

v, is not blocking. Since M has positive principal minors,

- ]
m,, > 0. Hence w, continues to incresge with incressing =, > sz, .

THEOREM 1l. The number of iterations within a major cycle is finite.
PROOF: There are only finitely many possible bases. No basis

can be repeated with s larger value of 5. To ses this, suppose it
did for ::* > l; . This would imply that some component of the
solution turns negative at g - :; and yet is nonnegative when

a
5,8 Since the value of a component is linear in s, wa have

1
8 contradiction,

axaphrese of the principel pivoting method. Along the almost-

complementary path there is only one degree of freedom. In the proof
of the validity of the algorithm, 5, wvas increasing and 5, wvas

shown to increase. The same class of solutions can be generated

1

o




by regarding z, as the driving variable and the other variables
as adjusting. Hence within each major cycle, the same almost~
complementary path can be generated as follows. The first edge
is obtained by using the complement of the distinguished variable
as the driving variable. As soon as the driving variable is
blocked, the following steps are iterated:

a) replace the blocking variable by the driving variable and
terminate the major cycle if the blocking variable is
distinguished; if the blocking variable is not
distinguished.

b) 1let the complement of the blocking variable be the new
driving variable and increase it until a new blocking
variabie is identified; return to a),

The paraphrase form is used in practice.

THEOREM 12. The principal pivoting method terminates in a solution
of (1), (2) 4if M has positive principal minors (and, in
particular, if M 1s positive definite),.

PROOF. We have shown that the completion of a major cycle occurs

in a finite number of steps, and each one reduces the total number of
variables with negative values. Hence in a finite number of steps,
this total is reduced to zero and a solution of the fundamental
problem (1), (2) 1is obtained. Since a positive definite matrix
has positive principal minors, the method applies to such matrices.

As indicated earlier, the positive semidefinite case can be

handled by using the paraphrase form of the algorithm with a ainor
modification. The reader will find details irn [4].
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THE PRINCIPAL PIVOT'NG METHOD OF QUADRATIC PROGRAMMING

By

Richard W. Cottle
Stanford University

I. BACKGROUND
Quadratic programming is conc~rned with the study of optimization problems

*
vhich can be posed in the form

(1) minimize Q(x) = eTx + —é-xTDx
subject to Ax > b
x> 0

The points (vectors) satisfying the side conditions or constraints of the

problem (1) are seil to be feasible solutions and collectively they form the

constraint set

(2) f-{xenﬂugb,xzo}

vhich could, of course, be empty, in vhich case the problem (1) is said to be
infeasible. But empty or not, C 1is alvays a polyhedral convex set. The

convexity of the objective function Q(x) 18 quite another mstter. It is

vell known that a quadratic function Q is convex on K 1f and only if ite
"quadratic part” -%‘-x'rm is a positive semi-definite form. If the dimension
of € 1is less than n, then Q could be convex on € vithout being convex on R.

A discussion of this possibility can be found in [6]. When Q is convex on Rn,

¥ AT numerlical quantities of this problem are understood to be real numbers.
The vector x represents an n-tuple of variables vhose values are to be deter-
mined. The matrix A {s assumed to be of order m by n, and vithout loss of
generality, the n-square matrix D may be regarded as symmetric. The superscript
T denotes transposition. Vector inegualities are equivalent to componentvise
fnequalities of the same type.




(1) 18 called the convex quadratic progremming problem. It is a genulne exten-

sion of the linear programaing problem which corresponds to the case in which
D is the n-aquare zero matrix.

As implied above, our study stems from problems of the form (1). This
is not restrictive in the class of linearly-constrained quadratic minimization

problems. For instance, there 1s a simple technigue for converting protlems

such as
(1) minimize Q(x) = cx + -é-xTDx
subject &o Ax = b

1ato the inequality-constrained format (1) without having to double the number
of constraints and variables. This is treated in the Apperdix.

In (1), we seek a global minimum of G(x) subject to x€& 6 , that is, an
x€ €& satisfying ) < Q(x) for a1l x €& . Such an x 15 said to be an

optimal solution of the problem. In the usage adopted nere, no vector can be

optimal 1f it is not also feasible.

The necessary eonditions of optimelity for problen {1)--found by applying
the celebrated theorem of Kuhn and Tucker [19]—state that if X is an optimali
solution to the problem (1), there exists a vector ¥ su:h that

(3) ¢+ DX - Ay >0

yi-b+Ax ]=0

Moresver. these eonditions are sufficient when (1) is a convex quadratic program.




The duality theory for quadratic programming completely embracea that for

linear programming. Thus, when D is positive semi-definite, the primal

problem (1) has the dual

i{ (4) peximize P(x,y) = bly - -é-me

f subject to ¢ +Dx - ATy > 0

i (x >0)
y>0

The duality of the pair (1),(4) was first discovered by Dorn {12] and Dennis [11].

Iater, in [3], the author symmetrized the duality theory hy smmending the primal

problem to read

(1) minimize Q(x,y) = cTx + -lExTDx + -é-ymw
subject to b +Ax + By >0
x>0
(¥ >0)

vhere E, like D, is symmetric and pusitive semi-definite. The Kuhn-Tucker

conditions for (1') are

(3') c+DX - Ay 30
b +AX+F >0

X >0

y 20

x_m[c +D§-AT§}=O

7i[-b + AX + EF] =0

and the dusl of {1') is




4 -

(4') maximize P(x,y) = by - %—xTDx - -é—mi
subject to c +Dx - ATy >0
(x > 0)
y20

The parentheses around sign-restricted variables indirnte that these restrict
can be imposed without loss of generality even though they are not required °
the validity of the duality theorems.
For any solution (x,y) of the orthogorality (or "complementary slackres:")
conditions
xT[c + Dx - Agy] =0
Yl + Ax + By] = 0

it follows that

. T 1.7 1. 7T
Ux,y) =c'x + =X Dx + =y Ey
= -é—(ch + bly)
T 1.7 1.7
=by - XX - Y
= P(x’}')

Therefore the value of either quadratic objective function P or Q at any solut.
of (3') is readily calculated by evaluating the linear function .%_(ch + bq&)

As might be imagined, the system (3') plays a central role Ir the soluti
of (i') and (4'), a fact stressed by Wolfe [24]. 1In order to simplify the
manipulation of (3'), it has been found advantagzous to represent the block
matrix

/D AT

‘\A E




-5

x
b 4

With these identifications, (3') takes the simpler form

by the single letter M aad the vectors ( Eb) , ( ) by q and z, respectively.
(5) q+M >0
z> 0
27[(q + Mz] = O

We shall call this the fundamental problem. It has been recognized, however,

that systems of the form (5) can often be solved without relying on the special

structure in the identification above. (See Dantzig and Cottle (8] and Lemke [20].)

The structural assumptions can be replaced by more general properties of the
matrix M, such as

(1) positivity of all principal minors

(11) positive semi-definiteness
or generalizations thereof. One such generalization is treated by lemke [20],
another by Ingleton [18) and the author [7].

The study of the fundamental problam (S) has been approached in two ways:
one existential, the other constructive. As the names suggest, the existential
approach is concerned with conditions vhich imply the existence—and in some
cases, the uniqueness-——of solutions to thesystem, vhereas the constructive
approach concentrates on the development of efficient céaputalional procedures.
The two approaches are not completely disjoint, however. JFor example, the
principal pivoting method descridbed belowv ansvere the existence question when
the data M and q are specified and the matrix N belongs to an allowable class
of matrices. It is also true that existential studies allow one to predict the

eventual discovery of & constructive treatment of the problems.

-
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II. PRINCIPAL PIVOTING

Consider a p-square matrix M and a p-vector q. For any p-vector z the
~xpression q + Mz defines a mapping H:Rp -—p RP and ve let
(6) veWz)=q+M
Wwe think of (6) as a system of p linear equations in 2p variables, and in the
‘orm above, the variables z are independent while the variables w are dependent.
.t the terminology of linear programming [9], the independent variables are
ionbasic and the dependent variables are basic.

a solution (w,z) to equation (6) is said to be nondegenerate if at most

r. of the 2p components wl,...,wp,zl,...,zp equal zero.

To pivot in (6) or an equivalent system is to solve for a currently
ionbasic variable in terms of the remaining nonbasic variables and one of the
pusic variables. Thus pivoting exchanges the roles of two variables with re-
spect to membership in the basis. The specification of these variables single:
2t a particular entry in the matrix of columns corresponding to the nonbasic

varjables, and this entry is called the pivotal entry. For the operation tc .

‘-gitimate, it 18 necessary and sufficient that the pivotal entry be nonzerc.
More generally, a block pivot in (6) or an equivalent system consists
“ 30lving for a set of k currently nonbasic variables in terms of the remain-
.08 P - k nonbasic variables and a set of k basic variables. For this cperat.:
tu be possible, it is necessary and sufficient for the corresponding pivotal
rlock (submatrix) to be nonsingular. A block pivot in (6) 18 called a prin~.

c4l pivat if the pivotal block is a principal submatrix of M.

The variables w, ,z, (1 = 1,...,p) are said to .> a . .aplementary pair

a1 each 1s the ccmplement of the other. The set of bacic variables is said



B ek}

e e s g Al

«7 =

to be complementary (almost-complementary) if it ontains no (exactly one)
complementary pair. '
If the system

» * * *
(7) v =g +Mz
is obtained from (6) by a principal pivot, it 1s possible to rearrange the

*

rows and columns so that wi,z: is a complementary pair for each i = 1,...,p.
For the sake of the discussion below, we assume that this is always done. We

call (7) a principal transform of (6). If P is a permutation matrix of the

B
same order as M, then the congruent matrix P'MP is called & principal rearrange-

ment of M.
Ifve let® = {1,...,p} and ¢ ,9 c@ , then Mg denotes the
]

submatrix of M formed by deleting the tbs entries except the m,, for vhich (1,3)

J
belongs to W x 9 . dhus My 4 ig a principal submatrix of M and its deter-
i

minant 1s called a priacipal minor of M. It is a standard convention to define

the determinant of tne empty matrix to be 1.

It is clear taat vher M is a p-square matrix and K‘ is a principal re-
arrangement of M, every principal submatrix of M* is a principal submatrix of
M. Consequently, principa. rearrangement preserves the character of principal
minors. Also clear is the fact that if M is positive semi-definite, so is any
of its principal rearrangements.

Using the notation and definitions above, wve may nov state a result of
Tucker {23].

THEOREN 1. If N has positive principal minors and N’ is a principal transform
of M, then H' has positive principal minors.

PROOF. Suppose M’ is obtained fram M by a block pivot on the principal submatrix
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¥ 4
M 44 Then the conclusion follows from another result of Tucker [22, Theorem 3]
)

vwhich implies that for all 3 c@®

*
(8) det M = det M / det M

4§ 144 .44y Y

vhere A represents the symmetric difference operation:
48} -dugr-Wa g

On the strength of this theorem, we say that the class of p-square matrices
having positive principal minors is invariant under principal pivoting. The
formula (8) yields a similar invariance theorem for the class of matrices with
nonnegative principal minors.

The class of positive (semi-)definite matrices of a given order is also
invariant under principal pivoting. |
THEOREM 2. If M is a p-square positive (semi-)definite matrix and M 1sa
principal transform of M, then M*'ia positive (semi-)definite.

FROOF., We may assume that
MJ,& M‘,q
M”J M,' ’

*
and that M 1s obtained from M by a block pivot on the principal submatrix

M=

Moy If z = (zJ ,z% ) and v = (\a ,w’v ) are defined conformally, we
may write
VJ 'MJ,‘ z‘ +Ma/* z’r
v = M + M
R A A
The quadratic form zTMz can then be expressed as
ZTHZ - z% V‘ + z; VY

After the block pivot on wve obtain

" A
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2, =M% W ML Mz
¢ "l ey
R R A A R T
and hence
-1 -1
- MJfJ 4&!4 ﬁtar

-1 -1

M M M - M M

e LY T ey

The assoclated quadratic form is given by
T T T T
Wy Z, +2; W m2ygW, +Z°W
LSRN |

Therefore, the range of the quadratic form is invariant under principsl pivoting.

*
When M is positive semi-definite, M must be also as well. If M is positive
definite, the quadratic form zTMz is nonnegative for ail z and vanishes only

vhen z = (ZJ. »2_ ) = 0. Therefore if (w‘ ,z‘( )TH'(u ,z’_ ) vanishes, it
)2
¢

REMARK. It should be carefully noted that no assumption of _symmetry on M has

*
follows from the relations above that (w 3 ) = 0. Hence M ie positive

definite.

been used. For the application suggested in Section I, 1t would be inappropriate
to be hampered by such a restriction.

As ve shall see, the principal pivoting method for solving (5) relies
rather heavily on these invariance theorems. The method consists of a finite
sequence of principal (block) pivots. Bach such block pivot which is not s
“simple" principal pivot amounts to a finite sequence of simple nonprincipal
pivots each of which produces an almost-complementary set of basic variables.
in the current transform of (6). This means that properties of positive princi-
pal minors or positive semi-definiteness can temporarily be loet. It will

become clear in the sequel that the following facts are helpful.
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THEOREM 3. Let A = (a“) be & 2-square positive semi-definite matrix. If

85, = O, then a

PROOF,

12t %
The associated quadratic form is

(8, +ay))x)x, + ‘22‘§ 20

= 0,

for all Xy 9%y Ir 8+ Lo%Y is anything but zero, the inequality cannot hold

for all Xy ,%5e

THEOREM 4. Let A = ('1,1) be a 2-square metrix having the properties:

(1)
(11)
(111)
(1v)

(v)

81150;
%2 £ 0
au+q21<0;
if a,, < 0, then

1
VYA

(8,855 - 8085 )/8

is positive semi-definite;

1t.21<0,then

/%
A /8

is positive semi-definite.

A2-

Then A must have the properties:

(vi)
(vi1)

(vi11)

> 0;

V)
%0 2 0;

.12+122>0.

l/a]__.L

8 /an

(a00) - 8),85,)/a5,




R o ]

-1 -

PROOF. The first three properties of A imply that a,, < 0O or 2, < O=and

11
perhaps bcoth are negative.

CASE I. It a5, < 0, the principal minore of Al are nonnegative since it

1s positive cemi-definite.  Ia particular, A, > 0and s, > 0. If both vere

pors
zerc, it would follow from Thecrem 3 that J./all = O which 1s absurd. Hence

the properties (vi) to (viii) hold.

CASE II. It 8, < Y and 8, = 0, *he positive semi-definiteness of A2

2= -l/a21 >0 and 8,

The theorem can be varied and established even more easily for the case of

implies a > 0. Hence the required corditions hold again.
matrices having positive principal minors. The proof is amdtied.
THEOR®M 4'. Iet A = (aij) be a 2-square matrix having the properties:

(1) a,, <0

(11) a,, <O

21
(111) the matrix

85/% Ya),
(811800 - 8% /oy /%y
has positive principal minors;

(iv) the matrix
\

$0/%1 (M%) - 4% 4y, )
Vo,  an/sy

has positive principal ainors.

Azn

Then A must bave the propertieu:
(v) PR 0;
(vt) s, > 0.

¥ P-mnegativity of principal minors 1s a necessary condlition of posltive eeal-
del'inite satrices, regardless cof symmetry.




III. SOME PHOPERTIES OF THE FUNDAMENTAL SYSTEM

The linear inequalities
(9) q+M> 0
z22>0
or equivelently,

(9') Ve q WM

vill be called the fundamental systcm. For theemomant, we viil assme only

that M is a p-square matrix, q € Rp, z € .
It is a straightforvard consequence of Parkas' Theorem [13] that (9)

has no solution if, and only if, there ex!sts a p-vector v satisfying

(10) VM <0, qu <0, v>0
It has been shown [5] that vhen M has positive princi'pal minors, (10) bas mo
solution, and hence (9) 1s consistent regardless of vhat q may be. Moreover,
it vas shown there that (n this case, the fundamental problem rnlways has a
sclution; the uniqueness of the solution wvas first pointed out by Ingleton
(18] and by the suthor in (7). The key ingredient in the proof is the fact,
due to Omle and Nikaido [15], that M has pceitive pripcipal minors if, and only
1z,
(1) zl()(:)1 <0, 1w=1l,...,p 1impilesz =0

In the positive semi-definite case, the fundamental system need not be
consistent, but whbn it is, the fundamental problea (5) has a solutiom. If

the solution is also nandegencrate, it 1s unigue. See {d] (existence) and

1203} (uniqueness).
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The principal pivoting method is applicable to fundamental problems (5)
in vhich M has positive principal minors or is positive semi-definite, It

works with solutions of w = q + Mz rather than with solutions of the full

system (9'). Hence no a priori information regarding feasibllity/need be given.
For this reason, the method incorporates a devige for recognizing infeasibility
vhen it occurs in the positive semi-definite case. The device rests on Theorem 4
and the following resuit proved in [10] by Dantzig and the author.
THEOREM 5. let M be a p-square positive semi-definite matrix, and let q € RP.
If for some index r, 1l <r <p,

(1) Q. <0

(1) m__ =0

rr

(111) m_ >0

the system (9') has no solution.
This is proved by noting that the hypotheses lead via Theorem 3 to the

conclusion that the r-th equation
P
v.=q. * E. m 42y
can have no nonnegative uolut.ion.'
Although it seems unimportant from the camputaticnal standpoint, it 1is
intersating to see that for a large class of matrices, the solutions to (9)

must fore either an empty or an unbounded set.

# It {s vorth mentiocring that Thetrems } and 5 are valid for the class of
"copositive plus” matrices introduced by Lemke (20, Thecrem &]. Bowever, our
Theorem 2 is not valid for this class of matrices, and therein lies a limita-
tion of the principal pivoting method.
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THEOREM €. Iet M be a p-squasre matrix and let q € RF. The set
Z(q,M) = {z€Rp| q+M >0, zao}
is unbounded ir, and only if, it is nonempty and
(12 M < 0, w>0
Las no solution.
PROOF, Suppose Z(q,M) is nonempty. By a theorem of Goldman [16], 2(q,M) is
unbounded if and only if 2z(0,M) # {0} . but by a standard alternstive theorem
(see Gale [1k, Theorem 2.10]), this is so if and only if (12) has no solution.

The class for which (12) has no solution includes copositive matrices
(i.e., those for which 2 Mz > 0 for all z > 0) and adequate matrices (as de.ined
by Ingleton [18]); therefore the class includes all positive semi-defiriite
matrices and all those with positive principal minors.

As an application of Theorem 6, consider the interyretation of (9) as the
set of constraints obtained by taking a convex quadratic proéram and camposing
its constraints with those of its dual, as done in Section I. If elséher the
primal or the dual constraint set is nonempty, then at least one of thel must
be unbounded..This generalizes results of Clark [2], Charnes, Cooper, and

Thomuson. [1], and Lemke [20].




IV, THE PRINCIPAL PIVOTING METEOD

In thie section, we shall present a treatment of the principal pivoting
method first proposed by Dantzig and the author [10]. The method is applicedle
to me..rices with positive principal minors (sc-called P-matrices) and to those
which are positive semi-definite. Since the method can be stated more simply
for the class of P-matrices, we begin there and subeequently broaden the dia;
cusslon to the positive semi-definite case. First though, we make soxe general

remarks.

It is convenient to reprasent (6) in tabular form as follows:

The variables to the leit of the box are basic and those above it are nonbasic.
The mumber of negative components in q is called the index for the funda-

mental problem (5). If the index is zero, then ¢ > 0 and z = O solves (5).

obviously (5) has no computational interest unless its index is positive. Then,

iZ we can achleve an equivalent system with an index of zero, the original systen

is readily solved.

We denote by
(6.¥) W) @), @), 6)

. the system obtained from (6.0) after ¥ iterations. The system (6.0) 18 Jjust (6).

We say that (6.¥) is complementary if (w:(lv),zgv)) = {wi,zi} , for 1 = 1,...,p.

Starting from a complementary system (6.%) with s positive index, we consider
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the solution (v(ﬂ ,z(“)) - (q(V) ,0) and select a particular negative component,

wl(:“) » which will be called the distinguished variable. Our immediate odjective

18 to make wr(.v) increase to zero without allwwing any variable already nonnegative
to bacome negative. In the case of P-matrices which we now consider, this can
always be accomplished by a finite number of simple pivot: which result in a
principal (block) pivot.

Notice that if M = M(O) is a P-matrix, so 1s M(v) in any squivalent comple-
mentary system (6.v), i.e., in any principal pivotal transform of (6.0). Conse~

quently, the diagonal entries of M(V) are positive, and in particular,
V) 5,0 _ W)
[AM ,Bzr =m " >0

Verbally, the increase of the nonbasic complament zf_”) of the distinguished

basic variable wx(.v) forces the latter to increase. In this role, zﬁ'!) is called

the driving variable. Increasing the variable zf.y) to the positive value
W), ) @) - '
-q,, /mrr drives v’ up to the value zero.

Basis Exit Rule. The driving variable is governed by a rule which states that

its increase must stop as soon as a positive basic variable decreases to zero or
the distinguished wvariable increases to zero. The variable which limits the

increase of the driving variable is called the blocking variable. In this case,

the existence of the blocking variable ie clear; nondegeneracy guarantees its
uniqueness.

The blocking variable wﬁ") and the driving variable z?') determine a pivotal

entry mg’f) in the tableau corresponding to the basis exchange in which the driving

variable peplaces the blocking variable. There are two cases. Case A. If s = r,
then the exchange of wrw) for z?) is a principal pivot which produces an equi-

valent complementary system (63JM41) in which Na’ﬂ) 1s a P-matrix. Noreover,




(6.341) has a lower index than (6.Y). If min qi(W-l) < 0, a nev distinguished

variable is determined and the process is repeated. If min qiwﬂ) > 0, a solu-
tion of the fundamental problem %s at hand, viz., (v(v"l),le)) - (qw"l),o).

Case B. If s ¢ r, then ms;') < 0, and the exchange of vS') and zf:v) is ¢ non-

principal pivot. Before the pivot,
(23} a)  a0)
ﬂg) “S:)
it & principal 2-square submatrix of the P-matrix Mb’). As such, it is a P-
nitrix. After the pivot on ng_’) this 2-square matrix becomes
(14) ‘g) /mg) (ml(.:’)ng) - ,Cv).b') ) b:\;’)

rr ss

YOO

;0 which Theorem 4' applies, although in this case, its conclusion

(15) (‘b’)n(") . n(ﬂ).(v))/.g) >0, _.z)/-g’) >0

re 8r T 88
1s obvious from first principles. The pivot has (1) left the distinguished
varisble basic at a negative value, and (ii) made the driving variable basic
and the blocking variable nonbasic. Nowv, the system is almost-complementary
since the distinguished variable and its compiemsnt are buic-. wvhile the blocking
variable and its complement are nonbuic?’.

One saliént feature of the 2-square matrix (14) 1s that its rows correspond
to the basic pair and its columns correspona to the nonbasic pair in the current

tableau. We shall call it the pair matrix. The pair matrix is defined only for

an almost-¢ ntary system.
* We baslic gr.

* The nonbasic y&ir.
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Basis Entry Rule. The next variable tc enter the basis (i.e., the next driving

variable) is the complement of the blocking variable which Just beceme nonbasis.
Its increase is also governed by the basis exit rule above. Kotice that (15)
implies that both members of the basic pair will increase with increases in the
new driving variable. Hence the existence of a blocking variable is assured.
Indeed, when M is a P-matrix, the distinguitched variable is always Rgtentieggx
a blocking variable. If the distinguished variable is not actually the block-
ing variable at a particular iteration, the pivotal entry is again negative.

By fhe algebra of pivoting, it follows that s new pair matrix is obtained to
which Theorem L* applies.* Part of the applicability of Theorem L4' stems from
the invariance of P-matrices under principal pivoting. The constant applica-
bility of Theorem 4' accounts for the fact that both members of the basic pair
will increase as the current driving variable increases. Since nondegeneracy
implies that strictly positive incresses of the driving variables are always
allowed, the procedure must drive the distinguished variable up to zero at which
time it is the blocking variable; the corresponding pivot restores the comple-
mentarity of the system.

As in linear programming, the sequence of steps by which the distinguished
variable is driven to zero is finite. For there are only finitely many basic
solutions, each of which corresponds to a unique set of values of the basic vari-
ables. Since the distinguished variable and its complement increase strictly

from one iteration to the next, no basis can be repeated. The finitemess of the

. overall procedure now follows f' th c i

% In this application, khe matrices Al and A2 are interpreted as pivotal trans-
of the pair matrix vhich would make them principal submatrices of a P-matrix.
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Modifications for the positive semi-definite case. When the matrix M in the

fundamental problem (5) is positive semi-definite, its principal minors are
nonnegative rather than strictly positive. This causes certain complications
which call for special handling.
Indeed, the system (6) need not have a nonnegative solution in this case.
In the modified procedure, the absence of an appropriate pivotal element or,
equivalently, the existence of an unblocked driving variable detects this
possibility. This is accomplished with Theorems 5, 4, and 2. However, it is
necessary to incorporate an artifice to handle the situation in which the
driving variable:
(1) bas no effect on the negative distinguished variable;

(11) makes at least one other negative basis variable decrease;

(111) makes no positive basic variable decrease.
Without modification these conditions would signal an unblocked driving variable,
and we wvant this situation to indicate that no solution to the fundamental problem
exists. The artifice we use is to impose a lower bound f? < min qio) on all
negative basic variables. A negative variable can therefore block the driving F
by decreasing to its lower bound; if this happens, the variable becomes non-

basic at its lower bound walue, P . However, once a variable becames nonnega-

tive, zero is its lower bound.
This modification necessitates a change in the notion of basic solution.

A basic solution now is one in which the nonbasic variables are set at their

current lovwer bound values, either O o;fg . A solution is nondegenerate if at

most p of the 2p variables of the problem equal O arf? . Again the nondegener-

acy of all solutions is assumed.
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The basis entry and exit rules for tihe positive semi-definite case are
as stated above. However, it could lizppen that the distinguished variable is
also the nonbasic driving variable, and in thig case, it could be self-blocking.
The principal pivoting method for both of the ceses discussed above can

be summarized by the following diagram.

FLOW DIAGRAM FOR THE PRINCIPAL PIVOTING METHOU OF QUADRATIC PROGRAMMING

START WITH COMPLEMENTARY
BASIC SOLUTION OF THE SYSTEM

P
wi—.-qi+§:lmijz. 1i<p

Cw

(FOR EXMPLE: w = g, 2
SET ALL NONBASIC 7
VARIABLES EQUAL | YES

TO O AND OBTAIR r(-—— ARE ALL THE CURRENT q

0)

Xa

v

DESIRED SOLUTION.

STOP JLNo

CHOOSE r SUCH THAT w_ < 0
(wr IS DISTINGUISHED)

T
INCREASE THE NONBASIC MEMBER OF THE
COMPLEMENTARY PAIR v,z (DRIVING VARIABLE)

1 NO STOP. NO
W IS THE INCREASE BLOCKEDS SOLUTICN
EXISTS
YES
 YES [MAKE v_ NONBASIC
r
BY w_ 7]
“r AT VALUE 0
NO

REPLACE THE BASIC BLOCKING
VARIABLE BY THE INCREASING
NONBASIC (DRIVING) VARIABLE

1

INCRPASE THE COMPLEMENT OF THE
(NOW NONBASIC) BLOCKING VARIABLE
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As before, the procedure does not allow nonnegative variables so.beccme
negative. BEach return to a test of the current "g-column" corresponds to a
complementary system with lower index than its predecessonr.* Hence only
finitely many returns are possible.

It remains to show that after each nonterminating gq-test, a return to the
q-test will occur after finitely many steps unless the driving variable is unw
blocked, in which case the problem cannot be solved due to the infeasibility
of (9). As stated earlier, these facts are attributable to the nondegeneracy
assumption and Theorems 5, 4, and 2.

Suppose we start from s complementary system. If the driving variable 1is
unblocked, it cannot also be the distinguished variable, since a distinguished
driving variable must be a negative nonbasic variable which would not be in-
creased beyond zero. Therefore an unblocked driving variable in a complementary
system has a negative basic camplement upon which its increase has no effect.
Being unblocked, the driving variable must correspond to a nonnegative column
in the current tableau. Hence conditions (1), (i1), and (11i) of Theorem 5
hold and the system has no nonnegative solution.

If the driving variable is blocked but not by itself or its complement,
the first system after the pivot is almost-complementary and contains a pair
matrix. Whenever an almost-complementary system is obtained, the most recent
pivotal element is negative. The invariance theorems guarantee the required

properties on the matrices A,, A, in Thecrems b and §'.

* It was pointed out by T.D. Parsons in a private communication that it is
possible to return to the g-test and find that column nonnegative vhile sghe of
the nonbasic variables are at negative walues. In such a case, setting all
basic variables equal to O solves the problem.

['




I7 the driving variable in an almost-complementary system is unblocked,

1ts corresponding column in the current tableau must be nonnegative (for other-

wise some basic variable would block it). Since the distinguished variable is

not blocking, the entry of the pair matrix corresponding to the driving variable

*
and the distinguished variable is zero, and the other entry in that column of

the pair matrix is positive. Pivoting on the latter restores complementarity

to *41: system. After suitable reordering of the columns, it is possible to

apply Theorem 5 and declare infeasibility.
Bach iteration of the method increases the sum of the distinguished

ariable and its complement, because the nondegeneracy assumption implies that

the Jriving variable can always be increased. Since there are only finitely

«war, bases and finitely many basic solutions corresponding to eqeh, it is im-
pos:ible to return to a previously encountered basic solution, and therefore
only finitely many steps are required to detect infeasibility or produce a

romplementary system with lower index than the previous one.
* T3 could not occur in the case of P-matrices.




V. A COMPARISOR WITH LEMKE'S METHOD ‘
The principal pivoting method invites comparison with the very interesking
approach of Lemke (20]. Lemke's method can be viewed as a sequence of almost-

camplementary pivots resulting in one grand principal pivot vhich {s campletely
determined after the fundamental problem (5) is embedded in a larger cne:

(16) (vo 4, 0 ! Z4

znwc + va = 0

vhere e’ a (1,...,1), "o 18 & sultably large scalar, and VoiZo 18 & pair of

complementery srtificial varlsbles. A solution of (16) in which x

0-01.

.

clearly e solution of ‘he ariginal fundamertal problem (5).

Lemks has shown that (16) has a sclution for any p-cqﬁare mtrix M. The
question then becumes the significance of a eolution to (5) ia which £, >0
and hence Vo = 0. For & large class of matrices vhich includes the positive
semi -definite class the ansver is that the fundamental problem (5) has no
feasidle saluticn. The author and Dantzig (8] have shown thet (16) has nc
solution with z4 > QU vhen N is a Pamstrix. Hence lemke's method can alvays
solve (5) when N 1s a P-matrix.

Az mentioned in an e rlier sectic:;, the principal pivoting method is aot
applicable to the entire class of copositive plus matrices introduced by Lemke

since that class is not invariant under priucipal pivoting. Tc the author's

knovledge, the twc methods have never been systematically compared on data to
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vhich they are both applicable.

The lemke procedure begins with & nonprincipal pivot in the N column.

11 subsequent systems except the le3t are almost-complementa:y and contain ti:

basgic pair V5020 Wher: M is positive semi-definite, so is

and Theores 4 can be applied to show that ¥y and 2z, are uonincreasing while

Wo * 24 is strictly decreasing witn increases ¢f successive driving variable:

However, this result does not hold for arbitrary matrices.
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- of two nonnegative varimbles. In a problem such as (1') where all the variatles

VI, APPENDIX

It is well known that an =2quation is equivalent to a palr of inequalities.
Therafpre, the system of linear equatlons
(17) Ax = b
can aiways be written as
(18) Ax > b
-AX > -b
This doubles the number of linear constraints satisfied by x. If a system of
linear inequalities equivalent to (17) is desired, a smaller system than (18)
can be used. (Actually, the system will be smaller only when m > 1.) Since

(17) is Just

1l

(17") Zaiij=hi f=1,...,m
J=1

it is equivalent to
Il

(19) %E; 8y Xy > b i1=1,...m

n m m
Z('zaiJ)XJ 2 'zbi

J=1 1i=1 i=1
which is a system of m + 1 linear inequa:ities.
Another often-used fact is that any real number {: can be represented as
the difference of two nonnegative real numbers:
£-§ -8, E20 §'20

Thus, variables which are not sign restricted can be represented by the difference

are unrestricted in sign, this device would double the number of variables. This
duplication is also unnecessary. It suffices to write

xJ x xj - xb ’ xé >0, x& > 0, J=1,...,n

Tiiu lucreases the number of variables by 1.
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PREFACE

In this Memorandum, some basic problems concerning flow
networks are surveyed and extended to two more general
structures: frames of real vector spaces and blocking

systems.




SUMMARY

This paper surveys some basic problems, theorems and
constructions for flow networks, and shows how these can be
extended to more general combinatorial structures.

One of the generalizations can be roughly described
as that obtained by replacing the vertex—edge incidence
matrix of an oriented network by an arbitrary real matrix.
This leads to tie notion of a frame of a subspace of
Euclidean n—space, a concept very closely allied to that
of a real matric matroid. Our treatment relates matroid
theory and linear programming theory, and thus provides
another viewpoint on linear programming, and in particular,
on digraphoid-programming.

In the last part of the paper a very general combina-
torial structure called a blocking syctem is given an axio-
matic formulstion. These systems have arisen Iin 4 variety
of contexts, including multi--person game theory and abstract
covering problems. It is shown that one of the network
theorems surveyed in the first part of the paper extends
to all blocking systems, and indeed characterizes such

systems.
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NETWORKS, FRAMES, BLOCKING SYSTEMS

INTRODUCTION

In this paper we survey a few L2sic problems, theorems,
and constructions concerning flow networks, and describe
how some of these can be extended to more general structures.

The paper is divided into three parts.

Most of the material of Part I, which deals with
networks, can be found in Ford and Fulkerson (8], or in
earlier papers by the same authors. In the main, we limit
the discussion in Part 1 to four network problems: maximum
flow, minimum path, maximum capacity path, and the lungth-
width inequality.

Part 11 extends this discussion to arbitrary real
matrices by making use of what we call the frame of a
subspace of Euclidean n-space, a notion very closely related
to that of a real matric matroid. In particular, Part 11
can be specialized to a subclass of real matric matroids
introduced and studied by Tutte {Jl], and called by him
regular matroids. Regular matroids have been recently
re-investigated by Minty (24}, who has given another system
of axioms for a dual pair of regular matroids. The resulting
structure is called a digraphoid in (24], where it Is shown
that some of the main theorems of network-programming
generalize to digraphoid-programming. Our treatment provides

another viewpoint on digraphoid-programming, and indeed on




linear programming in general. It is shown in Part II that
the main theorems of Part I have direct analogues for
arbitrary real matrices. We want to emphasize, however,
that the special network algorithms of Part I do not, so
far as we know, have such analogues. Fven for the case of
digraphoid-programming, we know of nothing better
computationally than the simplex method of Dantzig [3].
While the simplex method has proved to be a powerful tool,
both theoretically and computationally, it is not yet known
whether it is a good algovithm, in the t.chnical sense
stressed by Edmonds [6], whereas the network algorithms of
Part 1 are good in this sense.

In Part III a very general combinatorial structure,
which we call a blocking system, is given an axiomatic
formulation. These systems have ari<en previcusly in a
variety of contexts, including multi-person game theory
[29] and abstract covering problems {14, 21, 22]. They
have recently been studied by Lehman [22], who has given
conditions on a blocking system in order that a max-flow
min-cut equality or a length-width inequality hold, and
also by Edmonds and Fulkerson {7], who have shown that one
of the network theorems of Part I extends to all blocking

systens, and indeed characterizes such systems.
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PART 1. NETWORKS

1. MAXIMUM FLOW

Let G be a graph with edge set E and vertex set V.
Both E and V are assumed finite. The two ends of an edge
may be distinct vertices or the same vertex; in the latter
case the edge is frequently called a loop- We also allow
multiple edges joining the same pair of vertices, or
multiple loops on the same vertex.

It will be convenient in this section to orient G by
distinguishing one end of each edge as positive and the
other as negative. For & loop these coincide. 1If e € E
has positive end u ¢ ¥, negative end v « V, we sometimes

writ

[5/]

e - fu, v). For each edge e ¢ E and vertex v ¢ V we
define an integer a{v, e) as follows. If v and e are not
incidenz, or if e is a lcop, then a(v, e) = 0. Otherwise
a{v, e) = 1 or -1 according as v is the positive or negative

end of e. We call the resulting matrix the vertex—edge

incidence matrix of G.

Sunpose now that each edge e « E has associated with
it a nonnegative real number c(e), the capacity of e. Let
s and t be two distinguished vertices of G. A (feasible)

flow, of magnitude (or amount) 2, from s to t in G is a

real-valued function x with domain E that satisfies the
linear equations and inequalities
a, v = s,

(1.1) D a(v, e)x(e) = ~-q, v = t,
e E 0, v+¢s,t




e
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(1.2) - c(e) < x(e) < c(e), e € E.

Thus |x(e)| can be thought of as the magnitude of flow in
edge e; 1if x(e) > 0, the direction of flow in e agrees with
the orientation of e; if x(e) < 0, the direction of flow

is against the orientation of e. The equations (1.1)
stipulate that a units of flow leave s and enter t, flow
being conserved at all other vertices. We call s the source,

t the sink. The maximum flow problem is that of constructing

an x that satisfies (1.1), (1.2), and maximizes a.

We can get rid of the asymmetry in equations (1.1) by
adding a special edge e' to G joining s and t, say e'~ (t, s),
which returns a units of flow to s from t; we may take c(e')
large. In other words, by distinguishing one edge e' of

a graph, the maximum flow problem may be viewed as that of

maximizing x(e') subject to (1.2) and the conservation

equations

(1.1") La(v, e)x(e) =0, v e V.
eeE
For the moment, we shall continue to work with (1.1) and
(1.2), however.
We refer to the graph G with capacity function ¢ and

distinguished vertex pair s, t as a (two-terminal) flow

network, or briefly, a network. 1In general, we use the

word network in this paper to mean a graph together with

one or more real-valued functions defined on its edges.




To state the fundamental theorem about maximum network

flow, we require one other notion about graphs, that of a

cut. A cut K c E separating s and t in a graph G is a

subset of edges that has some edge in common with each path
joining s and t in G. We say that K blocks all such paths.
(Here a path joining s and t is a sequence of distinct
end-to-end edges that starts at s and ends at t. Edges may
be traversed with or against their orientations in going
from s to t along the path.) If all edges of K are
deleted from G, the vertices s and t fall in separate
components of the new graph. It is intuitively clear that

a in (1.1) is bounded above by

(1.3) c(K) = 2L c(e),

ecK
the capacity of cut K. We can prove this from (1.1) and
(1.2) by adding those equations of (l1.1) corresponding to
vertices in the s-component of the graph G' gotten from G

by deleting edges of K. The result is

(1.4) Q= Z)+ x(e) - 23_ x(e) < c(K),

eckK eek
where K' (K') consists of those edges of K with positive
(negative) end in the s-component of G' and negative
(positive) end outside this component. In words, for an

arbitrary flow from s to t of magnitude a and an arbitrary




cut separatirg s and t, the net flow acrcss the cut is a,
which is consequently bounded above by the cut capacity.
Theorem 1.1 below asserts that equality holds in (1.4) for
some flow and some cut, and hence the flow is a maximum

flow, the cut a minimum cut [9].

Theorem 1.1. For any network the maximum amount of

flow from source to sink is equal to the minimum capacity of

all cuts separating source and sink.

Theorem 1.1, the max-flow min-cut theorem, is a
combinatorial version, for the special case of the maximum
flow problem, of the duality theorem for iinear programs,
and can be deduced from it [4]. Such a proof makes crucial
use of the fact that the vertex-edge incidence matrix of
an oriented graph G is totally unimodular, i.e., every square
submatrix has determinant 0 or + 1. A simpler proof of
Theorem 1.1 is the second proof given by Ford and Fulkerson
[10]. This proof also leads to an efficient algorithm for
constructing a maximum flow.

Proof of Theorem 1l.1: It suffices to establish the

existence of a flow x and a cut K for which equality holds
in (1.4). Let x be a maximum flow, of amount a, from s to

t. Define a set U c V recursively as follows:

(1.5a) s € U;




(1.5b) if ue Uand e ~ (u, v) is an edge such
that x(e) < c(e), then v € U; 1if u e U
and e ~ (v, u) is an edge such that

x(e) > — c(e), then v € U.

We assert that t ¢ U=V — U. For suppost not. It then
follows from the recursive definition of U that there is

a path P from s to t such that x(e) < c(e) on edges e ¢ pt
and x(e) > — c(e) on edges e ¢ P . Here P = Pty P,
where P+ consists of those e € P whose orientations agree

with the orientation of P from s to t. Let

(1.6) € = min[min+ (c(e) — x(e)), min_ (c(e) + x(e))]) > 0
ecP eeP
and define
x(e), e ¢ P,
(1.7) x'(e) = {x(e) + ¢, e € P+,

x(e) - ¢, e € P .

Then x' is a feasible flow from s to t of amount a + ¢,
contradicting the assumption that x was a maximum feasible
flow. Hence t ¢ U, as asserted. Let K be the set of
edges joining U and U, and write K = K™ 1y K, where K*(K")
consists of those edges of K with positive (negative) end
in U. Then K is a cut separating s and t, and it follows
from the definition of U that x(e) = c(e) for e ¢ K+,
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x(e) = — c(e) for e ¢ K . Hence equality holds in (1.4).
Notice that the proof shows that a flow x is maximum
if and only if there is no x-augmenting path from s to t
(i.e., a path P such that (1.7) yields a feasible flow x').
If we assume that the capacity function c¢ is integral-
(or rational-) velued, the proof provides a good algorithm
for constructing a maximum flow. We can begin the
computation with any integral-valued feasible flow from s
to t, e.g., x(e) = 0 all e ¢ E. We then institute a rearch
for a flow-augmenting path using the prescription of (1l.5a)
and (1.5b). A good way to apply this prescription is to
fan out from s to all its neighboring vertices that can be
put into U using (1.5b); then repeat the process by selecting
one of these vertices, scanning it for all its neighbors
not yet in U that can now be put into U, and so on. This
way of searching for a flow-augmenting path is called the
"labeling process" in [8], where it is described in terms
of assigning labels to vertices as we put them in U; in
terms of (1.5b), the label assigned to vertex v is u.
(This simple process forms the basis for most of ihe
network-programming algorithms described in [8].) If this
search is successful in finding t, the flow increment ¢
of (1.6) is a positive integer, and hence x' of (1.7) is
again an integral-valued flow. If unsuccessful, the
present flow is a maximum flow, and a minimum cut has been

located. Thus the algorithm terminates, and at termination

- ——— it b e T
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we have constructed an integral maximua flow and a minimum

cut.

Theorem 1.2. If the capacity function c is integral-

valued, there is an integral maximum flow.

Theorem 1.2 is important in combinatorial applications
of network flows.

While we have taken the capacity constraints (1.2) to
be symmetric about the origin, there is no real need for

this assumption. The constraints (1.2) can be changed to

(1.2") b(e) < x(e) < c(e), e € E,

and handled in an analogous fashion provided they are

feasible, that is, the constraint-set (1.1), (1.2') is nonempty.
(Thus, for example, ''one-way streets' can be incorporated

in the model.) Even the feasibility question can be dealt

with by an appropriate modification of the argument used in

the proof of Theorem 1.1, or by applying a version of

Theorem 1.1 to an enlarged network. For a detailed

discussion of this and other extensions, e.g., capacities

on vertices as well as edges, we refer to [8]. Here we

shall simply state a typical feasibility theorem, the

circulation theorem due to Hoffman [18].




Theorem 1.3. Let b(e) < c(e) for each edge e of a

network G be given real numbers. The constraints (1.1')

and (1.2°) are feasible in G if and only if, for each

subset U c V, we have

L, cle) = L_b(e) >0,

eecK eck

where K' (K') consists of those edges of G with positive

(negative) end in U and negative (positive) end in V — U.

Minty [23] has distilled from the above proof of the
max-flow min-cut theorem and from other network algorithms
of Ford and Fulkerson [10, 11] a theorem about graphs, which
Berge and Ghouila-Houri [1] have called '"Lemme des Arcs

Colorés." We call it the painting theorem. To state it,

we require some definitions. A circuit C ¢ E in graph G
is a minimal closed path in G, that is, a set of edges
which forms a closed path and is minimal with respect to

this property. A cocircuit D = E is a minimal cut, that

is, a set of edges whose deletion increases the number of
connected components of G and 158 minimal with respect to
this property. (In terms of the (0, + l)-vertex-edge
incidence matrix of an orientation of G, a circuit
corresponds to a minimal dependent set of columns of the
matrix, where ''dependent' means "linearly dependent over

the rcals." If G is unoriented, and the vertex-edge matrix e
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is taken to be a (0, 1) - matrix, then a circuit corresponds
to a minimal dependent set of columns, where 'dependent"
means ''linearly dependent over the integers mod 2.") A
painting of G is a partition of the edges of G into three
sets R, W, B, and the distinguishing of one edge of the

set R. It may be viewed as painting the edges of G with
three colors—red, white, blue—with one red edge being

distinguished and painted dark red.

Theorem 1.4. Given a painting of an oriented graph

G, precisely one of the following alte-natives holds:

(1) There is a circuit jin G containing the daxk rxed
edge but no white edge, in which all red edges are

similarly oriented.

(11) There is a cocircuit in G containing the dark

— e —————————— a——

red edge but no blue edge, in which all red edges are

similarly oriented.

Proof: Let e' ~ (t, 8) be the dark red edge. If
e' 18 a loop, then (i) holds and (ii) fails, by the
minimality of a cocircuit. If t ¢ s, define a subset

U < V recursively by the rules
(1.8a) 8 ¢ U;

(1.8b) fueUand e~ (u, v) is8 red or blue, then
veU, {fueUand e~ (v, u) is blue, then

v € U.




If t € U, there is an elementary (minimal, simple) path

from s to t of red and blue edges in which all red edges
are oriented in the path direction. This path, together
with edge e', provides the circuit of (i). Conversely, if
(1) holds, then t € U. 1f t ¢ U, consider the set of edges
joining U to U = V — U. These edges are either white or
red, and any red edge is oriented from U to U, as e' is.
Delete these edges. The resulting graph has components

U, ﬁl’ +++s U with t € U). The set of edges joining U

and U1 is the cocircuit of (ii). Conversely, if (ii) holds,
then t cannot be in U via (1.8b).

To apply the painting theorem to the maximum flow
problem, first add the veturn-flow edge e' ~ (t, s) to the
network with c(e') large. Let x satisfy (1.1'), (1.2).
Paint e' dark red. For other edges e: If c(e) = 0, paint
e white; 1f x(e) = c(e) > 0, paint e red and reorient e;
if x(e) = - c(e) < 0, paint e red; if — c(e) < x(e) < c(e),
paint e blue. Alternative (i) of the painting theorem
then leads to a flow-sugmenting path, whereas (il) leads
to a minimum cut. In this application the white edges
play a pale role—they could have been deleted once and
for all. But there are other network—programming problems
for which labeling algorithms that have been described
(10, 11, 12, 23] can be viewed in terms of edge paintings;
the role played by white edges i3 less passive in some of

these.




Before leaving the discussion of maximum network
flow, we mention an alternative formulation of the problem.
This formulatior is in temms of the path-edge incidence
matrix of an unoriented grapn; it wes used in the first
proof of the max-flow min-cut theorem [9]. Let P be the
collection of all paths from s to t in G. For each P ¢*#
and e € E define an integer p(P, e) = 1 or 0O according as
e € Por e ¢ P. We call the resulting matrix the path-
edge incidence matrix of G. Let y be a real-valued

iunction with domain F that satisfies

(1.9) 2 y(P)p(P, e) < c(e), e € E,
Pe®
(1.10) y(P) >0, PeP.

Thus y(P) can be thought of as the magnitude of flow in P,
and (1.9) says that the total amount of flow in e cannot
exceed its capacity. Subject to (1.9), (1.10), we wish to

maximize

71.11) 2 y(P).

PeP
This version ¢f the problem might seem to be more restrictive,
since if two paths P1 and P, contain the same edge e in
opposite directions, (1.9) insists that we add y(Pl) and

y(P;) instead of "cancelling flows in opposite directions.”
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The two formulations are equivalent, however.
If the capacity function c¢ is integral valued, there

is an integral—-valued y satisfying (1.9), (1.10}, and

maximizing (1.11). An edge-form of Menger's theorem [20] can

be deduced froum this:

Theorem 1.5. Let G be an unoriented graph with two

distinguished vertices s and t. The maximum number of

edge—disjoint paths joining s and t is equal to the minimum

number of edges in a cut separating s and t.

2. MINIMUM PATH

Let ¢ (e) be a real nonnegative number associated with
edge e of an unoriented, connected graph G. We shall think

of t(e) as the length of edge e. The length of path P is

(2.1) L(P) = 2 t(e).

ecP

The second problem concerning two—terminal networks that

we consider is the minimum path problem: to find a path

joining s and t that has minimum length. There are several
good methods known for doing this. We describe one below,
but first we state and prove a theorem that is a path—cut
dual of the max—flow min—cut theorem. Consider the maximum
flow problem in terms of the path—edge incidence matrix.
Suppose now that we form the cut—edge incidence matrix by
defining d(X, e) = 1 or 0 according as e ¢ K or e ¢ K.

Here K is a cut separating s and t. Let % denote the
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class of such cuts. Analogously to (1.9), (1.10), let

y be a real-valued function with domain W satisfying
(2.1) 2 y(R)A(K, e) < i(e), e ckE,
keX
(2.2) y(X) > 0, Ke¥%
Again we wish to maximize

(2.3) 2 y(K)
, Kek
subject to these constraints.
The maximum value of (2.3) cannot exceed the length
of a minimum path from s to t, beceuse a path from s to
t has some edge in common with each K ¢ K .

Theorem 2.1. The maximum value of (2.3) subject to

(2.1) and (2.2) is egual to the minimum path length from

s to t.

The purely combinatorial version of (2.1) — (2.3) in
which t(e) = 1 all e ¢ E and y(K) = 0 or 1 all K ¢ X,
asks for the maximum number of mutually disjoint cuts
separating s and t. As was the case for the maximum ilow
problem, 1f ¢ is integral valued, there is an integral—
valued y that solves the linear program (2.1) - (2.3).
This will fcllow from the proof given below. Hence the
maximum number of disjoint cuts separating s and t is equal

to the minimum number of edges in a path joining s and t.
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Proof of Theorem 2.1. Let w(v) be the minimum path

length from s to v, for all v € V. Thus n{v) > 0 arnd

n(s) = 0. Let 0 = mg <My < e < ™ be the distinct values
assumed by m. Partition V into n + 1 parts Vgs Vis ooes Vo,
where

Vi = {v e Vn(v) =mn}.

Thus s € Vo- Suppose t € V. We then single out k cuts

Ky Kz, ceey Kk in lg_?y letting Kj be the set ;fledges

joining vertices of UO Vi and vertices of V-~ U Vi’
i= iml)

j=1, 2, ..., k. Define y(Kj) = Wj - "j—l’ j=1.2, ..., k,

and y(K) = 0 for other cuts K ¢ . Then y solves (2..) -

(2.3). To prove this, it suffices to show that y satisfies

(2.1), since clearly y(K) > C &ll K¢ &, and

k
KE;LY(K) - jéi(ﬁj - "j—l) =~ Mo = m = m(t).

Thus consider an edge e joining a vertex u cf vy and a
vertex v of Vj, where 1 < j < k, so that e belongs to each of
the cuts Ki+1’ reea Ky, but to no otner cut having positive

weight in y. Suppose that
y(Ki+1) + ... + y(Kj) =Ty Ty > 4(e)-

There is a path from s to u of length mys adjoining e to

e A AP A N e sk




this path yields a path from s to v of length my + 1 (e) <
my + (nj - "i) =Ty a contradiction. 1If j > k, a similar
contradiction results. Hence y satisfies (2.1) and solves
(2.1) - (2.3).

For the case of a planar two—terminal network (that is,
the graph G together with the additional edge e' joining
the terminals s and t is a planar graph), where one can
construct a dual two—terminal network in which source-—sink
paths correspond to cuts separating s and t in the p.imal
network, the duality between the maximum flow problem and
the minimum path problem was noted in [9), and was exploited
in developing a max—flow algorithm for such networks, the
"top—most path' method of [9). Theorem 2.1 for arbitrary
two~terminal networks is due to Robacker [27]. From the
point of view of Part Il of this paper, Theorem 2.1 and
the max—flow mim—cut theorem are abstractly the same.

We return now to the problem of constructing a minimum
path joining s and t. The procedure we sketch here is a
special case of a more general algorithm for constructing
minimum cost flows in networks [l11]. It evaluates the
minimum path length n(v) from s to v for all v € V, and
hence provides a solution y to (2.1) — (2.3). We may
suppose in the description that there are no loops or multiple
edges in G. 1f edge e has ends u, v, we write the unordered

pair (u, v) for e and {(u, v) for L(e).

e ¥y T

To start out, take n(s) = 0. Next look at all edges
(s, v) snd find the minimum value of ¢(s, v) for such edges.

If v is a vertex vielding this minimum, set n(v) = (8, V).
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The general step of the computation is as follows. Suppose
that m(u) has been defined for ue Uc V. Let U=V — U and

compute

(2.4) min [r(u) +4(u, v)] = 5.
uel,vel

If the minimum in (2.4) is achieved for an edge (u, v),
set m(v) = §. Repeat the general step until m(v) has been
defined for all v € V. The number n(v) defined in this way
is the minimum path length from s to v. A convenient way
to do the calculation is to assign to vertex v the label
(u, m(v)), where u is some vertex for which the minimum
in (2.4) is achieved. A minimum path from s to v can then
be found by backtracking from v to s as directed by first
members of the labels.

At the conclusion of the computation, the numbers n(v)

satisfy the inequalities

(2.5) =t(u, v) <nm(v) ~n(u) < t(u, v)

for all edges (u, v) of G, and maximize n(t) — n(s) subject

to (2.5). If we interpret {(u, v) as the cost of transporting

a unit of some commodity over edge (u, v), the number mn(v)
can be given the economic interpretation of a price placed

on a unit of the commodity at location v. Inequalities

(2.5) then say that no profit can be made by purchasing a
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unit of the commodity at u and transporting it tc v or vice
versa. Subject to these restrictions, the price difference
m(t) — n(s) 1is to be maximized. Thus the maximum value of
n(t) — n(s) subject to (2.5) is equal to the minimum path
cost from s to t. In another interpretation, Duffin has
called this result the "'max—potential equals min—-work"
theorem [5].

The assumption that edge lengths are nonnegative has
been used in an essential way in this section. If edge
lengths are allowed tc be negative, and if we ask for a
minimum length simple path joining two vertices, the problem
is much harder. There are no known good algorithms for
constructing such a path.

3. MAXIMUM CAPACITY PATH

Again we consider a two—terminal unoriented network
G with source s, sink t, and capacity function c. This
time we wish to find a path P from s to t that has the largest
flow capacity of all such paths, i.e., we want to find a P

that achieves

(3.1) max min c(e),
PefP ecP

where # is the class of all paths joining s and t. We

call this the maximum capacity path problem.
This bottleneck problem has been considered in [13, 19,

26]. It is related to the minimum path problem in the sense
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that methods for solving the latter can be modified to
solve it. But here we shall describe another easy way of
solving the problem, one that extends to blocking systems
(Part III). This method of solution might be termed the
"threshold method." It leads to the following min—max
theorem concerning paths and cuts [13].

Iheorem 3.1. Let G be a network with capacity function
¢ and terminals s and t. Then

(3.2) max min c(e) = min max c(e),
PeP eecP Ke®X eeK

n S et ot SES——

Proof. If P e P and K e ¥, then PN K is nonempty.
Let e' € PN K. Then

In

min c(e) < c(e') < max c(e).
ecP eek

It follows that

(3.3) max min c(e) < min max c(e).
PeP ecP KeX eeK

IA

To establish equality in (3.3), we can proceed as
follows. Let €] > €y > .0v >y be the distinct values

assumed by the capacity function, and let ) be large.

—— A -
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Let G, be the network obtained from G by deleting all edges
e satisfying c(e) < cys i=0,1, ..., n. Thus GO has no
edges, and Gn = G. Suppose Gj is the first Gi that contains
a path joining s and t. (We are tacitly assuming that ¥
is nonempty, although an appropriate interpretation of
(3.2) holds if this isn't so.) Since Gj has a path P ¢ P
and Gj—l contains no path in #, we have 1:2; c(e) = ¢y
On the other hand, the edges deleted from G in forming
Gj—l contain a cut K € X , whereas the edges deleted from
G ir forming Gj contain no cut in %, and thus 2:; c(e) = cy-
Consequently equality holds in (3.3).

Thus to solve the maximum capacity path problem, we
lower the threshold for edge capacities until a path
joining s and t is produced. There are good algorithms
for recognizing when this happens.

Notice that no use is made of the fact that c(e) > 0.
Indeed the solution depends only on the ordering of the
edge numbers c(e), not on their magnitudes.

An appropriate version of the threshold method can
be used to locate a flow-augmenting path that yields the
largest flow increment (1.6). Thus one way to solve the
maximum flow problem is to successively find maximum capacity

flow-augmenting paths by a threshold method.

One can also show
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(3.4) min max c(e) = max min c(e).
Pe” eeP KeX eckK

For an interpretation, think of G as a highway map with
c(e) being the maximum elevation encountered in driving
over edge e.

4. LENGTH-WIUTH INEQUALITY.

Duffin [5] has defined the notions of '"extremal length"
and "extremal width' for two—terminal networks having edge
registances and has shown that these are reciprocal quantities.
From this relationship he deduced a certain inequality com
cerning paths and cuts for a two—terminal network in which
each edge has associated with it two nonnegative numbers
t(e) and w(e), the length and width of e. An earlier, purely
combinatorial version of this inequality in which t(e) =
w(e) = 1 18 due to Moore and Shannon [25]. This version
says that 1f \ is the least number of edges in a path
joining 8 and t and w is the least number of edges in a
cut separating s and t, then \w is less than or cqual to

the number of edges in the graph. More generally, let

(6.1) A =min t(P) = min 2 t(e),
Pe¥ PeP ecP

(4.2) w = min w(K) = min 2, w(e),
Ke X Ke X ecK

wvhere © is the class of all paths joining s and t, X is

the class of all cuts separating s and t. The number )
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is called the length of G, w the width of G, relative to
s and t. The length—width inequality asserts that

(4.3) \w < 2 t(e)w(e).
ecE
A proof of (4.3) can be given usin, either the max—
flow min—cut theorem or its path—cut dual. We use the
former approach. Interpret w(e) as the flow-capacity of
e. Then by the max—flow minm—cut equality, there is a flow
from s to t of magnitude w. It follows that there is a

function y defined on P satisfying (1.9), (1.10), and
2 y(P) = w.
Pe P

Thus

\w =) 2 y(P) s 2 t(P)y(P) = 22 L t(e)y(P)
Pe¥P Pe P Pe

P ecP

< L ot(e) L y(P)p(P, €) £ 2 t(e)w(e).
ec<E PeP ecE

Although the length~width inequality appears wesk,
we shall point out in Part III that the existence of a
length—width inequality for a blocking system implies the

vax—-flow min—cut equality for the system.
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PART I1 — FRAMES

Our aim in this part of the paper is to indicate how
the theorems of Part I can be generalized to frames of
subspaces of Euclidean n—space. (We shall define a frame
later on. But it should be mentioned here that the word
"frame' was used by Tutte in some of his early work on
chain—groups and matroids in place of the word "matroid".

We appropriate it, with his permission, for a more
restrictive use.) The notion of a frame is closely related
to that of a matric matroid. Inceed a frame can be viewed
as the structure obtained just prior to the matroid in
making the transition from matrix to its matroid.

Matroids were introduced by Whitney [35] as a gener—
alization of dependence properties in graphs or in matrices.
There is now an extensive and deep theory of matroids,
mostly due to Tutte [30, 31, 32. 33, 34]. We require only
the more elementary parts cf this theory. (Certainly Tutte's

Introduction to the Theory of Matroids [34] would suffice.)

The generalization from Part I to Part I1 can be des-
cribed roughly as that obtained by replacing the vertex—
edge incidence matrix of an oriented graph by an arbitrary
real matrix. (More generally, we cculd consider matrices
over any ordered field.) Thus we pass from the special
network programs of Part 1 to general linear programs.

Associated with every linear program there is s dual

program. Associated with every matroid there is a dual
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matroid. Assocliated with every frame there is a dual frame.
Frame duality provides a bridge between matroid duality and
linear programming duality. The basic concept underlying
duality in ai! tnree instances is orthogonality.

Althovrin the material of this part of the paper was
developed independently by “he writer, we doubt that much
of it is new. A .ecent paper by Rockafellar [28] contains
a similar development, for example. Our attention has also
been called to work of Camion [2], and to a forthcoming
beok on networks by Iri. Most of the notions and some
of the results are either explicit or implicit in Tutte's
work on matrcids. We believe that our treatment of the
generalized maximum flow problem and the resulting length-

width inequality for real matrices may be new, however.

1. FRAMES OF REAL SUBS:ACES

Let ® Le an arbitrary subspace of n—dimensional
Euclidean space #". Tor the correspondence with Part I,
a vector X = (xl, Xos =vey xn) in 72" should be thought of
as a real-valued function on a finite set of "edges"
Eo= {e, ey, .-+, e ] that maps e; into x;, and % should
be viewed as the row space of an m by n real matrix
A= (aij)’ the '"generalized vertex—edge incidence matrix".
Let Y = (yl’ Fos «ons yn) be a vector of ®. The
support S(Y) of Y consists of those e; € E such that y; ¥ 0.

A vector Y ¢ ® 1is called an elementary vector of £ if it

T
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is nonzero and if there is no ncnzero vector X ¢ ® such
that S(X) is a proper subset of S(Y). Thus if X and Y
are two elementary vectors of ® having the same support,
then X is a nonzero multiple of Y. Consequently we may
associate with ® a unique, finite set of lines, each line
being determined by an elementary vector of R. We call
this collection of lines the frame # = % (®) of #,
and scmetimes refer to an elementary vector F of # as a
frame—-vector of ®R.

lLet X and Y be vectors of ® . The vector X conforms

to V if x,y. > O whenever x, ¢ 0. In particular, S(X) c S(Y).
—_ i’i i

Lemma 1.1. Let Y be a nonzero vector of ®. There

exists an elementary vector F of ® that conforms to Y.

Proof: 1f not, select Y = (yl, Yor oo yn) € ® so
that no elementary vecior of ® conforms to Y, and so that
the number of elements in S(Y) is as small as possible
consistent with this condition. let X = (xl, Koy +oes xn)
be an elementary vector of R such that S(X) ¢ S(Y). Let
I ¢ E denote the set of e; € E such that Yi and x; have
opposite signs. Thus I is nonempty. Consider the vector

Z =Y + aX, where

y
a = min (— ——i)> 0.
eieI

The vector Z conforms to Y and S(Z) is properly included

in S(Y). By the selection of Y, there is an elementary
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vector F conforming to Z. But then F conforms to Y. This ¥
contradiction establishes the lemma.
An important consequence of Lemma 1.1 is that any non-—

zero vector Y € ® can be written as a sum

(1.1) Y=F +F)+... +F
of elementary vectors of , where each elementary vector
l"i in (1.1) conforms to Y, and two elementary vectors

Fy, 1-"j with i ¢ j lie on distinct frame—lines of ®. We

call (1.1) a conformal frame decomposition of Y. In general,

such a decomposition is far from unique, of course.

We return now to the matrix A = (aij) whose rows

generate R . A (column) pivot on an element 8, + 0 of

A is a sequence of elementary row operations on A that
transforms A into a matrix A' = (aij) in which all& =1,
a{l = 0 for i $# k. Starting with A, we can produce from
it by a sequence of column pivots and deletions of zero
rows a matrix R whose columns can be permuted to have the

form
(1'2) ) (I: B)'
If A has rank r, then R is r by n, the rows of R are a

basis for R, and R contains an r by r permutation sub—

matrix whose columns correspond to some S < E. Following
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Tutte, we refer to such a matrix R as a standard representa-—

tive matrix of . Note that each row of R is an ele—

mentary vector of ®. The following theorem asserts that,
conversely, any elementary vector of ® can be obtained

from A by a finite sequence of pivots.

Theorem 1.2. Let F be an eiementary vector of =®.

Then there exists a standard representative matrix R of ®

Proof. Extend F to a basis ® of ¥, and write the
resulting collection of vectors as a matrix having F as
its first row, say. Pivot on a nonzero coordinate of F.
Consider the second row of the transformed matrix. This
row has a nonzero coordinate in one of the coluems
corresponding to zero coordinates of the first row, for
otherwise either F would not be elementary or # would
not be a basis. Pivot on such an element. Repetition
of this process produces a standard representative matrix
R of ® having a multiple of F as its first row.

In particular, an elementary vector of ® can have
at most n — r + 1 nonzero coordinates.

Notice also that if # and 4 are subspaces having
the same frame # (%) = $(4), then £ =« 4 .

2. MATROIDS

A matroid is a purely combinatorial structure defined

on a finite set E. There are a number of equivalent axiom

vl
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systems for matroids. One in terms of "circuits” is as
follows. Let € be a finite family of nonempty subsets of
E. Members of € are the circuits of a matroid (E, € )

if the following axioms hold:

(2.1) No member of € is a proper subset of another.

(2.2) Let e; and ey be distinct members of E, and suppose
C, and C, are members of €@ such that e, € C; N Cy and
e, € C1 - CZ' Then there exists C3 € @ such that

The motivation comes from graphs. Let E be the set
of edges of an unoriented graph G. Then the collection €
of (graph) circuits of G satisfies (2.1), (2.2), and thus
(E, @) is a matroid. Such a matroid is graphic. The
collection & of cocircuits of G also satisfies (2.1),
(2.2), and thus forms a matroid (E,&). Such a matroid is
cographic. For another important example, consider the
row space ® of the m by n matrix A. Take E = {el, e,

. en}. Then the collection € of supports of frame—
vectors of ¥ satisfies (2.1), (2.2) and is consequently a

matroid (E,€). Such a matroid is called a real matric

matroid.

Associated with every matroid (E, @) there is a unique
dual matroid (E, €*). A subset of E is a member of €*
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if and only if the cardinality of its intersection with
every element of @ is not equal to 1, and it is minimal with
respect to this property. The dual of the dual is the
primal: (E,@**) = (E, ®). 1In case (E, @) is a graphic
matroid, the cographic matroid (E,#) is the dual:
(E, &) = (E, &*), (E,0%) = (E,€). If (E,€) is a
real matric matroid arising from a subspace #, the dual
matroid is the real matric matroid obtained from the
orthogonal complement #R* of R. Thus if ¥is the frame
of R, we call the frame %* of R* the dual of ¥.
I1f ® has standard representative matrix R = I, B),
then a standard representative matrix for R* is R* =
(BT, - In—r)‘ A frame—vector of #® can be viewed as
representing the coefficients of a minimal linear dependency
among columns of R*.

Let A = (aij) be the vertex—edge incidence matrix of
an oriented graph G. It is well—-known that the matrix A
has the total unimodularity property: every square sub—
matrix of A has determinant 0, 1, or —1. One can deduce
from this that each elementary vector of the row space 2
of A is a multiple of a vector having coordinates 0, 1,
or -1. Such a vector is called primitive. Conversely, if
a subspace # has the property that each elementavy vector
of ¥ i3 a multiple of a primitive vector, then ® is the

row space of some totally unimodular matrix A = (a In

U)'
particular, a3y = 0, 1, or =1. Such a space ® is called
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regular and the corresponding matroid is a regular matroid.

Thus regular matroids are precisely those real matric
matroids generated by totally unimodular matrices. The
dual of a regular matroid is regular. A dual pair of
regular matroids is called a "digraphoid" in [24].

(It should be remarked, though we make no use of it
here, that Tutte has shown that a regular matroid is a
binary matric matroid, that is, a matroid generated by a
matrix over the field of two elements, and has characterized
regular matroids as a subset of the binary matric matroids.
This characterization, which is in terms of certain excluded
matroid minors—a matroid minor is not the same thing as
a matrix minor—is deeper than the one above, also due to
Tutte, of regular matroids as a subset of real matric
matroids. It can also be shown, as was pointed out to the
wiiter by Edmonds, that a matroid is regular if and only if
it is both a real matric matroid and a binary matric matroid.
From this one can deduce that a (0, + 1)-matrix (I, B) is
totally unimodular if and only if the binary rank of any
subset S of its columns is equal to the real rank of S.

This can also be proved directly. It is also possible to
give a characterization of regular matroids among those
real matric matroids generated by (0, + 1)-matrices in
terms of a single excluded matroid minor: namely, exclude

the self-—dual matroid on a set of four elements, every

triple of which is a circuit. The problem of characterizing
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regular matroids among all real matric matroids in terms

of excluded matroid minors appears to be open, as does the
more fundamental problem of giving necessary and sufficient
conditions in order that two real matrices generate the
same matroid.)

The real matric matroid generated by the vertex—edge
incidence matrix A of an oriented graph is a regular matroid.
The nonzero coordinates of an elementary vector F of the
row space ® of A pick out a cocircuit in the graph, two
edges being similarly oriented in this cocircuit if the
corresponding coordinates of F have the same sign. Con—
versely, each cocircuit of the graph can be exhibited in this
way as an elementary vector of ®. On the other hand, non—
zero coordinates of an elementary vector of ®* pick out a
circuit in the graph, two edges being similarly oriented
in this circuit if the corresponding coordinates have the
same sign, and each circuit of the graph can be exhibited

in this way.

3. GENERALIZED FLOWS AND CUTS

Let A = (aij) be an m by n real matrix having row
space ®. For each ey ¢ E= {el, e, ..., e}, let <
be a nonnegative real number, the capacity of ej. In
analogy with (1.1') and (1.2) of Part I, we define a

(feasible) flow X on A to be a vector X = (x;, X3, -+,

xn) that satisfies the linear homogeneous equations




n

(3.1) ay3%y =0,i=1,2, ..., m,
j=1

and inequalities
.2 , j=1,2, ..., n.
(3.2) -cj.ngg_cj j n

Thus X ¢ ®*. Clearly feasible flows exist, e.g. X = 0.

The analogue of the maximum flow problem is to find a
feasible flow X on A that maximizes some specified component
of X, say X1, where c; =-. We call such a flow a maximum
el—_tlo__w.

Let K = (-1, k2’ ceey kn) be an elementary vector of
#.- (Such elementary vectors exist unless the first column
of A consists entirely of 0's—this corresponds to the
graphic case in which e is a loop.) We say that K is an
e;—cut. There are finitely many such. The capacity of an

el—cuc K i8 defined to be

n n n

(3.3 X ke = 2 ke = 3 lkyeyl
Yl juz jnz
40 k<0

I1f X is a feasible flow and K an el—cut, then, since

X e®R" and K ¢ R, we have

n
2 xjkj - Oo
j=
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and hence, by (3.2),
n n
(3.4) xp = 2 xjky < 20 Ikgeyl-
j=2 j=2

Theorem 3.1. The maximum value of x; subject to

(3.1) and (3.2) is equal to the mipimum capacity of all

el—cuts .

Proof. It suffices to show that there is a flow and
an e,—cut for which equality holds in (3.4). A proof of
this can be given using either the linear programming
duality theorem [3, 16] or Dantzig's simplex method for
solving linear programs [3]. We sketch the former approach.
Let X = (xl, Xos +oos xn) be a maximum el—flow. The duality
theorem for the linear program at hand then implies that there
exists an mvector (m;, My, ..., 1) such that the following

"optimality'" properties hold:

m
(35) 1+ : “i‘il -0,
i=1
and, for j = 2, ..., n,
m
(3.6) 2 "i'ij >0-= Xy = €y
i=]
m

Z "1‘1j<°=xj'-°j'
f=1

s Tl

s




m m

Y = (Z U TEPRRRRY Z "iain) = (-1, Yo +ees yn).

i=] i=1
Thus Y ¢ R . By Lemma 1.1, there exists an elementary
vector K = (-1, kz, cae, kn) of ® that conforms to Y.

The properties (3.6) then hold for K and imply that equality
holds in (3.4). This proves Theorem 3.1.
The simplex method constructs a maximum e;—flow and
a minimum el—cut simultaneously. Indeed, the method
proceeds by a sequence of pivots on A, and at termination
yields a standard representative matrix R of #®, one of
whose rows is an e,—cut of minimum capacity. ‘
If A is totally unimodular, then the coordinates of
K in Theorem 3.1 are 0, 1, or -1, and we have a more purely
combinatorial result: namely, the generalization of the
max—flow min—cut theorem to regular matroids or digraphoids
noted in [24]. Observe that the analogue of the integrity
theorem. Theorem 1.2 of Part I, is valid for this case.
Just as for the case of flows in networks, the assump—

tion of symmetric capacity constraints can easily be dis—

pensed with in Theorem 3.1. The capacity constraints can
be changed to bj < X < <y and treated in a sim.lar fashion,

provided they are feasible. The capacity of an e,—cut

K= (-1, kz, Ce kn) is then defined to be
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n n

(3.3") 2 ke + L Kby
j=2 j=2
k;>0 k,<0

The feasibility question is most conveniently disposed
of by the following ''generalized circulation theorem," the

analogue of Theorem 1.3, Part I.

Theorem 3.2. Let A = (aij) be an m by n real matrix,

and let bj < Cj’ j=11,2, ..., n, be given real numbers.

The constraints

n

(3.7) 2a% =0, i=1,2, ..., m,
3=1

(3.8) by < x; Cey, 3 =1,2, oy,

are feasible if and only if, for each elementary vector

K = (kl’ k2, cae, kn) in the row space m of A, we have
(3.9) 2 kyey + 3 kyby 2 0.
kj>0 kj<0

Notice that (3.9) is really a finite set of inequalities,
since ue need only choose from each frame—line of % onc
elementary vector and its negative in checking (3.9).

We turn next to the painting theorem for a real m by n
matrix A = (aU)- Here we paint the edges of E = [e,, e,,
. en}, i.e. the colums of A, with three colors—red,
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white, blue—with one red edge being distinguished and

painted dark red. Two edges e ,, e, are similarly oriented

j

in an elementary vector X = (xl, Xgs +ons xn) of a sub—

space W= »" if xixj > 0; X contains ey if ey € S(X).

Theorem 3.3. Given a painting of E = {el, €ys «ens en}

and a real m by n matrix A = (aij) havirg row space 2,

precisely one of the following alternatives holds:

(1) TIhere is an elementary vector X of »* containing

the dark red edge but no white edge, in which all red edges

are similarly oriented.

(i1) There is an elementary vector Y of ® containing

the dark red edge but no blue edge, in which all red edges

are similarly oriented.

Prcof. Clearly both alternatives can't held, since
R and ®»* are orthogonal.

Delete all white columns of A. Pivot on blue columns,
one after another in any order, until no more such pivots are
possible. (These operations correspond to the 'deletions' and
"contractions" of edges in graph or matroid theory.) Now
delete all rows and columns of the resulting matrix that
contain pivotal elements. Call the remaining matrix 4.

Note that any blue columns of A consist entirely of 0's.

(A generates a matroid minor of the matroid generated by A.)
Let 7 denote the row space of A. It follows from standard
theorems on linear inequalities that (just) one of a pair

of complementary orthogonal subspaces cortains a nonnegative
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vector whose first coorcdinate, say, is positive. Thus

either # or &* (but not both) contains a nonnegative
vector whose dark red coordinate is positive. Suppose
Z ¢®* is such a vector. Then Z can be extended to a
vector Z ¢ ®* such that white coordinates of Z are all
zero. In this case (i) holds, by Lemma 1.1. Suppose
that Z ¢ ® is a nonnegative vector whose dark red
coordinate is positive. In this case Z can be axtended
to a vector Z € ® such that all blue coordinates of 2

are zero. In this case (ii) holds, by Lemma 1.1.

If A is totally unimodular, the elementary vectors
X and Y of Theorem 3.3 can be taken to be primitive, and
Theorem 3.3 reduces to the painting theorem for digraphoids
{24].

We return now to the version of Theorem 3.1 with capacity
constraints bj < Xy < cye How general is the class of linear
programs encompassed by this theorem? The answer is not

hard to see: it includes all linear programs. For, as is

well known, any linear program can be put in the form

n
(3.10) 2, ay5x =by, i=1,2, ..., m,
j=1

xj_>_0,j-1, 2, ..., n,

n
maximize 2 c
i=1

3%y
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Introducing new variables X and X 41’ We see that (3.10)

is equivalent to

n
(3.11) 2 agx; = byx =0,
i=1

0<x, <, j=1, 2, ..., n,

maximi-ze Xg-

The program (3.11) is a maximum flow problem on a subspace
of ,!n+2.

Still following the discussion of Part I, Section 1,
let us look now at the general version of the path—edge
formulation of the maximum flow problem. 1Is there an
analogue of (1.9), (1.10), and (1.11) for an arbitrary
real matrix? We shall see that there is. Consider the matrix
whose rows consist of all elementary vectors of ®* of the
form “'Pr “”;%L Let @U),k-l,z,.”,s,j-l,
2, ..., n, denote this matrix and let (lpkjl) be the matrix

obtained by taking absolute values of elements. We want

“’,




to show that the programs

s
(3:12) X yelpgl Sepn 5 =1, 2
k=1
Yk 20,
s s
maximize Z yk-lpkll = 2 Y2
k=1 k=1

and

n
(3.13) 21 aggxy =0, 1~1,2 ..ym,
J.

—cj_nggcj,j-l, 2, ..., n,

maximize Xy

are equivalent. Here we take cy == Civen a feasible

solution Y = (yl, Yor =ves ys) of (3.12), define

s
Xy = Z YiPkj Then =5 < X5 < 5 and
n

k=1 8 n
2 ey - ) (Z ‘1ij3) Y = 0
j=1 kel ‘3=l

Conversely, given a feasible solution X = (xl, Xos wees xn)

of (3.13), we use the conformal frame decomposition (1.1) to

write
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(3.14) x-y1P1+-o- +yLPL+F1+... +Fh; Yk>0)

where Py, ..., PL are the first ¢ rows, say, of the matrix
(pkj)’ and each elementary vector in (3.14) conforms to
X. Define Y ™ 0 for the remaining rows of (pkj)' It

follows that

s
2 Yk’lpkjl < Cj'
k=1
Thus (3.12) and (3.13) are equivalent programs.

In particular, if A is totally unimodular, then
(kajl) is a (0, l)-incidence matrix, and an integral X in
(3.14) yields an integral Y solving (3.12). Thus integral
capacities lead to integral solutions in both programs.

This observation establishes an analogue of Theorem 1.5, Part
I. That is, an analogue of the edge form of Menger's theorem
is valid for regular matroids. This has previously been
shown by Minty in [24].

It seems likely that the relationship between (3.12)
and (3.13) has implications for what is called the
"decomposition principle” in linear programming. We shall
not pursue this point here.

The only other problem from Part 1 that we want to
examine in the context of Part II is the length~width
inequality. (The generalized minimum path problem is the
frame—dual of the generalized maximum flow problem and thus

presents nothing new. Part III will be devoted to a
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very general combinatorial analogue of the max!mum capacity
path problem.) Let A = (aij) be a real m by . matrix with
row space ®, and suppose lj, wj are given ncnnegative
numbers for § = 2, ..., n. Consider the collection

P fPl, cee, Pr} of all elementary vectors of ®*

that have first coordinate 1, and the collection

N o= {Kl, cees ‘Ks] of all elementary ve:tors of ®

that have first coordinate 1. Let

n
3.15 A = mi ul,
( ) 12121: jz-z lpij jI
n
(3.16) = min PRy (We |
Y7 1 jz_:z hj"3

where
Pi - (1: pizy seey Pin); i=1, 2, ceey T,

H] - (1! khzl ey khn)’ h - 1, 2, c1e, 8.

We call ) the el—length of A, and call u the el—widch of A.
Theorem 3.4. Let A = (aij) be an m by n real matrix

having e;-length ) relative to Y 20, 3=2, ..., n, and

e,—width w relative to vy 20, 3=2, ..., n. Then

n
(3.17) EPIRNN
j=2
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Proof. By Theorem 3.1, Part II (the generalized
max—flow min—cut theorem) and the equivalence of (3.12)

and (3.13), it follows from (3.16) that there exists a

nonnegative r—vector Y = (y;, y;, .-+, yr) such that
r
(3»17) Z 'yipijl _<_wj, j - 2) A | n,
i=1
r
:E: yg = v
i=1

Thus we have

r r n n
w=aY vy <Y X lpsjeyvil < ) 33
{=1 j=1 jm=2 j=2

by (3.18), (3.15), and (3.17), respectively.

Again if A is totally unimodular, then each P ¢ »
and K € ¥ 1is primitive; taking Lj = vy = ] gives a direct
generalization of the Moore—Shannon theorem for graphs

to totally unimodular matrices. In matroidal terms:

Corollary 3.5. Let (E, @) he a xegular matroid op
n edges. Let A(e) + 1 be the least number of edges in any

circuit containing edge e, w(e) + 1 the least number of

edges in any cocircuit (circuit of the dual matroid)

containing e. Then X(e)w(e) < n ~ 1.
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PART III — BLOCKING SYSTEMS

In Part I we described the maximum capacity path
problem for a two—terminal network, gave a good algorithm
for solving it, and presented a mimmax theorem concerning
paths and cuts for the problem. Similarly, Gross [17] has
described a good algorithm and a min-max theorem for the
"bottleneck assignment problem'': Given a square array of
real numbers, find a circling of entries with exactly one
circle in each row and in each column so as to maximize
the value of the smallest circled entry. For an interpre—
tation, think of rows of the array as corresponding to
men, columns to jobs on a serial assembly line, with the
entry in row 1 and column j being the rate at which man
1 can process items if he is assigned to job j. The
theorem established in [17] for this problem is the fol-
lowing: Let I = {1, 2, ..., n}, let P be the set of
permutations of I, let |C| denote cardinality of C, and

let aij’ 1e€el, j el be real numbers. Then

max min a - min max a,,.
PeP ie1 LP() ABREI  lea 1
|A|+]B|=n+l jeB

The resemblance between these two min—max theorems is
more than superficial. They are, in fact, special cases
of a general theorem for a combinatorial structure which

might be called a blocking system. These systems have arisen
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in numerous contexts (see [21, 22, 29], for example), but
the particular axiomatization and general mimmax theorem
presented in [7] and surveyed here, have apparently not

been noted before.

1. AXIOMS AND EXAMPLES

Let E be a finite set, and let ® and # be two families
of subsets of E. We call (E, ?, %) a blocking system
(on E) if the following two axioms are satisfied:

(1.1) For any partition of E into two sets E; and E,
(Eo n E, =@ and Eg U E; = E), there is either
a member of P contained in E, or a member of
X contained in E,, but not both.

(1.2) No member of ¥ contains another member of 2; no
member of ¥ contains anotheLmember of X.

The first axiom (1.1) can be phrased in terms of
painting elements of E with two colors: For any blue-
red painting of E, there is either & blue P in Por a red
K in X, but not both. The second axiom (1.2) is more a
convenience than a necessity for our purposes, as will be
clearer later on.

Observe that if (E, #, X) is a blocking system, then
for each P ¢ P and K ¢ %, we have P n K ¢ @, by virtue of
the last phrase in (1.1). In other words, each member of
X blocks all members of ¥ and vice—versa. Note also that
the axioms (1.1) and (1.2) are self—dual: Interchanging

the roles of P and X alters neither 1.1) nor (1.2).

il e s - Jdia,




I1f P is empty, then X = {} satisfies (1.1) and (1.2).

Examples of blocking systems abound. Some reasonably
interesting ones will be described. But first we state and
prove a theorem ~hat indicates the great profusion of
blocking systems. 1Its proof provides another characteriza-
tion of blocking systems.

Following [7], we shall call a family $ of subsets of
E a clutter on E if no member of $ contains another meuxter
of ».

Theorem 1.1. Llet E be a finite set and let # be a

., e —  e— g —

clutter on E. Then there exists a unigue clutter & cn E

such that (E, P, X¥) is a blocking system.

Proof. Let K e ¥ if and only if KN P ¢ @ for all
P ¢ P and K is minimal with respect to this property. To
verify that (E, ¥, X) is a blocking system, it suffices to
check (1.1). Thus consider a blue-red painting of E.
Suppose there is no blue P ¢ . Let R be the set of all
red members of E that belong to some P ¢ . Since there
is ro blue P ¢ P, we have R~ P ¢ § for every P ¢ P.
Hence there is a K ¢ ¥ such that K - R, {.e., there is a
red K ¢ X. If there were both & blue P ¢ ® and a red K ¢ X,
then P 2 K = @, contradicting the definition of X. Thus
(1.1) holds and (E, P, X) is a blocking system.

To establish uniqueness, let (E, », X) and (E, P, X')
be blocking systemg on E with a ¢ x'. Interchanging the

roles of X and X' 1f necessary, we may suppose K ¢ X — x'.

PR,
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Consider the partition E - K, Kof E. By (1.1) applied
to (E, P, X), no subset of E — K is a member cf P. Hence
by (1.1) applied to (E, ®, &’), there is a K' ¢ x' with
K' € K. Now consider the partition E - K', X' of E. By
(1.2), no subset of K' is a member of K. Hence by (1.1)
applied to (E, @, X), therc is a P' ¢ P with P' c E - K'.
But then P' and K' violate (1.1) for the blocking system
(E, #, ') and the partition E — K', K' of E. This con—
tradiction proves Thecrem 1.1.

Thus if # is an arbitrary clutter on E, the family
X =P of all "minimal blockers" of P is the unique
family of Theorem 1.1, and X = 7" = ®

The primary role of (1.2) is to obtain uniqueness in
Theorem 1.1. Uniqueness could be achieved in other ways.
For instance, instead of normalizing to clutters # and X
in Theorem 1.1, we could normalize to the families »%
end Xt of all supersets of members of ™ and W, respectively.

Some examples of blocking systems follow.

Exsmple 1. Let E be the set of edges of a graph G,
P the family of elemertary psths joining two vertices cf
G, and K the family of elementary cuts separating the two
vertices.

Exauple 2. Let E be the set of cells in an n by n
array; let P be the femily of subsets P < E having the
property that there is just one cell of P in each row and

column of the array; let W be the family of subsets Kc E
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such that K is a p by q suvarray with p + q = n + 1.

{(That (E, P, X) is a blocking system follows from a well-
known theorem of Konig [20] which asserts that in an n by

n (9, 1)-matrix, the maximum number of 1's, no two of

vwhich lie in the same row or column, is equal to the

minimum number of rows and columns that contain all the

1's of the array.) More generally, let # be the family of
subsets P < E such that |P| = t and P has at most one cell

in each row and column. Then X is the family of subsets

K c E such that K is a p by q subarray with p + q = 2n -t + 1.

Example 3. Let E = {1, 2, ..., 2k-1}, let ® te the
family of all k—element subsets of E, and let = . (In
multi—person game theory, this example is known as the
"straight majority game.')

Example 4. Let E be the set of edges of a graph G,
let P be the family of maximal trees of G, and let X be
the set of all elementary cuts (cocircuits) of G. (A
tree of G is a subgraph of G that contains no circuit; s
~aximal tree is & tree of G thet is maximal with respect

7 this property.)

Example 5. Let E be the set of edges of a graph G,
let ® be the family of circuit: in G, and let X be the set
of cotrees (complements in E of trees) of G.

Example 6. Let E' be the set of edges of a matroid
(E', @), let E = C' - {e] for some ¢ ¢ E', and let #® be
the family of subsets P of E such that (e} U Pe €.
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Then ¥ is the family of subsets K of E such that {e! U K ¢ &%.
Here (E', €*) is the matroid dual to (E',&).

Example 7. Let E be the set of vertices cf a graph G,

and iet P be the family of pairs of adjacent vertices cf G
(two vertices ave adjacent if they are joined by an edge.)
Then X is the family of subsets of vertices K such that
K covers all edges of G, and is minimal with rzspect to
this property. (In other words, X is the family of all
"minimal blockers' of #.)

It is frequently difficult, as illustrated by Example
7, to find a useful descriptiorn of the dual clutter ® of
a simply described clutter 7.

One of the most important problems concerning blocking i
systems, a problem that arises time and again in applicatious,
is the minimum covering or blocking prcblem: Given a simple
description of », find a good algorithm that constructs
K ¢ ®# such that |K| is a minimum. For example, we might

be given ® explicitly, say in the form of an incidence

matrix A = (a(P, e)), where a(P®, e) = 1 or 0 according as
€ ¢ Por e ¢ P. The minimum blocking problem then is
equivalent to solving the following linear program in

integers x(e) = 0 or 1:

(1.3) 22 a(P, e)x(e) >1, allP e
ecE

minimize 25 x(e). (

ecE

—
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Various methods have been proposed for such problems,
but no good algorithms are known. Indeed, most of the
methods that have been pror:sed can be shown to be bad:
the amount of computational effort increases exponentially
with the size of the problem.

There is a good algorithm, howzver, for computing
the following lower bound on the minimum in {(1.3). Consider
the class @ of 211 (Q, 1)-matrices having the same row
and column sums as A. For A in &, let «(A) denote the

minimum in (1.3), and let

{1.4) % = min 2(A).
Ae a.

The integer w has been explicitly evaluated by Fulkerson
and Ryser in [14], and a very simple construction for a

matrix X in @ such that w(X) =% has been given in [15].

2. _THE MIN-MAX THEOREM

The analogue of Theorem 5.1, Part I, is valid for all
blocking systems, and can be viewed as characterizing
blocking systems:

Theorem 2.1. Let (E, P, &) be & blocking system, and

let f be a real—-valued function defined on E. Then

————

(2.1) max min f(e) = min max f(e).
Pe?P ecP Ke¥ eeK

Conversely, if P and ¥ are clutters on E such that (2.1)
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holds for every real—valued f defined on E, then (E, P, X)

is & blocking system.

——

Proof. The proof that (2.1) holds for a blocking
system is entirely analogous to the proof of Theorem
3.1, Part I. In brief: The left-hand side of (2.1) is
less than or equal to the right—hand side since P n K is
noneupty for each P € P, K € #. To establish equality,
order the elements of E according to decreasing values of f;
then paint elements of E blue, one after another, until
the blue set first contains an element of 2.

(In other words, the threshold method establishes
equality in (2.1) and simultaneously evaluates (2.1).
It will be a good methced for this evaluation in case there
is a good method for recognizing whether an arbitrary sub-—
set of E contains a member of # (or a member of %).)

Conversely, let # and X be clutters on E and suppose
(2.1) holds for every real—valued f defined on E. Let
f(e) = 1 or 0 according as e is blue or red. Suppose there

is no blue P ¢ #. Then

max min f(e) = 0 = min max f(e).
Pe® ecP KekX ecK

If there were no red K € %, we would have

min max f(e) = 1,
KeK ecK
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a contradiction. Hence there is a red K e X. On the
other hand, if there were both a blue P ¢ P and a red

K ¢ X, then

max min f(e) = 1, min max f(e) = 0,
Pep ecP KeX eeK

contradicting (2.1). Hence (E, P, ¥) is a blocking

sy:tem.

3. THE LENGTH-WIDIH INEQUALITY AND MAX—FLOW MIN-CUT
EQUALITY

Let (E, P, ®¥) be a blocking system, and suppose
L(e), w(e) are two nonnegative numbers associated with

element e ¢ E. Define the length of the system to be

(3.1) A =min 2 t(e),
PeP ecP

and the width to be

(3.2) w =min 2 w(e).
Ke¥X eeK

Following Lehman {22], we shall say that the length—width

inequality holds for (E, P, X) if

(3.3) Aw < 2 t(e)w(e)

eckE

is satisfied for every pair of nonnegative functions ¢, w

defined on E.
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For instance, if (E, P, X) is the blocking system
of Example 1, we have seen in Part I that the length—
width inequality holds. It also holds for Example 6
provided the underlying matroid is regular; this is a
corollary of Theorem 3.4, Part 1I. On the other hand,
the length—width inequality fails for the blocking
system of Example 3.

‘ For each P ¢ ®and e ¢ E, define a(P, e) =1 or 0
| according as e ¢ P or e ¢ P. Now consider the linear

program

(3.3) 2 y(P)a(P,e)
Per

A

w(e), e ¢ E, ‘

Y(P)>Os Pe®P

maximize 25 y(P).
PeP

Clearly the maximum in (3.3) is less than or equal to
the width of (E, P, /). 1If equality holds here for
every nonnegative w defined on E, we say, as in [22],
that the max—flow min—cut equality holds for (E, P, %).

Thus, for instance, the max—flow min—cut equality
holds for Example 1, for Example 6 if the underlying
matroid is regular, and fails for Example 3, just as for
the length-width inequality.. This behavior is not m

accidental. One of the main results of [22] is that the

max—flow min—cut equality holds for a blocking system
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if and only if the length—width inequality holds.
Consequently, if the max—flow min—cut equality holds
for (E, P, ®), it also holds for (E, &, ), since the
roles of P and X are symmetric in the length—width
inequality.

In any event, the problem of evaluating the width of
a blocking system for a given nonnegative function w is a
generalization of the minimum blocking problem mentioned
earlier. It would be interesting to discover other
significant classes of blocking systems for which the
length—width inequality, and hence the max—flow min—cut

equality, holds.
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A (directed) graph G, for purposes here, is a finite set of nodes and
s finite set of edges, where each edge is said ro be directed toward one of
the nodes, called the fronmt end of the edge, and said to be directed sway
from s different one of the nodes, called the rear epd of the edge. An edge
and each of its ends are easid to meer. & subgraph of G 1is & subcollection
of its wembers which, under r:2 sams incidence velstions, is & graph. A
sxaph {s called connected {f it {s not ampty and {:s members do not partit#on
{nto tvo disfoint non-empty subgrapbs. A polyspon is & conmected graph Q ’
such that esch rode of Q meets exactly two adges of Q . An (elemsgfery
uniformly directed) circuit is a polygon which contsins one edge directed
toward, and coe edge directed eway from, each of {te ncdes. A forest ts a
graph vhich conteins no polygon. A tree is & connected forest. A branching

fe a forest whose edges sre directed so tbat each 1s directed toward s differest

'Pnp'cud while the author vas s visiting professor at the Univarsity of
Wa\ vion, Ontarfo, Cansda. Presented under the title ot imm Arbors
at the Iaternationsl Seminar on Graph Theory and its Applications, Roms
July 196¢,

’




node. An arborescence is & connkcted branchiag. An (elsmcntsry uniformly
directed) path P is an arborescence such that each edge in P is diractesd

away from & differeat node, and such that there is at least oce edge in P .

We chall occasionally use "obvious” facts absut graphe vithout justify-
ing tham,

Clearly, s brauching (forest) is tba union of & unique family of dis-
joint arborsscences (trees).

Exactly one node im an arborescence T , called the root of T , has nec
edge of T directed toward it. A branching (forest) is an arborescance (tree)
{f end only i it has exactly ops less edge than ncdes. No branching (forest)
has more edges thun this.

In a path P there are sxactly tvwo nodes, called the ends of P , which
each meet only one adge in P . The rest of the nodes in P each meet exactly
two edges in P . A path P ic seid to go from the node which is only & rear
end in P (the root of P) to the node which is cauly a front end in P , Por
any arborescence T ., and any node ¥ in T except the root, there is a
unique path in T going from the root to vy . Any path in T going to ¥
and any path in T going from y have only yp in common, and their union is

a path, And so on.
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§2
Let G be any graph with a real numerical weight cj corresponding
to each edge e €G . The problem treated here is to find in G a branch-

3

ing B which has asximum total weight, I cj » summed over ejc 5. B s
called an optimum branchking in G .

First we show that ccrtain variations of the problem reduce {mmsdiately
to it.

A spanning subgraph of G 1is a subgraph which contaics all the nodas
of G . A branching in G is z spanning arborescance of G 1if and only if
the number of its edges {8 cne less thian the number of nodes in G . No
branching in G ca&n have mcre edges than this.

An optimum Srauching in G of course contzinad mo edge with negative
weight, and indeed may be empty if all cj <0 . Evea if all cJ >0 snd
G coatains s spenning arborescence, an optimum branching in G need not be
&n arborezcence,

If there is a spanning arborescence T in G , then a2 optimm one, 1i.e,
cne which has maxisum total weight, T cj s eje T , can be found as an optimum

branching in & where the edges carry new weights ¢, ' = c‘1 +h, h>ZF lcjl s

3
e ch . A spanning arborescence in  which i{s optimum relsative to weights
|
,\ cj, eJcG , 18 also optimum relative to weights cj + k, ejec , for any

constant k , since every spanning arborescence has the same number of edges.

i KR i
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Constant h {8 larger than the difference in total weights {(relative to

waights cj, ¢,¢G) of any two branchings in G . It follows that an optimum

3
branching in G, relativa to weights cj' = ¢:-1 + h , will be a branching with
a maximm number of edges. In particular, it will be a spanning ecvorescence
if and only if G contains & spanning arborsscence,

A spavning arborescence T in G which has minimum total weight,
€T,

£c,,e,¢T, is the same as one which has maximm total weight T c ', @
] b|

b ]

relative to waights cj' - -cj .

It will be evident that the efficiency of the method for treating optimm
branchings is not seriously effected dy a large change h (say of the form 10“)
in all the weights., 1In fact the method is easily modified to treat optimum
spenning arborescances directly.

If there is a spanning arborescence in G which is rooted at a prescribed
nods, say r , then an optimum one can be found by finding an optimm spanning
asrborescence in the graph G' obtained from G by adjoining a mew edge L
@exxyiag arbitrary weight co) which is directed toward r and directed from
s nev node having no other incident edges. Clearly, T {s a spanning
arborescence in G which is rooted at r if and only if T together with

e, is a spanning arborescence of G' .

0
If the edges in graph G represent the links for possible direct cosmuni-
cation from one node to another, i1 each c3 is the cost of direct communica-

tion from the rear end of .j to the iront end of 'j’ and 1if cost is additive,

e e FATERG &




then & minimms-totsl-weight spanning arborescance rooted at prescribed node

r represents the least costly way to have a mssaage communicated from r
to all other nodes of G .
Another spplication is where it is desired to arrange am institution

into an optimum heirarchy (branchocracy).

§3

Our main result is

Theorem 1. There exists & good algoxithe for finding, in any gxagh G

with & numerical weight corresponding to each edge, an optimum brauching.

We say an algorithm is good if there is a polynomial function £(n) which,
for every positive-integer valued n, is an upper bound on the "amount of work"
the algorithm does for any input of "size" n . The concept is easy to
formalize — — relstive, say, to a Turing machine, or relative to any typical
digital computer with an unlimited supply of tape.

For optimum branching, the largest number of significant digits in an
edge weight , as well as the number of edges of G , must be figured somshow
into the measure n of input "size" , One might for example takse n to be
the maximm of these two numbers or to be the vector consisting of both
numbers,

theorem

The proof of Theorem 1 1is constructive. The/is proved by displaying one

particular algorithm for optimum branching which is obviously good.
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If we remove from the optimm-spanning-arborescence problem ths con~
dition that each member of the set T of edges being optimized must have
a different front end, then we got the optimum-spanning-tres problsm., That
is to find, if there is one, in any graph ¢ with a numarical waight on

esach adgs, a spanning tree which has maximm (or ainimm) tctal weight.

Espacially simple algorithms are well-known for this problem [cf., 5
and 6], One is, starting with an empty bucket, build up a set of elements
having "admissible structure" by putting elemsnts into the bucket one after
another as long as possible, so that esach addition is a maximm weight ele-
mant among thoss not in ths bucket which, tcgether with the onss already in
the bucket, would preserve admissible structurs, For the optimm-spanning-
tres problem, the elemsnts are -he edges of G and "admissible”" means
"forest". The algorithm is certainly good, It is also valid for that pro-

blem,

Where sdmissible" means "branching', the above algerithm is not geper-
ally valid for finding an optimm spamning arborescence. Paper [3] abstractly
characterizes those structures for which this "greedy algorithm" is valid for

any nmumerical weighting.

1f we add to the conditions of the optimum-spamming-arborescence problem
the condition that each member of the set of edges being optimized is to have
s different rear end, then we have the problem of finding, if there is ome,
an optimm spanning (uniformly directed) path in any graph G with a numerical
weight on each edge. This is a version of the well-known traveling saleman

problem [cf, 4], I conjecture that there is no good algorithm for the traveling




saleman problem., Xy reasons are ths same as for any methemstical comnjecture:

(1) It 1s a legitimate mathematical possibility, and (2) I do not know.

A patching in & graph is a subset of its edges such that no two ¢f them
meet the same node. A good algorithm is known for finding, im any graph
with a numerical weight on each edgo, a meximum-total-weight matching. The
treatment [l and 2] of meximum matchings and the treatment here of opttng
branchings are similar, though the structural details are different and msxi-

mux matching is more complicated.

%

Here is the algorithm for finding a maximm-total weight branching
in any (dire.ted) graph G with a numerical weight cJ on each adge

' JCG . Recall that a branching is a forest such that each edge iz directed

toward a different node.

Begin the algorithm by applying instruction (I1) where G1 is Go =G

snd where D" and !1 are empty buckets, Do and lo .

(I1) Choose @ node y in Gi and oot in Dt. Put y 1into bucke:

D1 . If there is in Gi 8 positively weighted edge directed toward y , put

ons of them having maximum weight into buckst l" .

JCE L ST *
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Repsat (Il) until

(a) x" no longer comprises the edgss of a branching in G", or until

1 , and !1 does comprise the edges of a

(b) every node of G1 is in D
branching. When case (a) occurs, apply (I 2).

For convenience assume that e¢very branching which we consider in graph
G" contairs all the nodes of G . We say that a set of edges in ¢t forms
the unique subgraph of Gi consisting of those edges and all nodes in G1 .

Each edge e put intc B1 according to (I 1) is directed toward a
node p which {s the root of a connected component of the branching, say B,
formad by the edges in Bi before e 1is put into Bi . If the rear end Vg
of e is in a different component of B than p , then BUe is a branching,
snd s0o whan e 1is put into !" , (a) does not hold,

If Vs is in the sams component of B as y , then B contains a unique
path P going from p to Vg - In this case, Qi = PJe 1is a circuit con-
tained in BUs , 8o as soon as ¢ 1is put into !1, (a) does hold.

(1 2) Store Qi' and a specification of one of the eadges, say 03 , of
Q" vhich has minimum weight in Q1 relative to the edge-weights for G1 .
Obtain & new graph G“'1 from G1 by "shrinking" to s single new node,

v{ﬂ , vhe circuit Q" and every edge of G1 which has both ends in Q". The

;‘ﬂ 1 are those edges (denoted as o;‘ ) of G1

which have at most one end in Qb . Every edgs of G which has one end in

Q1 will in Giﬂ have v{ﬂ at thrt end., All other edge-ends sre the same

in (:M'1 as in G" . Tha nodes of Qi are not in G“’l .

edges (denoted as e, ) of G“




Every edge, say e;ﬂ , Wwhich as e; in G1 is directed toward s node,

say V; , in Qi and directed away from a pode not in Q1 , §sts a possibly

different weight for G“'1

(1) c;ﬂ = c; + c; - c:

where cg is the weight of eg for @' ) vhere cg is the minimm weight
for Gi of an edge, say e(i) , in Q1 ; end vhere c}. is the weight for

Gi of the unique edge, say ez , which 1is in Q" and directed toward vs;‘ .

1 i

All other edges in Gi+ keep the sams weight as for G~ .,

Io justifying the algorithm we shall make uss of the following relations

i
@  eg20 , () e2cy , md &) ezel

Put into buckst D''! the nodes which are in both GV! and bucket D' .

Put into bucket E“l the edges which are in both G“'1 and bucket l1 , L.e,,

1 the final contents of bucket l" uinus the edges of

1+l

put into buckst B“

circuit Q1 . It is easy to see that the edges in buckst & form & branch-

ing 1o ci*! .

Continue the algorithm by
applying (I 1) where { 1is one greater,
Tventuslly, after a smell number of applications of (I1l) and (I 2) ,

case (b) must occur,
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As soon as (b) occurs, for say i =k , (I11) end (I2) are never
applied again. Instead, (I3) is applisd successively for 1 +1 =k,

k-1, ... , 1 , until the graph G' obtained is the original G . At that

0

point, the branching B" =3 is a saximm-total-weight branching of G .

k

The final contents of bucket K form a branching in grsph Gk which

ve call Bk .

(I3) It is not difficult to ses that since l“l is a forest in

61" and since GI*! 1s obtained from G' by shrinking the eireuit Q' 1n

¢! (and all edges of G! with both ends in Q1 ) to the node v{“ of 611

i i 1+1

the subgraph H~ of G , formed by the adges in B and the edges in Qt,

contains only one polygon, namely Qi .

In the case where y{ﬂ is not & root of (s conmacted component i)

branching B“l in G“"‘ , there is a unique edge, say ‘i.ﬂ , of l“l

which is directed toward v{'ﬂ . In Gi ’ oi

say v; , of Q1 . Since Q" is a circuit, thers is a unique edge, say o; ’

of Q" vhich {s directed toward u; . Clearly, ci and o; are the only

two edgee of ll1 which are directed toward the sams node. Thus, since c;

is in the only polygon of li , deleting c; from n‘ yislds a branching

in G" , vhich is callad li .

In the case whsre v:ﬂ is & root of branching Biﬂ

vhere no adge of Blﬂ ts directed toward u{ﬂ , 0o two edges of ll1 ate

is directed toward a node,

tn ¢! q..,

directed toward the sams node. Therefore, dsleting any edge of Qt from llt

yields & branching in G" . To obtain the branching l‘ in G1 , delete

from n‘ one of the edges oé of Q‘ vhich has minimm weight cé .
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That completes the description of the slgorithm. Evidently it is a

good algorithm, Evidently its output is s branching lo iagraph G . In

order to prove Theorem 1, what rcmains to be dons is prove that '0 has

saximum total weight.

§s
Theorem | and the following geomstric theorem ars prowven together.

Let G be any graph. (No edge-weights awm specified.) Let thers be a

real variable x 2 for each edge ¢ ¢G . Let PG be tha polyhedron of

3 J
vectors x = {xj] which satisfy the system l\,; , consisting of imequalities

L, , Ly, asd Ly .

(Ll) FPor svery edge o, ¢G , x >0 ,

i 3

(Lz) Por every node p¢G, T x‘1 <1l , susmad over all §'s such that
e, 1is directed toward yp .

]

For every set S of two or more nodes in G, T x 5|s| -1,
summed over all j's such that ° has both ends tn 8, .( Ill
denotes the cardinality of 8 . )

Ly

Any vector x = [x,] of seroes and ones s called the ({ncidence) vector

of the sudbset of 'j" such that xj -],

Theorem 2. The vertices of polyhedron P; are precisely the yectors of

the subsets of adges in G which comprisc branchiogs.

o mﬂwﬁ"




A polyhedron (convex polybedron) P is the set of all the vectors,
i.e., points, vhich satisfy soms finite system L of linear insquslities.

A yertex (extrems point) of P 1s & point which, for soms limsar functiom,
is the unique point in P which maximizes that function.
A bagic point x = xo of a finite systam L of linear inequalities

is the unique solution of a systes, 12 .U x, - bj s J ¢J, such that

tZa”x‘s_bi s J8 J , {a a subsystem of L .

If basic point xo of L 1is in the polyhedron P of L , then it {s

a vartex of P , becauss clearly xo is then the unique point {n P which

maximizes T (’Z .11)‘1 >y ed .

Ve shall ses without difficulty that sny point !0 , vhich {s the vector

of a branching say '0 fa G , is a vertex of PG . Vector !0 satisfies

l.\1 since it is all zerces and onas. Vector xo satisfies Lz for any

nods yt G, since, by the definition of branching, at most one of the :j'u

in this inequality has valus 1 for x0 ,

The branching .0 i» a forest, so any set 3 of nodes, togsther with

the subsst lo 0 vhich have both ends {n 8§ , forms a

8
forest. The number of edgss in a forest is at most the number of nodas in the

of tha edges in B

forest mimus 1 ; in particular, ll;l < |l| -1 . Toerefore, vector ‘0
sstisfies L, for any subset S of (two or wore) nodes in € , since ‘lgl

of the =x,'s in thie inequelity have the value 1 for x° . Susmrizing the

b
conclusion so far, xo is a poist §n 'G .




v
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et ot gt e sl i e

Vector xo is the unique solution of the linear system: x’ 0

for every edge ej not in Bo , and T xj =1 (summed over lj'l directed

roward p ) for every mode y which has soms edge of ‘0 directed towsard
it. This system can be obtained from certain of the relations of I.1 and
L2 by replacing their insquality signs. Therefore xo i{s a basic point

of L. , and hence & vertex of P

G G
Most of this papaer is directed toward proving:

Lesma 1: Every linesr function, I cy X ( summad over all edges 8 ¢G),
-

by the vector of soms branching in G .

is maximized in PG

From Lemma 1 and from the definition of vertex, it follows Lxwsdistely

that every wvertex of PG 12 the vector [ a branching {n G . This will

conclude the praof of Theorem 2 ,

A branching 5"} in grapa G has maximum total weiZht relative to the

0 0

Bty O w {sJ} of sdge-weights Lf and only 1f the vector x = [:g} of B

wximizes {c .5} = 32 cj !j over all vectors of bdranchings tn G . 1If :o

maximizes (c,x) over L/ then {t maxianiszes (c,x) over the vectore of

branchings in G , since the latter are in ’G .

Out task, therefore, s to show that the vector of ths brasching lo R

produced by the algorithm, maximizes (c,x) over 'G ., This will prows

that the algorithm is valid and vill prove Lowms 1 .
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6

The following computations are weli-known in linear programming.

Suppose that x = [x£] is any vector vhich satisfies

(5) xg 20 for every § , and

(6) ez S%tn %2 < by for every 9 ,

and that y = [yﬂ] is any vector which satisfies

(7) y" >0 for every 1, and
(8) n z ‘iﬂ Yy > ¢ for every ¢ .
Since (6) and (7) imply

9 "}:(E):ag"xc)yns nz bﬂ Vg = (b,y) ,

and since (5) and (8) imply
(10) e}3("2 ‘Eﬂ’n)"t?-ehe"& = (c,x) ,
we have

(11) (c,x) < (by) .




Since (11) holds for any x and any y , if (c,xo) - (b,yo) holds

for particular x = xo and y = yo , then xo must maximize (c,x) aud

yo must minimize (b,y) .

Suppose for particular x = xl and y = y]' that

1 X 1
(12) ¢ b a£" xe b" for 7 suwch that y" £0 s
and
(13) Ta y1 1
n"tn’n = °g for £ such that Xg #£0 .

Since (12) implies equality in (9)’ and (13) implies equality in

(10) , we have (c, xl) = (b, yl) . Therefore,

(14) x' maximizes (c,x) and

yl minimizes (b,y) .

Our present interest is where (5) is (Ll) , and (6) 1s (Lz) and “3)'

For any linear function (c,x) = T c, x, of polits x¢ % , W got a dual

¥ 313
system, (7), (8), (b,y), by letting a variasble y" correspond to each inequality
of L, and I.3 . That is let a variable h correspond to each node %OG

and let & varisble y . correspond to each set § of two or sore nodes in G .
For (7) we havs,

(15) for every Voo >0, and

(16) for every 8 , Ye >0 .




Coefficient ‘jh = 1 1if edge .j is directed toward node yp, , and

.jh = 0 otherwise. Coefficient lj. =1 i{f edge ej has both ends in S ,

and aj' = 0 otherwise. For every y , bh =1, For every § ,

b. - 's'-l .
Therefore, {8) becomes

%)) for every edge ech ,

Y ¥ 'j > €, where y, is the front.end

of 'j , and where vj-zy. , susmed over

all sets S which contain both ends of e 5

Punction (b,y) becomss

(,y) = Iy + EUs|-Dy,
summed over all W and over all § .

Recall that our task is to show that the vector xo of the branching
'0 , produced by the algorithm, maximizes (c,x) over LA

In viev of (14), we do so by comstructing a vector y = [yh, y.] which
satisfies (15), (16), (17), and vhich satisfies (12) and (13). Por tte pre-
sent system, (12) is
(18) for every node v, such that h £0,

L xg = 1 , summad over j's such that s,
-
is directed toward § ; and




(19) for every set S such that y 0, = x? - |s|-1 ’

summed over j's such that ‘j has both ends in 8 .,

In other words, (18) says that if Y # 0 then uu edge of the branch-

ing Bo is directed toward Vy and (19) says that if Y, # 0 then sxactly

|s|-1 edges of Bo have both ends in S .,

For the present system, (13) is

(20) for every edge e, in the branching Bo,

3

yh+vj-c‘1 , Where Va and w

are as in (17).

]

4

i

For each graph Gl(1 = k, k-1,...,0) vith weight ¢. on each edgs

J
e; ¢G1 , and for the bdranching B1 in G" s we will describe a vector
y' which satisfies (15) - (20) , where G and B° are replaced by Gl and
Bi and where vector y f{s yl .

First we describe a yk , and then, assuming & y“’l(l = k-1,...,0), wo

describe a y1 + Thus by induction we obtaina y = yo and the proof of

Theorems 1 and 2,

The vactor yk - [y: , y:] is y: = 0 for every set 8 of two or more

nodes in Gk R y:-o for every node v: in Gk vhich has oo edpge of lk

directed toward it, and, for every other node y: ia Gk , y:- c: vhere




-y
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edge e: of Bk is directed toward v: . Conditions (15) - (20) for

yk can be immedietely verified from the fact that for every node y‘; € Gk

either there is no edge of Bk directed toward vkh and there is no posi-
tively weighted edge directed toward v: , or else, among all the positively

weighted edges directed toward ;{ , the one in Bk has maximm weight.

Now, suppose that we have a y;ﬂ for each node vil"ﬂ and a y:ﬂ

for each set 8 of two or more nodes in GH'1 , such that (15) - (20) are

satisfied (where Bo is replaced by Biﬂ s etc.),

JAH L o aH

Let h z Y, , summed over the sets S which coniain node

i+l
Vo

To make the induct fon go through we assume further that in GH'1

(21) for every nods W, such that t_+ Yy > 0 , there

h

exists at least one edge e, 6 directed toward Yy

]
such that cJ = th + Yh ¢

This clearly holds for Gk , and we will prove from (15) - (21) for
¢'*! thae (15) - (21) holds for 61 .

Obtain the vector y' as follows.

Where A 1is the set of nodes in circuit Q" of Gi ; vhere oi

2 is
the edge of Qi aot in Bi , Yhere v; is the front end of 0; s Whare

c; is the minimum we{ght in Qi , and where v:ﬂ is the node in (';M'1

to wvhich Q' was shrunk, i..

(22) i 1+1 i i
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(23) Yo ™ S -7, 1 .

Where v13 is any node in A other than y;' , and whare .: is tha

sdge in Qi vwhich is directed toward v; , let

i
(21‘) Y3 - ca = yA

Observe that (24) holds also for v; - v; .

Where y, 1is any node of G' which fs mot tn Q' , let

i i+l
(25) yS - ys D

1

Where R is 2 non empty subset of nodes in G“ which does not

contain uf“ , vhere J = RUy{*l , Wwhere K= RUA , and where L 1o

any set of two or more nodes in 6l such that M s e proper subset of

A, let

i i+l
(26) yl - yl »

1 i+1
(28) yPoa0

L L d

That completes the description of wvector yi . Now we must verify (13) -

(21) for it ,
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For every edge of G'l wvhich 13 directed toward a node not in A ,
for every node not in A , and for every set 8 , except A , in (31 ’

conditions (15) - (18), (20), and (21) follow immediately from those sames

conditions for y''' , (25) - (28), and the local nature of the changs from

G“l ’ liﬂ , and c“'l co 01 ’ li , and ci .

For every subset of nodes in G" which does not contain all of A ,
condition (19) follows immediately as above, For set A and for every set
K as in (27), condition (19) follows from (27), condition (19) for set J

1

in 6! | and the fact that there are exactly |K| - |J] = |A] - 1 more

adges of 31 with both ends in K than there are edgas of Biﬂ with both
ends {in J , namely the edges of l" N Qi,

It follows from (24), (27), and (28), that (21 holds for every node

v; in A (in particular vhere ‘j is the .Z' of (24)), snd that (20) holds
for every edge cof li N Q". snd that {17) holds for o;.

Condition (18) follows immsdistely for each node of A axcept uy slnce
thers 1s an edge of li n Q1 directed toward it. If thers is an edgs c{'“
in l“b1 vhich is directed toward u{“ , then ot is an edgs of li which
{s directed tovard u; , and séo in this case (18) follows for u;“ « Other-

1

wise, if there is no edge of BH directed toward p{ﬂ , then by (18) for

i+ ’ y:ﬂ = 0 , Also in this case, the c;" of {22) was chosen {n the
algoritha %0 be cé + Therefore, 1f there is no edge of l“1 directed

toward “:"'1 , than (22) is y; = 0, and so (18) follows for ‘; .
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For ei‘ ; the only edge, if any, which is in Bi - Qi and directed

toward a node in A , we have c:ﬂ - ci + c; - c; (from (1}), (22),

I, I L hich te (20) for ot Lawi*l from (27) and

i
1 .

y1 +U1 Cl 1 ; and '1-'1

(28) . Combining thase we gs: y‘i + v; {,whieh 1s (20) for e

-cC

Thue conditions (18}, (19), (20), and (21) arm now completely accounted
for. Condition (17) for edges mot in Q' but directed toward nodes in A ,
condition (16) for yA" s and condition (15) for nodes in A , remain to be

verified.

Let C; be any edge of Gt waich has both ends in A , and let y;

be its front and. To prove (17) for 0; , vhich 1s y; + v; > ci vhere

1 i 141 i 1

vs-yA+t1 , combina (24) and c‘acs.

i

Lat a" be any edge of G1 vwhich has its froant end v, in A and

3
its rear end not in A , To prove condition (17) for 03 vhich {s

b
g+vggé ﬁuow;-%ﬂ,cmMm(NL(ML(nL(D”M(U)bt

3
. 1+1
3 L]

To prove (16) for A , that s y, > 0 , we use (21) for W' .
2 A= ? v]

1‘“ + y{“ ;ﬂ be the 'j of that relation, let v§

: be the edge of Q' which ts

c;ﬂ - t“’l + y“'1 . In this case,

1 1
obtain y, > 0 by combining (23), (22), (21) for ¥
A 1

Assuming t >0, let o

be the front end of cg

directed toward y; . Here (21) is

in A, and let

), ad ) .




1f there 1is ro .;4-1 directed toward yi‘ﬂ such that

cgﬂ - tiﬂ + y{'ﬂ , then tiﬂ + yiﬂ = 0 , and all edges Jizrected toward
u{“ have negative weight in G“l s 80 nons of them are in liﬂ « There-

fore since in this case the c; of (22) was chosen to be "3 s (22) becomes

,; = 0, and (23) becomss y: - e: + By (2), vs have 7: 20.

Prove (15) for any node u; in A by combining (26), (23), (22), (3)

and y1+1>0 .

That completed the proof of Theorems 1 and 2 .,

te

Kotice from the proof that if every weight °j » 'j' G , is an integer,
then ths vector yo , a8 well as vector xo s is integer-valuad. In particu-

lsT, vhere every ¢, = 1 , vector yG s 0,1 - valued and max(c,x) = min(b,y)

3
ie a simpls "sonig-type" theorei, cislogous to the maximm-cerdinslity-matching

duality theorem 4 (1].

The following two theorems can be proved Dy ths mathods used hers.

Theores 3 . Mhape (L)) is tx-n, mﬂ“.ed,
mmmnmnmnmnw.,\m.uw ace sxesissly
she yagtors of the n-sardisalify subsets of sdaes ja O Yhich samegiss
Manchiass. (1a saxsisuiax, Yhare = 42 gae Jass Shed Rhe mmhex of medes
ia G, shese hxsachiass are the sparmink skhexesesises of O ) .
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The present research began when A.,J. Goldmar asked for a dascription
of "the convex hull of the spanaing trees of a griph.,"” Theorem & is proved
in [3].

Theorem 4 . The vertices of thu polyhsdion F. givem by (7..1) and (L3)

are yrecisely the vectors of the subsets of edges in G which comprise

{orests. The vertices of the intersection of F

{ The of the of F. with (L,) are s subset of
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I. The Optimum Assignment Problem

For rectangulsr array (matrix), N, we define a matching
in N to be a subset M of the positions in N such that each

rolumn and each row of N contains at most one member of M .

For any square array N , we define a transversal or a perfect
matching M to be a subset of the positions in N such that each

column and each row of N contains exsctly one member of M .,

The optimum assignment problem is,

given any n x n array N of real ‘~

numbers, £find in N a transversal the 9

sum of whose entries is maximum, {i.e., 4

an "optimum" treansversal.

A transversal in N "assigns" the rows of N to the columns
of N . Where the columns are people and the rows are jobs, and
where each numerical entry represents the value of the person of that
column at the Job of that row, an optimum transversal represents

an optimum assignment of the pecple to the Jjobs.




© o ta—

A well-known generalization of the assignment problem is
the integer Hitcheock-transportation problem: Given a rectangular
array N of real numbers, ciJ , and lgiven an integer s, > 0
for each row 1 and an integer bJ > o for each column J , essign

& non-negative integer xi:) to each position (1,J) so that
(1) for every 1, g8y
(2) for every 3, iD:iJ = bJ ,

and 8o that 13‘"13"1.1 18 minimum (or meximum).

If ai represents the number of refrigerators available at

factory i1 , and b, represents the number of refrigerators

J

ordered by dealer Jj , and ¢ represents the cost of shipping a

1

refrigerator from 1 to J , then represents the

x
1,371
total cost of the particular manner [x, J] of distributing the

refrigerators.
The assigrment problem is where all 8, = 1 and all l:..1 =1 .

A minor variation of the assigmment problem is: given a
rectangular array N of real numbecrs find in N a matching whose
entries have maximum sum. This variation corresponds to replacing
the equality signs in (1; and (2) by inequality signs. Ofcourse,

& maximum matching will not contain a poeition whose entry is
negative. In particular if all the entries are negative then the
maximum matching will be the empty matching. It is ap interesting
exercise to discover hov any maximum trensvereal problem can be solved

by solving & maximum matching problem, and vice versa.




There are other gencralizations and variations of the optimum

assignment problem -- most notably integer network flow problems.
These lectures, after treating the assignment problem itself will

deal (briefly, I'm afraid) with some bizarre variations.

Inan n x n array there are n'! different transversals. In
particular there 100! ways to assign 100 people to 100 jobs.
100! 1s very large. If our method for finding an optimum assign-
ment spent one microsecond per possible essignment, it would take

hundreds of years to optimslly assign 100 men.

It is 8 remarkable fact there exists a consistently good
algorithm. An algorithm good enough that you could actually do es
homework any instance of the assignment pro