
AMERICAN MATHEMATICA-L SOCIETY

Lecture Notes Prepared in Connection with the Summer Seminar

on

Mathematics of the Decision Sciences

held at DDC
Stanford UniversityW

Stanford, California OCT
July 10 - August 11, 1967

Sponsored by: Atomic Energy Commission, Contract # AT(30-i)-3,6 4 Modification No. 3
Air Force Office of Scientitic Research (with NIH), Contract #PH-43-67-7 12
Army Research Office (Durham), Contract #DA-31-124-ARO(D)-82
Offic( of Naval Research, Grant # Nonr(G)-00003-67
National Institutes of Health (with AFOSR), Contract #PH-43-67-712
National Science Foundation, Grant #GZ-403

informally distributed manuscripts and articles should be treated as a,
perbonal communication and are not for library use. Reference to the
contents in any publication should have the author's prior approval.

jor publ',c r6100216 mZd "Am M



PAGES
ARE

MISSING
IN

ORIGINAL
DOCUMENT



TABLE OF CONTENTS3

R. M. Thrall
Survey of Mathematical Programming

E. Polak,
Necessary Conditions of Optimacity in Control and Programming'

George B. Dantzig
Mathematical Programming

Michel L. Balinski
Survey of Mathematical Programming

/
Terry Rockafellar

Nonlinear Programming

Kenneth Arrow
Mathematical Economics

David Gale
Mathematical Economics

J. B. Rosen
Computational Aspects of Control Theory

A.W. Tucker
Mathematical Programming

Richard Cottle
Mathematical Programming

D. R. Fulkerson
Networks and Graphs

Jack Edmonds
Combinatorial Methods

Ralph E. Gomory
Integer Programming

Carlton Lemke
Mathematical Programming

Arthur F. Veinott, Jr.
Optimal Inventory Control

Donald L. Iglehart,
Diffusion Approximations in Applied Probability

Herman Chernoff
Optimal Stochastic Control



I

Richard E. Barlow
Reliability Theory

Cyrus Derman
Markovian Decision Processes

M. Frank Norman;
Learning Theory

David Krantz
Measurement and Psychophysics

Abraham Taub
Computer Science

Andrze J. Ehrenfeucht
Perception Problems

ii,• r



I!;

LECTURES DELIVERED DURING THE SEMINAR BUT NOT

APPEARING IN THIS VOLUME

Alan Hoffmnan
Mathematical Programming

Samuel Karlin
Branching Processes

Victor Klee
Convexity

Harold Kuhn
Mathematical Economics

William Miller
Computer Science

Lucien Neustadt
Control Theory

Stanley Peters
Mathematical Linguistics

Herbert Robbins
Mathematical Statistics

Philip Wolfe
Nonlinear Programming

D. 0. Siegmund

A



SURVýY OF MATHEMATI CAL PROGRAMMING

by

R. M. THRALL

at the

American Mathematical Society Summer Seminar

on the

Mathematics of the Decision Sciences

Stanford University

July - August 1967

I•



1. Introduction

Optimization problems have been part of mathematics from its
earliest days. The general constrained optimization problem can be writ-
ten in form

mrin q(X) for X E P

where P is some set and p is a (real valued) scalar function whose
domain contains P. Linear programming refers to the special case in
which P is a polyhedral subset of a vector space and q) is linear.

Let A = 11 aij 11 be a p-by-m matrix, let X = 11 x, 11,

C = i cI I be m-by-l vectors, let B be a p-by-l vector and let d
be a scalar. [In these lectures all scalars will be real numbers.]
Then the linear program

(1.1) min Z = d + cTx

subject to the constraints

AX =B

x. o

is said to be in standard form. We sometimes call A the coefficient

matrix, X the activity vector, C the cost vector, B the constraint vec-
tor, and d the fixed cost or initial cost. Then

P -{ X AX B, X o 0 }

is called the set of feasible vectors. If P is empty, the problem is said
to be infeasible.

A problem in standard form can be presented aq the tableau
matrix

(1.2) -d C
M-

B A

or in more detail

(1)

( I



(2)

Z 1 = X Xj Xk Xnr

-d c ... c ... c .. cn

bi all... aij.., aik.., aln

(13) b a"'.aij"" a*ik" *in

bh ahl.., ahj.., ahko.., ahn

bp aploo• apj. • apk.., apRn

The zeroth (top) row is read as

z - d =c CX 1 + + C

and the i-th row as

bi = ailxl+ . . . + ann ( i z 1, . . ., p

As a notational convience we sometimes write

(1.4) a - -d, ao , c ( J 1, . .. , n), aio b i 1, . . .,p)

For example,-

(1.,) O -8 .19 -7 0

25 5 4 1 1 0

50 1 5 3 0 1

describes a program in standard form having p - 2 and - 5.

The basic computational step involved irL the simplex algor-
ithm for solving linear programming problems is the pivot operation of
Gaussian elimination. To pivot on a position (h,k) we must bave the
pivot element ahk different from zero. The pivot operation has two
steps:

Normalize: Divide the pivot row (row h) by the pivot element;
and Sweep out: Subtract suitable multiples of the pivot row from
the remaining rows so as to obtain zeros in all positions of the pivot
column (column k) except for the 1 in the pivot position (hpk).

ko



(3)

Thus after pivoting on position (h,k) the matrix M of (1.2)

(or (1.3) becomes

a k
i a 0i

(1.6) i ai-ikj/% 0

h ii i/ak 1

or

(1 .7 ) 
/ (j M o, a, .0,0 )

a* *a 1j 1 a ,/,• (i a o,1,...,p ;ia;3 _ -,1,...,n)i ik h

For example, if we pivot on position (1,2) in (1.5) we get

475/14 25/14 0 -9/4 19/41 0

(1.8) 25/4 3/4 1 1/4 1/4 o

25•/4 -5/4 0 9/4 -3/4 1

Clearly, pivoting on position (h~k) represents solving equation
h for xk &a, using this equation to eliminate x. from the remainin
equations.

Loma 1A. Iit

(1-9)

IS obktaind t tke N of (1.2) kZ apvot o aon on Mi*io. (h,,k).
2hen ve have

(1.10o) U*

S/a

• ,r . .w



(4)

is a non-singular (p + 1) - by - (p + 1) matrix differing from identity

only in column h, i.e.

i (Kronecher's delta function)

j = O,1,....,p; j • k

(1.12) h "b/hk

qih 1k k/ahk i = 1, ... , p; i + k

qhh =/ahk "

Moreover, the problems described by M and M* have the same feasible sets
P and P* and for any feasible vector X we have

d* + c*Tx = d + cTx.

Theorem lB. Let M* be obtained from M by a sequence of pivot operations

on positions not in the zeroth row or column. Then (1.10) holds for a

nonsingular matrix Q having the form

1 R

i.e., the ztko-th column of Q is the initial unit vector. The linear pro-
grams defined by M* and M are equivalent in the sense that every con-

straint equation of either problem is a linear combination of constraint
equations of the other and that for any vector X which satisfies the
constraint equations AX B or, equivalently, A*X B* we have alsod + C1X d* + c*-Tx.

Note: the last statement is formulated to include vectors
X which may be infeasible in the sense of having some negative com-

ponents.

Proof: Using the theory of partLtioned matrices we observe that a prod-

uct of matrices of the form (1.11) each having h 1 1 and k - 1 has the

form (1.13). Moreover, •-I ,iloo has the form (1.13). The conclusions
concerning equivalence then follow from (1.10). In particular we observe
that

t cod*c*'Pl 1-b licur crBIi o

ie-Ithe cost rows ditf'Qzc hy -t 11inear c,.)mbinijt~on of" constraint rows. Nov'



-*+CT -d** -dC + 11 BA
d. ÷ -Tx ll-.MJ.MXH I1iiI I" ll' l *B H *II mllII x

d + cTx + RO " d + cTx.

For later use we note that if1 R:
(i.14) ~'

0 P

then

(1.15) p* p-1  R* a-.P-l.

'.'he conclusion of theorem 1B states that a sequence of pivots
leads from any linear programming problem M to a new one M? which is
equivalent to it in a very strong sezAe of equivalence.



(6)

2. Canonical form, Convergence

We introduce a notation for submatrices which will be useful
in what follows.

Let A be a p-by-n matrix, let C be an n-by-I column
vector, and let R = (r 1 ;. .,rq) be any sequence of integers with
1 < ri g n • Then we denote by Ap the p-by-q matrix whose columns
in order are Arl,.. r , and we denote by Cp the q-by-Il column
vector whose coyi nents ln order are crl,'"-, crq, i.e.,

(2.1) AR~ IIAri*.-A qi C~ Cr

Crq
<q

For example, let

1 0-2 110 2
KA= 21 1 0 -2 0 2 , B, C 0

-3 0 2 0 1 3 2 -2

0

7

d 14

an"A lý F,-- (2, y, 3, 1);then

0 2 -2 1 0

AR= 1 2 1 2 , CR= 7
0 3 2 -3 -2

13

and for S = (4, 2, 6) ,

AS 0 1 0 CS 0
0 0 0
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Let

(2.2) S (sl,.. .,Sp)

be an ordered sequence of p different integers selected from the set
{l, 2,...,n} . The problem (1.1) is said to be in canonical form with
respect to the ba3ic seuene S if

(CI) AS = Ip , canonical coefficients,

(C2) CS 0 , canonical costs,

(C3) B Ž! 0 , canonical constants.

Note that C1 states that the system of equations has been solved for
xs1,...,xý (the basic variables) in terms of the remaining (non-basic)
variables;p C2 states that the equations have been used to eliminate the

basic variables from tne cost function; and C3 states that in the
solved form of the equations the constant terms are non-negative.

Associated with a problem in canonical form,there is a feasible
vector XS and corresponding cost zS given by

(2.3) xA = bi (i =l...,p)

xs =0 g S
Xg

Ibis solution is referred to as the basic solution associated
with the basic sequence S .

If we let G denote the sequence remaining when the elements
of S are deleted from (1,...,s) then (2.3) can be written as

(2.3') Xs=•, X5 0 z= d

The example (1.5) is canonical with respect to the basic sequence
S = (2,5). Here G = (1, 2, 3) and the associated basic solution and
cost are

x~ IS 11 2,1 x, 0 zS o
= , = 02 = "

x3
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A vector F - I1jf f2 .-.. fnJI is said to be lexicographically
positive written F> 0 , if the first non-zerc component of F is
positive, i.e., if for some i, 1 < i ;9 n , we have fl ... = fi-1 = 0 ,

fi > 0 . For example, 112 -1 311 , H0 0 11 , and 110 2 -3 411
are all lexicographically positive whereas 1 10 -1 711 , 1 o0 o0 ,
and 11-1 7 811 are not. If F- G)o we say that F is lexico-
graphically greater than G , written F > G

Iffor a problem in canonical form,the strict inequality B > 0
holdsthen we have automatically that: C4 -- every row of JIB All is
lexicographically positive. If some components of B are zero but the
first non-zero aij is each such row is positive then C4 holds. Tf,
in particular, S = (1, 2, ... ,p), then C4 is a consequence of C3
and Cl. More generally, if C1 and J3 hold, a permutation of columns
l,...,n will yield %C14

Theorem 2A. Consider a linear programing problem in canonical form.
Then one of the following alternatives holds:

(i) C - 0 and the associated basic solution is optimal.

(ii) There exists k such that ck < 0 and Ak • 0 and the cost
function has no lower bound.

(iii) There exists k such that ck < 0 and i such that aik > 0
and if C4 holds there is a position in column k at which a
pivot transformation results in an equivalent problem in canonical
form, satisfying d+, and- for which the zero-th row I I-d* cXJI
is lexicographically greater than that 11-d C11 of the initial
problem.

Proof: To establish (i) we note that for any feasible X we have

(2.4) Z = d + CTX = d + CTX + T d + CTX s

The inequality follows from the fact that CG t 0 and XG Ž 0 ; hence
X8  is optimal and ZS is the minimal cost.

The matrix M in (2.5) illustrates case (i).

-20 0 0 4 5
(2.5) M 9 1 0 3 -2 7

2 0 1 3 -3 -2

~ - ~- - -
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To establish (ii) consider the equations

(2.6) bi =Xsi + aik Xk i = l,...,p

z d + Ck Xk

obtained from (1.1) by setting all of the rtn-basic variables equal to
zero except for xk . As xk takes on larger and larger positive values

each xsi either grows larger also (if aik < 0 ) or stays constant
(if aik = 0 ) and z either is initially or ultimately becomes negative
and takes on larger and larger negative values. Thus z -* - ® as
xk -4 - and always with feasible vectors X . The situation is pictured
ir. Figure 2.1.

The matrix M in (2.7) illustrates case (ii) with k = 4

(2.7) -20 0 0 3 -4
M 9 1 0 3 -2 7

2 0 1 3 -3 -2

Case (iii) differs from case (ii) since for aik > 0, equations
(2.6) place an upper bound of bi/aik on xk . See Figure 2.2.

For feasibility, we must have

(2.8) xk _5 min {bi/aik I aik > 01 bh/ahk

If now we pivot at (hk), the new basic solution is given by (2.6) with
xk = bh/ahk, and if bh > 0 , the cost Z is reduced by addition of
the negative amount bh ck/ahk i.e.,

(2.9) zI z - bh ck/ahk

Th'! matrix in (2.10) illustrates case (iii) with k a 3,

h - 2:

(2.10) -20 0 0 -3 4 5 b /a-k
M 9 1 0 3 -1- 7 9/3

2 0o 1 3 3 -2 2/3

and after pivoting on position (2,3) we obtain

ý2.11) -18 0 1 0 7 3
M- 7 1 -1 0 -5 9

2/3 0 1/3 1 1 -2/3
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Xk

z

d

SLOPE ak< 1 0

Xk

Flgure 2.1. Geometry of Unbounded Case.

4
S• XN

Figjure 2.2. Gocmetry of ]minould Cue.



which is in case (i) and therefore the associated basic solution

7
0

(2.12) X 2/3 , z 18

0
0

is optimal.

In this example we had B > 0 , ana hence reduction in the
cost z (from 20 to 18). It sometimes happens that bh = 0 and then
(cf. (2.9)) there is no improvement in z ; this is the phenomena
called degeneracy. To handle degeneracy we look not jurt at -d* but

at the entire row 11-d* c*TI!, For it we have

(2.13) 11-d* c*TII = 11-d cT1 1 - ckii- IIbh ahl -,. ahnll
ahk

and now because of our assumption C4, together with the fact that
-ck/ahk is positive, we conclude from (2.13) that the transformed cost

row is lexicographically greater than the initial one; i~e-,we have
strict lexicographic improvement in the cost row.

However, in case there are ties in (2.8), i.e. if h is not
uniquely definied by (2.8) then we must choose h so as to preserve
condition C4 . This is achieved by the following requirement-:

(2.14) -L• Ibh,, ahl ... ahn"l - lexmlin Jal 11bi all ... ain ak O> •1

This choice of h is unique since no two rows of M can be equal.

To see that M* now satisfies C4 we first observe tnat row
h of M* is

(2.15) iL Ibh ahl .. ahnflahk

and is lexicographically positive because the h-th row of M was.

Next, if i * h we have for the i-th row of M *

(2.16) J1bi a 1 .. 4nl - jbi ail ... air.I - - iibh ahi ... ah,fli
ahk

ai ----- ibi ail .. ai I1bh ahl ... a hn,i ik (aik hk



Now, if afk 6 0 the first line of (2.16) shows that row (i) is either

unchanged or is lexicographically increased; and if aik > 0 our choice
of h via (2.14) quarantees that the difference in the second line of
(2.16-) is lexicographically negative. Thus C4 holds for the transformed
matrix M* . This completes the proof r'f Theorem 2A.

Leuma 2B. Let M and M* define equivalent linear programming problems
(in the sense of TheoremlB) in canonical form with respect to the same
basic sequence S . Then M =M

Proof: Suppose that (1.10) holds for Q given by (1.13). Then using

subscripts to denote columns of a matrix we have

Mj = QMj; Oo,.

In particular, if jeS , say j : sh we have Msh = Msh =U+ the
(h+l)st unit vector and so

Uh+l QUh+l- = , h 1,._.,p

But Qo = U1 ; hence Q = Ip+1 and M= M*

Theorem 2C. (first convergence Theorem) Consider a linear programming
problem in canonical form. Then after a finite number of pivot operations
one of the terminal states (i) or (ii) of Theorem 2A is attained.

First permute columns, if necessaryso that (C4) holds. Then

Proof: Consider a sequence M = Mo, M1 , M2 , ... , M•1 of canonical tableau
matrices all in case (iii) and satisfying (C4) and where for each

i(i - 1,...,t) Mi is obtained from Mi.1 by pivoting on a position
(hi, ki) selected so that ck i'l) is a negative entry in the cost

row of Mi. 1  and hi is determined using (2.14). Then, since by the
conclusion for case (iii) of Theorem 2A, there is lexicographic improve-

ment in the zero-th row at each stage, no two matrices in the sequence can

be equal. It follows from Lemma 2B that no two of the corresponding
basic sequences can be equal. Hence. t+l cannot exceed the number of
possible basic sequences. We conclude t is less than the numb-r
P(n,p) of permutations of n objects taken p at a time and therefore
t is bounded. On the other hand,the sequence can be extended unless one
of the terminal states (i) or (ii) has been reached. We con=lude that

a terminal state can be reached after less then P(n,p) pivots.
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Fortunately, in practice the simplex algorithm has been found

to terminate after relatively few pivots, although there is a yet not a
mathematically established bound which comes close to explaining computa-
tional results.

.I
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3. Reduction to Canonical Form

Having obtained a convergence theorem for problems in canonical
form, we now turn to the matter of reduction to canonical form. We organize
the question of reduction under sequence convergence theorems- each cover-
ing a more general case than the former, until we reach one which applies
to the most general form of linear programming.

Theorem 3A. (Second convergence theorem.) Let M represent a problem
in standard form for which Cl holds. Then there exists a finite sequence
of pivot operations which will terminate in an equivalent problem M*
which is in state (i) or (ii) of Theorem 2B or which

(iv) has an infeasible constraint of the form "negative
scalar equals sum of products of non-negative scalars",

i.e.# i? has a row of the form

(3.1) lIbi ail ... ainll

where bi < 0 and aij Z 0 j=l,...,

We sometimes represent states (i), (ii), (iv) symbolically by

400

(ii)

- -
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(iv)

Proof: Conceptually, we may achieve C2 by using the equations to
eliminate the basic variables from the cost function. Analytically, we
proceed as follows. Let

3.2) zT = 171 ... z"1 _ CST A, , . CST B

then: successive pivots on the p positions, ý1, sa), (2, 82)p ... ,
(p, ap) will yield a new cost row 11-d* C*'I1 where

(3-3) C C - Z , -d - d - zo,

and will not change any of the last p rows of 34 Since As iw

the J-th unit vector in p-space, zsj = csj so that 931 = 0 N I 1"...,p);
hence, C2 is now satisfied.

Tables 3.1 and 3.2 give, respectively, a schematic representa-

tion and a numerical example of this process.

Next, if C3 is not satisfied, we consider an auxiliary sub-
problem,

-d ' C 'T
(3.•) "4

b' A'

whose zero-th row is any row of N for which the constant term is
negative, and where JIB' A'll consists of all rows of N for which
the constant term is positive or zero. Nov P' Is In canonical forms,

and we apply the first convergence tbeoram to N" to obtain a sequence
of pivot positions leading to either state (i) or state (ii). We actually
pivot in all of N , so as to preserve Cl or C2 for it. Let MO
and k*l represent the resulting problem and auxiliary subproblem.



TABLE 3. 1

CALCULATION OF CANONICAL COSTS

BTA TCS -d CT "o - Cs 1!
B A zj - CsTAj 1 0 is.. n)

z ZT -d* a. -d - zo

-4* Cj*T' c 3. -zj (3.1, ... , 0n)

TABLE 3.2

CLCMATION OF CANONICAL COSTS, ILUMMATIVE EXAMPLE

B A, !2 A3  A4 AS A

3 12 5 4 -1 -2 1

3 2 0 1 4 0 -5
4 -1 0 0 2 1 2
1 3 1 0 - 4 0 2

(a) Cnitiano table, S -(Oi 5o, 2)

C B1  Al A3, A4  A 5  A6

8 3

4 3 20 1 4 0 -5

S-1 0 0 2 1 2

5-1 3 04(c) ca 5 i -ab2e1a

(b) CaLlcultation of canonical costs cj

S Al A2a A3 A4 A5 A

-6' .2 , .0 .... 0 5 0 15
3 2 0 1 4 0 -5
4• -1 0 0 2 1 2
1 3 1 0 -4 0 2

(c) Cwx,1c,• tablea



(17)

If state (i) obtains for M*1 and -d*1 < 0, then M* is
in state (iv) and, therefore, the problem is infeasible. If state (i)
obtains for M and -d _ 0 , we form a new subproblem, *11 ,
which is in canonical form and has at least one more row than M' had.
(Actually, if -d*- _ 0 after any pivot, we need not cont~nue to a
terminal state but can immediately pass to a "larger" M1 1 .j

If state (ii) obtains with, say, C < 0 and i < 0*
we choose the cost row of the subproblem as pivot row and colman k as
pivot column. Then ck1  is the pivot element. We claim that, after
pivoting, the resulting M** will be feasible every row of M*l (including
its cost row) and, hence, we may form a "larger" M"!i as the continuing
auxiliary subproblem,

To verify this claim, we observe, first, that .j**i = (.d*l)/
*1

Ck > 0 , since by nypothesis both numerator and denominator are negative.
Finally, if i is any row of M1 , we have

b =b .a ~ > b1
b i a1k ( -*/k -z bi ,

since by hypothesis the first term in the fraction is nonpositive (as
an element of A•I ) and tne other two are negative.

Thus, after a finite number of auxiliary subprobiems of increasir.ý.
size, we must Pither reach state (iv) or obtain an M! with B* > 0 anJ
hence, by 1het:,;- -', eventually reach state (i) or state cii) for the

full problem. This comp±tA.-I the proof of Theorem 3A.

Ro-marl: itf, crcndipitously, rows of M not in M1  become
feasible before the cost row of •t1 does, one can immediately pass to
a larger subproblem. The desirability of including the search for this
phenomenon in a computer program is still an open question.

Table 3.3 illustrates pivot defined by an auxiliary subprobltm.
Note that, in this example, one pivot ach~eves one more feasible row.
An additional pivot in position (3,1) w1,ll dew•rstrate infeasibility of
the problem.

Theorem 3B. (Third converjenýe theoreM.) Let 14 represent
a problem in standard form. Then there exists a finite sequence of
Diwt, whiih will, atmnate in an e vaent Problm M , whlc e

(v) has a constraint of the form "nonzero scalar
equals zero",

"a
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TABI 3.3

EXAMPLE ILLUTRiATvII AUXILIARY PROBLE

B A, A2  A3  A4  A5  A6  A7

4 0 0 3 0 2 0 4
3 0 0 3 1 2 0 3
2 0 -1 0 2 0 2

-2 0 0 2 0 -3 1 1
-2 0 1 3 0 4 0 -1

(a) Initial tableau

-2 0 0 2 0 -3 1 i
0 0 3 1 2 0 3

-2 1 0 -1 0 2 0 2

(b) Auxiliary tableau

AFTER PIVOT AT (2, 5)

12 -1 0 b 0 0 0 0
1 -1 0 2 1 0 0 1
1 1/2 0 -1/2 0 1 0 1
1 3/2 0 1/2 0 0 1 4

-6 -2 1 5 0 0 0 -5
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M*has a row of the form

'3-5) jbj i ... a,

where bi + 0 and ail = ... =~ 0 , or satisfies Ci. after deletion

of any zero rows..

Proof: Suppose that S = 0I' , sq) is a sequence of q distinct
integers, where 0 < q < p such that

(3.6) A51 = i,- Aq= S q

Then let h =q + 1 and consider the h-th row of" M If it satisfies
(v), the problem, is infeasible and we stop.. If the entire row is zero,
we delet~e it and proceed with the resulting tableau. Otherwise, there
exists k such that ahk ý 0 'Because of (3.&), kJS , We now pivot
on position (h,k) to obtain a new tableau with one more canonical

colmn W lt q+l = kS ~~'q+l) , a.nd (3.6) holds for the
transformed tableau relative to S' . Since each stage either stops
with (v) or decreases p-q , the process cannot continue indtefnitely,
and the theorem is established.

The first three re-duction theorems show that, for any problem
in standard form, there exists a finite sequence of pivots, which results
in an equivalent problem M* in one of the term~nal forms (i), j'ki),
(iv) or (v). Wc now define the general linear program -,nd show how tc
reduce it to standard form; thus, we will complete our proof of convergence
of the simplex algorithm,

The most general form of linear programmiing probiem- has both
nonnegative and free variables and both inequalities and equations.
Suppose that there are n, nonnegative variables, -n2 free variables,

".l inequalities, and P2 equalities. The problem takes the form

T2'
(3.7) Minimize z = d + C1  X1 +'C2  X2-

subject to the constraints

(3.8) All Xl + A12 X2 -f B1

(3.9) A 1 X1  A22 X2  B2  -

(3.10) X1 0

(3.11) X2 frfse
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We introduce a vector X3 with p, components, set C3 - 0 ,

replace (3.7) and (3.8) by

(3.7') Minimize z = d + ClT X1 + C2T X2 + C3T X3 ,

(3.8') All Xl + A12 X2  Ipl X3 = B1 ,

and add the constraint

(3.12) x 03 .

We call X3 a slack vector.

The resulting problem would be in standard form were it not for
the free variables. A little reflection leads to the observation that
basic free variables present no difficulty but that nonbasic (i.e.,
independent) free variables upset the logic of the simplex method. This
suggests that we look for pivot operations which will bring as many free
variables as possible irto the basis. We will then be able to lay the
corresponding equations aside, temporarily, and deal with a smaller prob-
lem in standard form.

We proceed inductively and assume for some q with 0 ! q g n2
that there are q free variables in the basis and that by permuting rows
(if necessary) these free vaiiables are in rows 1,..., q and that the
basic free variable in row i is in column si(i = 1,...,q) . If q < n2

there exists another free column k and for it there are three cases to
consider (set P = P1 + P2 )

(a) aq+l,k .. ap,k = ck 0

(b) aq+l,k= . -pk 0, Ck 0

(c) for some h with q<h p, a<k h 0.

If case (a) holds for every nonbasic free column, or if q n2
we consider the subproblem which remains when we delete all of the free
columns and the first q rows. This subproblem is in standard form and
therefore can be handled by the methods already dexelop~d. If the Lub-
problem has a basic optimal feasible solution (Xl , X3 ), we obtain a,0 0 0) fo h ai rbe
basic optimal feasibie solution (X10, X2

0, X30) for the main problem
by setting eaoh nonbasic free variable equal to zero and by setting



(21)

(3.13) x bi - (ail x, + ... + an1 xnl)

0 0 0

(ai,nl+n2+ixnl+n2 + + ... + ai,nl+n2+n3 xnl+n2n)

i = 1,...,q .

Moreover, the minimum value of z is the same for the main problem and
the subproblem.

If case (b) holds, then either there is no lower bound for the
objective function or the problem is not feasible. For, suppose XO is
any feasible solution with corresponding objective value zO . Then
define a vector Y as follows:

(3.14) Ysi = -aik i = l,...,Sq

Yk = 1

Yi = 0 for all other i

Then Y makes the left-hand sides of (3.7') and (3.8) zero, so that
the vector

X = xO+ ty

is (i) feasible for all real numbers t , and (ii) yields z = z0 + tck
It is clear that the constraint equations (3.7') and (3.8) are satisfied
by X . Moreover, for all t, X1 = X1 

0  0 and X =X30 > 0 , so that
X satisfies all of the feasibility requirements. iext, z =co + CTX
= (c0 + cTxO) + cTy = z0 + tck (since csi =- 0, i = l,...,q). Now, by
giving t the sign opposite that of ck and by Making the absolute
value of t sufficiently large, we can make z take negative values
with arbitrarily large absolute value; i.e., the objective function has
no lower bound. Thus, if case (b) occurs, we stop knowing that the problem
has no solution.

Finally, if case (c) holds,we (i) pivot at position (hk), (ii)
permute row h and row q+l , (iii) set s+l = k and thereby have com-
pleted an inductive step. We then iterate Nhe process until eventually
we reach case (a), case (b), or q a n2

The three cases are illustrated, respectively, in Tables 3.4
3.5, and 3.6. The second tableau in Table 3.6 comes under case (a). In
all of the examples xl, x2  are nonnegative variables, x 3 , x4  are free

~•
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TABLE 3.4

CASE (a) TRANSITION TO SUBPROBLE4

B Al A2  A3  A4 A5

6 0 4 0 0 0
3 2 2 1 2 1
!2 0 3 0 0 1
4 1 -2 0 0 0

p. 1j, P2 a 2, n =2, n2 =2, q = 1, sI = 3, k =4

x1° =k z° -6

X, 04
0

X1 2

TABLE 3.5

CASE (b) UNBOUNDED OBJECTIVE FUNCTION

B A 2 k A3  A4  A5

0 1 3 -2 0 4

3 1 2 3 1 1
2 -1 3 0 0 -3-4 2 -6 0 0 3

0 .3

l 1 , P2 z 2, nI -2, n2 = 2 t q - w, sI - &, k = 3

X0. , zO.4,r.

I t-"a
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TABLE 3.6

CASE (c) MlCREASE IN q

free slack
A, A2  " 3  A4  A5

0 1 3 -2 0 4

3 1 2 3 1 12 -1 :? M 0 -3
r-4 2 -6 -3 0 3

Pl = 1, p2 = 2, n 2, n2 -2, q -1, oI = 4, k = 3, h = 2

4 -1 9 0 0 -2
- -7 0 1 10

2 -i- 1 1 0 -3
-1 3 0 0 -6-

q 2, sI , 4, 82 - 3



variables, and x is a slack (nonnegative) variable. The tableau

corresponding to the subproblem in the first example is

B A, A A

22
6 0 4 0
2 0 3 1
4 _-I -2 0 I l

and is in optimal form with corresponding solution as listed.

The subproblem obtained from the second tableau in the third example is

B A1  A2  A5

2 -1 3 -6

After pivoting in position (1,2) of this subproblem, i.e., position (3,2)
of the corresponding full problem, we obtain

F -2 2 o 16
2/31-1/3 1 -21

which is in case (i), so that the original problem has the optimal solution.

"ro-
2/31

Z=2 X=- 0

5/31
L 0 J

We summarize these results in our final convergence theorem.

Theorem 3C. (Fourth convergence theorem.) Given a general linear grogram
n (3.7)7throuh (3.11), there exists a finite sequence of pivot

operationa whi1c.h either le•=t., to an npttmal solution, demonstrates in-
feasibility, or demonstrates unbounded coat.

Actually, we have done more, because we have given an algorithm
which selects the successive pivot positions and which identifies infeasibil-
ity and unboundedness in several specific forms.
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There is an alternate method for handling free variables,
namely, the replacement of X2 throughout

(3.15) X2 = X0- X2

where

(3.16) XL o, X > o;

we thus have an equivalent problem with only nonnegative variables.
This alternate method is, for theoretical purposes, quite satisfactory;
however, it fails to take any advantage of the flexibility which free
variables afford via the reduction to a smaller problem after the free
variables are pivoted into the basis.

I!I
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7.6 Replace (l,...s) by(l,...,n)

8.11 Replace is by in
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4. A Computational Check; The Revised Simplex Method

Let

(4.1) M -B~ CA~

be the initial tablcau matrix for a problem in stendard form, Lnd let

(4 .2 ) 
* = I B A * 1

be a second tableau matrix for the same problem which we assume to be in
canonical form relative to some bnsic sequence S* - (sl*, ... , Sp*).

For the case of a full tableau matrix M and any basic sequence
S - (s, ... , s ) we modify cur previous notation for submatrices slightly
and thus write

(4.3) Ms.V

to designate the square matrix of degree p * I consisting of the first unit
vectozr of Vp , I. followed by coliamns a,, ... , sp of M (we consider

II I to be column 0 of M).

The process of pivoting on position (h,k) of M can be rega/ded as
premuitipicetion of N by *•e matrix

1 0 ... 1k/%k "'" o

0 .. -a2k/ahk .0
(4.4) F

hk
0 ... -c/ h .. i

k hx
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Here F differs from the identity matrix I only in column h + 1n+I

which is indicated in (4.4), or in terms of f, fih = -mik/mh for all
i f h and f 1/mh . It follows that a sequence of pivot operations
can be effected by a single matrix multiplication, and the reverse se-
quence can be acheived by multiplying by the inverse of this same matrix.
Suppose then that

(4.) M* = QM, M = Q- j

Since we never pivo in the i.nitial row or column,.each pivot matrix F
has initial column and hence so does their product Q as well as its

inverse Q-.

Now

1

(4.6) *= 0 M* • M* =I 1 + .• " s* p+l

p
0

It follows from (4.5) that for each j, Mj= Q-M ; also =

hence we have

(4.7) M =Q- M* S* q-1 or
S* 3*

(4.8) M = Ms* M*

This equation provides a numerical check of the accuracy of M*
under the hypotheais that M*, but not necessarily M, is in canonical form.
We call it a reverse check sinre it goes from M* to M by premultiplication

with a "submatrix" of M.

If M is in canonical form with respect to a basic sequence
S = , ... , s ), then

(4.9) M* = M*SM , i.e., M *S

We call (4.9) a direct check since it multiplies M by a "submatrix" of M*
to obta.n M*. If a check (either direct or reverse) discloses an error, one
can then check in intermediate stages and soon locate the source of the
error. For example, if M* is the result of 12 cycles, first check at Cycle
6. If this is correctcheck at Cycle 9; if it is incorrect check at Cycle 3,
etc.



Wi observe that when both M and M* are in canonical ,;rr) then

(4.io) Ms. Ms T p+2.

thus we may regard the simplex method as being a systematic procedure for
calculating inverses of the "submatrices'" Ms*of M and for specifying,by
selection of S*, which submatrices to invert.

In applying (4.5), given M and 0%, there is no need to calculate

all of M*. Indeed, if we first calculate the initial row of M* we can
either (i) find an index k for which chk* < 0 or (ii) conclude the
M* is in optimal form.

In case (i) we calculate column k of M* and conclude either
(iii) there is some aik > 0 or (iv) the problem has no optimal solution.
In case (iii) we calculate column 0 (the B column) and apply the pivot
selection rule to determine the next 1jvot position (h,k) Let M' be the
matrix obtained from M* after pivoting at (h,k). Then

(4..a) M I=- F*M*

where F* is given by (4.4) (calculated from M* rather than from M).
Then, from (4.5) we get

(4.12) M' = Q'M where Q' = F*Q.

This completes a full cycle of the algorithm. Note that this form of the
simplex algorithm requires (i) keeping a permanent record of the initial
tableau matrix M, (ii) keeping a temporary record of the transforming
matrix Q which is discarded in favor of its successor Q' when it 's
calculated, and (iii) calculating the final row, the initial coliumn, and
one other column of M*. These are used to decide the state of M* and
to determine F* in case M* is n6t in a terminal state and then are dis-
carded. One might also wish to (iv) keep a record of the basic sequence
S'.

[The revised simplex method is not recommended for hand calculation.
For that matter, hand calculation in any form is clearly hopelessly inef-
ficient for all but very tiny problems. Thus we must evaluate the revised
simpler method with machine calculation in mind.]

It is not particularly difficult to devise a computer program
which will put into effect the four parts (i) - (iv) of the revised
simplex method. This method has several important advantages for digital
calculation
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(a) All calculations are based on the initial dataý and .-

the accuracy of Q can be tested by reference to (4.7), i.e., Q
is the inverse of MS*;

(b) If the original data is sparse (i.e,,has many zero co-
efficients) the calculations will be simpler and quicker at every cycle

since this sparse matrix M is used throughout. In the ordinary algorithm
sparseness is rapidly lost. Moreover, very large sparse problems can
be handled -ith a computer memory ihich could not touch nonsparse prob-

lems of the same size;

(c) The fact that not all of M* need be calculated gives
substantial computing economy,

In most current computer programs the method, as described, is

mQdfied in several ways,of which we discuss only one. Instead of storing
Q we store only each factor F', and for F' we store only its non-identity
column together with a record of the pivot position. The algorithm in this

form -is called the "product form of the revised simplex method" and several
computer algorithms for this method are in current use. We do not discuss

the details here.

Ii
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5.Duality

We consider a pair of related problems

(5.1) DVS R, V _ 0, maximize P V

and

(5.2) DTu U-- P, U >-- 0, minimize RT U,

where D is a p-by-n matrix and we assume that problem (5.1) has an
optimal feasible solution.

The introduction of slack variables Y in (5.1) leads to a
problem in standard form

(5.3) AX = B, X - 0, minimize z = d + CT X

where

(5.4) A = JID III, X = 11 V 11, C- 11 "P 1, B - R, d 0,

and Cl and C2 hold for the basic sequence S = (m + 1, ... , m + p).

Thus as initial tableau we have

(5.s) M = M
B A R D Ip

let the final (optimal) tableau be

-d* C*T -d* C*T C•T(96)M*= G
B* A* B* A* A-IG

Next, we.let

S(5.7) uo-4,

and then from (4.9) we get

T T T T
(5.8) -d* U0  R, C -P +U 0 D.

G 0;

f :k . . . .i n . . . . . . .



(31)

Now, since (5.6) is in optimal form,we have

(C.1 >o, o,>.0

or, equivalently,

(5.10) Uo 0, D _U-P.

Hence, U0  is a feasible vector for the dual problem.

Let X0= V0  be the optimal vector for the primal problem. Then

(5.11) d* = cTx = .- pTv ;0 0

he-ce

(5.12) pTv = RT U = -d*0 0

For any feasible vectors V and U for (5.1) and (5.2) we have

(5.15) RTU = uTR • UTDV > pTV.

From (5.15), (5.12) and the feasibility of V0 ', UO , it follows
that both V0 and T0 are optimal. Since Ti0 appears as part of the initial
row of M*, we see that the simplex algorithm solves both of the related
problems simultaneously and that the objective values are equal.

'The relationship between the problems (5.1) and (5.2) is an inter-
esting special instance of duality in linear programming. Even this special
instance has a number of important applications; for example, the minimax
theorem of game theory is a consequence of (5.11). However, the special
form of (5.1) leads us to ask how to define duality fcr more general linear
programning problems. Indeed, we might ask about the characteristics of a
duality relation in still more general situations.

Let - be a set of objects. A mapping T of E into itself is
said to be involutory if VaoM , T(T(a)) = a. If ,. is an equivalence relation
on , T is said to equivalence preserving if a ,.a' implies T(a) , T(a').

We say that T is meaningful relative to some relation R on Z if

for all aEX, aRT(a).

For example, let E be the set of all linear programming problems
each of which has either form (5.1) or the form

(5.2') FU> Q, U 0, minimize sTu
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and let T be the mapping used above which sends the problem of (5.1) into

(5.2) and conversely. In more detail:if we let denote the set of all
problems of form (5.1), let ; denote the set of all problems of form (5.2'),
and let E = •u then T interchanges the two subsets EE and when
applied twice to ay problem in E gives back that same problem. The invol-
utory property of T depends on the fact that transposing any matrix twice
gives back that same matrix. This mapping T is not only involutory but
also is meaningful relative to the relation

(.5.14) optimal value a = optimal value T(a).

More generally, a mapping T is meaningful if there are useful theorems con-
necting a and T(a); the duality theorems of linear programming are of this
nature.

A mapping T which has all three of these properties i.e.
which is involutory, equivalence preserving, and meaningful qualifies as
the very "best" type of duality. We obtain such a duality for linear
programming under a rather general equivalence relation.

We now denote by E the set of all linear programming problems
in the general form (3.7) - (5.11). Given any such problem called the
primal problem, we show in Table (5.1) how to define a new problem in
called the dual problem related to the given primal. We may characterize
the primal problem by the (p + p2 + 1) -by- (nI + n2 + 1) matrix

-d C1T C2T

(G B1 A11  A1 2

B2 A21 A22

together with the ordered set of integers (p ) p2, n , n ) which indicates
the nature of each constraint and variable. +hen the duai problem is
characterized by the matrix - GT together with the sequencE (n1 , n2 , pl' P2).

Clearly, the correspondence between primal and dual is involutary, since,
in particular, -(-GT)T a G. Note that the dual is also a minimization

problem; each inequality in the primal system corresponds to a non-negative
variable in the dual; each equation in the primal system corresponds to a
free variable in the dual. Corresponding to each non-negative variable in
the primal system is an inequality whose coefficients are the negatives of
the coefficients of this variable and whose right hand side is the negative
of the coefficient of the variable in the primal objective function;

Ih



Primal Dual

min ClTXl + C2TX2 + d = z in -BT U1 - B 2u -d z'

p: A X + A X> B Ul 0
11 1 122 1 1

P A21 X- + A22 X2 =B2 U2 free
p2:A 2

T T
n X >0 -Al l U -A U2 -CI

T Tn2 : X2  free -A12 U1 " A22 U2 "C2

Table 5.1. Dual Systems, General Case.

each free variable in the primal corresponds to a similarly defined equation
in the dual system. The dual objective function has as coefficients the
negatives of the right hand sides of the primal restraints. (The minus sign
attached to d in (5.14) is necessary for uniformity in reading relations
from the matrix; the initial row represents the equation z-d = C TX+ Tx

This duality includes the previous one as a special case if we
observe that (5.1) is equivalent to

(5.2'') -D V > R, V > 0, minimize - P V.

Two special cases of the general linear programming problems are
of frequent occurrence. The case p = q = 0 (cf. 5.1) is called the
symmetric form and is the one that aýises ýaturally in many applications.
The case p, = q2 = 0 is called the standard form (cf. Section 1 above).
We recall t at reduction to standard form is a first step in preparing the
problem for application of the simplex algorithm. The dual of a symmetric
problem is again symmetric; however, the dual of a problem in standard form
is not in standard form.

We saw in Section 3 (cf. (3.7'), (3.8'), and (3.12)) how to change
from a problem in symmetric form to one in standard form via introduction
of slack variables. Thus, if we can show that a problem in general form is
equivalent to one in symmetric form,we will have established that each of
the three forms actually includes all problems. To do this we first replace
the free vector X2  by the difference X6 - Xý of two non-negative vectors,
and then replace each equation by two oppositely directed inequalities.
This yields the symmetric system

(5.15) AX - F, X 0 0, miin z d + CT X
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where All A1 2  A2

A A2 1  A22 A22

A21 A22 A22

B1  C X1

B B2  ,C= C2 X X

-B2  2 2

It is easy to verify that the dual of (5.15) is equivalent to the original
dual; i.e.,our duality is equivalence preserving.

We might ask more precisely in what sense the general primal form
is equivalent to (5.15). Clearly,aany feasible solution X of (5.15) defines
a feasible solution X1 , = - of the original problem and with
the same z value. Conversely, if X1 , X2  is a feasible solution for the
original problem end if -t is smaller than any component of X2 then

X + , X"= t E 2  (where for any h, Eh is the vector with h
components &Il equal to oRe) gives a feasible solution X for (5.15) with
the same z value. Hence either the two problems have the same optimal
value or neither has an optimal solution. Alternatively, given X2 one can
find unique I it with X'T it X' > 0, X" > O, and X - X' - X"1

extreme solutions of the two sys2 ms 2

can be put into one-to-one correspondence; this means that the arguments
which justify the simplex method can be extended to show how to obtain all
extreme solutions of the original problem from the basic solutions of th•
equivalent problem in standard form.

• IA
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We give an illustrative example in which pl 1, p = 2, q = 3,
q =2 -2
3

Primal Dual

min +21 +3X2 +2x3-3X 4 + 7x+ 2 z min -3u, + 7u 2 - 2u, - 2 z'

2ix + N2 7x - 4 x,+ x- 3 u O

3xx 3x + 2x -7 u free

4x + 2x2 -6x -x -4x5 2 u free

(5.16) x 0 -2u - 3u - 4u > -2
1 1 22x O-3u + - 2u3 > -5x 2 >0 -u1+ u 2 2u=Z-

x>O 7u" + 3u2 + 6u > -2

x free 4u1 - 5u2 + 8u3 a3

x free -u -2u + '4u 7
5 1 2

The corresponding primal problem in symmetric form has (cf. (5.16)).

2

2 3 -7 .4 .1 '4 -1 I
3 -1 -3 5 2 -5 -2 -7 2

A 2 -6 -8-4 8 4 , 2j. C a"5-

-3 1 3 -5 -2 5 2 7 7
-.4 -2 6 8 4 -8 -4 -2 3

7

We have shown that our duality Its involutory and equivalence pre-
serving so far as transitions from general to sywmetric to standards forms
are concerned. We conclude the present section by stating and proving the
general duality theorem fcr linear programming thus showing that duality is
meaningful.

We recall that for a general linear progreaming problem there are

three mutually exclusive possibilities:
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(a) There is a basic optimal feasible vector,

(b) The problem is feasible but objective function has no finite
lower bound for feasible vectors,

(c) There is no feasible vector.

The fundamental duality theorem states

(i) If either primal or dual has an optimal solution so does
the other,

(ii) If both primal and dual are feasible then both have optimal
solutions.

(iii) If either primal or dual is feasible but with no lower bound
for the objective function then the other is infeasible.

(iv) Both primal and dual may be infeasible.

(v) If (i) holds then

(5.18) Zopt - 'opt 0

(vi) If X , X , and U , U are any feasible solutions to the

primal and dual, re pec~ively, b;en2

(5.19) z + z' I o.

We first establish (5.19). We have

+ + , - (c Tx + c2 TX + d ) - (BI TU + B 2Tu 2 )

>TX C TX - U T(A X + A X
i 1 1 2 2 1 11 1 12 2

_u T (A 21 X1 + A22 X2)

1C 1 11 U2 21 1
4 (C T . U T A U T A X

2 1 12 2 22 22

>0
U

Since the first term is a sun of products of non-riegative factors 3nd the

second is 0. Note that we used all of the feasibility conditions for botAh
primal and dMal in establishing this chain of inequalities.

Next, we assume that the primal problem has an optimal soli•tlon.
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More precisely, let -d C T 0 -, 0

MA11 A12 -1p---- M . I 1l I2 "~

B A A 0
21 22

be the initial matrix, and suppose that

T T T-.d* Cl* C2" C3"*

M* BI* Al1 AI* AI3*

B* A A * , *
2 21 22 - j

T

is optim tableau. The optimality conditicns ar'e C * > 0,
C - 0, C *T • 0. The equation c-*T ' is alconsequence

Of the conclusion concerning case (b) (of that section) proved in tne
argument following (3.14). Consider any free •auiable
basic in M* then C; - 0 because of (C;) and if it ls not bazic C* C

because of our hypothesis of optimality.

Next let Q -1 M, be the iatrix a;.r wich M - Q- M*;
partition Q by suldivis'ns the same as tor M giving, say,

1 1Q2 •ij

and set U I TQ 13 f e, z , M*

optimlity of "we ge"

-d U- B1 - A2  2 .-

(5.20) 1 1 U. 2 ?

1 1 12 2 22

U T "C T o
I1



whence it follows that U , U is a feasible verctr for the dual with

objective value z' - =- z and henceopt

z + Z' =0
opt

This together with (5.19) shows that UI, U, is optimal for the dual v,
z'I = z so that (5.18) holds. Fnce duality is involutory this
es% lishes (i) a (v).

Next, we observe that if both problems are feasible then (5.19)
shows that neither can fall in case (b) and this establishes (ii). Finally,
(iii) and (iv) together are merely the contrapositive statement of (I)
and (ii). We give examples to illustrate possibilities (iii) and (iv).
The slef dual p-oblem

(5.21) min z = -x subject tc the constraints Ox, ý- i, xI > 0

illustrates (iv), and the problem

i5.22) min z -xI subject to the constraints x > x 1 0

illustrates (iii).
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6. Interpretation of Final Tableau

Suppose that the M of (4.1.) is the final (optimal) tableau
matrix for a linear programming problem. Each number in M has an
interpretation in the language of activity analysis. The entire first
column, of course, gives the optimal vector and minimal value of the
objective function. Each other column can le used to describe how to
adjust the optiwal program as a prescribed amount of a nonbasic activity
is introduced.

The optimal solution is, of course,

Sx i b., (i = 1..p

(6.1) Sx =0 j J s

Here S = (Sl,...,sp) is the optimal basic sequence and as before we
denote by G the set of n-p indices not in S . Let k be a nonbasic
index and suppose that we wish to introduce t units of activity k
into our program. Then the new "best" solution is

X'si b- aik t

(6.2) xj= 0 j c G, j I k

x' = tk

zi =d+ckt

We consider two cases: (i) k is a slack index and (ii) k
is a natural index. Case (ii) is simpler and we treat it first.

Natural activities, e.g. building picture frames, eating steak,
are irreversible hence we restrict t to nonnegative values. The upper
bound foi t is determined by thc fact that if any ai is positive
then t cannot exceed bi/a'k lest x',i become negative. Thus, for
t we have

(6.3) 0 ! t r mmin {bi/aiklkak > 0; i = 1,.,p}

If ho aiy is positive there is no finite upper bound for t ; occurence
of this in a practical problem is an indication that some constraint may
have been overlooked in setting up the model.



A positive value for a slack variable indicates that not all

of some resource has been utilized or that some requirement has been

more than met. A negative value for a slack variable represents an

infeasible solution to the original problem but may have a useful inter-
pretation for slightly modified problems. For example, to consider what
would happen if additional units of some resource became available we

consider negative values for the corresponding slack variable. Thus, if
xk measures labor units then xk = -2 would literally mean a program

which exceeded original labor availability by two units and thus (6.2)

with t = -2 can be used to describe how the optimal program should be

altered to take advantage of two added units of labor. If xk measures

excess protein then t = -2 would indicate how to best adjust an optimal
diet to account for a decision to reduce the minimum daily protein re-
quirement by 2 units.

For a slack index k the permissible domain for t is given

by

(6.4) max{bi/aiklaik < 0; i = l,.,.,p} < t < min {bi/aiklaik > 0;

i =l...,'pI

Here as in (6.3) we may have one or both limits infinite. For any t
in this interval, (6.2) gives the best adjusted program.

In both (6.3) and (6.4) if t reaches its extreme value we
have the same result as would be given by a pivotal transformation which

brings k into the basic sequence. Any further changes in xk must
follow the rule which we develop below for changes in basic variables.

Before discussing changes in basic variables we consider the
effect of changes in an initial resource or requirement whose corres-
ponding slack variable is basic.

If a basic variable xsh measures the slack in resource h

then, clearly, no increase in the initial supply of this resource can

effect the optimal program or its cost, nor will a decrease by t units

provided that

(6.5) t < xs
= Sh

Similar reasoning applies to requirements. For exmnple, if the h-th
constraint is the minimum protein requirement, then an increase by t
in this requirement will have no effect if (6.4) holds.



The final tableau matrix does not indicate the amount of the

h-th resource that is used in the program. Let M' denote the initial

tableaux matrix. Then b'h is the amount of resource h that was

available initially and b" - xS is the amount used in the cptimal
h sh

program. Similarly, for the vitamin illustration b'h was the original
minimum daily requirement and b' + XS is the amount of proteinh sh
actually supplied by the optimal diet.

Next, let sh be any basic index and consider the effect of
changing Xh by some positive or negative amount T . Accord.ing to

(6.2) this can be done by choosing some nonbasic index k anu letting
T = -ahk T . In this analysis we wish to preserve the original constraints

and hence require t L J .

For T > 0 we must choose k such that ahk < 0 , then the
unit cost for increasing xsh is -ck/ahk and hence the best k to

introduce is given by

(6.6) -ck/ahk = min {-cj/ahjiahj < 0; jEG}

Similarly, for T negative the unit cost and best k are given by

(6.7) ck/ahk = min {cj/ahjIahj > 0; jcG}

Whether T is positive or negative when t takes its upper

bound as given by (6.3) say T = bs/ask we have for the total increase
in cost

(6.8) Ick bs/askI

and for further change in x sh we repeat the entire process beginning
with the tableau M* obtained from M after pivoting at (s,k) . We

must take into account the fact that M* is not in optimal form but
this does not effect (6.2). The fact that one or more of the c*. may
be negative gi*ves us no difficulty, provided that we add the requirement
ck > 0 in selecting the new k in (6.6) and (6.7).

We have discussed the effects of changing the original constant
terms bi' . Changes in a coefficient aik for k nonbasic has no

effect on the optimal program unless ck becomes negative when we multiply

M' by Q to get M , Of course, the aik in (6.2) will have to be
adjusted, and if ck becomes negative further pivots, beginning in column
k will be required to obtain the new optimal program. Changes in aik

for k basic require adjustments in Q and hence possibly in all of

M ; small changes may not change the optimal basic sequence.



* (42)

Changes in c' for k nonbasic are reflected by exactly

the same changes in ck ; i.e. if c'k is replaced by C'k + t then
Ck is also replaced by Ck + t • The value t = is the breakeven

value and represents the amount by which c'k must be changed to make

the k-th activity competitive economically with the basic activities.

If csh is replaced by csh + t and we subtract t times

row h of M from row zero to restore canonical form ck is replaced

by ck - t ahk for each keG . Hence, if t lies in the interval

(6.9) max {ck/ahklahk < 0, keG} < t < min {ck/ahklahk > 0, kcG}

the optimal basic sequence S and the corresponding optimal solution

(6.1) will remain unchanged except that zS will be replaced by
ZS- t bh
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NECESSARY CONDITIONS OF OPTIHCITY IN CONTROL AND n2RRAMOIWI

E. POLAK, (UNIVERSITY OF CALIFORNIA, BERKELEY)

I. FINITE DIMENSIONAL PROBLDES

Statement of the Basic Problem

Let f: En El and r : -E E be continuously differentiable

functions, and let 1l C En be a sut.set of En. The Basic Problem¶, can

be stated as follows:

A n
Find a vector z e E such that

(S) A , 0, r (&%

(ii) for all z 1 0 with r(z) = 0, f(z) S f(s).

We shall call a vector ^ satisfying (i) and (it) an optimal solution to the

Basic Problem.

Necessary Condition for Optimality,

The necessary condition to be derived will be stated in the form

of an inequality which is valid for aill 6z = ( 6 zl. 6 z a, •. ., 6%n) in a

convex cone "approximation" or "linearization" of the set l. We shall

make use of two kinds of "linearizations" of the set 0 at a point x. The

first one will be defined now; the second one will be defined after the

proof of Theorem 1, to obtain an extension.

-1- i
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* nDefinition. A convex cone C(s, Q) C E will be called a

llnearIsation of the first kind of the constraint set n at s if for any

finite collection (61, 6s&2, * z ., 6s k} of linearly independent vectors

in C(s, 0) there exists an e > 0, possibly depending on s, 6z1, 6z

.6s such that co(s, s +6z 1 Is +3 65k) Co.

If the cone C (z, 0) is a linearization of the first kind, then for

every 6Oz C(z, 01) there exists an tI > 0 such that z + 4 6z t 1 for

all . such that 0 S 4 S ti. The largest cone having this property is

given a special name.

Definition. The radial cone to the set 0 at a point s 4 0 will be

denoted by RC (a, 0) and is defined by

RC(a, 0) 3(6s:s +t 6szi for all e such that

0O'S:9 41 (s, 62) > O

A set C is a cone with vertex x0 if for evrery x i C, x xO,

xO+ X(x - xO) 4 C for all X > 0. Since the vertex x0 of the cone
C will normally be obvious, we shall omit mentioning it.

Sco0(s, u+.6s1, . .. , a +. 6k ) is the convex hull of a, a+t 6su,

S, + 64k, i.e.. the set of all points, y, of the form

y +LI (S +÷ 621) +... + Pk(+4 2k), where
k

u 1, J)6 0 for al' I.
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Whenever the rdial cone RC2 Q) is a linearizationof the

first kind, it contains all the other linearization of the first kind of the

set 12 at az. Consequently, in the various theorems to follow, the

radial cone RC (S', Q) should always .be used if possible, since this will

result in stronger necessary conditions.

Next, we define the C(1) marp F: En -, Em+l

F (z) = (f (z, r (z)).

We shall number the components of Em+l from 0 to m, i.e., y E Em+l

is given by y = (y y0 • • 1 , y m). The Tacobian matrix of the map,

F (s), will be denoted by F

For the Basic Problem stated above, the following theorem

gives a necessary condition for optimality.

IA

Theorem 1. ifz is an optimal solution to the Basic Problem, and
A

C (z, 0) is a linearization of the first kind of A2 at s, then there exists
a nonzero vector r I(4s 0a,.1 .. Jm) 1Er+, . with 0 9 0, such

that for all 6z# C(,0) (the closure of C (2, 0) in En)

(1) <~ *'OF%63>:S0

Proof. Let K(a-) C Em+l be the cone defined by

(2) (= a C( 0, 0)

-3-
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K (') is convex because C (Z, Q) it; convex and is a linear map.

Let 9 = F(z). We shall no"% shot that the cone (9) + K(A) must be

separated from the ray

A

(3) R = y:y y Y+ (-1, Of . 0 . ) , a#:" 01

i.e. that there must exist a nonzero vector i E Em÷ such that

(4) (0) < , y- y> S 0 for every y(•) + K(Z)

(ii) < y - y. > 0 for every y c R.

Suppose that the cone (y- + K (1) and the ray R are not

separated. Then the cone K (1) rmust be of dimension m+l and R must
*

be an interior ray of (4} + K (•) (i. e., all points of R except y are

interior points of 01) + K (0)).

Let us now construct in the cone (a} + K (X) a simplex Z with

vertices Ay + 6y1 , y + 6y . .. y+6yMl suchthat

(i) there exists a point y on R (which we shall write as

zy+ 6yo, 6y y(.l, 0,.. .. 0) with y > 0), dif-

ferent from Y, which lies in the inteior of Z,

(ii) there exists a set of vectors 6z * C (0, l) satisfying

-4-



I

and such that

(6) co (S". I + 6ZI, , + 65rn+It C

It is possible to satisfy (i) because R is an interior ray of the m+1 dimen-

sional cone {y) + K (x), and it is possible to satisfy~because C (1, Q)

is a linearization of the first kind. Note that the vectors 6zi, i a 1*. * a,

m+1 are linearly independent since the vectors 6y 1 6y 2 , .* *

are linearly independent.

For 0 < a S 1, let SZ C; be a sphere with center y + a 6y°

and radius or, where r > 0. This sphere can always be constructed

because 0+ 6y° is an interior point of E. Forafixed a, 0<. S< 1
we now construct a map Ga from Sa - {• + &SyO) into E~m+L as

follows. For any x aSo- + .+6y°), let

(7) G (x) v F(A+ ZYll(a6y°+x)) + o6y°

where Y is a (m+l) X (m+l) matrix whose ith column is 6y, i a I.

., m+l, and Z is an X (m+l) matrix whose ith column is 68s. The

matrix Y is invertible because the 6yi form a basis for Em+l. by

construction.

Expanding the right hand side of (7) about 1, we get

-5-



U&
A(() + O (Z) ZY-1 (o 6y° + X) - a+ 6y°0

(8) + O(ZY1 (a 6y0 + x))

where 0(') is a continuous f .cticn such that lira • 0.I=
y1,1 -i0 gyp

+ (9) C x(x) = x + oZY (a 6y° + x% )

A

Now, for x 4 $(S - ( + a 6y°) ) (the boundary of the sphere) ixi ar

ad we may write x = ap,, where uplt = r. Hence. for xE 4(Sa-

(+. 8y} )

(10) O (ap1 ) = ap, + o (a ZY"1 (6y° + pI))

Consequently, there exists an a , 0 < a S 1, such that for all

P, 1 II4 with mqupaur,

(11) o(&* S -1 (6y 0 + pL)) 0 < a* r

We now conclude from Brouwer's Fixed Point Theorem

that there exilts a S ,-{y +r 6y°) such that

(12)

-6-



1. eo,

Now y+ ir y a col (f ( ) - a Y, 0O, 0- 0). .O)where ¥> 0. Thus.

expaindg (13).

(14) r(4 + Zy"l(at 6y 0 +*A)) A 0

and

(is) (I÷ +zy" (a* 6yo +a)). R(*. - C'- 0 *)

Furthermore, b.cause of (6) and the fact that for any 6y to the simplex

Z- (A) . the vector a +Zy-16y belongs to co(, 2 +6 81.

(16) | ÷Z¥.1 0a y ,t

Hence I to not optimal, which to a cootrsluction. We therefore con-
Clude that the eon. (9) + K (-•) nid the ray R tnust be eeoprates 1. le.,
there must exist a nonzero vector t * such that

(17) (1) ( 4.(y - ;>, for ever 7 . (;) y 'I)



and

(18) (ii) <+, (y - 0)> - 0 for every ye R

Substituting (2) in (17), we have

(19) < 6z> S 0 for every 6szC( C 0)

Cliarly. (19) must also hold ,or every 6z i C (1, Q)

Substituting for y from (3) iz, (18), we have

(20) <,, (-1, o0 ., 0)) - It 0.

This completes the proof.

2
It has been pointed out by Neustadt [ ] that Theorem 4 remains

"valid under the relaxed assumption that C(z, 0) is a.linearization of the

second kind of 01 at 1, defined as follows. "

Definition. A convex cone C(z, n) C in will be called a .lnerisation

of the second kind of the constraint set n at a, if, for any finite collec-

tion { 6 51 , .I 6, 6 k} of linearly independent vectors in C(s, 0),

there exists an t > 0, possibly depending on a, 6.1, . .k, 8 3k, and a
continuous map ; from co(z, z + 1 621 .. +. i )k} into s. such

that l(s + 6s) a s + 6s + o(6x), where lim 0.(6a) B 0.
IIsII-0 1II
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Remark. We observe that it C (z, 12) is a linearization of the first kind

of 0 at z, then it is also a linearization of the second kind of 12 at z,

with the map C being the identity. Thus, unless we have specific cause

to indicate whether a cone C(z, 1.) is a linearization of the first or second

kind, we shall refer to it simply as a linearization of 12 at z. We now

restate Theorem 1 in this form.

FUNDAMENTAL THEOREM

If z is an optimal solution to the basic problem and

C (1, 192) is a linearization of .R2 at Z, then there exists a nonzero vector

o 1 in m+I o0 - o , • . -, ) )I E with o 0, such that for all 6zE C(-,1),

(the closure of C(1, P2) in E) ) ,411, B (Z"8 6z> S 0.

The reader may easily modif-r the proof of Theorem I so as to apply to

Theorem 1'. Finally, it should be pointed out that all conditions such

as continuity differentiability, etc., imposed on the various functions

need only hold in a neighborhood of the optimal point.

We shall now show how a number of classical optimization prob-

lems can be cast in the form of the Basic Problem, and we shall then

apply Theorem 1 or Theorem V' to rederive several classical conditions

for optimality, as well as to obtain some new ones.

-9-
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Classical Theory of Lagrange Multipliers

The classical constrained minimization problem admits equality

constraints only. Thus, it is the 3asic Problem with il E En, the entire

space. Clearly, En is a linearisationof the first kind for E at any

point u I En.

Thus, we conclude from Theorem I that if m is an optimal

solution of the Basic Problem, with n a En. then there exists a nonzero

vector + s lim+1 such that

(1) ( , OF ( z) 6> 0 for all 6s tn

This may be rewritten as

(22) < D iTs, 6s) S 0 for all 6zeEn

Since for any 6a e in, -6s is also in EZn we conclude froii (22) that

(23) IF (a)

Now, a is a n x(m+ll matrix with columns 1,f() Vr(5), .17

wher' . ., o , ( ( , . . .)

We may therefore *xpand (23) into the form

-10-



|M

(24) %0 Vf(z) + 40 Vr (2) _ 0
i=l

"tie have thus reproved the following classical result.

Theorem 2. Let f('), (. ), r2(.), . .r r m(.) be real valued, con-

A nltinuously differentiable functions cn En. If z a E minimizes f(z) sub-

ject to the constraints r i(z) - 0 i= 1, 2, . .. , m, then there exist

0 1 in
scalar multipliers, ýo, 4I . . ., qm, not all zero, such that the

function 1H on En which they defire by

ra

(2S) H(z) = 0o f(z +  r i (z)
i =1

A

has a stationary point at z -, i. e., (24) is satisfied.

It is usual to assv-rac that the gradient vectors Vr (t), z = 1,

2, m .. m, are linearly ircap c:uk;,nt for all z such that (z) = 0. This
m

precude • i i(A

precludes V1 () 0 and hence in (24) +o0 4 0. Multiplying (24)

by I/+0 and letting 4k i /4 ,, . . ., ,m, we now deduce the

more commonly seen condition.

ATheorem 2'. If z minimizes f(z' subject to r(x) x 0, and the gradients

Vri(^), i - 1, 2,. . •., m, are linearly independent, then there exists

a vector X . Em such that the Lagrangian L on En X Em. defined by

-11-



m

(26) L(s, X) = f(z) + x r (z)
isi

has a stationary point at (Z, X).

We note that by (24) 8 0 and that 8 r 0.

by assumption.

Nonlinear Programming

Let f :E-E 1 . r : En - Em, and q: En ".Ek be continuously

differentiable functions. The standard Mbnlinear Programming Problem

is that of minimizing f(s) subject to the constrains that r(s) * 0 and

q(s) s 0.

This corresponds to the special case of the Basic Problem, with

f a (a: q(s) S 0). We shall now show how Theorem 1 can be used to

obtain various commonly known necessary conditions for k to be

optmal.

Olven a particular point a 4 C, we shall often have occasion to

divide the components of the inequality constraints functions, q,

S.1, . . ., k, into two sets; thoss for which qt(s) m 0 and those for

which q (a) < 0. To simplify notation we introduce the following

definition.

-12-



Definition. For s; R, let the index set I(z) be defined by

(27) I(s) = {i:qi(z) = 0}

The constraints qi I . I(z) will be called the active constraints at s.

We shall denote by I(z) the compilment of I(z) in (1, , .. , k.)

The set 1 a {z : q(z) S 0) introduced above is assumed to

satisfy the following condition:

A oO
Assumption (Al). Let s 1 0 be an optimal solutionthe Nonlinear

Programming Problem. Then, there exists a vector h 4En such that

V,(z),. h ) < 0 for all i. a(a)

A sufficient condition for (Al) to be satisfied is that the vectors Vq (s),

i I 1(s) be linearly independent (see Corollary to Lemma 3).

Definition: For any s i 1, the internal cone of 11 at s, denoted by

"IC(C, 02), is defined by

SItIC(S' 02) - 5 < VII(x), 6z > < 0 for afl I. 4 (s))

When some of the functions q, i1 I(s). are linear, it suffices to

require that there exist a vector h # En such that 4 q7(s), h ) S 0
fir these functions and < Vq(s), h>4 < 0 for the remaining functions
q. * 1 I(s).
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By assumption (Al). the convex cone IC(z, fl) to nonempty. It is a

simple exercise in the us* of Taylor's Theorem to prove the following

lemma.

Lemma 1. If IC(s, f2) • •, the empty set, then

(i) IC(s, M is a linearisatiou of the first kind of n at s,

(it) IC(s, ) a (6z: <Vj(a), 6s> S 0 for all 14 I(s))

When specialized to the Nonltnear Programming Problem, Theorem I'

assumes the following form.

Th-,. orem_3. If x is an optimal salAution to the Nonlinear Programming

Problem, with (Al) satisfied, then there exists a nonzero vector 4.e Em~l

with 4o S 0. such that for all 6&. t-V (6 < (Vqu). 65> S 0

for all 1 6 1(0)),

-F; 6&> S 0

where H(s) . o f(s) + I i ri(a).
1l.

Using Theorem 3 and rarkas Lemma we obtain the

'following necessary condition for ,)ptimality3 ",hich is in a form more

familiar to specialists in mathematical programming.



VI
A

Theorem 4. If z is an optimal solution to the Nonlinear Programming

Problem, with (Al) satisfied, then there exist a nonzero vector

m+1 k4 Ee , with Jo S 0, anda vector RLEaE with 1& S 0, such that

m k
(i) 4,0 Vf(,) + j~Vr (z+ p q(z

i=l 4--1

and

k

(ii) IA q q(z)= 0
i=1

Proof. From Theorem 3,

i A
for all 6: such that (Vq (z). 6z > S 0, 1.
By Farkas Lemma, there exist scalars AS 0, 1 4 I() such that

SHS S 0. P.Is)scht

Let 0 • 0 for i I(C). This cn•n.,4•t- ihe p.oof.

Most of "he other well- ýtnown recessary conditions for V•on-

linear Progremming Problemis cai be obtained frorw Theorem 4 by

making additional asbunptions on the functions r and q. For exa.nple,

the foilowi:qi corolLaries to Theorw'n 4 are immediate c€5.sequ*nce* of

that theorem.
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Corollary 1. If assumption (Al) is satisfied and the vectors Vr (z),

i a 1, * . m, are linearly independent, then there exist vectors

E E+, I *J Ek which satisfy the conditions of Theorem 4 and such

that (o, g,) , 0.

Corollary 2. If Vr 1(;), i I , .I , m, together with Vq (z).

i t I(s), are linearly independent vectors, there exists a vector

4 Em+l satisfying the conditions of Theorem 4 with 40 < 0.

The assumption in Corollary 2 is a well-known [ii] sufficient

condition for the Kuhn-Tucker constraint qualification to be satisfied.

When it is added to Theorem 4 we obtain a slightly restricted form'

of the Kuhn-Tucker Theorem (4].

Corollary 3. If there exists a vector he tn such that (Vq'(), h) <0

for all t.I(s). ), h> a 0 for i a1 , •., 1m, and the vectors

S(s), i a 1, , ., Inre linearly independent, then there exists a

vector , e +l satisfying the conditions of Theorem 4 with eo < 0.

The assumption in this corollary to a sufficient condition for

"the weakened constraint qualification 1131 to be satisfied. Augmented

by this assumption, Theorem 4 becomes a slightly restricted form of

the Kuhr..Tuc'ker Theorem with the weakened constraint qualification.

r , racttie, the Kuhn-Tucker constraint conditions can rarely be
shown tt be satisfied unless the restrictions imposed in Corollaries
a and 3 hoAd,
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III THE MAXIMUM PRINCIPLE

To illistrate the applicability of the theory ^ust develcped, we

shall use it to obtain the Poncryagin Matmnum Principle for optimal control

probl#sm.

Consider a dynamical system described by the differential equation:

1. dxdt -

for all t in the compact interval I - [t 1 ,t 21 , where x(t) c Ef is

the state of the system at time t, u(t) c e is the input or control

of the system at time t, and h is o. functitun defined on En Ex with

range in E

The F..e4 Time-nOtical Control Problem io that of finding a control

0(t) , t £ I , and a corresponding trajectory t(t) , 4stermined by ( )

such that

2. for t c I . 0(t) io a measurable, essentially

bounded fuact ion

S~-17-



iwhose range is contained in an arbitrary but fixed subset U of Em;

3. x(t)I x 01 where x0 a fixed vector in En, is the given

initial condition;

4. X(tz)tXz, where X- {xLEnlg(x) 0), and g maps "e into

E (X2 is the fixed target set);

5. for every control u(t), and corresponding trajectory

x(t), satisfying the conditions (2). ( 3 ), and (4

2o t oW(t|•Xt)s -u(t)) dt • t2(•(t), •t)dt

0where f (.2.) is a cost function mapping En X into E

We make the following assumptions:

6. -e functions h(. v.) and . are contintious In both x and

u, and are continuously differentiable in x*

7. The function g&.W is continuously differentiable and the correspond-In,

Jacobian matrix ýx) is of maximum rank for every x in X2 "

To trinscribe the control problem into the form of the Basic

Problem we require the following definitions:
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)bet I denote the ct X a identity matrix and let 0 denote

the a X P zero matrix. We define the projection matriCes P1 and P2

as

8. P _•, (0 0) ,
I

and

9. P~ (0 1X
33 n

Let E944 X EP ' be the function defined by

10. (Z ) P . U), h(P X

Now consider the diiferential equation

dt

for some u(t) t r? for tiI.

It is clear that the optimal control problem is equivalent to the

problem of finding a control u~t), tu I anl a corresponding.trajectory

t(t), deterrmnced by (1l), such that

U) for tFI, u(t) is a measurable, essentially bounded function,

whose range is contained in an arbitrary but fixed subset U of Em;

(7,i •.(t 1 ) : (0, x0 ) z; where x0, a fixed vector in is the

given initial ¢ r~di'ir;



1(tz)Gx•, where X {(ZEE"' g(P z)0) ). where g maps

.pinto L;

15. for every control .u(t), with tal, and corresponding trajectory

5(t), satisfying (II).and the conditions (12), (13), and (14.) above,

P I (t) 2 P I ; (t)

Finally, we complete the transcription of the optimal control

problem into the form of the Basic Problem by defining

jI. ( ) (t

17. r(s) = g(Pz (tz))2

i1. and w.- t 4 0 Obe the set of all absolutely continuous functicns z

from I Into !Ef" which, for some measurable, essential'y bounded

function u from I into U C Em, satisfy the differential eq, ation (II)

for almost all t In I, with z(t1 ) (0, xo).

IS. Remark: It is clear that with , r, and U defined as in (16), (17),

and (18), respectivel7. we have trarscr'bed th,- optimal control problem

into the form of the Basic Problem I i. We shall call the transcribed
A

optimal control "the. optimal control prblom in rtat.dard form."

We still have not defined the linear topological vector space Se

From (18) it is clear that f) is a subset of the linear space of all

absolutely continuous functions from I into Eq '. However, since we

wish to use a linearization constructed first by Pontryagin et al. ( ,

we find it-necessary to Imbed 97 into a larger l.neaa" tcpological
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space.which we define below.

Let ".Lbe the set of all upper semi-continuous real valued

functions defined on I and let = - From the properties of

upper and lower semi-continuous functiona it follows that

Jis a linear vector space. We then define " to be the Cartesian

product 'A1 9 k xx" xý , with the pointwise topology, [15] i.e.,

the topology which is constructed from the sub-base consisting of the

family of all subsets of the form (f : f(t) FN), where t is a point

In I and N is an o*en set in E

It is easy to show that 4 and r, as respectively defined by (16)

and (17), are continuous*

Let x (t), corresponding to the control u Ct), be A solution to

the optimal.control problem in standard form CIM. We now proceed to

construct alinearizatlon for the constraint set 0 at 2.

Let I C I be the set of all points t at which u(t) 'Is regular,

i.e.,

20. Q. (t t <t< t2, Jim mea$(U ""'T) 1 1. for every
1eis M-0 meas (T)

neighborhood N of uCt), t eTC I).

Definition: A real valued function f:EP-EI is called upper semi-

continuous at a point t0 in E if lim supf(t) 8< f(t0). And it is called
0 t-*t

lower sein -continuous if -f is upper 2 emi-continuous [ 3.
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Let (t, -r) be the (.,J (00") matrix which satisfies the

linear differential equation

2. at
0l (t,.X) 8d W u- ( 0l), ut)(t,•

for almost all tI, with 0(TT) the (p+n) identity matrix.

For any a $ and v t U we define

0 for t < t <s

22.. 6U5 (t) =

0(ts a;(zs), v) < t < t

and

• k

23e C(zm )(6Z 6Z M (t): = izivi(t). (818 82' k)C

(vI, v2,*''vV) C Ui >= 0, for I=I1, 2..'*,k k arbitrary

finite)

Because of its complexity, ye shall delay the proof that the

set C(t2,) defined in (23), is a linearization for the set 11 at I until

the net section. The linear maps f'(1) and r'(1), with F'(6) "

(f'(I). r'(E)), which we use vith this linearization are

defined as follows. For every &z '2 .

" 61 - P 1P6z(ti)
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and

Dg(Pz 2(t z))
25. r z)(6z) = x P 2 6z(t 2 )"

Therefore, from Theorem (II.Qthere exist a vector 1 in Ep

and a vector iq in EI such that

tL < 0 for I=I, Z, "',p;

27. 1L.j) 1 0;

.g(P 2 Z(t .-
28. (LP6z(t) + P z(t )) < 0 for all 67 C6z,P).

ex2 a

Since every 6z 8v(t),, defined in (22), is in C(z,f2), (28) implies

that

29. (IP 1 ~(t 2,s)[Il(lslv)- I.((sli(s)]) +

+ q. OgaP2 X(tl 2) V
• (n. Ox Pzt'(tz..)[•l~zls),v) -,(zs).u(s))J) < 0

for every si0, and'vTU.

Hence,

T[ T "as T (P 2 ; (t2 ))10. (OT (t, t0 PTI + p2 11x 0I,•';t,)-,;t,•t

for every t E I1. and v c U. Let 4(.) a (40(.), 4 '(.),..., 4 n(.))

iat,•E"n+ 1 defined by
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T T I_____Z~ Z

31. "(t) . .t2 v t)( + & ex

I'. for almost all t In I, 4({ s-tivfies the differential equation:

.orribining (30) and (31). we obtain

33. ( '(t),I&'(t)U.(t))) Maximum f(4(t),h(z(t),v)) I vtU) for ti 1 .

34. Since meas €1) = meas (1), (33) holds for almost all t in I.

34. - $g(Pz2 (tz))
Remark: By assumption (see(C), 2 is of maximum rank,

- Ox

and sInce (I•,il) ý 0, +(t) as a solution to (Ii) is not identically zero.

Thus, we have proved the following theorem, which we state In

terms of the ori.inal quantities defining the optimal control problem,

and in which we shall substitute (p ,p), with p c En # above.
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II. ININITE DIMENSIONAL PROBLEMS

We shall now show how the Fundamental Theorem present.. .. , ,'art I

can be extended to problems in infinite dimensional spaces. As an

application, we shall use odr extension of the Fundamental Theorem to

derive the Pontrygin Maximum Principle (2], for fixed time optimal control

problems.

First let us formulate the equivalent of the Basic Problem in an

infinite dimensional space.

I. BASIC PROBLEM: Let L be a linear topological space.

Given a function f(.) mapping L into the reals, a function (.)

mnapping L into Em and a subset QcL, find a vector X c £0 such that e(X)- 0

and such that for all X e 0 satisfying r(X) - 0,

S2. f (X) ._ f (X)

We shall call any i with the above properties an optimal solution.

The only difference between the formulations in the proceeding

section and (1) above is that before we specified that the functions f

and r are differentiable, which we do not do in (1), since differentiability

is not a well defined concept in a general linear tcpological space.

However, to obtain an extension of the Fundamental Theorem we need

a linear function from L into el to take the place of the Jacobian matrix

in (1.1) and a suitable continuous function from L into I+l to take

the place of the function 0(.) in (1.9). Since we can no longer ensure

the existence of much functions simply by requiring that f(.) and r(.) be

differentiable, we take care of this situation by incorporating the requirr.

functions into the definition of a conical approximation. As we shall see

later, this is not a restrictive practice.



3. DEFINITION: A convex cone C(X,Q) C L will be called - conical

agyroximat to the set .at i c %. with respect to the map F . (f.r), if

there exists a linear functioE F (1)(.) from L Into E*6" such that for
any finite collection (6 x1,96 x2 ,...,3 xk) of linearly independent vectors
in C(*,f) there exists an E >0 a continuous map 6(.) from co{*, t&E6*,
I+EIx 2,...,1+E6 xk. into 0, and a continuous map o(.) from L into Em+l.

vith E, 6, and o possibly depending on 2,6x, 6x 2 ... , 6X(k) which satisfy

4. lha IIJ± 0J.L
Efo E

uniformly, for all ycco (1, 1+6Xl,..., 146 xk), and,

5. 7(6(x)) - F(M) + F'(t)(x-*) + o(x-t)

for all

x C co (t, I+6Xl,...S, +6 xk).

We are now ready to extend theorem (2.3.9).

6. T.W__4: If * is an optimal solution to the Barre problem (.) and
c(*,g) is a conical approximation to 0 at * c 0 vith respect to the map P-(f,r),

then there exists a nonzero vector - (*, .&... 1 a) in e+l with *0si,
such that < 0, V' (t)(64,= < o for all dxc€(t•",0,), where c(*,Q"'- is the

closure of c(*,O) in L.
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Zarge-Bcale aSteR Optlmizatlom: A JReviev

by

George B. 1DntsIg

Mthemtical propaming Is a, generic ters for the related fields of Linear

Progrining, Network Flow Thieory,, Integer PrIopeMing, Convex and Non-Lnar Pro-'

kl*=iag, and Propaia under Wecertainty. Its research bag problems, parti-

calArly thoine problems where rand= events and decision events occur alternately

in successive stages. in problems where such t' icertainty occurs., eAwt is usually

domo in foruulating is to replace the uncertain elements with their expected va-

lues (wilth possible an added safmty factor). It lisveil kown that a plan based

en expected, values of Its Noefficients and constraints can liead to awnsrs that

are not correct. Although the use of expected value does not lead to the beat an-

swer,, it In entirely possible that It could lead to, excellent plans Indistingaish-

able from the optio in the ran-al-the-.s.l application., When one considrs in-

staa direct attack on uncertainty via vat~itinatal Aft umug itMWvta

leads to the Consideration Of Lsrg-scal~e sys4+ums. gmese, bisause, of their struc-

ture, have pwoien difficult of solution to far,, but,, I believe, of Intensive In-

vestiption in the future.

Dmaheintical propming Is a ter& invented by Rlobert Dorftw of Barvard a-

round 1950. so felt that at that. tine,, the fuadmantals of linear propaneing

were well enough known that the vav2-of..the-future lay in the extension of the

nothods of linear programaing Into the non-linear progr.ming field. Certainly

we today., 15 years later,, feel this Is true. In the Calculusv the derivative

(or first order approximtlon) plays a key role. Applied to amo-li4a ineqal-

ity systems, It leads to apmoxinstion by linear ine&Ualty systes. %is Is wne

way whichi theme extensions have taken place, and Illustrates why the various fields



casprised under mathemtical propreming ares related. gore am some other ways:

One attagpta to extend the R9J!Wp of dwUalty to namp1ineaz' systems. DrIvng

dcM so, mne tries to oamine the ockbinatorial power of linear programs with the

classical steepest descent processes to solve non-linear progrsam.

One attents., as we have just noted,, to reduce problems InvoLviM uertainty

to equivalent deterministic systems and to large-scale systems with special, *true-

two I

One tries to solve an Integer program by replacing It with an equivalent lini-

ear prog'sm; that is to say, by cleverly building up a set of linear inequalities

that ane both necessary and sufficient.

2n all of these develajuents,, one ca~racteristic stands out; newly In one

vey or another., techniqoes for solving lsrge-scale systems play a dominant role.

Accordingly,, let us look first at direct methods for haadling large problems.

Az'oua4 195J4 or so,, under t~ auspices of The PAND Corpom'tion,, Willism Orchard-

Days produced the first truly comrcial linear programing code.* It had many fea-

tures that helped seateurs to get their problem on the machine with a reasonable

chance of getting an answer. Tioday., the building of a linear programing code

(oeto with all the special features) is a major undertaking which Is expen-

sive to produce and to maintain.

As applications grow, there has been an Increasing demand to handle truly e-

normus systems. The Russian., Kazatorovich., in his 1939 Pm~blet, envisioned such

a possibility. Already., linear programing models of industrial system have been

solvet with more than 10 variables and 10 4equations. These models, of course,,
do not have general matrix structure sand It Is not likely that sany Instance of a

large rebtical. problem will. ever have general structure. an roeaso Is obvious.

^ast lmgine the physical task alone of finding all the coe*icients for a thou-

send by ten thousand general linear programs (there could be a high as 107 non-
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zero coefficients).

Fortunately, large-scale practical models tend to have a lmw percentage of

non-zero coefficients; in fact, under 5%, sometimes under 1%. Orahard-Bys' first

code exploited this characteristic by saking use of a "pricing vector". fhls made

inexpensive the selection of the pivot coliMin dfqtly fmr ' e Oftiftl"Um-dSMR e

data. The pivot column here refers to one of the steps in the simplex method for

solving linear programs.

As systems have grown in size, every advautage has also been taken of the

characteristics of the improved computers. It has been discovered recently that

the size of the inverse representation of the basis in the simplex method could

have an important effect on running time. Therefore, compact-inverse schemes a-

long the lines first proposed by Harry Pbrkovitz of RAND have become increasingly

important. Recently, two goups working Independently, developed this apgroach

vith astounding results. For example, the Standard Oil Campy of 0alifornia

group reports running-time on soe of their typical large problems cut to 1/4.

Nov to find the most compact inverse representation of a sparse matrix is

still an unsolved problem:

Conjecture: If a non-singular matrix has K non-zero elemets, It Is

almays possible to represent them as a product of elemen-

tarY matrices such that the total nmber of ama-zero en-

tries (excluding their diagel unit elments) is at

most K . [Incidentally, the Inmirical scbhems jut

mentioned often have no more than K + 10%K m-seros

in the inverse representatiaon.)

Dynamic structures are inteoresting in themselves, sad could have Important

applications. One such Is the linear control Processes propos•d by Pbmtnymti.
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(I vIll speak of hi s problem later in connection vith the d&ecmosition prin-

ciple.) As early as 1954, I published a paper on how to compact the inverse

representation of *,he basis with a ctaircase structure (see figure). Aain in

1962, I discussed mother method which permitted one to find a compuft inverse

and then efficietecly maintain this compactness in moving frou one iteration to

the next. There have been several other proposals, all excellent, that seek

to apply the s1.;3lex method to the full cystem by compacting the inverse. As

far as I knov, aone of thece direct proposals have been realised in computer

codes.

lot period

input

1!t period 2dpcrr'od

011tputinput

2nd period 3rd perio4

Cratrut input

Liae-scale systems Lave been attacked Indirectly by means of the docompo-

,,ltlos Ilnceple. Severml codes h.ave been written, and sae of the recent ex-

peftenees have been encouragin4. J. P. Denders In his theols "Partitioning In

*tbumtlal Progmming 1960", developed the dual of the decomposition prin-

ciple, and shove hov this approach can be used to deal vith the a:xed-integer

prop•minin problem. Rosen and peale have each proposed partitioning aethodo

-4-



for solving systems vaose structures fit into the frmework of a cws herA-

weftel a4/or vertical border hifle the rmtader tos a AinJ set of fmpsm-

dent blocks.

___ V

Purely oaib~mtoral Woblems form am Imaorwat divisim of mtdiamml

propining. They fNl briefly Into two categSores. The frst we thos pobe

Ilme vee structures are speJal. -- like the s ew Wobles -- or the

malami uber of arcs which "cover" modes in meano (Splb). Pu theme,

speoiel mthods have bees smoat.

Of of the meet taftiiaaw oblnms of this ty hie bee the tzw iLas

aeisma wobam. It Is so close to a aetwork-flov t•pe Reb"am that am vouIA

hope to rind emsy eWap'emtaatics of the Ntoes of its polyhedral eolatice

set. so far, no has beam discovered. There is also a close relatioe betuee



r

covering probless and the famous four-color problem. The other approach to am-

bimtorial problems is through Intej~r programn. This was first used in 1954

to solve a particular large-scale travelling salesman problem by Fulkerson,

Jobason, and myself. In 1958, Gomory laid the foundations of this field by

shoving how to systematically determine a necessary and sufficient system of

linear inequalities.

The inter-relation between large-scale system methods and integer pro-

qng wes brought out in a recent paper of Gaory entitled "large and Non-

convex Problems In Linear Programing". Here, Gomory reviews in a unified man-

ner, how the ideas of integer k'ogramming and those of the decomposition prin-

ciple can be combined to solve say Important applications such as the paper-

trim problem, malti-commodity flows in networks, programing of economic lot

sizes, etc.

Integer programing methods are being experimented with in a number of

places. It seems likely that we are nearing a threshold, and that we will soon

see ýe excellent comercial codes produced and used successfully for certain

problems.

I will no',, in this presentation, describe the developments in non-linear

programing. Rather, I bave chosen to illustrate the power of certain non-

linear programing ideas, such as the generalized linear program of Wolfe to

an interesting problem in linear control theory.

But first, I would like to review the coneept of a Generalized Prorm.

This differs frm an ordinary linear program. Instead of coefficients in each

colim being known, the column P may be freely drawn from a convex set, C•
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MsBIM: Find Min xo , >X3 > 0, POcp J , PolCo0 QCq ,c tht

As an eia1e, consider the CON•X PROMM: Fin (z1, x2 ,...,xn) C ea-

Wact Wd convex such that

41l(x) :• 0

#2(x):9 o

%(x) e, 0

%(-) ft Z(Wn)

vhere 4 1(x) are continuous convex tunctions of XC . let us assim an

x m x0  is known such that $I(xO) < 0 tor 1 0 0 It can be shoen thattbe
generalized program on the follovi 4g page is equivalent.
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PDOBM(: nn~ Min Z an 0X, 0J such that

00,0 N 1 (÷z(°) * +_ .0

4 V2 0 S2

so %(o) (-Z) -o 1

fte position of an initial basic-set oa oolums &s- indicated by bIavy dots.

7be associated set bf simplex iltipiliers are denoted by wt initiaUl,

s.t wh•re o. 0for i,0 ,4 ,. -%($o .0 nxtstpis to tome

the aUmnwisa

*(I) a low,) 9 "1611) s o

ftin g-,,g 0 ,ad to inmse 4(z) fo xC. * ot, ce t~t thin Zap~sm isl

bius, we wih to chos z mo that this saa poo is minm.

00
lot 2 az be asValue of UO miawaaleg x. If $(x 0)w0 aths

is 0 lm Op• t a lutus. ?f $%2x.0 < 0" an eMtns c ,% ) is in the

pa IsUsed pgv with casefieleate MAl v)--



able 1 . The problem, restricted to those variables vhose colums have

known coefficients, is then optimized using the s&4=3z method. lts gives

rise to a new set of simplex multipliers x = s' . This gives rise to a nw

solution x W x2 , etc. At any stage, the approx1te solution is ai

using for I those XI vhich solve the problm restricted to those vrl-

bles with knovn coefficients.

Let us turn to a problem in control theory. The application of inthe-

matical progrming methods to solve control problems bes been studied by

Zadeh and WIaen, by Ben rosen, and others. I vould like to comnflm mWself,

however, to Lnear Control 72ory as described by Pcmtryeln, ,otlyakl, am-

krelldge, and MIachenko in Chapter III of their book on this subject.

We consider an "object" defined by its n + 1 coordlntes x a

o, I t "...4n) whose "ntion", described as a function of a *tn- PM-

meter t , an be written as a linear system of differential e*5tIone

dx
(1) -Ax + D

vher u -(ul P V2 ,...,u1 ) i'a 4Lcontrovl vector that =ast be chosen for' each

t from a convex Ocaet set U(t) . TW initial conitions at t * 0 at

The teminal conditions at t - T is obtained by sett"

(2) XT T +ZZ°
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(0 2 (i,o,0,...,o)

A by requiring that u - u(t) to be chosen such that

(3) Z I ns .m

As given in Cbpa"r III of the book "atbnticale Theory of Optimit Coa-

trol Proceses" by POnthyagin, Boltysuhii, Oekelidge, Hisehenko, the fina

%tAte uy be written in the form

(E) 0 + f TtB u(t)dt - b

0

4wer* b a 1 T- P1,0 Is a known vector, a Pt M et matri'x that may be cau-

wwently compted as a tmnetion of t . For example, for the case of real dis-

tiact dch teristic roots X, A A

(5) pt " Ot Xl,.X•

0

where N wm aqwqrs matric.s indpenient of t . The latter formil for the

NIis dove oped in "An htroductiom to the A0ploation of Dymic Progaming

to Ummr Control Systow" by F. T. SIth in ?AD ?uport IE-3526-PR, Februar

1963.



we my fomaly write (4) as a generalized linear wMosm.

PROM=: Faid "i Z, p> 0 such that

(6) ZZ ÷ + y b

where Y my be freely chosen from the convex pet defined by

•7)Y > P T Pt•Ct dt

0

for alU possible choices of u(t) a U(t)

The method for solving the geeralnized linear PrOpM described earlier

for conwx proaming can be applied. For brevity, w ault the question cf

boy to obtain the initializing basic set, except to Mr it Is the anlog of the

pbase I procedure of the ordinry sxmpex nethod.

k
As sooc as w w w is determined for Iteration k we emk a solution of

the sub-problem such that the inner product

miln 1(ky. W± k fT P-tbau(Ot.d
0

T

0

rt Is Umportant to note that for esah t ,iskPit 1 e m w vaotor at

Im,, far each t woe ot solve:

subrIuAMM: Find min atu for u c U(t)

If r(t) is a polytedral set, the Sub-pr*bm Is IMl a er PrOp . If

-ii1-



u(t) is the sawe for an t , then the linear progrm are the am for all t

except for the varying objective forms ctu . Interesting enough, the sub-pro-

g ww turn out to be the sawm as what Pontryagin obtains using his Vximl prin-

ciple.

A control problea is an example of a dymmic systea which, is t is treated

by the Atraightformrd. procedure of discretizing the time, would lead to a large-

sco.le computational problem. The generalized linear proram for decaosition

principle approach), however, provides us with a procedure which does not re-

qlfre the discretizing of the time interval.

The last twenty years have been mrked by the ancelerated trend toward auto-

mti__ . Imny believe that not only siMle control processes, but soon th, more

comPlx control processess will be mechanized. If so, whether we like it or not,

decisions will be " for us by machines. Whether or not they will be good de-

cisions will depend on how cleverly we have instructed tbe Wchines. This is

turn will depend heavily on how clever wv heve been in developing solution tech-

niques for solving large-scale systems.

To this end, we have sketched several ideas: (1) taking advantage of the

low density of the non-zero coefficients in the original matrix, (2) finding a

camact inverse repr,,sentation of the basis using the simplex method, "d (3)

aking use of the generalized linear program or decomposition principle approach.

We illustrated the litter on a linear-control problem and foqnd that it led to

the maximal principle with the added bonus, however, that it can be used to con-

structively converge to an optimal solution.

-12-
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LINEAR CONTROL PROCESSES AND MATHEMATICAL
PROGRAMMING*

GEORGE B. DANTZIGt

Linear control process defined [8], [14]. We shall consider an "object"
defined by its n + 1 coordinates X - (xo, Zi, ... , z4), whose "motion"

described as a function of a parameter, "time" (t), can be written as a
linear system of differential equations

(1) dX = A'X + Yu,

dt

where A', B' are known matrices that may depend on £ Emd

u = (Ul, th * , ,4.)

is a control vector that must be chosen from a convex set, u E U(t) for
every 0 ;5 t -< T. The time period 0 5 t ;5 T is fixed and known ia ad-
vance. The coordinate zo = xo(t) represents the "cost" of moving the
object from its initial position to Ao(i). For this purpose it may be asumed
that mo(O) = 0. Defining

(2) 9 - (0, ,1

the object is required to start somewhere in a convex domain 1(0) C S. and
to terminate at t = T somewhere on another convex domain I(T) E S7.

Problem. Find u E U(t) and boundary values 1(0) E So, I(T) E Sr,
such that zA(T) is minimized.

Assuming u E U(t) is known, the system of differential equations can be
integrated to yield an expression for X(T) in terms of X(0) and u E U(t).
This is true in general but will be illustrated for the case when A' and B' do
not depend on t; in this case

(3) X(T) = eAX(0) + f e(r-A)ABu(t) di,

where u(0) E U(t) is a convex set and where we assume the integral exists
whatever be the choice of the u(t) E U(9) for 0 5 t 9 T.

Generalized linear program [2]. Our general objective is to illustrate

0 Received by the editors Jsnuary 12, 1965, and in revised form March 25, 1965.
Presented at the First International Conference on Programming and Control, held
at the United States Air Force Academy, Colorado, April 15, 1965.

t Operations Research Center, University of California, Berkeley, California.
This research has been partially supported by the National Science Foundation underGrant GP-2633 with the Univeroity of California.
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how ma•wmtiad programmirg and, in particular, how the decompoiion
principle in the form of the gteneralized linear program can be applied to
this clam of problems. An elegant constructive theory emerges, [10], [11],
(12], [13].

A generalized linear program differs from a standard linear program in
that the vector of coefficients, say P, associated with any variable # need
not be constant but can be selected from a convex set C. For example:

Problem. Find max X, ju k 0 such that
(4) UG + P - Q0, A-1

where Uo, Qa are specified vectors and P E C convex.
It is assumed that the elements of C are only known implicitly (for

example, as some solution to a linear program) but that particular choices
of P can be easily obtained which minimize any given linear form in the
components of P.

The method of solution assumes we have initially' on hand m particular
choices PA E C with the property that

Uo\+PLUl+PW2+ ... +P.A.- Q,
,ul+ ;t+ -+ '..+ , 1,

has a uniqu- "feasible" solution; that is to say, X - o, , - ? 0 and

the matrix

(8) B =[o= u" -]

is nonsingular ie., the columns of Ba form a basis). Because P4 E C, the
vector P0 = Pi p,*o constitutes a solution P - 9 for (4) except that
S- e may not yield the maximal X.

To test whether or not P0 is an optimal solution one determines a row
vector -• =*0 such that

(7) -°Be - (1, 0, 0),

and then a value 6 and a vector P.÷1 E C such that

(8) 8 - *P.+ m.in o*P,
PEC

where we denote P ,- [].
If it turns out that 6 - 0, then P - P0 is an optimal solution.

SThis is not a reitrictive assumption since there is an analogous method for ob-
taining sucl, a Ftartinig solution, see 121.
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If P0 is not optimal, system (5) is augmented .by P+t1 . After one or
several iterations k the augmented system takes the form of a linear pro-
gram:

Problem. Find max X, Pi, 0,
m+k sM+k

(10) Uo + 2Pi, = O0, P= L.
1 1

Letting Bk denote the basis associated with an optimal basic feasible solu-
tion jfi - k to (10), Tr' is defined analogous to (7) and t' and P1.+,+l
analogous to (8). If it turns out that 6 -0 , the solution

N+k

(11) ,= P, A:

is optimal. If not the system is augmented by P1.+k+ and the iterative
process is repeated.

It is known under certain general conditions, such as C bounded and the
initial solution nondegenerate (i.e., uP > 0), that ir -- r and p * . on
some subsequence k and that P = P* is optimal. The two fundamental
properties of ** are

(12) ir 6 0 and w*P 4 #*P* - 0 for all P E C.

The entire process can be considered as constructive providing it is not
difficult to compute the various P.4.k++ from (8) with u - *" . For ex-
ample, if C is a paralelepiped or more generally a convex polyhedral set,
then mrin fP constitutes the minimization of a linear form with known -
coefficients * - i"+* subject to linear inequality constraints in the un-
known components of P, i.e., a linear program. In this case the iterative
process terminates in a finite number of steps and P.#, constitute ex-
treme solutions from it. In all cases an estimate is avadable on how close
the kth solution is to an optimal value of X.

Application of the generan ed --ogram to the Rinser cestel precee Let
us denote

(13) P = e;-"Bu(t) M ,

and note that P is an element of a convex set C. generated by choosing
all possible u(0) E U(1). We specify that Us - (1, 0, ... , 0), and denote
by ) - -Xo(T), where X.(T) is the coordinate of X(T) to be minimied.
Then

(14) X(T) - -Usk + I(T).



LINEAR CONTROL PROCESSES 59

We further define Q0 by

(115) I(T) - erAX(0) + Q0.

Substitution of these into (3) formally converts' the integrated form of
the control problem into a generalized linear program (4).

Each cycle of the iterative process yields a known row vector, which we
partition

(16) 410-l [I, 91,
where r represnts its first n + 1 components corresponding to P and 0 its
last compoinent Sr,,, w is known, our choice for P.r+k+, is
(17) rP.+k+' = nin we=•-t>ABu(t, = f min e(r-OA Bu( )W di,

{fow } uEU}t)

where clearly the minimum is obtained when, in (17), the integrand for
each t is selected to be minimum.

Note that

(18) *,., e-S)AAB

is a row vector that can be computed for each t. For example, ot., can be
represented by a finite sum of vectors whose weights depend on t and the
eigenvalues of A. The new extremal solution P.+&+, is obtained by choosing
the control which minimizes the linear form in u for each t; i.e., find

(19) min (*,,,u), u E U(t).

For example, if U(1) is a polyhedral set then (19) is a linear program. If
U(t) is the same for all t, then only the objective form, ,..,u, varies for
different 1; except for the objective form the linear programs are the &sme
for all t.

If optimal w* is used, then the optimal control , (except for a set of
measure sero) satisfies

(20) mrin 1"(t)u], u E UM(),

where s*() - v'Ye"" 4B. Pontryspn refers to this as Le mazi. m0prin.
cipi. It in, as we have just shown, also a consequence of the decomposition
principle of linear programming.

Conclusin. In our approach the general control obtained for each cycle
is a linear combiiation of exactly n + 1 special controls obtained by mini-

I Actually Q. ii riot given but is an etement of a conv set. To simplify the di.-
cuesin which fbIl,,vs we ausume Qs is a fixed vector.



I

60 GEORGE B. DANTZIG

mizing for each t, the linear expression (19) in u for n + I cnoices of r.

These special co~it ro'- nry he referred to as extreme •ontro• .i. The latter

.eech in themselves do not maintain feasibility, that is to s@y, guarantee
that the object will move from t(O) to I(T). Each new linear combina-
tion of these special controls will, however, generate a new feasible control
with a lower value' for the total cost Xo(T). Undei the conditions stated
this iterative procem is known to converge.
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ALL SHORTEST ROUTES IN A GRAPH

by

George B. Dantzig

A shortest route is sought between every pair of nodes (i, J)

in a graph when directed arc distances a j are given, where the

values of aij may be positive, negative, or zero except ai a 0

If the graph is incomplete so that an arc (i, J) is missing, the

value of aij This problem (as is well known) includes the

travelling salesman problem since the route for (i,i) is a cycle

and one can solve a travelling salesman problem with distances

d > 0 by finding a minimum cycle in a graph [a,. 3 = d - K]ij - ii
where K > Ei Zj dij . Our objective, therefore is more modest,

it is to find a negative cycle in a graph if one exists, if none

then to find all the shortest routes.

The procedure is inductive and was stimulated by a remark of

Ralph Gomory's that an inductive approach was probably as efficient

as any other. It is not certain, however, whether this procedure

has appeared elsewhere in the literature and so is presented here.

2
It is shown that n(n-1) additions and an egual number of comparisons

are required to solve an n node problem. This number can be

reduced to n(n-1)(n-2) if negative cycles are known not to exist.

This method is therefore as efficient as the best result knovn,

that of Murchland C3]•

3.



It is similar to many proposed schemes in that entries a j in the

matrix are replaced by a k + akj if the latter sum is smaller

for some choice of k . After replacement the new matrix is

operated upon in the same way until no improvement can be found. The

various methods differ only in the rules for scanning the various

(±, J) and k . In order to keep track of the routes as well as

their values, it is also necessary to record for each (i.J) either the

first arc of the minimum route from i to J or the last arc. With

this information it is easy to generate all the arcs along the

route. Aside from the efficiency, the second advantage of the

method is the simplicity of the proof of its validity.

Assume for nodes 1, 2, . . . , k - 1 that optimal distances

ai are given, we wish to determine optimal distances a~j for

nodes 1, 2. ...... , k. We shall show that

ForL-l, • , (k-i)

(2) a i - n (a, + 12,)

kj

For (i 1i..., k-1) and (J 1 1,..., k-1)

a* - .Kin( ;j a +tj(•) aj ik NJj s

The inductive procedure begina with a 0 and stop& If at ar

time a diagonal value a* < 0 appears in which case a negative
ii

2



cycle has been obtained; or if step k = n has been completed.

Proof: (1) states that a minimum route from k to I starts

with some arc akj followed Ly a minimum route from j to I that

does not go through k . Hence the minimum of these alternative

routes is the one desired,

Formula (2) is the same idea except the alternative routes

are defined by the last arc ajk of te route and the best

route from t to J that does not go through k

Formula (3) states that either akk 0 is the best route

from k to k or there is a negative cycle consisting of going

along some best route from k to 1 and then i back to k .

Formula ( 4 ) states that either the best route from (i, 1)

does not go through k (and has value a ) or does go through k

(and has value a* + a

The count on additions is

n
c N [(k -l)(k-2) + (k-1)(k-2) + (k-1) +(k-) 2

k + 1

where the four terms are the count of (1), (2), (3), (i)

respectively. Note that ye omitted from the count (for example)

the addition a•+ gal. because eI is knovn to be

&ero. In the case that negative cycles are known not to exist, the

third term may be dropped and the last term reduced by (k-i) since

the diagonl a 1 a 0 In the latter case, the count is

C a n (n-l)(n-2) addition and an equal aumber of

comprisons.
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by

G. B. Dantz.4*, W. Blattner* and M. R. Rao*

A shortest route is sought between a fixed or 4 gin node i - 0

to n other nodes in a graph when directed arc distances cij are

given and the values of cij may be positive, negative, or zero

i A J. No values ci, are specified unless there is an arc from

i to 3 ThiL problem (as is well known) includes the

travelling salesman problem with distances dij > 0 because one can

set [cij = dis - K] where K > E E d and look for a minl
QJ i ) ij

route from 0 back to itself. Therefore our objective will be more

modest: To find a negative cycle in a graph if one exists or if none

exists then to find all the shortest paths from the origin.

The method is inductive. On step k , there is a set

consisting of the origin and k - 1 other nodes. Restricting arcs

to those that belong to the subgraph of Sk , the minimum distances

from the origin along these arcs to nodes i e Sk are assumed

known and have value 1i " It is also assumed that no negative

cycles exist in the subgraph of Sk . It follows that

(1) 1i + c >-11 for all i a S., J 6 .k

SStanford University

SU. S. Steel



Theorem 1: Let Dij denote the length of the shortest route from i

to j along arcs of the subgraph of S containing no negative

cycles and let (1) hold then

(2) D ij_ Th +iI

Proof: Let the sequence (i ; i1 , 12 ,*..,i* ; J) denote the nodes

along a minimum route from i to j in S , then by (1)

Ii + ciiI ]T + ci2 >Ili.... , + C .j

Adding these inequalities together yields the desired relation.

Assuming now that we know the minimal distances 1i for Sk

we wish to augment Sk by including a node q A Sk . We denote

Sk+1 = {Sk , q and wish to determine minimal distances 111 from

the origin along arcs of the subgraph of Sk+l to nodes

i Se+i " The theorem below permits us to determine I1*
q

immediately.

Theorem 2: Let q A Sk , and Sk+I = tSk ,qj then a shortest

route from 0 to q in S k+ has as last arc of the route

(p , q) where p e S satisfies

(3) TI +c Min (Ti + ciq)
p pq i L S .+

and H* = T + c is the minimum distance from the origin to q
- q p Pq

In Sk+l

2



Proof- Suppose false and a shorter route is via ' 6 Sk , then

IT- +- % II +c'pp qp p q

contradicting (3) . This theorem is true even if Sk has negative

cycles. The IT* and TI would then represent the shortestq

distance without cycles from the origin.

Knowing IT , Theorem (4) below may now be applied to
q

determine for another node I E + its minimum distance ]I*

from the origin along arcs of the subgraph of 1 Knowing H*
q

and n* we reapply Theorem (4) again and again, each time

finding a least distance for another node in Sk+1 . This is done

until all nodes are exhausted in Sk+1 or the optimality condition

8ij > 0 of Theorem 3 below is satisfied in which case the

remaining 11 values are also optimal for Sk*1 , or the negative

cycle condition of Theorem 5 is satisfied.

Theorem 3: Let T be any subset of nodes i whose minimum distance

7l* from the origin along routes in the subgraph of Sk is known
ik+

let q 6 T; let S and T contain no negative cycles; let

(4) 8 =j TIT +c ii-I!J i CT j T

then, If

(5) 8 >0 for all iT, J T

the minimum distance for all remaining nodes is

(6) IT -1 j for all J T

3



This theorem is true even if T contains negative cycles but requires a

different proof.

Proof: The conditions for optimality in Sk+ analogous to (1) are:

(7) iij "IT + c " •J 1>0 i 4 T T T

i ii a

IT* +c - IT* >0 i ETje Ti ij J -

+1 4c 'I* > 0 1 ~T jC Tii a-j -

The first of these holds by hypothesis (5), the second by (1), the

third by hypothesis that the T set is optimal in Sk+l (and there

are no negative cycles in T); finally the fourth because

II* <f and (1) holds.

On the other hand if the optimality conditions bij > 0 of

Theorem 3 does not hold for all i C T, j A T , then 8t i Min b1j< 0

holds for some t e T and I/T. It will be shown in Theorem 4,

that the minimum distance from the origin along arcs of the subgraph

Of k+l to node I is given by H* H 1 + .t " Thur Theorem

may be reapplied until there are no longer any nodes in Sk+l not in

T or condition (5) holds, or a negative cycle Is detected, but we

will speak more about this later in Theorem 5.

Theorem 4: Let S and T contain no negative cycles where T is

any subset of nodes i whose minimum distances from the origin in

14



F

S is n* If for some t C T, A T

(8) 18t =Min 85j < 0 1 C T, J A T

then

is the minimal distance from the origin along arcs in the subgraph of

Sk+l to node 1 -i)

Proof: On the contrary, if there is a shorter route to I, then this

route must include the node q and perhaps some other nodes of T

(otherwise It would be minimum but we know 11 < by (8) and

(9). Along this shorter route let (t , 1) be the last are such

that t 6 T p cI AT. Then the distance along the route from

to 1, may be denoted by Dr, (see Theorem 1) because

the nodes from Z to . are all elements of Sk • By Theorem (1)

(10) Dj > T1 7- j

On the other hand by virtue of the assumed shorter route through

1)This theorem also holds if T contains negative cycles and

are the shortest distances from the origin along routes vithout
cycles.



Subtracting (10) from (1i) and rearranging

Ci + c*-K <IT + ctt - z

or 41 < 5tt by (4) which contradicts hypothesis (8) of

Theorem 4.

Theorem 5: If Sk, T contain no negative cycles and the shortest

distance from the origin in Sk+i for iE T is ] <IT and T is±i

augmented to T* T~j wherej is as defined in Theorem 4, then a

a necessary and sufficient condition that T* contain a negative

cycle is

Iq q Yq o

Proof: Since II < i holds the optimal route from the origin to

in 8k+l passes through q - If (12) holds, then the cycle

consisting of the optimal route from q toI and then arc (i, q )

has negative length. This may be seen by summing the relations

1* + cij =11 along the route from q tol and then adding it

to (12). If, on the other hand, (12) does not hold, then

we will show that 1* + cij >* for all ieT*, JET* which

1 ij-J

implies that no negative cycle in T* exists (as one can see by

summing such relations over the arcs of a cycle.)

We need now only rule out for some i and J A q that

* + cii <•I * This would mean we could lower the value ol Y1*

by making i the node that precedes J along the optimal

route instead of some i . This deletion of the arc (i1 i) from

6



the tree2) of optimal routes and entering the arc (ij) into the

tree either would provide a shorter route to 3 or it would cause
0

a cycle to form which (by an earlier argument) is negative.

However neither is possible because the former implies a shorter

route to J (because fl* was lowered) while the latter implies
0

a negative cycle not involving q . The cycle cannot involve q

because all shortest routes i C T* from the origin pass through q

and there are no directed arcs into q along the tree of optimal

routes in TV . But a negative cycle in Sk is contrary to

assumption.

Thus a negative iycle will always be found if there is one by

(12). If one is found the inductive process terminates.

The following theorem due to M. Sakarovitch (verbal

communication) permits one to find the minimal distance in Sk÷1 to

several nodes at once.

Theorem 6 (Sakarovitch): Let L be the nodes in the tree of

optimal routes in Sk which are successors3) of I an defined in

Theorem 4, then

(13) TITm 1 + bt for i L•

2 )Note: If there are no negative cycles in a and T In
there is a tree of optimal routes to i c T banching out
from the origin; also the added arc (t-,) with t 6 T, lA T still
yields a tree of shortest routes without cycles in i e T( •

3)The tree of optimal routes from the origin forms a partially ordered
set. The "successors" of - are those nodes reached through •

7



Proof: One notes first that the distance Ii1 + bt, can be realized

by first going along the optimal route to L and then along the

former route from J, to i C L . Now assume on the contrary that

there is a better route to i . As in proof of Theorem 4, let t

be the last arc of a better route such that t 9 T and L T,

then *r• + ci + Di <11 + 8tL . Subtracting DI >I•- n H1 ,

yields 5 < 5tI contrary to (8)

For completeness we give the following well known theorem, (3].

heorem T: If c i > 0 and _ 1 1 of S are known to be the

minimal distances from the origin for the k nodes of k

arcs of the full n-node problem, then Hq -= p + cpq is the minimal

distance for q A Sk where

(14) n +c =min (ni+ci) C
p p iESk

J CSk

Proof: If not, then q is reached via some shorter route that

has nodes in common with Sk (since Sk includes the origin). Let

(t, j) be the last arc on the shorter route with Z 9 k and

Sk , then

(15) ni + ci + (min d~stance jto q) <H 11 +c

but this relation contradicts (14) because mInlm- d.istance from

Sto q is non-negative when c,, > 0 .

We are nov in a position to give a catt on the number of

8



additions. Associated with each set of additions such as for (14)

is the same number of comparisons (or possibly one less). In the case

C j >_0 , the same sums occur in Sk and Sk÷1 for the same (i, J).

Since at step k+l we do not need to consider the arcs back to Sk ,

the total additions do not exceed the total number of arcs. We will

denote this total by A . The proceduw : Is to sort the 1i + cij

values as generated from low to high. Let the lowest sum on this

list be Hi + cij This sum on the list is deleted if TIj

has previously been determined; if not then ITj I I + cijo

Next the sums 11 + cj k are computed for all arcs (j, k) and

made part of the sorted list. The process is then repeated. Sorting

requires effort, however, and so that the two theorems that follow

are misleading.

Theorem 8: If all distances cij> 0 , then the number of additions

using formula (14) does not exceed A , the number of arcs.

Theorem 9: The number of additions in the general case, when

formula (3) and (8) is used does not exceed

(16) A+nfI + (n - l)f +f 2 f

where n i. the number of nodes f Is number of arcs directed

forward from the k-th node to enter the in-luction.

This suggests preorderilng from low to high the nodes by the

number of their forward arcs. If this is done, the bound reuces to

(17) A + nf 1 (n - 1) f2 + ... f <(na.3)A12

9
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Finding a Cycle in a Graph with Minimum Cost to Time Ratio

with Application to a Ship Routing Problem

by

G. B. Dantzig*, W. 0. Blattner**, and M. R. Rao**

Associated with each arc (ij) of a graph are two numbersa cij the

"cost" and t,, the "time" per unit flow. In our application the unit flow

is a ship making one trip from i to j at a cost cij and taking tij

hours. In another example, a vessel for hire can make a profit p i each

time it goes from i to j ; eventually (if there are a finite number of

ports) it must complete a cycle with a total profit P and a total lapsed

time T where P is the sum of the profits and T is the sum of the times

on the arcs of the cycle. For a maximum rate of return, the shipowners should

use that cycle which maximizes the ratio of P/T . Later we shall describe

a more complex linear programming model which we solve using a column

generation scheme (a variant of the d&composition principle). The

subproblem turns out to be one of finding a cycle in a graph that has the

minimum ratio of total cost to total time.

Consider the following linear program:

Find Min z , x 1 >ý0 such that

n
(k) Z c -- zi,3-1 J xiJ

n

(2) E t iC .1 t >0

n 
n

(3) E X S - 0 a 1,2,...,n
i-l ksl

*Stanford University

**U. S. Steel



Theorem 1: Associated with an extreme minimizing solution to (1), (2), (3) is

a cycle whose total cost to time ratio is minimum.

Proof: Let xi = 1 if (i,j) is an arc of some cycle and xij = 0 otherwise.

Let E t i xi =T , then xij = xij/T satisfies (2) and (3) and z = C/T is

the ratio of total costs, C = E Z cij Xij , to total time T . Accordingly we

can always associate with a cycle one of the solutions of (1), (2), (3).

Consider now the class of minimizing solutions to (1), (2), (3). We can now

see that to an extreme minimizing solution corresponds a simple cycle. This

follows because the flows xij > 0 can be represented as a sum of simple

circulations. If any of these circulations had by itself a lower ratio

Zciixii/Et ij'j than another one, the solution could not be optimal. Indeed

an improved solution could be obtained by building up the circulation around

that cycle with the lowest ratio and decreasing the flow around the one with

a higher ratio. Nor could a solution be extreme if there were two simple

cycles with the same ratio because one could represent such a solution as a

convex combination of two others by first building up and then building down

the circulation in one of the cycles while adjusting the other 2o (2) holds.

TH SIMPLEX PILORITM4

A simple algorithm for solving (I), (2), (3) can be derived from the

sinplex method. A basis involves n columns (one equation is redundant).

The corresponding arcs in the graph must consist of a tree and one out-of-tree

arc. To see this we note that since a basis is non-singular, there must

be at least one non-singular (n-l)x(n-1) submatrix formed by deleting the

row associated with the time equation and deleting some column of the basis.

Non-singularity implies that the n-l arcs associated with the remaining

columns form a tree. The arc associated with the variable of the deleted

2



column together with a subset of the arcs of the tree form a cycle.

In fact, this implies that eve basic feasible solution to (2) and (3)

must consist of one tree spanning all nodes and one siMle cycle formed by

a subset of the arcs of the tree augmented by one additional are. This

additional arc completes the cycle making possible the positive flow forced

by the time equation.

It is easy to see (a) that the basic

(4) Case 1T (IN)
case I (OUT)" \IN(Case 1)

0

j~•Case Ir

IN(Case
III)

variables other than the cycle variables have zero value in a basic

solution, (b) that each noda in the simple cycle has one cycle arc pointing

into and the other away from it, and (c) the values of the cycle variables

are the same and equal to l/T where T is the total time around the cycle.

It is also easy to compute the simplex multipliers (prices) associated

with the basis. Indeed if we let p be the the multiplier associated with

the time equation (2) and let IL1 be those associated with the node

equations (3), then for each arc (i,j) associated with a basic variable

Tr " -1I Pi + p t cij

Summing these relations for all arcs (i, j) G Cycle yields

(,) 0 " C/T - E cl, if- t j (ij) a cycle arcs

3



Knowing p , one may arbitrarily choose the value of any one node (there

Is a reduntt equation) and determine the remainder by

(6) U + (c i - p ti) (i,J) e tree arcs

by branching out from the selected node along arcs (i,,J) of the tree

until all nodes are reached.

To obtain an improved solution the simplex multipliers are used to

el•minate the basic variables from the cost equation. The resulting

coefficients for the non-basic variables are

(7) B ij - (c ij - P tij) - l ( -i)

If all >ij ?:0 , then the value of p given by (5) is the minimum cost

to time ratio and the prelem is solved.

If not. let

(8) 5 < 0 for some (p,q)

We now make a special Inductive Assumption: at each iteration, there is a

basic feasible solution consisting of a directed tree spanning out from a

single node that is its root, augmented by one additional arc to form one

simple cycle.t

SIf a feasible cycle exists in the graph we can satisfy the inductive
assumption by taking any node of the cycle as the root of the tree and
spanning out from the nodes of the cycle using forward arcs to other
nodes, and then iteratively, repeating the process with all nodes reached.
If nodes still remain they can be reached by introducing high cost artificial
arcs as required. If there is no feasible cycle in the graph there is
obviously no feasible solution to the problem; if such is indeed the case
this fact will be discovered by the algorithm that follows.

4



If (pq) is the dotted arc marked "IN (Case I)" in the figure, then it is

easy to see that entering (pq) into the set of basic arcs does not form

a new cycle and we must drop out of the basic set the one which is also

directed into q . A new basic feasible set of arcs is obtained with the

values of HI decreased to 1i + 8pq for node i = q and all nodes i

that are followers of q in the new tree. All other Hi remain

unchanged. In Cases II and III a new cycle is formed and we must drop

out of the basis any one arc (r,s) which is in the old cycle and not in

the new cycle.

Theorem 2:' If the inductive assumption holds, and if /p,q) is entered

into the basic set in place of the basic arc directed into q, then the

Inductive assumption holds after the change except when a new cycle is

formed.

Theorem 3: If a new cycle is obtained as a result of changes in the basic

set of arcs, its p* - C/T ratio is less than the previous one.

Theorem 4: If dij m (cii - 0 t1 j) is used as distances on arcs

(i•j) in the graph, then any cycle in the graph whose sum of distances

around the arcs of the cycle is negative has a lower C/T ratio.

The simplex method accordingly reduces down to finding a negative cycle

in a grNa when arc distances di, are given: Starting with HI T 0 for some

node of the cycle, the other Hi are simply the distances from this origin

node along arcs of the tree to node i . The simplex iterative process is

seen to be the standard one for determining the shortest route from the

origin to all others, terminating when either

5



(9) dij - (I - i) > 0 for all i0j

or on some iteratiou a negative cycle like in Cases II or II is found. In

the former case, it is seen by summing (9) for all (i,a) around any

given cycle that distance around any cycle is non-negative so that the
p used to determine dij = cij - p tij is the best ratio. In the latter

case, a new cycle with a lower value of p is obtained and new dij

values are computed.

AWL rT: In the following algorithm the pairs (ia,J) represent directed

arcs defined in the graph:

0- Let S0 be any starting cycle. If none available, set

= Max [cA/ti1 ] in Step 2 below

1: For k= O,1,...

2: Compute Ik = E c 1 1 /Etij (i,J) 'E

3: Compute dk = cij " for all - k

4: Set 1 = 0 and set predecessor of node 1 as

(meaning none).

Set 1i = • and set predecessor for i A 1 as 1. tt

5: For each i - 1,29..n form B .d k + - for
=,~,.., for I i

S= ,2,...,n JAi.

(a) If > 0 return to (5) and continue scanning j for

fixed I and then repeat increasing i to i + 1 until

i = n, j a n - 1. If I = n, j - n - I terminate.

Cycle Sk is o ntimal.

ItThese are devices to initiate the computation without effort and to
construct the starting directed tree necessary to satisfy the inductive
assumption.

6



k
(b) ij <ogoto (6).

6: Determine the nodes in reverse order along the route

R from the origin to i by back tracing the predecesqors

of i .

(a) If J is not a predecessor of i , thenichange

predecessor of j to I and replace value of

Ik kI by + 5ij P return to ( Viwth i -4i

=2.

(b) If j is a predecessor of I , then let

Sk + 1 be the cycle along the route R from

node j to i and back to 3 alongarc

(i,J). Return to 1 increasing k to k + 1.

For programming simplicity the above algorithm does not maintain a

directed tree. If it is modified to do so, the nodes can be priced

sequentially along the tree and the return from step 6 (a) to step (,)

modified to take advantage of this.

7



coCrMAIMMNAL EDa'ERIENC

Set I

Problem Nodes Arcs Seconds on IBM 1620
(including input-output)

A 12 3.60

B 4 12 2.16

C 5 20 3.96

D 4 7 2.52

S6 13 6.84

Set II

(Exc luding input-output)

F 5 20 1.8o

G 10 90 7.92

H 15 210 14.04

1 20 38o 33.84

S 25 600 36.oo

K 30 87o 103.68

For prcblems in Set II, the t values for each arc were randomlyiJ

generated integers between 10 and 6u. Similarly, the c values were

randomly generated between 20 and 120.

We do not have an upper bound on the number of operations except the

kind that one could derive from a standard proof of the simplex algorithm.

In another paper where a variant of the scanning procedure given here is

used an upper bound of (Nodes + 3) (Arcs) additions-comparinon operations

in given for finding a negative cycle, (1].

8



ApplIcation to a Ship Routing Problem

Amounts b j arz required to be shipped from ports I to ports J

There are n ports (nodes). The shipping can either be done by charter

at a cost vij per unit shipped or by using one of a fleet of a vessels

under the control of the shipping company. If vessel k is used the amount

that it carries between (i, J) depends on the kind of ship and on the

pattern of ports forming e cycle g that i assignel to the ship. We

ij
denote this by aki . Thus if arc (i,j) is not part of cycle g , then

- 0 and if it is its value is the capacity v of the vessel.

Material balance equations: For i, J a 1, 2,...,n

(10) y j +x b

where yi• is amount chartered and xk is the mwber of times that ship

k is employed in the g-th type cycle. We allow k to have fractional

values which we interpret as rate of use of the ship in some given period of

time.

Vessel hour constraints:

(-) £tg Xkg + ak - hk k

where hk is the total hours available on the k-th vessel, ak Is the umnsed

hours of the ship, tk is the time to complete one cycle of type g.

bpctIve to be minimized:

(12) E v13 y "j Ck @k " z41,j) kiyi

ifepenennce on (ita) is pohsible if type of cargo on roate (iye) is
different from that on other aresa. In case of airplanes, capacity depends
on distance.

9



Here we are assuming that the cost to operate vessel is ck per unit time

used, hence there is a savings of c per hour not used.

In an ore shipment application which we were intere3ted in there were

too maný possible cycles to explicitly list all the coefficients of the

problem. Accordingly we decided to generate the column of coefficients,

as needed. Using Y j and sk as basic variables, one has a starting

basic feasible solution. We now assume we have introduced into the basis

several other columns eand we have a set of simplex multipliers p J

associated with (10) and qk with (11). We wish to "price out" the

column associated with Xkg and to find that column g for each k

that prices out most negati.ve. The relative c-st coefficient of xkg

becomes

(1) i Etk k

(i•) X tkg " T ij =kg (-k tii - PiJW'i)(i,j)( g

Our subproblem becomes one of ch-oosing that cycle in the network of ship k

for which (13) is a minimum. Since ai . wik is the ship's capacity, if

the arc (i,j) is used In the cycle g and zero otherwise, the sum in (13)

is simp]y the sum of the ship capacities on arcs (i,j) weighted by p J

and the times weighted by qk around the cycle g . Note that tk is the

sum of times on ares (i,j) around the cycle. Unfortunately the problem

in this form is that of finding a most negative cycle In a graph whose are

distances are given. This class of problems includeq as a special case

the difficult travelling saicman problem.

10



We got around this difficulty by a change of units. We set

Xkg - V k . The relative cost coefficients for the new problem become

vhere g denotes the (i,j) c cycle g

k
Since ri or fixed k in constant.and tk-, t jtesbrbe

becomes one of findA that cycle g* that minimizes the ratio

P Ck WE t k

vhich fortunately, as ye have seen, is a solveable problem!

11
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1. Pivot Transforuations

Mhe schema
o. 3* *o 13 oo

o .. .. b .. ay*

X c.e. d . -y
o* 0 o, 9• .

conveniently exhibits two system of linear equations, a

row yszts. 0 0*v. : :

.+ aq* + + b + . y
(l.lr) : : :

+ cq* + . + d +

In which the dependent .y-labels (variables or numerical values) are epressed

as linear combinations of the independent q-labels; and a

column system

+ X 4+ 0 4+ Xc÷ .+ t
(l.lc)

+. Ax%+ .. + ..+

in which the dependent I-labels are expressed as llnear combinations of the

independent x-labels. (

A pivot transforation with pivot entry a j 0 simultaneously re-

expresses the palr of l1near systems by solving the -yo-eqpation of the row
systs. for e and the t°-equation of the column system for x , and then

using these equations to elimnate e3 a x1 as independent labels from

the renalniug row and olum equations. v* wn Ie tbeby boeome



2.

Independent labels. Solving for q* in the row system

or
0 .1o+ A-lb +

and heiaoepby substitution,

go C.. a + y .* (-calbn t+ .. d + -y

or

+ X*+ + xcal +-..ux

and hience, by substitution,

.. + (.. + e~ 1
-. Xca- 1 

-. *)b +0*0+ *

or+ talb + .+ x(d -ca"~b) +. I

2sweOr ie, the result of making a pivot transformation with pivot entry a 0

can be summised In the transformation of the schema (1.1) into the schema

(1.2) . '

(1.2)

x -cai . . d-ca 1b..

In words the scebma (1.2) is obtained frm the schema (1.1) by
1. Ucbqgg labels coreponding to the pivot entry a; nammely,

replacing e with y*', mA .y* with q*, In the row system,
and repWain 0 with g*, and 1 wi~th x" in the aooli

system.



3.

2. Keeping .11 remaining labels (e.g., t, -Y; x. J) unchangd.

3. Pleplacing the pivot a by its reciprocal l/a; replacinm ea

remaining entry In the pivot's row b by b/aj repcIM ea&

remaining entry in the pivot's column a by -a/&; and replacing
each other entry d in bW colIu and a's row by (d -

Clearly the 2& •wult of msking a pivot transformation Is to re-

ejpress or re-pres*nt a pair of linear systs In terms of different sets of

independent and dependent labels.

•le. (* denotes the pivot)

q'1 "12 q3 ,q4 q1 Y2 43 q4
- I x -- -1/2 --5/ 1

S 2  1 0 -- y 2 2. 21 -1/2 -1/2 0 -. %

x3 4 1 0-3 a-" -x 5 1/2 1/2 -3 --Y3

,L..• •.1 oR •"3 .541.g1 jý'/2 U13 "0/&

2. Dual Linear P .

T h s h o ( 4 0 ) ( .1 0• )

(2.1) : :

-&_ . . . o
1~ a, . . . -b b v (ao

(10 ) (ý 0) (ma)

coanvensatly exibit a dual Wr of lnear prog In tadard fan

Row (or PrMal) Proam O.lIun (or Dual) DMUM

lanimize Mujdmie
v N l 1, +,b, ... + AIN •

eonstrained by costrained by

,l +•3 . + b, 0 o ... * + C- +. 1  0

bay, + own•'• + b,. a 0. YI "" ÷ M + ÷ 9n x- 0
0. (o 0.)



wor~m 1. If (v yl,'..,N) satisfies the rowf equations amd

(U; I%,...,AW x•_.,..,xN) satisfie the co1lmn equations then

(2.2) xly1 + ... + xjy v - u .

Uwm 2. If (vo; 9,,...,y) satisfies the row constraints (2.1w) (is

"rwfeasible ) and (u'0 P* 4; XI a{.*.,xi) satisfies the 0colM m n-

straints (2.1c) (is "colmn featble") then
0

u 0 < minjm= v < Y'

u <maximumu<'.z a

ELl•ar 1. If fe• ible (,ov0 y;),*..,y0) and (u,; , x,...,zi)
an be found such that v° a u', then they constitute (optiml) solutions

to rM and co-- prgo . Ibis can happen only If (by (2.2)) xLyl = 0

for a1 I that is, oolyif xi -0 and/or y, a 0

3. Rlduction to canonical Form.

In order to solve a dual pair of 11near progpam (2.1) vhich are in

stnda tform the first t&ak is to el4iunte the unrestricted X-variables

tfr the ol0mM propm, and re-exprs the row propin in term of the

smllest [Possible set of independent y-ariableg. iSL is @cc•upVlsed by

usift the

edUctI0on M.ale * ke pivot transformations on (2.1) and its sue-

oesIVe r entatioas Vith pivot entries •o'reeonding to

O-dePetdent and y-lndaepedent roy program labels and z-depandent

aGM .-LudpCdaent oola progpam labels until no longer possible.

Wh Gsuch a pLvot entry 0esnt be chosen then a representation ba b•en

obtaned whose scba is such that eLtbsr

(&) every entry which corresponds to 0-dependient wan y-indepeadant
roy pr" labels ad to x-depeadent and X-..ependont colun proei

labels is aero and thus cannot be cbosen as a pivot; or

W no row popm dependent labels an eOle NAn •0 ccon

prvui indepsoeant labels are 'S

If(a) o0." we ams t baew obtained a seba of the foram



Y÷1 "'" y 0 ... 0 1

I. . I * 0 *y0
Xi 31 " an aun+1 *.. . U b'

(3.1) a;M 0 ... 0 ,aK bM -U0

0 .. 0 0;, j0, 0

X'M 0 .. 0 ,a~+l ... ai bX' -0

1In ... 0' "I V
n .

vher the prised var-.ables ame a rearrazngemuent of the original vlriablea Ii

(2.1) ad the prt.,ed entris are determined y the succession of preceedin
pivot ateye. If any of the entries b,',...,b4 is different fromero tbw

the r constraints are incc~atible, for eam& row equation corr-

sponding to a dependent 0-1abel would read *a non-sero quwt~ty equals sa."

San no optiml eolutl'ns exist. Ojtbuuse, if all b;+,...,bi m 0 j the

row equations cc spooding to dopsendt O-labels reed "zero equals earo

and can thus be alitted. Clearly the ooluin corresponlz, to the independent

0-labels can also be coittod frca the point of view of the row propm. Uese

esm row and eolums ay be otted frm the point of view of the colum

]EoM: th equtions coaz poing to the unreetricted ;iO...)i aia be
put asi since t•ey represat no costraints) then, the coefficients oeor-

spooling to the Independent 114+**'" are all aeros and bane" teir rows

Iw be mattad. Notice that th argument m ftra the colm pro point

of vlew holls wbethe" or not all b;+,...bA am saero bowrm=, It ow

of these are not weo then, cleerlyj eve It there exists a acalm oPqP
feaisile solutions the value of the objectie,, mezisim a , can be mode

S•lare (vW).

In eisunar if (a) occurs and all I% ane amt we obtsaa
a smaller repesentation for the dual pair of linear popin (2.1) whose

el Is



(>0) .
• m+n

x{ + . . . Y;{n

(3.2) (>0) (<0)

X; am'1 . . . a'I b- "'YM

ci .. c', Id' Inv (min)

mx;*l . . . =X;+n =U

(> 0) (=)

Such a representation Is referred to as being in canonical form: all variables

(except u,v) are rectricted to be nonnegative, and each equation expressee

some variable as a linear ccmbination of others.

Alternative (b) is a special case of (a) with m - M , i.e., all

)-labels art dependent, all 0-labels are independent. Therefore, for either

alternative, we can state

Taorlm 3. If solutions exist to (2.1) then a representation in canonical

form (3.2) for the dual pair of linear progrs can be obtained by the

reduction rule specified above.

Mw. Maein Theww of Linear Programming

_mrsm 4. (ibn Teorem) Given a dual pair or Linear proas in canonical

form there axiste a finite succession of pivot transformations which obta n

a repr*eentstion for the proin whose scheme ha exactly one of the

follovilA four form (0, ' Asnote onneaptiv and noqpositiwv entries,

rspecte•vely, uA margia• variable5 have been oAitted):

Sexhibitlng optimal solutions

to both programs;

~I. *** 0



7.

I

r exb biting a fea4ible solution to
the row proram and the unboundednesT (from below) of v ; and shown

(4.b), thue nonccoqibility of the
I constraints;

Mu

exhibiting a feaible solution to
the colmi propra and the urun=d-

(4.c) edness (from above) of u ; and
shoving the noncomatibility .f

S - the row constraints;

-0 ------------

(- J showJng the noncompatibilIty

of both rov and colu constraints.

(Proof of Theoro 4 vwill be given below)

(2)
orc: a . If thre exist feasible solutions tc both row and colun

prof3 m then theare ont exist optiml soluations.

Proot If tbere exLst feasible solutlonm to both progre then enas (b),

(c), 11) cannot occur, wSM hence ca&.- (a) noit occur.

Oorollary 2 is uswtliy referred to as the fundawntal du4Lty

theortis of lin•ar yproming.

5. SI~eO Methods (3)

A s•'alx mtbod for solvin a pair of dual linear parin (3.2)

In canonical form Is a fMit• se ance of sobnta or e•alvalent rTWepnts-

tous for the prop'uin obtainsd by successiwe pivot steps, .itJ prscrlbed

pivot entry choice rules, vwlch o•a.&U a sc•im ehibiting optiml eolutic•s

to both prorms, or the no-oastibility of the ro and/or the colr
eonstraints.



8.

(4)
A --ow (or Lrml smL~ex method is a slop1ex: method beginning vith

a sebhs exhibiting row feasibility with pivot steps which maintain row
feasibility in each succeeding schema. Thus, at any stage, a schems

-Y;a ." " b- -y-
x{ alli i Loy

'm 3
1~ v .

with ... < 0 is at hand.

A row (or primal) pivot choice rule is as follows:

If a schoa (5.i) does not exhibit optimal solutions to both propin
(fom 4.a) there must exist a c3 < 0 for some j . Either (i) every entry

in the coli of c < 0 Is nonpoeitive or (i1) there exist positive entries.

(1) 7be schema is in form (4.b)
(10) C as pivot entry a > 0 satisfying

k max
-7at > 0 T

Notice that if b• < 0 a new row feasible solution is exhibited after pivoting

which gives a value to v strictly less than the previous exhibited value of v.

amonle. Solve the linear progras

(~0)

Y 4 15

0 x 1 3* 2 o

1 z3-. -6 2 0 -v (min)
"Ox3 •mx4  -x• 5

(0o)



y3~ y2  Y5 1 y4  Y'1-Y 1

x 1/3" l 132/!L1/ 3  y _ 31

A coI•um (or dual) saiml metbod is a simplex met beInn.n with a
schewa exhibiting coluer feasibility with pivot stepS vhibcA MIMUID ool00M

feasibility in each succeeding achasa. 2hus, at &W stas, a sabem (5.1)

1th O,...,c;> 0 , is at hacd.

A colmn (or dual) pivot choice rule Is as follows:

If a schwa (5.1) does not exhibit optimal solutions to both provin

(form 4.a) the" nSt exist a bl > 0 for some I . Eitaer (I) every ent7Y

is the row of b' > 0 is nonnegsti%- (ii) there exist scm negative

entries.

(i) Me sche -* in tona (4.c).

(11) Choose as i4vot et.cry a,' < 0 satisfying

£• sS4 -o .0

Notice that if Zs' > 0 a rev column feasible solution Is exhibited after

pivoting hibch givet a valino to u strictly reater than the previoux ex-

hibited value of u .

bnple. Solve the 11near proge

x• -3 -1 0 3 m--y

(>o) x-4 -.3 -l 6 -- (<o)
x6 -1 -2 +1 L '(y6
1 [ 2  - V (min)

(4 0) (max)
•y y 1 Y , Y3 1

x4 5/3" -1/3 1/3 1 - I -- r4 x, -3/5 I/5 -1/5 -3/•-U' y

x2 4j j -1/3 1/3 -2 ay2 x2 l 4/5 -3/5 3/5 -6/5 '72

x6  5/3 -2/3 5/3 -2 --y x6 1 -1 2 -1 --y

S 1/3 3 2 v 1 1 2/5 10x /5112 /
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2te row and column sisplex methods described above can be applied

only to a pair of IM,ý.-s whose scheme exhibits, respectively, a row or a

colow feasible solution. This is aot always the case, of course. A method

for obtaiiing a schema exhibiting a row fesaible solution (if one exists)

can be described as follows. (6)

&uppose that the schema (5.1) does not exhibit a row femsible

solution,; i.e., b' > 0 for scue I . Assume that the nonpositive b'

a* b I o,..,%b < 0 (this is not a limiting assimptIon for the rove of
(5.1) could be rearranged to acccuplish this). Then, by replacing the b'

with their signs, the schema (5.1) can be exhibited as

* *+ y 1
y3+U

(5.2) x;+ _ + _--__+_

1tC . . . C'

=l " °OU

In (5.2) the sub-schebm above the double line can be thought of as speci-
fying a pair of subprogrus in canonical form in which a row feasIble

solution obtains. 7hereftre, a row z1i;lx mat;Aod pRiot choice zule can be

used directly in (teporarliy) minimi•Ling -y' subject to the constrainto
k+1

s specified above the -Yi+l row. If, aftir oQe or .evtra1 pivot steps,
the sipn of the entry correspomliL to bW Le~caes nWnPsitivet, ten

k+3.
one more row with "oorrect" sign has been generated and there Is a larger

subechom (perhaps the entire schema) which c%n be thought of as specifying

a pair of subprogram in which a row feasiole solution obtains. Othereise,

one of the two following forms can be reached (by Theoren 4):
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(5•.3) 1 ••

o (3.3b)

+,# may' *

+ +1 + y

=v V

If (5.3a) occurs a pivot step with pivot entry starred leads to a larger
subschema in which a row feasible solution obtains (why?). If (5.3b) occ=ts

no row feasible solution to the (complete) row constraints exists.

EMple. Obtain a schema exhibiting a row feasible solution to

(> 0)

yl Y2  Y
x1 -3 a- 0 1

(0o) x5 -4 -3 -1 6 "5 (0o)
X6 -1 -2 1 3 I--Y6

-1 1 oT __ V (min)
"X1 '2 "x3 cu

(> 0) (max)

2 3 -1 o ..-1 --y2  X2 3 -1 0 -1

x 5 5 -3 -1 * 3 n-Y x 3 -, 3* -1 -3 -Y 3
--------------------------------------------- --- 0Y

S5 -2 1 1 m-y6  _6 -, -5 1 "
1 - Ti T 1 T 1 V-21 1 72

311 32(4 0x(33 au - 3c 2(4 -X5 MU

yl -Y3 YI 5 1/
x21 4/3 1/3 -1/3 F-2
X41-5/3 1/3 -1/3 -1 -Y
X6 I 5/3 5/3 -2/3 -1l -y

1 [L/3 2/3 1/3 2 my-

8*31 U2(3 325 nu
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A method for obtaining a column feasible soluticau (if am

exists) can be described analQgously (the description is left to the

reader).

6. Proof of the ftin oore.!7)

Suppose, as in the statement to the theorem, that a dual pair

of linear progrsam in canonical form (3.2) ii Liven with a + n + 2

the number of rows plus collins. Before prect.eding to a proof notice

that tvo corollaries ar imediate consequences of the theorem.

Corollary 3. Given a dual pair of linear prograom in canonical form

(3.2) there eXist3 a finite succession of pivot transfoxmtions

ftich obtain a representation for the program whose schema has exactly

one of the following two forms (where the identity of the colu

with label 1 is not distinguished):

(6 .e) (6.f)
fe

v .1 ... *,- -

Proof. It (4.a), (.-b) or (4.d) hold then either (6.e) or (6.t)
obtains. If (4.c) holds, but (6.e) does not obtain then

* . .. S -

obtains; but with one pivot step with pivot entry desgasted, (6.4)
obtains.
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Corollaj . 4. Given a dual pair of linear program in canonical form

(3.2) there ex~isl. a finite succession of Divot trnsformationa which

obtain a representation for the progrms vhose schms has eactly

one of the following tvo form (where the identity of the row with

label 1 Is not distinguished):

(6.g) (6.h) , 1

0

or e

Prof.. The proof is analogous to that for corollary 3 ad is
left to the reader.

The proof of the Main Theorem is accemplished by Induction on
the number of rows plus colums. If there is either only an row

or only one column in (3.2), one of the forms of the theore obtains.

Suppose, ther, the theorem true, and hence Corollaries 3 a&; 4 true,

for the namber of rows plus columns less than + n + 2

APPlying ti- inducti've hypothesis to (3.2) with the lat row

ignored we amt obtain, by corollary 1, either (after reasreramt of

rows and colma according to signs)

(6.0 1 (6.j
0 .. .+ .

Se '
1- 0 .--i- K

L •. ... _._ •4 •0



In a finite rrober of pviot steps. Notice tkat the induction at thWe

point orrenponds to obtaining a roy feasible solut•Jon or shovig ,wow

exist (compare with the constructi-e procedure in eec•uo•o •5, en,, in

particular, vith (9.3&,,b)).

ir (6.j) obtains,, Applyin Corollary 3 to the part or (6.j)

vbose rvu and colus are bracketed (and are lesa then m + n a 2 in

nm=br) we must obtain either form (4.c) or form (4.d) or

(6.k)_______ __

o * o+ .. + +.o..-----------...-..+...... +.

t

4.
q -

- 4 ---- I- 4---
1 .. @1 =

in a finite nmber of pivot steps, wbere (6.k) contains one or more

negative entries in the bottom row pf the bracketed column. But then

It Is possible to pivot on a positive entry of the top row of the

bracketed column and obtain form (4.c) (hty?). Notice that the

induction at this point corresponds to obtaining a col•u feasible

solution or swing none exist (compare with the analogous orstructive

proceduro mentioned in Section 5 for obtaining colum feasibility in

the brackisted columns).

Ir (6.i) obtains, applying Corollary 3 to the part of (6.1)

iiose row and column are bracketed (and are less than a + n + 2 in

minber) w out obtain either form (4.a) or form (4.b) or



(6.A) _ _ _ _ _ _ _

o I#0 I

oI,

SQ 0
1a'

in a finite number of pivot steps, where (6.i) contains one or mre

positive entries in the column indicated by an arrow. But a row simplex

method pivot choice rule can be applied to (6.1) and the value of the

southeast entry strictly decreased after pivoting. Continued application

of a row simplex method pivot choice rule or of the inductive hypothesis

as applied to a form (6.1) then assures that the value of the southeast

entry is never increased and. is successively strictly decreased

within finite umbers of pivot steps. Since thee an. at most a finite
number possible different schemata (et most (m n) ) and the south-n
east entry =sat successively decreasut a schema must be reached after

a finite number .t pivot steps in which application of the pivot choice

rule or of the inductive bypothesis is impossible, that is, form (.4a)

or form (4.b) obtains. Notice that the induction at this point

corresponds to obtaining a row feasible solution or showing none exist
(compare with a row simplex method,.

This completes the proof. Notice, however, that to every
application of the inductive hypothesit; there corresponds a constructive

cormutational set of rules for choice of pivot entry which achieve the

8o0e r'!!eGlts. Thbose rules are row and column simplex method pivot
choice rules applied to appropriete oubsct of rowv and columns.(8)
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7. Matrix Gmes

A matrix game A (or tvo-person zero-sum game in normalized form)

is specified by any matrix of real numbers

a

(7.1) A-

with the =Il that in a play of the gase players I and II simultaneously

choose some row i (i - i,...,m) and column j (j -

reupectively, with the result that II pays I an amount a

A pure sategy for player I is the choice of some one row

of A j a, * strate" for player II is the choice of some one column

of A • A mixed trtegy for player I is a probability vector

x,>0 all £ , Fxi- (±nagreatmnyplay

of the goo I chooses row i with probability xi); a mixed strategy

for player II is a probability vector Y " (Y1 ,' ,"Yn), Y > 0 all J ,

5 yj - 1 (in a great many plays of the geme II chooses colum j vith

probability y 3 ).

If X - (x 1,...,x,) and Y - (y1 ,...,y.) are any tvo mixed
strategies for players I and II, respectively, the scham

Yl yn

Xl all "" an•J

(7.2) .

X I . . ..- +
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conveniently exhibits, in the colm system, players I's eoiected mins

(7.2,1)

xl a12n + + x~ a g~n

agalnst each of II's coluns (or possit.e pure stratqeies); and, In the

row system, player II's exzaected losses

a 11 l Y "+ + * .1n Yy a 1

(7.2,11)

ml yl y + ÷+ a Y " -a

qaanst each of I's rove (or possible pure strategies).

The rationale of the theory of imes requires that player I

choose his mixed strategy X so as to imize his in a .rod

&I against Wny choice of column by II, and that player II chooe his

mixed strategy Y so as to minimize his mzim *Vected loss aganst

eny choice of row by I, Lattin

(7,3) u'min g, an v---m A
1 '3 1~

this mants player I's objective is to cboos an X to maxiize u

sod player II's objective Is to choose a Y to minimise v . Clearly

u - Thus if an X and s canbe found uch that u-v they

must coastitute Otml. tr-:iesi. The cg va•le u a v is tb

called the Yalue of the Som A .

A*e ob¢ectivvs of the players my be fonalated as linasr
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programs. Namly, player I's objective is to

Max•tize u

constrsined by X1  + ... + xm -1

x, 1 al + + M = g=,l'

(7."4 1)

x. aln + ... + x m = g u

I>0 x > 0

an player I'.s objective is to

Minimize v

constrained by Y + " + y u

al Yl + + 'a& Yn n l< v

Y J = 0 " " , y n => 0

These liner program are coeveniently exhibited in the scheme

-V (y 0)

(7.4)= o))o

-v .l " "

x. .1* a ... ,S aSIiIX " in ='1

I n

(> o)



19.

where the colum system, vith "slack" variables sj -u > 0

refers to player I's program of maximizing u , and the rov system,

with "slack" variables tim V "-i Z 0 , refers to player II's progrem

of miniaizing v .

Two successive pivot transformatior on the starred +1 and -1

of (7.4) obtainf the representation for the programs exhibited in the

schema

(> o)
t Yl " '-l 1

a 0 1  . . . 1 -1 "Yn

a - 1 allngi

(7.5) (>0) 0.. ( )

-1 all . . .all ,-1 n --

a'n- aa am v (min)
ml . . , ma-i ml

5n-l

wbh.re

(7.6) and

but (7.5) exbibite equivalent representatlons of the lioear pror

(7.441) and (7.14,H1) as a dual pair of lirear progrint in caos.ical

form. This obearvation permits us to state

T ccrem (tinimax Theorem). ihere alvays exist optiml mixed

strieteies X and Y for players I snd II, resvpectively, SDr

whi,ýh u a v
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Proof. The dual pair of linear programs (7. 4 ,I) and (7.4,1I) each

have feasible solution, as ie easily verified directly. Therefore,

by Theorem 4,fom (4.&) must ob'Lain, establishine the theorem.

To find optimal mixed strategies and the value of the g A

w nead only to solve the l pai't of linear programs exhibited in (7.-)

or (7.5) by upplying a r-..Mlex method. Notice, however, that if

a a mn j teu• (•,5) exhibits a column feasible solution, while

if am a mx a, then (7.5) e>xhibite a row feasible solution. There-
i .n

fore, if the rowv or col'mna of A .•e reariraged so that one of

these conditions hold a .ol3un or a row simplex method can be applied

directly.

Furthermore, if

S7.7) min a am - x ,

then optimal isolutona obtain in (7.5) with % - 1 , Yn = 1 and

u - v = a that ia, the optimal strategies are pure strategies.The entryma
am is aalle•3 a sAdle point, and we can state

Theorem 6. If akS in a saddle point of A , i.e., if

(7.8) a. <a (ala'ji: ka U a4

then opbimal pure stragies exsit vith xk - 1 and y 1  ,and the

value of the game is ak .

Examlee.

Solve the matrix game A specified by

0-1 1 -1 7
A 1 1 -3 2 -8

S63

3 0 2

LI 2)
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The circl.ed entries are saddle points; therefore player I Vill

use pure strategy row 3 or row 4 (or any mixed strategy using onY
a combination of rows 3 aMd 4)) and player II viii use pun strategy

coluen 2 . Tho value of the game is 2

Solve the matrix gem specified by

1 -[ 2 -3
A - 2 3 2 3 2

L2-1 1 0 2

Notice, first, that row 2 dominates row 4• ir the sense that plaemr I

can onl. gain more by playing row 2 rather than row 4; moreover, given

that player I never plays row 4 , column 2 dominates colmn 4

and column 3 dominates coluwin 5, hence playez II should never play

column 4 or column 5 . Thus x4 - 0 and y 4 y y5 a 0  in optimal

mixed strategies. Rearrange rovs and colus in A with row 4 and

columns 4 and 5 omitted so that the southeast entry Is a iaxims

Jn its colu and construct the scteza correspcnd-In to (7-4) and

pivot as indicated: (> 0)

U 0 4 - 1 1 =-1

>1 4 -4 a-t1  maximize u

~0) 13 l1- -2 10t( )
S1inmzse v

S1 -2 3 _2 -t
=1 s1 as2 so 3

(~0)

U 0 -1 -1 - -1* 03 1 1 -1 -Y 3
x -1 6 -.2 . -,t -1 12 4 -6.-a

1~ ~ 2t 2  t 2
x - -- - , -> 1- 2"-4 -1--tx33

1I1 -2 3 2 * v 1 . - .... v(min)
x2'l as,2 -4 3 -x2 -,l -,•',.(max)
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t2 t Y 1 t2 t t 1

a3 172 ,1/2 3 -1T2-"Y3 13 --1728 4/28 -3/28 -1/' -!y3
x, 5 -6 28* Ci - -l 62 5/28 -6/28* 1/28I 0 S Y2

-312 Y!2 -2 - 2"y= sa -4/28 2/28 2&28_l& / - y-1 - v 1. 1/. 1/2 1/4 0 " V

"x "5 as 2 " " "X 2 "X 3 a", W U

Thus optimal mixed strategies are

X - (1/4, 1/1, 1/2, 0) and Y . (1/2, 0, 1/2, 0, 0)

and the value of the game is zero (it is fair). Notice, however, that
another pair of optimal mixed strategies can be found by pivoting as

indicated to obtain

t 2  Y2 t1 I

83 1/2 !,ft f - /1 2 -•! -y2
x3 -5/6 -28/6 -1/6 0 - -t3

6 I1/2 2/6 . = -Y
1 -2/3 14Z/6 1/30 1 *

"a2 =82 x 1

Thus optimal mixed strategies are

x - (1/3, /3, 0,0 ) and Y k1/2, 0, 1/2, 0, o).

Therefore

x M a(1/3, 2/3, 0, 0) + (I-a) (l/4, 1/4, 1/2, 0), 0 a < 1
0 a

constitutes an optimal mixed strategy for player I for any choice

of a between zero and one. (Why?).



Footnotes.

(1) Also known as coplete eliminationd or Gauss-Jordan
elimination. See: E. Stiefel, "Note cnJordan Elimination,
Linear Programing, and TetbebyclefT Approximation",
Numerische Mathematik vol. 2 (1960), pp. 1-17.

(2) Corollary 2 in known an the'umd'ental duality of
linear programing". Its first exlicit stateent is
contained in D. Gale, H. W. Kuhn, and A.W. Tucker, "Linear
Programing and the Theory of Games", in Activity
of Producation end Allocation, (dited by T. C. KOOP iiW
John Wiley and Sons, Inc., Now York, 1951. The notion of
a duality theory arose from the Minimax Theorem of
J. vou Neumann(see footnote(l0)).

(3),(4) The discovery of a (primal) simplex method (1947) is due
to George B. Dantzig. His original paper "Maximization of
a Linear Function of Variables Subject to Linear Inequalities"
is contained in Activity Analysis of Production and Allocation.

(5) A dual simplex method was first explicity advanced by
C. C. Lemk. in "The Dual Method of Solving the Linear
Prograu=ing Problem", Naval Research Logistics % rl,
vol. l, (1954), PP. 36-3 .-

o

(6) This method is described by M. L. Balinski and R. Z. Gamory
in "A Mutual Primal-Dual Simplex Method" to appear in
Proceedingsof Symposium on Mathematical Programing held
in Chicago, June, 1962.

(7),(8) The proof given here depends on the basic idea advanced
in the paper referred to in (6), where the proof Is ompletely
constructive. The inductive proof found here is due to
A. W. Tucker.

(9) The formulation of the players' problem as linear proms
given here follows A. W. Tucker's, "Solving a Matrix Owe
by Liear Programfing%", IBM Journal of Reerch m d
amet, vol. 4 (1960), p.'7-- -.

(10) The Hinimax Theorem was discovered and first provd by
J. "on Np•n. in "Za- Theorie der Gesellhchattaspiele",
matbemtiuoh Annalen, vol. 100 (192e), pp.295-320.
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Line 2 from bottom. (6.4) (6..)

Page 14. Line 4. (S. 3a, b) (S. 3a, b)

Line 9. pf of

Page 15. Line 7 from bottom. row ,;olumn

Bottom line. appropriate appropriate

Page 19. Under schema (7. 5) insert ({ 0)
Line 9 from bottom. (I#m. J÷+) (i4 m. J+n)

Pago 30. Lie 15. amn that is, an that is.

Line 19. exaft exist

Page 21. Line 7. more by more or at least
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DUALITY IN NONLINEAR PROGRAMMING

R.T. Rockafellar"

1. Introduction

A nonlinear program in n variables is usually described

as a problem nf minimizing (or maximizing) a quantity f eX)

subject to constraints f 1(x) O,...,fm(X) < 0, where

f o,...,fm are certain real-valued functions of the vector

x = (x 1 ,...xn) C R n. The problem may be interpreted broadly

or narrowly, however.

In the narrower sense, one is only interested in the

infimum of a certain function given on a subset S of

Rn. The elements x of the subset S are the so-called

feasible solutions to the problem. Typical questions are

the following. Is the infimum finite? DC there exist

o:timal solutions, i.e. feasible solutions at which the

infimum is attained? Is there only one optimal solution?

One seeks conditions which guarantee " yes"ans.4ers to these

questions, as .ell as algorithms for actually computing the

infimum and optimal solutions.

In the broader sense of the problem, one is also concerned

with the sensitivity of the infimum and optimal solutions to

slight changes in the constraints. This is where duality and

La-range multipliers co;]e in. Let p(ul,...,um) denote the

infimum of f (0 subject to fl(x) < Ul,...,fm(x) < u .

"This work was surrorted in ;.art by grant AF-AFOSR-1lO2-u7
from the Air "•orce O!'fice of S3cientific hP.:,'arch.
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One is interested in the properties of p as a function of

the perturbation u N (Ui,...,um) e R2 near u = 0. For

instance, is p continuous or differentiable at u = 0?

It is especially important to look for numbers

Ul U * such that

(1.1) p(u1,...gum) a p(09... "O)-U1 u1 -. u *uuM, V(u "'...,um)cRm.

Such numbers can be interpreted as "equilibrium prices," If

the objective function f0  is interpreted as a e-ost function.

Suppose that in trying to minimize cost we are allowed to

perturb the given problem by any amount (ul,...,Um), but

that this perturbation must be paid for, the price being

ui* per unit of variable ui. The minimal cost attainable

in the problem perturbed by (ul,...,um), plus the cost of

this perturbation, is

P(Ul,...,gum) + UlU1 + ... +um U m

If the prices satisfy (1.1), this is never less than t:,e

minimal cost p(O,...,O) in the unperturb ,d problem, so all

the incentive for perturbation is neutralized and there is

an " equilibrium".

Observe that (1.1) is satisfied if and on'y if

fo0(X) + u]'l I OV+UI*'-u • _ -C,..0)
0 1U

for every choice of x an,: (ul,... um) suc:. .. 3t fi.x) u.

for i - l,...,m. Aosuming p(O,...,O' is fiuite, tnis

condition is equivalent to the co;dition th'tt u > C

i - 1,...,m and

fo0 W + u f1 (x) W+ +u. MOf(x : r(09,...,, Vx R



S"• In other words, the equilibrium prices are the same as the

non-negative Lagrange multipliers ul, ... ,su m such that the

unconstrained infimum off0+u f1+.. ,*m coincides

with the infimum. of fo0 subject to the constraints

These reflections on the nature of a classical nonlinear

program lead us to propose a new concept of a generalized

nonlinear program as, not just a single minimization problem, 1

but a minimization problem wit._h a buil.._t-in class of 2erturbations.

In such a program, one is to study not only the infimum in the

problem corresponding to zero perturbation, but also the sensitivity

of the infimum with respect to perturbations to neighboring

problems. The Lagrange multipliers are to be the " equilibrium

prices" for the perturbations.

Suppose that for each vector u c R4Z we are given a pair

($us Fu), where Su is a subset of F n (possibly empty)

and Fu is a function on Su with values in [-co , +cc]

The correspondence

F: u -(Sul Fu)
will be called a bifunction from Rm to Rn A bifunction

is to be regarded as a generalization of " multivalued mapping"s-

the image of u under F is not just a set, but a set with

a distinguished function attached to it. One can interpret

the function Fu as assigning a relative value or cost

fFu)(x) to each element x of the set Su.
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For any bifunction F from Rm to Rn, we define a

generalized program (P): minimize the function FO on the

set SO. The problem is to include the local analysis of

the properties of the function p - inf F at u = 0, where

(infF)().i~nf ~(Fu)(x) I x ESuj

(By convention, an infimum is +oD if the set over which it

is taken is empty.) A vector x c Rn will be called an

optimal solution to (P) if (inf Fý(O) is finite and

attained at x. If (inf F)(O) is finite, we define a

Lagrange multiplier vector for (P) to be a vector u" c Rm

su:ch that

for every perturbation u c RM. (Here < , > denotes the

ordinary inner product of two numerical vectors.)

Under simple convexity assumptions on the bifunction

F, a comprehensive duality theory is possible for such

generalized programs, as will be explained below. A dual

program (PO) may be constructed which is of the same type,

oxcept that it involves maximization rather than minimization.

The dual of the pro,-ram (P') is in turn (P). The extrema in

(M) and (P*) are generally eqiual. 'he ort:mal soluti.*ons

to (PO) are g nerally the Lagringe multiplier vectors for

(P), while the optimal solutions to (F) are the Lagrange

multiplier vectors for (F6). The -airs of optimal solutions

.- (P) anJ (P?) arQ the •adlle-points of a certain

Kuhn-Tucker function.
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An intriguing mathematical feature of the theory to he

explained is that it constitutes a new " convex algebra"

closely parallel to linear algebra. The convex bifunction

F plays a role analogous to that of a linear transformation.

Duality is obtained by the construction of an adjoint bifunction

FO in terms of Fenchel's conjugacy correspondence. Whereas

a linear transformation and its adjoint are related by a

bilinear function, a corivex bifunction and its adjoint are

related b, a convex-concave function, and the formula

<Fu, x*> = <u, F'x*> appears as an "inf=sup" theorem for

a dual pair of programs. Minimax theory is associated with

the " inverse" operation for bifunctions.

The results in this rapev are bas,-,d on the general

theory of convex functions and especially on the very important

notion of conjugacy due to Fenchel (17]. The elementary facts

about convex functions ani r;viewed in S2. Further details

can be found in the works of Fenchel, Brondsted, Moreau

and Rockafellar listed among the reforences.

The comtlete -roofs of the new duality theorems and of

the theorems about bifunctions are all contained in a forth-

ccming book Li44-. e of the Tain ileas have already

ap,;ea,-!d ir. other apers of the author, ikoowever. A perturbational

2:proech to duality theory is given in [4z] and CAW. The

correspondence betwen concave-convex functions on Rm XRn

and convex function6 on R vn (nere the .7rah functiors of

cu!.vex bifur~ctions) is established in [A8). A sixil:ir

""co,:vex aliebra" for multivalued mn'pinrs ha!; been leveloled

in (.6] and de-cribed in (373.



Some applications of Fenchel's theory to general nonlinear

programming have also been described by Ghouila-Houri [2],

Dennis (7], Dieter [8,9], Falk and Thrall r15], Karlin [23],

and Whinston [46].

An excellent discussion of general Lagrange multipliers

as " equilibrium prices" has been given by Gale [19] in the

case of concave maximization problems depending outside

parameters.

2. Convex functions and their conjugates.

The object of the finite-dimensional theory of convex

functions is the study of pairs (C,fl, where C is a

noa-empty convex set in Rn and f is a real-valued corvex

function on C, i.e. a function from C to R satisfying

(2.1) f(CL-X)x+Xy) < (1-0) f(x) + A f(y), 0 < X < 1,

for any x c C and y & C. There are technical adv,.ntages,

however, in representing each suc -air by a function which

is defined on all of Rn but which may have infin..te values,

namely the function obtained by defining f(x) to be

+D for x 4 C.

In general, let f be any function defined on all of

Rn and having values which are real numbers or +a . The

epigraph of f, denoted byi epi f, is the set of pairs

(xA) in R such that x e Rn, 4 E R and 4 > f(x).

(Thus epi f can be regarded ac the set of all " finite"

points lying on or above the graph of f.) '^'e define f

to be a convex function on Rn if epi f i. convex ,is a
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subset of Rn*l. If there is no x such that f(x) - -a ,

this definition of convexity is equivalent to inequality

(2.1) being satisfied throughout R' (with the obvious

rules for manipulating +iD).

If f is convex, the set

dom f = Ix I f(x)< +< ,

which is the projection of epi f on Rn, is convex; it

is called the effective domain of f. A convex function

f on Rn is said to be proper if dom f is non-empty

and f is finite on dom f, in other words if f is not

the constant function +aD and there is no x such that

f(x) = -a . The restriction of f to C = dom f is then

a pair (C,f) of the type mentioned above, and evei'y such

pair arises in this way. Thus the study of the pairs (C,f)

is replaced by the study of the proper convex functions

f on Rn.

Convex functions which are not proper can arise

naturally as the result of certain operations, and they do

have some technical uses. The fundamental fact about an

improper convex function f on Rn is that f must be

identically -a on the interior of dom f.

A useful example of a convex function is the indicator

function S (-IC) of a convex set C in Rn, where S(xlC) 0

for x e C and S(xlC) = +OD if x ý C. If f is a finite

convex function on Rn, the convex function f = f0+ S(.IC)
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agrees with f0  on C and is +a elsewhere. Minimizing
f on C is equivalent to minimizing f over all of Rn.

0

We shall use this device to re-express all constrained

extremum problems as formally unconstrained problems.

Let f be a oonvex function on R, and let D

denote the collection of all rairs (x*, 4*) such that

xc C R, 40 e R and

f(x) > <x9 x> -" Vx C Rn.

The pointwise supremum of the corresponding collection

of affine functions h(x) = 4 x, x*> - 4 is called the

closure of f and is denoted by cl f. Thus by definition

(2.2) (cl f)(x) = sup I <x9 x'> - )I* e s D .

When cl f = f, one says that f is closed. If f is

proper, it can be shown that the epif-raph of cl f is simply

the closure in Rn+l of the epigraph of f. Then cl f is

n
a closed proper convex function on Rn, and

(2.3) (cl f)(x) = limr inf f(y), Vx E Rn.
Y-x

In particular, a proper convex function is closed if and only

if it is lower-semicontinuous, i.e. has the property that the

convex level set Ix I f(x) : A I is closed in Rn for each

real g.

For a proper convex function f, (cl f)(x) must

actually coincide with f(x) for every x in the interior

of dom f or outside the closure of dom f. Thus f - cl f

may be regarded as a regularizing operation which simply

redefines f at certain boundary points of its effective

domain, so as to make f lower-semicontinuous. For an
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improper convex function f, cl f is the constant function

-o or the constant function +.D, depending on whether or

not dom f is non-empty.

Fenchel's important notion of conjugacy is obtained by

further consideration of the set D introduced above. Clearly

D consists of the pairs (x*,A*) in Rn+l such that

4" > f*(x*), where

(2.4) f'(x) = supx{<xx*> - f(x)2  .

Thus D is the epigraph of a certain function f" on Rn.

This f* is called the conjugate of f.

It can be seen that f* is a closed civex function on

R n proper if and only if f itself is proper. The conjugate

f** of f* is in turn given by

f''(x) = supx. <x,x> - f'(x').

But this supremum is the same as the supremum in (2.2) Thus

f** = cl f. In particular, if f is closed it is the

conjugate of its conjugate f*.

Conjugacy therefore defines a one-to-one symmetric

correspondence in the class of all closed convex functions

onon R.

As an example, the conjugate of the indicator function

S(.-IC) of a ccnvux set C in Rn is given by

S*(x*IC) - supji <tx*x> - S(x1C )I~ a sup (xtxo>.
x xcC

The function S(. IC) is called the support function of C.

A convex function f on Rn is necessarily continuous

on the interior of its effective domain. It is differentiable
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almost everywhere on any open set where it is finite.

Assume that x is any point where f is finite.

The (one-sided) directional derivative

(2.5) f'(x;y) - lim
X40

exists and is a convex function of y (possibly with the

valuem ±OD). Of course, if f is actually differentiable

at x, we have

(2.6) f'(x;y) - <Vf(x), y>,

where Vf(x) is the gradient of f at x,
t ( x S V * 9 d ( x ) ) .

Vf(X) - (x),..., x .i bXn

If f is not differentiable at x, the directional derivatives

can still be described in terms of " subgradients" . A

subgradient of f at x is a vector x" e Rn such that

f~z) W f(x) + <z-x, x*>, Vz e Rn.

The set of subgradients x* at x is a certain closed

convex (possibly empty) set denoted by bf(x). The case

where jf(x) consists of just one x" is precisely the

case where f is finite and differentiable at x, the

unique subgradient then being Vf(x). It can be shown tnat,

if x is actually an interior point of dom f, bf(x) is

non-empty and compact, and

(2.7) f.(x;y) - max k<x',y> I X0 C lf( )• S '(y, af(x))

for each y c Rn. In general, af(x) is empty and only if

f'(x;y) - -u for some y.
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When Zf(x) is non-empty, one necessarily has

(cl f)(x) = f(x). On the other hand, when (-l f)(x) = f(x)

one has x" £ cf(x) if and only if x c of*(x*). Thus

the multivalued mapping 'f*: x" •f*(j*) is the inverse

of the multivalued mapping 3f: x - "&(x), when f is a

closed proper convex function.

Note that 0 e bf(x) if and only if f attains its

minimum at x. We shall use this fact later in a slightly

different form: when (cl f)(O) - f(O), the vectors x"

in af(O) are the same as those for which 0 "3f*(x*),

i.e. for which f* attains its minimum.

The conjugate of a differentiable convex function

f on Rn is closely relatAd to the Legendre transform of

f. Let C* be the -et of all gradients x* of f, i.e.

the image of Rn urder the mapping x - Vf(x). uiven any

x" C0', the vectclrs x for which the supremum in (2.4)

is attained are pl'ecisely those for which x* - Vf(x); thus

(2.8) f(x) u <x,x* -f(x) when x" - Vf(x).

:f the mapping Vf is one-to-one, we get

(G.9) f*(x') = <(Vf)-1 (x'),xo> -f((Vf)-l(x*)), x" C CO.

This is the formula for the Legendre transform of f.

If Vf is not one-to-one, we can still conceive of

parameterizing C" in terms of x by means of the nonlinear

substitution x" a Vf(x), the substitution yields the formula

(2.10) f(Vf(x)) - <x,Vf(x)> -f(x).

This function of x is one which is common in the literature

of nonlinear programming. It is generally not convex, of

course, and it generally does not expres,, f" completely.
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The set C* need not be convex in Rn, and there may be

points outside of C* where f* is finite and the Legendre

transform is undefined.

It will be convenient in what follows to place concave

functions on an equal footing with convex functions. A

function g from Rn to [-a, +cd is said to be concave,

of course, if f - -g is convex. All the above facts

and definitions for convex functions have obvious analogues

for concave functions, in which the roles of +a , inf and

< are interchanged with those of -w , sup and >. In

particular, the conjugate or a concave function g is

defined by

g*(x*) - inf s<xx"> -g(x).

It should be noted that g" is not the same as -f*, where

f = -g. Instead one has g*(x') = -f*(-x*).

3. Dual programs and adjoint bifunctions.

By a convex bifunction from Rm onto Rn, we shall

mean a correspondence F which assigns to each u e Rm

a function Fu from Rn to E-cv , +J I, such that

(Fu)(x) is a (•ointly) convex function of (u,x) on

Rm+n. This function on Rm+n is called the graph function

of F. We shall say F is closed or proper according to

whether its graph function is closed or proper. The effective

domain of F is defined to be the (convex) projection on

Rm of the effective domain of the graph function, i.e.
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don F-u I Mx, (Fu)(x) < +O2 .
If F is closed, proper and convex, then in particular

Fu is a closed convex function on Rn for every u, proper

for u E dom F but identically +w for u J dom F.

For example, let fo, fl'*'9fm be finite convex

functions on Rn, and for each u = (Ul,.,,,um) define

the function Fu by

(3.1) (Fu)(x) fo(X) if fl(x) ul,...,fm(X) ( ux,

t+fw if not.

It is easily demonstrated that F is a closed proper convex

bifunction. Note that dom F consists of the vectors u

such that the corresponding inequality system

fl(x) S U1 ,...,fm(x) < um

has at least one solution x.

For another example, let A be a linear transformation

from Rm to Rn and let

(3.2) (Fu)(x) 0 if x Au,
1 if x Au.

This F is a closed proper convex bifunction which we call

the indicator bifunction of A. We shall see that the

"convex algebra" below reduces to ordinary linear algebra

when the bifunctions are taken to be such indicator bifunctions.

Henceforth we assume for simplicity that F is a

certain closed proper convex bifunction from Rm onto Rn.

The program (P) associated with F, as in the intro-

duction, is that of minimizing PO on Rn. Of course,

minimizing FO on Rn is equivalent to minimizing 7O

over the convex set dom (FO), since FO has only the
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value +o outside this set. The elements of dom (FO)

will be called the feasible solutions to (P). This is

suggested by tne case of (P) where F is given by (3.1),

which we refer to as the case of a classical convex p.

Feasible solutions to (F) exist if and only if 0 E dom F,

in which event we say (P) is consistent. If 0 is actually

an interior point of dom F, we say (P) is strictly

consistent. In the classical case, (P) is strictly con-

sistent if and only if there exists an x such that

fi(x) < 0 for i a 19...,.

The fundamental and easily proved fact on which our

analysis of (P) depends is that the function inf F, where

(inf F)(u) - inf(Fu) - infx(Fu) (x),

is a convex function on Rm whose effective domain is the

same as dom F. The theory of closures, conjugates,

directional derivatives and subgradients of convex functions

can therefore be applied to the study of inf F at u - 0.

For example, if (P) is strictly consistent, 0 is

in the interior of the effective domain of inf F, so we

may conclude at once that (inf F)(u) depends continuously

on u for sufficiently small perturbations u.

Assume that (inf F)(0) is finite. By definition,

u" is a Lagrange multiplier vector for (P) if and only if

(inf F)(u) ý (inf F)(0) - <u,u*>, Vu E Rm,

in other words if -u* is a subgraelient at 0:

(3.3) -u" C ý(inf F)(0).
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If (P) is strictly consistent, so that 0 is an interior

point of dom (inf T , we know from the general theory

that a(inf F)(O) is a non-empty compact convex set in

Rm whose support function is the directional derivative

"function
(3.4) (inf F)'(O; u) - lim Cin~f F)(hu)-(infk F)CO).

In particular, a Lagrange multiplier vector u* - (u 09-09u;)

does exist when (P) is strictly consistent. This u* is

unique if and only if inf P' is actually differentiable at

0, in which case one has

(3.5) u! = -tu(inf F)(O), i = l,..,m.

(Thus, for example, in a classical convex program the

Lagrange multipliers, if unique, give the rates of change of

the infimum with fespect to changes of the constant terms in

the corresponding constraint inequalities.) By the general

theory of subgradients, a Lagrange multiplier vector fails

to exist for (P) if and only if there exists a u such

that (inf F)'(0; u) m -a). The interpretation of this case

is that there is some direction of perturbatio.: in which the

"minimal cost" drops off infinitely steeply, so that io

finite " prices" for the perturbation variables can bring

about a state of equilibrium.

To get the program dual to (P), we need to introduce

the adjoint of F. This is the bifunction FO from Rn

onto Rm given by x" - F'x', where
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(3.b) (F'x')(u') - inf 1(P)(x)-<x'x*>+<u'>

Note that, for the graph function f of F, one has

(F~x)(u') a -supti uS-u*>+<x~x'>-T(u~x)I -f(-utx*),
Utz

where f" is the conjugate of f on O+n. Thus F" is a

closed proper concave bifunction in the obvious sense.

The adjoint of a concave bifunction is defined in the

same way, except of course that " sup" replaces " inf".

Thus the adjoint F*' of FO is defined in turn by
fF*)x -sup {(F'x')€:,') <q*+x*>

'*U*

- SUp t<U.u'>+<xx'>-fe(u',x') f a 1'" 1,C)

UO ,XI

Since foe - f under the conjugacy correspondence, we have

F'" - F.

It is easy to see that, when F is the convex indicator

bifunction of a lineer trar.rformaticn A from Rm to Rn, F"

is the concive indicator bifunction of the adJoint linear

transformation A* from Rn back to Rm (corresponding to

the transpose matrix), i.e. (Fox*)(u*) is 0 if

u' w A* x" and -cD if u" ý A* x'. In t.is sense, the

adjoint operation for bifunctions generalizes the one for

linear transformations. Further justification of the " adjoint"

terminoiogy will be given in the next section.

We define Che dual :,roiram (P*) to be thtt of

maximizing the concave function F*O on R. In (F')

we are also inteŽest-d in the properties of the fur:tion
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sup FO at x* = 0, where

(sup F*)(x*) - sup (F'x*) - supu .(F'x)(u*).

Thus x* is taken to be the perturbation variable in (P),

whiile u" is the vector variable over which one maximizes.

Of course, sup F" turns out to be a concave function

on Rn. All of what we have just said about inf F in (P)

applies to sup F* in (PO) with only the obvious changes.

The dual of (PO) is in turn (P), inasmuch as F** a F.

As an example, let A be a linear transformation from

Rn to Rm, fix a c Rm and aE E Rn, and set

(3.7) (Fu)(x) ={<x,a*> if x > 0 and Ax > a-u,%+a if not.-

(This is the case of (3.1) where the functions fi are all

affine.) Minimizing FO in (P) is then the same as

minimizing <x,a'> subject to x > 0 and Ax > a, an

ordinary linear program. By a straightforward calculation

from the definition of F*,

(1.8) (F'x*)(u*) - auu> if u* > 0 and Aeu* < ad -x"
t-Dif not.

Thus maximizing FO in (PO) is the same as maximizing

<a,u*> subject to u* > 0 and A'u* < a', the ordinary

dual linear program.

The dual programs of Fenchel, extended by the present

author in [4A), may also be represented here as a special

case. Again let A be a linear trsneformation from Rn

•o Rm, let f be a closed proper convex function on Rn

in4 let g be a closed proper concsvc function on Rm.



Def ine F by

(3.9) (f)•x) - '(x) (.g(Ax )

Then F is a Globed proper convex bifunction, and (P)

consis - of minimizing i(x) -gkAx) in x -- Rn Note that

the perturbation u heve corresj~onds to a translation of the

Dfnction g on Rm. By elearentary calculation,

(3.10) (F'x)(*') a g'(u*) -f*(Au+x*),

so that (P*) consists of maximizing g*(u*) -f*(A*u*)

in u* Rm. Fenche1't origi:4al programs are the case where

A is the identity transformation.

For the classical convex program, the adjoint bifunction

is given by

(F*x*)(u*) -(fo÷Ufl+...÷u; f )&(x*) if u*=(uq,...,um) > 0,
%-W if U* X• 0.

Thus the dual program (P') is to maximize -('o + um fl+...+UMfm)*(O)

subject to u* > 0, i = l,...,m. To calculate the conjugate

of f - f + ui fl +..@+ u* f explictly, one would have
0 Vn fm

to know more about the given functions fi" However, if

every f is differentiable one can apply the Legendre trans-.

formation in the weakened form of (2.10) to f to get a

problem which is " almost" equivalent to (P*). Since

-f( Vf(x)) - f(x) by (2.10) when Vf(x) = 0, and
Vf aVf + uT Vf1 +" f um

the " approximate" problem is that of minimizing
f (x) + u• fl(x) +,..+ um fm (x)
0~x mm

in u* Rm and x c ln subject to the constraints

u 0, Vfo(x) + u! Vfl(x) +...+ u T(X) = 0.
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This is the well-known dual problem which was discovered by

Wolfe [471.

It should be pointed out that the classical convex

program can be modified in many ways by introducing add-

itional perturbations. For instance, one can perturb the

constraint fi(x) ý ui by a translation yi to the con-

straint fi(x-yi) < ui. The dual problem would then turn out

to involve an additional Lagrange multiplier vector y? dual

to the perturbation variable yi c R n this would essentially

be the dual problem for the classical convex program given

by the author in [40]. The possibilities for perturbation

are endless. The perturbations can be chosen to suit the

situation, according to what " equilibrium prices" one is

interested in. To apply the duality theory described here,

it is only necessary that the perturbations be '' convex ",

in the sense that the dependence of the problem on the

perturbations be representable in terms of a convex

bifunction F.

All the results relating the general dual pair of

programs (P) and (P*) are based on one elementary fact,

which follows directly from the definitions: the convex

minimand FO in (P) is the conjugate of the convex function

-sup F* on R n while the concave maximand FQO in (P*)

is the conjugate of the concave function -inf F on Rm.

This implies that

(FO) = (-sup F)* = -cl (sup F*),

(FO)" = - inf F)* = -cl (inf F),
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and hence that

(3.12) cl(sup F*)(0) -- lsut <x,O> -(FO)(x) = (inf F)(0),

cl(inf F)(0) - inf, {<O,u*> -(F'O)(u*)l = (sup F*)(O).

The infimum (inf F)(O) in (P) is thus elways greater than

or equal to the supremum (sup F*)(0) in (P*), and any

possible discrepancy between these extrema is completely

explained in terms of the closure operations for convex

and concave functions.

Let us call (P) normal if cl(inf F)(0) = (inf F)(O).

If (P) is consistent, this is equivalent to the semicontinuity

condition that

lim inf (inf F)(u) - (inf F)(0).
u-sO

Similarly, let us call (P*) normal if cl(sup F*)(0) = (sup F*)(O)

in the sense of the closure operation for concave functions.

Formulas (3.12) then yield a good duality theorem: (P) is

normal if and only if (P') is normal. Moreover the normal
case is precisely the one where the extrema in (P) and (P*)

are equal, i.e.

(3.13) (inf F)(0) - (sup F*)(0).

For brevity, we shall say that normality holds when both

programs are normal and the 'Inf" and " sup" are equal.

Normality holds in particular, then, when (P) is strictly

consistent (since then inf F is continuous at 0), or when

a Lagrange multiplier vector exists for (P) (since then

b(inf F)(O) 0 0, implying that cl(inf F) agrees with

inf F at 0). LikewiSe, normality holds when (P*) is
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strictly consistent, or when a Lagrange multiplier vector

exists for (P*).

Suppose that normality holds, and that the common

extremum value in (3.13) is finite. As we have already

pointed out, us is a Lagrange multiplier vector for (P)

if and only if us e b(-inf F)(O). Since (-inf F)* a P*,

this is equivalent to the condition that 0 e b(F*O)(u*),

i.e. that the concave function FO attain its maximum at

us. Similarly, the Lagrange multiplier vectors x for

(PO) are the vectors where the convex function 7O attains

its minimum. This gives us another duality theorem:

assuming that normality holds, the Lagrange multiplier

vectors u* for (P) are precisely the optimal solutions

(if any) to (PO), while the optimal solutions x to (P)

are precisely the Lagrange multiplier vectors for (P*).

This type of duality has previously been known only in the

linear programming case.

4. Kuhn-Tucker functions and minimax theroy.

We shall now describe the correspondence between convex

bifunctions from Rm to Rn and concave-convex functions on

Rm X R n which is analogous to the correspondence between

linear transformations from Rm to Rn and bilinear functions

Rm X Rn This correspondence gives further insight into the

nature of the adjoint bifunction. It enables us to construct

for each dual pair of programs (P) and (P*) as in the last

section a certain convex-concave function whose saddle-points

correspond to optimal solutions to the programs much as in the



-2?-

classical Kuhn-Tucker theory 124].

Let K be a concave-convex function on Rm X R', i.e.

a function with values in L-cD , +w J such that K(u,v) is

concave in u for each v and convex in v for each u.

Closure operations may be applied to K for the sake of

regularization. Let clvK be the function on Rm X Rn

obtained by closing K(u,v) as a convex function of v for

each u. Similarly let cl uK denote the function obtained

by closing K as a concave function of u for each v.

Then clu K and clVK are concave-convex functions on

R X Rn too.

We can proceed now to form the cor.ne_°- -. ý..x funct-nns

clv cluK and clu clvK. The first of these is called the

lower closure of K (since the final regularization involves

lower-semicontinuity), and the second is called the upper

closure of K. If K coincides with its lower closure,

it is said to be lower-closed, and so forth. It turns out

that clv cl UK is itself always lower-closed, and cl u cl vK

is upper-closed, but these two functions may disagree at

certain points of Rm X Rn.

Since the operations clv clu and cl L zlv do not

quite produce the same result, there is not a unique

natural closure operation for concave-convex functions.

Nevertheless, there is an important phenomenon of pairing of

closures. It may be shown that, if K is any lower-closed

concave-convex function on Rm X Rn, then I = cluK is an

upper-closed concave-convex function such that cl J - K.
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Thus there is a simple one-to-one correspondence between

the lower-closed functions and the upper-closed functions.

Corresponding functions K and K generally have the same

values, except at certain points, and K < R.

For example, let C and D be closed convex sets in

Rm and Rn, respectively, and let K be any continuous

finite concave-convex function defined on C X D. Set

(4.1) (K(u,v) if u E C and v e D,

K(u,v) -I+ _ if u E C an,- v 0 D9

k.cD if u 4C,

(K(u,v) if u E C and v E D,

R(u,v) = OD if v% D

.-OD if u C and v e D.

Then K and K are lower-closed and upper-closed concave-convex

functions, respectively, which are paired together in the manner

just described. Observe, incidentally, that

sup inf K(u,v) = sup inf K(u,v) = sup inf K(u,v),
u v u v ucC vsD

inf sup K(u,v) - inf sup 1(u,v) = inf sup K(u,v).

u v u v vED ucC

Thus the minimax analysis of K with respect to C X D can

be represented b: the formally unconstrained minimax analysis

of K or of K (or of any extension of K to all of

Rm XRn such that K < K < M.

In order to apply these facts to the study of bifunctions

in a manner su: estive of linear alretra, we introduce an

inner product notation for the conjugate of a convex
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(or concave) function f:

<fix*>= .<xf> = f*(x*).

Then, for any convex bifunction from Rm onto Rn, we

can form

(4.2) <Fu,x*> = <x*,Fu> = (Fu)*(x*)

as a function of u E Rm and x" e Rn Note that, if F

is the indicator bifunction of a linear transformation

A- Rm--Rn as in (3.1), then <Fu,x*> is simply the bilinear

function <Au,x*> associated with A.

The basic theorem is the following. If F is any

closed convex bifunction from Rm onto R n then <Fu,x*>

is a lower-closed concave-convex function on Rm XRn.

Conversely, given any function K of the latter type, there

exists a unique closed convex bifunction F from Rm onto Rn

such that K(u.x0) - <Fu,x*>, namely the F given by

(Fu)(x) = suPx.{<x,x'>-K(u,x*)}

The upper-closed I on Rm X Rn paired with K is precisely

the concave-convex function associated with the adjoint

bifunction FP i.e.

Y(u,x*) - <u,F'x"> = (F*x*)*(u).

Thus the formulas

(4.3) clu <Fu,x*> = <u,F'x'>,

<Fu,x*> = clx.<u,F'x*>,

hold for any closed convex bifunction and its adjoint.

Formulas (4.3) generalize the famiiliar formula

<Au,x*> = <u,A'xl>

relating a linear transformation and is adjoint. Since

the closure operations in (4.3) merely redefine the functions
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at special points, one will actually have

(4.4) <Fu,x'> - <u,F'x*>

for " most" values of u and x*.

Observe that (4.4) expresses a duality between two

different extremum problems, because by definition
(4-5) <Fu,x'> -sup, i<x,x'> (uxl

<u,F'x*> infu* t <u,u*> -(F'x*)(u*)l

In particular, we have

(4.6) -<Fu,O> = infx(Fu)(x) = (inf F)(u),

-<O,F'x*> - SUupu (F'x*)(u*) - (sup F*) (x*).

The equality of the extrema in the programs (P) and (P')

in the last section is therefore expressed simply by

<FOO> = <OF'O>.

Minimax characterizations of duality are obtained

through the introduction of inverse bifunctions. The

inverse of a convex bifunction F from Rm onto Rn is

the concave bifunction F, from Rn to Rm defined by

(4.7) (Fx)(u) - -(Fu)(x).

If F is closed, F, is closed too. The inverse of a

concave bifunction is defined in the same way. It is

easily seen that F,, - F and (F'), - (F,)'. The latter

bifunction from Rm to Rn will be denoted simply by F:.

As an example, if F is the convex indicator bifunction

of a non-singular linear transformation A as in (3.2), then

F. is the concave indicator bifunction of A-1, i.e. (Fx)(u)

is 0 if u = A- x and -Q if u ý A- x. Likewise, F:
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is the convex indicator bifunction of A*-

Given any closed proper convex bifunction F from

Rm to Rn, we define the Kuhn-Tucker function of the

corresponding program (P) to be <u*,Fx> as a function

of u* and x. Since F.x is concave, we have by definition

(4.8) <uF.x - infu{<uu.> -(F*iu)

- infu tZuu'> +(Fu)(x)u

This is, of course, an upper-closed concave-convex function

on R' XR" by the correspondence theory already outlined.

In the case of a classical convex program, where F is

given by (331), the Kuhn-Tucker function is evidently given by

(4.9) <u',F.x> - (x) + u! fi(x) +...+ um F£(x) if u'=(u,. 0
0 ~~~m is..tm>

i-® if u' O.

Except for the convenient concave extension by means of -cD,

this is the function associated with (P) by the familiar

Kuhn-Tucker theory.

In the case where F is given bj (3.9), the Kuhn-'ucKer

function is given by

(4.10) <u*,F~x> - f(x) + g*(u°) -<Ax,u°>,

with -w +w taken to be +w .

A saddle-point of the Kuhn-Tucker function is, of course,

a vector pair (u",x) such that

(4.11) <u'',F.x> < <uF.x> < <uF.x>, VuV' I,

The main result is this: a vector L (u',x) is a

saddle-point of the Kuhn-Tucker function of (F) if and

only if u* is a Lagrange multiplier vector for (P) and
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x is an optimal solution to (P). In this event normality

holds, and the minimax value <u*,F.x> coincides with the

infimum in (P) and the supremum in (P*). Moreover, as

explained in the last section, u" is then dually an optimal

solution to (P'), and x is a Lagrange multiplier vector

for (P').

Given any upper-closed concave-convex function

on Rm )X<R n (for instance a R of the type in (4.1)),

there is, as we know, a unique closed concave bifunction

G from Rn onto Rm suc.. that W(u,x) = <u*,Gx>. Hence

there is a unique program (P) having R as its Kuhn-Tucker

function, namely the (P) corresponding to F - G.. The

inverse operation for bifunctions therefore corresponds to

a general minimax theory for concave-convex functions in the

same way that the adjoint operation for bifunctions corresponds

to a general duality theory for convex programs. It is clear

from the definitions that the F and F" here are expressible

in terms of Z by

(4.12) (Fu)(x) - supu.&{'(u. x) -<u,u.>3 I

(F'x')(u') - inf xk(u',x) -xx'>.j

In particular, the minimand in (P) is given by

(OW)(x) - supu.(u',x),

and the maximand in (PO) is given by

(F'O)(u') - inf, R(u*X).

The dual programs of Dantzig, Eisenberg and Cottle [63,

Stoer L45), Mangasarian and Ponotnin 12W, Falk and Thrall may be

obtained in this way, for instance by applying the Legendre
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transformation formulz, (?.lU) to (4.1?) and similar devices.

The pair of functions <Y.u~x>, <u;Fx>, is conjugate

to the pair of functions <Fi,x*>, <u,F'x*>, in the following

sense. If K is any one of the concave-convex functions

such that

(4.13) <Fu,x*> < K(u,x*) < <u,F'x'>

(such functions all being essentially the same, except at

special points), one has, according to the definitions,

(4.14) inffu supX* {<uv,> + <x,x'> - K(u,:')# .

supx. infu{<utu*> + <x,x'> - K(Ux')•- <F',x>.

On the other hand, if K* is any one of tr:ý lunctions

satisfying

(4.15) <F:u',x> < K'(u ,x) <

one has in turn

(4.16) inf u *sup~ x Uu,u> + X,X$> - K(u4,x)} -~ u,F~xO,

slip infu. <u,u> + <x,x*> - K"(u ) a

Applying (4.3) to the convex bifunrtion F: in. riace of

F, we have

(4.12) cl .<F'" x> = -uF"x',

<F*u',x> cl <U" ? ×>,

and this makes possible a detailepA cc.: .sr.-:on of te " inf sup"

in (4.34). In particular we siee tý' -e two extreta are

"usually" equal; the fact that tL•'•v can b,. dlfftr.nt in some

cases is exactly dual to the fact tnt tht U :er and lower

closure operations for concave-co:v•.x functions do not alwayb

coincide. A winimax theory froz t: is ý'cint of view was

developed by the author in .
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APPLICATIONS OF CONTROL THEORY TO ECONOMIC GROWTH

Kenneth J, Arrow

Lecture 1.

Review of the Basic Theorems of Optimal Control Theory; Finite Horizon

The basic criteria for optimization of dynamic processes in continuous

times, as stated by L, S. Pontryagin and associates [1962] will be restated

in this and the following lecture. Some emphasis will be placed on special

features appropriate to the use that will be made of these theorems in growth

theory, in particular the assumption of an infini~e horizon and the presence

of constraints on the choice of control variables.

The object of study Is a system, economic or other, evolving in time.

At any moment, the system is in some stat._.e, which can be described by a

finite-dimensional vector x(t)o For an economic system, the amount of

capital goods of each type might constitute a suitable state description.

In an optimization problem there is some possibility of controlling

the system. At any time, t, there is a vector v(t) which can be chosen

by a decision-maker from some set which may, in general, vary with both t

and the state x(t). The vector v(t) is frequently referred to as the

decision or control variable; following the terminology of IAinbergen (1952,

P. 7], the term instrument is used here. In an economic system the in-

struments are typically the allocations of resources to different productive

uses and to consumption or perhaps taxes and bond issues which at least

partially determine allocations.

It is assumed that the state and the instrument variables at any point

of time completely determine the rate of change of the state of the system.

Thus, for a given technology and 18hor force, the capital structure (state)



together with its allocation among different uses (by some of the in-

struments) determine the outputs of all goods. These in turn are al-

Iccated between consumption and capital accumulation (through other compo-

nents of the instrument vector). In symbols, the evolution of the state

of the system is governed by the differential equations

(Ix x= [fx~t), v('O, ti,

which will be referred to as transition equations. The time variable t

may enter into T to allow for the possibility that the transition rela-

tiohs may vary over time due to technological progress, labor force grcwth

or other exogenous factors.

Given, .hen, the state of the systeia at some time, zay 0, and the

:hoice of instruments as a fanction of time, v(c), the whole course of

the system is determined. To begin witn, let us suppose that the analysis

Is carried oat only until a finite horizon T, after which the process ceases.

By suitable choices of the values of instrwnerits over time, alternative

'istories of the process .-an be achieved. Az usual ;*-.n economic analysis,

we assume that these histories can be vrolued in some way, i.e., we can

express preferences as between alternative hi.cozies, and these preferences

can be given ntmerical value, a uzilitv functLorril with arguments x(t),

v(t), (0 t t < T). £he opulmization problem is to choose the values of

Lne inatrument, variables co az to maximize the utility functional subject

to the constraints implied by (1), the constraints on the choices of the

instruments, and the initial values of the stste variables.

More specifically, ic will be assumed tnat the utility functional is

additive over time. That is, at each moment t there is a return or

felicity (to use a term due to Gorman (1957, p. 43D) whicti ciepends only on

2



the values of the state variables and instruments at time t, such that

the utility of a whole history is the sum or integral of the values of the

felicities at each moment of time. Let

(2) U(x,v,t) = felicity at time t if the state is x and the

instrument vector is V.

In additition to the felicity generated at each moment of time during

the process, the decision-maker may also assign a value to the state

achieved at the end of the process, T. In an industrial application

the stock of machines may have a scrap ialue. and we will use this term

generally. In a broader eccnomic context, if T is not literally the

end of the world but only the end of the planning period, the capital

stock left over at T will have some use in the future. The scrap value

will be denoted by S[x(T)1.

The general form of che optimization problem in time is then, with

finite horizon,

(3) Maximize Jo U[x(t), r(t),tldt + Srx(T)] with respect to choice of the

instruments over time subject to (1), some constraints on the choice

of instrurents possibly depending on the current values of the state

variables, and the initial conditions x(O) = x.

Then Pontryagin and ucsoclate., [19621 (see also Halkin [1964]) have shown

Proposition I. Let v*(t) be a choice of instruments (0 < t < T)

which maximizes (3). Then there exist auxiliary variables, functions of

time, p(t), with the same dimensionality as the state x, such that,

for each t,

(a) v*(t) maximizes Hjx(t), v(,), p(t),t], uhere

H(xv,p,t) - U(x,,.t) + pT(.,,,,.);

3



the function p(t) satisfies the differential equations
. 'P

(b) P= --"H/xi, evaluated at x = x(t), v v*(t),

p = p(t);

and the transversality conditions

(c) Pi(T) = 6S/6xi, evaluated at x = x(T),

hold.

The function H is known as the HaLiltonian. The auxiliary

variables p can be given an economic interpretation" Consider the

maximization of the utility function from any time to to the horizon T;

the past history, before to, affects this problem only through the stite

at time to, as can easily be seen from (1) and the additive nature ,of

the maximand in (3). Let this maximum be

(•) V(x, to) = max (Jo U[x(t), v(t), t)dt -- S[•x(T)]), where ctt) = x

Then the auxiliary variables are defined so that

An auxiliary variable measures the marginal contrib,.tlon of tV'. -irespand-

ing state variable to the utility functionril at time t •x

piT, is the rat.i oif inorease of Atility d'i to tlh l ur'rvt rate t.!'

increase of the state variable x,, and therefore H 'Is tne !:i."rent

flow of utility from all sour.,es, both enjoyed tmmedlatey, ar, expre.;sed

by U, and inticipated to be enjoyed in tne futart-, as P ex.Lrt,:ed by pT.

The current instruments are ohosen then to maiximize H. Die :(n•iation (b)

is an equilibrium condition for holding the state '*,rtable•i constant (Ut

an instant of time); the increment in utiilty plus speculative gain shoild

be zero; if not, the individuai 6oiid havy wanted ti havc -e'r¶ <r :n.• ri:,

4



that sc;ate variable (read, 3tock of a capital good in the economic context).

Finally, at time T, V(x,T) = s(x); hence (c) holds by (5).

In the sequel, a slightly different formulation of end-of-period

conditions will be useful. Instead of a scrap value, require simply that

the end-of-period values of the state variables be non-negative. Now

approximate this condition by a scrap %ralle function; that is. permit

negative values but impose a very large penalty. Formally, let

S(x) - i Pi ri (xinO),

where min (xi,U) Peans the smaller of x and 0, and the P i's are

chosen very large. ror xzi < O, S/ax1  -P; for xi > 0, aS/x i = 0.

If x4  0 0, the right-hand deri'rati_%e Is zero and the left-hand derivative

P,, a fact which may be expressed loosely ry the statement r, <; 'S/3xi< P

Now let the P i' approach w, so that we may be sure that the

optimal policy will never lead to a final negstire value, xi(T):

x(T) > 0.

From the preceding discussi.on, •S/A.x 1  0, and fuirther if xi(T) >.0,

then ýS/&xi = 0. in view of Prop,-:s--stion 1(c), p,(T) > O, pi(T) xi(T)= 0,

all i, or

p(T) > 0, p(T) x(T) - 0.

Proposition 2. Let v*(t) 'e a rhoice of instruments (0 < t < T)

which maximizes jo U[x(t),v( t),tidt subject to the conditions

(a) x : Tfx(t), v(t),t].

some constraints on the ckhcice. of Instr.t: ý.nt; pc~ssibly Involving current

values of the state variables, and the terminal cý:nditions. x(T) > 0. Then

there exist auxii-?ry iarl ': . v( ). . 'tr.t (,A) Ind (.) of Proposl UIon 1



hold and for which

(b) p(T) 0, p(T) x(T) 0.

The optimal path is the solution of the differential equations (1) and

Proposition l(b); the values of the instruments which enter into them are

determined as functions of x, p, and t by Proposition l(a). The number

of these equations is twice that of the number of state variables. The

solution is usually only determined when an equal number of initial condi-

tions are specified. The values of the state variables at the beginning

of the process, x(O), are taken as known, but these constitute only half

the needed conditions. The transversality conditions, Proposition l(c) or

Proposition 2(b), constitute the remaining conditions, but from a practical

point of view they suffer from the severe difficulty of being defined at

the end of the process, while the other initial conditions are defined at

the beginning. The computation can proceed by guessing -nitial values,

p(O), solving the system of transition and auxiliary equations with the

hope that the transversality conditLons are satisfied, and correcting the

initial guesses if not. It can also proceed by guessing the final state

x(T) and solving the equations baAkward in the hope. that the initial condi-

tions are satisfied.

Now consider more explicitly +he ; cn the instruments. In

general, they may depend on the values of the state variables. Thus,

amounts of resources allocated to particular productive purposes are

constrained by the t6tal amounts available, which in turn are determined

by the state variables. The following discussion is based on that in

Pontryagin [1962, Chapter VI] and on the theory of ncnlinear programming

due to Kuhn and Tucker [1910].

(j



Let the chc' ;,c ýi* instruine'..-: at any time t with state x satisfy

a vectý,' ,f' inequalltj consscraints,

k6) F(x,v,t) > 0.

For exzýinpl, if ouitput is a funrcttien of the Li~ý (;f ý:pit~al, F(K), and if

c~~tis tc 1), cLý.±ý.ed Ptý---ee:i A~~rtc! (G) anid i~ve-)tmenet (1), ther,tthe instr-imtn:rt. C and L z.iatl.3y the *:U:-.= itk:i,

F(ir) I > 0,

wnich involv~ s state varlab> K. Some of tr-e ;-onstralnts !n F

might not sr.ai tate vur'Lables; zkcr -xar~plE:, tc~:eai~t ~.

on the instrýLmnts-

It is we!.' f-orifom theif genriera thtz-ry z,,, a llr.Fr programmring

that if v* naximnizeZ A-':~; to th- cond tions (6), and if these

constraints satis.ý, a ~-e.-t~i ldiZn known as tiie Constraint Qualififca-

ticon (se * -%,~ n- Zruker, p~. p. 481-4); Arrowi, llurxd'iz, and Uzaw.a

u~~~nv + ime tio~er exist mtpl±s shthat

and

where

(9)L H ?

I t ~zall "'r iv: that ~ OjY L. JX ut *vz1t'd VO

q q.

With the 'zxpi~i fc&''*Ui (6) c- :Iurl~s th z ir!Alcnu

for optimizaticn, over t.ime tw.-owe



Proposition 3. Let v*(t) be a choice of instruments (0 < t < T)

which maximizes fo Ufx(t),v(t),t]dt subject to the conditions,

(a) x = T[x(t),v(t),t],

a set of constraints,

(b) F(x(t),v(t),t] > 0.

on the instruments possibly involving the state variables, initial condi-

tions on the state variables, and the tt.'minal conditions x(T) > 0. If

the Constraint Qualification holds, then there exist auxillarv va3riables

P(t), such that, for each t,

(c) v*(t) maximizes Hrx(t),,v.,p(t),t] subject to the

constraints (b), where H(x .v,p.t) L U(x,v,,t) + pT(x~v~t),

(d) Pi ý -6L/6xi, evaluated at x x(tW, - v*(t)., p p(t),

where

(e) L(X,v,c~t) = H(x,v,p,t) + qF(x.,v,t).,

and the Lagrange multipliers q are such that

(f) 6L/&vk = 0, for x = x(t), v ý v*(t), p P(t),

q > 0, qF[x(t),v*(t),t] = 0,

and

(g) p(T) > 0, p(T) x(T) = 0.

In many circiuqstances it. is reasonable to consider in addition

restrictions on the state variables in which the instraments do not enter.

In particular, if the state variables are stocks of capital. negative values

have no meening. Here, non-negativity conditions on the state variables..

(10) x(t) > 0,

will be considered; the terminal condition x(T) > 0 is implied.

13/



For any i, if xi(t) > 0, then the corresponding constraint (10) is

ineffective and can be disregarded. Suppose that xi(t) = 0 over some

interval. Then, to avoid violation of (10), the instruments must be so

constrained that xi(t) > 0, and this constraint is clearly effective

over that interval. But xi = Ti, so that the constraint Ti(xlv,t) > 0

is effective over that interval. Then, in Proposition 3, this constraint

can be regarded as added to the original set of constraints (b). Let q

be the Lagrange multipliers associated with the original constraints (b),

and let ri be the multiplier associated with the new constraint Ti > .

As before, ri 0> . Define, in addition, r, = 0 for each state variable

for which xi(t) > 0. Then clearly r > 0, rT = 0, rx = 0.

Proposition 4. Let v*(t) be a choice of instruments (0 < t < T)

which maximizes JT U[x(t),v(t),t]dt subject to the conditions,

(a) x = T[x(t),v(t),t],

a set of constraints,

(b) F[x(t),v(t),t] > 0,

involving the instruments and possibly the state variables, initial condi-

tions on the state variables, and the non-negativity conditions,

(c) x(t) > 0,

on the state variables. If the Constraint Qualification holds, then there

exist auxiliary variables p(t) such that, for each t,

(d) v*(t) maximizes H(x(t),v,p(t),t] subject to the

constraints (b) and the additional constraints Ti[x(t),v,t] > 0 for all

i for which xi(t) - 0, where H(x,vp,t) . U(xvt) + pT(x)v't);

(e) p a -L/C)x,, evaluated at x . x(t), v - v*(t), p =

p(t), qa q(t), r , r(t), where

9



(f) L(xvpq,r,t) = H(x,vp,t) + qF(x,v,t) + rT(x,v,t),

and the Lagrange multipliers q and r are such that

(g) 6L/&vk = 0, for x = x(t), v . v*(t), p = p(t),

q(t) > 0, q(t) Fix(t), v*(t),t] = 0,

r(t) 0, r(t) x(t) 0.. r(t) T[x(t),v*(t),tj = 0;

(h) p(T) > 0, p(T) x(T) - 0.

So far the propositions stated have been necessary conditions for the

optimality of a policy. The situaticn is precisely analogous to the usual

problem in calculus; the condition that a derivative be zero is necessary

for a maximum but certainly not sufficient in general. However, the

condition is sufficient if "he function being maximized is concave. A

basic property of concave functions is the following:

(11) If f(x) is a concave function. then for any given point x*

and any other point x in the domain of definition, f(x) <

f(x*) + f*(x-x*), where f* is the row vector with components
x x

af/axI evaluated it x*.

Define the function

(12) H°(x,p..t) . max H(x,vp,t), whvre v is constrained as in
v

any of the Proposition.. 1-4.

Then the concavity of H°0 as a function of x, for given p and t,

implies that the Pontryagin conditions are sufficient for optimality.

(This is a minor variation of a theorem of *ingasarian (19663.)

Proposition 5. If Ho, as defined in (12), is concave in x for

given p and t, then any choice of instrments satisfying the conditions

of any of Propositions 1-4 is optimal for the corresponding problem.

i0
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Lecture 2

Optimization with Infinite Horizon

For many purposes it is more convenient to introduce the fiction that

the horizon is infinite. Certainly processes of capital accumulation for

the economy as a whole have no natural stopping place in the definable

future. At any given future date the state of the system (its capital

structure) wili have implications for the further future. If we choose

to stop our analysis at any fixed date, it will be necessary, as already

noted, to include in cur utility functional some scrap value for the stock

of capital at the end of the period. But the only logically consistent

way of doing so is to deterx-ne the maximum utility attainable in the

further future starting with any given stock of capital. Of course, the

astronomers assure us that the world as we know it will come to an end

in some few billions of years. But as elsewhere in mathematical ap-

proximations to the real world, it is frequently more convenient and more

revealing to proceed tc the limit to make a mathematical infinity in the

model correspond to the vast futurity of the real world.

Formally, the only charge in the statement of the model is to let

T = + a. But going to- the limit, here as elsewhere, involves Po risks.

The utility functonal, now an 14mproper Integral, might not converge at

all; and even If it does, there might not exist an optimal policy. How-

ever, it is btill possible to state necPsbary couditions and sufficient

conditions for optimality, though existence of an optimal policy may be

difficult to guarantee, and aloo it is not yet known how to state the ap-

propriate transversality conditions. M extensive dai.ussion of 6 case of

* -* non-existence of an optimal path is given by Koopsans (1965, pp. 2%51-31.



If an optimal policy exists, then it can be shown that the arguments

for the necessity conditions of Propositions 1-4, except for the trans-

versality cornditions, are still valid. In the cases of interest in

economics, the transversality conditions (Propositions 1(c), 2(b), 3(g),

or 4(g) are in fact valid, but so far it is necessary to verify this in

each case. The infinite-horizon statement of the transversality condi-

tions of Propositions 2-4 is:

(13) lim p(t) > 0, lir p(t) x(t) = 0.
t -+ 4 t -4+m

The sufficiency theorems remain completely valid, with the trans-

versality condition (13).

It is customary and reasonable to assume that future felicities are

discounted; i.e., the felicity obtained at time t is multiplied by a

discount factor COt), which is ordinarily taken to be a decreasing

function of t. This corresponds to the intuitive idea that future pleas-

ures are counted for less today. The utility functional is rewritten:

0oJ' (t) ufx(t),v(t),tjdt.

Ordinarily, it is assumed that if the chosen policy leads to a

constant felicity, (14) will converge. This ic equivalent to the condi-

tions

(15) a't)dt converges.

If we follow the earlier line of argument we vould be interested in

the maAxa utility obtainable starting at some time to, analogous to

C"):

(16) V(xto) max jt 0(t) u[x(t),v(t),tj]t, ebere x(to) x.
0

12



However, this means that felicities for times beyond t are being dis-
0

counted to time 0. It is more natural to discount them to time to.

Since one unit of felicity at time to is equivalent to a~to) units at

time 0, it is necessary to divide V(x,to) by O(to) to obtain the

current-value return function,

(17) W(X,to) = V(x,to)/ct).

Previously we obtained the auxiliary variables, p(t), as the marginal

contributions of the state variables to the utility functional, pY -

ý/x' . In the present context it seems more reasonable to define

(18) Pi = ='wlGi = (Gvl/xi)/a

In applying Proposition 4 (apart from the transversality condition)

to the discounted infinite-horizon case, it is then necessary to replace

U(x,v,t) by .(t) U(x,v,t) and p(t) by at) p(t). The Hamiltonian

becomes

(19) C•t) U(x,v,t) + c•t) p(t) T(x,v,t) - cit) H(xv,p,t),

where we now define the current-value Hamiltonian:

(20) H(x,v,p,t) 0 U(x,v,t) + pT(x,v,t)

Then a(t) H must replace H throughout the restatement of Proposition .

Since c(t) > 0, the choice of instruments to maximize 0(t) 9

is the some as that to maximize H, so that Proposition 4(d) remans

unchanged. It we interpret the Lagrange multipliers q and r as

referring to the maximization of H as now defined subject to the

constraints, then L must be replaced by Q•t) L. Proposition 4(e) be-

comesdctpj )c)L

dl -tp - 6

dt

I !i1*



or

a p•+ a P a( -"oL/0xi)

Divide through by a, and define

(19) PMt -O(W/0(t).

Then

(20) P,= p(t)Opi - (Llx,)

In economic terms, p(t) is a short-term_ interest rate, correspond-

ing to the system of discount factors 0(t). TRe definition (19) can be

integrated back to yield the familiar form:

- p(iu)du
(21) e ,

if we adopt the convent-on that 0(0) 1. If (2C) is written

Pi ÷ ( W ci/x) = p(t) Pi(t),

it is the familiar equilitrium relaticn fo'_r iw.-estment in cap! tal goods;

the sun of capital gains and margital prod-ictivity should eqý..a the Interest

on the investment.

The infinite-horizon analogue of Propositi.orn• (a;art from transversal-

ity conditions) becomes:

Proposition 6. Let ,':(t) be a ct.'r!c* c tr rft. (t > 0) w•ac

or C(t) U[x(t),V(t),tJdt s-blect tc aie condit;c.-ra (a), (b). end (r) of

Proposition 4. If the Constraint Qualificaton tolds., then there exist

axiliwry vawrables p(t) satisfying (d) of Frcpcs~ttcn .;

(0) pi OP, *- ( j), evaluated IL x 4t), V V(t). p

p(t). q - q(t), re t)

wt~ere p(t) .Ot/e) a nd (f) and o~ f F t.n~~~



The sufficiency theorem, Proposition 5, remains valid if the trans-

versality condition is replaced by (13) where, however, p(t) is replaced by

O(t) p(t).

Proposition 7. In the notation of Propositions 4 and 6, if

H°(x,p,t) = max R(x,v,p,t),
v

where the maximization is over the range specified in Proposition 4(d),

is a concave function of x for given p and t, then any policy

satisfying the conditions of Proposition 6 and the transversality

conditions,

lim Q(t) P(t) > 0, lim O(t) p(t) x(t) . 0,
t -- +4- t -# 4.0

is optimal.

It is frequently appropriate to make an assumption that the basie

conditions of the optimization problem are stationary; the sequence of

conditions to be encountered in the future is much the se as today or

can be made so after scme simple renormalizations. This property wnll be

heavily exploited in our subsequent discussions. The basic stationarity

assumptions are that the functions U(x,v,t), T(x,vt), 7(x,v,t), and p(t)

are all independent ot time. With p constant, it follows tfro (21) tbat

(22) Ot) - ,

and the convergence condition (l1) becoms

(23) p 0.

Under the stationarity assumption, tie cu-rent-valu return function,

V(Xto), defined by (17), is in fact independent of y s this oa be Men

by vriting, in view or the previous remarks,

15!
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W(x,to) = (1/ePt O) max Ift e-Pt U(x(t),v(t)]dt
0

-- max Jt e'P(t'tc) U(x(t),v(t)]dt.
0

Since the constraints F(xv) > 0 and the transitzon relations, x = T7x'v),

do not involve time explicitly, it is clear that replacing t by 0, say.0

leaves completely unaffected the form rf the optimal policy. rhis is an

illustration of Bellman's [1957] well-known "principle of optimality."

But if W(x,t 0 ) = W(x). independent cf t, then frow (18) p 13

completely determined by the state x in the fc.llowing sense: Suppose

we have two optimization problems of the type aealt w.t. in Proposition 6

(but also satisfying the stationarity .ass.mptions) which are identical In

all respects except for initial cond7tions. Let x 1(t) and x2 (t) be

the paths of the stase variab2es Alcng the cptima. solutions for the two

problems, respectively, and let y(t) and p-(t) be the correspcnding

paths of the auxiliary ,rariables. Then if x I) (l(x2 t p It) M Pt').

Note that since p is determ-ned by x. and U and T do not

depend on t. along the cptimsl path H(x,,v.p,t) is a functI.)n of x and

v alone, and therefore the value of v *h~eh maximizes H depends only

on x. The opt~m• policy can be represented at a strategy or feedback

sWith v a functit: of x.

Also not* that, fc: given x. v, and p, H is Independent of t.

and therefore Prvpositions it ord 6(c), by itself implies that t* iS

determined by x and p. independent of t. 1te stationarity ass'"V-

tions then imply that t does ••t e.ter exjic'tly into the •y~te• of di!-

ferential equations definel by (6) And (e). S.rh a systvem is termed

autoromous-

i. t'. .



Proposition 8. Under the assumptions and in the notation of

Proposition 6, suppose in addition that

(a) U(x,v,t) = U(x,v), T(x,..t) = T(x,v), F(x,v,t) F- (x.,v), and

p(t) = p, all independent of t.

Then

(b) the optimal policy, v* z v*(x), and the values of the

auxiliary variables, p, along the optimal path, are functions

of x alone, independent of t for given x;

(c) the system of differential equations defined by (a), (d), and

(e) is autonomous.

For an autonomous system, considerable interest usually relates to

its stationary point or equilibrium, where all motion ceases, i.e., the

values of x and p for which x = 0 and p = 0. This notion in

economics is that of long-run stationary equilibrium (as opposed to

temporary or short-run equilibriu-m in which capItal stocks are given).

In the present system an equilibrium is defined by x*, p*, v* satisfy-

ing the conditions:

T(x*,v*) 0 0,

v* aaximizes H(x*,vp*) under the constraints F(x*,v) > 0,

T (X*,v) > o If x,* 0.

If the tnitial state of the system Is x*, ther all the conditions

of Proposition 6 can be satisfied by setting x(t) - x*, V(t) - v*, p(t)

V' for all t. It may be askee under what conditions this solution Is

optinal. Pore generally, suppose we can find a path satisfying the condL-

t.ions of Proposition I which converguvs to '.e stationary values; when Is

17
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this optimal?

For simplicity of reference, define a Pontryagin path as a system,

x(t), p(t), v*(t), satisfying the conditions of Propos-ition 6.

Proposition 9. Let x(t), p(t), v*(ft) be a Pontryagin path for

the problem of Proposition 6. Suppose further that the concavity hypoth-

esis of Proposition 7 and the stat-onarity hypothesis of Proposition 8,

with p > 0, are satisfied. Then, if x(t) and p(t) converge to an

equilibrium, x*, p*, where p* > 0, they constitute an cptimal path.

Proof: From Proposition 7 it suffices to note that the transversal-

ity condition a(t) p(t) x(t) -* 0 is Eatisf-ed. BAt p(t) and x(t)

converge to finite limits, and a~t) = e-pt approaches zero since p > C

It should be remarked. however, that (a) there may be more than one

equiibrium, and (b) there may exist optimal paths which do not con'Terge

to any finite equilibrnim; for examples, see Kurz r.1965 ,nd 1967, Section B).

,8
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Lecture 3

Optimal Investment Planning in a One-Comqodiýt Model

In this lecture we review in detail the simplest possible capital

accumulation model, first studied by Ramsey [1928]; for further important

contributions, see Mirrlees (19671 and Koopmans (1965]. We assume there

is only one commodity, which can be either consumer or invested. We take

the viewpoint of a government which is in a position to control the economy

completely and to plan perfectly so as to optimize with respect to all pos-

sible instruments of the economic system - in this case, only investment

and consumption (which are subject to the constraint that their sum not

exceed total output).

We first assume a constant population •nd a constant labor force.

The felicity a. any moment is t~ken to be a function of consumption, C,

only. Then the aiz. of tue ecor•omy is to maximize

(24) VUCt]t

where p is the rate of interest on felicity, C(t) is consumption at

time t, and U(C) is the felicity derived from consumption C. It Is

assumed that

(25) U(C) is strictly concave and increasing.

The output at any moment of time is a function of the stock of capital

and of the labor force. Since the latter is assumed constant, we assume

simply

(26) Y(t) - F[K(t)],

19



where Y(k) is output at time t and K is the stock of capital, With

the labor force held constant, increases in capital may be supposed to

yield lower and lower returns; also it is assumed that capital is indispens-

able to production.

(27), F is strictly concave, F(O) = 0.

It is not necessarily assumed that F(K) is increasing; for example, if

the stock of capital depreciates at a rate proportional to its quantity,

then the depreciation ought properly to be subtracted from the gross out-

put to get a true measure of net output availahble for -. ns:rr.Pt!on and net

investment (increase of the capital stock), it is possible that if K is

very large, the marginal gross output of an additional unit may be less

than the depreciation on that unit

Finally, the accumulation of capital is precisely iJnvestmernt, I,

*: (28) K=I,

and the conservation of product flow implies that ccnsumption and invest-

ment, together, do not exceed output, i.e., C + I < Y or, in view of (26),

(29) F(K) - C - I > 0.

It also follows from the very definition of capital that it cannot

be negative; K(c) > 0, all t

At present it will be 3ssumed that 1 may be positive, zero, or

negative; the latter means that existi.ig oapiTal can be turned into

consumption guods. The case where i is necessarily non-negative will

be considered later. It will be assumed that C > 0; but to simplify

matters it will be also assumed for the moment that

(30) U'(O) - + -,

20



which, as will be seen, implies that the choice of the instrument C at

any moment of time will necessarily be positive, so that the non-negativity

constraint is ineffective.

Propositions 6-9 can be applied to this model. The state of the

system is represented by the single variable, K. There are two instru-

ments, C and I. The felicity function depends only on the one instru-

ment C; the transition function (28) depends only on I. The choice of

C and I is constrained by (29), which corresponds to Proposition 6(b)

or 4(b). There will be one auxiliary variable, p, so that the current-

value Hamiltonian is

H = u(c) + p1,

and the Lagrangian, L, is

(31) L = U(c) + pI + q(F(K) - C - I]

- [U(C) - qC] + (p-q)I + qF(K)

By Proposition 6(g) or 4(g), C and I must be chosen so that

ýL/Ot - 0 and &L/I . 0. The latter implies that

(32) p = q.

The former implies that U'(C) - q and, by (32),

(33) u'(c) - p.

Because of (30) and the concavity of U(C),, it is assured that the solu-

tion to (33) will be positive.

The auxiliary equation, Proposition 6(e), becomes

p pp -q(aL/c),

(34) p. [p- F'(K)Jp,

in view of (31) and (32). Since U' > 0 by (25), p > 0 by (33), and

21
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q > 0 by (32); the constraint (29) is effective, so that from (28)

(3) K (K) - c(p),

where

(36) C(p) is the solution of (33).

Equations (34) and (35) are a pair of autonomous equations. An

equilibrium is defined by p = 0 and K=O. But p = 0 means

p=0 or F'(K)= p.

Since U' > 0, the first alternative is impossible from (33) Let Ke

p" be the equilibrium values of K and p, respectively, and let Co

and 1" be the values of the instruments at the equilibrium. It has Just

been shown that

(37) F'(Km) = p.

Since F is strictly concave, F' is strictly decreasing. It will be

assumed that (37) has a solution with K* > 0. This is equivalent to

* assuming that F'(0) > p, F'(K) < p for K sufficiently large.

From (28) and the definition of equilibriumj,

(38) 1 0.

From (35) and (36), with K Op

(39) u.

(4o) poo u(C").

Consider now all solutions of the differential equations (34) and

(35). Their movements may be represented in a phase diaram (Figure 1).

Sines F'(K) is decreasing, p - F'(K) is increasing; from (3)), then,

p > 0 if > ,p < 0 if X < so, since U' sa decreasing function,

22
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!t follows from (36) and (33) that C(p) is a decreasing function of p.

The curve for which K = 0 is, from (35), defined by the equation

F(K) - C(p).

This equatioi, can be solved uniq:_ely for r in terms of K; call the

solution it(K). Since F(K) is concave, and F(K m ) p > O, F(K)

is either always increasing or increasing up to a value R > K; there-

fore, 3t(K) is decreasing for all K or else decreasing to Z and

increasing thereafter. Further, fc'r fixed K, K z F(K) - C(p) is an

increasing function of p so that K > 0 3bovre the curve and K < 0

below. The components of the directions of mrovement in the four quad-

rants into which the diagram is divided by the curve K - 0 and the

vertical line p z 0 are indicated in Fig're 1 by arrows. note that

K > 0 is a movement tc the right, and p > 0 an ipward movement.

Regions II and IV are traps in the sense that a Pontryagin path

which enters either of these regions never leaves it Further. any path

which comes to a boundary of either region muet enter that region and

then remain in it permanently. It will now be shown that a path which

enters either region cannot ie optimal.

Consider first region IV. Without i'oss of generality, suppose that

the path is in region IV qt time 0 Then p > 0, K > 0, all t Since

K(O) > K=, K(t) > K(O) > K®, all t. Since F" ie decreasing,

F'[K(t)] < F'[K(O)] < F'(K*) p, ,c that, from (34), p/p p - F'[K(t)]

> p - F'(K(0)] > 0; p(t) > p(0) •rt hv 4.nte~rat!on, so that,

certainly,

p(t) > p for all t > t

for some th. Since C't .C(t)' - dI- --. :Ina fný•.t -,,nf -f



C(t) < C(p 0). Co for t>to.

Since K(to) >K4, it follows that we can Clways improve on the given

path by consuming the capital stock (disinvastJlng) in come interval begin-

ning at to until K diminishes to K(, after which the equilibrum

pollcy, C a C F(K), K - KI, i1 maintained perpettally.

Now consider any trajectory in region II. By the same reasoning

p/p < w, where now e a p - F'[K(o)] < 0. But then p(t) -o o,which

implies C[p(t)] -. + -. Since F(K) is urdformly bounded ou the closed

interval < 0, K(0>, K . F[K(t)] - C[p(t) < 8 < 0 from some timenon.

Then K(t) must become zero at some finite time. Since C > 0, then,

I - 0(o) - C < o, and K will become negative, violating the non-

negativity of K.

Consider nov a path starting in quadrant I. If it stays in quadrant

I forever, then both p and K are bounded from below. Since both are

decreasing, they approach limits which, by a general theorem on differential

equations, can only ba the equilibrium values. By Proposition 9 such a

path is necessarily optimal. If the path did not remain in quadrant I

for all t, then it reaches either the boundary with quadrant IV or that

with quadrant II; then. as already noted, the path cannot be optimal.

Similarly, any path in quadrant III which remains there forever

approaches the equilibrium and Is optimal; any other path Is non-optimal.

It only rmains to argue thats for any initial K a K(O)p there is a

corresponding p(O), with the point (K, p(O)) in quadrant I or quadrant

III according as K < Ki or K > Ke, such that the Pontryagin path start.

LOS at that poLnt approaches the equilibrium. Such a path is certainly

Optimal.
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The approach makep use of the fact that, under the stationarity

assuptions of this problem,. p and the optiml instruments C and I

are functions of K. Dvid (3) by (35) to see that

(41) dy/dJ. - -F'(K)]/(F(K)- c(p)].

Consider•, for values of K <K, solutions of (41) which intersect"a A
the line K - K" above the equilibrium, i.e., for p(K") a prescribed J
value greater than p'. Such a solution can be continued for smaler and

smaller values of K. We first note that It can never cross the curve

K 0 0, which has been written p - x(K). Let p(K) be -he solution

of (41), and suppose it Intersected the curve p - s(K) at K < Ka.

oen p'(K) -4-a as K . oK+0. But p(K) > x(K) for K inaright-

hand neighborhood of K, an therefore p'(x) > s'(K), a contraction

since '() is certainly finite

Since the denominator of (4l1) is finite and the numerator is bounded

frm above, it is clear that the solution of (4i) can be continued for all

pOsitive values of K < K. 1her is one such solution for each value of

> j". V.ese solutions never cross because of the uniqueness of

solutions of this differential equation away from the equilibrium point.

lboe, for say given X <K. there is a lower bound, (K), on the

values of p for whibh there exists a solution of (41) passing through

(Kp) and for which p(Xe) > It Is obvious and can easily be

69monstrated that g$K) also satisfies (41), and, that $").p.Ti

path tn (p,K)-.spe defines the optimal trajectory. If K(o) < Cr,

o~ose p(O) [(K(O)). Then the points of the tim. solution, p(t),

K(c), for (31.) and (35) move along the trajectory g(K) and converge

to the equilibrium
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The solution in this form is very convenient, for the choice of the

instruments, C and I, is determined as a function of K by (33) and

(29) (with equality).

The analysis in quadrant III is the sam, except that we find for

each K > K' the upper bound of p-values for which the solution of (41)

passes belov the equilibrium.

It should, however, be noted that we could apply the same proc• •ure

in quadrants II and IV; but then the limiting solution would be the

divergent dashed curves marked in Figure 1.

The optimal solution, then, is defired by a solution of (41) which

passes through the equilibriumi but there are two such solutions. The

equilibrium is a singular point of (41), so the solution through that

point need not be unique. In this case it is clear that the optimal

solution is identified as the one with the negative slope at the equilib-

rium.

Ve will analyze the non-uniqueness at equilibrium a little more

closely. The right-hand side of the differential equation (41) is,

strictly speakinfp not defined at K r K, p a pe since both numerator

and denominator vanish. Since p Is to be a function of K. both

nimerator and denominator are functions of K, directly and through p.

L*t

(42) O(K) . p[O-v'(K)j, *(K) - 7(0) - C(p),

(43) p,(i) -* K)/K)

Since both 0 and , vansh at K. X', we can define p'(K)(-4P/di)

there by L' 1pital's rule:

(4) p'() . )/*'(
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and it remains to evaluate these derivatives.

' (0 p[- P '()], ( p- F'(K)J pP(M). W

From (37),

V'(K). F(K) - C'(p) p'(K).

Again make use of (37).
•'(K" = C ('POO)p'or).

Substitute Into (44).

p,(Ku) -ap'"W(K=) .

0- C (p")p (Kw)

or, clearing fractions,

(15) -C'(p') [p'(")]2 + p'(K*) + p'F"(X") 0,

* quadratic equation in the slope of the solution to (4l) which passes

through the equilibrium. Since C(p) is decreasing, the coefficient

of the quadratic term is positive. Since F < 0j, the constant term is

negative. Thus, the product of the roots is negative, which implies that

both awe real, with one positive and one negative. As already noted, the

neptive root is the appropriate one.

Since C(p) Is defined by (36) and (33), we must have

u"c(p) C'(p) - 1. so that c.(p') -/u'(c*).

!M&stLon 10. Suppose tke asi of the economic system is to maei-

mile J4" 0.0t UtC(t)jdt, where o > 0, subject to the condtions

K a 1, C + I < F(K) K > 0, where U(C) is a stritaty concave increasing

runction and P(K) is a strictly couca.. function oith 1(0) 0, and



I
also assume K(O) given. Define K, Co, p• by the relations F'(Ke) =

p, CO MO(KO), I = P u'(C•).

Then the optimal strategy can be characterized by finding that solu-

tion p(K) of the differential equation (41) for which p(KX) a p and

for which p'(K•) is the negative root of the quadratic .*quation

([i/U"(C )] (P'(K)]2 + a P '(Ka) + P F"(Ke) 0 0. Then, for any K,

C is so chosen that W'(C) - p(K), and I a F(K) - C.

Proposition 10 has been stated without the hypothesis, U'(0) a + o,

which was used in the proof. It will be an interesting exercise in the

use of Proposition 6 to consider the case where U'(O) is fiixite. In

this case the constraints C > 0 and t > 0 may oecome effective.= a

Ccnsider the first for regions in which X > 0. Let w be the multiplier

associated with the constraint, C > 0. Then (31) is modified to read
a

(46) L - U(C) + pI + qjF(K) - C - I) + wC

. ((C) - (q-w) C) + (p-q) I + ql(X),

where

(17) v > 0, VC 0.

If C O, thenthe condition aWaC . 0 becues

U'(0) a u'(C). - v < q.

1e stil ve he•conditio,. p .q, so that C a0 if p>U'(0). h

system (31) and (35) is still va•id, but the deafuition of O(p) is

slightly WAditieds

C(p) is the solution of the equation, U'(C) - p

itf p c<'O),

C(p) .0 if p > U'(o).
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The previous analysis is completely unchanged; in Figure 1, the

curve K = 0 intersects the p-axis at p = U'(0) instead of being

asymptotic to it. Since the optimal trajectory lies above the curve

K = 0, there will be a k > 0 for which p(k) = U'(O). For k < k,

C will then bc zero.

Now consider the possibility that the constraint K = 0 becomes

effective. .'s has already been seen, this question arises only for paths

which start in or have ent.!red 2egion II. It will be shown,even with

U'(0) finite, suchi paths are non-optimal.

Recall the basic definition (18) of p as dW/dK, where W is

maximum value of the utility functional if the initial state is K.

Clearly, in this model an increase in K is always beneficial; given

an increase in K, one can always consume a somewhat higher amount for

some period until the value of K(t) falls to that on the original path,

and then follow the latter thereafter. Hence, p must be positive.

N,,, consider a path that has reached the p-axis at time t from0

regon II. Since the initial value of p was finite, the time to reach

the p-axLs was finite, and the right-hand side of (34) is bounded over

this path, p(to) is finite. Now the constraint K > 0 becomes ef-

fective and therefore the constraint I > 0 is imposed. The constraints,

C > 0, 1 > 0, C + I < F(K) = F(O) = 0,

imply that C and I are 0; from the latter, it follows that K(t) = 0

for all t > t . The Lagrangian (46) is modified by the addition of a
-0

term corresponding to the constraint I > 0, with multiplier r.

"=(C) + pl + q[F(K)- C -I] + wC + rI

[U(C) - (q-w) C] + (p+r - q) 1 + qF(K),
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where r > 0 when I = 0. No longer does the equality p q hold;

instead,

p =q -r < q.

Equation (34) is modified to

p = p p - q?'(K) p P " qF'(0) for t > to.

Recall that i"(O) > p. Use in turn the inequalities p < q, U'(0)

<Li.

p = p p - qF'(o) < q(p - F'(o)j < u'(0) [p - F'(0)).

The last term is a negative constant. Hence, • must become negative in

finite term, which is a contradiction to the assumption of the optimality

of the path being studied.

It may be asked what happens if the initial stock of capital is 0.

The only feasible path is that of zero investment and consumption. The

argument Just given would show that for any finite p(O), p(t) would

become negative eventually. The an.wer evidently is that p(O) must be

chosen + • initially, and thea p(t) would remain + •.
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Lecture 4

Further Aspects of the Ramsey Problem: Irreversibility;

Growth of Population and Labor Force and Technical Change

It is sometimes reasonable to argue that investments, once made in

physical form, cannot be converted into consumer goods. Hence, invest-

ment should be irreversible, i.e., subject to the constraint I > 0. On

the other hand, there is in real life a somewhat more subtle way in which

capital can, within limits, be run down and permit more consumption;

namely, capital goods depreciate and failure to replace them constitutes

a way of increasing consumption at the expense of capital.

A reasonable assumption about depreciation is that a fixed fraction

of the existing capital becomes useless in each time period. Thus, the

net rate of increase of capital is the amount of (gross) investment, i.e.,

new output devoted to capital uses, less the amount of depreciation. This

amounts to replacing (28) by

(48) K W I - 5K,

for some 5 > 0. We also assume that investment is non-negative,

(49) I > 0.

Otherwise the model is identical with that of the last lecture,

including (24) and (29), with the assumptions (25), (27), and (30)

(though the last is diopensable). Let p be the auxiliary variable

corresponding to (48), q the multiplier corresponding to (29), and s

that corresponding to (49). The Lagrarigian becomes

(50) L - U(C) + p(A - 5 K) + q[F(K) - C - I] + sl

J[U(C) - qC] + (p+s-q) I + qF(K) -p K,
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where

(i) >0, SI =0.

Equating derivatives with respect to C and K to zero yields

(52) u'(c) = q,

q = p + s,

which can be combined with (51) to yield

(53) p < qj if p < q, then 1= 0.

The auxiliary equation is

(54) P -- (P + b) p - qF'(K).

Since the problem is stationary, we know that the instruments and

the auxiliary variable are functions of K. From (53), for any given K,

there are two possibilities: either p = q, or p < q with I = 0.

Therefore, the K-axis is divided, in general, into alternating blocked

and free intervals:

(55) 1 - 0, C - F(K), q - U'[F(K)] > p on a blocked interval;

(56) 1 > 0, C < F(K), q - p > U'[F(K)] on a free interval.

From (48), K - 5 K <0 if I a 0. Hence, the system cannot have

an equilibrium in a blocked interval. Then p . q at an equilibrium

and, from (5), (48), and (29), the following relations hold at equilibrium:

(57) "' -
ie . •K'b,

C° F(K7) b K*X,,
P- U (C).
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It will be observed that the equilibrium is the same as that for

the reversible Ramsey problem, where F(K) is replaced by F(K) - 5 K.

Indeed., if we define

I3 u I -N K,

then, if the constraint (49) is ineffective, the problem is identical with

the reversible Ramsey prc •lem, with I replaced by IH. For the revers-

ible Ramsey problem the 'oimzi policy would have I, Z 0 for K < K',

and therefore I a IN + b 0. Hence, starting with any such K, ir

the optimal policy for the reversible Ramsey problem is followed, it will

always satisfy constraint (49) and therefore remain feasible under ir-

reversibility. It will therefore remain optimal. Indeed, the same must

be true for K in some right-hand neighborhood of K , for while I3 . 0,

I + b K > 0 for K-K and, by continuity, I > 0 for K' < K < K

for acme K (which might even be + a). On the optimal path K decreases

in this interval, and therefore K never goes outside the interval, so

that the optimal path for the reversible Ramsey path is still feasible

and therefore optimal for K < K.

The general method for finding the optimal strategy can now be

sketched. As before, we are interested in the differential equation

defining p'(K) dp/idK. From (48) and (54),

S(•) p'(K) - [(o + 5) p - qy'(K))/ (1-b K).

Here q and I can be determined as functions of K and p from (5)

and (56). In the neighborhood of the equilibrium, the solution, as noted,

is the same as for the reversible case. Frow () and (6), (8) special-

Lies In the two kinds of intervals as follows:
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(59) p'(K) pjp + 5 - F'(K)]/[F(K) - 5 K - C(p)] in a free interval;

(60) p'(K) ((0 + 5) p - U'[F(K)] F'(K)]/(-5 K) in a blocked

interval.

Let

(61) r = U'[F(K)]/p

From (55) and (56),

(62) r < 1 on a free interval, r > I on a blocked interval.

We know there is a free interval, <O,_K, with K > Ka. We there-

fore solve (59) around the equilibrium and continue it first for all

smaller val'-es of K. Then continue it for larger values of K until

r reaches 1 TIe K-valup where this occurs Is K, and there is a

calculated value of p, p(K). We then solve (60) with this starting

point until r comes down to 1 from above. At this point we start a new

free Interval, and solve (59), but with the starting point being that

achieved at the end of the previous blocked interval. This process can

be continued indefinitely.

Thus, the problem is caplble of numerically meaningful solution.

Analytically sharper characterization cannot be obtained in general,

though more specific hypotheses Imply sace limits on the numbers of

blocked and free intervals. In particular, though, it can be shown that

It Is yossible to have a denumerable or arbitrarily large finite number

of alternation3 between free and blocked intervals. For these and other

results, see Arrow and Kurz 11967).

'*r modification of tfe Risey model consists of allowing for

growth in poplation and labor force and for technological change.

Under certain simple blit by no meant absurd assumptions, these factors
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can be introduced into the Rmsey model by a simple reinterpretation of

variables.

Population by itself affects the utility functional. Let N(t) be

the nmber of individuals at time t. Assume for simplicity that the

aggregate amount of consumption at any time t is divided equally among

the existing population. Assume also that each individual has the same

felicity function. Then the felicity of any individual at time t is

U[C(t)/i(t)]. Since there are N(t) individuals, it is reasonable to

conclude that the total felicity of society at time t is

N(t) U[C(t)/N(t)], and the utility functional then is

(63) eJ' O etN(t) U(C(t)/N(t)]dt.

The production possibilities of society are of course influenced by

the size of the labor force. This effect has been ignored until now

because the labor force has been assumed constant. The growth of the

labor force is roughly proportional to that of population, but it will

be convenient to ignore this relation for the moment. We assume in any

case that the size of the labor force is a known function of time,

independent of the instruments or the state variables. Let L(t) be the

nuamber of workers at time t. For any given supplies of capital and labor,

output is determined by the production function

(64) Y - F(KM L),

vhere it is assumed that

(65) F is concave and homogeneous of degree 1, and F(O,L) - 0.

The property of homogeneity of degree I is known to economists as

constant returns to scale; if labor and capital are varied in the same
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proportion, then the same productive methods can be employed, with only

theor scale changed, and therefore output can be changed in the same

proportion. This assumption is not fully true but may be accepted as an

approximation. The assumption F(0,L) = 0 amounts to saying that capital

is indispensable in production.

The transition equation of the system is still

(48) K=I - 5 K.

The constraint on the instruments, C and I, is now

(66) F(KL) > C + I.

Technological progress can be stated formally as

(67) Y M F(K,L,t),

that is, the output obtainable from fixed amounts of capital and labor

varies with time, presumably increasing. A particular hypothesis about

technological progress for which there is some evidence is that it is

labor-augnenting, which has the more bpecific form:

Y - F(K, A(t) L],

that is, each worker at time t can do, in every way, exactly what A(t)

workers could do at time 0. In this form, however, we can see that we

may as well retain (64) where, however, it is understood that L now

represents not the number of workers in the usual sense but the number

of efficiency-equivalent workers. Thus, in the new definition, L can

and usually will be increasing more rapidly than N.

The Lagrangian is

(68) H. N(t) U(C(t)/N(t)J + p(I - 5 K) + q[F(K,L) - C - I].
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The necessary conditions, with I unrestricted as to sign, become
4,

(69) p - , U'EC(t)/N(t)J, p,

(70) p - p -•4 l0l.

The system looks much as it did before, but it is not autonomous

since time enters explicitly through N(t) and through L(t) in 4/0*.

It is possible to use a non-autonomous system, but autonomous systems are

much more convenient; with appropriate changes of variables, together with

additional assumptions, it is possible to state the system in autonomous

form.

Since labor is growing we can hardly expect an equilibrium in terms

of the original variables, but it is reasonable to suppose there will be

one in terms of ratios to the labor force. Divide all variables by L,

and let small letters denote the resulting intensive magnitudes:

(71) c = C/L, k a K/L, i I/L.

Loot

(72) f(k) .(kl).

Then, from (65),

(73) f(k) is concave, r(o) . 0,I
(7i•) F(KL) - LIjK/Ll). Lf(K/L),

so that f(k) expresses the output per (effective) worker as a function

of the capital per worker. Differentiate (7k) partially with respect to

K.

(75•) Pyx a W(/O. f',%/L) -f'(KiL).

(70) can then be written



(76) p/p P + -'(k).

Since log k - log K - log L (natural logarithms),

k/k - (K/K) - ('IL)

M4ltiply through by k, note that k/K a i/L, substitute from (48)),

and use the definitions (71).

(77) k i - 17 + b)k,

where

(78) v,. L,

frequently referred to as the natural rate of grovth of the economy

(remember that L has b-.en so defined as to reflect technical progress

as well as labor force growth). Divide through in (66) by L, and use

the definition (71) and (72).

(79) r(k) > c + I.

The equality will certainly always hold in (79). Elizination of I

between (77) and (79) yields

(80) . 1 (k) - (v, )k-c.

Now define

(81) g(k) a f(k) - (y + 5)k;

frm (73), g(k) is concave, 6(0) 0 0. tn (76) and (80) can be

written:

•; /p. 0. - .y , (k),

(83) k -g(k) a c.

linal&y, (69) can be written

(8)) U'I(L/N)c•a p.
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The system (82-84) would be autonomous if the following two cond.-

tions are satisfied:

(85) Y constant,

(86) L4t)/N(t) constant.

This is the case of no technological progress and a constant rate of

population and labor force growth. Then the equations have exactly the

same form as those for the Ramsey model, with K, C, F(K), and p replaced

by k, c, g(k), and p - y, respectively. The importance cf the last

substitution must be stressed. The optimality analysis of the Ramsey

case made use of the hypothesis, p > 0 to show that the transversality

conditions were satisfied. This condition seems reasonable. But in the

case of growth, the corresponding condition is p > 7; this is somewhat

odd because the value of p is a value judgent while that of y is an

empirical fact. There seems no intrinsic reason why the inequality should

hold in one direction or the other.

!t must be remarked, moreover, that the hypothesis cannot be es*-

sentially weakened. In the Ramsey model without growth it can be shown

that if P < O, there is no optimal path in any meaningful sense; for a

detailed analysis see Koopmans [1965, p. 251-2 and 279-8w); as Just seen,

the same result holds if the economy is growing at a corsstan• rate y and

S< 7P. The borderline case. p a 0 in the model without growth or p a ?

in a growing economy, has been studied in considerable detail by Ramsey

(19281, Koopmens (1965, pp. 239-43 and 269-75•), von Veizascker [1965).

Alternative definitions of optimality are possible since the utility

functional need not converg, and in general the existence of an optimal

program in the borderline case depends on the specific properties of the
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production function.

To allow for technological progress, we wish to relax (86) and allow

the ratio L(t)/N(v.) to be increasing. We still wish to arrive at an

autonomous system. In the system (82-84) it is (84) which will no longer

be autonomous. In general there is no transformation of the variables in

(82-84) which will make the system autonomouýs, but such a transformation

is possible if U' is homogeneous of some degree. Note that U' must

be decreasing; therefore it must be homogeneous of some negative degree,

say -(T.

(87) Assume that U'(:) is homogeneous of degree -a, a > 0.

We also assume, to replace (86),

(M) L(t)/N(t) has a constant rate of growth, r,

which may be interpreted as the rate of (labor-augmenting) technological

progress,

From (87) and (84),

[L(•l•(tl.• '(.) -p,

or

Ii. an effort to react. an attonomous system i t is then a good idea to

4e n nc

1,.!,) ). pint)IN(t)}O,

so that

(90) U'(:) • ,

and then seek a differential equation for p zo replace (82). Take the

logarithm of both sides i,, (39). differert.'ste %ltt respe:'t to tipte ind



substit•:te from (82) and (88).

(91) P + - - g'(k).

The system of equations (83), (91), and (90) is now again of the same

form as the Ramsey model, with K, C, p, F(K), and p being replaced by

k, c, ý, g(k), and (P + a T) - y, respectively. The last conditions

mean that for optimality we need

(92) P + a T > 7,

with some possible cases of optimality when equality holds. It is also

worth noting that, from (91), the equilibrium capital-labor ratio, ktm,

is defined by

g'(ko) = p + a - 7 .

From (81), this can be written

(93) f'(k) - 8 = p + a.

The left-hand side is thus the equilib'rium net marginal productivity of

capital (net of depreciation, that is) and so, in usual economic terminology,

the right-hand side is an equilibrium rate of interest.

Remark 1. The existence condition (92) amounts to saying that the

equilibrium rate of interest exceeds the rate of growth.

Remark 2. mhe equilibrium rate of interest is higher, the higher

the rate of technolcgical progress. Notice also that if T = 0, then the

entire equilibrium does not depend in any way on the felicity function

but only on the production function and the utility rate of discount, p.

With technological progress, on the other hand, this ceases to be true;

other things being equal, the marginal productivity of capital is higher
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(and therefore the capital-labor ratio, k , is smaller) the higher a,

i.e., the more rapidly the individual becomes surfeited with goods.

Remark 3. Note also that c is consumption per effective worker,

not consumption per capita. As the optimal path converges, c converges

to a limit; but since L/N increases at the constant rate T, it follows

that asymptotically consumption per capita will grow exponentially at the

rate T.
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Lecture 5

Optimal Growth in a Dual Economy

It is a common hypothesis among economists that in underdeveloped

countries there exist side-by-side two economic systems, one advanced

and the other backward. The economic significance of this separation

is that workers in the advanced economy receive a wage which may be

much higher than anything received in the backward sector. At the

same time, it is assumed that these workers save nothing, so that any

capital accumulation must come out of the surplus of output over wage

payments. For simplicity, assume there is no relevant product at all

in the backward sector. It still may not be optimal for the economy to

have full employment of the labor force in the advanced section; each

additional worker creates more product, on the one hand, and a claim to

a fixed portion of that product on the other. Thus capital accumulation

might be lower under full employment than with some unemployment.

For simplicity, it is assumed here that the population and available

labor force are constant and that there is no technological progress;

generalization in these directions can easily be carried out by the

methods of the last lecture. The following discussion is based on the

work of Marglin [1966] and Dixit [1967]. The Ramsey model is modified

by adding one instrument and two constraints. The additional instrument

is the amount of labor to be employed, L; the additional constraints

are that there is a fixed parameter, w (wage rate in terms of goods),

such that,

(94) C -wL O,

and that the amount of labor employed not exceed the fixed amount

available.



(95) L- 0.

Otherwise, the Ramsey conditions remain:

(24) maximize f +"P t U[C(t)] dt,
0

(28) k=-I)
(66) F(K,,L) - C - I ?- 0;

(66) is substituted for (29) since the labor force is a variable of the

problem; the function F is assumed to satisfy (65).

The Lagrangian can be written,

(96) U(C) + pI + q1 [F(KL) -C -1] + q2 (C-wL) + q3 (L-L).

Equate to zero the derivatives of the Lagrangian with respect to

the three instruments, C, I, and L.

U'(C) = q1- q2, p = q FL(KXL) = q2 w + qY

or,

(97) U'(C) = p - q2 ,

(98) •L = V + q3
where FL - 6 F/6 L. Of course,

(99) q 2 • 0, q2 (C-wL) = 0; q3 20, q,(t-L) - O.
Since the constraint (66) is certainly effective, (28) and (66)

imply,

(100) K - F(KL) - C.

The auxiliary equation, as before, is

(i01) Wp - - rK(K,L).

From (100) and (101), at an equilibrium,

(102) FC(,1). , F ' ).

To be an equilibrium of this system, however, (94) mast be satisfied.

Since F is homo•eneous of degree 1, it ts easy to prove that FK is

homogeneous of degree O;- the first equation in (102) can therefore be
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solved for JC/Lo Write the second equation as,
Silb . (I-,),.,

since F(K,L) is homogeneous of degree 1. We viii assume then that,

(103) d'le > V.

Then the constraint (94) is not binding at equilibrium, and

0" . Then., from (98), q3U > 0, so that (95) is binding, i.e.,

tbeie Is full employment. Thus# for K in the neighborhood of K=,

the optimal path is identical with that for the Ramsey problem. Since,

in the Ramsey problem, p is a decreasing function of K, and therefore

C is an increasing function of K, it follows that the constraint (94)

is fulfilled and ineffective for K f KI. It follows that there is

K< e such that the optimal solution for the dual economy coincides

with the Ramsey solution in the Interval < K + - >, which will be

termed interval I.

I is defined by the condition that (9 4 ) becomes effective there.

Since p(K) is the same as for the Ramsey solution for K - K, it is

nov known for K - A. lso, q3 (,) - p(X) FL(!,t:) > 0. As K decreases

below Kj, it must be that q, remains poostive, at least for some inter-

val, vhile 2 rises above 0. Then constraints (94) and (95) are both

effective In an interval to the left of K - termed interval II, in which

C - wt, K - F(K,t) - wL, so that, from (101),

(103) dp/dI - p(o - FK(K,)V/(F(Kpt). v- l in interval II.

Since p(T) is known, this equation can be solved rather easily for

smiler values of K.

Also in interval I, q2 " p -U'(wv), from (97), so that, from (98),

(10.) q, a p(IL(K,I,) - vw) + w'(wt').

Thus the lower end of interval II is defined by the condition q, = 0.



Since (Of,L) r Om all L, by (65), there exists 7'i so that,

As K approaches K, + 0, the denominator of (103) is asymntoticall•3

equivalent to F,(K[,rj (K - K1), so that clearly p(K) approaches

infinity. Also, from Euler's theorem on homogeneous functions,

wL F(K 1PE) = FL(KlPE) 'L + FK(Kl'L) K1 > FL(KPlt) t'
so that F L(KI, ) < w. The first term of (104) then approaches - 0,

while the second is constant. Hence, q3(K) = 0 for some K > 0.

Interval III is the interval <0, E>. In this interval, the full

employment condition, (95), ceases to be binding, and q3 0 0. From

(94), (97), and (98), we deduce,

(105) U'(wL) = p '1 - (FL(K,t)/w]

which defines L as a function of k and p. The basic differential

equation takes the form in intervaI. III,

(106) d/dX p[ - FK(',L)V/F(KL) - wL].

It is to be noted that di/dK > 0 in this interval (the more

capital, the more labor can be empl.oyed). This means that, as we push

the sclution to lower vdlues of K, the full employment constraint will

never become binding again. To see that dI/dK > 0 in interval I1,

firt note, from (105) that

1- [FL(KL)/W] > 0 in interval III1

Differentiate (105) totally with respact to. K and group term.

(107) [U"(wL) w + (V/w) FLL(K,L)j (d./dK) (p- (/w) FLK(KL)

+rom- tyL(KfL)/sJ)(dtOdK).

From the concavity of U and Fit follows that U" <(0, FL< (0.
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Since FL is homogeneous of degree 0,

FLLL + FLK K O,

by Euler's theorem; but since FLL < 0, and L, K > 0, FLK > 0.

It is then easy to calculate, from (107),

(108) if dp/dx < o, then dL/dK > 0 in interval III.

Since K < KI, FK(K,t) > FK(KeL) = p, so that p'(K) < 0. Suppose

p(K*) - 0, for some K*, 0 < K* < K. Take the largest such. Then

p'(K) < 0, K* < K < K, so that FK(K,L) > p in that interval, or,

K/L<eKl for K* <K =K,

while K*/L* - Kr/t . Since F > 0, FL increases with K for fixed

L; but since FL is a function of K/L, FL increases with K/L. Hence,

FL(K*,L*) > FL(KL) for K in a right-hand neighborhood of K*,

where, it will be recalled, L is a function of K defined by (105),

and L* is its value at K = K*. Therefore,
dFP~jdK<O at K - K*.

Butt & FL/dK : FLL (dI/dI ) + FI,. Compute d:/dK from (107), and recall
that dP/dK - 0 at K a K*. Then,

dPL/dLK - FLK (K*..L*) U"(wL*) --/[U"(wL*)w + (p/W)FLL (K*,,L*)] > 0 at K.=K*,

a contradiction. Hence, p'(K) < 0 for 0 < K < K; by (108) L is an

increasing function of K in interval III (capital permits employment),

and consumption is proportional to L.
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Analysis of a One Good Model of Economic Development

1. Introduction

In these notes we are going to analyze an Idealized,

or better, an imaginary economy in which there is only

one good. This good can be used for two purposes;

(A) it can be consumed, thus creating satisfaction or

utijitj for the people . who conaunje it, or (B) it can

be invested in which case it creates additional amounts

of itself. We will be concerned with an operation of

this economy throughout time and therefore the problem

at each instant will be to decide how much to consume

and how much to invest in order to maximize utility

throughout time In some suitably defined sense.

What is the purpose in considering this sort of

imaginary situation which bears little resemblance to

any actual economy, living or dead? The answer Is that

in analyzing this model we shall run into certain

mathematical and economic techniques which turn out to

be basic not only for the study of this make-believe

economy but also for the aore realistic (but more

complicated) models which may come up In practice. Our

aim is thus to isolate this tech•.nique In a simple context.

The technique we refer to is what economists describe as
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the use of a Rrice system and what mathematicians refer

to as the method of dual variables. By whatever rame

one calls it, this subject is the central one both in

economic analysis and modern optimization theory.

Mathematically it enables one to answer such questions

about optimal development programs as: do they exist?

Are they unique? What are their qualitative properties?

Economically it allows one to give a competative market

interpretation to these optimal paths along which, it

turns out, producers are maximizing profits and consumers

are maximizing utility subject to their budgetary

limitations.

The above is a rough preview of what will be found

in the rest of these notes. The overture is now ended

and the show will begin.

2. The Model; Fini;.-e Time Horizon

The model will involve a single commodity which we

will refer to as "goods". It is described by two functions,

a production function ft(x) and a utility function ut(c)

where ft(x) is the amount of goods produced at time

t+l from an investment of x units of goods at time t,

and ut(c) is the satisfaction gained by consuming c

units of goods at time t. The domain of t is the



non-negative integers and that of x and c the

non-negative reals.

DEFINITION 1. A Rrogram with initial stocks s is a

sequence of pairs < x tct > finite or infinite such

that

(2.1) c 0  s - xo

(2.2) ct = t-l(xt-1) -- Xt for t > O.

If <xt ct > is a program the corresponding

utility sequence is given by < ut(ct) >.

Clearly, conditions (1) and (2) state that the sum

of consumption and investment in period t is equal to

the amount produced in the previous period. If the

sequence < xt,ct > is finite with t = l,-.-,T then

it is called a T-period Program and if fT(xT) = st we

refer to the program as a T-period program with initial

stocks s and final stocks s' or, more briefly, a

T-period program from s to s'. The value of such a
T

program is 2 ut(ct).
t=O

DEFINITION 2. A T-period program from s to s' is

called optimal if it has maximum value among all such

programs.

Although our principal interest will be in infinite

rather than finite programs it will be necessary first

Lk
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to develop the basic properties of finite optimal

programs.

We now introduce the central concept of these notes.

DEFINITION 3. The program < xtct > is called

competitive if there exist non-negative numbers (prices)

pt such that

(A) ut(c) - ptc is maximized at ct for all i,

(B) pt+ift(x) - ptx is maximized at xt for all t.

These conditions have an important economic interpre-
tation. Regarding pt as prices we see that ptx is the

cost of investing x units at time t, while pt+ift(x)

is the return or value of ft(x) units at time t+l.

The difference, therefore, represents profit and condition

(B) requires that investment be chosen at each time t

so as to maximize profits.

To motivate condition (A) we note from (2.2) that

Ptet pt(ft'l(Xt-i) - xt)

and the right hand side here might be thought of as

disposable income since it represents the value of goods

just produced minus the cost of goods to be invested.

If we then require consumers to spend no more than the

amount ptCt (budget constraint) condition (A) says

A. w~ a t
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that consumers will then consume so as to maximize their

utility subject to this constraint.

The following simple result is the starting point

for the theory.

THEOREM 1. If < xt,ct > is a T-period program from

s to s' which is competitive, then it is optimal.

Proof. Let (pt), t = 1,...,T+l be the competitive

prices and let < xt ct > be any other program from s

to s'. Then from (A) and (2.1) and (2.2)

"Uo(C 0 )-U(c 0 ) • po(c'-co) = po(S-x•) -po(B-xo) = -P

uctuct ) __ t -tl =pft-l(t)-Xt')-Pt(ft-i(Xt-l)'Xt

for t = I,...,T

and 0 = PT+l(s'-s') = PT+lfT(XT) - PT+lfT(XT),

and summing on t gives

T Tt;o(Ut(Ct')'ut,(ct)) 6( 1 [(Pt+lft(xt')'PtXt)'(Pt+ift(Xt)'Ptxt)]

where we have collected terms in xt. But sinice each

term in the sum on the right hand side above is non-

positive from (B), it follows that

2Ut(C) -- SUt(Ct) < 0

so Zut(ct) is a maximum as asserted.
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What we have here shown is that competitive programs

are optimal. We need a converse to this theorem and for

this purpose must make some assimptions about the

functions f- and u. These are

(I) The function f is non-negative, concave

and increasing in x (for each t) and ft(0) - 0.

(II) The function u is concave and increasing

in c, but possibly ut(O) = - W.

The last condition of(I] is important for we would

like to permit functions such as u(c) = log c, c > 0.

The condition u(O) = - ® would mean that to consume

nothing (starvation) is "infinitely bad". Unless

otherwise stated it will be assumed henceforth that

conditions (I) and (II) are satisfied.

We now recall the fundamental mathematical result

needed for this work (which may well be the fundamental

result of all optimization theory), namely the Kuhn-Tucker

Theorem. We can get by with the following weak form:

Kuhn-Tucker Theorem. Let u(x) and fi(x), I -

be convex functions defined on a convex set X and let

Sminimize u(x) in X subject to

(2.3) fi(x) S O, I - 1,...,m.

Then if (2.3) has a strict solution there exist numbers

Pi • 0 such that
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(2.4) u(x) -- Pifi(x) is minimized at x.

S]aggestion for a Do-It-Yourself Proof: Let Y be

the set of all y = (yl,...,ym) such that the inequalities

f(x) Yi

have a solution. Show that Y is convex and has 0 as

an interior point (here we use the strict solution

hypothesis). Now let g(y) = min u(x) and show that
fi(x)syi

4 is a convex function of y. Then use

the fact that a convex function ( has a support at

every interior point x of its domain, i.e. there is

a linear function p-x such that p.(x-i) . )(x) - 9(x)

for all x in X. The support of g at 0 is the p

we are looking fcr.

We can now get the desired converse for Theorem 1.

THEOREM 2. Let < it- > be an optimal program from

s to s' and assume

(2.5) ct > 0 for at least one t.

Then < itjct > is competitive.

Remark. Without (2.5) the Theorem would not be

true. Suppose ft(x) - px for some fixed p (i.e. f

is linear) and suppose u(c) a log c, s - 1, a' - pT
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Then clearly the only program from s to s' is

< x tct > - < p ,0 >, but condition (A) requires there

exist Pt such that

log c - ptc = max at c = 0

and clearly no such pt exist. The fact that log 0 = -

is not crucial here. The same situation would occur for

u(c) -c . The difficulty comes from the fact that the

slope of u is infinite at c = 0.

Proof. Replace conditions (2.1) and (2.2) by

co + x0 -s < 0

(2. 6 ) ct + x -ft~l(Xt~l) • 0 t = 1,-,T

s- fT(xT) 0

Now clearly < t > satisfies (2.6) and it also

maximizes Sut(ct), since each ut is non-decreasing

in c. Hence the Kuhn-Tucker Theorem applies provided

we can show that (2.6) has a strict solution. Assuming

this for the moment we obtain numbers pt a 0, t = 0,...,

T + I such that

T T
(2.7) S Ut(ct)-Po(Co+xo)- Z (Ct+Xt)-ft-l(xt.I)

is maximized at < it'ct >. Rearranging (2.7) gives(2l

Uw-.
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T T
(2.8) .7 (ut(ct) - PtCt) + 2 (Pt+irt(xt) - ptxt)

t=O t=O

is maximized at < ct,•t >, but note that the terms of

(2.8) are independent, hence (2.8) is maximized at

< xt,•t > if and only if ut(ct) - Pt't is maximized

at ct and pt+lft(xt) - Ptxt is maximized at xt

for all t, and these are precisely conditions (A)

and (B).

To show that (2.6) has a strict solution we consider

the new program < xt,O > and note that we have

00

(2.9) xt - ft(xt-I) s 0

S, - fT(XT) 0 0

and at least one of the above inequalities is strict by

assumption (2.5). We therefore reduce the problem to

the following:

LEMMA 1. If (2.9) has a solution with one strict

inequality then it has a strict solution.

Proof. Induction on T. If T = 0 we have

o--S=<0

0

S, - f(x 0 ) S 0

If X- s < 0 then by slightly increasing x0  if

~i
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necesoary we can assure that s& - f(xO) < 0 also, since

f is increasing. If s' - f(xo) < 0 then by slightly

decreasing x0 we can assure x0 - s < 0 as well.

Now suppose one of the inequalities (2.9) is

strict for some to > 0. Then by induction hypothesis

there is a solution xt giving strict inequality for

all but the first inequality, and to get a strict

solution we slightly decrease x 0  if necessary. In

the other case we have x - s < 0 so inductively there
I0

is a solution xt satisfying all but the last inequality

strictly and this will be satisfied too by a slight

increase in XT .

The fact that the class of optimal and competitive

programs are identical is of economic interest in itself

as it shows that if the "prices are right" optimality

is attained by allowing producers and consumers to act

purely selfishly and maximize profits and utility

respectively. We shall now show how the price theorem

can be used to gain qualitative information about the

nature of optimal programs. For the rest of this

section we will assume that the functions f and u

are independent of the time.

D].INITION 4. The function f will be callel 22ducti

I. for any x O, h > 0, f(x+h) > f(x) + h. In words,

I I
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increasing the input by some amount will increase the

output by more than that amount. For f differentiable

thii is equivalent to f'(x) > 1.

THEOREM 3. If f is productive then for any competitive

program < xt,ct;pt >

(a) prices Pt are positive and decreasing in t.

(b) consumption ct (and hence utility) is

non-decreasing in t.

(c) stocks xt are non-decreasing up to some time

t 0and decreasing thereafter.

o0. (a) We first note from (A) that ct

maximizes u(c) - ptc. This shows that pt > 0 since

othernlse u, being increasing, would have no maximum.

Next, frcm (B)

Pt+If(xt) - PtXt pt+f(x) - ptx for all x > 0

o r -. - t> x - x t f o r a l l x ) x tPt+l x

but since f is productive the right hand side above

is greater than 1, hence Pt+ l < Pt.

(b) From (A)

u(c -u(ct+ 1) 4 Pt(ct - ct+ 1)

u ( t+1 ) --U (c ) a Pt+I(Ct+- c t
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hence

0 (Pt Pt+)(ct - C

(this relation is sometimes called La Chatelier's

principle, I think). But from (a) Pt -- Pt+l > 0 hence

ct +I< 0 as asserted.

(c) It will suffice to show that if xt < xt. t~hen

Xt+I < xt. Now

x+ -Xt - f(xt) -f(xt 1 ) - (ct+l -c) < fj)-f(xt. 1 ) from rb).

From (B)

ptf(xt) - l-Plt < ptf(xt. 1 ' -- lxt.1

so (xt) - f(xt 1 ) - xt-t 1 ) < 0

so xt+1-xt < 0.

3. Infinite Proiramp.

The finite horizon programs are not of great interest

in economic development. It is tt'e that if one were

devising, say a five year plan and had decided on the

final stocks s' then it would be natural to try to

solve the problem of the previous section. However, the

important decision would In this case already have been
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made, namely the choice of s'. The main problem in

economic planning is to set reasonable goals for

capital eccumulation and it appears 6hat the only way to

attack this is to consider infinite programs. The first

thing needed is a notion of optimality.

DEFINITION 5. If < xc > and < xtct > are

infinite programs we say that < xt,ct > oyertakes

< xIc > if there exists a time T such that

T' TO> ut(ct) > > ut(c') for all TO > T.

t:tO t O

.We say that < xt,c > at.i uR 1 < xC' >

(at infinity) if

u(ct)- tT-w t=O

A program will be called M (jnz01.q 0n1Iz)

if it catches up to (overtakes) every other prcgram.

We remark that If it should happen that the series

i ut(ct) converge for all programs (as may occur, for
t-0

instance if future utilities are suitably discounted)

then Definition 5 corresponds to choosing as the optimal

Iogram the one whose utility sum is greatest, just as

in the finite case. Hý.wever, Definition 5 is more general

for, as we shall see, optimal programs in this broader

sense may exist although all the utility series are
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divergent. In the next section we shall give a specific

rather general existence theorem for the case when u
and f are independent of the time. In the present

section we shall obtain infinite analogues tc Theorems
1 and 2 relating optimal and competitive programs. Note

in this connection that the definition of a competitive

program requires no modification for the infinite case
since ccnditions (A) and (B) carry over as given.

THEOREM 4. Any optimal program < xt,ct > is competitive.

Proof. We first dispose of a trivial case in
which ct = 0 for all but a finite number of times t.
This means that all stocks are completely consumed by

the end of T time periodb for some T, so we are

back in the finite case of Theorem 2 where the

final stocks s' are zero.

In all other cases ct > 0 for infinitely many t.
Note that if* e truncate the program at t = T we have

an optimal T-period program (with final stocks fT(XT)),
so for each T there exist prices ptT which satisfy

(A) and (B) for t < T. Denoi;ing by 1t the set of all
ftsuch prices one verifies that 1t is a closed interval,

t
possibly unbounded above, of non-negative numbers. Also
IT+lC T17I C lit since if (A) and (B) are satisfied for

t < T+l they are satisfied for t < T, so it remains
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to show 11 =t I is non-empty and this will follow

from the nested interval theorem if we can show that for
T

any t there exists T such that 1t is bounded. We

Tfirst note that Ai is bounded if cT > 0, for from (A)

T T
if PT ILe then

TTC >1 _uT(cV/2) -Pc/

uT(cT) -PTT T

T
or 4T = 2(uT,(c,.). u~V2)c
Now for any t from (B)

Pt+Ift(xt) - t 0 (since ft(O) = 0)

SO ~� I (ft(xt)/xt)? +T

Letting qt = ft(xt)/xt we have

T Tpt =5 qtqt+l ..q T-iP

and this establishes the desired bound, and shows the

existence of the competitive prices.

We would like now to establish some sort of

analogue of Theorem 1 asserting that competitive programs

are optimal, but since we do not have the concept of

final stocks some additional condition will be required.

Before continuing we consider a concrete example.

W6
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EXAMPLE 1. Let u(c) =f(x) px, S 1,

where p is some positive constant.

Proposition 1. The sequence < xt,c > is a program€00

if and only if . ct/pt < 1.
t=O

Proof. We have

c = -x
0 0

ct =Pxti-1 Xt

Multiplying the equation by 1 /pt and summing gives

'T' ct/pt-- -xVPT
t-o

T TConversely, let qT= 2 ct/p and let xT = pT(I-qT).t=o

Then x0 = 1-c 0  and xT-PXT_1 = PT (1-qT)-_ppT-l(l-.qT-l)

= PT (qT qT) = CT, so < XT,CT > is a program.

proposition 2. Competitive programs exist if and only

if p> i.

Proof. Let pt be competitive prices. Then from (A)

u(c) - ptc = -I/c + ptc is maximized at -ct

thence u'(ct) Pt = 1/ct 2  or

(3.1) °t A P-t

-
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and hence ct and xt are positive for all t. From (B)

(Pt+ip-pt)x is maximized at xt, so Pt+l , Pt/1 ' hence

(3.2) pt = Pc/Pt

Letting a =-P we have from (3.1) Ct = at/4-P0

and ct/pt = i/(p.0 at). The series 2 ct/P will converge
t=0

if and only if p > 0, in which case

(3.3) ct/Pt = 0/4PO ( -l)t-O

so < xt,ct > is competitive if and only if ct i/j at

where

P0 Ž (a/a-i) 2

ProDosition 3. The optimal program is < it,•t >

where c ct- at-1.

If there is any optimal program it must be competitive

by Theorem 4 and clearly the best of the competitive

2
programs (3.1) is the one for which pO - (c/c-')

However, we can prove directly that this program is

optimal. Let < ct,xt > be any other program. From

(A) and (3.2) we have

U(Ct) - (po/pt)ct , u(t) - (po/pt)ot or

SI ...... tI
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ot

(3.4) u(ct) - PO(/p t/Pt)

Further if for some t ct / ct then (3.4) is strict.

Summing on t gives

T t(3.5) Z u(ct) -u(°t) < PO 2 (ct/Pt -- t/pt)

t=l t=l

but from Proposition 1 and the fact that 7 t = i,
t=l

it follows that the right hand side of (3.5) converges

to some non-positive number and hence the left hand

side must eventually become and remain negative, proving

the asserted optimality.

We now prove a converse of Theorem 4.

THEOREM 5. If < xt~ct;Pt > is competitive and

(3.6) lim Ptxt = 0

then < Xtict > is optimal.

Proof. Let < xt,ct > be any program from s

and let rt denote the profit from this program at

prices it in period t; that is

t " pt f(xt-1) -- Pt-lxt-i' •t M Ptf(xt-1) -- pt-I xt-i1 0

From (A) we have

(3.T) u(c0 ) -u(c°) < P°(c°-j°) - P°(-x°)'- P°(s-i') -"P°(x°-i°)
' UCt)U(C) <Pt(t-it) -pt(f(Xt~l)-Xt)-pt(f(;t~l)-;t), t > i,

ll~c)-U(t) p~ct
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so

T T T
(3.8) 2 u(ct) >U(ct) < (it-it)+PTXT-PTXT

t=O t=O t-l

From (B) irt r t so the sum on the right is non-positive

and since PTXT > 0 it follows that the entire right

hand side becomes less than any preassigned positive

number for T sufficiently large, which is the definition

of optimality.

Corollary. If u is strictly concave then < xtct >

is strongly optimal.

Proof. In this case if ct ý ýt for some t then

the corresponding inequality of (3.7) becomes strict

and the argument above shows that (3.8) becomes negative.

We now give an important equivalent interpretation

to condition (3.6).

We define pos to be the initial wealth of the

economy. We define

T
WT - POs + E rt, the ac iated wealth up to period T

t I
TE T" Ptct' the eZ2n•t ý= cgsAM1 up to period T

t 0

PTCT - _vAleof 2 tock in period T.

Then we have the following obvious identity

I I
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PTXT WT - ET

which is obtained by multiplying the tth equation of

(2.1), (2.2) by pt and adding.

In particular we have

(3.9) E-T __< WT

which is an obvious budget inequality, stating that

expenditure on consumption cannot exceed accumulated

wealth. Condition (3.6) now becomes

(3.10) lim (VIT -- ET) E 0S~~T-.,,

so that "at infinity" all wealth has been used up in

consumption.

The condition seems like a reasonable one for

optimality. However, it is not a necessary condition.

One can show that for cases in which the function f is

not productive, so that eventually f(x) < x, then

PTXT converges to some positive value rather than to

zero.

We call a program efflcimni if it satisfies (3.10).

4 ,, aa - - . -. , -
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4. The Time Independent Case

In this section we confine ourselves to the case

where f and u are independent of time. We need one

more assumption which is a strengthening of Definition 4.

DEFINITION 5. The function f is strongly productive

if there is a constant p > 1 such that

f(x + h) > f(x) + ph.

For f differentiable this is equivalent to f'(x) > p.

EXISTENCE THEOREM. If f is strongly productive there

exists an optimal program if and only if u is bounded.

This theorem was originally proved by D. McFadden

for the case of f a linear function. We first prove

the necessity of the boundedness condition.

LEMMA 2. If < xt,ct;pt > is competitive then

Pt 1 PO/pt"

kroo. From (B)

Pt+if(xt) - Ptxt a Pt+if(x) - ptx for all x • 0

or Pt+i(f(xt) - f(x)) • pt(Xt - x)

(x - x)
or Pt+l/Pt ? ) -- ' I for x >

X tP
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from which the result follows.

LEMMA 3. If < xt,ct;pt > is competitive then Pt

approaches 0 and xt and ct approach c monotonically.

Proof. The first assertion follows from the

previous Lemma. Suppose (ct) were bounded. Then

j there would exist c such that c < c and

U(CE) - U(ct) a 6 > 0 for all t. But from (A)

pt(--ct) c u(c) - u(ct) > 6 for all t

and we have seen that the left hand side above approaches

zero, giving a contradiction. Since ct becomes infinite

so does xt and monotoneity follows from Theorem 3.

THEOREM 6. If there is an optimal program then u

must be bounded.

Pr.oo. Let < xt,ct > be an optimal, hence

competitive, program. From (A)

U(cl) - U(Co) P Po(Cl-CO) - po(f(Xo)-xl) -- Po(-Xo)

u(ct+i)'U(Ct) P pt(Ct+l-Ct) - pt(f(xt)-xt+l)-Pt(f(xt~l)-Xt)

Summing from t 1 to T

U(CT+I)'U(CO) • PT(XT-XT+I)+ 1• (Ptf(xt)-Pt-lxt) -
t 1

- (ptf(xt-l) -pt-lXt-i)) + po(f(Xo)- s)

IJ
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but, the first term above is non-positive by Lemma 3

and the terms in the summation are non-positive from (B).

Hence

U(CT+l) .5 u(co) + po(f(Xo' - S),

so u(ct) is bounded for all t, but since ct

this means that u is bounded.

If u is bounded we establish the existence of an

optimal program by taking the limit as T - 0 of T-period

programs, as follows:

Let PT < xT,cT;pT > be a T-period program which
T

maximizes u(ct) (the final stocks in this case
T T

are zero). Now for a fixed t, the sets (xe) and [ct)

are bounded for all T. If in addition we knew that

PtT) was bounded, then a standard "diagonal process"

argument would establish the existence of a competitive

program P, a point-wise limit of the programs pT. Our

procedure will be first to prove the boundedness of (pt)

and then to show that F is efficient and hence optimal,

by Theorem 5.

We first need a fundamental inequality.

LEMMA 4. If < xt,ct;pt > is competitive then

t-•T pt t • T [(T) -U(CT1)]/(P1)
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Poof. From (A)

T-1 T-1
u(cT) u(cT - T (u(ct+l) -U(ct)) _ Z Pt(Ct+l Ct)

T - T
"S T (Pt - Pt+l)ct+l + PTcT - PT CT

- TI (1- pt+i/pt)ptCt + PTCT - T CT

T 11

so from Lemma 2

U(Cptc PT cT
U~T) (T -u0. P T 1 P tICT3

and we obtain (*) by rearranging.

We need a simple property of bounded functions.

DEFINITION 6. The member Pc is a a . of the

function u at the point c if u(c) -- u(s) I Pc(C-Z)

for all c. (If u is differentiable then pc a u'(c).

Note that Pt is a support of u at ct In any competitive

program.)

LENfA 5. It u Is bounded and PC Is a support of

u at c then limpc C 0.
c.*

• . Let a - sup u(c) and choose c so that
cZO

u(E) g - C/2, hence u(c) -u(;) c £/2 for all c ; 0.

Then
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E/2 Ž u(c) U( > pc(c -•) = p c(l-J/c)

Fr, if c > 2c then pcc < E.

C^ROLLARY. The set of numbers pcc is bounded.

We now aet a first economic application.

THEOREM 7. If u is bounded there exists a number M

such that for any competitive program < xtct;pt > the
T

quantity ET= t< M for all T.
t=;'=

g . Apply (* with T1 = 0 to get

ET .< Poco + p/p-1[u(cT) - u(co)]

but the right hAnd side is bounded by hypothesis and

the p."ceiri•g Corollary.

COROLLARY. If < xt~ct;pt > is an infinite competitive

program then tct converges.
twO

LEI9A 6. Por the programs PT the prices p., satisfy

T

Proa. Since the final stocks xT a 0 in PT

inequalit:y (3.9) becomes

ET

t--
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and since >t > 0 the result follows.

T
COROLLARY. The prices pt satisfy

T spTPt

Proof. Lemma 2.

THEOREM 8. There exists an infinite competitive program.

Proof. Take the point-wise limit of the programs

PT and call this limit P. It is a standard exercise

to verify that P is a competitive program.

To complete the existence theorem we must prove

t, Oat P is efficient. Let E = Ptt which exists
t=

by the Corollary to Theorem 7. Let W = pos + : ire.
t=l

We must show that this expression converges and that

E=W.

It will be convenient to consider the program P

to be infinite with the convention that for t > T

Xt = c = 0.

LEMMA 7. For any e > 0 there exists te such that

SpTC < e and r for all T.
t=tc tote

Proof. From Lemma 6, we can choose t1  so that

p T is arbitrarily small, but as Pt + 0, we have
1i
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Ct * (Lemma 3) hence u(ct) 4 I. = sup u(c) and
c>O

PtCt 0 since Pt is a support of u at ct (Lemma 5)

T Tthen we can choose t. so that pt ct < 6/2 and
IE 6

p/p-l(p. - u(ct )) c 1/2 for all T. Now apply (*) and

we have

PT T <T T + u( )] 6 for all T.

t=t t t te - tu¢ -I
e PtctT T pT TeFinally, by (3.9), E. < T + F .r so

t=O t t=l

T T T T®
r= = Pt t =Ptet e_ .

t=t t=t t=tE t=t6

THEOREM 9. The program P is efficient.

Proof. Let ET ~ ptc+ and let NT = T + +
t-O t=

and let E = t Ptt Now for T',T ' t it follows
t=o

from Lemma 7 that ETI -- ET < e and W -- WT < e,

so (ET) and (WT) are Cauchy sequences and converge

to their point-wise limits E and W. But ET a WT

for all T, hence E = 1, completing the proof.
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APPENDIX. The Case of More than One Good.

In these notes the entire analysis of optimal

programs has been based on the use of competitive prices,

and the existence of these prices therefore played a key

role. To establish their existence we were at some pains

in the proofs of Theorems 4 and 8 to obtain an a priori

bound on the values of prices for finite horizon programs.

This boundedness requirement is no mere mathematical

technicality but is quite essential to the understanding

of the models. We will here illustrate this further by

considering a very simple two good model in which there

is an obvious optimal program which, however, is not

competitive.

The model involves both a roducti2 ood P and

a upti oo Q , and there is a single Joint

process for producing both. Namely from x units P

invested in period t one obtains px units of P and

x units of Q in period t + 1. Assuming initial stock

of P is 1 a program < xt-ct > must satisfy

x 0  I., xt pXt_1 and ct xt for all t.

The inequalities here simply have the meaning that

one can throw away either production or consumption goods.

Now, it is perfectly clear that by any reasonable

definition of optimality the only optimal program is
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Ct pt sic

= c -- since any other program involves needless
x
throwing away. It also follows from the Kuhn-Tucker

Theorem that every T-period optimal program is competitive

for any utility function u. However

THEOREM 10. If p > 1 and the utility function u is

unbounded then the optimal program is not competitive.

Proof. We must first write down the competitive

conditions. Let pt and qt be the prices of P and Q

in period t. Condition (A) then remains

(A') u(c) -qtc is maximized at ct

and the profit condition (B) at time t is clearly

(B') qtx + Pt+lpx -ptx is maximized at xt.

Suppose now that < pt pt > is optimal. Then from

(B') we must have

(q) qt " (pt - ppt+I)

and from (A')

u~t) -- u(pt+l) _>qt(pt- pt+l).(-~tp -~~)

Summing from t - 0 to T-1 gives

u(l) - u(p) p (1 - -(To) or



30

(p-l)po > u(pT) -u(l) + (p-l)pTPT > u(pT) -u(l) for all T

but if u is unbounded this is impossible since pO would

have to be infinite.
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INTRODUCTION

The problems arising in optimal control theory are similar mathematically
to those met in the calculus of variations, with additional requirements
in the form of inequality constraints which must be satisfied. The subject
received its initial impetus from problems arising in the area of guidance
and control, and the basic results of Pontryagin eo at. (1962) are developed
from this point of view, as is much of the subsequent work on this subject
(Leitmann, 1962). However, as emphasised by Bellman, Glicksber& and
Gross (1958), a continuous spectrum of problems encountered by system
analysts, operations researchers, economists, and nuiragement consultants
in various phases of industrial, scientific, and military activity Mem be
included in an appropriate formulation of control theory. Two such
potentildly important applications are dynamic economic models (Usawa,
1964) and long-range capital investment studies.

As a greatly simplified example of the latter application, suppose that
the control u(t) is the rate of investment at time t. The state of the system
z(f) is described by the quantity of the ith product z(t) produced by
time t. The z,(t) are determined for any given u(s) by the system of dif-
ferential equations

I- : J, U, ), X(o) X.. t j10, TI.

The rate of investment is, of course, nonnegative and also may not exeed a
specified upper bound, so that 0:5 ui() ( a. Furthermore, it is required that
the production schedule satisfy the state constraints p,() : z,(I) S q,(0,

ISpoewarsdin part by NUA Uat NsG 665& andI pwa by do Madwnm
Rumftb Cater, UaiKw asm Aumy, M&asii, W wsl dar Cahao No.
DA-I 1..0.ORD20.K

D'



U*4 J. B.Roses

where the p,(9) and qj(9) are specified, and that this be done so an to
miniisethe total discounted investment

ovwn a fiite time T. Because of the presence of the state constraints,
this problem is of a type which is difficult btKh theoretically and computa-
tionully (me Berkovits, 1962, and Pontryagin ef at., 1962, chap. 6). In
actual practice the investment decisions would not be made continuously
but rather at discrete intervals, say, once a month. This is typical of a
dynamic process which can be formulated as continuous but which is
more usefully considered as discrete, since this gives both a more realistic
model and a computational method of solution.

The two important questions to be answered are:

1. Will any admissible (0 :5 uQ) :5 a) investment program satisfy the
production constraints? That is, does an admissible control exist?

2. If there are admissible controls, how do we find one which is optimal?

The remainder of this paper is devoted to answering these two questions
for a general class of discrete optimal control problems.

Some of the material here is based on parts of an earber report (Rosen,
1964). The author has also had the benefit of several discussons with
J. AMaie whose work in this area. has been most stimulating.

D16CRXTZ PROBLEM WITH STATE CONSTRAINTS

It will be useful to give a further motivation for the approach taken
here for the solution of optimal control problems. Such problems fall
nahtrally into two classes depending on their initial formulation, namely,
Anctiruvous and discrete. In general, we will solve the continuous problems
on a digital computer; this will require the numerical integration of systeme
of differetial equations-in fact, a discrete approxiniation to the contin-
uous process. We may therefore assumre, at least for computational pur-
posese, that we will always be dealing with discrete problems.

To be spociflc, we will consider a discrete problem as follows: Le zd a e
rsrsathe staftevector at time it (i - 0, 1, nm)and u, #Erthe

"a o up eding control vector for i - 0, 1,** - ,-m - 1. The initial value
xe Wspqecified, and we wish to determine the vectors dand ltso as to

wbere the z. Rnd a, must satisfy the recursion relation
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z,÷, - Z, = (z,, u), i - 0, 1, ... , m - 1, (2)

%here each u, must be selected from a convex, compact subset U C Br
and where z. must lie in a convex, compact subset T. C Ir. We &miume
that a(z, u) is a function from E" X U to E' with 7 e C' on P' X U and
that f(x, u) is a function from E' X U to E" with f e C1 on E" X U. We
as-.ume, further, that the sets U and X. are each specified by a system
of inequality constraints, that is,

Y.. fiXt I OWz _< 01 (3)

and

U -u I h(u) < 0), (4)

where g(z) is a function from 9' to E' with g t C' and convex on E" and
where h(u) is a function from E' to E' with h e C' and convex on E'.
The sets X. and U are assumed to be nonempty; by the convexity of
9(z) and h(u), they &re convex.

We may think of this discrete problem as arising from a finite difference
approximation to Lhe continuous problem

in jo (x(t), u(l)) dA, (5)

where
4) 1f x(• 10 ,,, T).

(0 - Zo. z(T)7,X., (6)

0() lU, 1 c 0, T).

The sum (1) is the simplest approximation to the integral (5) with
- T1im, 4, - ift, and a- "I. The recursion relatiom (2) in the "plot

finite difference approximation to the differential equation (6) with & I.
We may now consider the discrete problem an the min imiation o a

convex function on a flirte-dimensioual Euclidean e subject to the
equality constraints (2) and the inequality constraints (3) and (4). For
problems of this type, the apprpiate theory is that deralped by Kuhn
and Tucker (1951); see also Kaxtin (1959) and Pm-ep (1963). For our
purposes, the most convenient statement of this theory i ementially that
given by Berge.

We let* - m(to + r) and denote by s g r the vector s' - (4*, ..- .
UL ... , U.',), where unprimed vectors aro column vec4ou mad whom
the prime denotes transpose. We will call & an adauisoU pow if the
Z4 (i- 1, " .m) stidy (2),t ., X., andm, # U (i - 0, 1,..m- 1).
8uppoe we have an admisble point s determin by ze. i - 1, -.
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u*,, i - 0, ".. , m - 1. We will denote by g.(x*.) the k X n Jacobian
matrix of g(z) evaluated at 4 and by h(u*,) the I X r Jacobian matrix
of h(u) evaluated at u*. We will also denote by #°(xs) the matrix in which
we have replaced by zeros the jth row of g,(xo.) if the Jth element of #(Z!) < 0.
Thus, we have g'(z)•.(*) - 0. The matrix &(u*) is defined similarly
for i - 0, 1, ... -, m - 1, so that h'(u*,)c•(u*) - 0 (i -f 0, 1, ... -, in - 1).

We also let f.(z, u) and f.(x, u) denote the n X n and n X r Jacobian
matrices of f.

An admissible direction 2 at z0 is given by vectors f, (i = 1, -.. , m)
and , (i= 0, , m - 1) such that

:,÷1- =, M4(z, u*)E, + M4( ?,u*)tz,, i = 0, I. n - 1,

go -0

and

Q~u*)'d, < 0, i - 0, 1, ... ,n - 1.

It follows that if y e E° is not an admissible direction at z, then it points
outward from the set of admissible points at 0*; that is, z0 + ay is not
an admissible point for every sufficiently small a > 0.

The sum (1) to be mininized is given in terms of z by letting

99-1

,(z) = fo'(x,, u,). (7)
i-O

We will say that an admissible point z* is a relative minimum if

*(z*) _< #(z* + Cd) (8)

for every admissible direction 2 at z* and sufficiently small a > 0.
We can now state the necessary Kuhn-Tucker conditions for a relative

minimum.

Theorem 1A: If an admissible point z* is a relative minimum, then
there exist vectors X,, t E (i - 1,*.. ,m), a vector P. v 0, P. e Eh, and
vectors _0, , E' (i = 0, 1, . ,m - 1) such that

'~.g(4.) = 0, (9)

q,ih(u*,) 0, i -0, 1, .. * - 1, (10)

and such that the Lagrangian function

.n-I Mn-1

*(z) 40 (z) + E MO+I[Xi -I -i(x, u,)I + z'.,(xu) + E ',h(u,) (11)
0-O -0
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has a stationary point at z = z*, that is,

= 0. (12)

Proof: The proof is essentially that given in Kuhn and Tucker (1951)
or Berge (163) anid is based on the Farkas lemma.

Corollary: At a relative minimum z, the value of the LagrangiwfNno-
tion 4 (z) and the Qum (1) are equal. Furthermore, the vettors X•, P,,
and i, must satisfy the following system of equations:

,.- X, = -fj(xy, u1,),+, + 01(z?,, u), i 1, , m - 1, (13)
S= - g:(4_),., (14)

and

,• ='(x,, u,)X,,0 - o'(,, v), i = 0, 1, ... , m - 1. (15)

Proof: Because of tk .. iplenientary requirements (9) and (10) and
the fact that the %nissible po;it z* satisfies (2), we have

I1--00(e) =St: -- ~*, *)
i-O

The L'-stem (13) thiDugh (15) is equivalent to (12) and is obtained by
s, tting zo zero the partied derivative of 4' with respect to each component
•t Z.

It is clear from the form of (13) that this recursion relation for the X,
is closely relatd to the usual adjoint equation for the continuous problem.
The termiaia value . for the!,adjoint vector is specified by (14).

In Theorem 1A, necessary coLditions for a relative minimum were
given with no conditions on a(x, u) and f(x, u) other than differentiability.
We now show that if u(x, u) is convex on E" X U and if I(z, u) is linear
on E" X U, then the conditions are also sufficient for a global minimum.

Theoremn A: Let a(x, u) be convex and f(x, u) be linear on E" X U.
If z* is an admissible point and thexe exist vectors A, and nonnegative
vectors Y. and 1, such that (9), (10), (13), (14), and (15) are satisfied,
then z* is a global minimum.

Proof: We will denote by Z C E' the direct product of the sets z, e•R'
(i1, ... , m) and u, e U (i = 0, 1, ... , m - 1). Then the function
#(z) is convex on Z, since each term is convex on E" X U. The first sum-
mation in (11) is linear in z and therefore also convex on Z. The remaining
two terms are convex by assumption and by the fact that P. and the V

I
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me nonnetie Theore, 0(s) in Oonve on S. Now a esationary oint

of A oonfWr a Ob l A •i 8•iURo thbt

4<8*) - mi n(a). (18)

As above, we have O(s*) - O(s*). Furthermore, for every admisible
point :, we have from (2) through (4) that

f(s) 5 0(s). (17)

Then, from (16) and (17), 0(z*) _< 0(s) for every admissible point a,
so that z* i as global minimum.

By means of a straightforward modiecation, the previous resulh can
be extended to include the cae of constraints on the state vectors z,
(i - 1, -..- , m - 1) in addition to the constraint zt a X.. To show this,
let us require that

Xz, X,, i = 1, I** i, '18)

where each X, is a convex subset of E*, specified in terms of convex func-
tions g'(x) from E' to r', for i - 1, . .. , m, with "(z) - g*(x. We thera-
fore have

X, - 1z I g'(z) < 0}, i = 1,*..,m. (19)
Note that X. is identical to that given by (3). An admisesble poizt is
now one which satisfies (2), (18), and u, t U.

The extension of Theorem IA to this state-L ounded problem is given by:

Theorem IB: If an admissible point z* is a relative minimum, then there
exist vectorsX, aE" (i - 1, .. , w.), vecters , > O, ,, a r ! (i - 1, ...- )
and vectors Ž, ý> O,' V4 E' (i - 0, 1, .... m - 1) such thaý

S' ' 01,).=o it - I, .. ,MO (20)
%Wg(z,)-O, ji-O,... ,m,- (21)

and such that the Lagrangian function

r--
46(s) - #(S) + I d+.1[d,. - , - f(X4, U]J

tn -(22)

i1 doez' ~ih~ 4

has astationsry point ats - 5**
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Similarly, the corollary to Theorem IA now becomes:

Corollary: At a relative minimum z*, we have
rn-l

z -(z*) E- o(, u,).
i-0

Furthermore, the vectors X,, Pi, and n, must satisfy (14), (15), and

X, - A, = -f(x?,, u,)X,÷ + o.(,, u4) + g. ,z,) ,,

i= 1,.. ., -I (23)

Finally, the extension of Theorem 2A gives:

Theorem BB: Let a,(x, u) be convex and f(z, u) be linear on E" X U.
If z* is an admissible point and there exist vectors ý and nonneative
vectors v, and i, such that (20), (21), (23), (14), and (15) are satisfied,
then z* is a global minimum.

CONVEX PROGRAMMING SOLUTION

We are now in a position to consider the computational solution of the
discrete optimal control problem with state constraints. We limit our
discussion here to problems for which the optimality conditions are suffi-
cient, namely, o(x, u) convex and f(x, u) linear. In the interest of simplicity,
we will also assume that the constraint sets U and X, are defined by linear
inequalities, that is, that the functions h(u) and g'(x) are linear. The
method for f(z, u) linear discussed here is the basis for a convergent
iterative procedure for solving the more general cae where &(z, u) is
convex. This more general case is described in another paper (Rosen, 1966).

The general, variable coefficient linear case will be considered, that is,
a discrete approximation to the differential equation

S- A(I)x + B(I)u, I, [0, TJ. (24)

We will letA, - A(tj and B, = B(t,) (i = 0, ... , m) and use the finite
difference approximation

x,., - xi = 4t[8A,.jzx,. + (1 - O)Az,] + rBtui,

i-0, 1,. , t-1, (25)

where 0 _5 0 _5 1. For 0 - 0, this gives the explicit (forward) scheme (2),
while for 0 - 1 it gives the fully implicit (backward) scheme. The value
9 - j gives a numerically stable method with minimum truncation error.

The relation (25) may be solved for x,÷, to give

'i+1- Kjx, + Bju,, i - 0, 1, "." , ,n - 1, (26)



M J. B. Rosen

where
K, I - - -!•A,+,]1[+ 1 (27)

and

, -�[I - A,+•, BA. (28)

The solution to the finite difference equation (26) is given by

we t Y-,zo + Y, i Aý+,iu,, i = 1, ... , (29)
1-0

where the matrices Y, satisfy the homogeneous equation

Y,+I =K,Y,, YO = I, i = 0, 1, ,m - 1, (30)

and where the matrices A, satisfy the homogeneous adjoint equation

A,= m K,'A,+, Y.A' . = I, i = m - 1, ,1. (31)

It follows from (30) and (31) that Y,AI = Y,+1 Al+l = I, so that Al - Y7'
(i - 1, ... , m). Furthermore, the actual calculation of Y,zo and of the
coefficients of the u, in (29) requires only the inversion of an n X n matrix
to get each K, and the multiplication of n X r matrices. These quantities
are therefore readily calculated from the specified values of zx, A(t),
B(t), m, and e.

Because of the linearity of (29), we can use these relations to map
the original problem into the control space, that is, the product space
of the u,. This reduces the original problem to one of minimizing a convex
function subject to linear inequality constraints in the space E"'. Since
the original problem involved 8 = m(n + r) variables, and since r < n
(often with r - 1 or r = 2), this may effect a considerable reduction in
the number of variables. To accomplish this reduction, we replace each
zi in the sum (1) and in the linear inequalities g'(z,) :5 0 which define
the X, by the corresponding righthand side of (31). Each vector g'(z,)
thus gives rise to c, linear inequalities on the u,. We also have the original
set of I linear inequalities h(u,) :_ 0, which ensures that each ui e U.
We therefore have a system of

mI + k, - m(I + k)
4-a1

linear inequalities which must be satisfied by any admissible set of vectors
ui. Because of the way in which these inequalities arise, they have a
special structure which can be used to advantage. We will represent the
iuequalities obtained from the g'(z,) by
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I--!

XDlu,- p _ 0, (82)I-0

where each Di is an r X mI- matrix and where p t E"'. Because: z, involves
only values of u, forj _< i, the matrix D' - [DMD[ ... D.IJ has a loWer
triangular structure. The matrices Di will depend on the matrices At, Bi,
and the matrices which define the linear transformations g'(z,), as well
as on 0 and m. The vector p will also depend on xo, as well as on these
other quantities. The important point, however, is that the matrices Di
and the vector p can be explicitly computed with a reasonable amount
of computation.

In order to simplify the discussion, we will denote by w a k"' a vector
which specifies the control fnr i - 0, 1, .-* , m - 1, that in, w' -
(W4, uW, ... , utJ). Two subsets of E' are then given by

W, ={w DjDui - p : } (33)

and

W = fw Ih(u,) _< O, i - 0,""* ,m - 1J. (34)

Since it is determined by linear inequalities, W, is closed and convex
if it is not empty. Since W. is the direct product of compact convex sets,
it is compact and convex. Then

IV - WI, n W, (35)

is-compact and convex if it is not empty.
The first important question about the discrete problem can now be

answered: Does there exist any admissible control? This is equivalent
to the question: Is W an empty set? Good computational methods are
available for determining if a solution to a system of linear inequalities
exists and, if so, for finding such a solution. Since the inequalities of (33)
and (34) have the natural form of constraints for a dual linear programming
problem, a dual simplex procedure can be used for this purpose (Dantuig,
1963). The starting procedure for the gradient projection method (Rosen,
1960) is equivalent to this and may conveniently be used for this purpose.
Another approach would be to use the duality theory of linear programming
and to consider the primal problem corresponding to the dual constraints
(33) and (34) and an arbitrary linear dual objective function. This objective
function can always be chosen so as to give an initial primal feasible
solution. The duality theory then says that if the primal problem has a
finite maximum, the corresponding dual solution is dual feasible (that is,
an admissible eontrol). A :, i, :ihe linear programming code can therefore
be used for this purpuse.
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Once we have determined that an admissible control exists, and in
fact have actually determinA eucb a control, we can proceed to find
an optimal control. We do this by once again -sing (29) to eliminate
the zi, this time in the sum (1), to get a function p(w) to be minimized.
Since convexity is preserved by a linear transformation, the function p(W)
is convex. We have now reduced the original discrete problem to that of
finding

p(w*) = min p(w),
Wtw

that is, the minimization of a convex function subject to linear inequality
constraints. Furthermore, we have an admissible control toe (determined
as discussed above) with which to start the minimization procedure. A
number of computationally tested methods are available for the solution
of such convex nonlinear programmingjproblems (Rosen, 1960, and
Hadley, 1964). In the special case where u(x, u) is linear on E' X U,
the problem can be solved in the dual form by a dual simplex method or,
in its primal form, by any primal simplex code. The possibility of formulat-
ing a discrete linear optimal control problem as a linear programming
problem has been considered by Zadeh and Whalen (1962), An efficient
method of solution for linear problems with large values of m has been
proposed by Dantzig (1966), based on his generalized upper-bounding
technique.

Once the optimal control w*' = (u*s, u*', ... , u.*1) has been calculated
in this way, the optimal state vectors x* (i = 1, ... , m) are immediately
given by (29). The Lagrange multipliers (or shadow price vectors)
Y, (i - 1, ... , m) andi , (i = 0, ... , m - 1), corresponding to the state
and control constraints, are also available as part of the convex pro-
gramming solution. These quantities may be of considerable interest since
they give the rate of decrease in the function value with relaxation of
each constraint. The influence of parameter changes on the optimal solution
can also be obtained by use of the parametric solution features of many
codes. Finally, if desired, the optimal adjoint vectors satisfying (231
with I(, u) linear can be calculated from

X, - K'N,., - dXi u*) - g:'(X.1'(), i - m - 1,..,,

utar'ting with ?. -- T'-),.

COMPUTATIONAL EXAMPLE

The previous discussion will now be illustrated by means of a variable
coefficient linear problem with four state variables and a scalar control.
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In addition to bounded control, we also impose state constraints on one

of the state variables. The system considered is in the form (24), with

TA(t) = tAr + (T - t)Ao

and

1 0 011 0
0 0 1 01 00 0 A00

L-4 -10 -10 _5j [i A1 -12 25
BMT - b - 1.0 1, - [ .L4.s ro .

The control must satisfy Ju(t)[ I_ 1, so that h(u) U - I We also

impose the terminal constraints z3 (T) = z,(T) - 0 and the state con-
straint Ix,(t)I _< 0.5 for 0 < t < T. These give

L -z 4 0) - 0.5

g-(x(T)) = -xM(T)

M,(T)

We wish to minimize the terminal Euclidean norm JJx(T)JJ. This system
is similar to a constant coefficient system for which a numerical solution
has previously been obtained (Ho and Brentani, 1963).

The optimum solution to this problem, using the finite difference
scheme (25) with 0 - j, is shown in Figures 1 and 2. The values T - 2.5
and m -. 25 were used so that 4* - 0.1. The optimum control is grown

in Figure 1, and the trajectory as given by the four state variables zi(i,)
( -= I, ... , 4; i = 0, ... , 25) is shown in Figure 2 for the ce with no
state constraint on x,(t,. The minimum value of the objective function

attained is JJz(T)lJ' - 0.008456. The optimal solution to the same problem
with the state constraint IxZ(0,)l _ 0.5 is shown in Figures 3 and 4. The
distinct change in the control required to satisfy the state bound should

be noted, as well as the increase in the terminal norm squared to 0.020922,
which is due to the fact that the admissible control set W is smaller because
of the state bound.

I Figures 1 through 4 appear on pagr, f.14-6; tezt resumea on page S*

I

S .
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These solutions were obtained by using a progra. based on the scheme
described by (25) through (34). The convex programming problem ob-
tained in this way was solved by using the gradient projection computer
program (SHARE distribution f1399). The solution time required for
each of these problems on the oM 7090 was approximately two minutes.
The program and its use to obtain the optimal solution to a variety of
typical problems will be described elsewhere (Rosen and (o'Hagan, 1968).
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|I. HAtLRIN: At the beginning of your paper, you said that the condition
wLa neeomry and sufficient. At that time you did not specify exactly
the cam where this would be true.

X: B. RosL'W: The question is: When are the Kuhn-Tucker conditions
Pufficient for the discrete control problem? The answer i,% that in general
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they are only sufficient for a linear system of difference equations, that i,
when j(x, u) in (2) is linear. This is because for sufficiency the admissible
space, over which the minimization is carried out, must be a convex set. The
admissible set consists of those points z e EE, z' - ( z', ... , , ... ,
which satisfy (2), z. e X., and u, a U (i - 0, . m - 1). This cannot
be convex if &(x, u) is nonlinear.

J. MOSER: Is there any analysis which tells you or gives you &n indica-
tion whether the discrete problem really approximates the continuous
problem?

J. B. Rosmr: The question of convergence of the discrete problem
optimial solution to an optimal solution of the corresponding continuous
problem is closely related to the set of reachable points z. * R* given
by (29) with u, a U. For specified values of z., A (t), and B(), the reachable
set will depend on m and 9. What we would like is that the reachable
set expands as at --, 0 or m ---. . It can be shown that this wilin fact,
be the case under certain conditions if 9 is correctly chosen in (26). On
the other hand, simple ext nples can be constructed by using the explicit
scheme (9 = 0), where the reachable set shrinks as m --+ -a. In such a
situation, one may find that, as the grid sie is decresed (m --e wm), a
value exists such that for all larger m it is no longer possible to reach
the terminal manifold. In such a case, one clearly does not have convergence.

J. Moman: I think it would be an interesting question to investigate
the conditions which would ensure convergence.

H. HALKIN: There is a paper by Professor Markus (paper 6) on the
stability of solutions of optimal control problems with respect to changes
in the data of the problems. I think that if a problem is stable in Professor
Markus' sense, then the solution of a discretisation of this probi!m will
tend to the solution of the problem itself as the diaremtization is m•de
finer. Professor Markus gives an answer to such a problem in the cae
of a linear system with constant coefficienta.
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ITERATIVE SOLUTION OF NONLINEAR OPTIMAL CONTROL

PROBLEMS*

J. B. ROSENt

Abstract. The solution of nonlinear, state-constrained, discrete optimal eontiol
problems by mathematical programming methods is described. The iterative solution
consiets essentially of Newton's method with a convex (or linear) programming prob-
lem solved at each iteration. Global convergence of the iterative method is demon-
strated provided a convexity and constraint set condition are both satisfied. The
computational solution of nonlinear equation control problems makes use of a previ-
ously developed method for state-constrained linear equation problems. The solution
method for nonlinear problems is illustrat( d by means of two numerical examples.

1. Introduction. The optimal control problem considered here is a rather
general type of discrete problem. We wish to minimize a convex function of
the state and contro! vectors, where the control vectors must lie in a speci-
fied con-vex set. In addition the state vectors must also satisfy specified
constraints at eacb discrete time, as well as initial and terminal conditions.
Furthermore, the system dynamics may be given by a nonlinear recursion
relation provided that the nonlinearity is convex in an appropriate way. A
discrete system of the type considered here may represent a process which
is actually discrete (see, for example, [3], [1]), or it may be obtained from
a finite difference approximation to a continuous system in which we wish
to minimize a coLvex functional. Such an approximation is always required
when a numerical ntegration, using a digital computer, is part of the
solution process.

The purpose of this report is to describe a computational method for
solving this general type of discete problem, and to show by means of the
relevant theorems that the method will always work when the appropriate
assumptions are satisfied. The method is an iteritive procedure that deter-
mines a sequence of admissible trajectories (state and control vectors
satisfying all constraints); the sequence converging to an admissible tra-
jectory that satisfies the necessary conditions for optimality. The method
has been used to obtain numerical solutions to several small nonlinear test
problems. In addition to showing that it is not difficult to implenment the
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scheme described here, these numerical results show that, at least for the
test problems considered, the number of iterations required is small.

In a previous publication [14] a statement of the Kuhn-Tucker condi-
tions was given for the nonlinear state-constrained problem considered
here. A computational procedure for systems described by linear recursion
relations was also given based on a convex (or linear) programming com-
puter code. Numerical results described there show that this computational
procedure is efficient for typical linear systems. The method described in
the present paper takes advantage of this efficiency by solving a sequence
of such linear problems. From this point of view the method of the present
report may be thought of as Newton's method (see, for example, [9]) with
a convex (or linear) programming problem solved at each iteration. The
use of various forms of Newton's method for the numerical solution of opti-
mal control problems has been proposed in a number of earlier publications
[4], [61, [10], [12]. The two important differences between the method de-
scribed here and these earlier proposals are that (1) in the present method
global convergence is assured when a convexity and constraint set condition
are both satisfied, and (2) large changes in both the control and state
vectors may take place at each iteration until these vectors are close to their
limiting values, thereby greatly accelerating convergence during the early
states. The limiting convergence rate is quadratic, as expected in Newton's
method.

Another way of looking at this method for nonlinear problems is that at
each iteration we get an admissible and optimal trajectory which satisfies
a linear recursion relation which differs to some extent from the true non-
linear recursion relation. At each iteration the amount by which the lineari-
zation is in error decreases, so that in the limit the trajectory obtained is
an optimal solution to the linearized problem obtained by linearizing about
the limiting trajectory. Since it is the recursion relation which is linearized,
the limiting trajectory is the optimal solution to a control problem described
by linear recursion relations. It therefore follows that for the class of dis-
crete nonlinear problems considered, the optimal solution has the properties
of a solution to a discrete problem with linear recursion relations.

The requirement that the state vectors satisfy specified constraints
usually increases the difficulty of the optimal control problem (see, for
example, [5] and [13, Chap. 6]). In the approach used here to solve the
state-constrained discrete problem, the convergence proof uses the fact
that the state vector at each discrete time belongs to a convex compact set.
In this sense then, the liability of thc statu-constrained problem has now

.ecome an asset. The existence of state constraints also introduces a sym-
metry into the problem, so that the usual sharp distinction between the
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(independent) control vectors and (dependent) state vectors larply
disappears.

The method described here applies to a recursion relation in the form of
a system of inequalities, and might represent a finite differeno asporema.
tion to a system of differential ineuaitise. By the use of a modified objec-
tive function, the problem usually considered corresponding to a GyBMn of
differential equations can be handled. The "classical" two-point boundary
value problem can also be solved in this fashion by allowing the control
vector to represent the error in the difference equations and
this error.

It should be emphasized that while the convexity assumption is needed
in order to prove convergence, the computational method can be applied
even when this assumption is not satisfied. In many such cases the iterative
method will still converge, and if so, the trajectory obtained will satisfy the
necessary conditions for an optimal trajectory. Furthermore, at each itera-
tion a linear constraint minimization problem with either a convex or linear
function is solved. Because of this, the method will almost always converge
to a trajectory, which is at least a local minimum of the objective function,
rather than an arbitrary stationary trajectory. It should also be mentioned
that the method considered here requires only the Jacobian matrix (first
partial derivatives) of the system equations, and does not need the Hessian
matrix (second partial derivatives) as required by some other computa-
tional schemes [6], [101, 112]. For many nonlinear problems this may permit
a great reduction in the computation required.

While the iterative method described was developed for problems arising
in control theory, it may also be used to solve any finite-dimensional con-
strained minimization problem of the general type considered. In this
respect the method is also a contribution to the solution of nonconvex
mathematical programming problems.

2. Problem formulation. The discrete optimal control problem we shall
consider here is to determine m + I state vectors z,* E E" and m oontnil
vectors ui" E r' which satisfy (2.2), (23) and (2.4) and such that

=n-I M-I

(2.1) u(z,*, u!) - min .(z4, ,a)

for all vectors z, and u, that satisfy the recursion relation
(2.2) X4+1 - Z, - A(z,, U,), i - 0, 1, .. ,M - I,

with

(2.3) ui E U, C E', i -0, 1, " ,-m - 1,

, t
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and
(2.4) z, E X, C: E', i - 0, 1, M...

The subsets X, and U, are assumed to be compact and convex. We assume
that r is a convex function from each direct product Xi X U, to El. We
also assume that f is a function from each X, X U, to E*. An additional
assumption on the differentiability and convexity of the components of f
will be needed later. It should be mentioned that the results obtained
actually hold (with obvious modification) for the more general case where
a and f may depend explicitly on the index i. When the discrete problem is
obtained from a continuous problem, this corresponds to the explicit
dependence of a and f on time. However, in order to avoid the complication
of additional subscripts we will limit consideration to the simpler case.

A discrete problem of this type may arise directly, or it may arise as a
finite difference approximation to a continuous system. For example,
suppose that in the original continuous system we wish to determine a
control t,(t) with range U(t) for each t E [0, TJ, and a trajectory x(f)
with range X(t) for each t E [0, T7, such that the functional

(2.I)

(2.5) &(x(l, u(t)) di

is minimized, and z(t) and u(t) satisfy the system of differential equations

(2.6) x - (xu), tE [o, T.

The sum (2.1) then represents the simplest approximation to the integral
(2.5), and the recursion relation (2.2) the simplest finite difference approxi-
mation to the system (2.6), if we let Ai - T/m, a - At a, and f- AtL.
The form of (2.2) may be retained even when more sophisticated finite
difference schemes are used to approximate (2.6), but the relationship
between f and I will become more complicated. The use of a more accurate
implicit finite difference scheme when f is linear has been considered in
[14). It should be emphasised that in this paper we solve the discrete
problem for a fixed value of m, and that we are interested in convergence
(for fixed m) to an exact solution of the nonlinear discrete problem. The
convergence to the solution of the continuous problem as m -- . will not
be oonsidered here.

In order to show convergence of the iterative procedure we will consider
the discrete system (2.1), (2.3) and (2.4), with (2.2) replaced by the
system of inequalities

(2.7) Z,÷. - Zi 5f(z, u,), i - 0, 1, ,m - 1.

Such a nystem of inequalities may arise as a discrete approximation to a
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system of differential inequalities of the form t g fAz, u). On the other
hand, if one really wants to solve (2.2), this is accomplished by obtaining
an optimum solution to (2.7) with an appropriately modified objective
function, as discussed at the end of this section.

In order to simplify notation we proceed as in [14), and denote
a specific control (uo', ui', ... , uO- 1) and corresponding trajectory
(x0',X 1, , .. . , x') by a single vector z E E, where 8 - m(r + n) + n.
Thus, a solution to the discrete system ir specified by the vector

(2.8) z (',x , ... ,u0 ,u 1 ,

We will also denote by Z c E' the direct product of the sets X, and &, , so
that
(2.9) Z = r xX X I U,.

i"0 i--0

Since the sets X, and U, are convex and compact, Z is also convex and
compact. We can now represent the objective by means of the function

rn--i

(2.10) #(z) a i ,, U0.
i-0

It follows from our assumption concerning a that #(z) is convex on Z.
Finally we represent the I - mn equations (2.2) or inequalities (2.7) by
means of a function v(z) from E' to E'. We let

V(.1 - f,(x, u,) + x,., - X,+,
i - O, l, ... ,M - l, j - . , n

The equations (2.2) are then given by v(z)- 0, and the inequalities
(2.7) by v(z) k 0. In this notation we can restate our problem (2.1),
(2.3), (2.4) and (2.7) as follows:
(2.12) m(z) - min0 4*(z) 1' E Z, v(a) 9 01.

a

Some remarks on the nature of the admissible set

S - It IE Z, v(s) 9 01

are in order here. The set Z is by assumption convex and compact, it d in
fact will usually be a polyhedral set in E. The admissible set oorrep, ndinjo
to the original discrete problem (2.2), (2.3) and (2.4) is given by

St - It Iz E Z,v(s) - 01.

The set S1 is convex only if t,(z) is linear in z, that is, f(z, u) is linear in z
and u. If one or more components of f are nonlinear in z or u, the set S. is
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nonconvex. For a general nonlinear function f(x, u), the set S is also non-
convex. The iterative procedure of the following sections can be applied to
such problems and will, in fact, often converge. However, there is no
guarantee in the case of a general nonlinear f that the procedure will
always converge. In order to prove convergence we require that each
component of v(z) be a convex function. It should be emphasized that
this is not the requirement which makes S a convex set (except in the
limiting case where v(z) is linear). The set S is convex if each component
of v(z) is a concave function. Thus the convergence argument holds for the
minimization of a convex function over a certain kind of nonconvex region.

If we actually want to satisfy (2.2) we must obtain a solution to the
problem o(z*) = min.Es, 0(z); that is, we require v(z*) - 0. In order to
achieve this and still solve a problem in the form of (2.12) we let

(2.13) 4P(z) = W(z) + aj v,,,,
I,,

where a is a sufficiently large positive constant. Since each component
vi,, is a convex function, j(z) is a convex function. We then solve
minAs i(z), which is in the form of (2.12). It is shown in the Appendix
that provided the constraint set S satisfies a certain condition (essentially
the same condition which insures convergence) there will always exist a
value of a such that any local minimum of j(z) for z E S is also a local
minimum of 0(z) for z E S,.

We are now able to describe the iterative method for solving the discrete
optimal control problem in terms of the (in general, nonconvex) mathe-
matical programming problem (2.12).

3. Linearized problem. Let Z be a compact convex subset of Es, and v(2)
be a function from Z to E' with v E CM(Z). We assume that for some
zx E Z we have r(zo) > 0 and define a subset of E' by

(3.1) 8= =z z IE Z, V(z) ? 01.

Since zt E q, the set S is not empty. Also since S is a closed subset of Z
it is compact but, in general, not convex (see Fig. I).

If we let ,,(Y) be the I X s Jacobian matrix of v evaluated at z - y, we
can define for each fixed y E Z the linear function on Z,

(3.2) w(z, y) r,(y) + v.(y)(z - y].

For each y E Z we obtain a subset, of V given by

(3.3) W(y) , 1z 1 w(z, Y) ý 01.
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VS2!

V(S) - 0

FIG. 1. The convez set Z aind subaet S

Now we consider the point-to-set mapping

(3.4) r :z-* z,

given by

(3.5) =W(Y) n Z.

This is illustrated in Fig. 2.
Tii'oizu 1. The set ry is compac and coma. Furharmo, s rAc com.

ponent of v(s) is convex on Z, then for each y E S,

(3.6) YE ry C S.

Proof. For each y, the set W(y) is the intersection of I halfpaces, a
closed convex get. Therefore the intersection of W(y) and the compact
,onvex set Z is compact and convex. Next we note that since p E S,
(3 .7) to(Y, Y) - V(l/) ?. 0,

so that y ( W(y). Then since y E Z, we have y E Ip.
Furthermore, by the convexity of v(g), we have for any (y, s) E S X S,

(3.8) t,(z) i> v(Y) + ?,(3)[a - V1 - W(z, y).

Then for each z CW(),
(3.9)• V(S) a: t (S, Y) Jý O,

,A that for every z E W(Y) n Z we have z C S, or ry c S.
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Fix. 2. The cornex setube ry C S for y E S

Directly from (3.6) we get the following.
COROUARY. ry maps S onto S.
The constraints for the problem have now been defined in terms of

the convex subset Z and the function v(z). The objective function is given
by a function #(z) from Z to EV which is continuows awd convex on Z.
The iterative procedure, starting with an initial point ,y0 E S can now be
stated in a concise form. A sequence {yI' is obtained which satisfies

(3.10) m(in+') o mi *(z), j - 0,1,
,E ry,

Such a sequence is obtained by solving a well behaved convex constrmined
miaimisation problem with z E ry', to get the minimum #(y'*') at a
point y'+÷ E ry'. The convexity of the subset ry' and the function 0(s)
insure that a global minimum of 0(s) for z E ry' is attained at, -

Suppose that the sequence Iyu} converges to a limit point y*. We would
like to be able to state that the point y* is the optimum solution to the
partially linearized problem obtained by linearizing the constraints
v(s) a 0, about x' y'. That is, we want
(3.11) ()) -.

*t r,"

In terms of the original discrete optimal control problem (2.1), (2.3),
(2.4) and (2.7), this is equivalent to the statement that the control
u0*,i- 0,1, --. m- 1, and tmjec'ory r,I', - 0,1,-. ,M, give an
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optimal solution to the problem obtained by linearising (2.7) about u*
and z,*.

However, without some further amumption, the relationship (8.11) may
not hold. This is shown by the following simple two-dimawml cample.
Let

(3.12) Z - t i 0 S ,5 S 1, 0 1 S2 S J

and

(3.13) v(s) - 4(s, - m) i _ a,

no that the feasible set S is given by

S3.14) S - Iz 14(z - )2- 0,05: S S1,0;S,* 1S .

This illustrated in Fig. 3. Also let 0(s) - s . We have

(3.15) w(z, y) - v(Y) + 8(4t - i)(W , - It) - (22 - va),

so that for y' - ( 1, 0) weget

(3.16) ry' - Izs 4s, - z, - 3 i 0,0 S ,;S 1,0 S, S I).

Fla. 3. Tv.di.mu..,J. inVMp
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The solution to (3.10) forj -- 0 is easily seen (from Fig. 3) to be V' .
The sequence {IiJ} obtained in this way converges to y* - (1, 0), with

(y*- * . But ry* is the interval [0, 1] on the zi axis, so that
min.Er,. #(z) - 0, and is attained at z - (0, 0) 0 y.

In order that the limit point y* always satisfy (3.11) it is sufficient that
the mapping ry be continuous. The mapping 'y is continuous (both upper
and lower semicontinuous) if for any point y' E S and any point yV E S
in the neighborhood of y', there is some point of ry' close to each point
of Fy2. The continuity of Iy follows from two assumptions we make con-
cerning the set S.
(1) For each y E S, the Jacobian matrix v,(y) has full row rank, that is,
rank - l 6 s.
(2) For each y E S, the convex set ry contains interior points.
These two assumptions are essentially the Kuhn-Tucker constraint qualifi-
cation for the set S (see, for example, [2]). The proof that (1) and (2)
imply the continuity of ry is given in the Appendix. A slightly stronger
assumption than (2), which however involves only the rank of an aug-
mented Jacobian matrix, is also given there.

The difficulty in the previous two-dimensional example occurs because
the assumption (2) above is not satisfied. In particular, for y* = (Q, 0),
ry* is just the interval [0, 1]. As a result the mapping Fy is not continuous
in the neighborhood nf y*.

The first assumption above is always satisfied when the function v(z)
is defined by (2.11), as shown in the following.

LEMMA. If v(z) corresponds to the discrete recursion relation, as given by
(2.11), then assumption (1) is satisfied.

Proof. Directly from (2.11) we have that

av,..j _ -1,

(3.17) oIV,.jx = - O p j,

Lv,.= 0, q > i+ 1, p = l,...,n,
OXq,p

for i = 0, 1, , m - I ;J = i, -.- , n. Therefore the Jacobian matrix v,
contains a square (mn X inn) lower triangular matrix with elements -1
along its diagonal. Since such a matrix is nonsingular and since v. has mn
rows, v, has full row rank.

4. Convergence of iterative procedure. The iterative procedure will now
be considered in more dietail. We again consider the convex function * from
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Z to E", with 0 E C&(Z). Since S is compact, #(z) is bounded and attains
its minimum for z E S. In particular, let
(4.1) - mino(z).

slE

For each y E S, the set ry is compact so that the minimum of #(z) for
z E ry is attained. We let

(4.2) *(y) - min#(z).

We now show that because of the continuity of rF, the function *(v) is

continuous for y E S.
LEMMA. i(y) is continuous for y E S.
Proof. For Y' E S, let *(W) be attained at s' E rya, that is

'I,(y') = W(z'). Now choose 1" E S close to i, and let *(a") be attained at
za, so that 1'(y') - o(z'). Suppose 0(i) 9 #(z'). Now by the continuity of
ry we can choose 5' E rFy close to A'. Then by the continuity of 0(z) we
have 0(2') close to #(z?). But since #(z') S #(z) for every s E Frp, we have
(4.3) OWz) ;% 0(4) ;9 •(W),

so that o(z') is close to 0(z').
A similar argumeAt holds for #(z') S #(z?).
Starting with V0 E S we generate a sequence of vectors fvj as follows:

(4.4) 0(v+ 4) - min'0(z), j - 0, 1, ...

Note that if Z is a polyhedral set then Fy' is a polyhedral set determined
by specified linear inequalities. Furthermore, 0(z) is a convex function, so
that for each ya we solve a straightforward convex programming problem
with linear constraints.

THEOREM 2. Eery vector of the sequence j is in S. The corresponding
-equence of values 1,0(y')) is monotonically decreasing. The seqence fya
contains a convergent subsequence converging to a point Y*E S su that
(4.5) # 4(Y*) sc6Y'), j -- 0, 1, ..

and
(4.6) 0(y*) - min #(z).

Proof. By Theorem 1, we have y' E ly'1 C S, so that each V" is in S.
Also since yj E c ry we must have

(4.7) *(yi*1) m in(z) S 0(yl),

-, that 10(y')] is nionotonically decreasing.
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Since S is bounded the sequence {yj} contains a convergent subsequence.
Let y* be the limit point of such a convergent subsequence. Since S is com•-
pact, y* E 8, and O(y*) - p. Furthermore, from the monotonicity of the
sequence {0(y')l the relation (4.5) must hold.

To demonstrate (4.6), we observe that since y* E S, we have y" E C y*,
so that

(4.8) mI,(y*) m r (z) _• O(y*).

Now suppose that ,I(y*) < O(y*). Then by the continuity of 4,(y) we can
pick k suificiently large So that TI(y,) < 0(,y*). But from (4.2) and (4.4)
we have '(y•+) 'Py), so that t(y0 +) < (,(y*), whkh contradicts
(4.5). Therefore we must have 4'(y*) = O.y*).

THiF,OREM 3. Let y* be a limit point of iy'. T•hw y* is the global minimum
of the partially linearized problem about the poinl y*. Furthermore, the opti-
raliiy conditions (the Kuhn-Tucker necessary conditions) which must be
satisfied at a global minimum of the problem (2.12) are, in fact, satisfied at y*.

Proof. The set ry* is the intersection of Z and the convex set W(y*)
obtained by linearizing the constraints v(z) > 0, about z = y*. It follows
immediately from (4.6) that y* is a global optimum solution to this partially
linearized problem.

A _s menti3ned in the previous sectiop, the assumptions (1) and (2) on
the set S are equivalenit to the Kuhn-Tucker constraint qualification. It is
shown in their origina! paper [11] that with this qualification the optimum
solution z* to a general nonlinear problem has the property that the gradient
VO(z*) must belong to the convex cone of iniuard normals to the active
constraints at z*. The solution y* to the partially lirearized problem about
y* will, of course, also have this property. Therefore, V•(y*) btlongs to
bhe convex cone of inward notrmals to the active constraints at y*, i.e., the
Kuhn-Tucker necessary conditions for a global minimum are satisfied
at y*.

5. Computationpl solution. The computational solution of the nonlinear
discrete op",imal control problem (2.1)-(2.4) is considered in this section.
We will assume that the convex compact sets U, and Xj are convex poly-
topes defined by specified linear inequaiities (see Appendix). In order to
apply the computational method we need only make the additional assump-
tion that the functions -(x, u) and f(x, u) are of class C' on each X, X UO.
However, ii order to insure ihe validity of the convergence proof (Theorem
2) we must make an additiontd assumption concerningf and an assumption
aboutthe linear inequalities defining the X, and Ui. We assume that each
component f, off, .i 1, ..f. , n, is either convex or concave on X, X U .
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For i =0,1, , m - 1 andj' - 1, ,,n we let

V -.- = fi, u,) + Xij - Z+1'i,
(5.1) J =6. for f, convex on Xi X Uj,

,= ,- Vi,, for f, concave on Xi X U,.

The function v(z), with components vi.j, is this a conrvex function on Z.
Furthermore, the equations (2.2) are now equivalent to v(z) = 0.

As discussed in the Appendix 'the linear inequalities which define the
Xi and U, are specified in terms of the vector z by a,'z - bi a 0,
{ = 1, . . , k, giving the polyhedral set Z. We make the following assump-
tion about these linear inequalities. Let g E S be a boundary point of Z,
i.e., v(9) =0, and a,'g-b, =0, i= 1,... ,. Then the (l+k) Xs
matrix consisting of v.(g) augmented by the rows ai', i = 1, - , k, is of
full row rank (=I + k). According to the Lemma at the end of §3, v,(y)
is always of full row rank, so this assumption is essentially a condition on
the vectors ai. As shown in the Appendix it follows from the full rank
condition that ry is a continuous mapping. The convergence proof of
Theorem 2 is applicable because v(z) is convex and ry is continuous.

At each iteration we wish to solve a mathematical programming problem
of the form,

(5.2) min {,(z) I a,'z - b, k 0, i = 1, ... , k; w(z, y) 2ý 0).

This is a linear constraint problem with m(r in) + n variables and
k + I constraints. For small problems a direct computational solution-of
(5.2) causes no difficulty. In many practical cases however, the number of
state variables is greater than the number of control variables, i.e., r < n.
In such a case there is a considerable computational advantage in. treating
the linearized problem (5.2) as the linear problem was treated in [14]. In
effect, the linear relations w(z= 1) - 0 are used to solve explicitly for the
vectorsx•,Ii = 1, • ,m, in terms of xo and the uj, i = 0, 1, ... , m - 1.
Substitution for the vectors x, in 0(z) and the inequalities ai'z - bi ; 0
reduces the original problem (5.2) to one in only mr + n variables. This
reduced problem may then be solved by an appropriate linear constraint
method which takes advantage of the particular form of 0. For example, if
* is quadratic, a quadratic programming method may be used.

In the important case where 0 is linear, a further efficiency is made
possible by treating the reduced problem as the dual problem, and solving
the "ornsnonding primal linear programming problem. This permits us to
take advantage of the fact that the variables of the reduced problem (the
control variables) are not required to be nonnegative, and that there are



236 J. B. ROSEN

more inequality constraints than variables. The corresponding primal
problem consists of mr + n equations in mn + k nonnegative variables.
The numerical examples discussed below are of this type.

The use of the linear equality relatiors w(z, y) = 0 has the additional
computational advantage that no modification of the true objective function
is required. On the other hand a possible theoretical difficulty may arise
since even with v(z) convex it is usually not true that y' E ry' when ry is
determined by w(z, y) = 0. Thus the monotone behavior of 0(y') is not
guaranteed. However, no such difficulty has been observed in the actual
numerical calculations.

In order to illltrate the application of the iterative method we will
discuss two numerical solutiout4 to a nonlinear problem. The problem con-
sidered is a discrete approximation to the following continuous scalar
(n = 1) problem:

min u(t) dt,

subject to i = f(x, u), Is(t)I u 1, for t E [0, 1], and x(0) = 1, x(1) =

where f(x, u) = -ix + x' + u(t). An additional state coDstraint is
imposed in the second example. The initial trajectory used to start the
iteration was xi(t) = 1, for I E [0, 11.

For these examples the simplest (forward) finite difference scheme was
used, namely,

(5.3) xj+1 - Xi t Atf(xi, u,), i = 0,1, ,m - 1,

so that

(. Vi Atf(xi , U,) + xi -X,+J = (1 -- jt)xi + At(Xi) 2

(5.4)
+ Alu, - x,+.. , i = 0,1l, . ., m - 1.

For xi' known, the linearized system which must be satisfied by xij+' and

j++1

u~j+ is

w, = -i+•1 + [1 + At(2x1j -- 4)JXj+1 + Atuhi.' -,•I(xii(5.5) _

S0, i= 0,1,.,**M- 1.

This system is solved using the specified initial value for x(0) to give the
Xii+1 explicitly as linear functions of the ui+ ,

(5.6) -i- d ' (u , . . . , ), i = 1, ... m.

The following linear programming problem (in the dual form) is then
aslved at each iteration to give the new optimal control u(i+,
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'if 0 , 1, .,M - 1:

min ýE ui I-lIu I, i-O, 1,'. -1

(5.7) i_0"
I ;S d.""(u.-,U.-,2, .' ,) : I

The corresponding state trajectory x,'+1 , i = 1, m, is then given by
(5&6).

The iteration was started with zi° = 1, i 0, 1, ... , m, and a value
of m = 20 (at = 0.05) was used. The results for the firt numerical
example are shown in Figs. 4 and 5. Convergence was achieved (within the
desired accuracy) in three iterations. However, the difference between z?
and z* = z' is too small to be shown graphically (Fig. 4). Note the rapid
convergence even though the initial guess, z!, for the trajectory was very
poor and did not even satisfy the terminal boundary condition. The
corresponding optimal control ui* is shown in Fig. 5. The monotone be-
havior of the function value is verified by the succesive values of

m "-

0 i w 0 -2, 0! - -0.0, and ,, 9W.

Fin. 4. Initial and oplimal sak* trajoclories for anolinear rnwmercal example

i
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+1 .t

0,

TIME 10

Fio. 5. Optimal control for nonlinear numerical ez,,mpLe

For the second example the state constraint, x(J) • was imposed.
This of course eliminates the solution shown in Fig. 4. The sequence of 5
state trajectories obtained is shown in Fig. 6. The corresponding function
values were .0'= 2.792, 0' - -0.144, #' _ -0.656, .4 _ -0.972, and
0 - -1.008. The control from the first iteration u,' and the optimal
control u,* are shown in Fig. 7. All of the state trajectories (except for the
initial guess) are seen to satisfy the state constraints. It is interesting to
observe that the method not only converges to a different trajectory x,*i
but that the added state constraint is not active for this limit trajectory.
Thus the state constraint forces the solution away from its prerious se-
quence and allows it to converge to a different local minimum. On the other
hand, in some other nonlinear state-constrained cases which have been
computed by this method, a state inequality constraint of the type imposed
here has remained active for the limiting trajectory. Finally, it should be
noted that for both cases the limiting control has the properties of an opti-
mal control for a discrete linear problem, that is, n( - 1) switchop and
M -- "( - 19) values of U." - +-1.

Appendix. In this Appendix we prove that the assumptions (I) and (2)
of 3 imply the continuity of ry. We also show the validity of the modified
objective function (2.13).



NONLINEAR OPTIMAL CONTROL PROBLVMI

1.0

TIME LO

Fio. 6. Sta!n, traectories for nmminear ezample with added state comatrain4

We first reate a copndition- on the rank of an augmented Jacobian matrix
which insures the sft-faction of the assumption (2) of 53. In order to
state this condition i'e must have an explicit statement of the constraints
which define the compact set Z.

We will assume that Z is the polyhedral set determined by the system of
k linear inequalities
(A.I) ai's - b, 2: 0, i - ,..,k,

or

(A.2) Z - Is I A's - b 2 01,

where A is an s X k matrix with specified columns a,, and b E E'I
specified. Let I denote a boundary point of Z. Then we must have at Ieat
one active constraint at I, that in, skl - b, - 0 for at least one value of i.
We will denote by A(s) the matrix whose columns represent the active
constraints at s. Simily, let V'(s) reprent the Jacobian matrix of the
vector f(s) which contains all components of v(z) for which t(:) - E

That is, f(s) - 0, and V(z) - f,(s).
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I
_ _ I

,,-JTIME to0
+1 -1

FIG. 7. Controls for nonlinear example with added state constraint

We will denote the boundary point-, of S by 8S. It follows that for every

y E 8S, the matrix

(A.3) A(y) - [1r(y) A(y)]

is defined and has at least one column. We will say that B(y) satisfies the
full rank condition at y E OS if the columns of 6(y) are linearly indepen-
dent.

Assumption (1) implies that A(y) satisfies the full rank condition at
every y E aS which is also interior to Z. This is true because for such a
point A(y) - 0, and V'(y) certainly has full column rank since it consists
of selected columns of v.'. Furthermore, assumption (2) is implied by the
full rank condition on B, as shown by the following.

LzmwA. Let B(y) saiefy the full rank condition for every y E as. Then
for sach y E s, te comwx set ry contains interior point.

Proof. First suppose 9 E S is an interior point of S. Since S C Z, V is an
interior point of Z. Furthermore, w(g, g) - v(p) > 0, so that 9 is an
interior point of W(g). Therefore 9 is an interior point of 1r7.

Now suppose 9 E MS. The set rp is the polyhedral set determined by the
k + I linear inequalities

(A.4) r ,- Iz I w(z, 9) tO 0, A'z - b ý O0.
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Now consider the point z f. We way assume without los of generality
that

(A.5) w,(g, 9) • v,(p) , -Z+ 1,... ,

and

(A.6 ail i 0, i - 1, ... , S k,
(A.6) b, [ •_f i -k•+l, . .. ,k,

for some e > 0. Then the columns of P(g) are the gradient vectors Vv,(p),
i= 1,... ,- , and the columnsof A(T) arethevectorsa,, i- 1, ... , .
Since B(p) satisfies the full rank condition, its columns are linearly in-
dependent and there exists no vector r E Ek+', except r - 0, such that
B(9)r = 0. Then by a variation on the Farkas lemma (see [8, Theorem 2.9,
p. 48]), there exists a vector I E E' such that

(A.7) I'D(q) > 0.

Now consider the point

(A.8) + UP

where ; > 0 is chosen sufficiently small so that

diVv,() < e, i ,- I+ 1,...,l,
(A .9) a Iai< e, i - + I, ... ,J.

Now consider w,(t, g), i = 1, ... , l, and a,'D - b, , i - 1, ... , k. From
(A.5), (A.6), (A.7) and (A.8) we have w,(f, 0) > 0, i - 1, . , 7, and
a, 0 - b, > 0, i - 1, , k. From (A.5), (A.6), (A.8) and (A.9) we have
wi(p, ) >0, i -7-1, . ,and a,'j - b, >O, i - k4-, . .. J .

Therefore, f is interior to every constraint of rg and is an interior point of
Irg.

TH•zORM 4. The mapping ry is continuous for V E S.
Proof. Because v(z) E C' on the compact set Z a uniform bound yv exists

such that for any (z, p', iv) E S X S X 8,

(A.lO) 18(,, V') - W(ZC, V 9)II ; I '' - v'Al.

Also since v,(y) is of rank I for y E S, the symmetric matrix vv.' is positive
definite at every point of S. Therefore a uniform bound 0 exists such that
(A.11) II(VAv')-1' sle

for every Y E S.
Suppose we are given Y' E S and a' E I1 . Then given any # > 0, we

I
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now show that we can choose 8 > 0 so that, for each yiE 8 with
1y'- -Yll 59 6, wt can find z2 E ry" such that 11z' - z21 _ e.

If z2 E ry2, the theorem is true with z = z'. Now suppose z' ( ry', -hat
is, at least one component of w(z', y2) is negative. Without loss of generality
we assume that w,(z', y2) < 0, for i = 1, , k : 1, and w,(z', y2) _ 0,

for i-k+1, , 1. Since z' E ry', we have w,(z', y') - 0, for
i- ,. Let IDEE' be the vector with tP, = w(z'.y2) <0,
i 1- 1, .,k, and 0,Oi= k0 + 1, ,l. Then

(A.12) I'Di, !5 jw,(z', Y ') - w,(zI, y2)j, i = 1,-, 1,

so that

(A.13) IWIfl 5 Ilw(z', y') - w(z', y')11 - Yli'y' - y/II,

where the last inequality follows from (A.10).
We first assume z' is an interior point of Z. Then there is an *, with

0 < .t ; e, such that z E Z for 1lz - zz'l . e,,. Choose 6 = e,/O*y, and let
Y1 be any point in S with 11y' - y'21 -5 5. Now choose M as above, and let

(A.14) z2 = zI - t,' (y2)[V,(Y1)t.'(Y2)]-1j1.

From (3.2) we have

w(z(A .') = ",(/y) + !y')[z' - y'I -
(w(z', y') -W 0,

so that z' E W(y2). Furthermore from (A.14) and (A.l1) we have

(A.16) 11z' - Z'!1 iD'!t.(y1)t''(y')J)-'I • 'o wII5

Since liy' - y'•i ;J e.,Ioy, we get from (A.16) and (A.13) that

(A.17) 1'2 - zlir g 01WU q - (_! 3 ; el

But this shows that z, ? Z, and therefore z' ( ry'. Finally since. et 6 , we

have 1Iz - z'1 ; e, as was to be shown.
The other possibility we n-,t consider is that :' C ly' is a boundary

point of Z. Since ry' has interior points and is a convex set there ame interior
points in the neighborhood of every point of ry' (swe, for example, r7J).
In particular there exist c, 0 < ts :S */2, and I' r iV, such that
I1' - z'! # /;2 and 1"z - ; 5 t3 implies that z is interior to Z. Now
choose A - r/ity. .- d replace z' by z1 in the previous argument. This gives
a point z' E ry' with il - S #/2. It follows that "z2 -

We now prove the statement about the modified objective function
(2.13) made at the end of 12. We define the s X (I + £) augmented
Jacobian matrix !j) - I,'(.y) :A(y)J. Let j(z) be as in (2.13).
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THFoAREM 5. LeU B(y) have full column rank for every y E S. 7Tn a value
of a eXist such that every local soluluim of

(A.17) mirn jj(z) z E Z, v(z) z 0O

is also a local solzaion of

(A.18) mil (j(z) z Z, v(z) - 01.
S

Proof. Since# r- C' and B(y) has full column rank on the compact wet
S, there ame constants a, and el sueh that for any y E S,

(A .19) VO I:,( f ý5 Cr,

and

(A.20) B(y)r: " r" E'+'

We choose a > aj, 'el. lt y* be a lowal minimum of (A.17). Because of

the rank condition on BJy), th. :nec&,ary Kuhn-Tucker conditions ate
satisfied at y*. The relevant ,onditionm are that there exist vectors p k 0
and q ;J 0 such that

(A.21) ','(y*)p + A(y*)q = vi(y) 7V(yo) + al" Vv,(y*)
,I-

and

(A.22) i,(y"p, 0, i - , , I.

We let r' -p , ,p - ,q,, ,qi), mad write (A.21) as

(A.23') B(yt)r - y*).

From (A.19) 1 tid iA.2i jIt follows that

tA.24) *.r ý B(Y*)r,- 1 )a(,

or !jr: t, P ut this rmqurei ,a- p,I a at, < a, m- 1,.. ,
or p. > 0, - 1-. -, , 1. Then fron (A.2 2) we must have r,(V*) -0,

- 1. -, - , - , that v is a feasi'ble olution of (A.18).
Now supp• y* is not a local mnummum of (A .18). Then for sonn point

yl ( Z, arbitraily close to) y*, we have r(y) - 0 and 0(yt') <#(F*'
But then j(y') < jq*). so that y i, tnot a local minimum of (A,17).
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Surmary

1. The dibcrete optimal control problem to be considered is as

follows:

Let x c En denote the state vector at time t , and uE Er
I I

the, correspondinq control vector. The system dynamics are given by

X +1 x I l(xi u ) , I = 0 ... rn-1 (1.1)

where ti- conftrols u must be selected so that

u C U F r i 0 O, . m-1

nx • X , £ .n(I

X E 0,1 ... m

It is dssuumed that the sets U and X, ore compact and convex; and

thdt i is continuous on U x X . We call the sequence (x the

-tate - _yector, the sequence fulj the . and we denote by

z - [xit U) the direct product of these iwo sequences. We say that

z is admissible if (x ' and fu satisfy (1.1) and (lZ). Note

tha•t we c-an ipecify the Initial and terminal values x and x by
o m

setting X x and X =x.
Xo o



z

We assume a to be continuous on UI x Xi. and define
rn-I

q•(Z) = F o<(x, u. ) (1.3)
i=0

Wc; wish to find an admissible z* such that (p(z) attains its minimum,

over all admissible z , at z = z* .

Now let us consider dhe following continuous optimal control

problem. Let x(t) and u(t) satisfy

ýX (jIX, U) 1dt.I

u(t) U(t) t E [0, Tj (1.4)

x(t) E X(t)

Find x*(t) satisfying (1 .4) such that
T

qp[u] = I -(x(t), u(t))dt (1.5)
0

attains its minimum over all x(t) and u(t) which satisfy (1.4) . Suppose

that we choose a finite difference step At = T/m , and use the simplest

approximation x (iAt) = (x, - )/At. We also evaluate the integral

(I .3) by the trapezoidal rule and let f = At r and a AtC. We then

formally obtain the equivalent discrete problem (I. 1), (i.Z) and (1.3).

The terminal time T is assumed to be specified in the continuous

problem as given by (1.4) and (I . 5). We can however put a problem with

varianle terminal time into this fixed time formulation by introducing an

additional state variable. To illustrate this, suppose the variable time

problem Is given by

iL,,.l~
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dy= g(y,u), yg 9 En-l
d-r

T

f . (y, u) dr = min, T variable

0

We Introduce a new state variable F > 0, and let -r z t, t e (0, 1].

We require that , satisfy , = 0. and that its initial valug e(0) be

determined. If we define the vectors in En

x == (0

and let -c(x, u) = F (y, u), the resulting problem given by (1.4) and

(1 .5) with T =I is equivalent to the variable time problem.

It should also be remarked that explicit dependence on t of -,

and f can be handled with no essential difficulty. Such dependence

leads to functions ot and fJ in (I.1) and (1.3) which depend explicitly

on the index i . To simplify the presentation, we will not consider such

dependence,

II. We will now shuw that the discrete optimal control problem can be

considered as a mathematical programming problem (in general, nonlinear)

with a special structure [i]. We let s = mr + (m+l)n, and consider the

vector z in the product space E. We denote by Z c E , the compact,

convex subset

Z ( u Z J° , I (2.m-F. 1)

xC C X1, I = 0, I, .4.m J
m nnWe also define a vector mapping v: Es E, so that the recursion



4

relations (. 1) are all given by v(z) = 0. That is we define

v +1 = f(x1 , ut) + x. - x +' i = O, I, .0 .m-i (2.2)

and let vi represent the components (i-i)n+ 1, .... inr, of v. The

discrete optimal control problem can now be stated as that of finding a

z* which solves the uiathematical programming problerr

min (z vz) z } (

where qc(z) is given by (1.3)

The admissible (feasible) set S c Es is given by

S~~ ~ ~ • ~(z) -- 0(.)

The set S may be empty, in which case no control and corresponding

trajectory exist which satisfy (1. 1) and (1.2). In many practical situations

the existence of an admissible control and trajectory with the given dynamics

and imposed constraints is the primary question. If no admissible solution

exists it is necessary to relax the control constraints (by increasing the

allowable range on some of the controls, for example) or relax the state

constraints (by increasing the size of the target set Xm, for example)

before the determination of an optimum solution can be considered. In

some cases an admissible solution may also be achieved by an appropriate

modification of the system dynamics. In any event, the determination of

whether or not an admissible solution exists has been reduced to finding

any feasible solution to the problem (2,3)

If, S is not empty, it is a compact set, so that Tp attains its

minimum on S . If the null space of v is convex, then S is also convex.



If qp is convex on Z (i convex on Xi x U ), then (2. 3) is a convex

programming problem for which both necessary and sufficient optimality

conditions can be stated, and for which efficient computational methods

of solution are available. It follows from (2.2) that for linear f,

f =Ax + Bu + q , where A and B are matrices and q is a constant

vector, the null space of v will be a linear manifold (and therefore

convex). Thus linear dynamics and a convex functional lead to a reason-

ably well-understood convex probiem. In general, however, if f is not

linear, the set S will not be convex. Necessary optimality conditions

will be given for S nonconvex, but in general, conditions which are

also sufficient are not known for such problems. Furthermore, for non-

convex S a problem may have many constrained local minima even with

q) linear. Thus even if a method finds a local minimum such a minimum may be

far from the desired global minimum.

III. We will now consider optimality conditions for the problem (2. 3),

and use these to obtain the adjoint equations and a "minimum principle"

for the discrete optimal control problem. We assume that p and v are

in C'(Z), and that S is nonempty. We denote by v the jacobian matrixz

of a function v , and p transpose by p' so that pv denotes an inner

product.

SMufficiencY Theorem

Let q) be convex and v be linear on Z . A sufficient condition that

z* c S solves (Z.3) is that there exists p e Emn such that
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[pz(z*) + pvz (Z*)] (z-z*) a 0, V- z e S (3.1)

Proof: Since cp is convex and v linear, the function p rp + p'v is

convex on Z . Then for every z e Z, V(z) - 'V(z*) a z (z*) [z-z*j a 0,

by (3. 1). Since z* e S, v(z*) = 0, so that we have

q(Pz) - •(Pz*) 1, -p'v(z) =0, V- z E S .

Thus, z* is a global minimum on S

Necessity Theorem

Assume that the compact, convex set Z has interior points. Let

z* solve (2. 3). Then there exists a scalar • > 0, and p e Ean, not

both zero, such that

(D (Z*)(z-z*) 2 0, Vtz C S (3.2)

where

¢(z) - p(z) + p'v(z) (3.3)

The proof of this theorem is too long to be included here, and is given

in [ 2]. It should also be noted that if an appropriate constraint qualification

is satisfied we can choose , =.

If we restrict the functions q) and v as in the sufficiency theorem,

we obtain a Minimum Principle.

Let (p be convex and v linear on Z , and let z* solve (2.3).

Then there exist multipliers p ? 0, and p, not both zero, such that

C(z) attains its minimum over z F S at z*, where O(z) is given by (3.3).

The proot follows immediately from the convexity of 4 and (3. 2)
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We are now in a position to apply these results directly to the

discrete optimal control problem. If we denote by pl e En, the

multipliers correspOIding to v1 , we obtain from (1 .3) and (3.3).

m-I m-I
O(Z) oa(xifut) + 0 pI + - (3.4)1(z) 0 i=.I 0 1'+1 [f(xi.u 1  "x1  l

We will let fx*i f fx( u), etc., and p0 F 0. Then the necessary

condition (3.2) can be written

[~±* +p(I + f 1 )-P, ] (X -x*) z 0, V X e X (3.5)

i=0, 1, ... m-1

-P'm (X -X*m) 2! OF V Xm (3.6)
m in m in m

+ P, f*l] (u -u*) z 0, 4A u C U (3.7)

SIF .0, l.,.m-I

If we assume that the initial state is specified as a point, i.e., X=
0

then x =r and (3.5) is satisfied for I = 0 . Now suppose further

that no state constraints are active except for the terminal constraint, I.e.,

xE e int X, i 1,..m-1. Then (3.5) requires that the expression I.]
II

vanish. That is

e f * + go* I a m-1, m-Z, .0. (3.8)P'i I "f+ 1 P'I+1 xI xi ' "

The multipliers pi are therefore determined by the recursion relation

(3.8) starting with a vector pm satisfying (3.6) . For x on the

boundary of Xm P PM must be parallel to the (outward) normal vector

to a supporting hyperplane at x*m. The recursion relation (3.8) Is seen

to be a finite difference approximation to the adjoint differential eqution

-f x +' 1 x (3.9)
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for the continuous optimal control problem.

Let us now define

H(x, u, p, q) = pIf(x, u) + (p-q)'x + ý o(x, u) (3.10)

By rearranging terms we obtain from (3.4)

m-12() :=' H(xil u i Pi+i' p) - P xm (3.11i)

For o convex and f linear on X. x U , the previous minimum principle
i

applies. The optimal trajectory (xi) and control (u,) must therefore

satisfy the following

Discrete Minimum Principle

If (xil and (u, are optimal, then

H(xu, pi+t,pI) Pi H(X)DUPi+, UV Pi+,)I Vx EX C ui € UC (3.12)

i=0, 1, ... .m-I

where the adjoint vectors p1 are determined by (3.6) and (3.8)

IV. In order to describe the computational solution of the discrete optimal

control problem we first consider a linear recursion relation with

f = Ax + Bu, and also give a more explicit statement of the constraint

sets X and U1 . To simplify the discussion we will assume that X0 = x-o

and that the X and Ui are polyhedral sets defined by the linear inequalities

x I ( x G x- 0) , = 1, ....
(4, t)

Ui = u H'u-h0 0), = 0, .... m-i

where Gi and H are constant matrices and V' and h are constant

vectors. If these sets are just upper and lower bourds we have
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Gi = (In -1n )'and H a UZr -

The problem (1.) - (1.3) now bocomes

x0 Xx0

rn1 x • (I4A)kI + Sup 1*0o ,.rm-o
mrin z(X, u1 ) .(4.2)

H'uih a 0, 1 - 0,l...m-1

If cy is convex, this is a convex programming problem with linoes ,&aultv

and inequality constraints. It consists of m(n+r) variables, MR equality

constraints. and Zm(n+r) inequality constraints if they are boubds. 1hi

uould be solved dLrectly. but will be a large problem if m is large. A

more efficient method of solution is to use the linger equations to eliminate

the state vectors . a and map the entire polem into the control space.

This is done by means of the following

ZAUMm

Let x, satisfy the recursion relation

xi+l , axx + bi, I o, t,..o - (4.3)

with x specified and 'X nonsiqu/ lar. Mhea
I-1

x, a Y1xo +Y 2 A0j~lb " # o. A4.4)

where the matries Y and A1 satisfy

i+l , •yeT o aL i0 , a l,...0.- (4.)
and

"i a AIM. • Alm ... .,A
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If we apply this to the equality constraints with K= I + A, and

b = BuI we obtain
i-I

x1 =Yixo + ! Q11 u1 , i=)l,..m (4.7)
I =0

where Q'J 2 Y A'j÷l B, . The important point to note is that given the

matrices A and 8, we can explicitly compute the matrices Y and QiJ

by operations with (nxn) matrices. Since n (the dimensionality of the

state vector) is usually small compared to m , this is an efficient

computation.

We now use (4.7) to eliminate the xI from the state constraints

and o in (4.Z). The state constraints can then be written

i-I

S D'I uj -d 0. i = , ... m (4.8)1:0 l
j 0

where Di, = G, Qij and d iTi - G i Y, x" A similar substitution in

gives an objective function p(u) depending on the controls u = u1 1,

only. If a is convex, p(u) will also be convex because of the linearity

of (4.7). The problem (4.2) has therefore been reduced to

SD ,j u I a d , I P = l , . m

min p(u) J=0 (4.9)U I W~uI a• 1, 01 .... m-1

This reduced problr- h|s mr variables, no equalities, and the same

number of inequalities as (4.Z). In most control problems r < n, so that

we have cut the problem size at least in half. Since there are more Inequality

constraints than variables, and no nonnegativity requLrer-nents, this is best



s,)lved by d convex method in Ihe dual space (such as gradient projection).

Computattonal efficiency Is also improved by taking advantage of the

upper triangular sti,:,:ture of the first 2mn constraints and the block

diagonal structure of the remaining Zmr constraints.

In the important case where C is linear, (4.9) should be considered

as the unsymmetric dual problem. The equivalent primal, with mr rows

is then efficiently solved by any standard LP routine, which of course

(jives the desired dual variables (the controls) as the elements of the

•wicinq; vector. For a mor: complete discussion of the linear recursion

relation problem, see' [I J.

V. The method of the previous section can only be applied directly when

the system dynamics are described by a linear recursion relation. However,

with appropriate convexity requirements on f , the nonlinear problem can

1)4 solved by an Iterative solution of linearized problems. At each iteration

function f is linearized about the previous state and control. and a

,rir',td problem ,t the kind discussed above is solved. This method is

luLly desc-ibed in 1i .

Ii
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CCaeLaFO•TARY SLACKaGUS IN DUAL LINDEI 3YE3TINS

The first part of this paper develops a convenient technique for working with a
pair of dual (i.e., complementary orthogonal) linear subspaces, E and X, in a
linear space of n-tuples (from an ordered field). Me second part deals with the
fundamental existence taeorem that the dual subspaces HE and X must contain n-
tuples , and x such that t > 0, xi >0 , Lixi = 0, and ti + xi > 0 for
i = l,...,n. Applications of Ii "compleienta. , slackness" are given.

(x)

I- ''' a n 'r-l "'" -
n n6 1 0.. 2 1 2

=•bi ('nJ . . = 0 0** =

(r=:2, n-I; r=2, s=2) e~xample (1=2, I=3 and lul, •4)

S--l 43 -2/ L - ,-x3

Ot wt 3 =t4t
(Bt.-ard for) (cxinonical form)

-Me above A-schema exhibits; two dual systems of horogeneous linear equations
in (Dantz-g's) "Standard form." 23e "greek" 3.vytem AA - J determines the row-space of the matrix A, i.e., Uhe linear aubspace 7' of all rov-vectors j ex-pressible, '-a pairmeters X. as linear combinations of the rows of A. The "latin"
DYsten Ax = 0 ýýetermines the orthogonal complem•ent in n-space of the row-space of
,, i.e., the li'.ear subspace X of all column-vectors x orthogonal to each row
of A - and therefore to each t of -, aince tx - (.A)x - X(Ax) 0 0. Let rank
A - r; then dim _ - r and dim X - n-r - a. 'Any matrix X that is row-equiva-
lent to A (including insertioD or deletion of rovs of zeros) yields an X-scemsa,
with its ovn parametric K, which detert4nes the same dual subspaces =-- a X.1

Now partition Ax a 0 into Ax + Ax - 0, wherv the submatrix A consists of
j r linearly independent coluwns of A. JThere are at moat n.'/r.8' such parti-

tions.] Since A provides a basis for Ihe columns of A, there exists an ry amatrix M aur'; that the suimatrix A - ,W. Geuses-Jordan (complete) elimination
1educAp + A2" 0 to Ix + J&f *O, i.e., W& - _;, and reluces XA - | to- 2e. -c H M-schema exhibits these reduced aystteýs, which are dual liz.eae
systems (tntz' G) cal form"; note that, 1 .... ind•ex .t•he (basic) *ol-
ure4 C' A and that r+1l,...,# index the (nor-i~. ) column of A.

Pivot -,i any nontero enury to exzkiange x-0t x n F with
(but with ao other marginal changes) to get an 1-schema with entries as

f o l o v s 1 r 3 j M = -I - C- X /folows i /Pq~ Pj W m/pq) t ~ ii iq pj/mPq(for each i ý p and each j Note the sign chanre from a., to S-q if

0,and fro= to0 aseied bew). By a finite
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quccession of such pivot steps (and rearrangements of rows and/or columns) we can
pass from any M-schema for E and X to ary other (in the "combinatorial
equivalence" class). For example,,

xl x4  - X2

t -- 6/4 =-x t 3/6 0 X
22 n 23

2t

91 -4/1 6-1 =-x 12 21 =_x

132331 3

x3 x4, 2

/ 1 -3/2 =-xp g A =-x24=t3 =14 =2 =9 3

The double errows indicate pivot steps (in either direction) and appropriate rear-
rangement. There are just five M-schezmata in this case (not 4./2.21 = 6)
because the 2nd and 4th columns of the initial matrix A are linearly depen-
dent.

We now turn our attention to the (polyhedraal) cones E and X* in which the
dual subspaces - and X intersect the (closed) orthant of all nonnegative n-
tuples. Borrowinr a convc-ijent term from-Linear Programming, we say that any 9
in or any x in X* is feasible; i.e., 9 is feasible if 7%A = 9 > 0 for
some i, and x is feasible if Ax = 0 and x > 0. Note that Ex = 0 implies,
for any feasible g and any feasible x, that t xi = 0, i.e., = 0 or
x = 0 (or both), for i = 1....,n.

We say that a feasible j or x is basic if, for any partition of A into
A, A (as specified above), exactly one component of i or I is positive and if
Sor x is normalized so that the sum of the components is one. Hence a basic
feasible g or x corresponds tc a nonnegative row or nonpositive column of
some M-schema:

+ 0 ... 0
+ (D8

or

where +, 9, 0 , - denote numbers that are positive, nonnegative, zero, non-
positive, negative, respectively. In the above example 9 = (1/3,0,2/3,0) and
xT . (0,3/5,0,2/5) are basic feasible 4-tuples. Clearly the set of basic feas-
ible E's (or x's) is finite, since the class of M-schemata is finite. [The
reason for the term "basic" in this context is that it can be shown that the basic
feasible E s or x's determine the "extreme rays" of the cone _-* or X*;
i.e., that anj feasible g or x is expressible as a nonnegative linear combina-
tion of the basic feasible E's or x's.]
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LEM4A. itiier there is an all-positive (feasible) t or there is a basic
feasible x.

Proof. Let L(r,s) assert this LeIa when dim =r and dim X s. We
use induction on r+s - n. L(X,s) and L(rl) are trivial to prove.

We prove L(r,s) for r >1 and a >1, assuminr L(r-l, s) and L(r, s-!).
Using L(r-l, s) for the first r-l rows, we get

_ _ _+ 0 ... 0
+ 0 a.-

:first r-l rows Ior
+

i ~ ~~=+ .•. -

In the left alternative, perturb 0 to a small e > 0 to get an all-positive 9.
In the right alternative, there is a basic feasible x showing, unless the corner
entry marked ? is positive. If this corner entry is positive. pivot on it and
then use L(r, s-1) on the last s-i columns to get

. _r 0 + 0 ... 0

last o

+ columns --

In the left alternative, there is an all-positive 4, and in the right alternative,
a basic feasible x. L(r,s) is now inductivelyv established for all r and s.

The above Lemma is essentially "the theorem of the alternative for matrices"
used by J. von leumann and 0. lbrgenstern to prove the Main ("ýMnimax") Theorem in
their THEORY OF GAMES AMD EC¶OMIC BEHAVICR. There is a dual Lemma with j and x

interchanged (i.e., using -MI in place of M). The two Lemmas combine to show

that there is either a basic feasible t or a basic feasible x (or both).

CCPLEMEWTAPY SLICKNSS 2OREX. There exidts a feasible I and a feasible
x such that g + XT > 0 (in all components).

In the example above, 9 -, (1,0,3,0) and XT - (0,3,0,2) yield
S+ xT - (1,3.03,2) > 0.

Proof (by T. D. Parsons). Let T(s) assert this Theorem when dim X = s.

We use induction on a. T(l) is trivial to prove.

We prove T(s) for s > 1, assuming T(s-l). Apply L(r,s) to get

+ 0 ... 0

+ :zz:

or

+

In the left alternative, taking x - 0 we have t + x T > 0. In the right
alternative, we take the two cases



+ + ... + +:lu o.
: : use T(S-1)

:*:o -- C+

0- =• ... •

In the left case, we get =0 and x > 0 by taking the first + at the top
large enough, after the remaining +'s at the top are taken arbitrarily. In the
right case, we use T(s-l) opposite the O's in the first column and then make
the first + at the top large enough. Thus, as indicated, we get I + xT > 0
because of T(s-l) for the components a). T(s) is now inductively established
for all a.

This Theorem is Theorem 1 (and 3) in Paper 1 by A. W. Tacker in LINEAR IN-
EQUALITIES & RZATE) SYSTEM, ed. by H. W. Kuhn & A. 11. Tucker (Princeton, 1956)
and, with a geometric proof, "Key Theorem" 4n R. A. Good, "Systems of Linear Rela-
tions," SIAM PZVIE1 1 (1959) 1-31. Complementary slackmess refers to the existence
of feasible t and x with "slack" (> 0), for each column of A, in either 9j
or x (but not both). The following are Corollaries (see papers cited above for
Feferrnces):

I. (Gordan, 1873) Ax = 0 has a solution x > 0 and j 0 iff %A> 0 for
no .. 2. (Stiemke, 1915) Ax = 0 has an all-p•sitive solution x iff ALA 0
and +0 for no 26. 3. (Farkas, 1902) bX> O for all 7, such that ýA> 0
iff Ax = b for some xi> 0. 4. cx > 0 for all x > 0 such Yhat Ax = 0 iff
A;A + c > 0 for some ;,. = . If M is skew-symetric=(i.e., !4 = -M), then
EM T "has a solution t>0 such that i +*j > 0.

Corollary 2 (= Theorem 5 in Paper 1 cited above) can be used to establish the
duality and existence theorems of Linear Programming (see A. J. Goldman and A. W.
Tucker, "Theory of Linear Programming," LINEAR INIUALITIES & RELATED SYST7 , pp.
53-62, and R. A. Good's paper cited above, pp. 17-21).

O.N.R. Logistics Project, Princeton University, July 1967 A. W. Tucker



FINDING THE POINT OF A CONVEX POLYHEDRON NErWMUT A GIVEN POINT

Problem: To minimize half the square of the distance from the point (2,3,-i)

to the (solid) tetrahedron determined by

w--x- Y- z+3>O, x >0, y 0, z>O.

The "objective function" to be minimized subject to thece constraints is

f(x,y,z) 1 (x )2 + (Y-3 + (z+1) 2  =7 - 2x- 3Y + z + (X2 +y 2+z 2

A necessary and sufficient condition that a point (::,y,z) of the tetrahedron

yield the required minimum is that the gradient of f' at the point (xyz) be

expressible as c nonnegative linear combination of the inward normals to the con-

straints that are "active" at the point (x,y,z). That is,

.L+lJ + roJ

where w, •, r, • are each nonnegative and must be zero if the corresponding con-

straint is :'slack" (> 0) at the point (xy,z). Hence

W>0, =w+x- 2>0, >0+y-3>0, =w+z+1>O
and

(kM + Ex + iy + tz = 0

Another way of getting the same information is to form the Lagrangian function

= f - Ww - 9x- y- -z

with nonnegative Lagrange multipliers w. t, qj, t and take $ - 0 with $ = f
(i.e., ww + tx + ly + ýz - 0). Substituting for f, w, 9, q, • from above, we get

~1 2 2 2$(x~y.,Z) - 7' - 2x - 3Y + z + 7(X +Y +zL I- w(3-x-Y-z) - (w+x-2)x - (w+y-3)y - (w+z+l)z

-7- 3w _ j.x 2 +y2+z2].

Hence
f + = -3w - 2x- 3Y + z + 14

The above linear equations for w, 9, q, a, ear f + $ are exhibited most con-
veniently in the following schema:

x -1 1* 0 0 -2
y 1 0 1 - -3
z -1 0 0 1 1

In addition w,x,y,z and w,,, are all to be nonnegative and

We seek, therefore, a solution of the linear system in the above schema that is
nonnegative in all eight variables (excluding f44) and is such that w - 0 or/and
W•a 0, •a, 0 or/and x- O, n- 0 or/and y -O, - 0 or/and %- 0. Fbor this
purpose we turn to schemata, such as the following, that are equivalent to the above
schema under Zrincial Livot I:



2.

S-1 . 1i-il 2 -1 -1 1 2
S-1 1 0 0 -2 -i 1 0 0 -2

y -10 1I0-31 i)-i 0 1 0 -3
z -1 0 0 1 1 z -1 0 0 i 1

1 1 2 .- 3 1 1o 1 -2 2 3 1 1
=w =x =r = f+ w =x =y =~=f+v

W 3 -11/2 -1/2 1/2 1/2 -1
S-1 1 0 0 -2 -1/2 1/2-1/2 1/2 -2

_- _ 1 0 -f w.1[2 -1/2 1/2 1/2 1
1i-1 0 0 1 1 z-1/2 -1/2 1/2 3/2 2
1-1 2 3 -1 111 1 2 1 2 3

--w =x -y =z =f -=x =y = - =f+o

We get the first schema above, which we dub the yz-schema (in terms of the latin
"inputs" y,z at its left margin), from the original xyz-schema by pivoting on its
starred principal (diagonal) entry. Pivoting on the starred principal entry of the
yz-schema we get the z-schema above, and then by its starred pivot the null-scheme
above. Also, by pivoting on the principal entry 2 in the z-schema, and then rear-
ranging, we get the wz-schema above.

A solution to our minimum-distance problem can be read from the wz-schema: set
the inputs g = 0, q = 0 and w = 0, z = 0 to get x = 1, y = 2 and u = l, ý = 2
and f+4 = 3. Also f- =w + tx + qy + ýz = 0, so f = $ = 3/2. The point
(1,2,0), on the edge w = 0, z = 0 of the tetrahedron, is the point of the tetra-
hedron nearest to the given point (2,3,-l). Half the square of this minimal dis-
tance is 3/2.

In the z-schema set the inputs w = 0, O, = 0 and z = 0 to get w = -2,
x = 2, y = 3 and= 1 and f+ = 1. Here again f-ý=ww + gx+iy+ z=0O. The
point (2,3,0) is the foot of the perpendicular from (2,3,-i) to the.plane z = 0
bounding the tetrahedron but w = -2 shows that the point (2,3,-l) lies on the
wrong side of the plane w = 0. Also, in the yz-schema set the inputs w = 0,
S= 0 and y =0, z = 0 to get w = l, x = 2 and q = -3, ý = 1 and f+ = 10.
Again f-s = ww + Ex + ry + ýz = 0. The point (2,0,0) is on the y = 0, z = 0 edge
of the tetrahedron and is the foot of the perpendicular on this edge from (2,3,-l)
but the gradient IU at (2,0,0) is unfavorably directed due to q = -3.

wxyz xyz (vertices)

wx w X yz
(edges)

-(aces)

This diagram depicts the full equivalence-class of 15(= 24-i) schemata [there
is no wxyz-schena, for otherwise w = x = y = z = 0 would be part of a solution].
Each node represents a schema and each arc a principal pivot step (fn either direc-
tion). Arrows mark the four pivot steps used above to get from the xyz-schema to
the yz-, z-, null-, and wz-schemata. At the same time the diagram depicts the
combinatorial (incidence) structure of the constraint tetrahedron!
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DUAL QUADRATIC PROGRAMS

We seek to minimize f for nonnegative x = (X,...,x m+n) T, the "Latin
problem," and to maximize $ for nonnegative ( = (,.9.., m+n), the "Greek

problem," subject to the quadratic equation

f - = x

and to any one of a finite class of equivalent systems of linear equations, each

given by a schema

ti Pl * . . . Plm all " an b,

)f (P) 0 (A)

, * . . p. a .. * a b

XT -an • • • -am qn ' " " qln cl

():. :. :, : (Q)

x-- "51 . . . -a qnz* . . . % cXm+n 'n - amn qa nn n
1 -bI . . . -b c . . . c 2dm 1n

=xT • • • --x'S g=m-• • • = gi-n =f•

where l,...,m+n denotes a permutation of the indices l,... m+n. P and Q are

positive semidefinite symmetric square submatrices. Note the bisymmetry: the

upper left and lower right "quarters" are symmetric, while the lower left is the

negative transpose of the upper right.

With each such schema there goes a pair of quadratic programs dual in the

sense of Cottle:

(G) maximize $=d + ib - LiPi - 1x* fo Ox
-2 2 xfi )g ý

(L) minimize f d + cx + x + F P for *x > 0 - Ao - b > 0
A value of $ (or f) is termed feasible if it arises from a solution •, x of

the schema having E > 0 (or x > 0). For any two solutions 1, x and •', x'

0 (p~iTAx + X * ýO 'f' - $> iCA ' ~-b))÷'

since (I'-)P(•-)T> 0 and (•'-X)TQ -) > 0. If 0.> 0 and x' > 0,
then f' > $. That is, each feasible f is an upper bound for all feasible

and each feasible $ is a lower bound for all feasible f. Hence a solution of

the above schema such that t > 0, x > 0 and tx - 0 is optimal for both

programs. In this case f f
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The class of schemata equivalent to the above is Generated by three types

of pivotal exchange: (1) pivoting on a diagonal entry pii 1 0, which decreases

m by one and increases n by one; (2) pivoting on a diagonal entry qjj 0.,

which decreases n by one and increases m by one; (3) pivoting on a nonzero

skew pair aj and -aij, which does not change m and n. Under such pivot-

ing the schematic bisymmetry and the positive semidefiniteness of the symmetric

square submatrices P and Q are preserved. Moreover, the submatrices P and

Q have constant nullities m = m-rank P and n = n-rank Q. Within this
0 0

(finite) class of equivalent schemata there must exist at least one schema with

m = mo, i.e., with P = 0 or with P, A, b vacuous if m =0 , yielding a

"pure" Latin program:

(Lo min_ ze f = d +c+x for >, -=Ax + b < 0.0l.J.z 2

This is the classic type of convex quadratic program for which Dorn (and also

Dennis) introduced duality. Also, of course, there is at least one schema with

n =n , yielding a dual "pure" Greek program:

(GO) maximize =d + *b *pT for j> O, "=iA+c>0.

The two programs become (rdinary dual linear programs (in Dantzig's canonical

form) if m =m and no =n, so that P=0 and Q= O.

Recent work of Dantzig and Cottle, of Lemike, and of Parsons, shows that

within the (finite) class of equivalent schemata there must exist a schema with

an obvious solution

= , 0x= , x=-b>O, "= >0, f = =d

or a schema with an obvious infeasibility (viz., a nonpositive column with its

bottom entry negative).

NOTE. The author gratefully acknowledges the collabqration of Dr. T. D.

Parsons, Princeton University, and of Dr. Philip Wolfe, IBM Research Center.

R. W. Cottle: Quart. Appl. Math. 21 (19(3) 237-243; SIAM Jour. 12 (P)64) 663-665.
G. B. Dantzig & R. W. Cettle: see J. Abadie (ed.), NONLIN. PROGR. (ýho. Holland

19677).
W. S. Dorn: SIAM jour. 9 (1961) 51-54; Manag. Sci. 9 (1962-63) 171-208.
C. E. Lemke: Manag. Sci. 11 (1965) 681-689.
T. D. Psrsons: Ph.D. Thesis (Princeton 1966).
E. L. Stiefel: INTROD. TO hIAME2. MATH., Acad. Press 1963, 1-44.
A. W. Tucker: Oper. Res. 5 (1957) 244-257; see R. Graves and P. Wolfe (eds.),
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f COMPLEMEN;\RY PIVOT THEORY OF MATHEMATICAL PROGRAMMING

by

Richard W. Cottle and George B. Dantzig

1. Formulation. Linear programming, quadratic programming, and

bima:rix (two-person, non zero-sum) games lead to the consideration

of the following Fundamental Problem: Given a real p-vector q

and a real p x p matrix M, find vectors w and z which
,

satisfy the conditions

(1) w q + Mz, w > 0, z > 0

(2) zw- 0

The remainder of this section is devoted to an explanation of why

this is so. (There are other fields in which this fundamental

problem arises -- see for example [6] and [13] -- but we do not treat

them here.) Sections 2 and 3 are concerned with constructive

procedures for solving the fundamental problem under various assumptions

on the data q and M.

In general, capital roman letters denote matrices while vectors are
denoted by lower case roman latters. Whether a vector is a row or
a column will always be clear from the context, and consequently we
dispense with transpose signs on vectors. In (2), for example,
zw represent 1 the scalar product of z(row) and w(coluan). The
superscript Indicates the tianspose of the matrix to which it is
affixed.

1I



Consider first linear programs in the symmetric primal-dual form

due to J. von Neumann (201.

Primal linear program: Find a vector x and minimum z such that

(3) Ax >b, x >_0, z - cx

Dual linear program: Find a vector y and maximum z such that

(4) yA < c, y > 0, z - yb

The duality theorem of linear programming [3) states that

min z - max z when the primal and dual systems (3) and (4),

respectively, are consistent or -- in mathematical programming

parlance -- "feasible." Since

z- yb < yAx < cx - z

for all primal-feasible x and dual-feasible y, one seeks such

solutions for which

(5) yb - cx

The inequality constraints of the primal and dual problems

can be converted to equivalent systems of equction.s in non-negative

variables through the introduction of non-negative "slack" variables.

Jointly, the systems (3) and (4) are equivalent to

(6) Ax - v b, v .0, x 0

ATy + u i c, u 0. y 0



5n the linear programming problem becomes one of finding vectors

u, v, x, y such that

T

v -b A 0 y x_>O, y>O0

and ( by (5) )

(8) Xu + yv 0

The definitions

0\A 0,(9) W' = Iu q c , z
!v .•V ý-b A 0

establish the c-rrespondence between (1), (2) and (3), (4).

D-It quadratic prcr•aina problem is typically stated in the

folloving msa".r: Find a vector x and minimum , such that

(10) Ax > b x , 0 cx +

In this formulation, the matrix D may be assuamed to be symetric.

The minimand i is a globally convex function of x If and only if

the quadratic form xDx (or matrix D) is positive sint-definite,

and vhen this is the case, (10) it called the cir'-z Q2udratLc

groaElMira probli. It is immediate that when D is the stro matrix,

(10) reduces to the linear program (3). In this sense, the linear

programing problem is a special case of the quadratic programing

proble.



For any quadratic programming problem (10), define u and v

by

(11) u - Dx - ATy + c, v - Ax - b

A vector x yields minimum z only if there exists a vector yO

and vectors u 0 , v0  given by (ii) for x - x0  satisfying

(12) x0 >0, u  > 0, y0  0, v0 >0

0 O00

x0u0 =0, yv -0

These necessary conditions for a minimum in (10) are a direct

consequence of a theorem of H. W. Kuhn and A. W. Tucker [14]. It is

well known -- and not difficult to prove from first principles --

that (12), known as -he Kuhn-Tucker conditions, are also sufficient

in the case of convex quadratic programming. By direct substitution,

we have for any feasible vector x,

S-io 1c(x- x) +-1-xDx - xDxo
ZZ2 2

a uO(x - x°) + y°(v - v°) + -1-(x - x°)D(x - xO)

0 1

- u0x + y 0v + '-(x - x°)D(x - x°) > 0

which proves the sufficiency of conditions (12) for a minimum in the

convex case.

Thus, the problem of solving a quadratic program leads to a

search for solution of the system

4



(13) u - Dx - ATy + c x > 0, y > 0

v -Ax - b u>0, v> 0

(14) xu + yv -0

The definitions

(15) w - u quo , M =T, z (

establish (13), (14) as a problem of the form (1), (2).

Dual of a convex quadratic program. From (15) one is led naturally

to the consideration of a matrix M = ) wherein E , like D

is positive semi-definite. It is shown in [1] that the

Primal quadratic proxram: Find x and minimum z such that

(16) Ax+Ey b, x > O, z-cx + - (xDx + yEy)

has the associated

Dual quadratic program: Find y and maximum z such that

T c , yz0 , zmby - 1(xDx - yEy)(17) -Vx + A y .

All the results of duality in linear programming extend to these

problems, and indeed they are jointly solvable if either is solvable.

When E - 0, the primal problem is just (10) for which W. S. Dorn

[5] first established the duality theory later extended in [1). When

both D and E are zero matrices, this dual pair (16), (17)

reduces to the dual pair of linear programs (3), (4).

5



RkIARKS. (a) The minimand in (10) is strictly convex if and only

if the quadratic form xDx is positive definite. Any feasible strictly

0
convex quadratic program has a unique minimizing solution x

(b) When D and E are positive semi-definite (the case of

convex quadratic programming), so is

D. -AT)

A bimatrix (or two-person nonzero-sum) &ame, r(A,B), is given by

a pair of mxn matrices A and B . One party, called the row

player, has m pure strategies which are identified with the rows

of A . The other party, called the column player, has n pure

strategies which correspond to the columns of B . If the row player

uses his ith pure strategy and the column player uses his Jth

pure strategy, then their respective losses are defined as aij and

btj , respectively. Using mixed strategies

m
x - (Xl,...xm) 0, 11xi = 1

n

Y - (Yi,...,Yn) 2 0, 1 Yj - 1
Ju-l

their expected losses are xAy and xBy, respectively. (A component

in a mixed strategy is interpreted as the probability with which the

player uses the corresponding pure strategy.)

A pair (x ,y ) of mixed strategies is a Nash (191 equilibrium

onof r(A,B) if

6



x Ay 0 <Ay all mixed strategies x

x By < x By all mixed strategies y

It is evident (see for example [15]) that if (x ,y ) is an

equilibrium point of r(A,B), then it is also an equilibrium point

for the game r(A" B') in which

A' - [aij + K] , B- - [bij + L)

where K And L are arbitrary scalars. Hence there is no loss of

generality in assuming that A > 0 and B > 0, and we shall make this

assumption hereafter.

Next, by letting ek denote the k-vector all of whose components

are unity, it is easily shown that (x 0 ,y 0 ) is an equilibrium point

of r(AB) if and only if

(18) (x0Ay0)em Ay° (A O)

(19) (x°By°)en - BTx° (B > 0)

This characterizaticn of an equilibrium point leads to a theorm

which relates the equilibrium-point problem to a system of the form

(1), (2). For A > 0 and B > 0, if u ,v ,x ,y is a solution

of the system

(20) u - Ay em u--, y--

v BTx -en v_> 0, x_> 0

7



(21) xu + yv -0

then

0 0 IX V(xO'yO) = xj 9m Ye

is an equilibrium point of r(A,B). Conversely, if (x ,y ) is an

equilibrium point of r(A,B) then

(x *,y 0 X 0 0 --- v-0-x*By x°Ay

is a solution of (20), (21) . The latter system is clearly of the

form (1), (2), where

~ n I:T )x
Notice that the assumption A >0, B > 0 precludes the possibility

of the matrix M above belonging to the positive semi-definite class.

The existence of an equilibrium point for r(A,B) was

establiahed by J. Nash (19] whose proof employs the Brouwer Fixed-

Point Theorem. Recently, an elementary constructive proof was

discovered by C. E. Lemke and J. T. Howson, Jr. [15].

2. Lemke's iterative solution of the fundamental problem. This

section is concerned with the iterative technique of Lemke and Howson

for finding equilibrium points of bimatrix games which was later

extended by Lemke to the fundamental problem (1), (2). We introduce

8



first some terminology common to the subject of this sectioa and the

next. Consider the system of linear equations

(22) w - q + Hz

where, for the moment, the p-vector q sad the p x p matrix H

are arbitrary. Both w and z are p-vectors.

For i - l,...,p the corresponding variables and vI are

called complementar and each is the complement of the other. A

complementary solution of (22) is a pair of vectors satisfying

(22) and

(23) z wi - 0 , i -1...,p

Notice that a solution (w;z) of (1), (2) is a nonnegative

complementary solution of (22). Finally, a solution of (22) viii

be called almost-comolementarU if it satisfies (23) except for one

value of i, say i - B. That is, zs 6 O, wv 0  O.

In general, the procedure assumes a an extreme point of

the convex set

Z- I w - q + Mx, O..s> O}

which also happens to be the endpoint of an almost-ccAplementery

ray (unbounded edge) of Z. lach point of this ray satisfies (23)

but for one value of i, say B. It is not always easy to find such

a starting point for an arbitrary M. Yet there are two important

realizations of the fundamental problem which can be so Initiated.

9



The first is the bimatrix game case to be discussed soon; the second is

the case where an entire column of M is positive. The latter property

can always be artifically induced by augmenting M with an additional

positive coltmn; as we shall see, this turns out to be a useful device

for initiating the procedure with a general M.

Each iteration corresponds to motion from an extreme point P1

along an edge of Z all points of which are almost-complementary

solutions of (22). If this edge is bounded, an adjacent extreme

Spoint P is reached which is either complementary or almost-
i+1

complementary. The process terminates if (i) the edge is unbounded

(a ray), (ii) P1~l is a previously generated extreme point, or

(iii) Pi+l is a complementary extreme point.

Under the assumption of nondegeneracy, the extreme points of Z

are in one-to-one correspondence with the basic feasible solutions of

(22) (See [31 ). Still under this assumption, a coemplementary basic

feasible solution is one in which the complement of each basic

variable is nonbasic. The goal is to obtain a basic feasible solution

with such a property. In an almost-complementary basic feasible of

(23), there will be exactly one index, say B , such *hat both

w and z8  are basic variables. Likewise, there will be exactly one

index, say v , such that both w and z are noribasic variables

C. van de Panne and A. Whinston (211 have used the appropriate
terms bAlic and nonbosic vair for {ws I gel and Wv , z.)
respectively.

10



An almost-complementary edge is generated by holding all nonbasic

variables at value zero and increasing either zV or wV of the

nonbasic pair z , w V . There are consequently exactly two almost-

complementary edges associated with an almost-complementary extreme

point (corresponding to an almost-complementary basic feasible

solution).

Suppose that z is the nonbasic variable to be increased. The

values of the basic variables will change linearly with the changes

in z . For sufficiently small positive values of z , the
V

almost-complementary solution remains feasible. This is a consequence

of the nondegeneracy assumption. But in order to retain feasibility,

the values of the basic variables must be prevented from becoming

negative.

If the value of z can be made arbitrarily large without

forcing any basic variable to become negative, then a M is generated.

In this event, the process terminates. However, if some basic

variable blocks the increase of z (i.e. vanishes for a positive

value of z ), then a new basic solution is obtained which is

either complementary or almost-complementary. A complementary

solution occurs only if a member of the basic pair blocks a .

A new almost-complementary extra point solution is obtained if the

blocking occurs otherwise. In the complementary case, ý#* have the

desired result: a complementary basic feasible solution. In the

almost-complementary case, the nondegeneracy assumption guarantees

the uniqueness of the blocking variable. It will become nonbesic in

11i



place of z and its index becomes the new value of v .

The comglementary rule. -~ e complement of the (now nonbasic) blocking

variable -- or equivalently put, the cther member of the "new"

nonbasic pair -- is the next nonbasic variable to be increased. The

procedure consists of the iteration of these steps. The generated

sequence of almost-complementary extreme points and edges is called

an almost-complementary path.

THEOREM 1. Along an almost-complementary path, the only almost-

complementary basic feasible solution which can re-occur is the

initial one.

PROOF: We assume that all basic feasible solutions of (22) are

nondeSenerate. (This can be assured by any of the standard

lexicographic techniques [3) for resolving the ambiguities of

degeneracy.) Suppose, contrary to the assertion of the theorem,

that the procedure generates a sequence of almost-complementary

basic feasible solutions in which a term other than the first one

(P in the figure below) is repeated (say PI). By the nondegeneracy

assumption, the extreme points of Z are in one-one correspondence

with basic feasible solutions cf (22). Let P2 denote the successor

of P1 and let Pk denote the second predecessor to P1  namely

the one along the path Just before the return to P1.

ro

P2

F 2

12



The e:,treme points Pc'P29Pk are distinct and each is adjacent to

P1  along an almost-complementary edge. But there are only two such

edges at P1. This contradiction completes the proof.

We can immediately state the

COROLLARY. If the almost-complementary path is initiated at the

endpoint of an almost-complementary ray, the procedure must terminate

either in a different ray or a complementary basic feasible solution.

It is easy to show by examples that starting from an almost-

complementary basic feasible solution which is not the endpoint of

an almost-complementary ray, the procedure can return to the initial

point regardless of the existence or non-existence of a solution to

(1), (2).

EXAMPLE 1. The set Z associated with

= -IM= 0 0 0
3 -( -1 -1

is nonsapty and bounded. It is clear that no solution of (1) can

also satisfy (2) since a 1W >0. Let the extreme point

corresponding to the solution v - (1,0,0), a - (1,0.2) be the

initial point of a path which begins by increasing a2. This will

return to the initial extrme point after 4 iterations.

VAK(L 2. Th set Z associated with

13



1 0 0 0

-1 
1 0 0 1

10 0 0 -1

is likewise nonempty and bounded. The corresponding fundamental

problem (1), (2) has a complementary solution w (1,0,1,0),

z - (0,1,0,1). Yet by starting at w - (1,2,0,1), z - (3,0,0,0) and

increasing z3 , the method generates a path which returns to its

starting point after 4 iterations.

Furthermore, even if the procedure is initiated from an extreme

point at the end of an almost-complementary ray, termination in a ray

is possible whether or not the fundamental problem has a solution.

EXAMPLE 3. Give, the data

10 0 0 1

-i1 0 0 1
q " 3 M = 1 -1 -1 1

1) 0 0 0 -1

the point of Z corresponding to i; - (1,0,4,1), z - (1,0,0,0) is

at the end of an almost-complementary ray, w - (i,w 2 ,4 + w2,1),

z - (1 + w2 ,0,0,0). Moving along the edge generated by increasing

z2 leads to a new almost-complementary extreme point at which the

required increase of z3 is unblocked, so that the process terminates

14



in a ray, and yet the fundamental probelm is solved by

w - (2,0,1,0), z - (0,1,0,1).

EXAMPLE 4. In the problem with

q -, M

the inequalities (1) have solutions, but none of them satisfy (2).

The point corresponding to (w;z) - (1,0;1,0) is at the end of an

almost-complementary ray w - (l,w 2 ), z - (w2 ,0). When z2 is

increased, it is not blocked, and the process terminates in a ray.

Consequences of terminat.* r •, ray. In this geometrical approach

to the fundamental problem, it iý useful to interpret &lgebraically

the meaning of termin&tion in an almost-complementary ray. This can

be achieved by use of a itand~rd result in linear inequality theory

['-1], [3].

LEWI. If (w ;z ) i. an almost-complementary basic feasible

solution of (22). and (w ;z ) is incident to an almost-complementary

h h
ray, there exist p-vectors w ,z such that

(24) wh , wh > 0, zh O, zh 0

and points along the almost-complementary ray are of Lhe form

(25) (w + Aw , z + z) h> 0

and shtisfy

15



(2)* h *
(26) (wi + wi)(z + z) - 0 for all A > 0, and all i 8

TMOREM 2. If M > 0, (22) has a complementary basic feasible

solution for any vector q.

PROOF. Select wl,..., w as the basic variables in (22). We may

assume that q ± 0 for otherwise (w;z) - (q;O) immediately solves

the problem. A starting ray of feasible almost-complementary

solutions is generated by taking a sufficiently large vaiue of

any nonbasic variable, say zI. Reduce z toward zero until it

reaches a value z > 0 at which a unique basic variable (assuming

non-degeneracy) becomes zero. An extreme point has then beeln

reached.

The procedure has been initiated in tb- manner described by the

corollary above, and consequently the procedure must terminate either

in a complementary basic feasible solution or in an aJmost-

complementary ray after some basic fEasiLle solurion (w;z ) is

reached. We now show that the latter cannot happen. For if it does,

conditions (24) - (26) of tbi lev'¶a obta'n wi.h 8 - 1. Since

M > 0 and z 0, this impllew wh > 0. Hence by (26),

z z h - 0 for all i A 1. Hence the only variables which change
ii

with A are z and the components of w. Therefore ths final

generated ray is the same as the initiating ray, which contradicts the

corollary.

THEOREM 3. A bimatrix game I(A,B) has an extreme equilibrium point.

1.6



PROOF. Initiate the algorithm by choosing the smallest positive

value of x,, say x0, such that

To(27) v en + _B1x1 >

T Twhere B1 is the first column of B . With

n 1 1

it follows (assuming nondegeneracy) that v has _xactly one zero

component, say the r-th. The ray is generated by choosing as basic

variables x and all the slack variables u,v except for vr.

The complement of v r namely yr' is chosen as the nonbasic

variable to increase indefinitely. For sufficiently large values of

yr9 the basic variables are all nonnegative and the ray so generated

is complementary except possibly x1uI might not equal 0. Letting

Yr decrease toward zero, the initial extreme point is obtained for

some positive value of yr"

If the procedure does not terminate in an equilibrium point, then

by the corollary, it terminates in an almost-complementary ray. The

latter implies the existence of a class of almost-complementary

solutions of the form

(28) u + Au h _e m0 A *+ Ax h

V ++Vh _ B T , y Y h]

The notational analogy with the previously studied case M > 0 is
obvious.

17



(29) (u u + iuh)(xi + Axi) - 0 all i 1 1

all X > 0

(30) (vj + AV )(Y + Xyh) 0 all j

Assume first that x h 0. Then v h BTxh > 0. By (30),

* h * h
y +Xy 0 for all j and all X > 0. But then u + u -.e m 0,

a contradiction. Assume next that yh # 0 and xh 0 . Then

h T *

all i. Hence vh BTxh 0 and v is the same as v defined by

(27) since x1  must be at the smallest value in order that
* * * *

(U ,V ,x ,y ) be an extreme-point solution. By the nondegeneracy
, ,

assumption, only vr a 0, and vj > 0 for all j # r. Hence (30)

implies yj + Xyj h 0 for all j 0 r. It is now clear that the

postulated terminating ray is the original ray. This furnishes the

desired contradiction. The algorithm must terminate in an equilibrium

point of the bimatrix game r(A,B).

A modification of almost-complementary basic sets. Consider the

system of equations

(31) w a q + a z + Mz

where z0 represents an "artifical variable" and e is a p-vectoro p

(l,...,l). It is clear that (31) always has nonnegative solutions.

A solution of (31) is called almost-complementary if

zi W-a 0 for i - l,...,p and is complementary if, in addition,

z 0 0. (See 116, p. 685] where a difterent but equivalent

18



definition is given.) In this case, let

Z {(z.Z) I w- q + e z +Mz !, z > o, z > 0

We consider the almost-complementary ray generated by sufficiently

large zo. The variables w!, ... ,w are initially basic while

0 - p

zo, Zl,..,,z p are nonbasic variables. For a sufficiently large value
+

of z o, say z o,

+z
w -q+ee >0

p0

As z decreases toward zero, the basic variables wi decrease. An

initial extreme point is reached when z0  attains the minimum value

z for which w - q + e z > 0. If z0 -0 , then q !0O; thiso po-0

is the trivial case for which no algorithm is required. If

z0 > 0, some unique basic variable, say w has reached its lowero r

bound 0. Then z becomes a basic variable in place of wr and

we have v - r. Next, zr, the complement of wro is to be

increased.

The remaining steps of the procedure are now identical to those

in the preceding algorithm. After a blocking variable becomes basic,

its complement is increased until either a basic variable blocks

the increase (by attaining its lower bound 0) or else an almost-

complementary ray is generated. There are precisely two forms of

termination. One is in a ray as just described; the other is in the

reduction of x to the value 0 and hence the attainment of a

complementary basic feasible solution of (31), i.e. a solution of

19



(1), (2).

Interest now centers on the meaning of termination in an almost-

complementary ray r).lution of (31). For certain classes of matrices,

the procebs, described above terminates in an almost-complementary

ray if and only if the original system (1) has no solution. In the

remainder of this section, we shall amplify the preceding statement.

If termination in an almost-complementary ray occurs after the

process reaches a basic feasible solution (w ;zz ) corresponding

to an extreme point of Zo, Lhen there exists a nonzero vector

(w ;zoz ) such that

(32) w h e zh + Mzh, (Whh;zoh) > 0p 0 --

Moreover for every X 0 ,

(33)

(w + Awh) q + e (z* + Xz ) + M(z* + z h)
p 0 0

and

(34) (wi + Xz h)(z + Az) - 0 i ,...,p.

h h
The case z - 0 is ruled out, for otherwise z > 0 and then0

w h 0 because (w h;z, z) h 0. Now if wh > 0, (34) implies

* h *
z + Az a z 0 0. This, in turn, implies that the ray is the

original one which is not possible.

Furthermore, it follows from the almost-complementarity of

solutions along the kiiy that

20



rf

** *h h* hh
(35) ziw i "ziwi " i z Zwi -0 i -1 ,...,p.

The individual equations of the system (32) are of the form

(36) Wh zho + (Mzh)I i

h

Multiplication of (36) by zh leads, via (35), to

(37) 0 - Z + zh(Mzh) i - l...,= Zio i

from which we conclude

THEOREM 4: Termination in a ray implies there exists a nonzero
h

nonnegative vector z such that

(38) zh(Mz )i 0 i a 1,..00p

At this juncture, two large classes of matrices M will be

considered. For the first class, we show that termination in a ray

implies the inconsistency of the system (1). For the second class,

we will show that termination in a ray cannot occur, so that for this

class of matrices, (1), (2) always has a solution regardless of

what q is.

The first class mentioned above was introduced by Lemke (16).

These matrices, which we shall refer to as copositive 9ius, are

required to satisfy the two conditions.

(39) uMu > 0 for all u > 0

21



(40) (M + MT)u' 0 if uMu 0 and u > 0

Matrices satisfying conditions (39) alone arL known in the

literature as copositive (see [18], [12].) To our knowledge, there

is no reference other than [16] on copositive matrices

satisfying the condition (40). However, the class of such

matrices is large and includes

(i) all strictly copositive matrices, i.e. those

for which uMu > 0 when 0 u > 0

(ii) all positive semi-definite matrices, i.e. those

for which uMu > 0 for all u.

Positive matrices are obviously strictly copositive while positive

definite matrices are both positive semi-definite and strictly

copositive. Furthermore, it is possible to "build" matrices

satisfying (39) and (40) out of smaller ones. For example, if

M 1 and M2 ar* matrices satisfying (39) and (40) then so is the

block-diagonal matrix

M 0)

0 H2

Moreover, if M satisfies (39) and (40) and S is any skev-

symetric matrix (of its order), then M + S satisfies (39) and

(40). Consequently, block matrices such as
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m (:1 T
A M 2

satisfy (39) and (40) if and only if M1 and M2 do too. However,

as Lemke [16], [17] has pointed out, the matrices encoun.-red in the

bimatrix game problem with A > 0 and B > 0 need not satisfy (40).

The Lemke-Howson iterative procedure for bimatrix games was given

earlier in this section. If applied to bimatrix games, the

modification just given always terminates in a ray after just one

iteration, as can be verified by taking any example.

The second class, consisting of matrices having positive princi!al

minors, has been studied by numerous investigators; see for example,

(21, [41, [8), [9], [10], (22], (24]. In the case of

symmetric matrices, those with positive principal minors are positive

definite. But the equivalence breaks down in the non-symetric

situation. Nonsymmetric matrices with positive principal minors need

not be positive definite. For example, the matrix

-2 )

has positive principal minors but is indefinite and not copositive.

However, positive definite matrices are a subset of those with

positive principal minors. (See, e.g. (21.)
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We shall make use of the fact that w - q + Mz, (w;z) • 0 has

no solution if there exists a vector v such that

(41) vM < 0, vq < 0, v > 0

for otherwise, 0 <vw - vq + vMz < 0, a contradiction. Indeed, it

is a consequence of J. Farkas' theorem [7] that (1) has no

solution if and only if there exists a solution of (41).

THEORE4 5. Let M be copositive plus. If the iterative procedure

terminates in a ray, then (1) has no solution.

PROOF. Termination in a ray means that a basic feasible solution

(w ;ZZ ) will be reached at which conditions (32) - (34)

hold and also

(42) 0 - zhwh , zhe zh + zhMzh

Since M is copositive and zh 0 0, both terms on the right side of

h
(42) are nonnagative, hence both are zero. The scalar z° - 0

h0
because xha > 0. The vanishing of the quadratic form thMzh means

h T h
Mz h h 0

out by (32). zh , 0 implies that w -h Mh "0, whence MT z ! 0
0

or, what is the same thing, zhM 0. Next. by (35),

h h *(Th
0 1 w a MS (-M z -asz

and we obtain again by (35)
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0 - zh * h h * hM z h h *Omzw -z0q+zez +z - z0q+zhez

h h *
It follows that z q < 0 because z e z > 0. The conditions (1)po

are therefore inconsistent because v - zh satisfies (41).

COROLLARY. If M is strictly copositive, the p.ocess terminates

in a complementary basic feasible solution of (31).

PROOF. If nit, the proof of theorem 5 would imply the existence of a

vector zh satisfying z hMzh - 0, 0 0 zh 0 which contradicts

the strict copositivity of M.

This corollary clearly generalizes Theorem 1. We now turn tc

the matrices M having positive principal minors.

THEOREM 6. If M has positive principal minors, the process

terminates in a complementary basic solution of (31) for any q.

PROOF. We have seen that termination in a ray inplies the existence

h
of a nonzero vector z hatisfying the inequalities (38). However,

Gale and Nikoido [10 , Theorem 2) have shown that matrices with

positive principal minors are characttrized by the imposnibility of

this event. Hence termination ir. a ray is not a possible outcose

for problems In which M has positive principal minors.

We can even improve upon this.

THEOREM 7. If M has the property that for each of its principal

submatrices H, the system

fi•0. 0o0i- 0

has no solution, then the process terminates in a complementary

basic solution cf (31) for any q.
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PROOF. Suppose the process terminates in a ray. From the solutioi

hh;zhz) uf the homogeneous system (32), define the vector

h of components of wh for which the corresponding component
O h-. Let b h

of z + h is -ositive. Then by (34) h be theIh hnvector of corTesponding components in z . Clearly 0 0 2 > 0,

since z h >h 0 and any positive component of zh is a positive

-h hcomponent of i by Jefi-,.ition of 0 . Let R be the corresponding

principal submatrix of M. Since M is a matrix of order I

we may write

0 Wh ezh + mi h
k -h0O=w =ekz°+M

Hence

MRh h O, 0 0 2h > 0

which is a contradiction.

3. The principal pivoting method. We shall now describe an

algorithm proposed by the authors [4] which predates that of Lemke.

It evolved from a quadratic programming algorithm of P. Wolfe [26]

who was the first to use a type of complementary rule for pivot

choice. Our method is applicable to matrices M that have positive

principal minors (ir psarticular to positive definite matrices)

and after a minor modification, to positive semi-definite matrices.

In Lemke's procedur. fo: general M, an artifical variable zo

is introduced in order to obtain feasible almost-complementary

solutions for the augmented problem. In our appioach, only variables

of the original problem are used, but these can take on initially
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V!

negative as well as non-negative values.

A maior cycle of the algorithm is initiated with the complementary

basic solution (w;z) - (q;O). If q : 0, the procedure is immediately

terminated. If q j 0, we may assume (relabeling if necessary)

that w, W1 < 0. AL almost-complementary path is generated by

increasing zl, the ccmplement of the selected negative basic

variable. For points along the path, z wi W 0 for i 0 1.

Step 1. Increase z1  until it is blocked by a positive basic

variable decreasing to zero or by the iegative w1  increasing to

Step II. Make the blocking variable nonbasic by pivoting its

complement into the basic set. The major cycle is terminated if

w1  drops out of the basic set of variables. Otherwise, return

to Step I.

It will be rhown that during a major cycle w1  increases to

zero. At this point, a new complementary basic solution is obtained.

However, the number of basic variable3 with negative values is at

least one less riini at the beginnirg of the major cycle. Since there

are at most p negative basic variables, no more than p major

cycles are required to obtain a complementary feasible solution of

(22). The proof depends on certain properties of matrices invariant

under principal pivoting.

Principal pivot transform of a matrix. Consider the homogeneous

system v a Mu where M is a square matrix. Here the variables

v..v p are basic and expressed in terms of the nonbasic variables
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u ,...,u. P Let any subset of the vi be made nonbasic and the

corresponding ui basic. Relable the full set of basic variables

Sand the corresponding nonbasic variables u. Let v - Mu

express the new basic variables v in terms of the nonbasic ones.

The matrix R is called a principal pivot transform of M. Of

course, this transformation can be carried out only if the principal

submatrix of M corresponding to the set of variables z and w

interchanged is nonsingular, and this will be assumed whenever

the term is used.

THEOREM 8. (Tucker [24]). If a square matrix M has positive

principal minors, so does every principal pivot transform of M.

The proof of this theorem is easily obtained inductively by

exchanging the roles of one complementary pair and evaluating the

resulting principal minors in terms of those of M.

THEOREM 9. If a matrix M is positive definite or positive semi-

definite so is every principal pivot transform of M.

PROOF. The original proof given by the authors was along the

lines of that for the preceding theorem. P. Wolfe has suggested the

following elegant proof. Consider v - Mu. After the principal

pivot transformation, let v - Mu, where u ia the new set of

nonbasic variables. We wish to show that uMu - uv > 0 if

uMu - uv > 0. If M is positive definite, the latter is true if

u 0 0, and the former must hold because every pair (ui,vi) is

identical with (ui,vi) except possibly in reverse order. Hence

v - uivi > 0. The proof in the semi-definite case replaces the
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inequality > by .

Validity of the alaorithm. The proof given below for p - 3 goes

through for general p. Consider

Wl " ql + m111Z + m12z 2 +m1 3 z3

2 2 2 1 1 +1 2 2z 2 +m 2 3 3

w3 " q3 + m3 1z 1 + m3 2z2 + m3 3 z3

Suppose that M has positive principal minors so that the diagonal

coefficients are all positive:

m 1 1  O, m22 >O, m33 '0

Suppose furthermore that some qi is negative, say q, < 0. Then

the solution (w;z) - (ql,q 2 ,q 3 ;0,0,0) is complementary, but not

feasible because a particular variable, in this case Wl, which

we refer to as distinnuished is negative. We now initiate an almost-

complementary path by increasing the complement of the distinguished

variable, in this case zl, which we call the driving variable.

Adjusting the basic variables, we have

1(w;z) " (q1 + mllZl q2 + a211' q3 + m31z1 ;0,0,O)

Note that the distinguished variable w1  increases strictly with

the increase of the driving variable z1 because all > 0.

Assuming nondegeneracy, we can increase zx by a positive amount

before it is blocked either by wI reaching zero or by a basic

29



variable that was positive and is now turning negative.

In the former case, for some positive value z of the

driving variable z we have W, = q, + m11Z, a 0. The solution

2 *(w;z)2 (Oq2 + m21 z1 , q3 + m31z1 ; 0,0,0)

is complementary and has one less negative component. Pivoting on

mll' replaces w1  by z1 as a basic variable. By Theorem 8, the

matrix R in the new canonical system relabeled w - q + Mz

has positive principal minors, allowing the entire major cycle to be

repeated.

In the latter case, we have some other basic variable, say

W2 a q2 + m21 z1 blocking when z1 - z1 > 0. Then clearly

s21 < 0 and q 02 > . In this case,

2 * *
(w;z) - (m11z1 + ql, 0 , m31z1 + q3 ;zl,0,0)

THZOWE 10. If the driving variable is blocKed by a basic variable

other than its complement, a principal pivot exchanging the

blocking variable with its complement will permit the further increase

of the driving variable.

PROOF: Pivoting on a22 generates the canonical system

I il + ; ll * ;12v2 + ;13a3

s2 q2 + ;2121 + ;22w2 + ;23*3

v3 q3 + ;31a1 + ;32w2 + ;33z3
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The solution (w;z)2 must satisfy the above since it is an

equivalent system. Therefore setting z1 = Z1 ,w2 = 0, z3 - 0

yields

(w;z) 2 (q, + m1 1Z1, 0, q3 + m3 1zl; z1,0,0)

i.e., the same almost-complementary solution. Incr-tsling z1

beyond z, yields

(ql,+ mlZ 1 l, 0, q3 + m3 1 z1 ;Z1 09O)

which is also almost-complementary. The sign of mi2 1  is the

reverse of m21' since *21 -m21'"m22 > 0. Hence z2 increases

vithiucreasing z1 >z 1 ; i.e., the new basic variable replacing

w2  is not blocking. Since R has positive principal minors,

a > 0. Hence w1 c o igncreasin z 1 > 1.

THEOREM 11. The number of iterations within a major cycle is finite.

PROOF: There are only finitely many possible bases. No basis

can be repeated with a larger value of sl' To see this, suppose it

did for a1 > s1 . This would imply that some component of the

solution turns nesative at x1 X sl and yet is nonnegative when

Sl a' . Since the value of a component Is linear in y we have

a contradiction.

PAranhrass of the nrincinal nivotint Nmthod. Along the almost-

complementary path there is only one degree of freedom. In the proof

of the validity of the algorithm, s1 was increasing and a2 was

shown to increase. The sase class of solutions can be generated
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by regarding z2 as the driving variable and the other variables

as adjusting. Hence within each major cycle, the same almost-

complementary path can be generated as follows. The first edge

is obtained by using the complement of the distinguished variable

as the driving variable. As soon as the driving variable is

blocked, the following steps are iterated:

a) replace the blocking variable by the driving variable and

terminate the major cycle if the blocking variable is

distinguiahed; if the blocking variable is not

distinguished.

b) let the complement of the blocking variable be the new

driving variable and increase it until a new blocking

variable is identified; return to a).

The paraphrase form is used in practice.

THEOREM 12. The principal pivoting method terminates in a solution

of (1), (2) if M has positive principal minors (and, in

particular, if M is positive definite).

PROOF. We have shown that the completion of a major cycle occurs

in a finite number of steps, and each one reduces the total number of

variables with negative values. Hence in a finite number of steps,

this total is reduced to zero and a solution of the fundamental

problem (1), (2) is obtained. Since a positive definite matrix

has positive principal minors, the method applies to such matrices.

As indicated earlier, the positive semidefinite case can be

handled by using the paraphrase form of the algorithm with a minor

modification. The reader will find details in (4].
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THE PRINCIPAL PIVOT(NG METHOD OF QUADRATIC PROGRWAflON

Richard W. Cottle
Stanford University

I. BACKROUND

Quadratic programing is concerned with the study of optimization problems
*

which can be posed in the form

()minimize Q(x) - c x + I XTx

subject to Ax > b

x>O

The points (vectors) satisfying the side conditions or constraints of the

problem (1) are sai-d to be feasible solutions and collectively they form the

constraint set

(2) .x iAx>bx>O0

which could, of course, be empty, in which case the problem (1) is said to be

infeasible. But empty or not, C is always a polyhedral convex set. The

convexity of the objective function Q(x) is quite another matter. It is

veil known that a quadratic function Q is convex on R if and only if its

"quadratic Wrt -x T Is a positive semi-definite form. If the dimension

of C In less than n, then Q could be convex on V without being convex on Rn.

A discussion of this possibility can be found in (6]. When Q is convex on n,

7r All quantities of this P;6blem are uerstood to be real number-$
The vector x represents an n-tuple of variables vhose values are to be deter-
mined. The matrix A is assumed to be of order a by n, and vithout loss of
generality, the n-square matrix D may be rep~rded as ymmetric. The superscript
T denotes transposition. Vector inequalities are tqutvalent to ccsponentvise
inequalities of the same type.
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(1) is called the convex uadnratic P problem. It Is a genuine exten-

sion of the linear programming problem which corresponds to the case in which

D is the n-equare zero matrix.

As implied above, our study stems from problems of the form (I). Ibis

is not restrictive. in the class of !inearly-constrained quadratic minimization

problems. For instance, there is a simple technique for converting problems

such as

(1)minimize Q~x = cx+ iTwx

subject to Ax = b

into the Inequality-constrained format (1) without having to double the numb'r

of constraints and variables. This is treate? in the Appendix.

In (1), we seek a global minimum of Q(x) subject to xE 1 , that is, at;

satisfying Q(1) < Q(x) for all xEd . Such an xI s said to be axi

optimal solution of the problem. In the usage adopted here, no vector can be

optimal if it is not also feasible.

The_ necessary oodidtiors of optimality for problem (1)-found by applyilig

the celebrated theorem of I•i and Tucker [19 ]-state that if 7 is an optimai

solution to the problem (1), there exists a vector y su.!h that

(3) c+D

-b +AR >_0

>o0

y~o

c +Di-Al - 0
y[-b + Ax a] 0

Morr-,,,-. th',e cdl- tIt.ons aw- sufficient when (1) is a convex quadratic program,
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The duality theory for quadratic probraimin completely embrace that for

linear programming. Thus, when D is positive semi-definite, the ]Einal

problem (1) has the dual

(4) m~aximize P(x,y) -by -V-N-~

subject to c + Dx - Ay>O 0

(x>0)

The duality of the pair (1),(4) was first discovered by Dorn [12] and Dennis (11].

lAter, in (3], the author symmetrized the duality theory by emending the primal

problem to read

(i,) minimize Q(x,y) = cx + r •. .4yTy

subject to -b + Ax + 11 O 0

x>v
x• >_oC

where E, like D, is symmetric and plsitive semi-definite. The Kiahn-Tkcker

conditions for (1') are

(3') c + Di-A y >0

-b +A + I >0

x'>0

•' 0

-T-

x-fc + ID - ATyj = 0

y (-b + Ax + ] = 0

and the dual of (1') is
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(4p1 TT I T
(41)maximize P(X,yv) bTY--rx I'll mryP

subject to c + Dx - A y > 0

S ~(x>o)

S~y>0

The parentheses around sign-restricted variables indir'ute that these restricl

can be imposed without loss of generality even though they are not required

the validity of the duality theorems.

For any solution (xy) of the orthogonality (or "complementary slackres.•")

conditions

T T
x [c + Dx - A y]= 0

y T[-b + Ax + yr] = 0

it follows that

Q(xy) = cPx + Iy TD I

1 T T
= -r-(c x + b y)

T _IT 1lT
= b y 7 -x Dx - FY~

= P(x,y)

Therefore the value of either quadratic objective function P or Q at any solut.

of (3') is readily calculated by evaluating the linear function -- (cTx + b Ty)

As might be imagined, the system (3') plays a central role In the soluti

of (.i) and (4'), a fact stressed by Wolfe [24]. In order to simplify the

manipulation of (Y'), it has been found advantageous to represent the block

matrix

(D -AT
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by the single letter M -Ad the vectors (b) ) by q and z, respectively.

With these identifications, (Y') takes the simpler form

(5) q + Hz > 0

z>O

zT[q + Mz] = 0

We shall call this the fundamental problem. It has been recognized, however,

that systems of the form (5) can often be solved without relying on the special

structure in the identification above. (See Dantzig and Cottle (8] and Lemke [20].)

The structural assumptions can be replaced by more general properties of the

matrix M, such as

(i) positivity of all principal minors

(ii) positive semi-definiteness

or generalizations thereof. One such generalization is treated by mke (20],

another by Ingleton [18] and the author 7)].

The study of the fundamental pjoblom (5) has been approached in two ways:

one existential, the other constructive. As the names suggest, the existential

approach is concerned with conditions which imply the existence---. in soie

cases, the uniqueness-of solutions to thesysten, whereas the constructive

approach concentrates on the development of efficient cputational procedures.

The two approaches are not completely disjoint, however. For ex.ple, the

principal pivoting method described below aMower@ the existence question when

the data M and q art specified ad the matrix N belonos to an allowable *&os

of matrices. It is also true that existential studies a1ov me to predict the

eventual discovery of a constructIve treatment of the problim.
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II. PRINCAL PIVOTING

Consider a p-square matrix M and a p-vector q. For any p-vector z the

"-xpression q + Mz defines a mapping W:RP -- Rp and we let

(6) v a W(z) = q + Mz

vie think of (6) as a system of p linear equations in 2p variables, and in the

.'orm above, the variables z are independent while the variables v are dependert.

.r the terminology of linear programing (9], the independent variables are

ionbasic and the dependent variables are basic.

A jolution (v,z) to equation (6) is said to be nondegenerate if at most

r. of the 2p components vl,...p zlP...,zp equal zero.

To pivot in (6) or an equivalent system is to solve for a currently

io:basic variable in terms of the remaining nonbasic variables and one of the

6iic variables. Thus pivoting exchanges the roles of two variables with re-

-rvact to membership in the basis. The specification of these variables singl,:-,

+t a particular entry in the matrix of columns corresponding to the nonbasic

fri.ables, and this entry in called the pivotal en..t. For the operation te ,e

!-gitimate. it is necessary and sufficient that the pivotal entry be nonzero.

More generally, a block pivot in (6) or an equivalent system consists

"iolving for a set of k currently nonbasic variables in terms of the remain-

.g p - k nonbasic variables and a set of k basic variables. For this operat.,

f.u be possible, it is necessary and sufficient for the corresponding pivotal

r.lock (submatrix) to be nonsingular. A block pivot in (6) is called a prln,

.i pivot If the pivotal block Is a principal submatrix of M.

The variables w 1Z, (i - I,...,p) are said to -.- a , .aplementar pair

a• ,t each is t*hp ocapiement of the other. The set of basic variables Is said
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to be ccmplementary (almost -ccmplementary) if it -ontainr no (exactly one)

complementary pair.

If the system

(7) w *E +Mz

is obtained from (6) by a principal pivot, ft is possible to rearrange the

rows and columns so that wiVzi is a complementary pair for each i l

For the sake of the discussion below, we assume that this is always done. We

call (7) a principal transform of (6). If P is a permutation matrix of the

same order as M, then the congruent matrix PFP is called a principal rear.ange-

ment of M.

If we letI {l,..,p} and , C then Mj, denotes the

submatrix of M formed by deleting the tht entries except the m j for which (i,J)

belongs to ,, K . --s , s a principal submatrix of 4 and its deter-

minant is called a pincijal minor of M. It is a standard convention to define

the determinant of tne empty matrix to be 1.

It is clear tnat Aher M is a p-square matrix and M is a principal re-

arrangement of M, every principal submatrix of M is a principal submatrix of

M. Consequently, principal rearrangement preserves the character of principal

minors. Also clear is the fact that if M is positive seml-definite, so is any

of its principal rearrangements.

Using the notation and definitions above, we may nov state a result of

Tucker (23].

T¶!3RZO 1. If M has positive principal minors and M is a principal transform

of M, then M has positive principel minors.

PROOF. Suppose M1 is obtained frcu M by a block pivot on the principal submatrix
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Then the conclusion follows from another result of Tucker (22, Theorem 31

which implies that for ll • C

(8) det M det MJ& 6  /%~det M

where 6 represents the symmetric difference operation:

,161 - ( 4 ý) -(a 61AI)
On the strength of this theorem, we say that the class of p-square matrices

having positive principal minors is invariant under principal pivoting. The

formula (8) yields a similar invariance theorem for the class of matrices with

nonnegative principal minors.

The class of positive (semi-)definite matrices of a given order is also

invariant under principal pivoting.

IIEORN4 2. If M is a p-square positive (semi-)definite matrix and M1 is a

principal transform of M, then M* is positive (semi-)definite.

PROOF. We m assume that

and that M is obtained from M by a block pivot on the principal submatrix

M, If z = ) and w - (w , ) are defined conformallJy, we

may write

W i ,4 1ý + "J, Z
The quad~ratic form ZT?4z can then be expressed as

ZTM a zT + 14

After the block pivot on M1 we obtain
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= -1 VM-

ý=Mp wt + t - k )

and hence

ý' M O-)IP j_ M-I0,

The associated quadratic form is given by

wjAzj +z TJ T m jwi + TV

Therefore, the range of the quadratic form is invariant under principal pivoting.

When M is positive semi-definite, M must be also as well. If N is positive

definite, the quadratic form zT•z Is nonnegative for aUl z and vanishes only

when z = (. z ,z ) = 0. Therefore if (Nj ,z, )T*(w A * vanishes, it

follows from the relations above that (wj "Z. ) u 0. Hence N is positive

definite.

REKARK. It should be carefully noted that no assumption of symetry on N has

been used. For the application suggested in Section I, it would be inappropriate

to be hampered by such a restriction.

As we shall see, the principal pivoting method for solving (5) relles

rather heavily on these invarlance theorems. The method consists of a finite

sequence of principal (block) pivots. Each such block pivot which Is not a

"sitple" principal pivot amounts to a finite sequence of simple nonprmncipal

pivots each of which produces an almost-complementary set of basic varlables

in the current transform of (6). This means that properties of positive princi-

pal minors or positive seml-definiteness can temporarily be lost. It will

become clear in the sequel that the folloving facts are belpftl.



- 10 -

HEORM 3. Let A - (a be a 2-square positive aml-defiaite matrix. If

a1 1 - 0, then &12 +&21 .0.

PROOF. The associated quaftatic form is
(a + ) + >0

12 al~x2+ a22x22>

for a& x1-X2. If a12 + &21 is anything but zero, the inequality cannot hold

for al x1 ,X2 .

WBOR34 4. Let A w (a ,) be a 2-square mtrix having the properties:

(i) all <0;

aill)a + a•l < 0;

(Iv) if al < 0O, then I

&.2a.lU

is positive .. il-definzte;

(Y) if a2 1 <0l then

A * a1 ( l2a2l - alUa)/a21)

ie positive neul-definlte.

Then A must have the properties:

(vi) 1 2 >o0;

(Yii) a2 2 )ý0;

(viii) &12 + *22 > o.
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PROOF. The first three properties of A4 imply that all < 0 or a21 < 0--n

perhaps both are negative.

CASE I. If all < 0, the principa1l minors of A, are nonnegative since it

is posItive semi-definite. Ii particular, 12 > 0 and a&2 > 0. If botbwere

zero, it would follow from Theorem 3 that 1/a w 0 which is absurd. Hence

the properties (vi) to (viii) hold.

CASE II. if a 2 1 < I and a1 1 , 0, the positive semi-definiteness of A2

implies a1- = -1/a 2 1 > 0 and a2 2 > 0. Hence the required corditions hold aa4in.

The theorem can be varied and established even More, esily for the case of

matrices having positive principal minors. MTe proof is w1tted.

ThEOR3M 4'. Let A - (aij) be a 2-square matrix having the properties:

(1) all < o

(11) a21 < 0

(iii) the matrix

A1  -(a12/a1 1  1/l 1

(aa1" " a.a2i)//k Ui/n)

has positive principa, minors;

(iv) the matrix

( a11/a2. (sL2 *I " s1 2 ) *21

has positive principal minors.

Then A must have the propertieva:

(v) &1 > o;

(vi) ,V > 0.

W 7P-'degstvity of princlpl minorS is a necessary coitii of jostwe Um-
definite matrices, regsrdless of sy-jetry.
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III. sacN 1F0PET; 0F THE FODOFMfIA 8YSTSM

The linear inequalities

(9) q + 14z >0

z)O

or equivalently,

(9') ws q t

w> 0

z>O

will be called the fundamental For theo t, we will asmse only

that M is a p-square matrix, q RP, z 9.

It is a straightforvard consequence of Farkas' Theorem (13] that (9)

ha" no solution if, and only if, there exists a p-vector v satisfying

(10) vT<o0, vTq< 0 , v>0

It has been shown (5) that when M has positive princ4 pal minors, (10) has no

solution, and hence (9) Is consistent regarddless of what q may be. Moreover,

i't w shown there that In this case, the fundamental problem r'v.ys has a

solution; the uniqueness of the solution was first pointed out by In4leton

(181 and by the author in (7). The key ingredient in the proof io the fact,

due to (]ale and Nikaldo (15], that N has positive prmnvipsl minors if, and on4

if,

(31) :i(N)O <o0, i .1,...,p implies : - 0

In the positive seml-definite case, the fundoaental system need not be

consloent, but timn It Is, the fundntA4l problem (5) has a solution. If

the solit.ion In also wowdegencrate, It is unique. 9.e (41 (existence) &u

(201 (uiqueness).
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The principal pivoting method is applicable to fundamental problems (5)

in which M has positive principal minors or is positive semi-definlte, It

works with solutions of w = q + Mz rather than with solutions of the full

system (9'). Hence no a priori information regarding feasibillrned be given.

For this reason, the method incorporates a devIse for recognizing infeasibility

when it occurs in the positive semi-definite case. The device rests on Theorem

and the following resuit proved in (101 by Dantzig and the author.

THBOREM 5. Let M be a p-square positive semi-definite matrix, and let q 6 Rp.

If for some index r, i < r < p,

(i) %<0

(ii) mrr = 0

(ii) mir > 0

the system (9') has no solution.

This is proved by noting that the hypotheses lead via Theorem 3 to the

conclusion that the r-th equation

p
wr = - r + . rj ZJ

can have no nonnegative solution.

Although it seems unimportant fram the comptational stamdpolnt, it is

interesting to see that for a large class of matrices, the solutions to (9)

wast form either an empty or an unbounded set.

* It is vortb mentioning that Th*e&rm 3 and 5 are valid for the class of
"copositive ;lus" matrices introxduced by Imla . (20, Theorem u). Bowuvr, oiur
Theorem 2 is not valid for this class of matrices, and therein lies a lialta-
tion of the principal pivoting method.

I_
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THEORM 6. let M be a p-square matrix and let q E RP. The set

Z(q,M) =tZFRI q+ Mr>0Z>O0

is unbounded if, and only if, it is nonempty and

(12) VTM < , > o

has no solution.

PROOF. Suppose Z(qM) is nonempty. By a theorem of Goldman (161, Z(q,M) is

unbounded if and only if Z(O,M) ý {0} . But by a standard altenrative theorem

(see Gale (14, Theorem 2.10]), this is so if and only if (12) has no solution.

The class for which (12) has no solution includes copositive matrices

(i.e., those for which zTMz > 0 for all z > O) and adequate matrices (as delined

by Ingleton [18]); therefore the class includes all positive semi-definite

matrices and all those with positive principal minors.

As an application of Theorem 6, consider the interpretation of (9) as the

set of constraints obtained by taking a convex quadratic program and composing

its constraints with those of its dual, as done in Section I. If 616her the

primal or the dual constraint set is nonempty, then at least one of thei must

be unbounded. This generalizes results of Clark [2', Carnes, Cooper, and

Thockpson. [I], and Lemke [20].
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IV. THE PRINCIPAL PIVOTING METOD

In this section, we shall present a treatment of the principal pivoting

method first proposed by lantzig and the author [10]. The method is applicable

to m•..rices with positive principal minors (so-called P-matrices) and to those

which are positive semi-definite. Since the method can be stated more simply

for the class of P-matrices, we begin there and subsequently broaden the dis-

cussion to the positive semi-definite case. First trough, we make some general

remarks.

It is convenient to represent (6) in tabular form as follows:

1 zI ..I z

l ql 1 el lp

12 q q2  2 1  " 2p

The variables to, the left of the box are basic and those above it are nonbasic.

The number of negative components in q is called the index for the funda-

mental problem (5). If the index is zero, then q > 0 and z = 0 solves (5).

obviously (5) hss no computational interest unless ito index is positive. Then,

if we can achieve an equivalent system with an index of zero, the original system

is readily solved.

We denote by

(6.V) W(W) . q(V) + M(V)z(V)

the system obtained frcm (6.0) after W iterations. The system (6.0) id Just (6).

We say that (6.v) is complementarjy if (wO ,z( ) = Wl . f ori = "

Starting from a complementary system (6.V) with a positive index, we consider
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•/

the solution (w() ,z() (q( , O) and select a particular negative caTponent,

W(), which will be called the distinguiched variable. Our imediate objective
r

is to make w()increase to zero without allowing any variable already nonnegativer

to become negative. In the case of P-matrices which we now consider, this can

always be accomplished by a finite number of simple pivot,, which result in a

principal. (block) pivot.

Notice that if M = M(0) is a P-matrix, so is M in any equivalent comple-

mentary system (6.v), i.e., in any principal pivotal transform of (6.0). Conse-

quently, the diagonal entries of M a kre positive, and in particular,

r r0 Zr

Verbally, the increase of the nonbasic complement z&) of the distinguished
r

basic variable w($) forces the latter to increase. In this role, t(T) is calledr r

the driving variable. Inc.reasing the variable z$a) to the positive value

rr
un/rndrives w(P up to the value zero.

' rr r

Basis Exit Rule. The driving variable is governed by a rule which states that

its increase must stop as soon as a positive basic variable decreases to zero or

the distinguished variable increases to zero. The variable which limits the

increase of the driving variable is called the blocking variable. In this case,

the existence of the blocking variable is clear; nondegeneracy guarantees its

uniqueness.

The blocking variable w(V) and the driving variable zrO) determine a pivotal

entry Mr in the tableau corresponding to the basis exchange in which the driving

variable replaces the blocking variable. There are two cases. Case A. If a - r,

then the exchange of w(*)- for zr$) is a principal pivot which poduces an equl-
r s

valent complementary system (63,4) in which MCPl Is a P-mtrix. Moreover,,



(6.*1) has a lower index than (6.V). If min qiWl) < 0, a ew distinguisbed

variable is determined and the process is repeated. If min qL+) > O, a solu-

tion of the fundamental problem Ula at hand, viz., (v(0+l),Z(•I)) - (q(VY+),o).

Case B. If s r. ten m()r < 0, and the exc ge of v() andZ Is i non-

principal pivot. Before the pivot,

('13) UM) ()

m(7 mr /V
s r se

.1:i a principal 2-square submatrix of the P-mtrix MW). As such, it Is a P-

nitrix. After the pivot on m Mr this 2-square matrlx becomes

tL4) sr -)/,(r rrs)M)

(o which 7heore 41' applies, although in this cae, Its conclusion
(15).((-V)-V)r ,r " ")B(V))l•r ,, (W) > 0, -,,I(•_, > 0

is obvious from first principles. The pivot has (1) left the distinguished

variable basic at a negative value, and (ii) made the drivlrg variable basic

and the blocking variable nonbasic. Nov, the system Is elw.t-ccmplemntary
*

siyLce the distinguished variable and Its cop~elent are basic vhile tht blocking

variable and its caplement aem nonbasic.

One sall*nt feature of the 2-square matrix (14) to that Its rows correspond

to the basic pair and its columns correspowa to the nonbasic pair in the current

tableau. We shall call .t the pi matrix. The pair matrix le defined only for

en Llmost-cglýMen~tar system.*'I•e basic %~air. . . . .. . .
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Basis Matz_ Rule. The next variable tc enter the basis (i.e., the uert drivitn

variable) is the complement of .the blocking variable whieh Just became no3bMSi.

Its increase is also governed by the basis exit rule above. Notice that (15)

implies that both members of the basic pair will increase with increases in the

new driving variable. Hence the existence of a blocking variable is assured.

Indeed, when M is a P-matrix, the dJstinguhhel varlable is always potentially

a blocking variable. If the distinguished variable is not actually the block-

ing variable at a particular iteration, the plvotal entry is again negative.

By the algebra of pivoting, it follows that a new pair matrix is obtained to

which Theorem 41 arplies. Part of the applicability of Theorem 4' stems from

the invariance of P-matrices under principal pivoting. The constant applica-

bility of Theorem 4' accounts for the fact that both members of the basic pair

will increase as the current driving variable increases. Since nondegeneracy

implies that strictly positive increases of the driving variables are always

allowed, the procedure must drive the distinguished variable up to zero at which

time it is the blocking variable; the corresponding pivot restores the comple-

mentarity of the system.

As in linear programing, the stquence of steps by which the distingulshed

variable is driven to zero is finite. For there are only finitely many basic

solutions, each of which corresponds to a unique set of values of the basic vari-

ables. Since the distinguished variable and its complement increase strictly

from one iteration to the next, no basis can be repeated. The finiteomess of the

overall Procedure now follows from the tct hat the index never increases.
* In this application. thh matrices A1 and A2 are interpreted as pivotal trans-

of the pair matrix which would make them principal submatrices of a P-matrix.
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Modifications for the positive semi-definite case. When the matrix M in the

fundamental problem (5) is positive semi-definite, its principal minors are

nonnegative rather than strictly positive. This causes certain complications

which call for special handling.

Indeed, the system (6) need not have a nonnegative solution in this case.

In the modified procedure, the absence of an appropriate pivotal element or,

equivalently, the existence of an unblocked driving variable detects this

possibility. This is accomplished with Theorems 5,, 4, and 2. However, it is

necessary to incorporate an artifice to handle the situation in which the

driving variable:

(i) has no effect on the negative distinguished variable;

(ii) makes at least one other negative basis variable decrease;

(iii) makes no positive basic variable decrease.

Without modification these conditions would signal an unblocked driving variable,

and we want this situation to indicate that no solution to the fundamental problem

exists. The artifice we use is to impose a lower bound < min q O) on all

negative basic variables. A negative variable can therefore block the driving

by decreasing to its lower bound; if this happens, the variable becomes non-

basic at its lower bound value, • . However, once a variable becomes nonnega-

tivet, zero is its lower bound.

This modification necessitates a change in the notion of basic solution.

A basic solution now is one in which the nonbasic variables are set at their

current lower bound values, either 0 or,9 . A solution is nondegenerate if at

most p of the 2p variables of the problem equal 0 or . Again the nondegener-

acy of all solutions is assumed.
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The basis entry and exit rules for the positive semi-definite case are

as stated above. However, it could h.•.ppen that the distinguished variable is

also the nonbasic driving variable, and In thft case, it could be self-blocking.

The principal pivoting method for both of the cases discussed above can

be summ•irzed by the following diagrar.

FLOW DIAGRAM FOR THE PRINCIPAL P.i-VC1I ThI Yi [IO. OF QUADRATIC PROGRAMDIG

START WITH COVPL24ENT&RY

BASIC SOLUTION OF THE SfSTEK
P

wi = qi + mjzJ i-<i9q

SET ALL NO(FOR Z(AMPLE: w q, z = 0)
SET ALL NOIEAiICVARJABIM EQA YES --
TO 0 AND OBTAIN ARE ALL MhE CUREY" > 0 Il

STOP NO

COSE r SUCH THAT w < 0 |ri
wrIS DISTINGUISHED)

r
INCREASE THE NONBASIC MEMBER OF THEE

COMPLEMNTR PAIR w r,'Zr (DRIVING VARIABLE)i

"i "i NO STOP. NO'
SIS TH INCREAE BLOC~o soIUMON

'' Y71F EX• IST

IBY w .? E A KE r~ NO-- --C

VARIBL BY TH INCREASING
RNONBASIC (DRIVING) VARIABLE

INCRAmSE TRE C44`IT OF THEI
1(NOW NoNBAIC BiDCK VARIBL
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As before, the procedure does not allow nonnegative variables Sot-become

negative. Bach return to a test of the current "q-column" corresponds to a

complementary system with lower index than its predecessor. Hence only

finitely many returns are possible.

It remains to show that after each nonterminating q-test, a return to the

q-test will occur after finitely many steps unless the driving variable is un6

blocked, in which case the problem cannot be solved due to the infeasibility

of (9). As stated earlier, these facts are attributable to the nondegeneracy

assumption and Theorems 5, 4, and 2.

Suppose we start from a complementary system. If the driving variable Is

unblocked, it cannot also be the distinguished variable, since a distinguished

driving variable must be a negative nonbasic variable which would not be in-

creased beyond zero. Therefore an unblocked driving variable In a ccoplemientary

system hag a negative basic complement upon which its increase has no effect.

Being unblocked, the driving variable must correspond to a nonnegative column

in the current tableau. Hence conditions (I), (ii), and (Ii1) of Theorem 5

hold and the system has no nonnegative solution.

If the driving variable is blocked but not by Itself or its cmplesent,

the first system after the pivot is alaost-ccoplementary and contains a pair

matrix. Whenever an alaost-complementary system is obtained, the most recent

pivotal element is negative. The Invariance theorems guarantee the required

properties on the matrices Al, A2 in Theorems 4 and 14.

*It was pointed out by T.D. Parsons In a private comunication that It Is
possible to return to the q-test and find that column nonnegatlve while sme of
the nonbasic variables are at negative values. In such a cae, setting all
basic variables equal to 0 solves the problem.
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1ff the driving variable in an almost-ccuplementary system is unblocked,

-.to corresponding column In the current tableau must be nonnegative (for other-

wi se some basic variable would block it). Since the distinguished variable is

not blockring, the entry of the pair matrix correspondinr to the driving variable

and thrŽ distinguished variable is zero. and the other entry in that column of

the Tdar matrix is positive. Pivoting on the latter restores complementarity

to t'•-' system. After suitable reordering of the columns, it Is possible to

apply Theorem 5 and declare infeasibility.

Ech iteration of the method increases the sum of the distinguished

,arhjable and its complement, because the nondegeneracy assumption implies that

th, Jriving variable can always be increased. Since there are only finitely

•.•*.a bases and finitely many basic solutions corresponding to eqch, it is im-

on::;ible to return to a previously encountered basic solution, and therefore

only finitely many steps are required to detect infeasibilitF or produce a

-•nmplementary system with lower index than the previous one.

"-•.,s could not occur in the case of P-matrices.
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V. A CCHPARISMWI• LM a 'S NMOD

The principal pivoting method invites ccmprison v4.th the very interesUng

approach of leuke (201]. Lemke's method can be viewed as a sequence of alaot-

ccmplementary pivots resulting in one grand principal pivot Vhbch is cmpletely

determined after the fundamental problem (5) is embedded in a larger one:

(:0) 0, (:o) >0

TznWGL - + z V a 0

where eT - (l,...,1), 10 is a isuitably large scalwr, and v 0 ,z 0 ti a pair of

ccplamentar-y artificial variables. A solution of (16) in which z 0 0 is

clearly & so'ution of -be or'ginal f•'uneentam l problem (5).

!Aske has shorn that (16) has a solution for any p-square matrix N. The

question then beccues the signlficanmve of a volution to (5) In v•leb 0 > 0

ad hence v0 - 0. Fr- & large class of matrices vhLch includes t.e positive

seii-definite class the answer Is that the fnaeinntal problem (5) has no

fasIble solutlon. The author and Dantzig (81 have shovn that (16) ban no

solution with z0 > 0 when M is a P-mstrix. Hence iLmke 's method can always

solve (5) vban -is a P-mtrix.

As mentioned In an r rlier section, the principal pivotlag method Is aot

applicable to the entire class of copoeltlw plus mtrices introduced by ZeAw

sinee that class Ii not Invarlant undor rii.izcpsl pivoting. Tt the author's

knovle4ge, the two methods have rever been systematlealy cmp•aed on data to
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which they are both applIcable.

The Lemke procedure begins with a nonprincipal pivot in the s column.

dII subsequent systems except the ir Jt are almost-cumplementa:.y and contain ti.

basic pair W0 ,ZO. When M is positive semi-definite, so is

(2 -eT )
and Theore 4 cawa be applied to show that w0 and z. are nontncreasing while

+0 + z0 is strictly decreasing witn increases cf successive driving variableý

1iowtvei. this result does not hold for arbitrary matrices.
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VI. APPEDIX

It is well known that an eqiiation is equivalent to a pair of Inequalities.

TherefDre, the system of linear equations

(17) Ax = b

can always be written as

(18) Ax > b

-Ax > -b

This doubles the number of linear constraints satisfied by x. If a system of

linear inequalities equivalent to (17) is desired, a shaller system than (18)

can be used. (Actually, the system will be smaller only when m > i.) Since

(17) is Just
n(17'9 F a ijxj =h i = 1,...,m

J=li"

it is equivaleat to
n

(19) Z: aijxj b, i = 1,....,m
J=l

n m m

which is a system of m + 1 linear inequa±ities.

Another often-used fact is that any real number 4 can be represented an

the difference of two nonnegative real numbers:

> - >o,

Thus, variables which are not sign nrstricted can be represented by the difference

of two nonnegative variAbles. In a problem such as (V') where all the variatles

are unrewtrlcted in sign, this device would loable the number of variables. This

duplication is also unnecessary. It suffices to write

x ,-X 6ýO ýý0 J l,...,)n
J •I

1.1iL, increases the number of variables by i.
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"PREFACE

In this Memorandum, some basic problems concerning flow

networks are surveyed and extended to two more general

structures: frames of real vector spaces and blocking

systems.

4'

4€b.



P SUMMARY

This paper surveys some basic problems, theorems and

constructions for flow networks, and shows how these can be

extended to more general combinatorial structures.

One of the generalizations can be roughly described

as that obtained by replacing the vertex-edge incidence

matrix of an oriented network by an arbitrary real matrix.

This leads to t>'e notion of a frame of a subspace of

Euclidean n-space, a concept very closely allied to that

of a real matric matroid. Our treatment relates matroid

theory and linear programming theory, and thus provides

another viewpoint on linear programming, and in particular,

on digraphoid-programming.

In the last part of the paper a very general combina-

torial structure called a blocking system is given an axio-

matic formulation. These systems have arisen in a variety

of contexts, including multi--person game theory and abstract

covering problems. It is shown that one of the network

theorems surveyed in the first part of the paper extends

to all blocking systems, and indeed characterizes such

systems.
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NETWORKS, FRAMES, BLOCKING SYSTE4S

INTRODUCTION

In this paper we survey a few iasic problems, theorems,

and constructions concerning flow networks, and describe

how some of these can be extended to more general structures.

The paper is divided into three parts.

Most of the material of Part I, which deals with

networks, can be found in Ford and Fulkerson [8), or in

earlier papers by the same authors. In the main, we limit

the discussion in Part I to four network problems: maximum

flow, minimum path, maximum capacity path, and the lvngth-

width inequality.

Part II extends this discussion to arbitrary real

matrices by making use of what we call the frame of a

subspace of Euclidean n-space, a notion very closely related

to that of a real matric matroid. In particular, Part II

can be specialized to a subclass of real matric matroids

introduced and studied by Tutte [1], and called by him

regular matroids. Regular matroids have been recently

re-investigated by Minty 1241, who has given another system

of axioms for a dual pair of regular matroids. The resulting

structure is called a digraphoid in [24], where it is shown

that some of the main theorems of network-programnming

generalize to digraphoid-programming. Our treatment provides

another viewpoint on digraphoid-programming, and indeed on



-2-

linear programming in general. It is shown in Part Ii that

the main theorems of Part I have direct analogues for

arbitrary real matrices. We want to emphasize, however,

that the special network algorithms of Part I do not, so

far as we know, have such analogues. Even for the case of

digraphoid-programming, we know of nothing better

computationally than the simplex method of Dantzig [31.

While the simplex method has proved to be a powerful tool,

both theoretically and computationally, it is not yet known

whether it is a good algorithm, in the technical sense

stressed by Edmonds [61, whereas the network algorithms of

Part I are good in this sense.

In Part III a very general combinatorial structure,

which we call a blocking system, is given an axiomatic

formulation. These systems have arisen previously in a

variety of contexts, including multi-person game theory

",29] and abstract covering problems r14, 21, 22]. They

have recently been studied by Lehman [22], who has given

conditions on a blocking system in order that a max-flow

min-cut equality or a length-width inequality hold, and

also by Edmonds and Fulkerson )71, who have shown that one

of the network theorems of Part I extends to all blocking

systetis, and indeed characLerizes such systems.
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PART I. NETWORKS

1. MAXIMUM FLOW

Let G be a graph with edge set E and vertex set V.

Both E and V are assumed finite. The two ends of an edge

may be distinct vertices or the same vertex; in the latter

case the edge is frequently called a loop. We also allow

multiple edges joining the same pair of vertices, or

multiple loops on the same vertex.

It will be convenient in this section to orient G by

distinguishing one end of each edge as positive and the

other as negative. Fur a toop these coincide. If e c E

has positive end u c V. negative end v .- V, we sometimes

write e - (u, v). Fur each edge e c E and vertex v c V we

tifine an integer a'v, e) as follows. If v and e are not

incide.-., or if e is a loop, then a(v, e) - 0. Otherwise

a(v, e) - 1 or -1 according as v is the positive or negative

end of e. We call the resulting matrix the vertex-edgqe

incidence matrix of G.

Suppose now that each edge e . E has associated with

it a nonnegative real number c(e), the capacity of e. Let

s and L be two distinguished vertices of G. A (feasible)

flow, of matnitude (or amount) a, from s to t in G is a

real-valued function x with domain E that satisfies the

linear equations and inequalities

•..• ,q• V " S,

(1.1) -1 a(v, e)x(e) -, v t
e.E 0, v S. t



-.4--

(1.2) - c(e) < x(e) < c(e), e e E.

Thus Ix(e)! can be thought of as the magnitude of flow in

edge e; if x(e) > 0, the direction of flow in e agrees with

the orientation of e; if x(e) < 0, the direction of flow

is against the orientation of e. The equations (1.1)

stipulate that a units of flow leave s and enter t, flow

being conserved at all other vertices. We call s the source,

t the sink. The maximum flow problem is that of constructing

an x that satisfies (1.1), (1.2), and maximizes a.

We can get rid of the asymmetry in equations (1.1) by

adding a special edge e' to G joining s and t, say e'• (t, s),

which returns a units of flow to s from t; we may take c(e')

large. In other words, by distinguishing one edge e' of

a graph, the maximum flow problem may be viewed as that of

maximizing x(e') subject to (1.2) and the conservation

equations

(1.1') Fa(v, e)x(e) - 0, v c V.
ecE

For the moment, we shall continue to work with (1.1) and

(1. 2), however.

We refer to the graph G with capacity function c and

distinguished vertex pair s, t as a (two-terminal) flow

network, or briefly, a network. In general, we use the

word network in this paper to mean a graph together with

one or more real-valued functions defined on its edges.
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To state the fundamental theorem about maximum network

flow, we require one other notion about graphs, that of a

cut. A cut K c E separating s and t in a graph G is a

subset of edges that has some edge in common with each path

joining s and t in G. We say that K blocks all such paths.

(Here a path joining s and t is a sequence of distinct

end-to-end edges that starts at s and ends at t. Edges may

be traversed with or against their orientations in going

from s to t along the path.) If all edges of K are

deleted from G, the vertices s and t fall in separate

components of the new graph. It is intuitively clear that

a in (1.1) is bounded above by

(1.3) c(K) - D c(e),
efK

the capacity of cut K. We can prove this from (1.1) and

(1.2) by adding those equations of (1.1) corresponding to

vertices in the s-component of the graph G' gotten from G

by deleting edges of K. The result is

(1.4) a = F x(e) - E_ x(e) • c(K),
eE+ ecK

where K+ (KC) consists of those edges of K with positive

(negative) end in the s-component of G' and negative

(positive) end outside this component. In words, for an

arbitrary flow from s to t of magnitude a and an arbitrary
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cut separating s and t, the net flow across the cut is a,

which is consequently bounded above by the cut capacity.

Theorem 1.1 below asserts that equality holds in (1.4) for

some flow and some cut, and hence the flow is a maximum

flow, the cut a minimum cut [9].

Theorem 1.1. For anM network the maximum amount of

flow from source to sink is equal to the minimum capacity of

all cuts separating source and sink.

Theorem 1.1, the max-flow min-cut theorem, is a

combinatorial version, for the special case of the maximum

flow problem, of the duality theorem for linear programs,

and can be deduced from it [41. Such a proof makes crucial

use of the fact that the vertex-edge incidence matrix of

an oriented graph G is totally unimodular, i.e., every square

submatrix has determinant 0 or + I. A simpler proof of

Theorem 1.1 is the second proof given by Ford and Fulkerson

[10]. This proof also leads to an efficient algorithm for

constructing a maximum flow.

Proof of Theorem 1.1: It suffices to establish the

existence of a flow x and a cut K for which equality holds

in (1.4). Let x be a maximum flow, of amount a, from s to

t. Define a set U c V recursively as follows:

(l.5a) s E U;
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(l.5b) if u c U and e - (u, v) is an edge such

that x(e) < c(e), then v E U; if u E U

and e - (v, u) is an edge such that

x(e) > - c(e), then v c U.

We assert that t E U - V - U. For suppost not. It then

follows from the recursive definition of U that there is

a path P from s to t such that x(e) < c(e) on edges e c

and x(e) > - c(e) on edges e E P. Here P -P+ U P,

where P consists of those e E P whose orientations agree

with the orientation of P from s to t. Let

(1.6) c - min[min+ (c(e) - x(e)), min_ (c(e) + x(e))] > 0
ecP eEP

and define

( x(e), e P,

(1.7) x'(e) = x(e) + c, e E

x(e) - c, e E P

Then x' is a feasible flow from s to t of amount a + c,

contradicting the assumption that x was a maximum feasible

flow. Hence t e U, as asserted. Let K be the set of

edges joining U and U, and write K - k+ i K-, where K+(K-)

consists of those edges of K with positive (negative) end

in U. Then K is a cut separating s and t, and it follows

from the definition of U that x(e) = c(e) for e c K+,
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x(e) - c(e) for e E K. Hence equality holds in (1.4).

Notice that the proof shows that a flow x is maximum

if and only if there is no x-augmenting path from s to t

(i.e., a path P such that (1.7) yields a feasible flow x').

If we assume that the capacity function c is integral-

(or rational-) valued, the proof provides a good algorithm

for constructing a maximum flow. We can begin the

computation with any integral-valued feasible flow from s

to t, e.g., x(e) - 0 all e t E. We then institute a Fearch

for a flow-augmenting path using the prescription of (l.5a)

and (l.5b). A good way to apply this prescription is to

fan out from s to all its neighboring vertices that can be

put into U using (l.5b); then repeat the process by selecting

one of these vertices, scanning it for all its neighbors

not yet in U that can now be put into U, and so on. This

way of searching for a flow-augmenting path is called the

"labeling process" in [8], where it is described in terms

of assigning labels to vertices as we put them in U; in

terms of (l.5b), the label assigned to vertex v is u.

(This simple process forms the basis for most of the

network-programming algorithms described in [8].) If this

search is successful in finding t, the flow increment c

of (1.6) is a positive integer, and hence x' of (1.7) is

again an integral-valued flow. If unsuccessful, the

present flow is a maximum flow, and a minimum cut has been

located. Thus the algorithm terminates, and at termination
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we have constructed an integral maximtun flow and a minimum

cut.

Theorem 1.2. If the capacity function c is intejral-

valued, there is an integral maximum flow.

Theorem 1.2 is important in combinatorial applications

of network flows.

While we have taken the capacity constraints (1.2) to

be symmetric about the origin, there is no real need for

this assumption. The constraints (1.2) can be changed to

(1.2') b(e) - x(e) • c(e), e e E,

and handled in an analogous fashion provided they are

feasible, that is, the constraint-set (1.1), (1.2') is nonempty.

(Thus, for example, "one-way streets" can be incorporated

in the model.) Even the feasibility question can be dealt

with by an appropriate modification of the argument used in

the proof of Theorem 1.1, or by applying a version of

Theorem 1.1 to an enlarged network. For a detailed

discussion of this and other extensions, e.g., capacities

on vertices as well as edges, we refer to [8]. Here we

shall simply state a typical feasibility theorem, the

circulation theorem due to Hoffman (18].
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Theorem 1.3. Let b(e) ' c(e) for each edge e of a

network G be given real numbers. The constraints (1.1')

and (1.2•) are feasible in G if and only if, for each

subset U c V, we have

eK c(e) -e•Kb(e) 2 0,
ece eEK

where K+ (K-) consists of those edges of G with positive

(negative) end in U and negative (positive) end in V - U.

Minty [23) has distilled from the above proof of the

max-flow min-cut theorem and from other network algorithms

of Ford and Fulkerson [10, 111 a theorem about graphs, which

Berge and Ghouila-Houri [1] have called "Lemme des Arcs

Colores." We call it the painting theorem. To state it,

we require some definitions. A circuit C c E in graph G

is a minimal closed path in G, that is, a set of edges

which forms a closed path and is minimal with respect to

this property. A cocircuit D z E is a minimal cut, that

is, a set of edges whose deletion increases the number of

connected components of G and is minimal with respect Lo

this property. (In terms of the (0, + l)-vertex-edge

incidence matrix of an orientation of G, a circuit

corresponds to a minimal dependent set of columns of the

matrix, where "dependent" means "linearly dependent over

the r~als." If G is unoriented, and the vertex-edge matrix
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is taken to be a (0, 1) - matrix, then a circuit corresponds

to a minimal dependent set of columns, where "dependent"

means "linearly dependent over the integers mod 2.") A

painting of G is a partition of the edges of G into three

sets R, W, B, and the distinguishing of one edge of the

set R. It may be viewed as painting the edges of G with

three colors-red, white, blue--with one red edge being

distinguished and painted dark red.

Theorem 1.4. Given a painting of an oriented graph

G, precisely one of the following alternatives holds:

(i) There is circuit In G coanLtaing .kh1 dark x"e

dAe but no white edge, in which all red edges &a

similarly oriented.

(ii) There is a cocircuit in G containing the dark

red edge but no blue edge, in which all red edges are

similarly oriented.

Proof: Let e' - (t, s) be the dark red edge. If

e' is a loop, then (1) holds and (ii) fails, by the

minimality of a cocircuit. If t + s, define a subset

U c V recursively by the rules

(l.8a) s C U;

(l.8b) if u U U and e - (u, v) is red or blue, then

v e U; if u e U and e - (v, u) is blue, then

V £ U.



-12-

If t c U, there Is an elementary (minimal, simple) path

from s to t of red and blue edges in which all red edges

are oriented in the path direction. This path, together

with edge e', provides the circuit of (1). Conversely, if

(i) holds, then t c U. If t 4 U, consider the set of edges

joining U to U V - U. These edges are either white or

red, and any red edge is oriented from U to U, as e' is.

Delete these edges. The resulting graph has components

U, U1 9 *..' Uk with t E UI" The set of edges joining U

and U1 is the cocircuit of (ii). Conversely, if (ii) holds,

then t cannot be in U via (l.8b).

To apply the painting theorem to the maximum flow

problem, first add the return-flow edge e' ~ (t, s) to the

network with c(e') large. Let x satisfy (1.1'), (1.2).

Paint e' dark red. For other edges e: If c(e) - 0, paint

e white; if x(e) - c(e) > 0, paint e red and reorient e;

if x(e) - c(e) < 0, paint e red; if - c(e) < x(e) , c(e),

paint e blue. Alternative (i) of the painting theorem

then leads to a flow-augmenting path, whereas (ii) leads

to a minimum cut. In this application the white edges

play a pale role-they could have been deleted once and

for all. But there are other network-programming problems

for which labeling algorithms that have been described

110, 11, 12, 23] can be viewed in terms of edge paintings;

the role played by white edges is less passive in some of

these.
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before leaving the discussion of maximum network

flow, we mention an alternative formulation of the problem.

This formulatior is in terms of the path-edge incidence

matrix of an unoriented graph; it was used in the first

proof of the max-flow min-cut theorem (91. Let P be the

collection of all paths from s to t in G. For each P E'P

and e E E define an integer p(P, e) 1 1 or 0 according as

e c P or e t P. We call the resulting matrix the pa!th-

ede incidence matrix of G. Let y be a real-valued

iunction with domain P* that satisfies

(1.9) Lj y(P)p(P, e) < c(e), e E E,
PE1

(1.10) y(P) 2 0, P E$.

Thus y(P) can be thought of as the magnitude of flow in P,

and (1.9) says that the total amount of flow in e cannot

exceed its capacity. Subject to (1.9), (1.10), we wish to

maximize

(1.l) •y(P).-

Poo

This version of the problem might seem to be more restrictive,

since if two paths Pl and P2 contain the same edge e in

opposite directions, (1.9) insists that we add y(Pl) and

y(P 2 ) instead of "cancelling flows in opposite directions."
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The two formulations are equivalent, however.

If the capacity function c is integral valued, there

is an integral-valued y satisfying (1.9), (1.10), and

ma.ximizing (1.11). An edge-form of Menger's theorem [201 can

be deduced from this:

Theorem 1.5. Let G be an unoriented gra2h with two

distinguished vertices s and t. The maximum number of

edge-disjoint paths joinin s and t is equal to the minimum

number of edges in a cut separating s and t.

2. MINIMUM PATH

Let t(e) be a real nonnegative number associated with

edge e of an unoriented, connected graph G. We shall think

of t(e) as the length of edge e. The length of path P is

(2.1) t (P) - Z t (e).
ecP

The second problem concerning two-terminal networks that

we consider is the minimum path problem: to find a path

joining s and t that has minimum length. There are several

good methods known for doing this. We describe one below,

but first we state and prove a theorem that is a path-cut

dual of the max-flow min-cut theorem. Consider the maximum

flow problem in terms of the path-edge incidence matrix.

Suppose now that we form the cut-edge incidence matrix by

defining d(K, e) - I or 0 according as e e K or e • K.

Here K is a cut separating s and t. Let W denote the
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class of such cuts. Analogously to (1.9), (1.10), let

y be a real-valued function with domain 7e satisfying

(2.1) E y(K)d(K, e) S .(e), e E E,

(2.2) y(K) > 0, K E X

Again we wish to maximize

(2.3) E y(K)Kc 1

subject to these constraints.

The maximum value of (2.3) cannot exceed the length

of a minimum path fror s to t, beceuse a path from s to

t has some edge in conuion with each K E X .

Theorem 2. 1. The maximnum value of (2.3) subject to

(2.1) and (2.2) is e_•ual to the minimum path length from

s to t.

The purely combinatorial version of (2.1) - (2.3) in

which t(e) - 1 all e c E and y(K) - 0 or I all K e ,

asks for the maximum number of mutually disjoint cuts

separating s and t. As was the case for the maximum flow

problem, if t is integral valued, there is an integral-

valued y that solves the linear program (2.1) - (2.3).

This will fcllow from the proof given below. Hence the

maximum number of disjoint cuts separating s and t is equal

to the minimum number of edges in a path joining s and t.
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Proof of Theorem 2.1. Let rr(v) be the minimum path

length from s to v, for all v c V. Thus 7(v) > 0 and

n(s) - 0. Let 0 - 0 < 71 < ... < rn be the distinct values

assumed by Tr. Partition V into n + 1 parts V0 , V1 , .. V

where

vi V Ev V Vl(v) -n.j.

Thus s : V0 . Suppose t E Vk. We then single out k cuts

KI, K2 , ... , Kk in Y by letting K. be the set of edges
j-l j-1

joining vertices of U V. and vertices of V - U V
io i-0

j - 1, 2, ... , k. Define y(K.) = rj - _i j 1. 2,. .. , k,

and y(K) - 0 for other cuts K E X'. Then y solves (2.,) -

(2.3). To prove this, it suffices to show that y satisfies

(2.1), since clearly y(K) > C all K e f , and

k
FD y(K) - •(rj -n j-l) = nk -0O " rk - n(t).S j-

Thus consider an edge e joining a vertex u cf Vi and a

vertex v of Vi, where i < j < k, so that e belongs to each of

the cuts Ki+1I ... ,I K5, but to no other cut having positive

weight in y. Suppose that

y(Ki+l) + ... + y(K ) T i - Ti > t(e)

There is a path from s to u of length ri; adjoining e to
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this path yields a path from s to v of length ri + L(e) <

TTi + (rr - TY) - Trj' a contradiction. If j > k, a similar

contradiction results. Hence y satisfies (2.1) and solves

(2.1) - (2.3).

For the case of a planar two-terminal network (that is,

the graph G together with the additional edge e' joining

the terminals s and t is a planar graph), where one can

construct a dual two-terminal network in which source-sink

paths correspond to cuts separating s and t in the p imal

network, the duality between the maximum flow problem and

the minimum path problem was noted in [9], and was exploited

in developing a max-flow algorithm for such networks, the

"top-most path" method of [9]. Theorem 2.1 for arbitrary

two-terminal networks is due to Robacker [27]. From the

point of view of Part II of this paper, Theorem 2.1 and

the max-flow min-cut theorem are abstractly the same.

We return now to the problem of constructing a minimum

path joining s and t. The procedure we sketch here is a

special case of a more general algorithm for constructing

minimum cost flows in networks [11]. It evaluates the

minimum path length Tr(v) from s to v for all v e V, and

hence provides a solution y to (2.1) - (2.3). We may

suppose in the description that there are no loops or multiple

edges in G. If edge e has ends u, v, we write the unordered

pair (u, v) for e and t(u, v) for t(e).

To start out, take ,(s) - 0. Next look at all edges

(s, v) and find the minimum value of t(s, v) for such edges.

If v is a vertex yielding this minimum, set r(v) - L(s, v).
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The general step of the computation is as follows. Suppose

that n(u) has been defined for u e U c V. Let U - V - U and

compute

(2.4) mrin [I(u) + t(u, v)] -6.
uCUf, vei

If the minimum in (2.4) is achieved for an edge (u, v),

set rr(v) - 6. Repeat the general step until n(v) has been

defined for all v e V. The number u(v) defined in this way

is the minimum path length from s to v. A convenient way

to do the calculation is to assign to vertex v the label

(u, n(v)), where u is some vertex for which the minimum

in (2.4) is achieved. A minimum path from s to v can then

be found by backtracking from v to s as directed by first

members of the labels.

At the conclusion of the computation, the numbers n(v)

satisfy the inequalities

(2.5) -t(u, v) _ TT(v) - TT(u) _ L(u, v)

for all edges (u, v) of G, and maximize rr(t) - yr(s) subject

to (2.5). If we interpret t(u, v) as the cost of transporting

a unit of some commodity over edge (u, v), the number n(v)

can be given the economic interpretation of a price placed

on a unit of the commodity at location v. Inequalities

(2.5) then say that no profit can be made by purchasing a
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unit of the commodity at u and transporting it to v or vice

versa. Subject to these restrictions, the price difference

TT(t) - rr(s) is to be maximized. Thus the maximum value of

rr(t) - n(s) subject to (2.5) is equal to the minimum path

cost from s to t. In another interpretation, Duffin has

called this result the "max-potential equals min-work"

theorem [5].

The assumption that edge lengths are nonnegative has

been used in an essential way in this section. If edge

lengths are allowed to be negative, and if we ask for a

minimum length simple path joining two vertices, the problem

is much harder. There are no known good algorithms for

constructing such a path.

3. MAXIMUM CAPACITY PATH

Again we consider a two-terminal unoriented network

G with source s, sink t, and capacity function c. This

time we wish to find a path P from s to t that has the largest

flow capacity of all such paths, i.e., we want to find a P

that achieves

(3.1) max min c(e),
Pefe•P

where @ is the class of all paths joining s and t. We

call this the maxi capacity Path problem.

This bottleneck problem has been considered in [13, 19,

26]. It is related to the minimum path problem in the sense

4
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that methods for solving the latter can be modified to

solve it. But here we shall describe another easy way of

solving the problem, one that extends to blocking systems

(Part III). This method of solution might be termed the

"threshold method." It leads to the following min-max

theorem concerning paths and cuts [13].

Theorem 3.1. Let G be a network with capacity function

c and terminals s and t. Then

(3.2) max min c(e) - min max c(e),
PcW ecP Krk ecK

where -P is the class of all paths Joining s and t and

Sjjs thL e class of all cuts separatinD s and t.

Proof. If P E P and K E7, then P n K is nonempty.

Let e' e P n K. Then

min c(e) < c(e') max c(e).
eEP eeK

It follows that

(3.3) max min c(e) < min max c(e).
PcP eeP K6X eeK

To establish equality in (3.3), we can proceed as

follows. Let cI > c 2 > ... > cn be the distinct values

assumed by the capacity function, and let co be large.
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Let Gi be the network obtained from G by deleting all edges

e satisfying c(e) < ci, i - 0, 1, ... , n. Thus Go has no

edges, and Gn - G. Suppose G is the first Gi that contains

a path joining s and t. (We are tacitly assuming that 1

is nonempty, although an appropriate interpretation of

(3.2) holds if this isn't so.) Since Gj has a path P e

and Gj_1 contains no path in 0, we have min c(e) - c4 .
eEP F

On the other hand, the edges deleted from G in forming

G _1 contain a cut K E X , whereas the edges deleted from

G in forming G contain no cut in 1, and thus max c(e) - cj.
ecK

Consequently equality holds in (3.3).

Thus to solve the maximum capacity path problem, we

lower the threshold for edge capacities until a path

joining s and t is produced. There are good algorithms

for recognizing when this happens.

Notice that no use is made of the fact that c(e) > 0.

Indeed the solution depends only on the ordering of the

edge numbers c(e), not on their magnitudes.

An appropriate version of the threshold method can

be used to locate a flow-augmenting path that yields the

largest flow increment (1.6). Thus one way to solve the

maximum flow problem is to successively find maximum capacity

flow-augmenting paths by a threshold method.

One can also show
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(3.4) min max c(e) - max min c(e).
PeP eeP KcX ecK

For an interpretation, think of G as a highway map with

c(e) being the maximum elevation encountered in driving

over edge e.

4. LENGTH-W'ITH INEQUALITY.

Duffin [5] has defined the notions of "extremal length"

and "extremal width" for two-terminal networks having edge

:esistances and has shown that these are reciprocal quantities.

From this relationship he deduced a certain inequality con-

cerning paths and cuts for a two-terminal network in which

each edge has associated with it two nonnegative numbers

t(e) and w(e), the length and width of e. An earlier, purely

combinatorial version of this inequality in which t(e) -

w(e) - 1 is due to Moore and Shannon [25]. This version

says that if x is the least number of edges in a path

joining s and t and w is the least number of edges in a

cut separating s and t, then xx is less than or equal to

the number of edges in the graph. More generally, let

(4.1) X - min L(P) - min mm t(e),
P E19 P ecP

(4.2) W - min w(K) - mrin m w(e),
KRut Ke X eCX

where 10 is the class of all paths joining 9 and t, 'k is

the class of all cuts separating s and t. The number k
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is called the length of G, w the width of G, relative to

s and t. The leni-th-width inequality asserts that

(4.3) kjý <• Fj (e)w(e).

ecE

A proof of (4.3) can be given usine, either the max-

flow min-cut theorem or its path-cut dual. We use the

former approach. Interpret w(e) as the flow-capacity of

e. Then by the max-flow min-cut equality, there is a flow

from s to t of magnitude w. It follows that there is a

function y defined on P1 satisfying (1.9), (1.10), and

FD y(P) "

Thus

,•- X • y(P) . L(P)y(P)- t • t(e)y(P)
P 'P pep PEP eeP

_< t •(e) Ej y(P)p(P, e) i 2; L(e)w(e),

ecE PEP ecE

Although the length-width inequality appears weak,

we shall point out in Part III that the existence of a

length-width inequality for a blocking system implies the

max-flow min-cut equality for the system.
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PART II - FRAMES

Our aim in this part of the paper is to indicate how

the theorems of Part I can be generalized to frames of

subspaces of Euclidean n-space. (We shall define a frame

later on. But it should be mentioned here that the word

"frame" was used by Tutte in some of his early work on

chain-groups and matroids in place of the word "matroid".

We appropriate it, with his permission, for a more

restrictive use.) The notion of a frame is closely related

to that of a matric matroid. Inceed a frame can be viewed

as the structure obtained just prior to the rmatroid in

making the transition from matrix to its matroid.

Matroids were introduced by Whitney [351 as a gener-

alization of dependence properties in graphs or in matrices.

There is now an extensive and deep theory of matroids,

mostly due to Tutte [30, 31, 32. 33, 341. We require only

the more elementary parts of this theory. (Certainly Tutte's

Introduction to the Theory of Matroids [341 would suffice.)

The generalization from Part I to Part II can be des-

cribed roughly as that obtained by replacing the vertex-

edge incidence matrix of an oriented graph by an arbitrary

real matrix. (More generally, we cculd consider matrices

over any ordered field.) Thus we pass from the special

network programs of Part I to general linear programs.

Associated with every linear program there is a dual

program. Associated with every matroid there is a dual
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matrofd Associated with every frame there is a dual frame.

Frame duality provides a bridge between matroid duality and

linear programming duality. The basic concept underlying

duality in ali tnree instances is orthogonality.

Althov-h the material of this part of the paper was

developed independentl, by the writer, we doubt that much

of it is new. A :ecent paper by Rockafellar [28] contains

a similar development, for example. Our attention has also

been called to work of Camion [2], and to a forthcoming

book on networks by Iri. Most of the notions and some

of the results are either explicit or implicit in Tutte's

work on matrcids. We believe that our treatment of the

generalized maximum flow problem and the resulting length-

width inequality for real matrices may be new, however.

I. FRAMES OF REAL SUBSL'ACES

Let * Le an arbitrary subspace of n-dimensional

Euclidean space yn For the correspondence with Part I,

a vector X - (xI, x2 , o.., xn) in en should be thought of

as a real-valued function on a finite set of "edges"

e - ne that waps ei into xi, and * should

be viewed as the row space of an m by n real matrix

A - (aij), the "generalized vertex-edge incidence matrix".

Let Y - (Y1 Y2  ..."I Yn) be a vector of 7. The

support S(Y) of Y consists of those ei e E such that Yi + 0.

A vector Y e * is called an elementary vector of & if it
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is nonzero and if there is no ncnzero vector X e t such

that S(X) is a proper subset of S(Y). Thus if X and Y

are two elementary vectors of l having the same support,

then X is a nonzero multiple of Y. Consequently we may

associate with 4 a unique, finite set of lines, each line

being determined by an elementary vector of A. We call

this collection of lines the frame _* - Je(W) of *,

and sometimes refer to an elementary vector F of R as a

frame-vector of *.

Let X and Y be vectors of '. The vector X conforms

to Y if xjyi > 0 whenever xi + 0. In particular, S(X) c S(Y).

Lemma 1.1. Let Y be a nonzero vector of R. There

exists an elementary vector F of l that conforms to Y.

Proof: If not, select Y - (Y1 Y2 9 ... , Yn ) e -t so

that no elementary vecLor of V conforms to Y, and so that

the number of elements in S(Y) is as small as possible

consistent with this condition. Let X - (xI, x2 , ... , xn)

be an elementary vector of V such that S(X) c S(Y). Let

I c E denote the set of ei e E such that Yi and xi have

opposite signs. Thus I is nonempty. Consider the vector

Z - Y + aX, where

a-mi ( (_a)>0.
eiI

The vector Z conforms to Y and S(Z) is properly included

in S(Y). By the selection of Y, there is an elementary
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vector F conforming to Z. But then F conforms to Y. This

contradiction establishes the lemma.

An important consequence of Lemma 1.1 is that any non-

zero vector Y c * can be written as a sum

(.) Y- F + F2 + ... + Fk

of elementary vectors of *, where each elementary vector

Fi in (1.1) conforms to Y, and two elementary vectors

Fi. F with i + j lie on distinct frame-lines of *. We

call (1.1) a conformal frame decomposition of Y. In general,

such a decomposition is far from unique, of course.

We return now to the matrix A - (ajj) whose rows

generate * . A (column) pivot on an element akt + 0 of

A is a sequence of elementary row operations on A that

transforms A into a matrix A' - (a'j) in which a, - 1

a' - 0 for i + k. Starting with A, we can produce from

it by a sequence of column pivots and deletions of zero

rows a matrix R whose columns can be permuted to have the

form

(1.2) (1, B).

If A has rank r, then R is r by n, the rows of R are a

basis for V, and R contains an r by r permutation sub-

matrix whose columns correspond to some S c E. Following
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Tutte, we refer to such a matrix R as a standard representa-

tive matrix of I. Note that each row of R is an ele-

mantary vector of A. The following theorem asserts that,

conversely, any elementary vector of t can be obtained

from A by a finite sequence of pivots.

Theorem 1.2. Let F be. an elementary vector of X.

Then there exists a s;andard representative matrix R of V

having a multiple of F as one of its rows.

Proof. Extend F to a basis 0 of V, and write the

resulting collection of vectors as a matrix having F as

its first row, say. Pivot on a nonzero coordinate of F.

Consider the second row of the transformed matrix. This

row has a nonzero coordinate in one of the colimmns

corresponding to zero coordinates of the first row, for

otherwise either F would not be elementary or 0 would

not be a basis. Pivot on such an element. Repetition

of this process produces a standard representative matrix

R of R having a multiple of F as its first row.

In particular, an elementary vector of * can have

at most n - r + 1 nonzero coordinates.

Notice also that if V and J are subspaces having

the same frame 0(i) - P(A), then i t .

2. MATROIDS

A matroid is a purely combinatorial structure defined

on a finite set E. There are a number of equivalent axiom
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systems for matroids. One in terms of "circuits" is as

follows. Let e be a finite family of nonempty subsets of

E. Members of e are the circuits of a matroid (E, , )

if the following axioms hold:

(2.1) No member of C is a proper subset of another.

(2.2) Let e1 and e 2 be distinct members of E, and suppose

C1 and C2 are members of e such that e, e C1 n C2 and

e2 e C1 - C2 . Then there exists C3 e i such that

e2 C C3 c (C1 U C7) - (el).

The motivation comes from graphs. Let E be the set

of edges of an unoriented graph G. Then the collection C

of (graph) circuits of G satisfies (2.1), (2.2), and thus

d(E,) is a matroid. Such a matroid is graphic. The

collection ffof cocircuits of G also satisfies (2.1),

(2.2), and thus forms a matroid (E, 0). Such a matroid is

cographic. For another important example, consider the

row space R of the m by n matrix A. Take E - [eV, e 2 ,

.. , en 1. Then the collection e of supports of frame-

vectors of A satisfies (2.1), (2.2) and is consequently a

matroid (E,t'). Such a matroid is called a real matric

matroid.

Associated with every matroid (E,Le) there is a unique

dual matroid (E, L*). A subset of E is a member of e*
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if and only if the cardinality of its intersection with

every element of L is not equal to 1, and it is minimal with

respect to this property. The dual of the dual is the

primal: (E,e**) - (E, e). In case (E, 0) is a graphic

matroid, the cographic matroid (E,.&) is the dual:

(E, ) - (E, *), (E, 0*) - (E, E). If (E,P.) is a

real matric matroid arising from a subspace l, the dual

matroid is the real matric matroid obtained from the

orthogonal complement WE* of R. Thus if A is the frame

of ;, we call the frame 5* of 9* the dual of *.

If )e has standard representative matrix R - (I , B),

then a standard representative matrix for X* is R* -

(BT, - Inr). A frame-vector of R can be viewed as

representing the coefficients of a minimal linear dependency

among columns of R*.

Let A - (aij) be the vertex-edge incidence matrix of

an oriented graph G. It is well-known that the matrix A

has the total unimodularity property: every square sub-

matrix of A has determinant 0, 1, or -1. One can deduce

from this that each elementary vector of the row space X

of A is a multiple of a vector having coordinates 0, 1,

or -1. Such a vector is called primitive. Conversely, if

a subspace 9 has the property that each elementary vector

of it is a multiple of a primitive vector, then W is the

row space of some totally unimodular matrix A a (aij). In

particular, aij j 0, 1, or -1. Such a space V is called
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regular and the corresponding matroid is a regular matroid.

Thus regular matroids are precisely those real matric

matroids generated by totally unimodular matrices. The

dual of a regular matroid is regular. A dual pair of

regular matroids is called a "digraphoid" in [24J.

(It should be remarked, though we make no use of it

here, that Tutte has shown that a regular matroid is a

binary matric matroid, that is, a matroid generated by a

matrix over the field of two elements, and has characterized

regular matroids as a subset of the binary matric matroids.

This characterization, which is in terms of certain excluded

matroid minors-a matroid minor is not the same thing as

a matrix minor-is deeper than the one above, also due to

Tutte, of regular matroids as a subset of real matric

matroids. It can also be shown, as was pointed out to the

w-iter by Eimonds, that a matroid is regular if and only if

it is both a real matric matroid and a binary matric matroid.

From this one can deduce that a (0, + 1)-matrix (I, B) is

totally unimodular if and only if the binary rank of any

subset S of its columns is equal to the real rank of S.

This can also be proved directly. It is also possible to

give a characterization of regular matroids among those

real matric matroids generated by (0, ± l)-mnatrices in

terms of a single excluded matroid minor: namely, exclude

the self-dual matroid on a set of four elements, every

triple of which is a circuit. The problem of characterizing
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regular matroids among all real matric matroids in terms

of excluded matroid minors appears to be open, as does the

more fundamental problem of giving necessary and sufficient

conditions in order that two real matrices generate the

same matroid.)

The real matric matroid generated by the vertex-edge

incidence matrix A of an oriented graph is a regular matroid.

The nonzero coordinates of an elementary vector F of the

row space I of A pick out a cocircuit in the graph, two

edges being similarly oriented in this cocircuit if the

corresponding coordinates of F have the same sign. Con-

versely, each cocircuit of the graph can be exhibited in this

way as an elementary vector of R. On the other hand, non-

zero coordinates of an elementary vector of I* pick out a

circuit in the graph, two edges being similarly oriented

in this circuit if the corresponding coordinates have the

same sign, and each circuit of the graph can be exhibited

in this way.

3. GENERALIZED FLOWS AND CUTS

Let A - (aij) be an m by n real matrix having row

space -9. For each e E E- {eI, 2, ... , en 1, let c

be a nonnegative real number, the capacity of ej. In

analogy with (1.1') and (1.2) of Part I, we define a

(feasible) flow X on A to be a vector X - (xI, x2 , ... ,

xn) that satisfies the linear homogeneous equationsn
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n
(3.1) a X 0, i 1 1, 2, m,

i-ijJ=l

and inequalitieb

(3.2) -cj • xj < cj, j - 1, 2, ... , n.

Thus X e I*. Clearly feasible flows exist, e.g. X - 0.

The analogue of the maximum flow problem is to find a

feasible flow X on A that maximizes some specified component

of X, say xI, where cI=.. We call such a flow a maxinuim

el-flow.

Let K - (-l, k 2 , ... , kn) be an elementary vector of

t. (Such elementary vectors exist unless the first column

of A consists entirely of 0's-this corresponds to the

graphic case in which el is a loop.) We say that K is an

el-Sct. There are finitely many such. The cavacity of an

el-cut K is defined to be

n n n

(3.3) E kjc - E kj0cj E JkjcjI.

m J=2 j=2
• j>0 k i <0

If X is a feasible flow and K an el-cut, then, since

X cl" and K £ l, we have

n

iv

E x k~ 0,

j .
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and hence, by (3.2),

n n

J=2 j -2

Theorem 3.1. The maximum value of x, subject to

(3.1) and (3.2) is equal to the minimum capacity of all

el-cuts.

Proof. It suffices to show that there is a flow and

an el-cut for which equality holds in (3.4). A proof of

this can be given using either the linear programming

duality theorem [3, 16] or Dantzig's simplex method for

solving linear programs [3]. We sketch the former approach.

Let X - (xI, x2 , ... , xn) be a maximum el-flow. The duality

theorem for the linear program at hand then implies that there

exists an m-vector (rI, n122, .... nm ) such that the following

"optimality" properties hold:

m
(3.5) 1 + niail - 0,

i-I

and, for J 2 ... , n,

(3.6) • iaij > 0 x xj -c J,
inl

1 ,iaij < 0 xj cj.
-IY



-36-

Let

m m

Sk iail ".. Y iain (-1,Y2' "' "
%i-iii

Thus Y e * By Lemma 1.1, there exists an elementary

vector K (-1, k2, ... , kn) of * that conforms to Y.

The properties (3.6) then hold for K and imply that equality

holds in (3.4). This proves Theorem 3.1.

The simplex method constructs a maximum el-flow and

a minimum e1-- ut simultaneously. Indeed, the method

proceeds by a sequence of pivots on A. and at termination

yields a standard representative matrix R of 4, one of

whose rows is an el-cut of minimum capacity.

If A is totally unimodular, then the coordinates of

K in Theorem 3.1 are 0, 1, or -1, and we have a more purely

combinatorial result: namely, the generalization of the

max-flow min-cut theorem to regular matroids or digraphoids

noted in [24). Observe that the analogue of the integrity

theorem, Theorem 1.2 of Part I, is valid for this case.

Just as for the case of flows in networks, the assump-

tion of symmetric capacity constraints can easily be dis-

pensed with in Theorem 3.1. The capacity constraints can

be changed to b < x3 < cj, and treated in a similar fashion,

provided they are feasible. The capacity of an el-cut

K - (-I. k2 ' ... , kn) is then defined to be
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n n
(3.3') a kj cj + F k b

j=2 j =2
kj>O kj<O

The feasibility question is most conveniently disposed

of by the following "generalized circulation theorem," the

analogue of Theorem 1.3, Part I.

Theorem 3.2. Let A - (aij) be an m by n real matrix,

and let bj _< c., j = 1, 2, ... , n, be given real numbers.

The constraints

n

(3.7) Ea ijxj =0, 1 - 1, 2, . IM

(3.8) b _ <xj X c J, j = 1, 2, ... , n,

are feasible if and 2Ly if, for each elementary vector

K a (k 1 , k2 , ... , kn) in the row space w of A, we have

(3.9) kc + F k bj > 0.

kj >0 k j<0

Notice that (3.9) is really a finite set of inequalities,

since we need only choose from each frame-line of R one

elementary vector and its negative in checking (3.9).

We turn next to the painting theorem for a real m by n

matrix A - (aij). Here we paint the edges of E - (eI, e 2 ,

en), i.e. the columns of A, with three colors-red,
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white, blue-with one red edge being distinguished and

painted dark red. Two edges ei, ej are similarly oriented

in an elementary vector X = (xI, x2 , ... , xn) of a sub-

space Itc 7t if xix > 0; X contains ei if ei E S(X).

Theorem 3.3. Given a paintin of E - fel, e2, ... , en)

and a real m by n matrix A - (a) hai_ row sace it,

precisely one of the following alternatives holds:

(i) There is an elementary vector X of ye* containing

the dark red edge but no white edge, in which all red edges

are similarly oriented.

(ii) There is an elementary vector Y of l containing

the dark red edge but no blue edge, in which all red edges

are similarly oriented.

Prcof. Clearly both alternatives can't hold, since

X, and t* are orthogonal.

Delete all white columns of A. Pivot on blue columns,

one after another in any order, until no more such pivots are

possible. (These operations correspond to the "deletions" and

"contrartions" of edges in graph or matroid theory.) Now

delete all rows and columns of the resulting matrix that

contain pivotal elements. Call the remaining matrix A.

Note that any blue columns of A consist entirely of O's.

(A generates a matroid minor of the matroid generated by A.)

Let ' denote the row space of A. It follows from standard

theorems on linear inequalities that (just) one of a pair

of complementary orthogonal subspaces cortains a nonnegative
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vector whose first cooreinate, say, is positive. Thus

either 4 or t (but not both) contains a nonnegative

vector whose dark red coordinate is positive. Suppose

I e l is such a vector. Then Z can be extended to a

vector Z . ,v such that white coordinates of Z are all

zero. In this case (i) holds, by Lemma 1.1. Suppose

that Z -M is a nonnegative vector whose dark red

coordinate is positive. In this case Z can be extended

to a vector Z E X such that all blue coordinates of Z

are zero. In this case (ii) holds, by Lemma 1.1.

If A is totally unimodular, the elementary vectors

X and Y of Theorem 3.3 can be taken to be primitive, and

Theorem 3.3 reduces to the painting theorem for digraphoids

[24].

We return now to the version of Theorem 3.1 with capacity

constraints b_< _x,< c.. How general is the class of linear

programs encompassed by this theorem? The answer is not

hard to see: it includes all linear programs. For, as is

well known, any linear program can be put in the form

n
(3.10) E aijxj = bi' i - 1, 2, ... , m,

j-l

xj 2> 0, j - 1, 2, ... ,

n

maximize E cjxj.
J-1
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Introducing new variables x0 and xn+I, we see that (3.10)

is equivalent to

n
(3.11) a ijxj - bixn+l 0,

n

-0 c x -o

3-i

1• x~ <].0< xj <,j 1l, 2,.., n,

I< X n+I <

maximize x0 .

The program (3.11) is a maximum flow problem on a subspace

of vtn+2.

Still following the discussion of Part I, Section 1,

let us look now at the general version of the path-edge

formulation of the maximum flow problem. Is there an

analogue of (1.9), (1.10), and (1.11) for an arbitrary

real matrix? We shall see that there is. Consider the matrix

whose rows consist of all elementary vectors of R* of the

form (1, P2 ' .''' Pn)' Let (Pkj), k - 1, 2, ... , 8, j - 1,

2, ... , n, denote this matrix and let ( 1Pkjl) be the matrix

obtained by taking absolute values of elements. We want



-41-

to show that the programs

S

(312) Yk' I Pkj- c;, j = 1, 2, . n.,

k-l

Yk -> O,

s s

maximize y Yk" pkl l  E yk'
k-I k-i

and

n

(3.13) E a ixj -0, i- i, 2, ... ,

j-1

-c.j _ x _ c , j 1 1, 2, .. n,

maximize xI,

are equivalent. Here we take cI - ®. (.iven a feasible

solution Y - (YI' Y2)' "'' YS) of (3.12), define
s

xj -r YkPkj Then-cj < xj < cj and
k-ikl n s n

E a ijxj - X (a aijPkj) Yk ' 0
j-tl k-i 'jim

Conversely, given a feasible solution X - (xI, x 2 , ... , xn)

of (3.13), we use the conformal frame decomposition (1.1) to

write



-42-

(3.14) X - YlPl + ... + yIPt + F1 + ... + Fh, Yk > 0,

where PI. ..." P are the first t rows, say, of the matrix

(Pkj), and each elementary vector in (3.14) conforms to

X. Define Yk - 0 for the remaining rows of (Pkj). It

follows that

5 SYk' PkJ I<: cj.

k-l

Thus (3.12) and (3.13) are equivalent programs.

In particular, if A is totally unimodular, then

(Ipkj1) is a (0, l)-incidence matrix, and an integral X in

(3.14) yields an integral Y solving (3.12). Thus integral

capacities lead to integral solutions in both programs.

This observation establishes an analogue of Theorem 1.5, Part

I. That is, an analogue of the edge form of Menger's theorem

is valid for regular matroids. This has previously been

shown by Minty in [24].

It seems likely that the relationship between (3.12)

and (3.13) has implications for what is called the

"decomposition principle" in linear programming. We shall

not pursue this point here.

The only other problem from Part I that we want to

examine in the context of Part II is the length-width

inequality. (The generalized minimum path problem is the

frame-dual of the generalized maximum flow problem and thus

presents nothing new. Part III will be devoted to a
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very general combinatorial analogue of the maximum capacity

path problem.) Let A - (aij) be a real m by , matrix with

row space *, and suppose ,j, wj are given nnnegative

numbers for j - 2, ... , n. Consider the collecti.on

S= fP ' "''...' P r ] of all elementary vectors of *

that have first coordinate 1, and the collection

A'- (Ki, ... , Ks) of all elementary ve'-tors of A

that have first coordinate 1. Let

n

(3.15) X - min m 'piji j 1 ,
l~i~r J=2

n

(3.16) W- rmin Khjwjl3
l<k<s j-2

where

Pi (, Pi2' "''. P), i - 1, 2, ... ,

Kh a (1, kh2, .,, khn), h - 1, 2, ... , s.

We call X the e1-length of A, and call w the el-width of A.

Theorem 3.4. Let A - (aij) be an mb n real matrix

having el-length X relative to tj k 0, j - 2, ... , n, and

el-width w relative to wj k 0, j - 2, ... , n. Then

n

(3.17) )W < E ¾wj.
J= 2
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Proof. By Theorem 3.1, Part II (the generalized

max-flow mmin-cut theorem) and the equivalence of (3.12)

and (3.13), it follows from (3.16) that there exists a

nonnegative r-vector Y - (Y1 y2, ... I Yd) such that

r

(3.17) lyiPij <I wjj, j = 2, ... ,

i-i

E Yi=W.

inl

Thus we have

XW = XZ Yi - a ]dIPijtj Yi[ - a wj, 4,.

S i-l j-2 j=2

by (3o18), (3.15), and (3.17), respectively.

Again if A is totally unimodular, then each P E P

and K e W is primitive; taking t, - wj - 1 gives a direct

generalization of the Moore-Shannon theorem for graphs

to totally unimodular matrices. In matroidal terms:

Corollary 3.5. Let (E, G) bA a r matroid on

n edges. Let X(e) + 1 be the least number of edges in any

circuit containing edge e, w(e) + 1 the least number of

edges in any cocircuit (circuit of the dual matroid)

containing e. Then X(e)w(e) < n - 1.
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PART III - BLOCKING SYSTEMS

In Part I we described the maximum capacity path

problem for a two-terminal network, gave a good algorithm

for solving it, and presented a min--max theorem concerning

paths and cuts for the problem. Similarly, Gross [17] has

described a good algorithm and a min-max theorem for the

"bottleneck assignment problem": Given a square array of

real numbers, find a circling of entries with exactly one

circle in each row and in each column so as to maximize

the value of the smallest circled entry. For an interpre-

tation, think of rows of the array as corresponding to

men, columns to jobs on a serial assembly line, with the

entry in row i and column j being the rate at which man

i can process items if he is assigned to job J. The

theorem established in [17] for this problem is the fol-

lowing: Let I - (1, 2, ... , n), letIO be the set of

permutations of I, let ICI denote cardinality of C, and

let aij, i E I, j c I, be real numbers. Then

max min ai,p() - min max aij.
PEP iEI A BZI icA

IAI+IBI-n+l JeB

The resemblance between these two min-max theorems is

more than superficial. They are, in fact, special cases

of a general theorem for a combinatorial structure which

might be called a blocking system. These systems have arisen
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in numerous contexts (see [21, 22, 29], for example), but

the particular axiomatization and general mi-max theorem

presented in [7] and surveyed here, have apparently not

been noted before.

1. AXIOMS AND EXAMPLES

Let E be a finite set, and let V and * be two families

of subsets of E. We call (E, 0, f) a blocking system

(on E) if the following two axioms are satisfied:

(1.1) For any partition of E into two sets E1 and E0

(E0 n E1 -O and E0 U El - E), there is either

a member of P contained in E1 or a member of

7Vcontained in E0 , but not both.

(1.2) No member of V•contains another member of V; no

member of K contains another member of •.

The first axiom (1.1) can be phrased in terms of

painting elements of E with two colors: For any blue-

red painting of E, there is either a blue P in Por a red

K in K, but not both. The second axiom (1.2) is more a

convenience than a necessity for our purposes, as will be

clearer later on.

Observe that if (E, P, X) is a blocking system, then

for each P c P and K c *', we have P n K + 0, by virtue of

the last phrase in (1.1). In other words, each member of

le blocks all members of JP, and vice-versa. Note also that

the axioms (1.1) and (1.2) are self-dual: Interchanging

the roles of P and X alters neither L1i) nor (1.2).
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If V is empty, then K - (} satisfies (1.1) and (1.2).

Examples of blocking systems abound. Some reasonably

interesting ones will be described. But first we state and

prove a theorem ýhat indicates the great profusion of

blocking systems. Its proof provides another characteriza-

tion of blocking systems.

Following (7], we shall call a family .6 of subsets of

E a clutter on E if no member of $ contains another member

of t.

Theorem 1.1. Let E be a finite set and let ) be a

clutter on E. Then there exists a unique clutter k cn E

such that (E, 70, K) is a blocking system.

Proof. Let K E i if and only if K nq P + 0 for all

P c P and K is minimal with respect to this property. To

verify that (E, 7O, X) is a blocking system, it suffices to

check (1.1). Thus consider a blue-red painting of E.

Suppose there is no blue P c P. Let R be the set of all

red members of E that belong to some P c P. Since there

is no blue P c -P, we have R r: P 4 t for every P c P.

Hence there is a K c N such that K- R, i.e., there is a

red K c 9. If there were both a blue Pc $P and a red K cX,

then P t K 0, contradicting the definition of K. Thus

(1.1) holds and (E, P, W') is a blocking system.

To establish uniqueness, let (E, P, X) and (E, P, e')

be blocking systems on E with W ' 3'. Interchanging the

roles of X and se if necessary, we may suppose K c -
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Consider the pirtition E - K, K of E. By (1.1) applied

to (E, V, X), no subset of E - K is a member of P. Hence

by (1.1) applied to (E, P, &_'), there is a K' e K' with

K' c K. Now consider the partition E - K', K' of E. By

(1.2), no subset of K' is a member of K. Hence by (1.1)

applied to (E, P, 9), therc is a P' e 0 with P' c E - K'.

But then P' and K' violate (1.1) for the blocking system

(E, 70, W') and the partition E - K', K' of E. This con-

tradiction proves Theorem 1.1.

Thus if -P is an arbitrary clutter on E, the family

P' of all "minimal blockers" of P is the unique

family of Theorem 1.1, and X* - 7' = P.

The primary role of (1.2) is to obtain uniqueness in

Theorem 1.1. Uniqueness could be achieved in other ways.

For instance, instead of normalizing to clutters A and )e

in Theorem 1.1, we could normalize to the families ;o+

and ?+ of all supersets of members of r and V', respectively.

Some examples of blocking systems follow.

&.p=yg 1. Let E be the set of edges of a graph G,

PO the family of elemertary paths joining two vertices of

G, and K the family of elementary cuts separaCing the two

vertices.

1JEo -a - Let E be the set of cells in an n by n

array; let )P be the family of subsets P c E having the

property that there is just one cell of P in each row and

column of the array; let o be the family of subsets K a E
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such that K is a p by q subarray with p + q - n + 1.

(That (E, F, 9) is a blocking system follows from a well-

known theorem of J6nig [20] which asserts that in an n by

n (0, 1)-,matrix, the maximum number of l's, no two of

which lie in the same row or column, is equal to the

minimum number of rows and columns that contain all the

l's of the array.) More generally, let P' be the family of

subsets P c E such that IPI - t and P has at most one cell

in each row and column. Then * is the family of subsets

K c E such that K is a p by q subarray with p + q - 2n - t + 1.

Example 3. Let E - fl, 2, ... , 2k-l, let 10 be the

family of all k-clement subsets of E, and let le- 1. (In

multi-person game theory, this example is known as the

"straight majority game.")

Example 4. Let E be the set of edges of a graph G,

let PO be the family of maximal trees of G, and let X be

the set of all elementary cuts (cocircuits) of G. (A

tree of G is a subgraph of G that contains no circuit; a

"-aximal tree is a tree of G thet is maximal with respect

i this property.)

ExaMple 5. Let E be the set of edges of a graph G,

let V be the family of circuit,- in G, and let K be the set

of cotrees (complements in E of trees) of G.

Exawmle 6. Let E' be the set of edges of a n&troid

(E', e), let E - C' - (e) for some e c E', and let P be

the family of subsets P of E such that (e) u P F CM
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ThenIe is the family of subsets K of E such that (el u K .

Here (E', d*) is the matroid dual to (E',e).

Example 7. Let E be the set of vertices of a graph G,

and iet P be the family of pairs of adjacent rertices of G

(two vertices are adjacent if they are joined by an edge.)

Then 9 is the family of subsets of vertices K such that

K covers all edges of G, and is minimal with respect to

this property. (In other words, ' is the family of all

"minimal blockers" of PO. )

It is frequently difficult, as illustrated by Example

7, to find a useful description of the dual clutter k of

a simply described clutter P.

One of the most important problems concerning blocking

systems, a problem that arises time and again in applicatioILs,

is the minimum covering or blocking problem: Given a simple

description of )0, find a good algorithm that constructs

K E V such that IKI is a minimum. For example, we might

be given V explicitly, say in the form of an incidence

matrix A = (a(P, e)), where a(P, e) = I or 0 according as

e E P or e J P. The minimum blocking problem then is

equivalent to solving the following linear program in

integers x(e) = 0 or 1:

(1.3) E a(P, e)x(e) > I, all P E •,
eEE

minimize FD x(e).
eEE
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Various methods have been proposed for such problems,

but no good algorithms are known. Indeed, most of the

methods that have been profc3ed can be shown to be bad:

the amount of computational effort increases exponentially

with the size of the problem.

There is a good algorithm, however, for computing

the following lower bound on the minimum in (1-3). Consider

the class a of all (0, l)-matrices having the same row

and column sums as A. For A in ae, let i'(A) denote the

minimum in (1.3), and let

(1.4) = min (A).
AE a

The integer W has been explicitly evaluated by Fulkerson

and Ryser in [14], and a very simple construction for a

matrix . in a such that w(•) = • has been given in [15].

2. THE MIN-MAX THEOREM

The analogue of Theorem 3.1, Part I, is valid for all

blocking systems, and can be viewed as characterizing

blocking systems:

Theorem 2.1. Let (E, P, Il) be a blockinR system, and

let f be a real-valued function defined on E. Then

(2,1) max min f(e) = min max f(e).
PE0 eEP KE' ecK

Conversely, if 7 1= • cuitters Eiub that (2.1)
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holds for ever real-valued f defined on E, then (E, 7, V)

is a blocking system.

Proof. The proof that (2.1) holds for a blocking

system is entirely analogous to the proof of Theorem

3.1, Part I. In brief: The left-hand side of (2.1) is

less than or equal to the rlght-hand side since P n K is

nonempty for each P c P, K c r. To establish equality,

order the elements of E according to decreasing values of f;

then paint elements of E blue, one after another, until

the blue set first contains an element of P.

(In other words, the threshold method establishes

equality in (2.1) and simultaneously evaluates (2.1).

It will be a good method for this evaluation in case there

is a good method for recognizing whether an arbitrary sub-

set of E contains a member of ' (or a member of s).)

Conversely, let R and &be clutters on E and suppose

(2.1) holds for every real-valued f defined on E. Let

f(e) - 1 or 0 according as e is blue or red. Suppose there

is no blue P e 0. Then

max min f(e) - 0 - mn max f(e).
PiP eEP KcK eeK

If there were no red K e le, we would hnve

min max f(e) - 1,
KE1 eEK
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a contradiction. Hence there is a red K c X. On the

other hand, if there were both a blue P E r and a red

K e IC, then

max min f(e) = 1, min max f(e) - 0,
PeP eEP KEX eEK

contradicting (2.1). Hence (E, 70,1) is a blocking

s yti temr.

3. THE LENGTH-WIDTH INEQUALITY AND MAX-FLOW MIN-CUT

EQUALITY

Let (E, R, )) be a blocking system, and suppose

t(e), w(e) are two nonnegative numbers associated with

element e c E. Define the length of the system to be

(3.1) -min D (e),
PeP eEP

and the width to be

(3.2) w - mmn F w(e).
KEW eEK

Following Lehman [22], we shall say that the length-width

inequality holds for (E, "P, X) if

(3.3) •.W <. Z; t(e)w(e)

ecE

is satisfied for every pair of nonnegative functions L, w

defined on E.
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For instance, if (E, 'P, C) is the blocking system

of Example 1, we have seen in Part I that the length-

width inequality holds. It also holds for Example 6

provided the underlying matroid is regular; this is a

corollary of Theorem 3.4, Part II. On the other hand,

the length-width inequality fails for the blocking

system of Example 3.

For each P e Pand e E E, define a(P, e) - 1 or 0

according as e e P or e 4 P. Now consider the linear

program

(3.3) Fj y(P)a(P,e).< w(e), e E E,
PE70

y(P) > 0, P E P,

maximize Fj y(P).
PeP

Clearly the maximum in (3.3) is less than or equal to

the width of (E, P, X). If equality holds here for

every nonnegative w defined on E, we say, as in [22],

that the max-flow min-cut equality holds for (E, P, X).

Thus, for instance, the max-flow min-cut equality

holds for Example 1, for Example 6 if the underlying

matroid is regular, and fails for Example 3. just as for

the length-width inequality.. This behavior is not

accidental. One of the main results of [22] is that the

max-flow min-cut equality holds for a blocking system
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if and only if the length-width inequality holds.

Consequently, if the max-flow min-cut equality holds

for (E, P, te), it also holds for (E, X, 7>), since the

roles of W and 9 are symmetric in the length-width

inequality.

In any event, the problem of evaluating the width of

a blocking system for a given nonnegative function w is a

generalization of the minimum blocking problem mentioned

earlier. It would be interesting to discover other

significant classes of blocking systems for which the

length-width inequality, and hence the max-flow min-cut

equality, holds.
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froM a diffee-t one of the nodes, called the rear egd of the edge. An edge

and etch of its ends are said to meet. A sgbaraph of G is a subcollection

of its veubers vhich, under r;A saw incidence relations, is a graph. A

gaph it called Sgnuicted if it is not empty and its mmbers do not partition

into tvo disloint -*on-empty subgraphs. A oolv n is a connected graph Q

such that each roda of Q mets exactly two dges of Q An

Sjnij1A #irecteu) cpuit is a polygon vhic,, contains one *dge dircted

toward, and ova edge directed away froe, each of its wodes. A fjjgt is a

graph vhich contains no polygon. A tree Is a connected forest. At

is a forest who"a edges are directed so that each is directed toward a different
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node. An arbkrescence is a connected branchine. An (elemcntary 3M Unfor-l

directed) gth P io an arborescence such that each edge in P is directed

away from a differeat node, and such that there is at least one edge in P .

We shall occasionally use "obvious" facts about graph* vithout justify-

ing them.

Clearly, a brauching (forest) is tbn union of a unique family of dis-

joint arborescences (trees).

Exactly one node in an arborescence T , called the root of T , has no

edge of T directed toward it. A branching (forest) is an arborescance (tree)

if and only ii it has exactly one les edge than nodes. No branching (forest)

has more edges than this.

In a path P there are exactly two nodes, called the ends of P , which

each meet only one edge in P . The rest of the nodes in P each met exactly

two edges in P . A path P ic said t9 go from the node which is only a rear

end in P (the root of P) to the node which is oaly a front end in P . For

any arborescence T , and any node v in T except the root, there is a

unique path in T going from the root to v • Any path in T going to t

and any path in T going from V have only V in comon, and their union is

a path. And so on.
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Let G be any graph with a real numerical weight c corresponding

to each edge e eG . The problem treated here is to find in G a branch-

ing B which has iximum total weight, E ci . summed over e A6 B . 3 is

called an optimum brancbing in G .

First we show that ccrtain variations of the problem reduce isdliately

to it.

A spanniW subgraph of G is a s-.bgraph which contains all the nodes

of G . A branching in G is a spanning arboresc-nce of G if and only if

the number of its edges ia one less than the number of nodes in G . No

branching in G can have more edges than this.

An optimum branching in G of course contains no edge with negative

weight, and indeed say be empty if all c < 0 . Even if all c > 0 and

G containp a spanning arborescence, an optimum branching in G need not be

an arborescence.

If there is a spanning arborescence T in G , then an optimum one, i.e.

one which has maximm total weight, E c, e ea T , can be found as an optliwm~i I

branching in G where the edges carry new weights -C + h, h > E IcJ ,

o eG. A spanning arborescence in G which is optimum relative to weights

c1 p esIG, is also optimum relative to weights c1 + k$ e CG , for any

constant k . since every spanning arborescence has the sam number of edges.
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Constant h is larger than the difference in total weights (relative to

Weights c a e e G) of any two branchings in G . It follows that an optimus

branching in G, relative to weights c'i c + h I will be a branching with

a aximum nuber of edges. In particular, it will be a spanning vrcoorescence

if and only if C contains a spanning arborescence.

A spanning arborescence T in G which has minimum total weight,

E ct 1 ejt T, is the same as one which has maximum total weight E cj', e 1 eT

relattve to weights cj' M -c .

It will be evident that the efficiency of the method for treating optimu

branchings is not seriously effected by a large change h (say of the form 1 0 n)

in all the weights. In fact the method is easily modified to treat optimum

spanning arborescences directly.

If there is a spanning arborescence in C which is rooted at a prescribed

node, say r , then an optimua one can be found by finding an optinmi spanning

arborescence in the graph G' obtained from G by adjoining a new edge e0

wykadg arbitrary weight c 0 ) which is directed toward r and directed from

a new node having no other incident edges. Clearly, T is a spanning

arborescence in C which is rooted at r if and only if T together with

i0 8s a spanning arborescence of G' .

If the edges in graph G represent the links for possible direct comoni-

cation from one nods to another, ii each c iis the cost of direct comanica-

tion from the rear end of oj to the iront end of sip and if cost is additive,
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then a minLium-total-weight spanning arborescance rooted at prescribed node

r represents the least costly way to have a message commnicated from r

to all other nodes of G .

Another application is where it is desired to arrange an institution

into an optimum heirarchy (branchocracy).

03

Our main result is

Theorem 1. There exists a gnod A Jx flatAng, In Any JXA h G

with a numerical weight corresponding to each edSM, Ln opt2im kaiEhJnA.

We say an algorithm is good if there is a polynomial function f(n) which,

for every positive-integer valued n. is an upper bound on the "amount of work"

the algorithm does for any input of "size" n . The concept is easy to

formalize - - relative, say, to a Turing machine, or relative to any typical

digital computer with an unlimited supply of tape.

For optimum branching, the largest number of significant digits in an

edge weight, as well as the number of edges of G , must be figured somehow

into the measure n of input "size" . One might for example take n to be

the maximas of these two numbers or to be the vector consisting of both

numbers.
theorem

The proof of Theorem I is constructive. ThM/is proved by displaying one

particular algorithm for optimim branching which is obviously good.
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if we remove from the optimm-apanning-arborescence problem the con-

dition that each member of the set T of edges being optimized mast have

a different front and, than we gpt the optimm-spanning-tree problem. That

is to find, if there is oma, in any graph G with a nimarical weight on

each edge, a spanning tree which has nmaimm (or minim=) total weight.

Especially simple algorithms are well-known for this problem [cf. 5

and 6]. One isi, starting with an empty bucket, build up a set of elements

having "admissible structure" by putting elements into the bucket one after

another as long as possible, so that each addition is a maximumm welit ale-

msnt mong those not in the bucket which, together with the ones already in

the bucket, would preserve admissible structure. For the optimm-spanning-

tree problem, the elements are the edges of G and "admissible" mans

"forest". The algorithm is certainly good. It is also valid for that pro-

blem.

Where admissible" maens "branching", the above algorithm is not genor-

ally valid for finding an optimua spanning arborescence. Paper [3] abstractly

characterizes those structures for which this "gready algorithm" is valid for

amy numerical weighting.

If we add to the conditions of the opt imm-spanuing-arborescence problem

the condition that each member of the set of edges being optisized is to have

a different rear end, then we have the problem of finding, if there is one,

an optima spanning (uniformly directed) path in any graph 0 with a numerical

weight on each edge. This is a version of the well-known traveling saleean

problem [cf. 4]. I conjecture that there is no good algorithm for the traveling
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saleman problem. My reasons are the seem as for any mathematical conjoectwe:

(1) It is a legitimate mathematical possibility., and (2) I do not kno.

A matching in a graph is a subset of its edges such that mo tm oef them

meet the eame node. A good algorithm is knwn for finding,, in any graph

with a numerical weight on each edge, a mmzimum-total-voight matching. The

treatment [1 and 2] of maximum matchings and the treatment bore of opt tian

branchings are similar, though the structural details are different MWd mazi-

mum matching is more complicated.

#4

Here is the algorithm for finding a maiiam-total weight branching

in any (dire..ted) graph G with a numerical weight c on each edge

01e eG. Recall that a branching is a forest such that each edge ts directed

toward a different node.

Begin the algorithm by applying instruction (11) where Gi1 is G 0 a 0

and where Di an 9 are empty buckets, D0 en

i i

Di If there is in G a positively weighted edge directed toward v. put

one of them having maximum weight into bucket I
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Repeat (11) until

(a) Ei no lona.r comprises the edges of a branching in G , or until

(b) every node of Gi is in Di .and I doescomprisetheedgesofa

branching. When case (a) occurs, apply ( 12).

For convenience assume that ,very branching which we consider in graph

G contaiws all the nodes of G . We say that a set of edges in G form

i ithe unique subgraph of G consisting of those edges and all nodes in G

Each edge a put into Ei according to (I 1 ) is directed toward a

node Vs which is the root of a connected component of the branching, say 3,

formed by the edges in Ei before e is put into Ei . If the rear end p6

of a is in a different component of B than V , then WUe is a branching,

i
and so wh-in a is put into E , (a) does not hold.

If v6 is in the sna component of B as P , then B contains a unique

path P going from v to V . In this case, Q -PUs is a circuit con-
6i

tained in BUe , so as soon as a is put into E (a) does hold.

(I 2) Store Q and a specification of one of the edges, say ea , of

i iiQ which has minima weight in Q relative to the edge-weights for G .

Obtain a new graph Gi+ from Gi by "shrinking" to a single now node,

L+l i i i
P1 , #;he circuit Q and every edge of G which has both ends in Q . The

edges (denoted as ea ) of G are those edges (denoted " a1 ) of Gt

which have at most one end in Q . Every edge of Gi which has one end in

Q will in Gi+l have 1+1 at thPt end. All other edge-ends are the same

i in~iI T ot i+lin G as inG *The nodes of Q are not inG
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Every edge, say e +, which as e0 in Gi is directed toward a nods,
3 3£! i

say V in Q i and directed away from a node not in Q , pts a possibly

different weight for Gi+l

Ci+l i c i
(1) 3 3 0 4

where c is the weight of e• for 6 where c is the minimum weiht

for G of an edge, say e in and where C4 is the weight for
G i of the unique edge, say e i , which is in qiand directed toward V

All other edges in GC + keep the sam weight as for G

In Justifying the algorithm we shall make use of the following relations

(2) c 0 >>0 , (3) c >_ , and (4) 1 >
0-4 - 0 C4 a C3

i i+l iPut into bucket D the nodes which are in both 0 and bucket D

Put into buclet E + the edges which are in both GC+ and bucket I , L.e.,

put into bucket £I+ the final contents of bucket I minus the edges of

i lcircuit Q . It is easy to see that the edges in bucket I form a branch-

ing in G1+1

Continue the algorithm by

applying (1 1) where i is one greater.

Mventually, after a small number of applications of (1 1) and (I 2) ,

case (b) mat occur.
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As soon as(b) occurs, for say i- k (I)end (12) are ever

applied again. Instead, (I 3) ts applied successively for I + I a k,

k-I, ... , 1 , until the graph G obtained is the original G . At that

point, the branching Di aO is a uxinmj-total-wight branching of G .

kk
The finl contents of bucket Ek form a branching in graph Gk vich

we call Bk .

(I 3) it is not difficult to ee that since 1i+l is a forest in

G II and since Gi~l is obtained from Gi by shrinking the circulL Qi in

Gi (and all edges of Gi with both ends inQ ) to the node 1÷1 of GiW

the subgraph Hi of Gi I formed by the edges in Bi+l and the edges in Qi

contains only one polygon, namely Q

In the case where V+l is not a root of (a connected component ;f)

11i+l 1+1 1+1
branching B in Gi+l , there is a unique edge, say e* , of I

i+1 i i
which is directed toward V . In G , e I is directed toward a node,

i i
say Vi , of Q . Since Q is a circuit, there is a unique edge, say 02 2

i I i i
of Q which is directed toward 2. Clearly, e1 end e2  are t•e only

two edges of Hi which are directed toward the same node. Thus, since @2

18 n te nlypolso ot ii fo Hi
is in the only polygon of , deleting 2 from H yields a branching

i i
in G , which it callad B

i+l Bil Gi+l, e.
In the case where l1 is a root of branching B in G I

Where no edge of 1 Is directed toward i+1 , no two edges of Ii "e

directed toward the ses node. Therefore, doleting any edge of Qi from i

yields a branching in GC . To obtain the branching B in Gi , delete

L i i i
from H one of the edges a 0 of Q which has minimum weight co
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That completes the description of the algorithm. Evidently it is a

good algorithm. Evidently its output is a branching 0 iA graph C . In

0
order to prove Theorem 1, what remains to be done is prow that I has

maximum total weight.

15

Theorem 1 and the following geoetric theorem are proven together.

LAt G be any graph. (No edSg-weigbt3 aspecified.) Let tharebe a

real variable x for each edge eaCG . Let PG be the polyhedron of

vectors x - [x 1 which satisfy the system IG , consisting of inmqualities

L1 ,L 2  and L3

(L ) For every edge e 1 ' G xj _> 0

(L2 ) For every node V 9G, Ex . , summd over all J'a such that

a iis directed toward V•

(L3 ) For every set S of two or more nodes in G, E- x ,

sumed over all J's such that e has both ed inS In .( 1 58

denotes the cardinality of S . )

Any vector x - (zx ] of seroes and ones is called U& (1acg) 21.

of the subset of e• such that xa I

Theorem 2. The vertices of poljdodro P an_ m- citjk LM iStr, 2

the subsets of edges in G which S branch .
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A P R •h2I&dron) i is the set of all the vectors,

i.e., pol•s which satisfy sam finite systema L of linear inequalities.

A vote (etreme point) of P is a point which, for some linear function,

is the umique point in P which maximizes that function.
0

A kjM point x - x of a finite system L of linear inequalities

is the unique solution of a system, iE aSi xi - b, P J eJ, such that

J a hi i _bS , j I J , is a subsyste of L

00If basic •pint z of L is in the polyheodron P of L , then it is

a vertex of P because clearly x0 is then the unique point in P which

mazlinoss ir ( E a ij )xi;. J.

0Ve shall see without difficulty that any point x , which is the vector

of a branching say 10 in @ , is a vertex of PG . Vector x0 satisfies

L since it is all "roes and ones. Vector 10 satisfies L2 for any

nod" v t G , since, by the dafinition of branching, at most one of the x Ia

in this inequality has value I for 10 .

7be branching 10 Lb a forest, so any set £ of nodes, together with

the subset 10 of the edges in a0 which have both ends in S , forms a

forest. The numer of edges in a forest is at nest the number of sodas in the

forest ainw I ; in perticular, I't :S 1i1 - I . Therefore, vector 10

satisfies L~ for sany subset S of (two or more) nodes in G , sinceitO

of the xi3a in this inequality heve the value I for x . Summrising the

conclusion so fatr 10 is a point in F C
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0

Vector x is the unique solution of the linear system: z - 0
for every edge ejnot ir 50 , and E x -l1 (sind over ej'sdi~rected

00
toward av ) for every node v which has sown edge of B0 directed toward

it. This system can be obtained from certain of the relations of L1  and
0

L2  by replacing their inequality signs. Therefore x is a basic point

of LG a and hence a vertex of PG r

Most of this paper is directed toward proving:

Leman 1: Every linte•r function, E cj xj ( su mad over all_ *41!# acG)o

is maximized in FG by the vecvor of sown branching in G .

From lAmea 1 and from the definition of vertex, it follows li diately

that every vertex of P, I tMhe vector . a branching in C . This will

conclude the praof of Theorem 2

A tranch'ID A in grapa G has maimas total wei~,ht relative to the

VýZctf-'*ý C r, I of e44e-wseights if and only if the vector z0 , [a 01 of 10

&uximises (cis) C E X ij over all vectors of branchings in C . If x0

Maximizes (cx) over PG C then it maxtais (c,x) over the vectors of

branchings in G , since the latter are in PG

Out task, therefore, is to show that the vector of the breaching 3O

produced by the elgorithm, maximizes (c,z) over F , This vill prove

that the elgorithm is valid and will prove Uamt I
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The following computations are well-known in linear programing.

Suppose that x - [xl] is any vector which satisfies

(5) xt >_0 for every 4 , and

(6) tE as, x e < b f for every 17,

and that y - [y 3 is any vector which satisfies

(7) y >17 0 for every t7 , and

(8) 7E at yfor. c, for every .

Since (6) and (7) imply

(9) 1E(C E aV x,)y,<_ E b 17 y 9 (by) ,

and since (5) and (8) imply

(10) •E (E a ry1 7 )x C> E_ c x - (c,x)

we have

(zz) (c~x) <_ (bpy).
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Since (11) holds for any x and any y , if (c,x0) - (b,y 0) holds

for particular x - x0 and y w y 0 'hen x must maximize (cx) Pau
0

y must minimize (b,y) .

Suppose for particular x = x and y - y that

S(12) E at V7 - b, for 1 such that y 0

and

(13 EC7 Y1 c Cfor 4~ such that x C 0

Since (12) implies equality in (9), and (13) imlies equality in

(10) , we have (c, xl). (b, yI) . Therefore,

(14) xI maximizes (c,x) and

1
y minimizes (b,y)

Our present interest is where (5) is (L1 ) , and (6) is (L2 ) and (L 3 ).

For any linear function (c,x) w jE c x of poiuts x¢ ; , we $at a dual

system, (7), (8), (b,y), by letting a variable y7 correspond to each inequality

of L2  and L3  . That is let a variable Yh correspond to each node V.h40

and let a variable ya correspond to each set I of two or more nodes in G

For (7) we have,

(15) for every V. 0 Yh 2- 0 and

(16) for every , Y) y 0
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Coefficient ajh- 1 if edge a is directed toward node vih &

ajh -0 othervise. Coefficient ajs- i if edge ea has both ends in S

and ajsM 0 otherwise. For every ph , bbh l = For every S ,

b- Is-1

Therefore, (8) becoins

(17) for every edge eaeG

yh + V 2_ c j , where Vh is the front:end

of ej, and where V1 a Ey y sumed over

all sets S which contain both enis of e

Function (b,y) becoms

(b,y) - hE yh + E (ISI-l)y,

sumed over all %h and over all S .

0Rtecall that our task is to show that the wctor x of the branching

0 , produced by the algorithm, msaxLmses (c,x) over P.

In view of (14), we do so by constructing a vector y "[yh Y.) which

satisfies (15), (16), (17), and which satisfies (12) and (13). For tb.e pie-

"seat system, (12) is

(16) for every node Vh such that Yh " 0

E x 1 sutred over J's such that s0

is directed toward v&n ; and
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(19) for every set s such that y. 4 0 , zo - Isj-1 ,

summed over J's such that e has both ends in S .

In other words, (18) says that if yh ý 0 then 4& edge of the branch-

Ing B0 is directed toward V.h, and (19) says that if ys ý 0 then exactly

ISI-i edges of B0 have both ends in S

For the present system, (13) is

(20) for every edge ea in the branching B ,

Yh + vj a ci P where V ah ad wj are as in (17).

17

For each graph G I(i - k, k-lp...,0) with weight c on each edge

aI , and for the branching BI in GC we will describe a vectorejei 0 iswl ec~e•vco

y which satisfies (15) - (20), where C and B0 are replaced by GI and

I IB and where vector y is y

First we describe a yk y and then, assuming a y M (. we

i 0describe a y . Thus by induction we obtain a y - y and the proof of

Theorems 1 and 2.

The vector yk = k k tyh k I is y k 0 for every set I of two or more

nodes in C k k ya 0  for every node y k in Ck which has no edp of 3 k

k k k kdirected toward it, and, for every other node V. in G , c Vlore

,y -© wher
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edge e of B is directed toward Ph Conditions (15)- (20) for
Sk kc Ik

y can be ismediately verified from the fact that for every nodr, kh e G

either there is no edge of Bak direced toward k and there is no posi-
Ich

tively weighted edge directed toward Ph , or else, amng all the positively

weighted edges directed toward k , the one in Bk has miximm weight.
i+l i+l i+l

Now., suppose that we have a Yh for each node h and a ys

for each set S of two or more nodes in Gi~l . such that (15) - (20) are

satisfied (where B0 is replaced by Bi+l . etc.).

L iet t -" y+l , summed over the sets S which contain node

i~l hPh

To make the induct Lon go through we assume ft.rther that in Gi+l

(21) for every node v. , such that % + yh > 0 , there

exists at least one edge ea directed toward Ph

such that cj - th + Yh "

This clearly holds for Gk . and we will prove from (15) - (21) for

G that (15) - (21) holds for G

iObtain the vector y as follows.

i i iWhere A is the set of nodes in circuit Q of G #where a is£whee e2i s

the edge of Qi not In Bi ,where P2 is the front and of a L where

i i i+l i+l
c0 is the miniums weight in Q and where vi in the node in 0

to which Q was shrunk, i..

2 i+l i i(22) y 2 " y, + c2- co a
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(23 1 1 i+l
(2) A 2 Y2 -t'l

Where in any node in A other than L~ , and whore o is the
i I

edp in Q which is directed toward 1 P let

(24 i i i+l
(24) 3 " - YA t1

i I
Observe that (24) holds also for - p2

Where 5  is any node of Gi which is not in Q ,let

i i+ i(25) Y5 " YS

Where R is a non empty subset of nodes in Gt+ which does not

contain .t whare J - RU&1 I, where K-RiUA ,ad were, L is

any get of two or more nodes in s such that LA is a proper subset of

A P let

S i+.I
(26) 1t = +

(27) 1 " , and

(28) 1 a 0

That completes the description of vector y . Now we must verify (15) -

(21) for it
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For every ed$e of G which ia directed toward a node not in A ,

for every node not in A , and for every set 8 p except A P in G ,

conditions (15) - (18), (20), and (21) follow imndiately from those sam
i+1

conditions for y , (25) - (28), and the local nature of the changp from

i+1 i+l i+l i i io , ,and c Co 0 ,B 1 and c

For every subset of nodes in G which does not contain all of A ,

condition (19) follows iimdiataly an above. For set A and for every set

K as in (27), condition (19) follows from (27), condition (19) for set j

in il , ndthe fact that there are exactly IKI - IJI AIl - ore

adps of Bi with both ends in K then there are edpts of 3i+l with both

iends in J , namely the edge. of Inl Q *

It follows from (24), (27), and (28), that (21', holds for every node

in A (in particular where e is the a of (24)), and that (20) holds

for every edge of i A i, and that (17) holds for e.

Condition (18) follows immdtately for each nod" of A except Y2 since

there is an edge of I f Qi directed toward it. If there is an edge e+ 1

in ai+l which is directed toward i+1 , then a1  is an edg of 3I which
£ i

is directed toward v2  . and so in this case (18) follows for " Other-

1+1 i+1wise, if there is no edge of A directed toward &ý p then by (18) for

i+1 i+l i
l " 0 . Also in this case, the c2  of (22) was chosen in the

i
algorithm to be c0  . Therefore, if there is no edge of I directed

£44 i i
toward pl , then (22) is y 2 - 0 and so (18) follows for .
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For e1 , the only edge, if any, which is in B - Q and directed

i+£1 £ itoward a node in A , we have c1  I + c0 - CI (from (1)), (22),

i+1 t+1 i+l ±l 1 (1+Yl + w -c1 which is (20) for a, and 1 w - 1  from (27) and
I i c i chl 2)f,.(28) . Combining these we got y2 +w 1  wich is (20) fora

Thus- conditions (18), (19), (20), and (21) arm now completely accounted

for. Condition (17) for edges not in Qi but directed toward nodes in A ,
£

condition (16) for yA p and condition (15) for nodes in A , remain to be

verified.

Let ea be any edge of Gi which has both ends in A a end let P 35 3

be its front end. To prove (17) for a5 , which is y3 + w5 >Ž 5 c whre
£ i £41 £ £

w YA + tl , combina (24) and c _ >c
5 " Y 14 - 5

Let ai be any edge of Gi which has its frot end 3 in A and

its aver end not in A . To prove condition (17) for e 3which is
£~~ i 4

yi+ w > c3  where w 3 w3 +l combine (24), (23), (22), (l).and (17)for

3 l1+1

To prove (16) for A ,that is yA >--0 we use (21) for 1+1

Assuming +> le 1 be the e of that relation, letI l >0, 3 3

be the front end of a3 in A , and let a be the edge of Q which is

£ £41 W+ i+1directed toward 13 . Here (21) is c .3  - I + y+ In this came,

obtain yA > 0 by combining (23), (22), (21) for Vp , (1), an (4)
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i+l +l1
If there is ro e3 directed toward V, such that

i+l i÷l1 +1 1+1 i+l

S"~ t 1 l + y1  , then t 1  + y - 0 , and all edges directed toward

i+l have negative weight in so none of then are in . There-

fore since in this case the 4 of (22) was chosen to be co I (22) becomes

i £ i £Y2. 0 #L and (23) become YA" a €0 " y() thv YA 0.

Prove (15) for any node V Iin A by combining (24). (23), (22), (3)

and yl> 0

That completea the proof of Theorem 1 and 2

*6

Notice from the proof that if every veight cj eje 9 is an integer,
0 0

then the vector y 0 as vell as vector x 0 is integor-valued. In particu-
0

lar, vbsre every c * 1 , vect:or y is Ol - valued and msx(cx) - ain(by)

is a simple "Aonig-type" thooreu, uislogous to the mnximm-cardinality-matching

duality th to (l].

The folloving two theorem can be proved by the methods usd here.

Thore 3 . alL (L4) 1& __: x, - a gr % ti a j 4 a

Sk MUMna 919 RZAA L I (L.1) PA (L 3 ) (L4) &aw Il

A& V mLOU L IM L fai~uii sukotaL aL nia ~A 0 JkA sinnKaa

klUsihmas. (Q M 2 as, m -a A mK lana Skh i ftt uMd aw

, 0 J, in hkN A r Au a.ulirlk liUML. at 0 ).
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The present research began vhen A.J. Goldnan asked for a description

of "the convex hull of the spaning trees of a graph." Theorem 4 is proved

in [3].

Theorem 4 . The vertices 2f that poldyhedon FG i b (L1 ) angd (L3 )

are vrecisely the vectors of the subsets of edAes in G which comprise

forests. The vertices of the intersection of FG wvith (L4 ) are a subset of

the vertices cf FG
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An Introduction to Matching Lectures

Jack Edmonds Ann Arbor, Spring 1967

I. The Optimum Assignment Problem

For rectangular array (matrix), N, we define a matching

in N to be a subset M of the positions in N such that each

column and each row of N contains at most one member of M .

For any square array N , we define a transversal or a Rerfect

matching M to be a subset of the positions in N such that each

column and each row of N contains exactly one member of M

The optimum assignment problem is,

given any n x n array N of real -

numbers, find in N a transversal the 7 -

sum of whose entries is maximum, i.e.,

an "optimum" transversal. - -

A transversal in N "assigns" the rows of N to the columns

of N . Where the columns are people and the rows are jobs, and

where each numerical entry represents the value of the person of that

column at the job of that row, an optimum transversal represents

an optimum assignment of the people to the jobs.



A well-known generalization of the assignment problem is

the integer Hitchc -.ck-transportation problem: Given a rectangular

array N of real numbers, c i , and given an integer ai > 0

for each row i and an integer bj >_ 0 for each column J ,assign

a non-negative integer xij to each position (i,j) so that

(1) for every i , JTiJ=ai

(2) for every J , i' cj bj

and so that ijvijxij is minimum (or maximum).

If ai represents the number of refrigerators available at

factory i , and b3  represents the number of refrigerators

ordered by dealer j , and ci 3  represents the cost of shipping a

refrigerator from i to j, then i,jxlj represents the

total cost of the particular manner [xij] of distributing the

refrigerators.

The assignment problem is vhere all ai - 1 and all b -1•

A minor variation of the assignment problem is: given a

rectangular array N of real numbers find in N a matching whose

entries have maximum sum. This variation corresponds to replacing

the equality signs in (1) and (2) by inequality signs. Ofcourse,

a maximum matching will not contain a position whose entry is

negative. In particular if all the entries are negative then the

maximum matching will be the empty matching. It is an interesting

exercise to discover bow any maximum transversal problem can be solved

by solving a maximum matching problem, and vice versa.

-2-



There are other generalizations and variations of the optimum

assignment problem -- most notably integer network flow problems.

These lectures, after treating the assignment problem itself will

deal (briefly, I'm afraid) with some bizarre variations.

In an n x n array there are n'. different transversals. In

particular there 100: ways to assign 100 people to 100 jobs.

100' is very large. If our method for finding an optimum assign-

ment spent one microsecond per possible assignment, it would take

hundreds of years to optimally assign 100 men.

It is a remarkable fact there exists a consistently good

algorithm. An algorithm good enough that you could actually do as

homework any instance of the assignment problem with 100 people, 100 jobs,

and any collection of 3 digit numbers as values. Good enough to be

used for many thousands of people and jobs. Ofcourse you have to

know how, and it is not easy to discover how.

It is an unfortunate fact for most combinatorial problems - -

problems very similar to the assignment problem -- that good algorithms

are not known. For most such problems, though they are ofcourse

finite, the best known methods do considerably worse than one might

expect. Such problems include the bulk of integer linear programming

problems.

Therefore we do what we can. We experiment with tht most

promising methods we can find for problems that need answers. And

we also try to find classes of problems for which, using special

methods, we can predict cosputational efficiency. These lectures fall

"-3-"



nto the latter area.

Fcr ease in giving an arm-waving description of an algorithm,

i, is convenient to represent the asoignment problem by a graph.

A bipartite qraph G is one whose set V of nodes partitions

into two sets V1 and V2 so that no edge of G has both ends in

tb! same set. Thus, each edge meets one node in V1 and one node

in V2 . Denote the set of edges of 0 as E

A matching M in a graph

is subset of its edges such that

no two members meet the same node.

A perfect matching in a graph is a subset of its edges such that

exactly one member meets each node..

The optimum assignment prdolem (more precisely, a minor

generalization of it) is:

In anW given bipartite G , with a real numerical weight ce

for each edge e(E , find if there is one a perfect matching M

which maximizes E ce , i.e. "a maximum perfect matching".
efM

After we treat the above problem, we shall treat the same

problem where G is not necessarily bipartite. The latter is a

very substantial generalization.

Where G is bipartite, with "parts" V1  and V2 , the nodes

of V1  correspotid to rows or Jobs the nodes of V2  correspond to

columns or people. Each edge corresponds to a position in the array.

14~



Any perfect matching in G determines an assignment of people to

jobs, as does a perfect matching in the array.

Where G is any g'raph not necessarily bipartite, the maximum

perfect matching problem is the problem of optimally pairing-off

a set of objects (the nodes). Admissible pairs and their values

are represented by the edges.

We shall see later that various other problems reduce to the

matching problem.

A feasible node-veighting of graph G is a vector [yv

with a component yv for each node vEV such that, for every

edge efE

(3) Yu + Yw -> Ce where u and w are the ends of e

Lemma 1. For any perfect matching M of a graph G and for any

feasible node-weighting yv],

(4 t ce S_ E y '
e(M vV'

Proof: Add up the inequalities (3) which correspond to the edges

in M .

It follows from Lemma 1 that if we can find a perfect matching N

and a feasible rYv) such that equality holds in (4), then

E c must be maximum and r Yv must be minimum.
e(M v(V

5-



This is true whether or not G is bipartite. When one can

get such a node-veighting along with an M , it provides a very

simple guarantee that the M is maximum.

If 0 is not bipartite, there does not necessarily exist a

feasible fYv] such that V,, equals the maximum value of E ce
eCH

for G

For any given edge-weighted bipartite graph 0 , the optimum

assignment algorithm, that we will describe, first chooses any

feesible node-weighting yv] . Then it chooses a matching, not

necessarily perfect. Then it successively finds better node-

weightings and better uatchings until

(1) it finds a node-veighting and a perfect matching for which

L ce M-rVyv I or until

(2) it finds a way to choose node-weightings such that -v -

(in which case, by Lem& 1, there is no perfect matching in 0).

Thus, the algorithm will prove

Theorem 2. For any edge-weighted bipartite graph C , which contains

a perfect matching, the maximm weight-su of a perfect matching in 0 equals

the minimm asm of a feasible node-weighting.

-6-
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P.S. I If G contains no perfect matching, then there is no minim=

feasible node-weight sum.

By using only integer node-weights, if edge-weights are

integers, the algorithm will also prove:

P.S. 2 If the edge-weights are all integers, then a min node-

weighting can be chosen to be integers. ,.1/2

The two postscxipt as well as (0
the theorem, are false for non-

bipartite graphs. . 6

-7-



II. A Hungarian Method

We btcck up now and state Theorem 1, which wlll be used as

part of the optimum assignmer.t algorittr, to prove Theorem 2

already given.

A subset H of the nodes in a graph G is called hungarian,

relative to G , if no two of them are Joined by an edge of G and

if the set N(H) f neighbors of H has fewer members than H ,

i.e., IN(H)I < JHJ . A neighbor of H is a node which is Joined

by an edge of G to a node in H.

<. - N(N)

Obviously, a graph whtch contains a hurnariazz set H can not

cAitain a perfect matching 1 , because the IHI L-ubers of K

which meet the nodes In H would have to meet IHI different

msee,. of N(H) . This is impossible since IN(H)l < I"I

A non-bipartite graph does not necessarily contain either a

hungsarian set or a perfect matching.

Theorem 1. A bipartite graph G contains nc perfect matching if

and only It 0 hae a hu4narian set, contained either in part V1

or part V2 of G



Subroutine R1 of the algorithm will prove Thm 1 by finding

in any bipartite graph either a perfect matching or a hungarian

set. Subroutine R? of the algorithm will prove Thm 2 by using

a hungarian set of a subgraph of G to improve any non-minimum

node-weighting of G .

Here is the algorithm) Given a bipartite graph G with a

numerical weight c on each edge e(E .

Give to G any feasible node-weighting !y v (Make the

node-weights integers if the edge-weights are.',

For the current feasible node-weighting a-t any stage of the

algorit-hm, let G' denote the subgraph of G which consists of

all nodes of G and those edges e of G such that

(5) Y u + yv - ce , where u and w are the ends of e

We call G' the equality subgraph of G relative to ry i

Using routine Rl, we find either a perfect :.*tchir4 M in G'

or else a hwrgarian set H' of G' in either part V or V2 •

(Since every edge of G has •ne of Its end-nodes in set V1  and

its other end-nodi in set V2 , the same Is trie for subgraph G'

Any perfect -matching of G' is ofc,,xrte also a prf'ect retching

of G , since S' contains all th' nodes -f G . However. s

hungarian, set H' of G' is not in ger.ral sa hungarian set of G

Since G generally has more edges than G' , set H' of nodeg

geneally has more neighbors relative to G than relative to G'.)



Theorem 1 saye that G' has either an M or an H'. Routine Rl t
will be the proof of Theorem 1.

Suppose we find a perfect matching M in G' . Then adding

together equations (5), Yu + Yw = Ce , for the edges e in M

we get E Ce -= Y V end so M is optimum.
e(J vCV

Otherwise, we rind a hiugarian ;et ;" of G' contained in,

say, part V2 ' In this car., we apply routine R2:

R2. Suppose that the 3et N(H') , of neighbors of H' relative to

G', is nat the entire set of neighbors of H' relative to G . Then

there are edges e of G whiich are not in G' and which have one

end in H' and the other end not in N(H') . Let = mrin (yu+yw - ce)

over %I! such edges. Clearly, f > 0 . Lowering each node-weight in

H' by C and raising each node-weight in N(H') by ( we get a

new feasible node-weighting. Its sum is smaller because IN(H')1 < Il.

The equality subgraph G' chwiges, so we apply Rl again.

3

Where N(H') is the entire set of neighbors of H', relative

to G as well as G', the set H' is hungarian relative to G and

so the.,e to no perfect matching in 0 . In this case, we can take

- 10 -



to be as large as we please, and still change node-weights as above.

This gives EYv as small as we please, i.e. Yv - "

Assuming Thm, I holds, i.e., assuming there is a valid routine

RI, the routine R2 Just described proves Thn 2 and PSI. For a

node-weighting having min sum, there must be a perfect matching

in the corresponding G' , because other'svle we can apply Thm 1

and 12 to get a smaller node-weight sum.

PS2 asserted that if edge-weights are integers then a min

nole-weighting can be chosen to be integers. This follows by

applying the above process to any integer-valued feasibit node-

weighting, because 4henever edge-weights and node-weights are

integers. ( j an integer (or arbitrary -. ).

Let us ncv describe routine RI , thereby proving Thm 1 and

completing the description of an v-ptimum-assignnent algorithm. R1

must find either a perfect matching in V' or a hungarian set of G'

Ri: Let M be any matching in 17' , not necessarity a perfect

matching. To begin it might be the empty matching. If M is not

perfect, let r be any node which M does not meet. We shall find

either a himgarian set of G' which contains r , or else a matching

M' in G' which is better than M in the sense that M' meets

r as well &sall, the nodes which M' meets.

- 11 -



InG', "grow a tree" T of the kind pictured inside the

-or&. Node r itselt si a tree of type T .Start off wilth

simply it.

edge of G' not in T,&n

not in M.

S4Mwww edge of M.

edge of T not in M

., called an inner node of T

o called an outer node of T

All the outer nodes of T must be in the same part of G'

Thus, no two of them are joined by a edge of G'. The number of

inner nodes of T is exactly one less than the number of outer nodes.

For any T either (a), (b), or (c) holds. (a) Rvery edge in G'

which meets an outer node of T meets an inner node of T at its

other end. In this case, the set of outer nodes is a hungarian set H

of G' . The set of inner nodes is N(H) , relative to 0'

- 12 -



Otherwise some edge e of G' meets an outer node, say v° ,

of T and a node, say u, not in T . (b) u meets no edge In M .

In this case obtain M' from M by interchanging the matching

roles of edges in the path P , consisting of u , e 0 , and the

path from v to r in T . Then forget T and, if there is

still some node, say r' , in G' which does not meet any edge

of M' , grow in G' another tree rooted at r' . (c) Otherwise,

u meets an edge elfM . In this case, enlarge T by adjoining

e and eI to it, so that u becomes an inner node and the

other end of e1  becomes an outer node.

Suppose the number of nodes in G , and thus in G' , is 2n

After T is enlarged at most n times, either (a) or (b) must occur.

After at most n differently-rooted trees are grown, either (a)

or a perfect matching must occur in G'

When (a) occurs, we apply R2 to the hungarian set H of G'

the set of outer nodes in T . Thus, uwless H is also a hungarian

set relative to G , the node weights change and the equality

subgraph G' changes. The outer nodes of T are then not a

hungarian set of the new G' . However, the same matching M is

contained in the new G' and the same tree T is contained in the

new G' . Case (b) or (c) of R1 applies directly to this N and

T in the nev G' , and so we can continue growing the same tree in

the new G'. Thus, Al is iterated a total of at most n2 times

and the "step" of enlarging a tree is iterated a total of at most
2

n times before one obtains either a perfect matching In soms equality

subgraph G' or else a hungarian set of G(
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III. Bipartite Matching and Linear Programs

By poledron (strictly speaking convex polyhedron) we mean the

set of all vectors (points) which satisfy some given finite collection

of linear equations and linear inequalities.

Let G be any finite graph, not necessarily bipartite. Let E

denote the set of edges of graph G . Let V denote the set of nodes

of G.

Let there be a real variable xe for each edge efE . Let PG

be the polyhedron of vectors (Xe] such that

(1) for every etE , x e 0 , and

(2) for every v(V , X xe = 1 , where the sum is taken over

all edges e which mett node v

Another wy of expressing (1) and (2) is

(1') xj EO , J(E ,and

(2') ~aljxj o bI , JfE , irV

where all bi I 1 , where aij .1 If edge J meet@ node i , and

vhere a - 0 if edge j does not meet node I.

Matrix (a,,] is called the incidence matrix of graph G . It has

a "rov" I for each node 1•V and a "column" J for each edge JfE

Clearly, a matrix is the incidence matrix of sw graph If and only if

each of Its columns contains exactly two l's and the rest C's.

- 14 -
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We may define a vertex x of a polyhedron P to be a point

(i.e., a vector [x-j = x°) in P such that, for some linear
0

function U of the points in P , x is the onl point

in P which maximizes the function.

It is a standard theorem that if a given linear function of

points in polyhedron P has a maximum (i.e., P is not empty and

the function is not unbounded above), then the function is maximized

by a vertex of P . Ofcourse, some linear functions on P are

maximized by other points as well.

As you know, the linear programming problem is: For the polyhedron P

determined by a given system of linear "constraints", and for a given

linear function U of points in P , find a vertex of P which maximizes

(or minimizes) U in P .

Any vector EXe] of zeroes and ones is called the incidence vector

of (or simply the vector of) the subs't of e's such that xe - 1 .

Thus, every subset of edges in G is represented by a unique 0,1

vector, and conversely.

Clearly, where c is the weight on edge e in G , the weight-sume

of any perfect nmt 'hing M in G is the value of ce xe (efE) for the

vector of M .

CILarly, the 0,1-valued vectors contained in P0 (in fact, the

integer-valued vectors contained in PG) are precisely the vectors of

perfect matchings in 0

- 15 -
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We shall show that the assignment problem is an instance of

linear programing by showing that

Theorem 3. If G is bipartite, then the vertices of PG are precisely

the vectors of perfect matchings in G

Clearly, even if G is not bipartite, the vector of any perfect

matching M in G is a vertex of P0G since we can display a

function Vexe which obviously is maximized in P by the vector

of M . In particular, where c = 1 if and only if e(fM.
e

The hard part is to show that every vertex of PG is the vector of

a matching. We shall do so using the duality thin of linear programing

and tbm 2. about node-weightings for an edge-weighted bipartite 0

The £.p. dual of maximizing U - jxj , subject to x, > 0 and

ijxj - bi ,is Minimizing U - ibiYa subject to iijYi ? e.

The duality thin says that max U - min W if these extrema exist.

In particular, the dual of maximizing U ' ZCeXe (eaI) in PG is

minimizing W - D'v (v(V) subject to yu+yv > ce for every e , where

u and w are the end-nodes of e . That is, minimizing the sum of

feasible node-weights, as in The 2.

Thus, it follows from Thm 2 and the 1.p. duality thi that if 0

is bipartite, then, for any U , the max of U for vectors in P0  equals

the max of U for vectors of perfect watchings.

-16
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Thereforo, since all vectors of perfect matchings are in P ,

U is maximized in P. by the vector of a perfect matching.

0
For any vertex x of PG , suppose that U is a linear function

0 0
that is maximized in P only at x° . Then x must be the vector

G

of a perfect matching. So Thni 3 is proved.

Conversely, Thin 3 and the j.P. duality thin immediately imply Thin 2.

So, in view of j.p. duality, Thin 2 and Thm 3 are equivalent.

Where bipartite graph G is a square array whose rows i and

columns j are the nodes, and whose positions (i,j) are the edges,

Thin 3 is well-known as G. Birkhoff's theorem on "doubly stochastic

matrices" (1946)

An n by n doubly stochastic matrix is defined to be an n by n matrix

Fxij] such that:

all xij > 0 , and

(3) for every fixed i , jDcij = 1 and

(4) for every fixed J , i' xj =1 . (see page

Matrices are vectors, indexed differently. The collection of n

by n doubly stochastic matrices is a polyhedron. The Birkhoff thi

says that the vertices of this polyhedron are the n by n permutation

matrices. A permutation matrix is a matrix such that there is a I in

each row, a 1 in each column, and all other entries are zeroes.

Thm 2, essentially, is due to Egervary (1931). The algorittu here

for the assignment problem, essentially, to due to Kuhn and Munkres (1955-57).

-17-



Where the 1 in (3) is replaced by any prescribed integers ai > 0

and the 1 in (4) is replaced by any prescribed integers b, 0,

we get the linear constraints of the integer transportation problem,

relations (1) and (2) of section I These constraints, together

with x ij > 0 for every i and j , define a polyhedron, say PT

Theorem 3 readily generalizes to the fact that all the vectices

Of PT are integer-valued rectors. Thus we have the very well-

known fact that the integer transportation problem is an instance

of linear programming.

Indeed, historically the first, and still the most prominent,

algorithms for the transpcrtation problem are direct applications

of the simplex method.

Theor•em 3, and consequently Theorem 2, and consequently even

Theorem 1, are readily (and often) proved using general j.p. techniques

together with the special properties of the incidence mtrix [a&J]

of a bipartite graph.

Similarly, extremal (integer) flows in a netvork can be treated

by applying general j.p. techniques to matrices [(a,] vhich are

the "incidence matrices of directed grmph:". And, on the other hand,

the combinatorial algorithm that we described for the assignpent

problem is very closely relatad to the combinatorial methods of Ford

and Nulkerson for netvork flow problems.

Two advantaers of these cosbinatortal methods are (1) for

practical purposes, they are mor efficient than simplex methods, and

(2) for theoretical purposes, they provide theoretical bounds on

-18 -



efficiency of computation that are so for not available for simplex

methods. The disadvantage of these combinatorial methods in that

they have not been satisfactorialy extended to general L.P.

problems.

19 -



t.
IV. Matching in a general graph

So far these lectures have been small variations on old stuff.

Now I would like to shoe one of the wys in which these combinatorial

methods can be generalized to certain problems which can not be

treated directly as linear program -- at least not in the uhual

sense. Actually they are linear programs determined implicitly

by astronomical collections of linear constraints. Surprisingly,

these problems are just as tractable as the assignment problem --

in spite of the traditional views as to why the assignment problem

is so tractable.

We treat the problem of finding a maximum-weight perfect matching

in an edge-weighted graph G which is not necessarily bipartite. In

particular we can take G to be a complete graph -- a graph in

which every pair of nodes in Joined by an edge.

Recall that we have already defined a polyhedron P G for any

graph G , by the linear contraints (1) and (2) in section III. We

have already observed that the only integer-valued vectors contained

in PG are the vector, of perfect matchings in G . That is, an

integer-valued vector (z 1 is contained in P if and only if its

components are O's and l's . and the 1-ccomonents correspond to

the edges of a perfect matching.

We have alrv-dy observed that where c it the weight on e

in 0 , the wigh'.-*u of say perfect mtchlng M it the value of

c X (erE) for the vector of M

r2



Hence, the maximum perfect-matching problem, for any edge-

weighted graph G is an instance of "integer linear programning".

Integer linear programming is the problem of maximizing a given

linear function by an integer-valued vector subject to some

given linear conetraints.

If all the vertices of polyhedron PG were vectors of matchirngs,

as in the case where G is bipartite, then the maximum matching

problem would be simply an instance of linear programming. However,

when G is not biDartite, PG has vertices which are fractional-

valued.

The picture shows one of the

0 simplest graphs G such that PG

/ 0contains a fractional vertex as

well as several vertices which

D E /are vectors of perfect matchings.

The numbers on the edges arc the

components of the fractional vertex

in this P G Notice that where the edge-weights are the numbers

on the edges In the picture on page (V , the maximum-weight of a

perfect matchirng is 18. At the fractional vertex of PG , E cee
e(E

has the value 19, which by no accident is also the m'n sum

cf a feasible node-veighting.

2



1t

A main idea in tackling the general perfect-matching problem

is to chop off the fractional vertices of PG so as to obtain a

polyhedron P' such that all the vectors of perfect matchings are
GGstill contained in PG' and such that PG' doesn't have any

fractional vertices, i.e., all its vertices are vectors of

perfect matchings. In other words, obtain the convex hull,. P,

of the vectors of perfect matchings.

Theorem 2. For any graph G , the convex hull of the vectors of

perfect matchings in G is the pclyhedron P' given by the

following linear constraints:

(1) for every edge ecE: xe > 0

(2) for every node vcV: , x e = 1 , where the sum is taken over

all edges e which meet node v .

(3) for every subset s of nodes which has curdinality -ej - 2q5 + 1

for some positive integer q. Xe x i qs , where the sum is taken

over all edges e which have both ends in s

Any vector of a matching, say M , in G satisfies (3) for

any set s , since no more than qs edges of M can have both

ends in s , and since such edges are the only ones in M which

appear in (3). Therefore, every vector of a perfect matching of

G is in the polyhedron P' .

It is not so obvious that every vertex of PG' is a vector of

a perfect matching. We prove this by means of an algorithm -- in

a manner analogous to our proof of Thm 3 by means of the assignment

algorithm.
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The idea of t.vating a conbinatorial proble.m by chopping

away at a polyhedron to eliminate andesirable vertices is by no

meanif nev. A long time ago Kuhn and Dantzig a.-d others toock this

approach to the traveling salesman problem. I believe Motzkin

tried it for the '1 i-dimensional assigiunert problem". Gc•mnry

discovered finite algorithms for integer linear progrmmming 'hich

operate by chopping locally until the answer is a vertex of the

resulting polyhedron. His methods could be adapted to give finite

algorithms for describing the convex hull of the integer vectors in

any given bounded polyhedron.

For the matching problem, and certain cousins, the chopping-

idea has been completely successful in the following senses. (I)

We get a succinct and useful description of precisely the relevant

polyhedra. (2) We get an algorithm that is really good.

Later, I'll describe a representative, "optimum branching", of

one other essentially different class of problems for which polyhedron-

chopping has been completely successful.

Let U = r cexe(ecE) be any linear function of vectors Ex e

determined by an arbitrary specification of edge-weights for G

To maximize U by a vertex of P6 is a linear program. Our

purpose is to solve this L.p. by the vector of a perfect matching.

Since U is arbitrary and since for every vertex of P' there is

a U which is maximized only by that vertex, this will prove Thm Z4
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I
W'. now describe the dual of our L.P. Like I.p. duals everywhere,

it has a variable for each constraint of the primal, other than

non-negativity, and it has a constraint for every variable of the

primal, as well as the non-negative constraint on each dual

variable that corresponds to an inequality-constraint of the primal.

In particular, it has a variable yv for each node v(V , the

"node-weight" for v . And it has variable y5 , an "odd-set-weight",

for each subset s cV such that Isl = 2qs + 1 where qs is a

positive integer. Recall that Isl means the number of nodes in s

The variables yv are allowed to go negative since they

correspond to equations of the primal. The constraints of the dual are

(4) for every set a ,ys > 0;

(5) for every edge e ,fe(y) Yu + Yw + E Ys >Ce

where u and w are the ends of e , and where the summation is

over all sets s which contain both ends of e .

Thus, a dual weighting y = [yvys] is called feasible if (4)

and (5) hold.

The linear function to be minimized is

(6) W=yEv + Eqsys .

The duality theorem tells us that a vector x0 , x°0 ] maximizes

U - E cexe subject to (1), (2), and (3) if and only if there is

some vector y 0  y 0,y] satisfying (4) and (5), for which U(x°) . W(y°).

We shall find such an x which is the vector of a perfect matching.

- 24



More directly useful to our purpose is the so-called "comple-

mentary slackness theorem on dual I.P. 's. For our particular dual

j.p.'s it says that a vector x° = [xe0 maximizes U subject to

(I), (2), and (3), and a vector yo oyo] minimizes W subject= Yv'Y 8 iiie ujc

to (4) and (5), if and only if

0
(7) for every variable y. . either y = 0 or else equality holds

in the corresponding constraint (3);

0
(8) for every variable x , either x = 0 or else equality

holds in the corresponding constraint (5).

Where x = [x0 is the vector of a perfect matching M of G

0
(7) says that for every set s of nodes, either y5 = 0 or

else qs edges of M have both ends in s ;

(8) says that for every edge e in M , equality holds in

the corresponding constraint (5).

The matching algorithm finds a perfect matching M and a

vector y = (yO vO] such that (4),(5),(7), and (8) hold. Thli

guarantees that M is optimum and it also proves Thin 4.

Vectors [yv,Ys] have an awful lot of components. Fortunately,

however, the ones we deal with have no more non-zero components

than the number of edges in G
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V. A Matching Algorithm

Given any edge-weighted graph G . The algorithm starts out

just like for the bipartite case. We choose a feasible node-

weighting Cy v i.e., values of Yv such that (5) holds with

all ys a 0 . Let G' be the equality subgraph of G , relative

to this Eyv,Ysl . That is, G' consists of all nodes of G

and those edges e for which equality holds in the corresponding

comstraint (5), fe = Ce

If we can find a perfec!t matching in G' then it will be

optimum because then it and the dual weights will satisfy (4), (5),

(7), and (8). Generally we will not be able to find a perfect

matching In this G' or in any other such G' determined by a

node-veighting. However. lets try to, just as in the bipartite

case.

Choose any matching N , not necessarily perfect, in G' . If

there is a node r which X doesn't meet, start graving in G'

a tree T rooted at r , just as we do for the bipartite case.

bcall that when G is bipartite, either (a), (b), or (c)

must hold for T in G'. (See Section II).

Bipartite or not, when we spot an occurrance of (c), we enlarge

T in G' . Bipartite or not, when we spot an occurrence of (b),

we get a better matching in 0' , we discard tto current T in 0'

and if the matching to still not perfect we start another tree T
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In case (a), the outer nodes of T comprise a hungarian

set H relative to G' and the inner nodes of T comprise the

set N(H) of neighbors of H relative to G' Bipartite or

not, when (a) occurs we change the dual weighting [yv,ys] so

that other edges of G enter G' . We then continue to treat

the same T relative to the new G' . In general, the way the

dual-weighting changes is more complicated than for a bipartite G

where we don't have any positive weights yB . Indeed, so far our

weights ys are all zero. We shall have to describe 1ow some of

them become positive. We'll do so after we describe the concept

of pseudo-node.

When G is not bipartite, a fourth case (d) can occur:

(d) Two outer nodes, say v1 and v2 , of T are joined

by an edge, say el , of G'.

When G is bipartite, any two outer nodes of T muwt be in

the same part, V1 or V2 , of G , and so (d) can not rccur.

One can immediately verify that for a-iy G' (regardless of

whether G Is bipartite), either (a), (t), (c), or (d) holds for

T in G'

- 27 -



When (d) occurra, matters get especially tricky.

Let P1 be the path in T from vI back to r Let P2

be the path in T from v2 back to r Paths P1 and P2 to-

gether with the edge eI joining v3  and v2 form what we call

a flower.

It consists of a stem: the path between r and t ; and a

blossom B : the polygon. Ofcourse if P1 and P2 happen not

to run together until they get back to r , then t = r and

hence the stem is just the node r . It is also possible for

t = v, , or even t - r = v, . The number of edges and the

number of nodes in blossom B is odd and greater than 1, i.e.,

2q + 1 where q is some positive integer.

We now obtain a new graph G , a new subgraph G' , and a

new tree T , from the ones we've got, by shrinking to a single

pseudo-node, v3 , the blossom B and all edges that have both

ends in B
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The edges of the matching M that are not shrunken away do

form a new matching M in the new G' . The new T , formed by

the edges of the old T which are not shruuken away, iz a tree

in the new G' having the correct structure relative to the new M.

The pseudo-node v 3 is an outer-node of the new T . If t = r

then v3 is the root of the new T .

Whenever we shrink a blossom we remember it so that later we

can expand the pseudo-node to recover it. We never bother tc

remember the edges of the current matching in a blossom that we

shrink, because they are not likely to be compatible with the

matching that is current when we expand the pseudo-node back to

the blossom.

The algorithm continues as before, considering occurrances

of (a), (b), (c), or (d), relative to the new G , G, M, and T

Each time we spot an occurrance of (d), we shrink the blossom,

thereby obtaining still another G, G', M, and T . A blossom

containing pseudo-nodes might be shrunken into another pseudo-node,

so we can have pseudo-nodes "inside" the pseudo-nodes of G' .

The set, say s , of all real nodes inside a pseudo-node always has

odd cardinality, because the sum of an odd number of odd numbers

is odd. We remember every blossom we shrink so that any pseudo-

node can be expanded anytime that it is not inside another pseudo-

node.
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Whenever we spot an occurrance of (c), we enlarge the T in

the current G'

Whenever we spot an occurrance of (b), we get a new iMtchi.

in the current G' such that fever nodes in G' are left jizmet

by the new matching. When this happens we d'.scard T . If there

is another node r in G' still not met by the matching, we start

groing in the same G' another tree rooted at that r • Pseudo-

nodes of G' formed from blossoms of earlier trees may become

inner nodes or outer nodes of this tree.

Whenever there are no cases of (b), (c), or (d) to spot, we

hsve case (b), i.e., the outer nodes of T are a hungarian set H

relative to G' and the inner nodes of T are the neighbor set N(H)

of H relative to G'. We must in this case consider changing

the dual weighting y - [y,y ] .
In general, for the current feasible dual-weighting, y = [y v ys]

a ys is positive only if a is the set of real nodes inside some

pseudo-node, either a pseudo-node of the current G' or a psevLo-

node at any level inside a pseudo-node of the current G' For

every edge e which is either an edge of G' or an edge or a

currently shrunken blossom, we have equality, f e(Y) c , for the

constraint (5) corresponding to e ; conversely, if fe (y) ce holds

for an edge e of the current G , i.e., for an edge e that In

not inside a current pseudo-node, then e is an edge of 0' . These

are the senses in which a pseudo G' Is the eqmullty subgrsph of

a pseudo G

30-



Assuming these conditions hold, we now describe how, when (a)

holds, to get a new feasible dual-weighting such that these

!onditlons continue to hold and such that either we have a rmw 0'

relative to which (b), (c), or (d) holds for T , or else we

dispose of a pseudo inr'ýr node of T , or else have W -- - a Y

in which case there 1i no perfect matching in G We choose (

to be as large as possible subect to the following constraints

with right-hand sides given by -he current dual-weighting.

(9) For every edge e of G , not in G' , such that one end of e

is an outer node of T and the other end of e is not in T

S< fe(y) - ce

(10) For every edge e of G , not in G' , such that both ends

of e are outer nodes ofT, T ( < f e(y) - c-- e

(11) For every s which is the set of all real nodes inside a

pseudo inner node of T , 2( < y8

(The pseudo inner nc>es that 'e refer to here are n..xdes of the

current G , not pseudo nodes inside of pseudo nodes.)

We assume for the mcment that at least one such constmint

exists, so th&t ( has a maximum.

Ncw w• change the dual ghtirg ly .y as follops. For

eý'ry real noIe v which Is either an outer n.,de of T or else

Inside a pseudo :lter node of T , lower y v tY Fzr every a
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which is the set of all real nodes Inside a pseudo outer node of T , 9
raise Ys by 2( . For every real node v which is either 4n

inner node of T or else inslar an inner node of T , raise

yv by f . For every a which is the set of all real nodes

inside a pseudo inner vertex of T , lover y by 2( .

Suppose that the size of I was determined by equality in

soae instance of either (9) or (10). Let e denote the corresponding

edge. After the (-adjustment of the dual-weighting, the new G'

is a certain different subgraph of the sa!e G (perhaps having

pseudo-nodes). Subgraph G' is determined by G and the new

dual-weighting. The same T and M a:e in this new G' . The

edge e enters G' . If only one end of e is an outer node of T

(and the other end not in T), then we have immediately an occurrance

of either (b) or (c). If both ends of e are outer nodes of T

then we immediately have an occurrence of (d), a blossom to shrink

as previously described.

Suppose the size of ( wd determined by equality Jn scme

inst!nce of (i1) . Let v denote the corr'sponding pseudo inner

noc,:. Let e denote the edge of the current tAtching vh 4ch meets v

Eige eI Is in T . Let e 2  denote the other edge of T which

meets v . After the (-adjustment of the dual-weightlng, we expand v

to the blossom, say B , whose shrinking introduced v . This expanslon

gives rise t:-* a new G and G' .It Ii easy to verify" that B Is

per. of the new G' That is, f (y) - c holds for the edges e

of B . Let v1 denote the uode of B which ed4ge Ie etis
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let v. denote the node of B which e2  meets. The only node

of B which is met by the current matching is vI ; we are able £

to add to the matching certain edges of B so as to get a new

matching M,ln the new G' , which meets all the nodes of B

The edges of the current T remain in the new G' . Unless ex.
v = v , they do not form a tree in the new G' . However, they,

(_o.,cero;n on of th-tp i'.4s 6% SOW AL~ve "re 1 r.
toget-her vithA', B ~ ' yL m*.w-4l .1161u r

, do form our new tree T . This new T does have the correct

structure relative to the new G' and new M . Relative to this

new T , M , , G , and y ,y1 , we now return to looking for

further occurrances of (a), (b), (c), or (d). Incidentally, in

the situation we 'ust treated, i.e., where the size of C was

determined by equality in an instance of (11), it might be that .

= 0 . This isn't relevant to the treatment. e.

We have finished describing all situations of the algorithm,

except the two terminal situations.

One of the terminal situations is when we obtain in some G' ,

perhaps with pseudo nodes, a matching M which is perfect. We

then expand pseudo nodes v , one after another, to the polygons B

that they represent. Tmmediately before a pseudo node v is

expanded, the matching M , that we have, is perfect in the graph G'

with with node v , that we have. Let e denote the unique edge

of M which, in that G' . meets node v. Expanding v to polygon B

gives us a larger G' containing B instead of v In this G'
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e is the only edge of M that meets a node of B . By ad.joining

to M certain edges of B , we obtain a perfect matching M for

this larger G' . Unless there are no more pseudo-nodes, we then

treat some Dseudo-node of this G' , perhaps one in B , in the

same way.

Eventually, we get a perfect matching M in the original

graph G . It will be an optimum perfect matching, because it and

the dual-veightine, that we have, together satisfy conditions (4),

(5), (7), and (8).

The other terminal situation is an occurrence of (a) for

which there are no constraints (9), (10), or (11). In this case,

( can be chosen as large as we please. By using f -= to change

the dual weighting CYv,Ys] , as already described, we get a

feasible ryv,yeJ such that W H . Hence, there can be no

perfect matching in G

This completes the description of the algorithm. Just as when

G is bipartite, we can cbserve a bound, relative to the size of G

on the niumber of operations in eppiying the algorithm to G , which

ahows the algorithm to be not only finite, but very good. At the

same time, Theorem 14 is proved.
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VI. Theorems of Tutte, Peterson, and Konig

The algorithm also provides proof of the following theorem

of W.T. Tutte (1947), analogous to Theorem 1. We define a

Tutte family in a graph G to be a family of disjoint connected

subgmphs Gi of G such that each Gi contains an odd number

of nodes (perhaps one node) and such that, upon shrinking every

G to a node vi , the set of nodes vi is a hungarian set of

the resulting graph. (Tutte does not describe the family in this

way.)

Theorem 5. A graph contains a perfect matching if and only if it

does not contain a Tutte family.

The "only if" part is fairly easy. If G contains a Tutte

family of subgraphs Gi and also a perfect matching M , then,

because Gi has an odd number of nodes, at least one edge say •i

of M has one end in Gi and the other end not in Gi . After

shrinking, the edges ei meet the nodes vi , and have distinct

nodes at their other ends. This is impossible, however, since

the set of nodes vi is hungarian.

To prove the "if" part recall the terminal situation of the

algorithm where, for an occurrence of (a), there are no constraints

(9), (10), and (11). The absence of a constraint (11), means that

no inner node of T is pseudo. Since the outer nodes of T are

a hungarian set H of G' , the absence of constraints (9) and (10)

means that H is also a hungarian set of 0 . Its neighbor set
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N(H) consists of the inner nodes of T , all real. The nodes

in H , call them nodes vi , are obtained by shrinking disjoint

connected subgraphs Gi of the original, real-noded, G . Each Gi

contains an odd number of nodes. Therefore, the original, real-

noded, G contains a Tutte family.

The only alternative is the other terminal situation of the

algorithm, and it yields a perfect matching. Thus, Tutte's theorem

1.s proved.

Ofcourse, a much more pleasant proof can be obtained by

stripping-down the algorithm to one for simply finding in any G

either a perfect matching or a Tutte family. Indeed, finding an

algorithm for the latter was a main hurdle in finding the algorithm

that maximizes weight-sum. Tutte's original proof of Theorem 5 is

fascinatingly unalgorithmic, and it prompted a number of

programmatic efforts on the subject.

The subject of matchings started over 75 years ago with the

4-color map conjecture. The conjecture, still unproved, says that

for any way of dividing up the plane into a "map", by a connected

graph (a "planar" one) embedded in the plane so that every edge

lies on the bovndary of two different regions, the regions can be

colored with only four colors so that any two regions having an

edge in common are colored differently. The property of every

edge lying on the boundary of two different regions of the map is

equivalent to the planar graph containing no isthmus. An isthmus
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of a connected graph, planar or not, is an edge whose deletion

leaves the graph unconnected.

By "perturbing"at each node the conjecture easily reduces to

the case where the graph has degree 3 at each node. The dgree

of a graph G at a node is the number of edge-ends in G that

meet the node.

An interesting theorem, which we won't prove, is that:

A planar map having degree 3 at every node can be colored (properly)

with 4 colors if and only if the graph of the map contains three

mutually disjoint perfect matchings. Thus, the 4 -color conjecture

is equivalent to the statement that any 3-degree, connected, planar

graph with no isthmus contains 3 mutually disjoint perfect matchings.

In 1891, Peterson made the following contribution toward proving

the 4-color conjecture.

Theorem 6. A 3-degree, connected graph G with no isthmus, whether

planar or not, contains a perfect matching.

Let's prove this using Tutte's theorem. Suppose a graph G

as dfscribed in Theorem 6 contains no perfect matching. Then it

contains a Tutte family of subtraphs G i Since Gi contains an

odd number of nodes, since each node has odd degree, and since the

collection of edges meeting nodes in Gi has collectively an even

number of edge-ends, the number of edges of G having one end in Gi

and one end not in Gi , is odd.
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Not every G can have as many as 3 such edges, since the
i

shrunken Gi s are a hungarian set whose smaller neighbor set

must meet all such edges, and no node in the neighbor set can meet

more than 3 such edges. Therefore, there is at least one subgraph

Gi such that exactly one edge, say e , has one end in Gi and

one end not in Gi . Edge e is then an isthmus of G , contradicting

the hypothesis. So Theorem 6 is proved.

By deleting the edges of a perfect matching M from the G

o' Theorem 6, we are left with simply a collection of mutually

disjoint polygons. Clearly, the set of edges in this collection

of polygons can be partitioned into two perfect matchings if and

only if easch of the polygons contains an even number of edges.

Considerable effort has been spent on trying to prove that when G

is planar, there exists an M such that G-M consists of even

polygons.

If the G of Theorem 6 is bipartite, then, for any M , G-M

consists of even polygons, because it is easy to show that every

polygon in a bipartite graph is even. Thus, the 4-color conjecture

is proved for any planar map whose graph G is 3-degreo. and

bipartite.

Indeed, though little is known about partitiioning the edges

of a general k-degree graph into k perfect matchings, we do have

the folloving theorem about k-degree bipartite graphs. The

elementary theory of bipartite graphs, including this theorem and

Theorem 1, is due to Konig (circa 1925).
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Theorem 7. The edges of any k-degree bipartite graph can be

partitioned into k perfect matchings.

For any perfect matching M in a k-degree bipartite graph G

clearly G-M is a (k-1) degree bipartite graph. Hence, it suffices

to show that any k-degree bipartite G contains an 14 . If G

doesn't contain an M , then , by Theorem 1, it contains a hungarian

set H . Together the IHI nodes in H meet k. HI different

edges. At the other ends of all these edges is N(H). But this

is impossible, since the degree of each node in N(H) is only k

and N(R) < JHJ . So Theorem 7 is proved.

The mystery of the 4-color conjecture seems not due to mystery

about planar graphs and maps. The subject of "planarity" Is very

well understood. The mystery is due to the lack of a satisfactory

theory about the combinatorics of coloring, i.e., partitioning.

If you could find a good algorithm for deciding, for any given

3-degree graph G , whether the zdges of G can be partitioned

into 3 perfect matchings, then you could probably settle the

4-color conjecture.
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VII. Degree-Constrained Subgrsphs a

Given any graph 1 with a real numerical weight c for eache

edge e(E and an integer b for each node v(V , find in G ,

if there is one, a subgraph M which has degrees b vat nodes v

and whose edges have mruximum weight-sum. This is called the

"optimum b-matching problem" or the "optimum degree-constrained

subgraph problem" (for "undirected graphs").

Where b = bv] , v(V , a b-matching M in G is a subset

M c E of edges such that b edge-ends of edges in M meet node v

(Tutte and many other authors in graph theory would say "b-factor"

rather than "b-matching".) Obviously there is a 1-1 correspondence

between the b-matchings in a graph G and the b-degree subgraphs

of G that contain all the nodes of G

1k allow 0 , and hence M , to contain loops and multiple

parallel edges. A loop is an edge such that both of its ends meet

the same node. Several edges are said to be parallel to each other

if they all meet the same one or two nodes. Loops and multiple

parallel edges are superfluous in the 1-matching problem.

Tutte (1954) generalized his Theorem 5 of the last section to

a characterization of graphs G which, for given b - Cbv] , do not

contain a b-matching. Using rimilar detvices we shall show how to

get a good algorithm for optimum b-matching
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In fact, we shall generalize further, thereby including directly

the integer network flow of problem of Ford end Fulkerson. The

latter may be regarded as the following: Given any directed graph

(network) G with a real numerical weight (cost) ce for each

edge (arc) e(E and with an integer b for each node v(V ,

find in G , if there is one, a subset M CE of edges such that,

for every vjV , the number of edge-ends of M directed toward v

minus the number of edge-ends of M directed away from v equals

bv P and such that 1; c is maximum (or minimum). A negative b
V eM V

is called a source, and a positive b is called a sink.V

To get the appropriate common generalization of undirected

graph and directed graph, we introduce the concept of "bidirected

graph". A graph G is called bidirected if each edge-end of G

has either a +1 or a -1 on it. Equivalently, each edge-end in

directed either toward or away from the node. it meets, independently

of how the other end of the same edge is directed. Equivalently,

each end of an edge in either a front-end or a rear end, independently

of what the other end of the same edge is.

The degree of a node v in a bidirected graph G is the

number of front-ends in G that meet v minus the number of rear

ends in G that meet v . With this new definition of degree,

the optimum degree-constrained subgraph problem is the same as stated

above.

A bidirected G is directed if every edge of G has a front

end and a rear end. A bidirected G is undirected if every edge

of G has two front ends. Another interesting case is where every
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,Ige has either two front ends or two rear ends.

Another generslizatian is obtained by introducing single ended

objects called slacks, positive slacks and negative slacks, i.e.,

front slacks and rear slacks. A slack in a graph meets only one

node. A graph G with slacks is regarded as undirected when all

ends in G including those of slacks are front ends.

Slacks conveniently represent upper and lower bound degree-

constraints. Suppose we wish to find a maximum weight subgraph

M of G such that the degree of M at node v is at least

b and at most b In other words, suppose we wish to find inv v

G a maximum weight b-matching where b = Cb and where each

bv is in the interval b <-b < b . Obtain from G a new graph
v v - v -v

G by introducing at each node v of G , b2 - b negative slacks
0 v v

and b 0 - bI positive slacks where b is some integer between
v v v
12

bI and b . Give these slacks weight zero. Finding a maximum
v v

weight b° - matching in G in equivalent to finding a maximum

weight b-matching It, G .

You may ask why T don't introduce "edges" with3 ends. T would

If I knew a good alg(rithm for handling them.

Another valuable generalization, suggested by the transportation

and integer flow problems, is to maximize U - c xe X(e(E) by an

I' toeger-valued vector x a rxe] that satlsfie•s

(1) for every element erE . either an edge e or a slack e

0. X• OL



(2) for every node v c V,

e a ev xe = by, (ecE), where

a = 0 if e does riot meet v,

a = 1 if e has one front end at v,ev

a = -1 if e has one rear end at v,

a - 2 if e is a loop with two front ends at v, and
ev

a = -2 if e is a loop with two rear ends at v.ev

Matrix [a ev is called the incidence matrix of bidirected graph

G. Set V is the set of nodes in G. Set E is the set of edges, includ-

ing loops, and also the siacrts in G. The integer bv is the degree-

constraint at v. The integer Qe is called the capacity on e.

When every te is 1, this prcblem is simply the b-matching

problei- relative to graph G. When the a 's are any positive integers,e

the problem is the b-matching problem relative to the graph obtained

from G by replicating Ct times the element e. We also permit

0 . Of course, if the problem has a sulution it must be possible
e

to replace C 1 by a large Oe HMwever, as a matter of fact,

infinite capacities are much easier to handle than finite capacities.

We now describe how any optimum b-matchirg problem can be

rediced to an optimum i-matchirA probl,-n.

We describe first how any b-matching prmblem on a bidirected

graph G zan be reduced tc. a b*-matching prý,blem on an undirected

graph GO. For each ncve v in G, let there be twu rodes, amy u and v,

in GO. Let all the frunt er-s at v be fr.ont ends at u in GO. Let

all the rear ends at v be front ends at w in GO. Let there be in GO

a new edge e with a front end at u, a front eiA at w, and ary
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appropriately iarge capacity. Let the d',_grt'z s:nsr.raw:t b and bU V

Le appropriately large and such that b - b = b V Let every cie or

slack in G bave the same weight in GC a. in G. Let the new edges ir

G* have weight zero.

One can verify that if G is directed then G* is blpertite.

We next describe how any b-.Atching problem on an '-ndirected

graph G can be reduced to a b*-eatching problem on an undirected graph

G* such that the edge capacities 'ire all - ard such that there are no

slacks.

For each edge e of G having finite capacity Ce, and meetir, say

nodes u and w in G, replace e by a path Pe of three edge& joizing u

to w; give the two new nodes, interior to Pe' degree constraircs equal

to C e Give one of the non-middle edges of Pe the weight tiat e had;

give zero wiegnts to the other two edges of P . Let r dencte a

special new node. For each slack e of G, having ý_:&.clty a•e •

meeting say node v in G, replace e by a path Pe ol two a-;ges joining

v to r; give the new node, interior to path P e a degree-constraint

equal to 0Se or by, whichever is raller. Give the edge of Pe thrt

meets v the weight that slAcK e Whd• give =,rv wei6ht to the cit--,

edge of P . Let there be a zero-weighted loe-v ltbh btoth 'fr-. n.) ends
e

at r. Give r any appropriately large de ree-_or..ra tnt vtwst parity

is such that th wua of the degree-constrai tit a9 nodes is even.

The re•sut of this c, rn3traction is the desired •-•atchir problem.
an ýi4r,!cted

Nlext we describe hov to reduce any b-oatc'Siý pr4blem on 4 graph

G, such that there are nQ slAcits ad such every edge e -ha capsecty

C9 , to a perfect matching protiem (l.Ke treated ýn ise-ztion V) on
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a graph, say G*. For every node v in G, having degree-constraint by,

&.ke b. copies of v to be nodes of G*. Join a pair or nodes of G* by

an edge, say e*, if and only if these two nodes are copies of nodes

in G that are joined by an edge, say e, of G. Let the weight of the

e* in G* equal the weight of the e in G. Let every r. de in G* have

degree-constraint equal 1. The pre-image in G, ..th appropriate

multiplicities, of an optimum perfect matching in G*, is an answer

to the given b-matching problem.

To use these reductions directly as algorithms is computationally

rather wasteful. However, one can use them to derive a good direct

algorithm for b-matching from the algorithm for 1-matching.

A paper to appear, called "Optimum degree-constrained subgraphs,"

by Ellis Joinscro and me, will describe a direct algorithm, theorems

,A1logooi: co Theorem 4, and computational experience, for general

optimum b-matchings.

The matching algorithm described in section V was devised in

1962. Since then I've tried to find good algorithmd for #ome other

obviously finite prcblezc. I hbve fo,.d a few, but it seems that

ouch algorithms are nt easy to come by.
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Minimum Partition of a Matroid Into Independent
Subsets'

Jack Edmonda

(December 1, 1964)

A mat-oid M is a finite set .M of elements with a family of subsets, called independent, such that
f1) every subset of an independent set is independent, and (2) for every subset A of M. all maximal
independent subsets of A have the same cardinality, called the rank 'IA) of A. It is proved that a
matroid can be partitioned into as few as k se-ts, each independent, if and only if every subset A hba
cardinulity at most f" r(AL.

1.0. Iutroduction which has exactly two onies in each column. The

columns are the edges of the graph and the rows are
Matroids can be regarded as a certain abstraction the nodes of the graph. An edge and a node are said

of matrices (8].= They represent the properties of to meet if there is a one located in that column and
matrices which are invariant under elementary row that row. Of course a graph can also be regarded
operations but which are not invariant under elemen- visually as a geometric network. It is often helpful
tary column operations -namely properties of depend- to visualize statements on matroids for the case of
ence among the columns. For any matrix over any graphs, though it can be misleading. Matroids do
field, there is a matroid whose elements correspond not contain objects corresponding to nodes or rows.
to the columns of the matrix and whose independent Theorem 1 on "minimum partitions," the subject of
sets of elements correspond to the linearly independent this paper, was discovered in the process of unifying
sets of columns. A matroid M is completely deter- results described in the next paper, "On Lehman's
mined by its elements and its independent sets of Switching Game and i Theorem of Tutte and Nash-
elements. Williams" (denoted here as "Part II"), which is a direct

The same letter will be used to denote a matroid sequel. Theorem 1 is shown there to be closely re.
and its set of elements. The letter I with various sub lated to those results. Lately, I have learned that
or superscripts will be used to denote an independent Theorem 1 for khe case of graphs (sez sec. 1.7) was
set. anticipated by Nash-Williams [5].

The interest of matroids does not Le only in how they By borrowing from work of others, I intend that this
generalire some known theorems of linear algebra. paper together with possible sequels be partly exposi-
There are examples, which I shall report elsewhere, tory and technically al.nost self-contained.
of matroids which do not arise from any matrix over
any ftIld-so rnatroid theory does truly generalize an I.I. e Prblem
aspect of matrices. However, matroid theory is jus-
tified by new problems in matrix theory itself-in fact Various aspects of matroids-;n particular, the first
by problems in the special matrix theory of graphs pair of axioms we cite -hold intrinsic interest which
(networks). It happens that an axiomatic matroid set. is quite separate from linear algebra.
ting is most natural for viewing these problems !nd that AXIOM 1: Every subset of an independent set of
matrix r.;ichinery is clumsy and superfluous for view- elements is independent.
ing them. The situation is somewhat similar to the Any finite collection of elements and family of so-
superfluity of (real) matrices to the theory of linear op. called independent sets of these elements which satis.
eratorn, though there a quite different aspect of mat- fies axiom I we shall call an independence system.
rices is superfluous. When it comes to implementing This also happens to be the definition of an abstract
either theory, matrices are often the way to do it. simplicial complex, though the topology of complexes

Matroid theory so fir has been motivated mainly will not concern us.
by graphs, a special class of matrices. A graph G may It is easy to describe implicitly large independence
be regarded as a matrix N(G) of zeroes and ones, mod 2, systems which are apparently very unwieldy to an-

alyze. First example: given a graph 0, define an
,5-•.eby the Amy a.wi omacse <O,& . Presented at shSinar independent set of nodes in G to be such that no edge

M=s,. Na-teal Owe" at 5.aads,. Ag,. 3.,Sep. 1. 10,. I rach ,lbe of G meets two nodes of the set. Second example:
Yo Aifred Liahes•. for esocuraiasj my interest in the subpei.

P'ipres it brackets indiest.thle reerences at the end at dtus pqer. define an independent set of edges in G to be such that
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no node meets two edges of the set. Third example: 1.2. Ground flules
define an independent set of edges in G to be such that
the edges of the set, as column vectors of N(G), are One is tempted to suimise that a minimum coloring
linearly independent. The third example is the pro- can be effected for a system by some simple proc,-.
totype of the systems we shall study here. like extracting a maximal independent set to take ,i

A minimum coloring of the nodes of a graph G is a the first color, then extracting a maximal independent
partition of the nodes into as few sets (colors) as pos. set of what is left to take on the second color, and v,,
sible so that each set is independent. A good char- on till all elements are colored. This is usually tar
acterization of the minimum colorings of the nodes in from being succssfu! even for matroids, thoupAh it
a graph is unknown (unless the graph is bipartite, i.e., is precisely matroids for which a similar sort of n,,n(,-
the nodes can be colored with two colors). To find tonic procedure always yields a maximum cardinaiii,
one would undoubtedly settle the "four color" independent set and, as we shall see, in another vuwt.
conjecture. also always yields a maximum weight ,urn indepeiit.,

A problem closely related to minimum coloring is set when the elements carry arbitrary real wei, w>.
the "packing problem." That is to find a good char. Consider the class of matriids implicit ii, ?:i ,la-
acterization (and an algorithm) for maximum cardinal- M- of all matrkes over fields of integers modulo pi ivie-..
ity independent sets. More generally the "weighted (For large enough prime, this class include- thi'
packing problem" is, where each element of the system matroid (of any matrix over the rational field. V
carries a real numerical weight, to characteriz,- the seek a good algorithm for partitioning the ,
independent sets whose weight-sums are maximum. teiements of the matroidt of any one ot hl:i -

The packing problem for the systems of the first (matroids) into as few stits as possible so that "I
example is also very much unsolved (unless the graph is independent. Of tourse, by carrying out :l,
is bipartite). tonic coloring procedure described above in iJ i . -i

The minimum coloring problem for the systems of ways for a given matrix, one can be assured of. ,
the second example is unsolved (unless the graph is tering such a partition for the natrix, but v o,!
bipartite). Its solution would also undoubtedly set- entail a horrendous amount of work. V rWne: k al ;ii
tie the four-color conjecture. However the packing gorittim for which the work involved inert'•ii -. ,
problem, and more generally the weighted packing algebraically with the size of the matrix to.- !; it -
problem, is solved for the second example by the ex- applied, where we regard the size of a , , '!
tensive theory of "matchings in graphs." creasing only linearly with the number : .iuti*,,.

For the third example the packing problem is in a the number of rows, and the characti . !: ie ti,
sense trivial. It is well known that the system of As in most combinatorial problems. h a,>• annIe,
linearly independent sets of edges in a graph, and algorithm is trivial but finding an algiri:m- whi..
more generally the system of linearly independent meets this condition for practical featioirt is wo
sets of columns in a matrix, satisfies the following: trivial.

We seek a good characterization of 11w minirnui,
AxioM 2: For any subset,4 of the elements, all maxi- number of independent sets into which the column.,

mal independent sets contained in A contain the same of a matrix of Vv can be partitioned. Afe, c hriterion
number of elements. of "good" for the characterization wri apply the "pr n-

A matroid is a (finite) system of elements and sets ciple of the absolute supervisor.'" Th, g",ood charac.
of elements which satisfies axioms I and 2. terization will describe certain info, o•t ,,, about the

For any ;ndependence system, any subsystem con- matrix vhich the supervisor can 'require his assistant
sisting of a subset A of the elements and all of the to searcl out along with a minimum patiition and
independent sets contained in A is an independence which the ,upervisor can then Use wihI ea..e to Veifly

system. Thus, a matroid is an independence system with mathematical certainty that the partition is it-
where the packing problem is postulated to be trivial deed minimum. Having a good characteriation ,,oes
for the system and all of its subsystems. For me, hay- not mean necessarily that there is a good algorithm.
ing spent much labor on packing problems, it is The a.-sistant might have to kill himself with work to
pleasant to study such systems. Matroids have a find the information and the partition.
surprising rihness of structure, as even the special Theorem I on partitioning matroids provides the
case of grapt'i, matroids shows. good characterization in the case of malt ices of .411.

Clearly, a subsystem of a matroid M is a matroid. The proof of the theorem yields a good alaritlm in
We call it a submatroid and we use the same symbol the case of matrices of Mf. (We will not elaborate on
to denote it and its set of elements. The rank, rMA), hov,.l The theorem and the proof appl) as well to
of a set A ,I t elements in 11 or the rank, riA), of the all natroiid. via the matroid axions,. IHowever, tie
submatroid - of M is the numhwr of elements in each "goodness" for matrices depends ,in hing able to
maximal independent set contained in A, i.e., the num- cari% (out constr".:ctively with ea-' those- miatrix opera-
ber of elem.'•ýs in a base of 4 tioo,. which -or•!espond to the e',ist'iiiial asset:',n,

The miain result of this paper is a -olution ot the of' -he theory. A fundainteral prnw'le of matrmid
minimum iohoring problem I.,r the independent sets the-,ry is to fiht a good representatio44 for general
of a matroid. Another paper will treat the we-ighted matoids-go.dl perhaps relative to ihe rank and the
packing pto. h-m for matrmiid., nittt'lwr of el,'nienls in the matoidls Tl'herc is a % ery
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elegant lattice representation (geometric lattices., [1, 1.4. Terminology
2]), but it is not something you would want to record
except for the very simplest matroids. There are various families, (1) through (6), of subsets

of the elements in a matroid M which are used in de-

1.3. The Theorem scribing the structure of M.
(1) The family of independent set: of M.

The cardinality of a set A is denoted by JAl1. The (2) The family of minimal dependent sets of ele-
rank of a set A is denoted by r(A). ments in M (where dependent means not independent).

THEOREM 1: The elements of a matroid M can be These are called the circuits in M. The letter C with

partitioned into as few as k sets, each of which is inde. various sub or superscripts will be used to denote a
pendent, if and only if there is no subset A of elements circuit.
of M for which (3) The family of spans or closed sets in M. A span

S in M is a set of elements such that no circuit of M

AI > k r(A). contains exactly one element not in S. That is,
ISnCl * i for every circuit C in M.

The theorem makes sense for any independence The span or closure of a subset A of Mis the minimal

iystem M if we define the rank r(A) of any subset A span in 1l which contains A. Clearly, the span of A,
to be the maximum cardinality of an independent set which we always denote by S(A), is unique. Where A
in A. In fact, the "only if"' part of the theorem is is a subset of coluni vectors in a matrix M of column
true for any independence system M. Let li(i= 1, vectors, S(A) is all the columns in M which are linear

k) be k independent sets in M for which combinations of A.
The terms above are used extensively in section 1.5

k and section 1.6 to prove theorem 1. The terms below,
U II=M. through (4) and (5), are used extensively in Part 11.

A subset A of M is said to span a subset K of M when
For any subset A of M, IIIfnAI Q r(A) and KCS(A). It follows from proposition 4, to come, that

A spans K in M if and only if for each element eeK
k either eeA or their is a circuit C of M such that eEC

I1l,41 ,i IIIAl ) k - r(A). and C-eCA,
(4) The family of spanning sits of M. A spanning

subset of M is a subset of M which spans M-in other
Thus the "only if" part is proved, words, a subset of M whose span is M.

In general for the coloring problem in nonmatroidal (5' The family of bases of M. A base of M is a
systems, the other half of the theorem is not true. maximal independent set of M. A base can also be
However, the Konig theorem on matchings in bi- defined as a minimal spanning set of M.
partite graphs can be regarded as a valid instance of The terms in (1), (2), and (5) are taken from Whitney
theorem 1 for certain nonmatroidal systems. A bi. [8]. The terms "closed set" and "span of A" are
partite graph is a graph whose nodes can be parti. taken from Lehman [3]. There is an alternative
tioned into two sets each independent (by coincidence, terminology due to Tutte [7]. Since these are major
an instance of the coloring problem in our first ex. sources on matroids, it is worthwhile to set down the
ample). The Konig theorem says that for a bipartite relationship. To do so it is necessary to invoke the
graph G the minimum number of nodes which meet much used notion of "dual matroid," though it i- not
all the edges equals the maximum number of edges used here or in Part I!. Papers 3], [7], and [8]
such that no node meets more than one of them. show that the set.complements of the bases ;n a
(This theorem solves the packing problem for a special matroid M are the bases of a so-called dual mnatoid M*.
case of our second example of independence system.) The bases of matroid M are called by Tutte the

Fourth example: For a graph G, let the elements of de ndroids of M. The elements of ft are called by Tutte
the system M be the edges of G. For each node of the cells of M. The independent sets of M are called
G, let the set of edges which meet the node be an in- by ehman the trees of U.
dependent set in M. Let the subsets of these sets T e circuits of a matroid M are what Tutte cals the
be the rest of the independent sets in M. The Konig atoms of dual matroid M*. The circuits of M* are the
relation for a graph G implies theorem 1 for system M. atoms of M. Thus here is another special family of

Theorem I for the system M arising from G does subsets of a matroid M.
not imply the Konig theorem for G. For independence (6) The family of atoms (dual circuits) in MI.
systems in general the relation represented by theorem The rows of a matrix No, under addition and sub-
I is weaker than the relation represented by the Konig traction, generate a group of row vectors which Tutte
theorem-the latter being that the minimum number calls a chain-group, say the chain.-roup N of matrix
of independent sets which together contain all the No. The matroid M of matrix N. is of coure an in-
elements equals the maximum number of elements varient of chain.group N, and it is what Tutte calls the
in a set of rank one. It's nice to have the weaker matroid of chain-group N. An atom of M of N is de-
relation of theorem I because it might apply to other fined as a set of elements in M which corresponds to
systems where the well known Konig relation does not. a minimal nonempty set of row-vector components
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such that there is some member of chain-group N A proof of proposition 2 is obvious.
which has its nonzero values in precisely these corr- The next very useful proposition is taken in 171 and
ponents. The row-vectors orthogonal to each row of [8] to be an axiom instead of 2c, Alfred Lehman dis-
matrix NP form another chain-group, say N*. Its covered that 1, and 2, suffice.
matroid is M*, the dual of M. Atoms of M* by defini- PROPOSITION 3: If C, and C: are circuits of a matroid
tion correspond to minimal dependent sets of columns M with an element eeC, fnC2 and an element aC, -
in matrix No. That is, they are the circuits of the C,, then there is a circuit C such that
matroid M of No.

Tutte defines a flat of matroid M to be a union of a*CCC,UC2-e.
atoms of M, or the empty set. It can be shown that a
flat of M is the set-complement of a span (closed set) PROOF (Lehman): Assuming 1, and 2c, suppose
in M, and conversely. C,, C2, a, and e are such that the theorem is false and

Where A is a subset of elements in M, Tutte denotes CUC2 is minimal. There is a circuit C3C CIUC 2-e,
by M4-A what here is called the submatroid A of M but a4C3. There is an element beCjn(C2-C,). By
(following Whitney). The meanings of the rank rjM) minimality of C, UC2 for falsity of the theorem and
of matroid M coincide, and Tutte denotes by r(M -A) since a4C2UC,, there is a circuit C4 such that
'vhat here is called the rank r'A) of set A in M (follow- eC 4CC2UC 3-b. Again by the minimality and since
ing Whitney). However, for a set A, what Tutte de- b4CUC4, there is a circuit C such that
notes by r A is not rA) = r(M -.A) but "rM XA)" which
is used in Part II. a*CC C, U C4- eC C, UC 2- e,

contradicting the falsity of the theorem.
1.5. The Lemmas PROPOSITION 4: An element e of a matroid M is in

the span S(A) of a set A in M if and only if e is in A or
In 1he proof of theorem 1 we will use axiom 1 and there is a circuit C of M for which C - A = e.

the following axiom 2' for matroids instead cf axioms PRooF: The "if" part of the theorem is asserted
I and 2. in the definition of span. Assuming the "only if"'

AxioM 2': The union of any independent set and part false, by the definition of span there must be an
any element contains at most one circuit (minimal A and eeS(A)-A for which there is no C with C,-A = e
dependent set). but for which there is a C and nonempty E with

PROPOSITION 1: Axioms I and 2' are equivalent to C-(,A U E) = e where for each e'eE there is a C' with
axioms I and2. C'-A=e'. Assume E to be minimal so that ECC.

PROOF: Assuming 1 and 2, suppose indepen lent set By prop. 3, 'or any e' and C' there is a C, for which
I together with element e contains two distinct circuits ecCICCUC'-e'. Hence, C,-(AUE,)--e where E,
C, and C3. Assume I is minimal for this possibility, is a proper subset of E, contradicting the minimality
eeCinfCt. There is an element eeC,-C2 and an ele- of E.
ment eseCz-C,. Set lUe-e,-e2 is independent Besides axioms I and 2' and the definitions of circuit
since otherwise (I -e,) is a smaller independent set and span, the only other fact on matroids used to prove
thmn I for which (I-e,)Ue contains more than one theorem 1 is
circuit. Set I and set It.e-et-e2 are maximal in- PROPOSITION 5: The span of a set A in a matroid
dependent subsets of set IUe. This contradicts M is the (unique) maximal set S in M which contains
axiom 2. A and which has the same rank as A.

Assuming I and 2', suppose 11 and Is are both maxi- In particular the additional, fact used in proving
mal independent subsets of a set A such that 11,1 < Ilij. theorem 1 is that the span of an independent set I has
Assume I, Ul is minimal for this possibility. There rank equal to the cardinality of!.
is an e, in 1, -!1 and. IUe, is dependent. By 2', IUe, PROOF OF PROP 5: If, for S(A) the span of A. r(S(0))
contains a unique circuit C which must contain some > rM), then by axiom 2 a base I of A is not a base of
element es not in It. Since Is is larger than I, it must S(A), i.e.. there is an element eeS(A)-I such that
contain another element besides et not in I, and hence IUe is independent. By prop. 4, e is not in the span
I•jU1-e, is dependent. Therefore, since IUe,-e2 S() of I but A is in S(M). Since the span of a set is
is independent, there is some 1 such that eiElCl- 12 the minimal span containing the set, S(A)CS(l). Thus,
and such that IdeIntI-e, is zaial 'nn ycontradiction, iIS(A,))r=r).
in A. Because E' contains an element not in 12, Let eeS'(A),whereACS'(A andIA=rS'(A)). Then,

11'2 ;j01 2 1 > 11,1. However, since I, UI is a proper sub- where I is a base of A, either eel or eUI is dependent.
set of 1, Ul, this contradicts the minimality assumption Thus e*S(A). Therefore, S(A) is the unique maximal
for Ii VI,. The proposition is proved, set where A CS(A) and rIS(A)) = riA).

PROPOSITION 2: Axioms I and 2' are equivalent to
the following axioms, l, and 2¢, for a matroid in terms
of its circuits (where starting with circuits, independent 1.6. The Main Proof
sets are defined as sets containing no circuits).

AxIoM I1: No circuit contains another circuit. PROOF of theorem I (the "if" part): Assume that for
AXIOM 2,: If distinct circuits C, and C, both contain every subset A of matroid M, JAl'J k - PIA). Actually,

an element e then C, UCs-e contains a circuit. it i% sufficient that for ever) span S in M. ISJI k. riS).
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"The goal is to get all the elements of 1M into just k in- We replace Ih in F by independent set lsUx-xi.
dependent eets of M. Let F be a family of k muttally The new family is still called F and the new set
disjoint independent sets of M. Any number of these carries the label.identity in F which I, had. This
sets may be empty. These sets are to be regarded as and the following informal conventions are used simply
labeled so that each may be altered in the course of to avoid introducing a lot more indices. Any other
the proof while still maintaining its label-identity. i which was the same member of F as Is is now
Suppose there is an element x ofM such that U{f:IF} IhUx-xi. We will distinguish between the current
CM-x. We shall see how to rearrange elements 1 and the original lI. The St's do not change.
among the members of F to make room for x in one of We have disposed of x and now we must find a
them while preserving the independence (and mutual place for xi in some member of F. Since xl#SI-,
disjointness) of them all. The process can be re- and xieS&, and since the Si's are monotonically nested,
peated until each element of M is in a member of F. there is some index iMl) C h- I for which
Thus the theorem will be proved.

Implementing this proof to an algorithm for par- XI4SiO) and xIeSftI)-.
titioning (if possible) a matroid M into k i.-dependent
sets is quite straight-forward as long as an algorithm Denote h by i(O) and denote x by xo. Assume induc-
is known for the following: for any ACM and eeM, tively that xoASso, xoesiM(.0-, xi•asi,, x~eS_. .....
finid a circuit C such that eeCCA Ue or else determine XJ4S,(J, xJ(SftJ_-i, where i(0)> i() >. . . > iUj). As-
that there is none. In the algorithm for partitioning sume further that ho) was replaced in F by Ii(o)Uxo
M, one of course would not first verify 1Al -_ k • r1A) for -xi, then Io was replaced in F by /1 ,)Ux1-x2, ... ,
allACM, but would simply proceed on the assumption and then !ij_ , was replaced in F by IsjaiUxj__ -xJ;
that it is true aid then stop if a contradiction arises, where xaeCoClsoUxo, xsECCl,5 1 Ux, ... , and

If every member of F contained as many as tiM) X*Cj-,C I•_Uxj._1
elements, then since they ire disjoint and do not Suppose there is a circuit (jCl#j)Uxj. Set 11(j)
contain x, the union of all k of them together with x, might have the same label-identity in F as 4i, for
which is a subset of M, would have cardinality several values of q < j, and so the contents of ixj) may
greater than k. rM). However, IMI{ k r(M). Hence have changed several times since the original !o,, which
there is an )ieF for which Ili <r(M). Similarly, gave rise to SKJ)=S(IivpnJSuj_1). In particular, xq
xeS, =S(1i) implies that there is an lseF for which for some q <j may have been adjoined to I!u). How.
112fS. I <r(S,), since if each member of F had r(S1 ) ever, by the induction hypothesis any such Xq is
elements in Si, then their union together with . contained in Sgc;-I and thus in Stu).
would be more than k-r(S) elements in S, but IS, I r- Therefore all elements of € -x which are not in
k-r(Se,. the original !K are in Sij. By definition of SJio, all

Denoting M by So, then likewise in general elements of the original Iho• which are in Sju) - are also
in iSp. Thus if all elements of Cj-zj are in SUJ;- then

xeS--S(nl5S - ) they are all in Sgj1, but since Soj) is a span then zj also
would be in S.j), contradicting the inductive hypothesis.

implies that there is an 1,eF for which IIi.,nS÷ 1 St< Hence, there exists tome element x2p m of Cj such that
rSi), since ISC k- (Si). These V's are not neces- xi÷,fSKI_-,. Since xj÷,mSs, there is some iYj+l) < i(')
sarily distinct members of F. such that xi +,#Stu÷+1 and xi* aSK0 +1)- 1.

Where Therefore when there exists a Cj, we repeat the in-
duct ive step by replacing iu) by I•; U XJ-xiJ +.

S1 ,-Si., n S1), Since i(O) > i(l) > . . ., eventually we must reach an
itJ) for which there is no CjCItxjUxj, Then we can

we have replace Ilu• in F by independent set Iip U xj without
having to displace another element xlz+. End of

r(S÷ -0) < isi). proof.

Since rank is a nonnegative integer, we must eventually 1.7. Corollary
reach an integer h for which For the special case where M is the matroid of a

x#Ss,=S(lS5 - 1) graph G, theorem 1 can be simplified somewhat:
and SCOROLLARY (Nash-Williams [5]): The edges of aand graph G can be colored with as few as k colors so that

no circuit of G is all one color, V and onry if there is no
xtSi for i .1 ..... h -I1. subset U of nodes in G such that, where Eu is the set of

By construction, SJ5, . . . DS,. edges in G which have both ends in U,

If liUx is independent then replacing 4 by I, L.x IEvi > k(IUI - 1).
disposes of x. Otherwise there is a unique circuit
CCIsUx. Since C-xCS 1-, would imply xI.S5  Symbols JUI and IE1,I denote, respectively, the
=S(IAnSk. 1 ), there is an xeC-x such thaz x,#S 1. caidinalities of U and Ev.
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The results cited in the title are unified by the following theorem: For any matroid M aod any
subsets N and K of elements in M, there exist as many as k disjoint subsets of N which span K &nd
which span each other if and only if there is no contraction matroid M X A where NMA partitions into
as few as k sets such that each is independent in M x A and such that at least one of them does not
span KnA in M xA.

2.1. The Problem The purpose of the present note is to unify these two
theories. Theorem 2 states the straightforward gen-

A. Lehman [3] 2 posed the following gante to be eralization to matroids of the Tuitte and Nash-Williams
played between two players on any given matroid /V theorem. Theorem 3 is Lehman's main theorem char-
with a distinguished elemeni e. The players are called acterizing short games. Theorem 4 is an analogous
the cut pla)er and the short player. They take turns theorem characterizing nonshort games. (Lehman
and (to be explicit) the cut player goes first. Each characterizes nonshort games indirectly by using "dual
player in his turn tags an element of M, other than e, natroids" which we avoid.) Theorem 5, for the case
not already tagged. The short player wins if he tags where K--N=M, yields theorem 2. For the case
a set of elements which span f. The cut player wins where k= 2, it yields the "only if" parts of theorems 3
otherwise -that is, the cut player wins if the elements, and 4. The "if" parts of theorems 3 and 4 are proved
other than e, which he has not tagged d, not span e. by describing the winning strategies when the respec-

T'he game, determined by M and e, is called a short tive conditions hold (in one case this follows Lehman,
game if the short player can win against any strategy [3]).
of the cut player. We will call the game nonshors if Theorem I in section 1.3 and theorem 2 are in a sense
the cut player can win against any strategy of the "horl dual to each other but not in the usual matroid sense.
player. Clearly a game is one or the other. For any Each can be proved from the other. We use theorem I
M and e, Lehman characterizes short games and de- to prove theorem 5.
scribes a winning strategy for the short player. Theorem 5 appears interesting in itself. We call it

Recall from section 1.4 that a set Tin a matroid M is the "cospanning.set theorem" after a main idea of
said to span a set A in M if for every e,, either eeT or Lehman's theory. For a graph G with a prescribed
there is a circuit C of M such the: C-eCT. Recall qubset of nodes called terminals, it gives a "gpod"
that a base B of M is a set which sl ans M (e.g., a span. characterization for the nonexistence of k ede.wise
ning set of 4f) and which also is independent, disjoint connected subgraphs (e~g., trees,, all with

Where the game is played on a graph G, it is not precisely the same set of nodes which includec the
necessary to have an edge corresponding to e but terminals.

sufficient to have two distinguished "terminal" nodes, If the matroid M of the cospanninit-set theorem is a
v' and vs, which would be the ends of e. Here, the goal finite set of vectors in a space L, then for given subsets
of the short player is to tag a set of edges which con- V and K of M, the theorem provides a "good" charac-
tains a path of edges joining ve to vt. The goal of the terization for the nonexistence of as m&ny as k dis-
cut player is to tag a set of edges which separates tv, joint subsets N( of N and a subspace L' of L such that
from vs. each N, exactly spans L' and such that L' contains K.

A theorem due independently to Tulle [6] and Nash-
Williams [4) characterizes for any graph G the maxi- 22. CAtmCu
mum number of edge-wise disjoint subgraphs, each
connected and containing all nodes of G. into which We use the following inportant concept on matroids
the edges of G can be partitioned. For a connected due to Tutte (ch. Ii of [71). For any set A of elements
graph G, the edges of a connected subfraph which con- in a matroid M, define the circuits of M x A to be the
tains every node of G correspond to the elements of a minimal nonempty intersections of A with circuits of M.
spanning set of the matroid of G, and conversely. PROPOSITION 6: The set of elements A and the cir.

InZ. t cuits of M X A are a matroid (denoted by M x A), called
, vto.d.., % b t* .- T ,* ,mbring .Y*ivin , w,,,. tt. "., - -# t.,. the contraction of M to A.

l,,, Time ,., . -w.pp bys.• i ,, t...y.it 01hre i,•ha. 4 .W I$*D..* Pnoov: Axioms 1, and 2. for M X A follow immedi.
,WM -,,. ,,•,, is ....l Iw PW II ately from prop, 3 for X.
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COROLLARY: Where A and;A are complementary sub- W e have pointed out how any contraction of the
sets of matroid M, A is closed (a span) in M if and only matroid of a graph can he represented as the matroid
if matroid M X A contains no "loops," that is elements of a graph. It is also possible to represent any con-
of rank zero, traction of the matroid of a matrix as the matroid of'

PROPOSITION 7: Where K and A are subsets of a matrix.
matroid M, subset T' of A spans K r)A in M x A if and By deleting (or cutting) set of elements A in matroid

only if there is a subset T of Msuch that T'= Tn A and Md, we mean replacing matroid .11 by its submatroid on

such that Tspants Kin M. the set il-A. By contracting (or shorting) set of
COROLLARY: The spanning sets of matroid MX A elements A in matroid Ml, we mean repl,ýing matroid

are precisely the intersections of A with spanning sets if by its contraction to the set Al -A. Clearly, from

of M. the definition of submatroid, we can get a submatroid

PROOF OF PROP. 7: Suppose T'=TflA where T M' of Al by deleting the elements. of Ml not in Vl one

spans K in M,. Since T spans K, for any element e in after another in any order. Clearly, from the caere car)

KflA, either eeT or there is a circuit C in Al such that to prop. 7t. we' can g, a contraction matroid Al'of AUkb
C-eC. I eeTthe eoe' ad hece ' spns In contracting the elements of .11 not in Al' one after an-

Al X A. If there is a C then, by definition of Al X A 'other in any order. It can be proved that for anv

there is a circuit C' of MXA such that eeC'CC. It elements a and b in a matroid Al, deleting a and theni
follows that C'- -eC T' and hence T' spans e in Ml x 4* contiracting b is the~ same as conlrae-ling to and then1

Thus th "if pat isproed.deleting a. The proof is omitted. These- results c-an

Suppose subset T' of A spans KfnlA in Ml X A.- Letbesmaidbyteflong
T= T' U3 where I is the complement of A in Al. Then PROPOSITION 8: The operations of deieting certain

1= TfA. Let ebe any element of K. If eeTthen elemet tgther with the operations of contracting

TspanseinM. Otherwise, eeKfA, and e#T'. Since certain other elements in a matroid are asseciatiic

T'spans e in Al X A, there is a circuit C' oAlxAsuc-h and commutatiz'e.
that eeC' and C'-eCT'. By definition of Al xA, The above proposition is equivalent to Tutte-'s iden-

there is a circuit Cof Al such that C' = Cf),4. There- ies33 71Tuldfnsamnoofaitrd
fore, T spans e, since eeC and C - eCT. Thus, the , V to be any matroid obtained from Al by deleting cer-

"onlyif prt i proed.tain elements and contracting certain other elements

Tutte auses M -A to denote what we mean by the The foloin *hoe speetdb ut ho
submatroid A of Al; he does not follow W~hitney's in- rhe 3.3ofl[7]wing theremis ofresentdroids.(heo

.ormality )f tllting A mean both a matreeid and its set rm35 f[])i em f"edod.

of elements. We will use Tutte's notation and also, PROPOSITION 9: If A and X are complementary sets

where convenient, we will depart from it again b)' oJ elements in motroid M. then the elements in u base

referring to MlX A simply as the contraction matroid.' ofM IX A together with the elements in a base ofli N

A, of Al just as we refer to Al -A as the submatroid, aire the' elements in a base' q'M.
A, of Al. Also, A denotes the elements of either. Proof omitted.

Where M(G) is the matroid of graph G, the matroid COROLLARY: rt M - A) + r(M xX i = riNI.

of a subgraph H of a graph G is the subnaatroid oif AG We have been calling rilf ..4) the rank MiA) of set .4

which contains the elements corresponding to the in matroid Ml. We denote rIM XA) as lu,,ction tiA.
edges of H and conversely. The matroid of a "con. of -sets A4 in matroid 11.
traction graph" H of G is the contraction of .IliC which The following theorem, which for the case of con.i

contains the elements corresponding to the' edges (if ne'cted graphs is the'- one due to Tuile' and Nash-
H, and conversely. W.illiams&, completely parallels theorem I. [lie "it"

The most instructive way to dec-ibe-b the- meaning part of theorem 2 follows, immediately fro.nt the "if"
of contraction graph is visuallv. [rhe (,-'itracticin part Of theorem 5Ftwhere .-V =N= .&

graph H of G whose edge% are- the set H of edij- in IHiEoREm 2- The eleniens toj' a niatroid %I can be
G is the graph obtained from G by cointractiiig to a partitioned into as means eas k sets. ec-h as.panninng se-

point each edgte of G not in H. (of Ni., if and onA if there is no -sub-set A of elements ol

It should be po inted out thai in order foir there to, be- NI fo, which
a contraction H (if G foir every subset H of edge-s tin G,11-k. o
we must extend tour meaning of graph 6in se-c. 1.11 to il k

graphs which include- edges which ''mee't the saime Any contraction graph eef a conne'cted giraph is.cn

node at boeth ends.'' Theste "loop"F o-dge's are' circuit% itected. U sing lthe' last paragraph oil 1.7, observe- t hat

by themselves; tht y coirrespoend to mnat roid ele'ment, where- V is lthe- maitrcild of a connic'ce-d graph G, w+-

which are- not e-ontaiiied in any inde-pende-nt e-ir of the' is the nu-mbe'r of noides ininu-s ane- of a coent ract ion

matroid. This sort of matrecid elementi corre'spoinds in graph aof G. and 1.41 is the- number of e-dge's tinha

a matrix to a column (of all zerees. In a matrix NXG), a contraction graph.
loop of graph G;can be represented by a column of NtG) Noitice- that, since-i.tl ,ii theoer-m 2 as

which c-ontains a 2 in the row corresponding ite, the rasily state'd without the- noetion oaf contraction.

node met and which contains it-ros e'lse'where. Rela- To, Irove- the -o~nly if' part of theorem 2. assume' that

tive to the miatroiie structure, the column is all ze-reis. $1 partitions inuo 4 se'ts.t eat+I spanning Al. By taking

mod. 2. a subset of each of them, we get disjoint bases
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Bti= 1. k). Let A be any subset of M and t ,4 the set Tub0 -[ elements, w•,ich the short player will
be its complement. Since 8, is independent, ril have tagged, is a base of matroid Me and hence spans
-,Jf'nBd. Since B is a base, IAnfB,I+InB,i=V JB,j set K in matroid .1.
=riM). Combining the two gives iAnB,I J;r(Mi When B, contains only one elemernt b6. then be itself
-r(,4 =t(A). Therefore 1Aj ;W" l.•tAfB,I ;P A • tA). spans M1 o and K. Hence, by induction on the number

of elements, we have a winning strategy for the short
2.3. Short Game. player. This proves the "if" part of 'heoirem 3. The

h5.---er "only if" part will follow from theorem 4 and
It turns out to be just as easy to analyze games where, theorem 5.

for the graph case, any subset of nodes of G are di,.
tinguished as terminals and the goal of the short player 2.4. Nonahort Gcanm
is to tag a set of edges in G which contains the edges of
a connected subgraph containing all the terminals. To The notion of contraction can always be used in
interpret this game in matroid !erms, adjoin to G a set place of the more farmihar notion cf "matroid duality,"
of new edges which form a cornected graph K contain, and conversely, because of a theorem (3.27 of [7]) re-
ing precisely the terminals as nodes. Then relative lating the contraction matroids of an M to the sub-
to the matroid of graph GU/•, the goal of the shurt matroids of the "dual to M." Sometimes one notion is
player is to tag a set of elements corresponding to convenient, sometimes the other. We 6ý not use dual-
edges in G which spans the set of elements correspond. ity here. Lehman in treating the same topic uses
in0to edges in K. mainly duality.

F or any matroid M and nonempty subsets N and K, L.ehman's interpretation of his dual results charac-
consider the game LtM, V. K) where, as before, the cut terizing when the cut player can win for the case o(
player and short player take turns tagging different graphs does not directly provide a "good" character-
elements of N, the cut player going first. The short ization in the sense of the absolute supervisor. Clearly
player wins if he tags a set of elements which span K. his characterization of a short game is good in the case
Otherwise, the cut player wins. Call l.tII. V. K) a of graphs. However, he does not give the followingt
short game if the short player can win against any strat- analogous characterization for nonshort games. (Com-
egy of the cut player. pare Lehman's theorem (26) and its graph interpreta-

Lehman's main theorem (explicitly for the case tion with our theorem 4 and its contraction graph inter.
where K is a single element) is pretation. See also the comment on his theorem 126)

THEOREM 3: &3M, N, K) is a sh rt game if and only which follows his theorem (29).)
if N contains two disjoint sets, A. and Be, of elements THEOREM 4: 1 IM, N, K) is a non-short game if and
which span each other and which span K. only if there is a contraction matroid %1' of matroid M

Notice that in the two-terminal graph case, the short where set N' = N n M' can be partitioned into two sets
player wants to get a path joining the terminals. The I, and Is such that I, and Is are both independent in NI'
structure characterizing when he can is two edgewise and such that lIdoes not span the set K',K-lNM'in M'.
disjoint trees each containing the terminals and rach Let us verify that an .', I,, and Is provide a winning
containing precisely the same nodes as the other. strategy for the cut player in game LA1., N, K). If I.

Lehman calls two (or more) sets which span each does not span K' in M' then tht cut player can tag any-
other cospanning. Let us verify that two disjoint co- thing on his first turn. Otherwise, he should tag an
spanning sets As and Be in N which span K provide a element e, in Ii such that Is - es does noý span K' in M'.
winning strategy in the game LII, N. K) for the short Since 1, does not span K'. there is an element eNA:'
player. All that we need consider is the span M-.S•AS,, such that rier 0 0. If e/i, then e is an element e,.
"-S(RB) in M. Clearly, we can take A. and Be to be Otherwise. by axiom 2' there is a aunique circuit C in
bases of submatroid Ms: assume that they are. If the /,Ue and so any element of C-e is an element e,.
cut player tags an element not in A.U l8, we can pre. iC-P is not empty since r1e) , 0.) Now neither the
tend that at the same time he also tags some element untiagged elements i1 - I1 - el of 1, itor the untagged
of AUB9. Clearly, the short player would not be tak. elements I I, of p an 'K in contraction ma:ruid Y'.
ing an illegal advantage by pretending this. Therefore. Even if the shmr player top an elem-nt not in M',
suppose the cut player in his first turn tags element clearly the cut player is nut taking an illegal advantage
to in A,. by prwoending the short player also tap an untagged

By axiom 2 (in 1. 1) there Is an element 6, of He such element it. M' if there are any. [herefore, assume the
that (A,-a-)Ub* is a base of M.e. The short player short player does tag one, say e, in I'. Consider the
should tag an element N.. It folklws from prop. 7 that contraction matroid At'-M' -e, of .1. fBy prop. 8.
disjoint sets .4, - As - as and 8, - BH - be are spanning the contraction of matroid W' to set MA it. the same as
sets of the contraction matroid 3t, - M3- 6, of 11.. the con.ra('tion of matroid M to set r'.) By the cir-

Since it is the cut player's turn again, the situation cuit definition of contraction matroid. set r. -I-e,
of A and 8, relative to V, is as it was fur As and He will be independent in AC' and will not span K'LK'-At'
rela e to M. except that Us is smaller. Assuming in V".
ther, is a strategy for the succeeding turns whereby Again by the definition of contraction matred. if e.
the short player can tag a set of elements which con. is not in the span 4f 1ý in M' then 1; is independent in
tains s h.i- T of reduced matrid ',. then by prop. 9 W. In this case. the cut player should tag some ele.
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I
ment e' such that F=lP - P does not span K" in V. them I, doe% not span A n.ll and hence 41,w." ,

By the definition of contraction matreid and prop. 3. span S'. Since each 1: =InS' is hidependet.
if es is in the span of 1, in matroid A1' then set F con- each 1; contains at most riS') elements. Since I;
tains just one circuit of contraction V?' and does not doep not span S', it contains fewer than r(S'l element,.
span K" in V". In this case. the cut player should tag Therefore Nr.S'= Ui, contains feer than k • r0',

Ssome element e in the one circuit of 1; in V', so that elements. Thus, the "uonlv iF part of theoren"
i •"1;-e , is independent in 4". is proved.

Thus in either case, after the cut player takes his %rc+ The "if" part of the,,rrm 3 f,,llJvi -m prAp ,it,,+
ond turn. the untagged elements of Vr' partition into 8 and 9 and theorem I. Let I1 be any matr-id. It
sets r. and 1 where, in contraction .Vr, both are inde. N' and K be any -ub.ets ,f 11. and let k he an% po;sitl,-
pendent and neither spans K'. There are n.,eleimentu integer. Suppose 4, is a maximal subset if \' siuh
tagged by the short player in Vr. The .ituitin ",; that !4,i =A -ri4,, arid 4! <_k -ri.4) for all 4Cl
identical to ,he one in VI' right after the cut plaer took Set .40 may be empt . fly theorem I, 4,, partitifin.
his first turn except that It" ha, feer untagged into k Independent sets,. I,. Since .4,. = A .r..,i.
elemrnt. eacti /, must be a bake of -ubmatroid 4,, and of course

Hence. by induction oti the number of untagged eilf aso a base of Sl.4,t the ýpan of .- ) in, If.
ments in the contraction matroid. itt he ,'ii playsr tag% l~et 31" lov the, contractiIn matroid .It 1 ,,btained lih
as described, he eventually reache,, a ,d'itraitdin contracting Sf.4,,' in It. Suppi.s .4, Is -ohbrt ItI
matroid Y "' in loich all the el'cin.-r are tagged by I
him, and yet for which there i. an ewkl'' gý . K N,=N' 1' such that ,.4,1 ' =kA", and 4. -

4uch that rt o- 0 in 41"'" ince A'" i. not spanned by in matroid .II' for all .4C.4, Then hke .A, in It.,•uh tat lri• 0in •P* tim' h''' . nt *panedby.4, partitions ins,, k bases !P, off 4ubratr, id 4, of It.
the empty P," or the empty 4"'1. The cut plaer will
then have won the game, because for the short playver to AI P. 8.. uubmatroid 4, ,4 14' is th. Cintractmino
to win he must tag a set, say T, which spans * in to A, of the subratroid 4 UN.4)Ji 0 f I. (-:all it ronor
matroid A1. By prop. 7, for any such T and any set A,. By prop. i'. a base of minor A, together with a
V,'" in M, Tn.Vlt must span K' 1ý'= Ke) V'" in m&Itroid base of submatroid S.i4 of .M is a base of "rubrnat,,"'l
41•, which is impo)ssible. This prove.s the "if' part 4u.4 0) SAo ,f .'$.of theorem 4i In particular, by pairing the sets iF one.to-one withithe sets I,, we get k disjoint bas*'s I' :-lI, of sub.

2.5. Cop -.nnh•.Seb~ Theorem matroid .4,USAo. of Ift Since UJT4".4oi.4C \
and since the -ets r, span each other in Vt.I[4U.41,

We still have to prove the "only if" panrs of theorems - k • ri.o u 4oi and. by the "only if" part of theorem I,
3 and 4. They follow immediately from theorem 5 1.41 r; k," rAi in AI for all .4C.4,U0. However,
(for the case k - 2). We proved the part of theorem 3 .4, was taken it, be maximal for thi* prouprt,. and hence
which says "P I ft isashort gamet". We proved the .41 is empty. Thus, mstrt'id Mf' eontains no ni-nempt,
part of thecrem 4 which says -'Q (L is not a short .4,. as defined.

1141e .. Theorem 5 says "P ý4 not Q". Logic yields Since S.AiA. is closed in ., the niatroid I'. obtained
"that t';is a short pmelPP.' and "'L is not a short by contracting StA.!. contains no element of rank

game) 4,Q". zero ii,,rillarv to prop. 6). Suppose i 'r V.r .4'
THEOREM 5: For an) mairoid M und anv sub. conta'ns a ninemptv set 4. such that t.• -& k 'riA:4

sets N and K of elements in M. there reist as man" in Vf'. Take 4,f t, be minimal. By the nonexistence
as k disjoint sub.sets of N which span each other in S1 4f a non,-mptv .4, *-s described ab-ove, we have
and sthirh span K. if an' onl if* there is no con. that I: I rA r4 4; Since there' are no elements ti
traction matroid %F of M where N \- %I' partaiaOru into rank irnu. .4. contains It least two elements,. Deleting
as few as k sets su'h that each i i indrpendent in M1' an element from 4: to get a nonemptv .4). we hav'
and such that at least one o'them doe., not span KfM' ý4,i a .A . r.4i .* A -i.43i in If'. which contradicts Ihe

PmPrS: The "omni if" part ofi thevorim ." foflows fruin minimality of 4.. Therefore. for all nonemptv tubsets
the "if' part of prop. ". Suppose in matruid . there .4 ,f' \" 4' -'mA. in ti'.
exist A disoint subsets T, of NC V1. Ahich span each Suppo,,e ,ome element gwA icontained in matrod
other and which span KC W. Let Vt' bie any contrac- V1. Since X does not hav, zero rank, there exists a
tion of V. Where a aet T, is the 7"Tot prop. 7; where matrid W*,. which contain,, the element% of V"
'i) e M' is the .4 and matroid .' is the V w A, of prop. 7; plus a new auxiliary element h. such that h and a
and where S., the span icloturri in 14 of eof.'h, , is the form a circuit in M. and such that submstroid 4t, - h
K of prop. 7. prop. 7 says that T'- Tn•.q' spans ,,f Ilh is the matroid V' It ils asty to venr. that
S',SO.m, in matirid If'. Since each r, spans S'. W, is such a :atiroid where the circuits of We are
each r contains at least uS', elements where uS') is i I the set coinststing of X avnd A. t2) the circuits ot

the rank of set S in matroid V'. S"ince all the sets T It'. and (3i sets t('C-rluA where C is a circuit t.t
are mutually disjoint. Yr)S' contains at least k. nS'i '' which contains g. l.et %',-V'Uh. It follows
elements. freim the relaton+.4 <s- ArAt, in matrid 4W" for all

On the other hand. -upp-ose ." :' 14 partitions into ilinempti 4C.\". that 4*1 % ', .4,) in 114, for all
as few am k independent sets I, tIf W' where one if 4. in AA
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flent- bty t' rvrrr. 1, N, can be partitioned into k Thus, if there is no such partition of N' ,,' •it
indcpeO-Ient sets 1 of MA, including the set, say R•, for contraction M' of M then no element of K it, in
which cuntsins h. In matroid M' the set lh-h is M'. Thus KCS(A,,. In this case, the k bases I,
indeperdent and does not span g. All of the other of submatroid S(Aj) of M span each other and spa'

- " I $e independent ir M'. These st 1* and 1, K in M. This completes the proof of theorem .
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In section 1, trans,'or~sal matroidid are associated with -isystentso of diStirte!t representatives" (i.e.,
transvergalst and, more gernerallb, imiiifhing rnoirotds are as~.ociated with matchings in graphs. The
transversal matroids and a theorem of P. J. llig~irii mn disvoint iratnsversais of a family of sets. along
with the well-known graphic matroitis and sonle thi-orm.~l (ii ditinimposition of graphs into forest s,
motivate some theooreoms on pa rtditiris (if genr-n rnatin ids rjbmit, intdepe ndent set%. In sect ion 2. the
relationship between transver-.d rc~rtit andi tiatroid eivdti, illustratet- fir a special case of later
theoremts. In sectio n 3. theorems ,it I rauNor als art por vt- ti--tug network flows. lIt sectionis 4 and
5. theorems ott matri&id art- presenite %1 hit 1, initp~v ztrwut re-tilt ton dleciomposition into t ransvervalt;
or intt fotrests. In sec tion i. thie zintithtig tot? rid. ire shotwni lit tc 6imply the transversal matroids.
r or the most part, sec ti ins 2, 3. 4- Ft. and 6 can lie ilcad ep taratl-iy

1. Transversal Matroids Let Q= {qi, i=l .... m} be a family of (not
necessarily distinct) subsets of a set E ={ej; j= I,

A mat riodM=(E , F) is a finite set Eof elements arid * 'c*' n I' The set T= {eim, . ..... ejtv)}, 0ý- t -Cn
a faminly F of subsets of E, called independent sets, is cled a partial transversal (of size t) of Q if T con-

suchtha (1 evry sbse ofan ndepndet st sstsof distinct elements in E and if there are distinct
sucher tha (1, every subse ofa ank independfortkset- 1independent; and (2) for every set A cE, all maximal Ineesil,...,it uhta jke )f rein

independent subsets of A have the same cardinahty. t. The set T is called a transversal or a sy'sc
called the rank "(A) of A. o/ distinct representatives of Q if t = m.

Somtims n exfict dstncton s mde etwen THEOREM. Let Qbe any finite family of (not neces-
Sometime anodexplicit distiemnction is tade baetween sarily distinct) subsets of a finite set E. (a) If F is

tat matoiexandcits dseintioflmnsn imaebthesaen wayps the family of partial transversals of Q, then M. =(E, F)
thatn~ xpliit istictin i mad beweengrops, is a matroid. (b) If F is the collection of subfamilies

spaces, or graphs and their sets of members. For oQtathetrnvsastenM(,f )ia
example, one normally uses the same symbol to denote ofQtahvernsralhn t= ,F)ia
a space and the set of points in a space. On tlic matroid.
other hand, it is often desirable to consider various The statemnents (a) and (b) are equivalent and refer

matridsthathav thesam setof lemets.to the same abstract class of matroids because themThproimtary haexampe ofam matroid lmns.otindk roles of Q and E are actually symmetric. The situationThe rimry eampe o a mlrod i obtine by is easily visualized in the form of the "incidence graph"letting E be the set of columns in a matrix over some of(
field and F the family of linearly independent subsets of ,. ) a "bipartite" graph, G = Q(E, Q), where the
of columns. In particular, E may be the set of edges nodes in one part are members of Q and the nodes in
in a graph and F the family of edge-sets that comprise the other part are the members of E. The edges of G,

"forets'in he gaph A atrod tat s abtratly which all go from one part to the other, are the inci-
"isoorphtsic tohoe ofathe lattrkind thtis alled traphic. dences between Q and E.

isoorpicto ne f her lte r w i b s canlted goraphic A transversal matroid is one that is abstractly isomor-Our motivation heewl eaohruc f phic to an M. (or an Mb). Matroid theory and trans.matroids, which is an extensive theory in its own vra hoyehneec te i rnvra
right. It is well known in various contexts, including vra hoyehneec te i rnvra
systems of distinct representatives, (0 lh-matrices, matroids, as do matroid theory and graph theory via
network flows, matchings in graphs, marriages, arid graphic matroids.
so forth (see [31).' Here we will refer ito it very. Let E be any fixed subset of nodes in any given graph
broadly as transversal theory. y G Weassume throughout this paper that each edge

of a graph meets two distinct nodes. Let subset
T C E be a member of F when T meets (is contained

"Two is16thid n seieil,2, I i, oweer sll niin~jin the set of endpoints of) some matching in G. (A
k(I firsapt author tisopmrd it. tere, I, 2j. iii,. r hti,. .fiii 0iorani throuh t matching in a graph is a set of its edges such that no

Nh- CoabinatoriatMaihematit-.Pn)ritiet The setitid atuithor to at the RAND t '.p..rattii,. two members of the set meet the same node.) We
'tent t Momike. CaKl Him work is sponsoiredi it the 'S Air Fir- Pritei t K(AIt 'i - y v yn

Tbh.- pe was prestented at the Adwan,-od Studi, innittitie ii toteper Prillyarottt~~ and shall show that Mc, fi = (E, F) i a matroaub vrfyn
IN to- kfl, Taboe, Cty,s Catif.. Autueto 21 o. Juit i.1,. axiom (2). In general, where G is not necessarily

1c~Zm. 2.id.Nr tiand2din nth~erse wowit %r ar~eie graefu 1,rhýcr-ine bipartite and where E is any subset of nodes, we call
iw Ita. bentellted iturow tICirk

lirIe undeitted ot G;eiek Rita fit, hi. %HS~ %atrid ,I .iiii.eto ie,,itiri. whits It to A&;, i a matching mat roid. For any A C E, let T, and
'ii i the daictrery of transersral maotons nil,I to ~ &. nuri-int.. oir not~ tie.. -ri T,~ be niaximal subsets of A which meet matchings,

ii . .001. si brac-kets indic-ate the hlerature reteretort ait, 1.l 4i -in pipc, say N, and N2, respectively. Consider the subgraph
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N C G formed by the edge-set Where B is the family of bases of matroid M, theorem I
describes the minimum cardinality of a covering in

N -4 N- =ANj - N2 U !N. - N0) B, and theorem 2 describes the maximum cardinality
of a packing in B.

and the endpoints of its members. The connected Applied to a transversal matroid Mb, where the
components of .V are simple open and closed pa!hs members of a family Q are the matroid elements and
because each node ,of N meets either one or two edges where the subfamilies that have transversals are the
of N. Set independent sets of elements. Theorem I says that

a family Q of sets can be partitioned into as few as
T, + T. = (T, - T2) U (Tý - To k subfamilies, each having a transversal, if and only

if IAl I< k "p(A) for every subfamily A C Q. Here
consists precisely o4 the path-ends of N that are in A; p{A) denotes the maximum i'ardinality of a subfamily
(Ti-T2) are th• nodes of A that meet N, but not IN,. of .4 which has a transversal, i.e., the maximum car-
and (Tz - T, are the nodes of .4 that meet N,2 but not dinality of a partial transversal of A. The statement
N1. Suppose T1, is larger than T,: then T-2--T, i is not interesting when k=l: for abstract matroids
larger than T, - 7%. In this case,. some component of there is nothing interesting to say in this case.
N must be an open path, say P, which has one end v Where A is a family of subsets of a set E, where
in T2 - T, and the other end not in T, - T,. Regarding NeE..A) is the i0. I)-incidence matrix of members of
path P as its edge-set. N1 +P=tVN-P) U (P-No E (rows) versus members of A (columns), and where
is a matching. This matching meets T, in A and in G(E, A) is the bipartite incidence graph of (E, A), the
addition it meets v in A. Thus. we contradict the value p(.4) is called the term rank of A, N(E, A). and
hypothesis that T, is a maximal subset of A which GIE, A). respectively. One of the two fundamental
meets a matching. Therefore, T, and T2 have the forms of the fundamental theorem of transversal theory
same cardinality and it follows that MGE=t (E. F, is a is due to P. Hall. It describes when a family A (or Q)
matroid. itself has a transversal. The other fundamental form

General matching matroids are discussed in sec- of the fundamental theorem is Kiinig's formula for
tion 6. term rank: p(A), the maximum cardinality of a partial

transversal of A or of a matching in G(E, A) (i.e.,

2. Introduction a set of l's which might be called a matching in
N(E, A)) is equal to the minimum cardinality of a set

P. J. Higgins [4] gives conditions for a family Q of of nodes that meets all edges in G(E, A) (i.e.. a set of
sets to have k mutually disjoint partial transversals rows and columns that together contain all l's of
of prescribed sizes nt, n2, . . nk. In section 4 we N(E, A)).
present conditions for a matroid M to have k mutually Let crA), for A C Q, denote the cardinality of the
disjoint independent sets of prescribed sizes n,, union of the members of A. It is a consequence of
n2. . nk. Where the matroid is graphic, for ex- the Kiinig formula for term rank that the inequalities
ample, this result is new. JAlI- k-p(A) for all A C Q are equivalent to the in-

The following two closely related matroid theorems equalities JA 1 k - 'A) for all A C Q. Thus the latter
are presented in [1] and 12] as generalizations of the- are also necessary and sufficient for Q to have a parti.
orems by Nash-Williams and Tutte on grap7hs. The. tion into k subfamilies, each with a transversal.
orem 2, below, for the case of transversd s, handles When k= 1, this is P. Hall's theorem on transversals.
a special case of the Higgins problem; it will be gen.
eralized to cover the Higgins problem. Theorem I is To see this equivalence, suppose that 1AI>k'p(A)
new for the case of transversals: it will be generalized for some .4 C Q. In the incidence graph (AE, A),
analogously. let E, U A,, E, C E and A, C A, be a minimum car-

THEOREM I. The elements E of a matroid M can dinality set of nodes that meets all of the edges.
be partitioned into as few as k sets, each independent By the Kiinig theorem, p(A)f E,l + JAI,. Let
in M, if and only ifIAI% k r(A)forallA C E. A,=A-A,. The set-union of members of At, that

THEOREM 2. The elements E of a matroid M can is, the other ends of all the edges that meet At. is El,
be partitioned into as many as k sets, each a spanning so oA2)=I E, I. Combining, we have
set of M, if and only if IAl I kor(E)- rtA)) for allA C E. 1A,42 =1.41- IAI > k(JE, I+ JA, I)- 1AI

As usual JAI denotes cardinality of set A, and ý
denotes the complement of A (with respect to E. =k E, I+(k-I)-'JAI I •k'iA).
A spanning set of a matroid M is a subset of E which
contains a maximal independent set. On the other hand, clearly p{A) - MA) for all A C Q.

A base of a matroid M is a maximal independent Therefore. I Al I k -p(A) for all A C Q is equivalent
set, i.e., a minimal spanning set. Each base has to IA I k 'lA) for all A C Q. Thus, Q can be par.
cardinality equal to r1E). the rank of the matroid. titioned into as few as k subfamilies, each with a trans-

For any family B of subsets of a set E. a covering versal, if anti only if the latter holds.
in 8 is a subfamily whose union is E, and a packing We do not recommend this matroid approach as the
in B is a subfamily whose members are disjoint, way to derive the transversal result. Theorem I in
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general i% ii.il edN,. and, even afier it is established,qI o-r ii i rie it %iii lthe lonig t heoremnio gi-i1 t the transversal
result is no easier than derivinag the transversal q
result directly from P. Hall's theorem as follows.
Let each element e eE be replicated k times to obtain

e, eke E'. To obtain Q'. let q' e QV consist of t
all the replications of the elements in qeaQ. Then U

JAI % ~k -(A) for all A C Q is equivalent to IA'I
19 alA') for all A' C Q'. By P. Hall's theorem the
latter is equivalent to the existence of a transversal
for Q'. That, in turn, is equivalent to there being a
partition of Q into as few as k subfamilies, each having q

a transversal.
Section 3 presents a derivation of transversal FIGURE 1.

theorems using network flows. Section 4 presents
a different derivation of the corresponding matroid
theorems. Both derivations s 'uggest computationally integrity theorem and max-flow min-cut theorem lair
good algorithms. Section 5 presents another ap- network flows, it follows that the maximum number ,,f
plication of section 4, and section 6 relates general elements contained in a union of k (mutually disjoint)
matching matroids to transversal matroidis. partial transversals of respective sizes s, -- ni, 32d- n2

... ,Sk ý- flA is equal to the capacity of a minimum
cut separating source and sink in this network. We

3. Transversal Covers and Packing. proceed to calculate this.
W Let A, B, C be arbitrary subsets vf E ={et, e2,.

In this section we focus attention on the transversal ex), Q {q(07, q2v . . . to q.}1, and P ={p', P2,.

matroid M,=(E, F), F being the family of partial trans- Pk}, respectively, and denote their complements in
versals of Q. We shall use network flows to derive these sets hy A, 9, C'. The capacity of an arbitrary
results on covers and packings in F. For background cut separating u and ty is then represented by the sum
material on network flows, we refer to [3]. In partic-
ular, the max-flow min-cut theorem and integrity cOu, ej0+ I c(ej, qid+ I cOqt, p,) + I dpio, v).
theorem will be applied.3  oejaA ItProf

Consider the directed network shown in figure 1. itohPfac
In figure 1 we have, in addition to a source-node u arid
a sink-node v, three tiers of nodes: ei, e2, - ft

(elmens f E; ~, 2, .- ,q, (sbses f Etht cm-We wish to minimize this over A C E, 8 C Q, C C P.
prise the family Q); and pi, p2, . - . , pk (partial trans- Usingtthe tabe ofnmu edecpcteofhsrdcst
versals). The directed edges of this network and their cmuigtemnmmo
flow capacities are listed below: ~B~~+X"

Edges-Cpcte over A C E, B C QC C P such that the set of edges
________ - -____ ------ leading from A to B is empty. Thus, for given A and

Wi. j) - It u. noC1u, ej)t C, we may take B to consist solely of those nodes of Q
(e), q1). t .rrepitiirding to) eli q1. mie), q, I which are joined by edges to some node of A. In the
tqgp,)P. i- I.. m; room . k. (Iq,p, Id
(Pro v). r........A kop language of set representatives, B consists of thostn.'ets

represented by elements of A. Moreover, for o
fixed cardinality ICI k-.s, we may take C to Curre

An integral flow from source to sink in this network spond to the s smalles-t nos. Thus, choosing the nota-
produces A- mutually disjoint partial !ransversals of tion so that 0 < n, re n, - . - a nits and let'ing aiA)
respective sizes s, %lir- n.S2% n2, . . . , sk r* nk in the den~ote the cardinality of the subfamily of Qrepresented
following manner. Take a chain decomposition of by elements of A, we are led to minimizing
the flow and put ej in Pr if, for some i = 1, 2, . . - I Into
the edges (ej, qi and (qi. fr) occur in a chain of this -s i)+ n
decomposition. Conversely, k mutually disjoint partial it k aA
transversals of sizes st % ni, S2 4 nz, . . , 9, S fk or. n
yield an integral flow from source to sink. Using the over A CE and s-0, I,1 .., k. For fixed A, the

ininimization over s can be carried out explicitly.
.. In a paph whit., thi- idi'o P, orr dir., led and hst p-m ""n rig., asara.ir. . Indeed, let nar be the number of integers among the net,

ihe maximum numb,, 11 chain. 14fir,-sl,- path,., ni -n...,arii, doo,.in,1 If-om a nosd, suhthao
:to a nude.al~aoP. suchthtrshe, do --- to nains.i jotfIthn.s-houip k., m ih, m~r.sinim n r 1, 2-- -- k, such th tn ;j, j=1,2,. .

he namidoe jaw ivroo parts nsuch that ae a Ionti a k 1TI,. Ianii sil (hain . ~is rd ., Ths-71 1 lýjrnariin
12ercsmpmcutia otiting s mium fr." sinkm tmi T-ni d.sle-iIna . r. I* n, It is not hard to see, especially in terms of a



partition diagram, that 4. Matroid Parlltkon
1 THEOREM lb. The set E of elements of a matroid

min (k - s)o(A) + n, = n" M can be covered by a family of independent subsets
Sr-i I (i1, . . .. k) of prescribed sizes n G' r(E) if and

only if, for every A C E,
This proves that the mcximum number of elements of

E contained in a union of k (mutually disjoint) partial
transversals of Q, having respective sizes s9 g n,, 1,41 -_ V nj* min (n, r(A)).
s n2..... s, - nk, is equal to i-

(*) (JA I +M n*]. THEOREM 2b. The set E of elements of a Matroid
A •CE + M contains mutually disjoint independent subsets

lT(i =1.. . . , k) of prescribed sizesi n, C r(E) if and only
if, for every A C E,

Here a(A) denotes the number of sets in the family Q H-E)
that are represented by elements of A. JAI j '. n*=X1n,-min (nj, r(A))j.

The following two theorems, which give necessary .- ' T
and sufficient conditions for the existence of covers
and packings composed of partial transversals of pre- Here r(A) denotes rank relative to matroid M. The
scribed sizes, are consequences of this result. (Nash- equations in theorems lb and 2b aie obvious.
Williams originated a similar 6iewpoint for related Using lemma 1, theorems lb and 2b follow immedi-
theorems on matroids.) ately from theorems le and 2c below.

THEOREM la. Let Q be a finite family of subsets of LEMMA 1. For any matroidM=(E,F) and any non-
a finite set E. The family Q has k partial transversals negative integer n, let F(.) denote the members of F
of respective sizes n,, n2, . . , nk whose union is E if which have cardinality at most n. Then K., - (E, Fr )
and only if (i) n, - p(E), i = 1, 2, .... k, and (ii) for is a matroid. Where r(A) is the rank functumn for IM,
every A C E, the inequality the rank function for K.) is

a(A)
JAI :6 n r(,)(A)- min (n, rGA)).

We call M(D ) the truncation of M at n.
holds. The proof of lemma I is obvious.

Here p(E) denotes the term rank of the bipartite Let rdA) be the rank functions for any family of
incidence graph (or matrix) of elements of E versus matroids M, =E, F,), i - 1, .... k, on the set E of
sets of the family Q, that is, p(E) is the rank of the elements.
matroid M.=-(E, F). The proof of sufficiency of (i)
and (ii) makes use of the fact that M. is a matroid in THEOREM Ic. Set E can be partitioned into afamily
extending the k partial transversals of sizes s, to of subsets ,(i = 1, . . . , k), where 11 eF1, if and only
partial transversals of sizes n,, i = 1, 2, . . . , k. if for every A C E,

THEOREM 2a. Let Q be a finite family of subsets of
a finite set E. The family Q has k mutually disjoint 1.4- rAA).
partial transversals of respective sizes ni, n2,
nk if and only if, for every A C E, the inequality THEOREM 2c. There is a family of mutually dis-

joint sets lI(i - 1, . . . , k), where I, is a maximal menm-

ber (base) in F1, if and only iffor all A C E,

holds.
Using the Konig theorem in an argument similar to Where each MA is a graph, theorem 2c is equivalent

that in section 2 shows that the rank function p(A) of to a theorem of Tutte [5].
matroid Me can be used in place of oIA) in (), hence Since it can be shown that a truncation of a graphic
also in theorems la and 2a. or a transversal matroid is not necessarily graphic

The situation of theorem 2a is the problem studied or transversal, theorems lb and 2b for these cases do
by Higgins. His conditions are not the same as those not follow from theorems Ic and 2c for these cues as
of theorem 2a, but are instead stated in terms of sub- in general. A similar remark applies to the way 2c
families B of Q rather than subsets A of E. They may will be derived from lc. Thus we oberve that the
be derived from theorem 2a by use of the Kiinig theo- general matroid concept is useful even where primary
rem (and vice versa), or can be obtained directly by interest is more special. The proof of 1c, on the other
eliminating A and C, rather than B and C, in the mini- hand, is arranged so that the only matroids it will
mization argument leading to (. mention are those of the theorem. Hence, the proof
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?applies directly to apy special class of matroids (in- Let So =E. Inductively, starting with j -1=0,

eluding classes of one). Everything in references 1l] if eeS, 1_. then for some IlU) such that
and [12 applies directly to the case of only graphs.
The proofs in [2) do not apply directly to the case of i) nl Si - i < rijsj -t,
only transversals because, as will be shown at another
tivie, a "contraction" of a transversal matroid is not
necessarily transversal, we define Sj to be the span in S1 j with respect to

LEMMA 2. Let A be any subset of the elements of a matroid *1t~v. of 1,,)n flSi Since
matroid M. Let I be any independent subset of A. -

A maximal set S, such that I C S C A and rS) = r(I)
-ill, is the unique set consisting of I and elements

ee A such that e U I is dependent. Sj is a proper subset of ýSj-. Therefore we must
Set S is called the span of!I in A. eventually reach an Ss such that el$Sh and eeSj for
PROOF. Consider eeA-i. By the definition of O-j< h.

rank, I is a maximal independent subset of any S. (Where the niatroids Mi are identical, the construe-
Thus, if e U I is independent, then e4,S. And thus, tion above is thne same as the corresponding part of
on the other hand, if e U I is dependent, then I is a the proof of theorem I in [11. The rest of reference-
maximal independent subset of e U S. Hence by jill and 121 goes through essentially unchanged for
axiom 2 for matroids, r(e U S) =I 11, and soý e4ES. vers~ion. co)ncerning possibly distinct miatroids, whi.,'

LEMM 3.The union of any independent set I and includes theoremns Ic and 2c. However. we contirtu.
any element e of a matroid M contain' (it most one Iere U ',h is independenlytrinme verion).h rsn
minimal dependent set. I'eU i needn nM~) h rsn

A minimal dependent set is called a circuit of M. Proof' Is finishied. Otherwise e U h4s) contains a cir-
PROOF. Suppose I U e contains two distinct cir- `uit c of' sh et (e u Iijh)) n Sh - iis not dependent

cuits C, and Ct. Assume I is minimal for this po~i int, h because then, by lemma 2 and by the defini-
hility. We have e*C, fl C2. There is an element nno h ic ,w ol aee~.Tu
eliCi-Ci and an element e2fC~--C,. Set ti U e) let mn be the smallest integer, 0 < m < h, such that
- (et U es) is independent since ot 1erwise I - e, is a (e U I,,,,) nl sm is independent in Ml(lo. There is an
smaller independent set than I for which tI-ei) U e e'ec-S,4 . By lemma3,e U 4sr)-e' is independent in

contains more thnone circuit. Set I and set (I U e)

1 U e. This contradicts axiom 2. dispose of e' instead of re However, !ve can, show that
PROOF OF lc. Supoe halfl (= , k i equne (/,mp. So..) . ('(mi, S.J. with the roles of

a paritio o Supposee that Idi= Then .fo arirr e and e' interchanged, is of the same construction as
A pattino E, wheem.F Then fo arirr .. 5) (lwo, Sh). only shorter. Since the origi-

ACnal e u (aith fn S. -1 is dependent in Mio1, for all
j. I --j -_ m. by lemma 3 we have e'eC C Sj - 1 Con.

1,4 = J A 0 l ~~rgAA 10 1) J riAA). sider the terms IliQ. Si), 1 t5 -- m, one after another
in order. Assume there is no change in Sj - . If
originially li~j, * 11(h) then there is no change at all in

Conversely, suppose that for every A C E, the in- ('Kuj. Sj). If originally lilijýIwo, then, even though
eqtuaJUty holds. Let {it) (i -I, . . . , k) be a family e and r' are interchanged in 1,) by lemma 2 and the
of disjoint sets such that Ii is independent irn Mi. Any definition of Si, since e U e' C C C SJ - 1, there is no
number of these may be empty. Suppose there is an change in Sp. Thus the theorem is proved.

PROOF OF 2c. For any family of matroids, Mi
=,(E. F) (i=l. .. .,.k). with raoik functions rd(A),

e t E Uli.consider the additional matroid Mo=(E, F.) where
CE i the members of Fo are the subsets of E that have car.

We shall show how to rearrange elemen~ts among the dinality at most I EF - T' rof.). Matroid Me is a trun-
sets It to make room for e ~n one of them while ure- ation of' the malroidinwchalsbesoEar
,erving the mutual disjointness and the independence sriiependent. The existence of mutually disjoint
k' It in Mi. This will prove the theorem. ts1( I,...k)whrLisamialebr

If eeS for any S C E, then for some i. I f, ns I < ri(S stsC 1,(i e kuvaen towher ex istneo a partitol ofbe

OtheriseE into a fainilx of sets, In and 1j 1i = 1. . . ., k), such that
IS1 ;o U (1 nl s) u el loa,',d 0 . By theoremn Ic, the existence of that

I paritionis equivalent to the condition that

+41,ns iS AI- infE iEJ )+ rA

.v~uld contradict the hvpoithe~i%. for All I C V.
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That condition in turn is equivalent to) 6. Addendum on Matchings

IAlI- I ElE!-T reE) +rifA) An element of a matroid M is called isolated if it is
contained in every base of Ml, i.e., if it is contained in

fo l .wihis equivalent to ro circuit% of Ml. Clearly, any number of isolated
for al A E. wich lements can be "added" to any transversal matroid

JI rE ri(A) V,,.. thereby obtaining another transversal matroid.
I~l r,(t-XWith respect iti the graph representation G(E, Q) of'

MIf, for every isolated element e' added to M., simply

for all A C E. Thus theorem 2c is proved. add a node e' to E and join it to a new node q' added
to Q,

5. Another Application Se'.eral elements of a matroid If are said to be in
series with each other either when they are all isolated.

Let A1 (i 1, k) ,A be mutually disjoint indepen- or else when none of them is isolated and each base of
dent sets in amatroid l= (EF. F. Let E'=F--i UJ) -it co ntainis all hut potssibly one, (if them.

THEOREM Id. Set E can be partitioned into afanubY .4 set oflm is in series in ,natroid M if and onli
oif indeprendent sets leF 6i = 1. .. .,k) such thaft U .the elements are contained in exactlY the sam .c
Ji ci, if and onlY if, for every A C E', circuits of M.

JAl - X~rIA U J11)- rdi)J. Suppose some base I of Ml contains neither of ele-
I ments el and e2 of At. Then I U e, contains a circuit

THEOREM 2d. There is a family of mutually disjointofMtacnaisebunte.
bases 1, ti = 1, -... k) of M such that J, C 11 if and Suppose an element ,, is contained in a circuit C

only f, fr evry AC E' of that does not contain nonisolated element e2 o
only ~ ~ ~ ~ ~ 't ifefo eIr E,~~ be a basse of Ml which does not contain e2.

141at J'riE)-r(tE'- A) U J01 The rank of' (I U 0 - e, is as large as the rank of 1.
otherwise every maximal independent subset of I U C
would contain ei, but then ei would be contained in

For any matroid M =(E, F) and any Eo C E, let no cirruit in I U C. Therefore VI U 0) - e, contans a
F. consist of sets heF such that I C Eo. Then Ml -E base of M;: this ba' e contains neither e, nor es. Thus

-(Ee, F0 ), obviously a matroid. is called a submatroid the theorem is proved.
of M (obtained from Ml by deleting the elements of "Replacing an element ei in a matroid M by a set
E."-E-Eo). The rank of .4subset of E is the same in Er {el. . . ... ef of new elements in series" yields
Al E.as inMA. a matroid Vif" . The circuits of 01-. 1 and the ele.

For any matroid M= (E, F) and any Eo C E, let J be ments of MPI-A1 are identical with those of M except that

any maximal subset of lo E - Eo which is a member ri is replaced by the members of El. Each base 8 of
of F.,. In other words, let J be any base of submatroid Ml which contains ei corresponds to a base 0B - ei) U EJ

M -Ee. Let Fo consist of sets leF such that I cr F. of A" ~. Each base B of Alwhich does not contain e,
and such that J U IiJ. It follows easily from the corespnd to k. bae ofni pro ~of thatAe * fi is a '
definition of matroid that M xE.(E,,o F.) is a unique -el- i= 'I.....W mtpofta "~i

matrid~caled he ontactin o Alto . (btaned matroid, which is not difficult using the description of
from Ml by contracting the elements of to). Where tebss
r and ro denote the rank functions for matriods Ml and For any transversal matroid M., containing element
M X E0, respectively, we have for every A C Eo, el the matroid N!" " i's also transversal.

Let M.l be represelited by a bipartite graph G
r,AA) =- iA U A'O) -. ? EO). =(;(, Q) as described in section 1. a base of M.,,

consists of the end points in E of a maximum cardi-
Theorem ld follows, immediately fromn theorem Ic 11abty matching in G. By thinking of bases, it is easy

by letting the Mi of le tfor i=) I. . .... ký [, the to. see that we obtain from G a similar representation
matroid obtaned from matroid Mf of Id by contract(,1i Glii for anatroid M!#"' as follows. Replace node
ing the elements of J, and then deleting all the other eist of G by the set Et, of new nodes. Join each
elements of E - E'. e4 eIVý to the same nodes in Q ito which ei was joined.

To prove 2d from 2c, we obtain each Mi6 of 2c from Also add to Q a set Q' of k - I new nodes, each joined
Ml of 2d in the same way as above. if, for some i, to precisely the members of Ek. We then have VIA..
OE' U A) < OAE) then no base of M is contained in A base of matroid At.,' consists of the endpoints in
V' U Js and so there is no family of bases It as described (E - ri) U El of a maximum cardinality matching in
in 2d. In this case the inequality in 2d does not hold G`~ "'.
where A is the empty set. Otherw ise, r(E' U jiOU - iE) Clearly, if A C E for matching matroids MG1 . A and
for each i. In this case, if J1' is a base of Mi., then Mtv., A. then Af(r.. is the submstroid of Mi1,. & whose set
Ji U P' is a base of Al. Thus, in this case, 2d follows of elemenits i% 4, Clear-ly, any submatroid of a trans.
from kc. versal matroid 0, transversal.

152



Every matching matroid is a transuersal ia,;rud. For any graph G, whose node set •p V, te •af C k
(Thus, the two clasAes of matroids are abstractly the defined in t*) is the set of isolated elements in matroid
same.) V(;, r. Denoting the set of nodes in 01 by El. theorem

In view of diP, preceding observations on sub- 1*) says that each maximum matching meets all but
matroids. it suff.,cs to show that where G is anv graph possibly ine node in Et: thus, set Ei is in series in
and where V is all of its nodes, Mc. i, is a transversal matroid I116, V. By "contracting" the subgraphs 0i to
matroid. Clearly, B is a base in matroid , if and single nodes a, comprising a set E, and then by delet-
only if B is the set of endpoints of some maximum ing J-Q and all edges which do not meet an ej, we
(cardinality) matching L in G. obtain from G a bipartite graph G(E, Q).

Section 6of [71 implies the following theorem (which Let M, be the transversal matroid, with set E of
essentially strengthens some other known theorems, elements, associated with GQE, Q). It follows easily
a characterization by Tutte of graphs in which no from theorem (*) that matroid MG,, V is obtained from
matching meets all the nodes, and a formula by Berge matroid X,. by replacing each el by the set E1 in series
for what we regard here as the rank of .I;,). and by adding set J of isolated elements.

(*) From any gruph G. by deleting the set J of nodes The structure of transversal matroids and some
*hich meet every maximum Irardinality) matching other related matroids will be further described in a
and deleting all the edges whi'h tneet J. the rernainder later paper.
consists of connected components, (4. containing re-
spectively 2qt + 1 nodes where r, is an integer. (G
is bipartite, each 0 is a single -node.) Let Q cnsist 7. Rbferoncm
of the nodes u in J which in C tire joined to at letst
one node in U 01. Every maximurn matching in G III Edmonds. J., Minimum Partition of a Matroid into Independent
contains r, edges in Oi, for each 1. and contains an Subsets. J. Res. NBS 69B (Math. and Math. Phys.). No,.
edge joining u to a node in U 0, for each ueQ. I and 2.67-72 (1965).

121 Edmond,. J., On Lehman'% Switching Came and a Theorem ofWhat is Actually proved in 171 is theorem ( where Tulle and Nash.Williams. J. Res. NBS 69B (Math. and Math.
"Every" is replaced by "Some" in the last sentence. PhYs.). Nov,. I and 2. 73-77 (1965).
However, because each 0, has an odd number of nodes, 131 Ford, L.. R., Jr.. and D. R. Fulkerson. Flows in Notworks (Prince-
because every edge leaving an 0, goes to a ufQ, and ton University Press, Princeton, NJ.. 1M2).
because each edge has two ends, it is easy to see that IV, Transaeal of Subseta, Can..
any matching which is not as described in thc theorem 151 Tutte, W. T.. On the Problem of Decompooing a Graph into n
meets fewer nodes in U 0,. Hent.e, it has smaller Connected Factors. J. Londin Math. Soc., 36.221-230(1961).
cardinality than the matching, described in the theo. [61 Tutte. W. T.. Lectures on Matroids. J. Res. NBS 69B (Math.

and Math. Phvs.) Nol. 1 and 2. 1-47 (1965).
rem, which is proved in [71 to exist. (71 Edmonds. J.. Paths. Trees and flowers. Can. J. Math., 17, No. 3.(Unless some matching in G meets every nfdf , there 449-467 (I%5).

are more 01's than there are u's. The theorem of
Tulle says that a graph contains no matching that
meets all of the nodes if and onl.% if therte exu.its a -.u.-
set Q of the nodes such that deleting Q .all it] inci.
dent edges from G leaves mnore than i Q! co(mponents
which have odd numbers ,(f nodes.) (Paper 69B3-145)

Note added in proof: Theorem I. the subject of Ill.
generalized here. was proved for the case where the
matroid is a set of vectors in a vector space by Alfred
Horn '1A characterization of unions of linearly inde-
pendent sets. J. London Math. Soc. 30 (1955). 494-
49A1 and hy .4. Rado [A combinatorial theorem on
vector spatem. J. l.ondon Math. Soc. 37. (1962). 351-
353J. In the Abstracts of Short Communications.
International (.sngre,, of Mathematicians. Stockholm
1962. p. 47. Rad. rpmarks that "This theorem is of
interest ,ui ce in contrast to other propositions on
vector spaces it% prooif has not yet been extended to
abstract independence relations I (P. Whitney, Amer.
J. Math. 1935. R. Rado. Canadian J. Math. 1949). It
remains to decide if it) the theorem is true for all I,
or Iii) its validity constitutes a new necessary condi.
tion for representability of I in a vector space."
Theorem I coinfirms Wii.
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ON THE RELATION BETWEEN INTEGER AND NONINTEO2RR
SOLUTIONS TO LINEAR PROGRAMSS

By IL E. Gouonr

vow" J5. WAllWX sum=KUC cap"& TOIWNw EMGMiM "awosx

Cdummmsk.A by Rt. Cowma, Dkwv M, 1N4

We will refer to the ordivary linear propamming problem

p'auimisie 81 - (1
A: b,: x; 0

as poblun Pl. In ()b isan integer n-vector, cis an w +avoctor andA isan
a X (m +%) integer matrix. x isan =e + x vertor all of whaoo mpometa we
requrnd to be nosneptime We anmme that A iso( Onetfwr(At,1) withI an
a X a identity matrix, sothat in (1) As: b is equivalent to the m imequalitin im a
varebM A x':gk b We will ey tht: isfessebleif it ubtii.theeqwmlity an n-
negivity muadtioou of (1) and optima if it als nmauiia

A g iablem c loemly rebted to PI is the integer pnmnraming problem P2 w"i cb i
Pi with the adde condition that the components of: be int"Pua Beanu" of the
somparative anm with which PI is olved' Imid the comparative diffiulty of P2,% I
it is nswWto cmncrgstaing ftmithe vtolumof P1to dw ackiou toP2 by
soma awt als "rxwadiWg' pro mm through which the nouintqW cosmpouss~au dos h
ma ,iag PI an runed"mup ordoveto puduewa sekdo to P2 Thhm



VoL 53, 1965 MATHEMATICS: R. R. GOMORY 261

procedure seems particularly plausible when the components z, of z are reasonably
large numbers. However, it is easily shown by examples that a nearest-neighbor
rounding process cannot generally produce the optimal solution to P2. These
examples are neither pathological nor uncommon; it is simply not the cas that the
optimal solution can be obtained by simple rounding to some vector z' with xz', -
zil < 1, even if the rounding is followed by some sort of optimization on the residual
problem and even if the b and z of (1) become arbitrarily large.

Nevertheless, there is a close connection between the optimal solutions to PI and
P2 for a wide range of right-hand sides b. We first give some theorems on this
connection and then an algorithm which for these b obtains the optimal solution of
P2 from the optimal solution to F1I.

If B is a basis, i.e., an m X m nonsi,,gular submatrix of A, we will assume that A
has been rearranged and partitioned into matrices B and N with A - (BN).
We will also partition z - (zp, zN) and c - (Cs, cv). The columns of A will be
referred to as at, B - (a,, ... , a.). We confine ourselves to right-hand side
vectors b in that part of m-space for which (1) is solvable. If B is the optimal basis
for PI with right-hand side b, then it is also the optimal basis for all b' such that
B-1b' > 0. These b form a cone in m-space, and in fact all solvable n-space is
partitioned into such cones K'. On removing from K1 all points within a distance
d of its boundary, we have the reduced cone KO(d). With this notation we can
now state Theorem I.

Tluoaui 1. LetI - max llat!, i - m + 1, ... ,m + n , D - Odet B1,Midsd(b)
be tAe ,iulue of the weution to P1. The if b*KI(I(D - 1)), the valuae a(b) of Me
.owluti to PS is gven by

h(b) - s,(b) + v,(b), (2)

and an o~tq*. solution pclor to ram by

:(b) - (z,(b), z,,(b)) - (B-'(b - Nyg(b)), ys(b)), (3)

where both Ase saoa Jufiious ,(b) and the w..edwfJunction y,.(b) we. xipio i.e.,
v'(b + aJ - v8(b), i - 1, ... , ,nd y(b + at) - V'(b),.i - 1, .. ,,n.

The periodicity means that the values of 0(b) anid (b) depend only on the
positio of b relative to the lattice £t of points generated by integer combinations of
*I, ... , aw This is equivalent to mying that #' is r functionon the faor
module M(I)!M(B) where M(1) is the module of .l integer points in a-qac and
M(8) the moidue of integr oombinatios of the e,, i - II, . IM.

Althmigh (2) and M3) have just the form oue would expect i• rounding we
possble, the iutegr solution :(b) is generally not a wcrtiMation of a rounded
neart-neighbor solution. It is intead a continuation from a point p - b -
Ny*(b) which 4 on to. A mumin of the distwane from p to b is ivon by Theorom
2.

1 s 2. IIf b&C(l(D - 1)), " do op" neoi ies(b) Am•

4om4i,1 *i

We net dsu Lb, arithmetic work involvad in atually obtaining 0'(b) and
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y2(b). The calculation inay be broken into two parts, of which the first is a
standard calculation.

The factor module M(I)/M(B) is a finite additive group having D elements.
By the methods of references 4 or 5 we calculate M(I)/M(D) as the direct sum of
cyclic groups of known orders. The arithmetic work involved is bounded by
2m(ms + 2m)log2D. Or, alternatively, given B-1 as a starting point, the standard
form of M(1)/M(B) can be obtained in at most 2r(rn' + 2m)iog&D arithmetic
steps, where r < m is the rank of M(I)/M(B). If the factor group is cyclic, r is 1.

This calculation also provides explicitly a means of mapping integer m-vectors
onto corresponding elements of M(f)/M(B). If we call this mappingf, then k - fp
can be obtained for any integer m-vector p by at most ml + 2m arithmetic steps.

Since both pl(b) and y8(b) are m-periodic, one can obtain, by periodicity, values
0'(b) and y8(b) for all b if they are known for one period.

TmORzM 3. There are D distinct b values in one period. If M(1)/M(B) has been
put in sta-Mnard form and the group elements a, = fal obtained for i = m + 1, ... ,
m + n, then the values of rps(b) can be computed for all b in one period in less than 7nD
elementary arithmetic steps. The values of yO(b) for a particular b can be computed in
n more steps or the values for all b in one period in nD more steps.

The arithmetic steps referred to here are operations such as the addition and sub-
traction of real numbers, comparison of real numbers, or the addition and sub-
traction of elements of M(I)/M(B). We now turn to the proofs of these theorems.

In reference 2 it was pointed out that M(I)/M(B) is isomorphic to the group P
generated by the rows of the matrix B-1A with the entries being replaced by the
corresponding entries modulo 1. These "fractional rows" then provided the basic
inequalities for the methods of reference 2 and, in a less evident way, for reference 3.
As was remarked in reference 2, similar reasoning shows that M(I)/M(B) is also
isomorphic to the group generated by the columns of B-1A with coefficients being
treated the same way, i.e., reduced to proper fractions. As B-1A is the simplex
tableau provided by the simplex method in solving (1), each column has associated
with it a relative cost factor. This representation suggests the following problem
involving maximization over M(I)/M(B).

max C~,Y
d-i

at+ = m , ys >_ 0 and integer. (4)
I-i

Here al and 5 are the elements of M(I)/M(B) corresponding to the vectors a, and b,
and c*, is the relative cost c*g - c, - cmB-1&,.

It is a fundamental property of linear programming that all c* associated with an
optimal basis are <0; so the maximum in (4) does exist for optimal bases (though
not for other bases).

Since the a&,M(I),/M(B), a group with D elements, Dal - 6; so for a minimal
solution to (4) it is only necessary to consider yj satisfying 0 _< y, < D. We will
indicate later how (4) can, in fact, be solved for all 5 in a total of 7nD elementary
steps.

If b is in integer m-vector, define p(b) as the value of the solution of (4) with b
fb. This is the ips of Theorem 1.
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One of the properties of v is immediate. Clearly, v (b + at) - f(b), i 1, ., m.
Also 4 (b) + c&B-1b >_ (b). For ;f (x',, x',N) isa feasible irtegpr solution to (1),

then the corresponding cost c(z',, x'N) = cpz'.- + cNz'%v can be expressed in terms
of the z'N only by using the relation

BX'S + NX'N - b, (5)

which yields

c(z'a, x,) = cB-'b + (cN - r•B-1Nz'j,.

JB-$b is si(b), so

C(z' , T crl = z1(b) + c *,z't. (6)

Applying the homomorphism f to (5), B disappears and we get

i - -a 4

so X', is a feasible solution r (4). Hcne

t-ww4-iSCog', :5 -r(b);

so from (0), c( ',, Z'N) _ :,((b) + p(b), and since this holds for all such (z',, z'N),

z,(b) • z1(b) + p'(b). (7)

Now 'et us conmider the y that solves (4). For this y

C j*+•t yj -(b).
i-a

We extend this to a solution to (5) by cboosing xs - B-'(b - Ny). Since y
solves (4), (b - IVNy)eks, so z, will be integral. If zX is also nonnegative, (xa, y)
solves (1) and, in fact, is the optimal integer solution since its cost, by (6), isz1 ,) +
f(b), which, by (7), establishes optimality.

To establish conditions for the nonnegativity of xs we need the following lemma.
LErMA. ThAM is8aC optimal sotution to (4) With

yj :5 _D - 1.i-.

Proof: If the yj are the components of that optimal solution having Ey, minimal,
form any sequence of the a+,. in which each a+,. appears exactly y, times. Then
form the partial sum S, of the first p elements of the sequence. We include . -6.

If the sequence has more than D - 1 elements, there are more than D S,; so there
must be a p and p', p < p' for which S, - S,. The elements, between p and p' in the
seqaence total 6 and can be deleted. The remaining elements form a new solution
which contradicts either optimality or minimal total Eyz.

A related argument can be used to prove the following which, though not used in
the proofs of Theorems 1, 2, or 3, bear on the multiplicity of solutions to integer
propa•ma
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"Tn ,oRs 4. If (y, + 1) > D -1 , then4 Wu& to (4) it not uique.

Returning to the proof, it follows from the lemma that IN•U -< (D - 1)1. Hence,
if b@K'(L(D - 1)), b - Ny will be in K and so za will be nonneptive. This
estabishes Theorem 1.

Theorem 2 now follows at once from the lemma.
To establish Theorem 3, we now turn to the actual computation of y. Guided by

dynamic programming,l we define V,(A), kV(I)/M(B) as the solution to

1-4

max E C*d+Mt
f-1

1-6

We have recursively
V a(0) = ma I •. m ,. + C*,+., ,:).(S

Let us assume that V,-j(P) is known for all AM(I)/M(B). Then we can compute
recursively, starting with V,(6) =f 0,

,(a..) =max 1€.(o) + C*,+..-,(a+)

qp(rao•,) - m ax &8(a +, - •+M) + C*,+" , fP,-1(ra ,+ ,) I, r --'D• .. - 1.

If a. in of order D, we will obtain all values €0(A). If a. is of some order d which
divides D, then da, - 6, and after d steps we return to j. One then chocw3e eome
not yet reached in the calculation (the standard form of the group is needei here),
and setting v'.(f) - , computes v',(A + ra,+.) - max Ip',(o + r,%.+. -
a,.+.) + c*.+., p.(p + ra.+,)I r - 1, ... , d. After d steps, da.+. - 6, so we ob-
tain a new value for '.(k) and then continue obtaining new values for p',(, + ra,+..)
the second time around. As soon as one of these Pew values agres hith the old, the
calculation is stopped. It is not hsrd to sho- that" (i) th" calctation will stop

after q steps d :5 q < 2d; (it) the V',(A + raT.+.) values are the correct values
¢,(jp + ra,+.). This procedure is repeated for Dbd starting points A to get values
p.(d) for all p.M(I)/M(B).

If M _< min c*,, we can start with ve(,) = M for all A. Then repeating the
i

calculation leads to the calculation of v.(A) for all A in at most 2nD elementary
recursions each involving adding two group elerments, looking up two values, adding

two real numbers, and making one compare. To obtain the optimal solution with
the smallest Ey,, one simply records with each .,(6). when computed, the total

i
T,(A) - Ey, of the y, of that solution. Clearly, T,(k) - T,_.(f, if 1h3 seoood .err-

gives the maximum in (8) and T.(k) - T,(k - a4,.) + 1, otherwise. In case of a tie
in the maximum in (8), the term yielding the smaller T•.() value should be chosen.

The solutions y, are obtained by tracing back the recursion in the usual manner of
dynamic programming. By proper recording, backtracking can be done even if the
€.-- values are discarded, once the V, are known. These backtracking operations
are virtually identical with those used in solving the knapsack problem,' and, in fact,
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work done with P. C. Gilmore on knapsack problems strongly suggested the results
of this paper.

Finally, we note that the following steps, (i) solve PI obtaining the opitmal B,
(it) put M(I)/M(B) into standard form and identify the at, (ii,) solve (4) obtaining
y, (iv) compute zx - B-I(b - Ny), will yield an optimal solution (za, y) if zx > 0.
It is not necessary for b to be in Ks(l(D - 1)) to apply the pro(Aure. The prob-
lema for which the procedure provides a solution are those for which those in-
equalities binding the solution of PI alone determine the solution to P2.

'lThis work was supported in part by the Office of Naval Research under contract Nou 3775-
(00), NR 047040.

'Dantaig, George B., Linear Pregramming and RzIenaions (Princeton, N. J.: Princeton Uni-
venity Pram, 1963).

'Gomory, R. E., "An algorithm for integer solutions to linear proa•m," Rmast Adm,,.. in
Maatheml Programmmq, ed. R. L. Graven and Philip Wolfe (McGraw.Hill, 1963), pp. 209-2.

* Gomory, R. E., "All-integer integer programming algorithm," InduW iv &•t lisg, ed. J. F.
Muth and G. L. Thompson (Prentice-Hall, 1963), pp. 193-206.

' Zassenhaus, Hans, The Theory of Groups (New York: Chelsea Pu'Iishing Co., 1940).
' van der Waerden, B. L., Modern Akebra (New York: Frederick Unger Publiehing Co., 1950),

vol. 2.
*Bellman, R., Dynamic Progrmming (Princeton, N. J.: Princeton Univerity Pres, 1957).
' Gilmore, P. C., and R. E. Gomory, "Multi4tage cutting stock problems of two and more

dimensions," to appear in Operatios Rae.
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FACES OF AN INTEGER POLYHEDRON*

By R. E. GOMORY

THOMAS J. WATSON RESE1ARCH CENTER, YORKTOWN HEIGHTS, NEW YORK

Communicated by R. Courant, November 1, 1966

In reference 5 a connection was given between the integer and noninteger solu-
tions to the linear programing problem

maximize z = cx (1)
Ax = b, x > 0.

In (1) x is an m + n vector, b is an integer m-vector, c an m + n vector, and A an
m X (m + n) integer matrix containing an m X m identity matrix. A is assumed
to be rearranged and partitioned into an m X m optimal basis matrix B for the
noninteger problem and a collection of nonbasic columns forming the matrix N
with A = (B,N). An alternative form of (1) that is useful here for geometric inter-
pretation is to revert to inequalities, writing A as (A', I). Then (1) becomes

maximize z - c'x' (la)

A'x' 5 b

where z' and c' are n-vectors.
Under suitable conditions, given in reference 5, the integer solution to (1) could

be obtained from the noninteger one by solving the optimization problem
'-3max E 't
i--I

subject to the conditions

g git, - go (2)
i- I

where the tf are required to be nonnegative integers. The c¢ (which are not im-
portant here) are the relative cost coefficients associated with the columns of N, and
gt is the element of the factor module g - M(I)/M(B) corresponding to the ith
column of N. Here M(1) is the module of all integer m-vectors, and M(B) the
module generated over the integers by the columns of B.

The connection between integer and noninteger solutions established by (2)
held only under certain conditions. One way to develop this approach into a
general integer programing algorithm would be to develop from (2) new inequalities
or "cutting planes" for a method similar to that of reference 6. The geometrical
interpretation of the solutions to (2) suggests that this is possible and this approach
is outlined here.

To see thib, consider the cone P' in the spaoe of the variables z' of (1a) formed by
using only the inequalities corresponding to the nonbasic variables or equivalently,
P' is the cone obtained if in (ha) the nonnegativity condition for the basic variables
is dropped. Within P' is the polyhedron P' which is the convex hull of the integer
points of P'. P' is an interesting object of study in itself. In addition, its faces

16
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clearly provide the strongest inequalities or cutting plane for the general integer
program-ng problem that can be deduced locally, i.e., without using the nonlocal
information available from the nonnegativity condition on the basic variables

Since the variables t of (2) determine a corresponding z satisfying the equations
of (1) byt--..x - (B- 1(b - Nt),t) and hence also determine the z' of (la), mequalitie,
on the t, yield inequalities on the z', and in this sense one can talk about an in-
equality on the t, being a face of P'.

Faces to P' can be characterized by the following easily proved theorem which
allows their computation by linear programing.

Tmlomm 1. The inequality Z7rt 4 > ro is a face of P' if and only sf th s, are a
basic feasible solution of he system of inequalities,

,rT > To (3)

made up from allvectors T = (t,, ... , Qsafying the equatio of (9).
A number of remarks can be made about the feasibility of this computation.
First: Although there are an infinity of T satisfying (2) and hence an infinity of

inequalities, it is easy to reduce this to a finite number by considering only the ir-
reducible T, i.e., those T not containing as a vector T' - (it, ... , t) for which
Ztlgj - 0. Or alternatively one can work only with those T that satisfy (2) for
some nonnegative Ci.

Second: The trivial faces of P', those that are simply faces of the original prob-
lem (1), can be discarded by choosing ro # 0.

Third: The multiplicity of rows in (3) can be dealt with by a row-generating
method similar to the methods of references 1, 3, 4, and 7. Because of this, an n X n
basis matrix is the most that is required at any time. The needed row at each
simplex step can be generated (at worst) by solving a problem approximately
equivalent to (2), essentially a shortest path problem over the group G.

Fourth: There is a simple way of getting a first feasible solution to (3), and hence
a face of P", by solving a single problem like (2) with an additional side calculation
that leas than doubles the work. (For an estimate of the work involved in solving
(2), see ref. 5.) This calculation will not be described here.

Fifth: Duplication, i.e., many columns of N mapping into the some group ele-
ment, can easily be taken care of and simply reduces the size of the problem to be
dealt with.

In addition to providing a method of computing faces of P' by linear program-
ing, equations (3) lead to the proof of the following theorems which involve con-
sidering the tree of shortest paths over the group G.

Let g9, .. ., g. be the group elements corresponding to the columns of N. Choose
from among the g, a basis (we can assume it is •1 , . .. , g,) so that G - g, ( g, ()
... e g,, the direct sum. The remaining g, and the element go corresponding to b

imp
can then be represented as p-vectors with respect to this basis; so g9 -,.1,

and the following theorem, whose proof is not given here, holds.
Tnuoama2. Iffor some basisg,. .. ,g,, the repae, ation of go, go -Z.,goha

a componew 8 for which
io., > max, > , VA.,,

then dhe r, given by
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ire -i To,,,l 1, r - Ykk > p, and ir"k 0
o~risos Oi a face of P'.

The condition of the ti '3rn s always met whenever, for some component 8,
ye., is exactly one less than the order of g.. In particular, we have the corollary.

CoRoLLARY. If g is the direct sum of cyclic groups of order 9, taen any basis of g
sati esthe conditions of Theorem 2.

It is easily shown that all A consisting of columns with at most two nonzero en-
tries that are restricted to be 1, or -1, yield groups G that are direct sums of
cyclic groups of order 2. This connects with the work of Edmonds.'

In the next theorem we refer directly to the shortest path tree. In a graph, if
any unambiguous method of breaking ties among paths is used so that there is a
unique shortest path between two points, the shortest paths from one point to all the
others will form a spanning tree. However, different tie-breaking methods produce
different trees. If the elements of g are taken as nodes of a graph, and if the g,, i
- 1, ... , n, are taken as directed arcs connecting each g' to the point g' + gi, we
have a graph and hence for any choice of r•, i - 1, ... , n, a shortest path tree.

In what follows, b' denotes a right-hand side in (1) and g' is the group element fb'
under the natural mappingf which sends M(I) onto G. We can now state Theorem
3.

THmoama 3. If R is a shortest path tree for the r i forming a face of P', and if g'
-fb' is separated from " in R by go, then the ri are also a face for the polyhedron P'
masking from the right-hand side b'.

The re' corresponding to b' can be obtained by adding the tree distance from go
to P' to the original ro.

Finally we state a theorem that allows the computation of faces on a once-and-
for-all basis, independent of the particular columns present in the matrix M.

Let the faces F, be all faces of the higher-diniensional integer polyhedron P* ob-
tained from (2) by letting the index i in (2) range over all group elements.

Fj - (iro., rjisj, ... rDIj.(4)

Tnmuoju 4. The faces F/, obtained by deleting from (4) all ir, whose corresponding
group element is not a column of N, include all faces of the original polyhedron P'.

* This work was supported in part by the Offioe of Naval Research under contract Nonr 3775-
(00), NR 047040.

Dantsig, G. B., and P. Wolfe, "Decomposition principle for linear programs," Operation. Res.,
8,101-111 (1960).

2 Edmonds, J., "Maximum matching and a polyhedron with 0, 1-vertices," J. Res. Natl. Bur.
Sid., B, 693, 125-130 (1965).

Ford, L. R., Jr., and D. R. Fulkeruon, "A suggested computation for maximal multi-commod-
ity network flows," Magment Si., 5, 97-101 (1968).

' Gilmore, P. C., and R. E. Gomory, "A liner programing approach to the cutting-stock
problem," OpWopts Res., 9, 849-M5 (1961).

"Gomory, Rt. E., '"n the relation between intqer and nonintger solutions to linear pro-
grams," thes Pnocumtnmas, 5, 260-265 (1965).
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Madhematiad Programm*, ed. Robert L. Graves and Philip Wolfe (New York: McGraw-Hill,
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ON COMPLEMENTARY PIVOT THEORY

by

C. E. Lemke

INTRODUCTION

These notes constitute, in the main, an exposition of the

results contained in References [ 4 1an.i [ 5 ], and further,

incorporate some thoughts of the author and resu'ts of others

which have accrued since. Ai, effort is made to make the present-

ation simple and instructive, to stress the reliance on and

relation to well-known procedures of linear programming, and

to emphasize the unifying and generalizing aspects of the results.

We are concerned with the existence and computation of

solutions to the following system of constraints:

(1) w - q + Mz;

(2) w > 0; z "' 0;

(3) w'z - 0 (_ w 1zl + w2z2 + .. + nZn);

for various given square matrices of order n, and column q.

Prime denotes matric transposition. The above problem involves

2n variables, restricted to be non-negative. (wi, zi) is a

complementary pair; and wi and zi are complements of one

another. A feasible solution for which at least one of each

pair is equal to zero (that is, w1 zi w 0, for each i; which is

equivalent to (3) ) is a desired complementary solution. We

shall, following Cottle and Dantzig (Ref,[2 ]), refer to the

problem of finding solutions to this system as the "Fundamental

Problem".

The form is fairly general in the sense that many problems
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may be so posed. Outstanding examples are (as shown in the

appendices) the problem of solving t*e convex quadratic pro-

gramming problem (which includes the linear programming prob- 5
lem), and the problem of finding a Nash equilibrium point for

bimatrix games. The results of Section B encompass the

construction and proof of solution for these and other prob-

I lem. The computational schemes are 'complementary pivot

schemes', which consist of a sequence of pivots starting from

system (1), or from that system augmented by a single additional

variable. This extends the use of such schemes.

A. PRELIMINARIES.

In this section we develop concisely the well-known

essentials of pivotal schemes in a form most useful to the

development in Section B, where the schemes and proofs are

given.

One is basically concerned with a system of m linear

equations in a+n unknowns:

(4) w - q + Az; (- q + zIA1 + z 2 A2 + ... +znan)

where A has order m by n. Bars above variables denote

explicit values of the variables. A set of m+n values

(w, I) ts a solution If and only if it satisfies (4): - q + * .

A solution is feasible if and only if it is non-negative:

(5) w> 0; and z > 0.

L denotes the set of solutions; K the set of feasible solutions.

K may be empty. Geometrically, L is a linear manifold of

dimension n in (m+n)-space. K Is a convex polyhedron (an

intersection of half-spaces). Throughout, geometric descrip-

tions are not necessary to understanding, and may be ignored.
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In. (4), L is described by giving the right-side

(independent) variables values and computing the left-side

(dependent) variable values. We are interested in alternative

descriptions ofý L having the same form and obtained from (4).

A denotes the jth column of A; Atij denotes

the component in row I and column J of A. Suppose that

(6) Asr J4 o0

We may then perform a pivot on the form (4) which consists of:

(i) solving the sth equation of (4. for the variable zr (which

involves a division by As~r; called the pivot), and

(ii) replacing zr by the result in each of the remaining

m-1 equations of (6).

The result of the pivot is again a form like (4),

giving an equivalent description of L. The left-hand set

of m variables differs from the previous left-hand set in

one component; the pair (ws, z r) have been exchanged; and

.specif g t' pair (called the pivot pair ) completely

specifies the pivot.

We may then perform a pivot on the result; and continue

in a sequence of pivots. A pivotal scheme on (4) consists

of a sequence of pivots together with criteria for (a) deciding

the pivot pair on each pivot and (b) deciding when to termin-

ate the pivoting.

A Sequence of pivots leads to an equivalent debcription

of L given by the resulting form:

Atztqt t t t ttt!)

(7) w t q + Az ; ( * q zA + z 2 At t ''...+ ZtA I
1 1 2 "in rl

so that (t, z t) is always some permutation of the vs.riables

(w, z). We now accumulate the relevant definitions and facts.



-4-

A basic set is a set, call it wt, of m of the n+m variablestI(•, z) such that w may be obtained from (4) in the form (7)

(and by a sequence of pivots). The corresponding set zt of

the remaining n variables is the associated non-basic set.

Given the basic set wt, the form (7) is unique, except for
the

permuting the equationb and/or the terms of/tight-most, ex-
t

panded expression for w . (7) is called a basic form.

if one has:

(8) Ar,s w 0

then a pivot on (7) defined by the pivot pair (wts, zr) yields
_ _ _r

a new basic form called adjacent to (7). Conversely, two

basic forms are adjacent if and only if their basic sets

differ by only ork, variable, (hence may be obtained, one

from the other, by a single pivot). It follows that a basic

form (71 has as many adjacent basic forms as there are

non-z :o components in At. Two basic sets are adjacent if

th- ir corresponding basic forms are adjacent, (the equivalence

of basic forms by permuting equations or non-basic variables

is always assumed).

Referring to (7), the unique point: (W , _t) = (q t, 0),

oXtaired from (7) by setting all non-basic variables zt to

zero is called the associated basic point.

_t
A basic poiiit has at least n zeros (since t = 0).

L is non-degenerate if and only if any solution (, 7) has

at most n of the m+n values wi, Z equal to 0. Alternatively

and equivalently, L is non-degenerate if and only if every

basic point has exactly n zero valucs (exactly m non-zero
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values). We assume throughout that L is non-degenerate.

We shall however always make note of any effects of non-de-

generacy. An immediate effect is the following:

A solution has exactly n zero components if and

only if it is a basic solution; hence corresponding to each

basic set is one and only one basic solution; and each

basic solution corresponds to one and only one basic set.

Hence, in each basic form (7) qt has no zero components.

Two basic solutions are adjacent if their basic

sets are adjacent.

Referring to (7), for fixed j all solutions satisfying:

(9) wt = qt + ztAt
3 J

will be called a basic line; obtained from (7) by taking
t

all non-basic variables except z. equal to zero. Points3

on a basic line have either n or n-l zero components

(m or m+l non-zero components). If in (9) some value of z.
Jt

makes a component of J zero, the corresponding solution

has exactly n zero components; hence is a basic solution

and in fact an adjacent solution to the basic solution

t -it(Wt, t)= (qt, 0), corresponding to (7). Hence, all

adjacent solutions lie on basic lines. With reference to (9)

for future reference let us (i) let e. be a column whose

jth component is '1'; whose other components are 0; (ii) write

(9) as: ztt
(10) t +0 ej

and re-permute variables to their original order. (10) becomeS

I(v4 ()
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where (_w, 7) is still the basic solution corresponding to I
(7). In order that this satisfy (4) for all 0: 3
(12) u

and (T, 7) has at least n-i zero values.

Our next remarks refer to feasibility and the set K. I
A feasible basic form is a basic form whose basic point is

feasible, called a basic feasible point. We indicate such a

form by: J
(13) w t = qt + Atzt; qt O.

A basic feasible point is an extreme point of K. A feasible

pivot is a pivot from one feasible basic form to another

feasible basic form. We point out that corresponding to
t

each non-basic variable z. at most one feasible pivot from

(13) is possible. Referring to (9), now restricting z to

non negative values, since qt > 0, z t may be increased

from 0 while retaining wt > 0. Either for the first

time, say for zt = t some component, say 7t becomes 0:i i s

in which case the corresponding point is an adjacent feasible basic

point, and a feasible pivot on (13), defioed by the pivot

pair (wt, zt) may be performed; or else solutions satisfy-, i

ing (9) are feasible for all z. 0; which is true if and

only if:

(14) At > 0.

.1 -

In the former case, solutions satisfying (9) for the interval

0 4 zt < are feasiblv, and form a bounded edge of K,

whose two end-points, defined by the end-values of the interval,

are called adjacent extreme points. In the latter case,
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all solutions satisfying (9) fo z are feasible and

form an unbounded edge of K. In particular, exactly n

edges of K meet in an extreme point; and each extreme point

has at most n adjacent extreme points -- each feasible basic

form has at most n adjacent feasible basic forms.

A feasible pivotal scheme consists of a sequence of

feasible pivots. In these notes we will be limited to feas-

ible pivotal schemes such that, given a feasible form (13),

a non-basic variable, say zt is first selected. The pivoting

terminates if Art' > 0; otherewise the pivot is uniquely

t
defined by zr. Geometrically, a feasible pivotal scheme

defines an adjacent-extreme-poitt path.

Finally, we define a proper pivotal scheme as one

for which no basic set appears twice. Since the number of

basic sets is finite, a proper pivotal scheme always termin-

ates.
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B. Complementary Pivot Schemes and Applications.

We now consider the Fundamental Problem, (1), (2), (3). 3
We consider three sbhemes which are essentially alike. Each

scheme consists, except for one or two initial pivots, of

feasible pivots. Schemes II and III aply directly to L.

Scheme I re'quires augmenting L by o:ne (pseudo) variable.

All schemes are proper schemes; hence terminate. Following

the description of each scheme; a class of problems for

which the scheme applies is defined; and proofs are given. I

L is now the set of solutions to (1); K is the

set of non-negative solutions. L is assumed to be non-

degenerate. A complementary solution; reoqniring wizi M 0

thus has at least n zero components; by non-degeneracy

at most n zero components; hence exactly n; and hence is

a basic feasible point. The number of complementary solutions

is thus finite. Let C denote the set of complementary

solutions.

Scheme I. Let z be a scalar variable; e> 0 denote

any column with positive components; and let L' denote

the set of solutions to:

(15) w- q + z0e + Mz - q + Az;

where A - (e, U); = (Zo). Non-basic sets thus have n+l

components.

Let K' be the set of feasible solutions of L'.

Let C denote the set oipoints of K' satisfying:
0

(16) w'z- 0 (that is, wizi 0; i - 1, 2, ... , n).
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We shall generate a proper feasible sequence whose basic

points satisfy (16).

Either q> 0, in which case the basic point of (15)

is already a complementary solution for LP and no pivots are

required; or else q has some negative componentp which we

assume to be the case.

On, the first pivot, z0  is increased until for the

first time; w - q + z0 e > 0; in which casc some wr be-

comes zero, The first pivot is defined by the pivot pair:

(17) (Wr, Z0 ).

This leads to the basic form:

(18) wt. qt + Atzt; qt >O,

for t - 1 The basic feasible point satisfies (16). Assoc-
complementary

iated with (18) is a non-basic/pai-; in the case t - 1
the pair (wr, z r). As zr the complement of wr is increased

in (18) (16) remains satisfied. If a pivot making zr basic

can be made; this pivot becomes the second pivot, and leads

to the feasible form (18), for t = 2. If the pivot cannot

be made, the sequence is terminated.

In general, suppose that t > I pivots have le)d to

the feasible form (18); and suppose that (16) was satisfied

for all basic feasible points generated. If z is non-basic

a complementary solution has been found; namely the final basic

point, and the sequence terminates. If z is still basic,

suppose that the variable that became non-basic on the tth

pivot was one of the complementary pair (ws, zs). Since

condition (16) prevailed, both components of this pair are
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non-basic. By counting, this is the only such pair -_ the

non-basic complementary pair associated with the current

basic form.

The complement of the one of the pair which just

became non-basic is to be increased. Either a unique

t+lst pivot is thus specified; or the sequence is terminated.

This completes a description of the scheme.

It remains to point out that the scheme generates

a proper scheme; that no basic set occurs twice.

First consider (18) for t = 1. w r has just become

1
non-basic. We may assume that wr is z (the first com-

1r0
ponent of zl). By examining the first pivot it is easy to

see that A (the first column of A1 ) has non-negative

components. Let us label as Eo the unbounded edge of

points of K' obtained for all non-negative values of wr

Since Tr - 0 All points of Eo are in Co; i.e., satisfy

(16).

Now for any t > 1 consider (18); where z remains

basic. Let (w , zs) be the associated non-basic complementa~y

pair. A feasible pivot from (18) to a feasible form satis-

fying (16) is only possible by increasing one or the other

of this pair. When (18) is not a terminal basic form (either

t - 1 or a final t) there are exactly two adjacent basic

forms satisfying (16).

Therefore there can be no first basic set that repeats,

for if a basic set repeats the immediately preceding basic set

must have repeated. Hence the scheme is proper.

Observe that the scheme may be carried out for any

M and q. Either the scheme terminates in a complementary

solution of L, or in an unbounded edge of points of C.•
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In the latter case, let us label that unbounded edge E. I
Let us observe that E cannot be Eo. The only access

to I Is by way of the basic point of basic form (18) for 3
t - 1; and this form does not repeat. If (an extreme case)

the sequence terminated with t = 1, then E must have been i

the set of points obtained from (18) by increatsing zr. In

any case E and E are distinct.

In general, if the sequence terminates in E, no

conclusions are possible. We now however is6late a class

of matrices M such that termination in E implies that

K is empty, for the given q.

Co-positive matrices are (square) mattices M such that:

(19) z > 0 implies that z'Mz > 0.

Co-positive-plus matrices are co-positive matrices such that:

(20) z > 0 and z'Mz - 0 imply that (M+M')z - 0.

The class of co-positive matrices include, most

importantly, positive-semi-definite matrices (z'Mz > 0; all z),

and non-negative matrices (M > 0; that is, all components

non-negative). There are also ways of compounding co-positive

matrices. For example, a non-negative linear combination of

co-positive matrices is co-positive.

The class of co-positive-plus matrices also includes

positive-semi-definite matrices, and the class of strictly

co-positive matrices (z > 0, and z # 0 imply z'Mz > 0):

which includes positive matricvs (M > 0). Again, co-positive-

plus matrices may be covpounded to form co-positive matrices.
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matrices are co-positive-plus. If M 1  and U2  are co-pos-

itive-plus, then so is uM, and, since anti-symmetric matrices

(MK -- M; or, equivalently, z'Mz - 0; all z) are positive-

semi-definite, as observed by Cottle (see Ref.[2] ), the

matrix )~l -A) is co-positive-plus, for any A.

In particular, to ascertain whether or not U is

co-positive-plus it is sufficient to test its symmetric part

P(&i+M'); since one is co-positive-plus if and only if the

other is. Thus a study of the class could be restricted to

the symmetric sub-class: co-positive symmetric matrices

for which: z > 0 and z'Mz - 0 imply that Miz - 0.

Let C denote the class of co-positive-plus matrices.

(The term 'co-positive-plus' and notation 'C+' were suggested

by Cottle.)

Theorem 1. Let M be in C4 . Then Scheme I terminates either

in a complementary solution of L or in the conclusion that

for the given q no feasible solution exists.

Proof: We will suppose that the Scheme terminated in the

unbounded set E contained in C0 , and show that then there

is no feasible solution. Let (18) designate the final basic

form. We are supposing that, for some r, all points of L sat-

isfying:

(21) w t aq z tAt for zt t O;-rr _r -0

wt-ere points satisfying (16); where At > 0.r --

By (10), (11), (12) 6 may be described as the set

(22) w -. ; z - T -U; z° z 0 "o,
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:for 0 > 0; where (C, V) is the basic feasible point

corresponding to the final basic form.

We draw the following conclusions: 3
a. Since B is assumed to exist; both Case 1: "U - 0

and Came 2: 7i - 0 cannot hold. We show that Case I

cannot hold and that Case 2 must hold.

b. For w, z, zo to satisfy (15) for all 0 > 0 requires: m

(23) 7- oe + "•. I
c. For w, z, zo to remain non-negative for all 0 > 0 I

requires:

(24) 1 > 0; V > 0; Z >- 0.

d. That w'z - 0 hold for all 0 > 0 requires (since

all terms in (22) are non-negative):

(25) TV - 7', - 7 7 = u1T - o.

If 1 - 0: (23), (24) imply that 1-0 e > 0.

By (25): I'T- 0 implies that 7- 0. Hence w z0 e

described E. But this is precisely the set E 0 Hence

"t , 0. For simplicity we normalize "u by: e'"U- 1.

We may write:

(26) z'w - z'Xz + z'(q + Z0 e) - 0.

e. Now suppose that N4 is co-positive. By (26):

(27) f(G) - -z'(q + z0 e) - z'Mz > 0;

where f(Q) is quadratic in 0. In order for (27) to

hold for all 0 > 0, requires that the coefficient of 02

be non-negative:
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S(28) -:Uo _ue) =-7% > 0;

41 which is possible only if "uo 0.

Thus f(O) is linear in 0, and for (27) to hold for

all 0 > 0 requires that the coefficient of 0 be non-negative:

(29) -'(q + 7o)e > 0; or: •'q ( -7o 4 0;

the latter inequality since we are assuming that z was

basic at the final basic form.

Summarizing, if M is co-positive, the assumption

of E implies a column u satisfying:

(30) C.i > 0; U > 0; '"Gq0; and 'I'u-C.

f. Finally, assume that M is co-positive-plus. Then M"u

V-I• < 0. Then for any z > 0 and w - q + Mz we have:

(31) "'w - Z'q + z'(MNt-)< O.

Hence w is not non-negative; that is, K is empty.

This completes the proof.

Scheme 11. For this scheme, we shall assume that M has a

positive column. We work directly with the Fundamental Problem.

We may assume that the first column of M is positive. Again

if q > 0, the initial basic solution is a complementary solution.

We assume that q has a negiative component. Then increasing

Z1 defines a unique first pivot defined by the pivot pair

(wr, ZI); for some r; leading to the basic form:

(32) w * q Mtzt. qt O

for t - 1. This has a basic feasible solution satisfying:
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(33) w'z - w1 z1  (i.e.; wz - 0 for i , 1)

Now let C1  be the set of points of K satisfying (33).

(Dantzig has called such points 'almost complementary' points).

Entirely analogous to Scheme I, Scheme II pivots

3o as to retain (33). This defines a proper sequence of

pivots. Since points obtained from (1) for zI large; 3
other zj kept at zero; are points of C1, increasing wr

in (32) (with t - 1) defines the initial unbounded edge Eo I
consisting of points of C . Again, associated with each

whose basii solution is not complementary !
basic form (32)/for t > ij is a non-basic complementary

pair, say (w., zs); one of which became non-basic on the

tth pivot, and the other of which is to be increased to define

a (t+l)st pivot if possible. If the pivot is not po.ssible,

another unbounded edge E of C1  is identified, and the

sequence of pivots terminates.

Hence, again, th3 sequence terminates either in a

complementary solutiun, or in the unbounded edge E; distinct

from E0 .

The case M > 0 furnishes an example of a class

for which both Schemes I and II terminate in a complementary

solution for any g, since M is in C+, and since there

is no question of feasibility. The proof that Scheme II

works is extremely simple:

Theorem 2. If M > 0, Scheme II terminates in a complementary

solution for any q.

Pfoof: We point out that the set C1 contains only the

unbounded edge E° and no other. Hence that the pivots cannot

terminate in an unbounded edge. Indeed, if
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(34) ='+ oV; z = + ; o 0 " 0

are points satisfying (33), and are feasible, so that:

V = MU; 7, 7 > 0; and • # 6! then V > O, since M > O.

For all i y 1, by (33): 0 = wi(-Zi + 0 Zi ); and since

W= + Vi > 0 for 0 0, we have: z. = u =0.

Hence, on the assumed unbounded edge (34) only z. is

different from zero; hence the edge is Eo. Hence, Scheme

II terminates in a complementary solution.

A slightly different situation arises in the case of

a bi-matrix game example, defined as an M of the form:

IA, °
(35) M= B, ; where A > 0; B>O.

In this case, M is co-positive, but is not in C since

for z ; where z / 0; it is true that z'Mz = 0, but

(M+M')z ((B (eA' ) 1 0.

Indeed, for q of the form: q = I ; where the ei
are positive columns, (1) may be written as two formats:

Az2 - eI = w ; Bz 1 + e 2 = w 2.

Then L is always feasible; but requires that w2 > 0 and

9z Y 0, so that w'z = 0 cannot be satisfied. Hence Scheme I
2~ 2 2

cannot terminate in a complementary solution in this case.

However, the case where q = -e (e > 0), of applica-

tion to bimatrix games, is an enample of a pair At, q for

which a complementary solution always exists. A first con-

structive proof of this was given in Ref.[4 ], where the

type of pivotal scheme consider in this section was first de-

viied. The scheme is almost the same as Scheme II. It re-

quires, as a major difference, two initial pivots to achieve

feasibility.
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We shall first describe the Scheme, and then prove

the associated theorem.

Schwpe III. In the case in point, L man be expressed in

the disjoint forms; u

I: u -e + Ay; u > 0; y > 0
(36) =I

II: v - -e + Bx; v > 0; x > 0

The complementary solution condition is: I

(37) u'x = O; and v'y = 0;

thus; (ui, xi) are complementary pairs; and (vi, y3 ) are.

Although the two positive e's have different order, no

confusion need arise. Scheme III consists of the following J
sequence:

first pivot: In I, increase yl to obtain I-feasibility;

that is, pivot on the pivot pair (ur, yl); r automatically

defined.

second pivot: having determined r on the first pivot; 1
in II increase xr (complement of ur) to obtain initial

II-feasibility. Let (vs, xr) be the pivot pair. )
Then, if s = 1 the resulting basic points satisfy

(37), and the pivoting terminates. If not, they continue.

Let CI denote the set of points of K satisfying:

(38) u'x + v'y = vY1y. satisfies (38)

In any case, the point • = where 7 and x

are the basic points of I and II respectively obtained by I

the first two pivots,

The scheme consists of alternating pivots on I and 1
II; always increasing the complement of the variable %hich, I
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on the immediately-previous pivot became non-basic. By1,,
this scheme pivoting is automatic, and all basic points

r z encountered are in C1 .

Theorem III Scheme III terminates in a complementary solution.

Proof: As in Theorem 2, we may show that an initial unbounded

edge E. contained in C1  is the only unbounded edge contained

in C1 .

Let KI denote the set of I'feasible points, and

similarly K11  f r II. Associated with each tiasic point

S= (..) ; z of K are the basic points M=u, f) of

K1  and (7, 1) of KI,, and during a pivot only one of these

latter points is changed. In particular, points on an unbounded

edge of K must be either of the form: (w, z) -. )

where (_v, 7) is a basic point of K and (u, y) lies

on an unbounded edge of K,; or else of the form

(w, z) = (1•)); where (u, 7) is a basic point of K I;

and (v, x) lies on an unbounded edge of K I. (This is true,,

since points on an unbounded edge of K have n or n-1

zero components.)

The unbounded edge E is identified as the set of0L
points z -(X) obtained from the first basic point by

allowing xr (complement of ur) to go to infinity,

Now, let E be any unbounded edge assumed to be in C1 .

We show (Case i) that E cannot involve an unbounded edge of

KI and (Case ii) if E involves an unbounded edge of K

then E is E0

For Case i, E is a set of points of the form:

(39)y; u u 0 u; x x v -v; and y O.

For (38) to hold for all 0 > 0 requires that:



S -18 - 1I

A A A A A..
"(40) u - Ay; u 0; y 0; and u'x 0.

A A
But y ,O 0 and A>0 imply that u >0. Then u 0

implies that 7 - 0; which is impossible, since I is I
II~feasible. 3

In Case ii, E is the set of points of the form:

(41) y- ; u -; x- + a ; v -7 + o ; o. .

And that (38) hold for all 0 > 0 requires: I

(42)wA A A A A A , -Ux 0

_ I
- Bx; v - 0; x 0 and v'y V Y; u'x - 0.

But , 4 0 and B,0 imply that v = Bx > 0. Then viyi = 0

for i ,' implies that - =0; that is

Y" M 0 for i # 1. That is, has only one positive

component; namely •1" Also, since (M, •) is a basic point

of II, and F has only the positive component •1' all

components of U except one must be positive. But, by the

first pivot, this component must be ur: ur - 0. Then the
A

condition u~x - 0 requires that xi "xi " 0; for i # r;

that is, only xr is positive in (41). This identifies

the unbounded edge E as E0 1 and completes the proof.

We shall terminate this section with an observation

and some remarks.

Referring to the Fundamental Problem (1), (2), (3),

consider the set Ci of all points of K satisfying:

(43) w'z - wizi (that is, w z - 0 for j ' i).

Ci may be empty of course. Assuming that L is non-degenerate,

it (, ) is in Ci (43) requires that the point have at
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least n-1 zeros; hence by non-degeneray either n or

n-1 zeros. In the former case the point is rasic feasible;

F in the latter case it lies on an edge of K. n the former

case, the extreme point is eitherý complementary solution oT

is not. If it is a complementary solution then, in the

corresponding basic form just one of the pair (wi, z ) is

non-basic, and only that non-basic varia'le may be increased

to remain in Ci. If the extreme point is not a complementary

solution, then both members of the coiaplementary pair (wi, Z )

are basic in the corresponding basic form; and therefore, to

satisfy (43) the other n-2 basic variables must have their

complements non-basic. Therefore, the other two non-basic

vatiables must be a noLt-ba:;ic pair (ws, z s) say; and making

just one of these positivT is the only way to move from the

extreme-point; that is, for a non-complementary basic point

of C exactly two edges contained in Ci meet in the point;i

and moving along one of these edges leads either to another

extreme point ir, Ci ,)r along an unbounded edge of points of

Ci.

We therefore contlude that C. is the union of a1

finite number of disjoint adjacent-extreme-point paths (which

are 'proper'; that is, io extreme point on the path has more

than two edges joining it; and has one edge it' and only if

it is a complementary point). And C (the set of complementary

points) is precisely the set of end-points of the paths.

It is also cleat that if i ' i', a point ii both

C iand Cl, must be a complementary solution. Hence C

is the intersect ot the sets Ci; i = 1, 2, ... , n.
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We have used these 'almost complementary' sets in

the preceding schemes.

An enumeration of the possible kinds of paths in a I

set Ci brings out the fact that the path may contain (i)

no complementary solution (in the case where the path has

no end-points; that is, either a closed path or one which 9
contains two unbounded edges); (ii) two complementary solu-

tions (when the path has two end-points; i.e., is not closed

and has no unbounded edges); and (iii) one complementary

solution (one end-point and one unbounded edge). In the

previous schemes favorable paths were of the form (iii). g
Regarding such schemes, postulating for example

that, for a given M and q, Ci for some i has only

one unbounded edge of K ensures the existence of a

complementary solution (for example, the case M > 0,

and Scheme II).

Also, for the case of an M and q for which there

is a unique complementary solution, since precisely n

edges of K meet in this point, exactly one of the n

edges is in C for each i, and the paths of C con-

taining that edge must have (at the other end of the path)

an unbounded edge. Therefore one may conclude that such

a K must contain at least n unbounded edges. An example

is given by:

Theorem 4: If M is positive-semi-definite, and L is

non-degenerate and K is non-empty, then there is exactly

one complementary solution.

Proof: If (-, T) and (-*, T*) are complementary solutions,

so that V' E- w*'T* - 0; then --i - M(C*-!) and:
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(-wz-* + "*) *-:z-)' (w*-7) = *-F) 'M(*-.7) > 0;

which implies that ;*' T •-'* = 0; which implies that

+-- *)= 0; hence (*+, *+7) have at least n

zeros; hence at most n zeros, since (eg) (-, T) is basic.

We must contlude that (, 7) and (-*, 7*) have the same

positive components; that is, the same basic set. Hence,

since a basic set has just one basic point associated with

it# Mw• 7) - (W*, 7*).
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C. COWCLUDING REMARKS.

The use of 'Gauss-Jordan pivots' has a long history;

certainly in the solution of systems of linear equations,

and more recently in Mathematical Programming, startAug fith

the simplex method of G. B. Dantzig. The format (1), (2) is

essentially the format for the simplex method. It has been

exploited extensively by A. W. Tucker (see Ref.(l10 ), and

others since.

The Fundamental Problem probably assumed importance

as a form for solving the convex quadratic programming prob-

lem. Essentially all methods proposed to date for this prob-

lem may be approached from this form. The extension of the

use of the form of the problem and the applicability of simi-

lar schemes to bimatrix games (a 'non-convex' example) lent

more importance to the Fundamental Problem. Examples from

sources other than Programming and Game Theory are noted by

Cottle and Dantzig (Ref.[2J).

By way of extending the class of problems which

have a complementary solution, besides the classes mentioned

in theme notes the classes of 'adequate' matrices considered

by Singleton (Ref. r8l ), and matrices with 'positive prin-

cipal minors' (p.p.m.) considered by Cottle and Dantzig, and

by A. W. Tucker (see Ref.[lOJ) are worth mentioning.

It may be noted that Theorems 1-3 in these notes

rely-on the particular schemes I-II1; wbich, although reason-

ably 'natural' do not preclude the discovery and development

of equally valuable pivotal schemes, applicable to these or

other classes of problems. For example, extending the class

for which Scheme I is appropriate, 1 -sons (Ref.[63) has
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observed that matrices which are 'principal pivotal transforms'

(see Ref.[91 ) of co-positive-plus matrices could also be

r handled by Scheme I. As another example, the algorithm

of Cottle and Dantzig (see Ref.(lJ), predating the devel-

opment of the Scheme I, exploiting principal pivot transforms,

may be used on the class of p.p.m. matrices. Prrsons (Ref.

[6] ) has developed a principal pivoting scheme for the

convex quadratic programming problem, and has also pointed

out that, for this problem, (more generally for positive-

semi-definite M) Scheme I may be described inkerms of

principal pivots. These examples are certainly not ex-

haust ive.

Scarf (see References), in a series of Cowies Commis-

sion papers,has extended the use of the 'almost complementary'

paths with potentially valuable results.
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APPENDICES 3
Appendix 1. The Convex Quadratic Programming Problem.

A usual statement of this problem is: x

(44) Minimize c'x + jx'Qx; where Ax > b; x 0.I

A general form of the linear programming problem is obtained 3
by taking Q - 0. The functional is convex; which is the

case if and only if Q is a positive-semi-definite matrix

(which may be considered symmetric). The general 'Kuhn-

Tucker' conditions (see Re-•.[3] ) in order that an x

solve (44) become necessary and sufficient conditions.

These conditions, when written concisely become: find

x, y, u, and v satisfying:

(5 Of A)(y) (u)() _ b yj (u 0; y: ' ý1 0
which is an example of the Fundamental Problem. In this

example: (0, A) a positive-sey.i-definite matrix;

hence co-positive-plus. Therefore, Theorem I gives a

constructive proof of the existence of a solution to (45),

(and of the duality theorem of linear programming).

Appndix 2. Equilibrium points of Bimatrix Games.

Mixed strategies are columns x and y satisfying:

e'x - 1; x > 0 and e'y - 1; y > 0; where 'e' denotes

a column of appropriate order with components all I. A

Nash equilibrium point, for given r by s matrices A

and B Is defined (see, for example, Ref [4) ) as a pair

(i, 7) of mixed strategies such that for all mixed strategies
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(x, y):XAy

(46) A (xA
;,Ery < ,By

X1 Ay is here interpreted as the 'long-range loss per play

to Player 11 if he plais each play according to probabilities

x and Player II plays according to probabilltA~es y.

Let e be a column with jth component 1; ane.

other components zero. The e.i are mixed strategies called

pure strategies. It is readily seen that (46) holds if

and only if it holds for all pure strategies: (x, y) -(ej, e.)

In vector form the equivalent condition becomes:

(XTA7)e < A

(47) 
--'Ey) "

where e has all lVs. If E ~-ee' is a matrix of all I's,

1 -(x'e)(e'y) - x'Ey. Therefore, adding any multiple of

E to A and B in (46) does not change the set of

equilibrium points. We may therefore assume that A > 0; B.> 0.

Hence x'Ay and x'By are positive for mixed strategies (x,y).

Consider constraints of the form:

0 e < A7y 7'(A7- 0'e) - 0
(48) 1andL

0 2 e < B13 7'(B' 2 e) -0.

Since for mixed strategies (x, 7), the 'compl e.'n -ary'

constraints on the right are simply: 01 7'A7; 0 - "'Er,

the above s~stem of constraints is equivalent to (47).

Next, defining variables X 2 y Y-If nd intro-

ducing Blacks, (48) becomes:

..............
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( u ) , °! o A ' x x u
(49) k-I tB )()J 0 K 0

-•> 0; (0

a problem in the 'fundamental form' where, in this case:

M- Bt 0 Conversely, since for x and y to Yield

feasible u and v requires that x $0; y ;i O ifrxy

is a solution to (49), N-- x/x'e; y- y/e'y yields

a solution to (48), so that (48) and (49) are equive-

lent.

Appendix 3. In Section A we have remarked that a 'pivotal

scheme' is completely determined when the criteria for select

the pivot pair and for terminating are given. The following

is an example of pedagogical value in developing the basic

elements of linear algebra, not only in isolating all compu-

tations as 'pivot schemes', but basing the usual theorems

(relating to independence, rank, etc.) thereon. (In this

regard, see also the remarks of A. W. Tucker, Ref.FlOi).

There is nothing new tn the computations; nor indeed in the

idea, but perhaps in the presentation.

Consider finding all solutions to a linear system:

(50) 0 = q + Az.

Ultimately, this means 'solve (50) for some of the variables

in terms c* the remaining ones'. Introduce 'pseudo' variables

w and consider pivots on:

(51) w = q + Az.

Pivot according to the following scheme: having obtained

a basic form, examine the current non-basic set. If it contains
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T an original z say - z7 t examine the column coefficient
jz zs'

At. If At , 0 for some r such that wt is a pseudo
s r,s r

variable, perform the pivot determined by the pivot pair

t t t t

terminate. The iterations terminate in R pivots, where

R - Rank A. The final basic form gives all solutions to (50)

by setting all pseudo variables equal to 0.
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ON THE OPTTMALITY OF (8, S) INVENTORY POLICIES:

NEW CONDITIONS AND A NEW PROOF*

ARTHUR F. VEINOTT, JR.t

Abstract. Scarf [61 has shown that the (s, S) policy is optimal for a clue of discrete
review dynamic nonstationary inventory models. In this paper a new proof of this
result is found under new conditions which do not imply and are not implied by
S-arf's hypotheses. We replace Scarf's hypothesis that the one period expected costs
ai convex by the weaker ustimption that the negatives of these expected costs are
uniLondal. On the other hand we impose the additional assumption not made by Scarf
that tho absolute minima of the one period expected costa are (nearly) rising over
time. For the infinite period stationary model, this last hypothesis is automatically
satisfied. Thus in this case our hypotheses are weaker than Scarf's. The bounds on
the optimal parameter values given by Veinott and Wagner [121 are established for
the present case. The bounds in a period are easily computed, and dapend only upon
the expected coats for that period. Moreover, simple conditions are given which
ensure that the optimal parameter values in a given period equal their lower bounds.
When there is no fixed charge for ordering, this reduces to earlier results of Karlin
[51 and Veinott [9J, [101, 1111 for the nonstationary case. The above result is exploited
to extend the planning horizon theorem of Veinott [91 to the case where there is a
fixed charge for ordering.

1. Model formulation. We consider a single product dynamic inventory
model in which the demands DA, D, , ... , for a single product in periods
1, 2, - , are independent random variables with distributions *I, 4I,, ...
Assume I ,ij are given constants such that' D, j ,, for all i. At the beginning
of each period the system is reviewed. An order may be placed for any
nonnegative quantity of stock. An order placed at the beginning of period i
is delivered at the beginning of period i + X, where ) is a known non-
negative integer.

Let x, denote the stock on hand and on order prior to placing any order
in period i. Let y. denote the stock on hand and on order after ordering in
period i. It is possible for x., and y, to be negative indicating the existence
of a backlog. We asume that the amount of stock on hand and on order
at the end of period i is a specified Borel function v,(y,, A,) of y, and D,.

" Received by the e~Iitors July 26, 1965, and in revised form December 27, 1965.
t Program in Operations Research, Stanford University, Stanford, California.

This research was supported by the Office of Naval Research under Contract Nonr-
225(77) and by a grant from the Western Management Science Institute.

'Actually the main results of the paper given in 52 also hold in the more general
case where D, is a random vector. All that in required is to let U be the Borel set of
possible values of D, and replace the interval [, , -) of possible values of Di every.
where by 1), - This more general formulation allows for consideration of several
classes of demands, random deterioration rates, random departures of backlogged
demand, arnd random prices, for example, by suitable interpretation of the compo-
nent. of D,
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1068 ARTHUR F. VEINOTT, JR.

Thus xz f v,(yi, DA). If X > 0 we assume that all unsatisfied demand is
backlogged so vi(yi, D;) = y, - D,.

When X = 0 our formulation provides for the possibilities of deterioration
of stock in storage (perishable gpods) and partial backlogging of unsatisfied
demand [11, p. 7661. For example suppose that whenever y, < DA, then a
fraction b (0 _5 b ;5 1) of the unsatisfied demand is backlogged and the
remainder leaves immediately. If instead yi > Di, then a fraction 1 - a
(0 ; a ;5 1) of the inventory on hand spoils and is not available for future
use. These assumptions imply that v,(., () takes the form

Vi~i DO= a (y, - D,) if y, 2- Dj,

IV,(yb, D,) b(y, - D,) if yj ;D9,.

Note that if a = 0 we have the case of perishable goods while if a = 1 we
have the case of nonperishable goods. If b = 0 we have the lost sales case
while if b - 1 we have the backlog case. In the literature these last two
cases are usually discussed only where a = 1.

At the beginning of period i, the inventory manager is assumed to have
observed the vector

Hii = (x, , x , "" ,ye-, D, .- ,D )

representing the history of the process up to the beginning of period i. He
bases his ordering decision in period i upon H,.

An ordering policy for period i is a real valued Borel function 1,(•) to
be used as follows. At the beginning of period i, after having observed the
past history H,, the manager orders I,(H,) - x, which is assumed to be
nonnegative of course. Also let Pi = ( Y, V.. , f.) denote. a sequence of
ordering policies for periods i, ... , n.

Three types of costs are considered: ordering, holding, and shortage.
Assume that the cost of ordering z units in period i is K,6(z) + c,z, where
Kj k 0, 6(0) = 0, and 5(z) = I for z > 0. The cost is incurred at the time
of delivery of the order. Let g,(y, D,,%) denote the holding and shortage
cost in period i + X when y is the amount of stock actually on hand after
receipt of orders to be delivered before the end of period i + A. We assume
that g,(., -) is a real valued Borel function.

Let a,( j0) be the discount factor for period i + X. That is, a, is the
value at the beginning of period i + X of one cost unit at the beginning
of period i + A + 1. Let 01 - I and - i ] aj for i > 1.

For the case X, - 0 let

W,(y, t0 = ev + g,(y, t) - ,-.,,,.,v,(y, +).
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F or the case A > 0 let

Wi(y, 0) c= CY + f (SOg, (y - z, t) d4,NZ) - a, c,+1 (y - (.)

where $,i"( -) is the distribution of A) + . + Di+A...l
Now forX 2z 0 let

G, (Y) = Wi(y, 0) nJ,+0~).

We assume that all integrals given above exist and are finite.
We suppose that each unit of stock left over after X + ni periods can be

discarded with a return of c.+,. Similarly, each unit of backlogged demand
remaining after X + n periods is satisfied at a cost c.+j . In the literature it
has often been assumed that c,11 = 0.

Thus, the expected discounted cost incurred in periods X+ 1, - - , X+ n
when following the policy :71 in periods 1, n. f is

E i[Ay;- x1) + ci(yj - xi) + gi(i A iAJ+i,

By substituting x, - v,..I (yi- 1 , Di-14 into the above formula we get as in
[101, [121,

Oi j~ 6yj- x,) + Gi(y4)J - C1 X1 C.1 R(j

Since the second bracketed term is not afiecttod by the choice of ?I, it is
convenient to omidt it from the analysis. Thus we may define the conditional
expected discounted cost incurred in periods X + i, - -, X + n when
following Fj in periods i, - , nt given the observed history H. as

(1) j(?i jHi) - ftbE&.jK,.(yj - zi) + Gj(y))J.

We seek a policy P (?,.,?),called optimal, which sAtises

(2) f,(?,I H,) ;Sf.(? I H,), - i** j,n

for alH, nd?1 j, where of murse? -(A,?)It is OWyto
show by induction on i (starting with i n f) that if there is an optimal
policy, then f, .H,) depends upon H. only through x., so we may
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write

(3) f,(,* I H,) -f,(z,), i 1 n,

where the!, satisfy (f.+I(x) - 0)

(4) f,(z) - inf,&, {KA(y - z) + G,(y) + ,,,Ef,+.(v,(y, D,))j

for i - 1, ... , n and all z with the infimum being attained for each x.
Conversely if them is a sequence of functions {f,} which satisfy (4), with
the infimum being attained for each x, then there exists an optimal policy
V". Moreover, ?,*(H,) is any value of y which minimizes the expression
in braces on the right side of (4) subject to y ? x where z - x, . Since the
minimiuing value of y is a function only of x,, it follows that ]?,*(H.)
u- ?*(z,) depends upon H, only through z,. For notational convenience,

we d e

(5) J,(y) - G.(y) + aEf,+i(v.(y, D,)).

In what follows we shall have occasion to impose one or more of the
following assumptions for each i (K.+, = 0):

(i) G,(y) and v,(y, t) are continuous in y for each i ,
(ii) lItam.G,(y) > infy G,(y) + a.,+,K;

(ii!) WN.-. G,(y) > inf, G,(y) + K.;
(iv) -G,(y) is uninModal in y;
(v) v,(y, t) is nondecreauing in y for each t i q, ; moreover, v,(y, t) is

bounded above in t on [n,, =) for each fixed y;
(vi) K, 9 aCKi+.

If (i)-(iii) hold, there are a number •. which minimizes G,(j1 ) on
(-I, w) and numbers f,(S,) and s.( uch) !di ,hat

G,(S,) G4,(q,) + a.K,,,

and
G,(u,) = G.(ý,) + K..

If in addition (vi) holds, there is a number 1,, 1, S J. ;S S,, such that

G.(j,) - 0,(4.) + (K, - o.K.+,).

2. Thb opdmalhty of the (a, S) pilky. In this section we shall show that
that if (i)-(vi) hold and if

(vii) w,(6,t,) ;j i,+ for tI k , and i - 1,2,.,n- I,

then there is ajt optimal policy which is an (s, S) policy. By this we mean
that there is a sequence I(. , S)) of pairs of numbers such that (#, S S,),

(H,) S. if X., < a,,
ýX, if x, 4 4,,
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G, (Y)

jKI -aeK,÷
--- \- - ----- r----- --

• I l | , , I . ..

, ', , . S, Y

FIo. 1

for all i and H,. Moreover the numbers satisfy

(6) 1i ;S $i ;5 Si ;S S i

and

(7) G,(e,) • G.(S.) + (K, - aoK,+,)

for all i. The bounds in (6) and (7) are depicted in Fig. 1. The inequality
(7) has the interpretation that if it is optimal to order in period i with
the initial inventory level z, then the reduction in the immediate expected
costs due to G,(. ) must be at least K, - aK,+1 . In the specianc where
q- 0 and r.(Y, t) - y - t for all i, then (vii) reduces to the simpler form:

The first proof that the (a, S) poliey is optimal under reasonably generl
wonditions is due to Scarf 161. (See also 113).) Scarf swumee that G.(If) in
monvex in y with G.(y) -. .as I V -- c, that v.(y, 1) - y - I, and that
(vi) holds.' Theme asumptions imply (i)-(vi) and are in fact quite a bit
stmnglip. To elaborate on this point we remark that if W,(M, 1) is convex
in y. then G.(V) is convex in y for any distribution #,.x. However, if #.A
hm a density #,+, with #,..(i - 9) having a monotone likelihood ratio
with respect to s, then -G,(y) will be unimodal under conditiona where
W,(V. t) is not oonvex in Y. Specifically, -G,(y) is unimodal if W,(V, 1)
- W,'(Iy - 1) + W,'(1) for some funeafins W.' ad W,' where -W,'(s)
is unimnod in z, 13). See 141 for a diswumion of the utility of tWi aa, npton.

Although Scarf imposes stmrnra muptiona than (i)-(vi), he does not
require that (vii) hold. Thus ia rmult. are not implied by ouw nor o.-
versely.

'Scarf aso anumed that the emt furctkme and demand distributioes do Dot
ehmbp over O-",e lthbough that i not mnatial to hi proo 13, p. ND).
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AE an example to illaunina~e ti,• significanee of (vii) suppose X = 0;
D .. D are idintically distributed; and c, c. , a , ,(y, t)

-g(y,l),v,(y,t) -f p' - 1,anrdn. ,= 0fori = 1, 2,... , n. Tho-n G,(y) - G(y)
so ,• =•for i •- 1, 2, .• ,-1. If in addition c.,+ - c, then Gj(y)

- G(y) ahio, so , and ,,6i) holds. On the other hand Sf ,,I - 0
(as is assumed, for example, by Scarf [61 rnd others), then G.(y) - G(Y)
+ ac[ - E(D.)]. Thus if ar > 0, we should ordinarily expect 5 > '. in
which case (viiiO fails to hold for i = n - 1. Both of the above definitions
of r.+1 are remsoraable formulations of a "stationary" version of our model.
It is of some interest then that the first L.s.umption assur"s that ( vii) holds
while the second does not. Of course in infinite horizon taodir4 lis, 41, the.
difference between the two stationary forniulati'v v,±s'heýs. This ou,"
hypotheses are actually weaker than Scarf's for tbe inhuito horizon sta-
tionary models.

Bounds on B. and S, were first established by lglehart in [i], [21 under
Scarf's hypotheees, the assumption that the jost functions and demand
distributions do not change over time, and c,, =-- 0. .nder the abov
asmumptions except e,+ =, c, Veinott and Wagner [121 have ettaLlished
bounds of the form (6). In their analysis 6-,( yI = GCy), w) the bounds in
(6) ame independent of i evea though thi. is not true of s, and S.,. Ohr
present analysis shows that the býumtds renmin valid under the wcaker
hypotheses impoeed here.

The principal tool of Scarf's prooi is thf' fac' '•hat if J,(y) is K,-vonvex
(am 161 for a definiticn), then so isf,(Z.1 This methol of proof fails under
our hypothmse becatme J,(y) need not be K,-convex.! Our prt.of is based
instead upon the following two lemmas which cltab!kih properties of funv-
tions Mtifying (4), (5).

LtmA. 1.
(8) f,•:) ;S fj) + K,, X -5 X'. i n.. , a

.ooreovr, if (v) hds, then
J.(V') - J,ty) 4 Cy,(M') - G~iyq} - a,K,.,, y .1 Y"

(9)

Proof.
I rom (4) and (5) we hav, efor x ; /r' that

f,(x) I K, + inf Jjy) 5 K. + ifJ,(y S K. + f,(x'),

which wtabhahe. (8).

$A& an slu~itraim,, if k. K < i. G. - (;ý- rair ;.1,IF. I 0,

V,(j, t) - - t. ead., -a d 1. then t•-fviis h"id. IIYwcer. J.'tu - ) which

is not K. -ouvx.
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For y J y', we have from (v) that v,(y, D,) ; v,(z', D,). Thus from
(4), (5), and (8) we get

ji(') - J,(y)

= ((') - G,(y) + akElf,+(vj(y', D,)) - f,+1(v,(y, D,))]

SG,(y') - G,(y) - aJi+i,

which completes the proof.
The proofs of (8) and (9) are purely analytic. An alternative proof of

(8) may be constructed by uwing the following argument which may be
made rigorous. If the initial inventory on hand and on order at the be-
ginning of period i is x but one orders in each period j ( i) so 88 to bring
the inventory level after ordering to the level which would be optimal
if the initial inventory level in period i were insead z' (ýz), then the
asociated expected discounted cost would not exceed f,(x') + K,. But
since the policy just described cannot be better than the optimal policy,
(8) must hold. A similar kind of argument may be used to establish (9).

LIM^A 2. If (v) holds, if Ia I is a %etue of number. for which vi(ai , 1)
.5 a.i4 fort 9 ianij vi.)C;ii ! G,({,.) i.'nonincreouingm•n yon (--,ail
for j~ ame

(10) J,(y') -- ) G.(&) --. G(y) 5 0, y 5 Y' S 4,

(11) f,(x') -f,(z) 5.0, x 5' a•o,

for i I
Proof. The proof is by induction on j. Suppose (10), (11) hold forj + I

(>i). By (v), v,(y,, D,) ; S,(V, D,) 5 v,(a,, Di) 9 a0+1 . Hence
(11) forj + I we get
jJy,() - J(,*•)

" G,(y') - G,(y'j + o,a ,43(u,('. D,)) - f,+1(vI(V, D,))]

SG,(V') - G,(1) ;J 0.

which proves (10) forj.
It follows from (10) for the int ete j thft

f,(z) - mrin iJ,(), K, + inf J,!(ty
Ue>,

m• mn 1Jz'• K, + inf J,(V)l - f(x'),
,>,,

which proves (11) for thr iIMteg• j. The same arguments suffice to establish
(10), (11) forj - n which stiarts the induction and completes the proof.
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The proofs of (10) and (11) are purely analytic. An alternative proof of
(11) may be devised by using the following argument which can be made
rigorous. Suppose che initial inventory level in period j is x'. Suppose also
that one orders so as to bring the initial inventory level after ordering in
each period k (•_j) as close as possible to the ievel which would be optimal
if the initial inventory level in period j were x (<.r'). This policy incurs
expected discounted costs which are no greater than f,(z). But the p.licy
also must incur bxpected discounted costs at least as large as fj(x'). Com-
bining these remarks proves (11). The inequality (10) car; be justified in
a similar way.

THEOREM J If (i)-(vii) hold, there extss an optimal pohi•y which is an
(S, 8) policy. Moreover, the parameters of that policy satisfy (6), (7).

Proof. The proof is constructive and proceeds in several steps. To begin
with suppose J,(y) is continuous in y.

(a) Ji(y) is nonincreaing on (- , d,].
To see this recall from (iv) that G,(y) is nonincreasing in y on ( - .

forj 2 i. Thus by (vii) and Lemma 2, (a) holds.
Since J,(y) is continuous, there is an Si which minirizes Ji(y) on

[d, 5,]. Thus Si satisfies (6). Moreover,
(b) min, J,(y) = Jj(S,).
To see this observe from (a) that S, minimizes Ji(y) on (- o, 5,].

Also by Lemma 1, (iv), and the definition of 8i we have for y > Si that

J,(y) - J,(d,) ?-: G.(y) -- Cri(S,) -aig,+1

_ G,(5,) - G,(,) - a,K,+i = 0.
Thus (b) holds.

(c) There exists a number 8, satisfying (6), (7) and

(12) J,(S,) + K, - J,(s,) = 0.

In order to prove this assertion we observe from Lemma 2, (b), and the
definitions of d. and _s that

J,(S,) + K, - J,(i,) 5 J.(S,) + K, - J,(q,)

• G,($,) + K, - G,i() = 0.

On the other hand by Leamma 1 and the definitions of ý, and 1i we have

(1)Ji(Si) + K, - Ji(I,) ký Gi(S,) - Gi(k,) + Ki - a~~('4)
ý_ G,(&,) - Gi(k,) + K, - aK,+1 - 0.

From (13), (14). and the continuity of J,(y), it follows that there is an
si satisfying (6) and (12). Moreover (7) holds also si'nr by Lemma 1
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and (12) we have

0 = 4,(8,) + K, - J.,' Ž G,(S,) - G,(8,) + K, - aK,•j

which completes the proof of (c).
(d) The value of y which minimizes the right side of (4) is determined by

{S if x<s,
y =x if x Ž si.

To prove (d), observe from (a), (b), and (c) that for x < 8j,

Ji(x) ý_ J,(s,) = J,(S,) + K, = miny Jj(y) + Kj,

so y = Si minimizes the right side of (4). Now for si ; z _ S, the same
arguments give

J,(x) < J,(s,) = min, J,(y) + Ki,

so y = x minimizes the right side of (4). Finally for _Si < x < y, we have
from Lemma 1, (iv), and (vi) that

J(y) + K, - Ji(x) Ž= Gi(y) - G,(x) + K, - ajKj+1 4 0,

so y = x minimizes the right side of (4). This completes the proof of (d).
It remains only to verify our assumption that
(e) J,(y) is continuous in y.
We prove (e) by induction on i. The assertion is trivial for i = n since

J.(y) = G.(y). Suppose now (e) holds for the integer i + 1. Then by (d),

(15) =K+, + J,+1(S, 1+) if x < 8j+1,(15 f•vlx) •J.+1 (x) if x _4 sj+1.

Since J, 41(y) is continuous and (12) holds for i+1, f,+i(x) is evidently
continuous. Since G,(y) is continu3us by (i), J,(y) will be continuous if

Ef,+i(v,(y, Di) ) M q(y)

is continuous in y on any arbitrary interval, [a, b], say. Since by (i) and the
continuity of fj+i, the composite function f,+i(vi(y, t)) is continuous in y,
q(y) will be continuous on [a, b] if the composite function is uniformly
bounded for y - [a, b] and all t (_'i,) by virtue of the dominated con-
vergence theorem. We now show that there is a number B such that

(16) J,(S,) 5 f,+1(v,(y, t)) 5 f,(B) + K,+i

for all t (?t,,) and y E [a, b], which gives the desired bounds. The left-
hand inequality follows from (15) and (b). Since by (v), v,(y, t)
!5 vi(b, t) < B for some B, the right-hand inequality follows from Lemma 1.

The proof' is now complete since we have constructed a solution to (4)
with the infimum being attained for each x.
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As we have remarked before, if Scarf's hypotheses (G,(y) convex,
G,(y) -- as I y I- ®, v,(y, t) = y - t, and (vi)) are substituted for
(i)-(vii), then there exists an optimal policy which is an (s, S) policy.
However, the lower bounds in (6) for s8 and S are no longer valid when
(vii) fails to hold. The reason for this is clear upon reflection. For exam-
ple, suppose D.-I _Ž 0 and P(D,,-1 < &_._ - S1) > 0 so (Nii) boes not
hold. In this event it is apparent from (1) that one would nct want to
order up to S._• (or more) in period n - I if G.(y) increased sufficiently
rapidly on the interval JS&, S_1]. The reason for this is, of course, that
the relatively low expected costs in period n - 1 would be more than offset
by the extremely high expected costs in period n. For a concrete illustra-
tion see footnote 4 below.

Let

,= {mn +ifi= n,

~ .min (+, -) if i = 1, 2, ,n - 1.

Let s8 (5 min (s,, S,)) be chosen so that

G,(.,) = G,(S,) + K,.
THOiF.m 2. Under Scarf's hypotheses, there is an oplimal policy 1(8s, Sj)I

which stisfies (7) and

(6') j,-<8,__ and S, 5 S, 5 Sip i = 1,2,...,n.

Proof. We only sketch the proof, leaving the details to the reader. The
upper bounds on s, and S, and the inequality (7) are established by ap-
plying Lemma 1 in exactly the same way as in Theorem 1. The lower bounds
on s, and S, may be established by applying (10) with a, = 5, for all j
in a manner similar to that employed in proving Theorem 1.

We remark that if (vii) holds then S, = 5, and s, = for all i so that
(6') reduces to (6).

3. Planning horizons and special cases. The next result tells us that if
Sk is sufficiently small in comparison with sk+,, then (.k, 3k) is optimal
for period k. Observe that this is the policy that is optimal for period k
when considered by itself or as the final period of a k-period model. More-
over, if S, ... , S1, are sufficiently small in comparison with 8k+i, an
optimal policy for periods i, ... , k may be determined without evaluating
fA4 1 (x) for any x. In this sense, period k is a planning horizon. The actual
calculations are carried out using (4) recursively where fk+i(x) = 0 for
all x. The theorem generalizes some results in [9] to the case where there
is a setup cost for placing orders.

THrEOREM 3. Suppose (i)-(vii) or Scarf's hypotheses hold, and that
1(Sj, S,)j is an optimal policy.
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(a) If Iai is a collection of numbers for which

(17)4 S k ak,

(18) ak+l _ Rk+l,

(19) vi(ai, t) 6 a,+1  for t • ,7,, and

(20) Si :_ a,

for j = k, then (s?, &) is optimal for period k.
(b) If (18)-(20) hold for j = i, i + 1, ... , k, then one optimal policy

for periods i, i + 1, ... , k, is independent of f+I( -).
Proof. We begin by proving part (a). From Theorem 1, Scarf's theorem,

and (18),

(21) f]e+,(x) = Kk+l + J1+j(Sk+j) M Q, x L ak+.

It follows from (v) and (19) that for t Ž_ ij and y 5 ak , v.(y, t)
"; vk(ak, t) ;5 ak+l . Combining this remark and (21) we get

(22) Ja(y) = Gk(y) + a&Ef+-1(vk(y, D.)) = G.(y) + a*Q, y S a&.

Now by (20), Jk(y) achieves its minimum on (- c, cc) in (--w, ak].
Since this is so it follows from (22) and (17) that &. mihimizes Jt(y)

on (- o, ao). Moreover, again by (22) we have

Jk(_k)= Gk(§k) + aQ = Ki + Gk(&5k) + akQ = K. + Jk(5,k).

Hence, by Theorem 1 and Scarf's theorem, (.k, Sh) is optimal for period
k, which establishes part (a).

In order to prove part (b) we observe from Theorem 1, Scarf's theorem,
and (20) that the optimal policy in period j, i 5 j ;9 k, can be determined
provided only that we can evaluate J,(y) for y 5 aj. Now from (v),
(19), and (20) it follows eaily by induction onj that J,(y) may be evalu-
ated for y S a, without evaluating fk+z(x) for x > ak+,, i.e., for y 5 a ,
J,(y) depends upon fk+i only through the constant Q. (We have already
shown this for j = k which starts the induction.)

We may exhibit the dependence of J,(y) upon Q by writing JQ(V).
It is easy to show by induction on j that

k

(23) JQ(11 ) - JA(Y) + Q , j - ii+ 1, k.

' The hypothesis (17) is easily seen to be satisfied if (18)-(20) hold for j - k and
either (1) (i)-(vii) hold or (2) Scarf's assumptions are fulfilled and K&., > 0orS. < a#.
The following example shows that (17) cannot be dispensed with under Scarf's hy-
pothes. Aume n - k + I - 2,Gi(y) - I y - 2 1,Gt(1) - 2 1 V - I J,Kj - KI - 0,
P(D1 -0) - P(D,- 0) - 1, and Vm -qs- 0. Then s - 8, -si- 8,- land
it - f.l - 2. Now let. a, - as - 1. Then (18)-(20) hold, but (1 , ft) is not optimal
for period 1.
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(Again we have already done this for j = k which starts the induction.)
Thus if a policy is optimal for period j, i 5 j _ k, for some Q, that same
policy is optimal for all Q. Hence if we assume Q = 0 and determine the
optimal policy for periods i, i + 1, ... , k in the usual way (taking ac-
count of (20)), that policy is optimal for the original problem where (21)
holds. We have thus shown that the optimal policy in periods
i, i + 1, ... , k is independent of fk+l(.) as required.

As an illustration of the application of Theorem 3(a), we have the fol-
lowing result.

COROLLARY 1. If (i)-(vii) or Scarfs hypotheses hold, and if

(24) Vk( ,) 5 fk+1 for 1 __

then (6, k) is optimal for period k.
Proof. Let ak = Sk and ak+i = fk+ . Then apply Theorem 3(a).
We remark that if (24) holds, then by (v) and the definitions of dk,Ak, ) k+1, 1&+1 (recall &k41 f k+1 if (i)-(vii) hold),

so (vii) holds for the. integer k. It follows therefore that if (24) holds for
all k, then (v~i) necessarily holdq also. In this event we can replace !k+,
in (24) by jh+,.

Example 1. Suppose unsatisfied demand is backlogged in period k so
that v&(y, t) - y - t. Then (24) reduces to Sk - fk+ S ilk. Thus if the
minimal demand in period k is at least Sk - &s+1 , then (jk , 5k) is optimal

for period k by Corollary 1. A special case of this result is established in
[12, p. 545] for the stationary case.

The next example illustrates the application of Theorem 3(b).
Example2. Suppose unsatisfied demands are backlogged so that

vj(y, t) - y - 1. Also let ak+l = it+1 and let Jail be defined recursively
by aj - i - aj+i for j ;9 k. Thus a, = jk+i + E-, ,i, for i . k. Now
let i be an integer for which

k
(25) Sj S j+1 + F, fit, j ff ,i+ 1, .. ,k.

Then the hypotheses of Theorem 3(b) are evidently satisfied. In particu-
lar, if fit-0 for i ;5 f 5 k, then the optimal policy in periods
i, i + 1, ... k may be determined without evaluatingfk41(. ) if SJ 9 fk+l
for i ;Sj k.

We remark that if (i)-(vii) hold and if K, - 0 for all i, then we choose
#, pI,, and 8, equal to 6, so 8, - S, - i, for all i by Theorem 1. In this
event the hypothesis (vii) is equivalent to the hypothesis that (24) holds
for all k. This observation together with Corollary 1 establishes the next
reslt which is known from [10j, [111.
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CoRoLLARY 2. If (i)-(vii) hold and if Ki - 0 for all i, then 1(8,, '5)4
is an optimal policy.

4. Applications and extensions. In this section we discuss some applica-
tions and extensions of our results.

Applicalions of the basic lemmas. Lemmas 1 and 2 are useful in establish-
ing bounds on the ordering regions and order quantities even where -G,(y)
is not unimodal. We shall illustrate this point under the assumption that
Ki = 0 for all i, leaving the other case to the reader. Suppose G,(y) ap-
pears as in Fig. 2. The domain of G,(y) is divided into six regions labeled
1, 2, ... , 6. If period i were considered by itself, and if the initial inven-
tory in period i fell in an odd-numbered region, it would be optimal to
order to the upper bound of that region, viz., to UA, Us, or U6 as appro-
priate. If the initial inventory in period i fell in an even-numbered region,
no order should be placed. If i < n, then the above policy need not be
optimal for the n-period model. However, suppose y lies in an even-num-
bered region. Then by Lemma 1,

(26) J,(y') - J,(y) _ G,(y') - G,(y) i 0

for all y' • y provided (v) holds so it is optimal not to order in period i
for the n-period model. Notice also that the above inequality tells us that
if the initial inventory level in period i is a and if it is optimal to order,
then the inventorr ",vel after ordering must lie in the interval [b, c].

If (v) holds, if v,( Ul, t) _ U1 for t ! qy, and if G,(y) is nonincreasing
in y on (-®, U1] for j _ i, then by Lemma 2, Jj(y) is minimized on
(- ao, U1i at y = U, . Similarly from (26), J,(y) is minimized on [U1 , co )
at y = U1 . Combining these remarks we see that Ji(y) is mi-imised on
(- cc, oo ) at y = U1 . Hence, in region 1 it is optimal to order up to U1 .

Variation of the bounds over time. It is of interest to determine how 8j

81(y)

L .U, UZ a bU US y

Fia. 2



1080 ARTHUR F. VEINOTT, JR. t
and 8, vary over time in relation to the variation of the cost functions and
demand distributions. Although this appears to be quite difficult, we can
instead examine how the bounds on si and S, vary over time. Such studies
are of interest in their own right and because they provide us with a tool
for determining conditions under which the hypotheses (iii), (17)-(20),
(24), (25) of our several results hold. Throughout this subsection we
shall assume for simplicity that sufficient regularity conditions are im-
posed to permit differentiation and interchange of differentiation with
integration where required.

As a preliminary we record several lemmas from 111]. Let I be a subset
of the integers 1, -.. , n.

LEMmA 3. If aW,(y, t)/Oy is nonincrmasing in t Ž- i•, and i E I for each
y, and if •,(t) •_ $,(t) for aU tand i,jEIi<j, then

(27) G,'(y) k G,'(y), i, j E I, i < j, and all y.

LEmmA 4. If W,(y, t) = W,1(y - t) + W,'(t) for some functions W,',
WV, if dW,'(z)/dz is nonincreasing in i E I and nondecreaming in z, and
if $,(t) R; ýj(t -b,) for al t and i, j E I, i < j, and some numbers bi,
then

(28) G,'(y) G,'(y - bi), i, j E I, i < j, and ally.

LzxMm 5. If X = 0, if W,(y, t) = W'(y - t) + W,2(t) for some func-
tions W', W, and if fi(t) - 0(t - ,i) for all t and i E I for some distribu-
tion 4, then

(29) G(L,,) = (i(y - n,) + Q,, i E I, and all y,

where Q, is a constant and G(y) W(y - t) d$(t).

In the remainder of this subsection we assume for simplicity that K, - K
and a, - a (;5 1 ) for all i, and X - 0. Our methods can be applied with-
out theme hypotheses, but not without expanding the exposition. See in
particular 111] for conditions under which the hypotheses of Lemmas 3
and 4 are satisfied when X > 0. There is also an analog of Lemma 5 when

Let 8, - (f,, 8,, d,, 9,), B,i = (b,,., b,j, b,,), and H, - i( ,
Vs,, 1,). Let 8 - (i, i, t, S), where ,, 0, , are defined for the function
G(.) (see Lemma 5) in the usual way. For definiteness where 3, is not
uniquely defined we choose it as follows. First pick the smallest possible
aj,. Then pick the smallest ji , ji, and 9,. Do the same for 8. The follow-
ing theorem, which is an easy consequence of Lemmas 3-5, describes how
8, varies over time in relation to the variation of W, and $, (as reflected
in G,) over time.
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THEOREM 4. Suppose (i)-(iv) hold.
(a) If (27) holds, then ,8 _ $S; for i, j E I, i < j.
(b) If(28) holds, then S, - B,,i ý S fori, j E I, i <j.
(c) If (29) holds, then 8, - Hi = Sfor i E I.
Satisfying the hypotheses of the main results. In this subsection we use

Theorem 4 to give conditions under which the important hypotheses
(vii) and (24) of Theorem 1 and Corollary 1 respectively are satisfied.
We begin by giving conditions under which (vii) holds.

It will be eork ý enient in what foliows to assume that there is an extended
real number 0 such that

(30) v,(y, t) ; max (0, y - ij), for t >,, all i, and ally.

As an example, if ,1, it 0 and unsatisfied demands are baeklogged so
v,(y, t) = y - t, then (30? holds with 0 Ž_ - o. Alternatively if tji Ž 0
and if unsatisfied demands are lost, so v1(y, t) = max (y - t, 0), then (30)
holds with 0 _; 0. In applications 0 should be chosen as small as possible.
Thus 0 = - z in the backlog ease and 0 = 0 in the lost sales case.

The following result is a simple consequence of Theorem 4.
COROLL..RY 3. Suppose (i)-(iv) and (30) hold, I = 11, 2, , n), and
r_, 8 f or all i > 1.

(a) If (27) holds and ,, 0 for all i < n, then (vii) holds.
(b) If (28) holds and q1 - b 0.i+l 0 for all i < n, then (vii) holds.
(c) If (29) holds and ti k O for all i 9i n, then (vii) holds.
The next corollary gives a condition ensuring that the hypothosis (24)

of Curollary I holds.
COROLLARY 4. If (i)-(iv), (vii), (30) hold, if (28) holds with

I = Ik, k + 11, if/+, 0 8, and if

(31) Sk -- I ilk - bb.k+,

then (24) holds.
Proof. vk(&, t) 5 max(0, & - ilk) • max(0, th - bi.k+,)

Smax (8, fk+I) - #k+1 - 6+1.

Stationary infinite horizon models. This paper is primarily concerned
with a finite horizon model. If the model is stationary, i.e., 0,, K,, a,, 4i
are independent of i, then it is convenient to consider an infinite period
version of the model. In this case fairly obvious modifications of Iglehart's
results and proofs [1), (2] (see also [12, pp. 530-531J) for 0 S a S 1 show
that if (i)-(vii) hold, there is an optimal (8, S) policy with the optimal
choice of parameters being independent of time miad satisfying (6), (7).
Methods for computing these paramvtern are discussed in [8] and [121.

Restridions on inventory levels. In some applications it may be desirable
to limit the choice of the inventory y, on hand and on order after ordering

,.-, ; .
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in period i( = 1, 2, , n) to an interval [y,, ,] say. The upper bound
pi; might reflect limitations on storage space while the lower bound y, could
reflect a desire to limit the size of the backlogged demand. As a specific
illustration, suppose demands occur over only the first n - 1 periods, so
A - 0, i Z n. Then we may wish to requite that no unsatisfied demand
exist at the end of period n + X..' This may be accomplished by setting
y.-0 so y. 0. This implies y.+x 0 ifv,(y, 0) a 0fory j 0 and
n i.

In other applications it is natural to suppose that the demands are
integers. Of course this restriction is already allowed in our formulation.
However, in such cases it is usually necessary to impose the additional
restriction that the order quantities and stock levels be integers. We shall
now generalize our original model and results to provide for such integer
restrictions and for bounds on the stock levels.

Let Yi denote the nonempty set of admissible stock levels y, on hand
and on order after ordering in period i. Let V, = inf Y, and 9i f= sup Y,.
Let Vj denote the (Borel) set of possible values of the demand A in period
i. Let X,+1 denote the nonempty set of possible values of the stock on hand
and on order before ordering in period i + 1. We naturally impose the
consistency condition that v,(y, t) E X,+, for all y E Y, and t E D.. In
addition we suppose that if the stock on hand and on order before ordering
in period i is at least It in period i, then it is possible not to order in peijod
i. Formally, weassumethat2r E XLandt, 6 x implyc El Y,, i = 1, 2, .. , n,
where X, - {zi. We also suppose that the domains of f,(.), G,(.), J,(. ),
and v,(" , ") are respectively X,, Y7,, Y, , and Y, X ,. Moreover, we
shall replace (i)-(iii) respectively by:

(i') (i) holds and Y, is closed;
(ii') either (ii) holds or pi < x
(iii') either (iii) holds or - c< < ,.

If (i') holds, we may define

G,+(Y) - G,(infIzIz > y,z E Y,)
for y < P. and G,+(P,) - a if 9, < o. Also

G.-(y) - G.(supIs I s < y, z Y,)

for y, < y and G,-(V,)- ® if - ® < i,. For example, if Y, ( -oo),
then G,-(y) - G,(Y) - G,+(y), while if Y, is the set of integers, then
G,-(v) - G,(y - 1) and G,*(y) - G.(y + 1) for y E Y.,.

If (i')-(iii') hold, there are a number S, E Y, that minimizes G,(.) on
Y, and numbers e, (; ,) and 9, ( k $,) such that

G,(,_,) S G.(.,) + aK,+1 -e G.+(S,)

' I am indebted to G. Liebennan for a discussion of this application.
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and

G,(g,) S G,(3,) + K, 9 G,-(j,).

If in addition (vi) holds, there is a number I, , ji 5S J S ,, such that

G,(l,) S G,(•.) + K, - aJK+i a ,-O i).

It 16 easy to check that the statements and proofs of Leium 1 and 2
re-nain valid in our new setup. Also Theorem 1 holds provided we replace
(i,-(iii) by (i')-(ili') and replace (7) by

(7') G,(.,) t G.(S,) + (K, - a.K,÷0)

Only obvious modifications of the proof of Theorem 1 are required.
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1. Introduction and Summary

For many problems in applied probability it is difficult to obtain explicit

expressions for the distributions of random quantities of interest. In some

problems however, approximations to these distributions can be obtained from

limit theorems as a particular physical parameter approaches a limit. These

approximations are similar in spirit to the normal approximation, for sums of

independent random variables, resulting from the central limit theorem. Our pur-

pose in this expository -par is to sketch the general approach to these limit

theorems and approximations and to mention a number of techniques which have

proved to be usefil in various probabilistic models.

1-h starting point for us is a given sequence of stochastic processes

(X n(k): k - 0.1,...) for n - 1,2,... with each process defined on its own

probability space (fQ..7nPn). We ha.ie indicated a discrete time parameter for

these processes, however, this is not crucial and, in fact, we shbll later con-

sider processes with a continuous time parameter. The state space of our

processes com be either discrete or continuous sad either real-valuet or vector-

valued. The index n for the sequence is meant to correspond to the phytit!l

parameter mentioned above. In some models, however•, the sequence index will not

be associated with the positive integers. With Chi-. set-up given. our aim is to

scale the time parawter and to translate and scale the space variable in such a

1 This work was supported by the Office of ".'al Research. Contract foar-401(SS).

2. This paper was prepared for the American Mathematical Society 1967 Summer
Seminar on Mathematics of the Decision Sciences to be beld 3t Stanford Univer-
sity from July 10 to August 11, 1967.
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* maimer that the resulting processes converge to a limit process as n goes to

infinity. In general we shall seek sequences (an 1, (bn 1, and (c n) to form the

3processes

X n(ant]) - bn
Yn(t) n c

n

The an's and cn's will be positive real numbers, generally tending to infinity

as n - -. However, the b 's will be vectors if the X 's are. Notice that
n n

-1
the Yn (' processes will be constant for stretches of length an because of

the discrete nature of the Xn 's and hence have discontinuous paths. There is

an alternative way to define the Yn(.) processes which leads to continuous

path functions. This latter approach has certain advantages and will be intro-

duced later.

There are a number of modes of convergence for the Y n .) processes which

are of interost. The simplest of these is to require convergence in distribution

of the value of the Y n(.) processes at a fixed value of t; i.e.,

lim P n(Y n(t) 1xI) a P{Y(t) .1xI for all t > 0
n n

and all x for which the right-hand side is continuous, where Y(.) is a limit

process defined on a probability space (9,%r,P). Often the limit process,

Y(.), is a diffusion; i.e., a strong Markov process with continuous path

functions. The classical central limit theorem is of this type, where Y(.) is

Brownian motion. Next we might be interested in showing the convergence of the

finite-dimensional distributions (f.d.do) of the Yn () processes to the cor-

responding distributions of the Y(,) process. In other words, for every k > 1

3. The symbol [x] denotes the integer part of x.



3

and 0 <t t2 <.o < tk we would like to show that the

lim Pn (Yn(t) 1 Xl,o..,Yn(tk) •xk} = P{Y(t) I x1,...,Y(tk) x xk .
n-1-w

for all x. for whijc the right-hand side is continuous.

A third mode of convergence which is important for applied problems is weak

convergence of a sequence of probability measures defined as follows. Let S

be a metric space and be the smallest Borel field containing the open sets of

S. If Vn and v are probability measures on J and if the

lim ff dv I f dv
n•-o S S

for every bounded, continuous, real-valued function f on S, then we say vn

converges weakly to v and write vn --- V.

For our problems the measures vn will be generated by the Y n() processes

and the measure v by Y(O). In most cases the metric space S will be C[O,1],

the space of continuous functions on [0,1) with the metric of uniform conver-

gence, or a multi-dimensional analog. Weak convergence is important because it

implies convergence in distribution of certain functionals of the original pro-

cesses. Sometimes in applications the distribution of the functional is more

important than that of the original process,

Once these limit theorems have been obtained we can consider using the

limit distributions as an approximation to the distribution of X n(.) when the

parameter n is sufficiently "large." Of course, the question of how large n

must be before a "good" approximation i s 'htained introduces the question of

rates of convergence for the limit theorems. Little work of an analytical nature

has been done on the rate of convergence issue, however, for some models numeri-

cal results are available.
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The protype of these limit theorems and their resulting approximations is

the convergence of sums of independent, identically distributed (i.i.d.)

random variables to Brownian motion. These results will be sketched in Section

2. Models from queueing theory will be taken up in Sections 3, 4, and 5.

Section 6 will be concerned with the multi-urn Ehrenfest model. A quality

control model will be discussed in Section 7. Finally, in Section 8 brief

mention will be made of other work on the convergence of processes in applied

probability.

2. Sums of Random Variables and Brownian Motion

Let X1 ,X2 ,o.. be a sequence of i.iod. random variables defined on

the product probability space (O,S,P) and having mean 0 and variance 1.

We shall denote the partial sums by Si = X1.Ioo÷+Xi and set SO 0 0. The

appropriate sequence of processes to consider is defined by

Snt
Yn(t) n , 0 <t < 1, n = 1,2,.._

The fact that we have restricted the time parameter t to the unit interval

is not important, but does make the exposition easier. Observe that for a

fixed value of t the number of jumps of the Yn () process is of order n,

the mean value of each jump is 0, and the variance of each jump is nl

Thus the jumps are occurring very often and the..: heights are becoming

small as n Zrows large Hence it is natural to hope that as n * - the

paths of Y n() will become continuous.

a
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Alternatively, we could consider a sequence of processes defined by

S k (k kn-
S+ (nt-k) --1, kn"I

for k a 0,1,...,n-l. Notice that Zn(t) • Yn(t) for t of the form

kn" , k a 0,...,n, and is defined by linear interpolation for other values

of t. Hence the paths of Zn () are automatically continuous and this is

convenient when considering weak convergence of probability measures.

We shall be interested in showing that the sequences (Yn(-)I and

(Zn (.)) converge, as discussed in Section 1, to Brownian motion, Y(.), on

the unit interval. As a check to see that we are on the right track, we

calculate the infinitesimal mean and variance of Y nCt) per unit time.

2
Denoting these means and variances by m (y) and a Cy), we have

n n

ru(y) n E(Y(t)I- Yn(t)Yn(t)•y)
n n n n n

nE x nt +1 0



I e.

f and

n n I (t)n Yn(t) y)

E(2

E nt]+l

This infinitesimal mean and variance agrees with those of Brownian motion which

provides a useful check before nroceeding to a rigorous analysis.

The proof of the convergence of the one-dimension distributions is simply

the central limit theorem; i.e.,

l12 X, 2
lir P{Y (t) I x) a (2wt)./ f exp{- .-} ds

n n -2t

The normal distribution on the right-hand side is also the distribution of the posi-

tion of Bsrownian motion at time t. To show convergence of the f.d.d. the Levy

continuity theorem for characteristic functions can be used. The case k = 2

embodies the general argument which goes as follows. Let n(Sils 2 ;tl,t 2 ) be

the joint characteristic function of Y n(t ) and Yn(t 2). Then

i(s'+s is
wc s theoit cr eristc f [ntl] oin (S[n Sat M 1

Letting n Sm we see that

(3193 ex (Sl1S2) 2t2
$n(S,2;tl't2) ep. .. 2 2

which is the joint characteristic function of Brownian motion at times tI 1And

t t2, Similar arguments can be used to show the convergence of the f.d.d, of the

Zn(.) processes.
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To establish weak convergence of the measures associated with (Yn(.)} or

{Z nC)) two steps are required. The first step is the convergence of the f.d.d.

which we have demonstrated above. Secondly, the probability that the approximat-

ing processes can have large fluctuation between points at which they are deter-

mined by their f.dodo must be shown to be small. The notation of weak conver-

gence is intimately related to the so-called invariance principles. An

invariance prin:iple for sums of i.i.do random variables states roughly that

the limit of the distribution of various functionals of the Si's is independent

of the comon distribution of the XiIs, provided the mean is 0 and variance

1. Such an invariance principle was first given by Erdos and Kac (1946) and

later generalized by Donsker (1951) and Billingsley (1956). To carry out the

second step mentioned above for (Yn (.)) (respectively, QZn(-))) the reader

should consult Donsker (1951) 0illingsley (19S6)). Other important references for

weak convergence of sums of i.iod, random variables are Prokhorov (1956),

Skorokhod (1956), and Ito-McKean (1965),

It is important to note that while the approximating processes could all be

defined on a single probability space the limiting Brownian motion was defined on

another probability space. Thus with this set-up it makes no sense to speak of

convergence with probability one or in quadratic mean, for example. However,

when the Xi's are Bernoulli random variablesgKnight (1962) has succeeded in

defining the approximating processes and the limit process on a single probability

space and then shown probability one convergence.

3. Waiting Time fo? the Queue GI/G/1

In this section we shall consider the u.sLibucion of the waiting time in

the single-server queue with general independent input and general service time.

Our objective is to demonstrate the usefulness of the notion of weak convergence

in studying the asymptotic behavior of the waiting time as the traffic intensity

o, goes to 1. This discussion is based on work of Prokhorov (19S6. 1963).
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Let Wn be the waiting time (time before service begins) foT the nth

thcustomer. We shall denote the service time of the n customer by vn and

the interval between the arrival times of the nth and (n~l)st customers by

un. Then if W 1  0,

(1) F nl(x) - Pr{W n l+ s Pr{SI _ x, S2 L x, ... , Sn I x',

i
where Xn =vn - un and Si a ! X.. This result was first derived by Lindleyjwl

(1952); see Prabhu (1965) for a comprehensive discussion of the GI/G/l queue.

The usual independence assumptions regarding {v n) and u n) imply that the

XiIs are independent. Since the distribution of W n 1  is seen to be equal to

the distribution of the maximum functional on the process of partial sums, Si.

it is natural to hope for limit theorems which lead to themaximum functional

on Brownian notion.

Consider now a sequence of such queueing processes indexed by, 6  in which
(6 d (6 d

E(On } 1/(0-6i), E(vn 1, and hence Pi 1 1-61. Thus

(8E(d
E(%- -6 /(-6. ). We shall treat the case 6i > 0 (or oi < 1) here,

although for many of the arguments the sign of 6i is n-t important. Our goal

(6id

now is to obtain limit theorems for wnV as 6 • 0 and n * -. There are
n1 2

a number of possible limit theorems depending on whether hi 6i converges to zero,

a positive constant, or plus infinity.

Theorem 3.1 of Prokhorov (1956) is the principal tool used in obtaining

these limits theorems. The set-up for the theorem is as follows. A double

sequence

SXnl' Xn, 2 1 ... , Xn,k

of rlndom variables is given which are independent for each n and subject to

the asymptotic negligibility condition



li. max Pr(IXnk' > el ' 0 for all c > 0.

n~-p nn l
k

The first two moments satisfy E{Xnk -, an, 2 2 [O, and q ank
n 0kn ,k n,k >0an k.1l~

k
Let the partial sums be denoted by S n, 0 and Sn,k j, k for

I < k < kn. We let tnk * 2 2[Snk 1  and construct the continuous path function

Yn(t) which is piece-wise linear with vertices at the points (tn~k, Sn,k). The

measure induced by Yn (t) on C[0,1] we shall denote by Pn and that induced

by Brownian motion by P. Then the theorem is as follows.

A necessar, and sufficient-condition for Pn to converge weakly to P is that

k
n 2

(2) lim J xIdF (x)-0
n- k-a lx nPi4k

for all A 0, where Fn,k(X) *Pr{Xn,k I x}.

First consider the case where n a62 0 as i W -. We shall assume thati i

a [Xi d a > 0, a a, and that

(3) f x dK i) (x) 0

(6i) (6i)

uniformly in 6i as z * , where K is the distribution function of Xn

The latter condition assures us that condition (2) is satisfied for our queueing

problem. From (1) we have for 0 . x < -

(6 i) (6 ) S (6i )

(4) F (xoi /n/i) - Pr(W i a X_ 47i - P, k X I
Wn. #1 1il 09 do~5

One can easily check to see that the conditions of the above theorem hold

and hence

a-
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S)(6.) _______ i{So k k E(X 1(S) Pr '4x * - - < k < n

a i /n 1 0 /ni

converges as i * to the maximum functional of Brownian motion, naely

p( max Y(t) x})
O<t<l

where Y(t) is the path function of Brownian motion. This probability is known

to be 20(x) - 1, the truncated normal distribution. Since we have assumed that

2n 6 0, the terms
i i

(6) d6
k IE(Xi k 6i1(6) .. • - .0 as i ÷-,

i*ifor k - 1,2,...,ni. Hence putting together (5) and (6) yields

F dil (x ai /n) + 2#(x) - I.

This result is of course also true in the case where 6i 0.

Next we assume n6 2 0 t T < Using (1) again we have

ii

( -1 x ki •ni E[Xd 16i

F (xf6 Pr . . -. i k < n } .

By assumption -ft E[X )]61 and oi 6 *o /T Using the weal conver-

gence again we have

(7) Fn .1 (1/6) P( max Y(t) ti •
-oP t .l -V"

ly a change in time scale the last probability can a'so be written as
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(8) P(max [NOt)- - -tx1

Finally, consider the case where n 62 A. . We would expect the limit of
i i

(6.)

Fn l (x/O ) to be the expression in (8) with T replaced by -. This is in

fact true, although an additional argument employing Kolmogorov's inequality is

required. For a fixed 6 > 0, the stationary distribution of the Markov chain

(W(6)) exists and is given by

(6),(6
F(X) a F;(sup S(6)< x)

In the course of deriving (8) with T replaced by -, Prokhorov also shows that

(6.) -l-2xlo

(9) F (x/6 ) ÷ P( max IY(t) - to- ]< xo " 1 . 1 - • 2

O<.t<-

The last equality was derived by Darling and Siegert (1953). The result given

in (9) was first derived by Kinguman (1962). For an expository account of

Kingman's work in this area of so-called "heavy traffic" the reader should con-

sult Kingman (1965).

From this work of Prokhorov's it should be clear that the notion of weak

convergence is an isportent one for applied probability. For other work in this

ipirit consult Viskov (1964), Viskov and 9rokhorov (1964), and M'rovkov (164).

4. The Many Server Qeue sr.$ Telephone Trunking Problem

In this section we shall discuss the many server queue and telephone trunk-

ing problem (infinite server queue) with Poisson arrivals and expwoential

service time. As usual the service time., are indepsndent of the arrival protess

and no server is idle if a customer is waiting. If there are n servers and

we let Xn (t) denote the nmber of custowers waiting or being serve4' at tivý-

t, then it is well known that Xn(t) is a birth snd death process. Ab such



4W the transition probabilities, Pij(t) * P{X (t+T) - JIXn(T) a i), can be

expressed by the integral representation of Karlin and McGregor (1958). If we

knew pij(t) explicitly, we would in principle be able to calculate all the

distributions of interest for this model. Unfortunately, it is exceedingly

difficult to compute pij(t) when n is larger than 3 or 4.

Motivated by this difficulty, we shall seek a diffusion approximation for

X n(t) when n is large. We shall follow the discussion of the author

(Iglehart (1965)). Naturally, if we keep the expected interarrival time and

the expected service time fixed, the behavior of the many server queue

approaches that of the telephone trunking problem. While the transition prob-

abilities for the telephone trunking problem are well known, we would have lost

the characteristics of the original problem. In fact, the traffic intensity p,

defined to be the ratio of the arrival rate to n times the service rate, would

tend to zero whereas the processes being approximated have a positive traffic

intensity. Therefore, we shall let the arrival rate become large with the number

of servers, and keep the service time constant in such a manner that p is

maintained at a fixed value less than one. To be specific we let Xn (t) be the

birth and death process with parameters

(n)
.) no

'I

for i 1 0,1,... and n w.1,2,..., where 0 < p < 1.

As a heuristic aid to setting up the appropriate approximating processes,

consider the imbedded jump process of X n(t). The expected displacement in one

jump starting at state i < n is (np-i)/(npoi) which is non-negative if

i < no and negative if i > no. For i > n the expected displacement is always
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negative. In other words, the state [no] is an "equilibrium poiat" of the

process. Thus for our approximating processes it is natural to consider the

fluctuations of XIn(t) about (no], measured in an appropriate scale. We shall

set

X n(t) - up

n ~(no)1/

Again as a guide to the limiting diffusion process, we shall calculate the

infinitesimal mean and variance of Yn(t). The infinitesimal mean is defined in

terms of the jump process ý (k), say, as

%(y) - E(Yn(k~l) - n(k) 1 A) y} / ":{holding time in y.

In our case if we let a n(y) - [no + (no) y/2iy, then

1 A(rn) (-n)

m (Y) a -- . (n)n )
ri1/2 an (Y) UM Y(no) t, a n() n nCy)

We now take n so large that an(y) < n (which is possible since p < 1). Thus

(10) m (Y) I (2 y] -y as n1/2
(np) n/y

The infinitesimal variance is similarly defined as

(11) 2n(y) E((Yn (k~l) - Yn(k)) 2I 9n (k) * y) / E(holding time in y)

Hence
I (n) + (n)

2 -) a-n(y a n(y- (n) + U(y)
n ( n) + (n) % (y) a n(y)

an(y) an(y)

I (no + [no r (no)i/2y] ) .2 as n e.
u-n p J
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SThe limit process should then be governed by the backward equation

2
au a u au

at a x

which is recognized as the equation of the Ornstein-Uhlenbeck diffusion process.

At this point we are in need of a technique for showing that the distribution

of Y n(t) converges to the distribution of the Ornstein-Uhlenbeck process

Y(t), say. If we could explicitly obtain the representation for pij(t), we

might use analytic techniques involving orthogonal polynomial to achieve our

result. While the parameters {w.1 and the orthogonal polynomials {Qi(x)}

can be easily obtained, the measure #(x) is difficult to characterize. I, fact,

the difficulty in obtaining this representation provided our initial motivation

for looking for a diffusion approximation. Fortunately, there is a general

theory due to Stone (1961, 1963) which gives necessary and sufficient conditions

for the weak convergence of a sequence of birth and ,eath processes (or random

walks, or diffusions) to a limiting diffusion process. Although the gineral

set-up and notation required to discuss S^on6's results in detail are too involved

for this paper, perhaps a few heuristic remarks would be helpful.

The processes considered by Stone (random walks, birth and deat.-h processes,

an4 diffusions) enjoy the property that points in tile state space are not jumped

over by the process; i.e., possible transitions can only occur to neighboring

states in the discrete case and the path functions &re continuous in the contin-

uous state space case. This propert'; re>Aits in the infinitesimal operator of the

semi-group of transition fnctions being -. ocal operator. The inf-nitesimE

operator is essentialli dete.amined (aside from 6.iy boundary conditions which may

have to be imposed) by the infinitesimal mean and variance of the process. Since
4.

' • convergence of the infinitesimal operators of a sequence of processes implies

* convergence of the processes, it siems natural to assume that convergence of theI
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t infinitesimal means and variances would also imply coqnvergence of the processes.

This is in fact true, except the infinitesimal operator of a semi-group is not

determined until the boundary conditions (lateral conditional in Feller's (1957)

terminology) have been specified. Hence to obtain convergence of the processes

we iueed to assume that the behavior of the sequence of processes in the neighbor-

hood of a boundary point convergence to that of the limit process. Finally, we

need to check that the state space of the approximating processes becomes dense

in the state space of the limit process.

In our example of the many server queue we have shown in (10) and (11) that

the infinitesimal mean and variance convergence uniformly in every compact interval

of the line. Furthermore, the state space of Yn (t) becomes dense in (-- +-),

the state space of the limit process, as n -, -. These are the essential facts

required to apply Stone's results (cf. Iglehart (1965)). The conclusion is that

the processes Yn (t) converge weakly to Y(t) provided Xn (0) - [np + (no) 1/2y]

for any real y.

To illustrate how the representation for pij(t) can be used to obtain a

limiting diffusion, we shall consider the telephone trunking problem. In this

model Xn(t), the number of busy channels, is a birth and death process with

parameters

W nc

(n) IN
J

for j 0,1,..., and n * 1,2,..., where c > 0. The representation (Karlin

and McGregor (1958)) in this case is

a A -nc
Pij(t) - T eJktci(k;nx)cj(k;nc) I

kwO

where i•k(X;a)) are the Poisson-Charlier polynomials, orthogonal with respect
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to the measure e'aax/X! on x a 0,1,... and x (nc)j/jl. By showing that

the Poisson-Charlier polynomials, properly normalized, converge to the Hermite

polynomials (this is not surprising considering the fact that the Hermite poly-

nomials are orthogonal with respect to the normal density and the implications of

the central limit theorem), it is not hard to show that for

%n(X) - [(nc)I/ 2 x + nc]• (X) (y)t) is asymptotic (whennormalized)

to the transition density for the Ornstein-Uhlenbeck process. This convergence

provides a local limit theorem for the convergence of the processes

(Xn(t) - nc)/(nc) /2 to the Ornstein-Uhlenbeck process.

For another example of such a local limit theorem obtained from the integral

representation for pij(t) in the case of the Ehrenfest urn model, the reader

should consult Karlin and McGregor (1965).

S. Luchak's Queueing Model in Heavy Traffic

Luchak (1958) studied a single-server queueing model in which customers

arrive according to a Poisson process with rate X > 0 and require a random

number, N, of phases of service, each phase being exponential with parameter

v. Luchak considered the transient behavior of the phase length process, Q(t),

which is the number of phases present in the system at time t including the

phase in service. His result is given in terms of a rather unwieldy transform.

Recently Lalchandani (1967) considered in his thesis the behavior of Q(t)

in heavy traffic (i.e., as the traffic intensity approaches one). We shall give

a brief outline of his method which seems to have some general interest.

The distribu•ion of N is discrete (P[Nunj * cn, nsl,2,...) with finite

mean, a, and second moment, b. With these parameters the traffic intensity

j p a Al/u. Consider now a sequence of queueing systems indexed by n (n!l) for

which the arrival and service parameters are An and v n" For the corresponding

traffic intensity, on' to tend to I we choose, as an example, An a n andIi
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"Un a(n + Fn). If ',•t) denotes the phase length process for the nth system,

Lalchandani shows that the distribution Of X n(t), defined as

XQt(t) - n

n t [(a+b)n]177

converges as n * - to the distribution of Brownian motion at time t with

initial state y, provided Qn(O) - [ /v'(a+)n . y + n].

While the Qn(t) process is a continuous parameter Markov chain, it is not

a birth and death process and hence we do not have available the special tech-

niques for such processes. Consider, however, the discrete parameter jump chain

Qn(k), corresponding to Qn(t). In one step the chain Qn(k) goes up j with

probability ciAn / (An + 'jn) and down I with probability Un/(Xn + pn), provided

Qn(k) 0 0. If Qn(k) - O, then the only transitions are up j with probability

c . Except for the troublesome state 0, the Qn(k) process is a process of sums

of independent random variables. However, when pn A 1, we would not expect

the queue to be idle often, and thus it is not too surprising that the limit

process for X n([A n n )t]) is Brownian motion, where

•n(k) * (k(k) - n)/[(a+b)nJ]I 2 . One of the crucial steps in showing this con-

vergence in distribution is the study of the behavior of P((J) - 0).

Once the convergence of the suitably translated and scaled jump chain is

obtained it is not difficult to show that the Xn (t) process converges. If

we consider the time points at which Jumps in the Qn(t) process occur, it is

clear that these time points are essentially a renewal process with exponential

lifetimes having parameter (An + P ). Very occasionally, however, the queue is
nn

empty and the exponential parameter is An . Define Nn (t) to be the number of

jumps of the Qn(.) process in the interval [O,t]. Then the mean and variance

of N n(t) are shown to behave like (A n n )t as n # -. Now a conditional

probability argument can be used in which the P(Xn(t) c xlNn(t) a J) is

!
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is identified with the P(X' (j) < x), Finally, in this manner Laichandani shows

that the distribution of Xn(t) con= ,urs to the appropriate normal distribution.

While the argument outlined above used the specific structure of the Markov

chain Qn(t), it seems likely that the idea of looking first for limit processes

of the jump chain should have greater applicability.

6. The Multi-urn Ehrenfest Model

In the multi-urn Ehrenfest model N balls are distributed among d~l (d42)

urns. If we label the urns O,l,...,d, then the system is said to be in state

= (ilui2 ,...,id) when there are i. balls in urn j (jnl,2,...,d) and N-k.k

balls in urn 0. At discrete epochs a ball is chosen at random from one of the

d+l urns; each of the N balls has probability I/N of being selected. The ball

chosen is removed from its urn and placed in urn i (i=0,1,...,d) with prob-

i i, 0ability p , where the p 's are elements of a given vector, (p ,k), satis-
d

fying pi > 0 and I pi 1. We shall let 0(k) denote the state of the
i=O

system after the kth such rearrangement of balls. In this section we shall

discuss some limit theorems, which were obtained by the author (Iglehart (1967))

for the sequence of processes (%(k): kO,.._,N) as N tends to infinity.

For the classical Ehrenfest model (del, p0 =p1 = 1/2) Kac (1947) showed that the

distribution of (XN([NtJ) - N/2)/(N/2)1/2 converges as N + - to the distribu-

tion of the Ornstein-Uhlenbeck process at time t having started at yo at

t=O, provided XN(O) - [(N/2) 1 / 2 y0 ÷N/2]. Recently, Karlin and McGregor (1965)

obtained a similar result for the continuous time version of the model with dm2;

in this version the random selection of balls is done at the occurrence of events

of an independent Poisson process.
4•

4 The vector k has all its components equal to 1 and I.X is the usual
scalar product.

1,



A preliminary calculation indicates that the process (,(k): k-O,...,N)

is attracted to the pseudo-equilibrium state Ng and that states far from Ne

will only occur rarely. Thus it is natural to consider the fluctuations of

4N(k) about Ng measured in an appropriate scale. For our purposes the appro-

priate processes to consider are (XN(k): k=0,...,N), where

U (k) - - N N1/2.

Next we define a sequence of stochastic processes (KN~t): 0 < t < 1) which

are continuous, linear on the intervals ((k-l)N" , kN"), and satisfy

yW(kN ") a 4N(k) for k=O,l,...,N. In other words we let

NN(t) - 4(k) * (Nt-k)(CN(k~l) - 4(k))

if kNl < t i (k+l)Nl. Throughout this discussion we shall let 5

i p 1/2 i I dC(0) a [N/ Y• Np ], where X0= (yO,...,y 0 ) is an arbitrary, but fixed,

o6 Rd
element of Rd. With this initial condition and the Markov structure of the

model, the processes %4 (k): ku0,...,N) for N=1,2,... can be defined on a

probability triple (%N01, PN). We shall let Cd(O[l] denote the product

space of d copies of C[O,11, the space of continuous functions on (0,11

with the topology of uniform convergence, and endow Cd[0,lJ with the product

topology. The topological Borel field of Cd[Ol) will be denoted by eld.

Clearly, the transformation taking the sequence (%(k): k-0,...,N) into

%N(t): 0 1 t j 1) is measurable and induces a probability measure on d" We

shall denote this induced measure by vN(.;y4).

S. It will always be understood that N is sufficiently large so that

0 1 Y(0) < N for all i-l,2,...,d, where is the ,-th component of

the vector W(.),

6. Rd is d-dimensional Euclidean space.
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The principal result of Iglehart (1967) is that IZN(.;yo) (.;yO) as

N e -, where U(.;yo) is the probability measure on td of a d-dimensional

diffusion process, y('). starting at the point yo. The limit process y(') is

a d-dimensional analog of the Ornstein-Uhlenbeck process whose distribution at

time t is a multi-variate normal with mean vector e't and covariance matrix

where the elements of z are

I.(l-0e2t)Pi (l-p i) , ij

a j(1-0'2t )p ip i~j.

I To obtain the weak convergence of the measures ON to U we Must first

show the convergence of the corresponding f.d.d. We shall only be able to

sketch the proof here. For the convergence of the distribution of • 4 (t) we

can consider the distribution of 4N((Nt]), since 1Yi([NtJ) - yi(t)Ic4"I/2

for iul,...,d with probability one. The method of characteristic functions

and the Levy continuity theorem is used. If we let7 *N(;k) - EN(exp(it.XN(k))),

then by using a standard conditional probability argument and obvious asymptotic

expansions we show that

ON(4,k~l) - gN(3 lMN(k(ll.k)

for k=O,l,...,N-l, where

Sa ,xp(- N• 1 o(N ))

2t I.S-ela- -) l -,

( (1-N * o(Nl))- as N * -, and the teors o(N") are uniform

for in a compact set of Rd and independent of k. From this result, a

~ simple iteration one shows that

7. The symbol EN() denotes expectation with respect to PN

4
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k-i
(12) ON(kk) U gj-0

for k-l,2,...,N, where ,M(k,p) n k and kN(k,j) w N[k(kj-l),l] for j _ I.

Now letting k a [Nt] in (12) taking logarithms we obtain

1in LntN(4,[Nt]) - -(1/2) •' • * ie't4.-k

which is the characteristic function of X(t). The convergence of the f.d.d. is

shown by a similar argument. To complete the proof of weak convergence a combi-

nation of the methods of Stone (1961) and Billingsley (1956) are used.

The method outlined above to show convergence of the f.d.d. can be used for

a variety of related urn models, some of which are associated with queueing

problems. These results will appear in future publications.

7. Weak Convergence of a Sequence of quickest Detection Problems

Consider a production process which is in one of two states, a good state

and a bad state, which correspond to being in control and out of control. Pro-

duction begins with the process in control and after each item is produced there

is a probability w of the process going out of control. A statistical control

procedure is desired which will enable one to detect the fact that the process is

out of control in some optimal m r. This model of a production process vas

first introduced by Girshick and Rubin (1952) and later discussions of the

problem are due to Shiryaev (1963). Taylor (1967). and Bother (1967). Most of

the work carried out in these papers deals with a continuous time analog in

which a Srownia motion process with man 0 has a drift of 1 introduced after

some independent exponential ties. The corresponding optimal statistical control

procedures are then derived and proposed as good rules for controlling the

discrete processes The passage from discrete to continuous and back to discrete
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C has never been carried out in a rigorous way. It turns out that the notions of

weak convergence are exactly what is required.

Our discussion, based on the paper Iglehart and Taylor (1967), begins with

a sequence of truncated processes which can be easily described as follows. In

the truncated problem of length n (L2) the process produces n independent

items and toes out of control at a random time Tn (1p). All items produced at

or before time Tn are assumed to have a random quality with distribution

function F0  (having mean 0 and variance 1). All iters produced after Tn

possess quality given by F1 (x) a F0(x-1); i.e., the process when out of

control shifts the d.f, Fo by I unit. The distribution of T is given by

n-

(I -I I

which is simply a geometric distribution with parameter v/n truncated at n-I

with the remaining mass lued at jan. If Tn a n, then all n items pro-

ducod have quality given by F . The process is just turned off after n items

have been produced and if Tn - n it would be out of control, but this it then

irrelevant.

We introduce two sequences of measures on F (Sorel sets of C(011) as

follows. Let XIX 2 ,... be a sequence of independent random variables with d.f.

o and define

k 1/
k) I ( Xtn

i-l

for k Il,....n and Xn(O)- 0. Then the paths %n(t) in C(O.l) are

obtained by setting xn(t) a Xn(k) for t a kin, k a 0,l,...,n and by linear

interpolation for other values of t. Let v denote the measure induced on

~a. a
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by x n(.). Next define the continuous paths (0 (n on [0,11 by

0•• t Y.•n

e n ( t ) t -n /n t

The measures induced by O61(') we denote by Xn ""early, the obseiz, process

of production corresponds to yn(t) - xn(t) * an(t).

From the work of Prokhorov (19S6) we know that p n 4 P, where o is

Wiener measure for paths starting at 0. We now introduce the measure X on

induced by the process 0(.) on [0,11 defii, d by

0(t) = 0 t _T

(t-T) t > T

where the random variable T has an exponential density fT(t) with parameter
-1I

for 0 <. t c I and assumes the value I with probability e Using character-

istic functions it is easy to show that the f.d.d. of Aa converge to those

of A. Furthermore, since the support of all the measures (An) is contained

in the compact set N C OC(0,1 given by

9 - (x: x(t)-O, t to; A(t)-t-to, t>to; for some toc(O,l))

it follows from Prokhorov (19S6) that the family of measures is tight and thus

A sa a . Finally, since the measures induced by y"(t) are simply the convolu-

tion A h Un, and additional argiment shows that An e vnii A . M.

Cirshick and Rubin (19S2) show that the optimal contrl (under a cost

structure which we won't mention) is to stop the process w:,in the posteriori

probability that the process will be out-of-control for the next item produced,

i
t
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frP given the history of observations, exceeds a certain level. It is more conven-

ient to consider a monotone finction of this posteriori probability which maps

each path of the process (y (t): 0 • t < 1) into CQ0,1]. This sequence of
n

mappings (one for each n) is co,,cinuous and converges uniformly on compact

sets of C[0,1]. Another result of Prokhorov (1956) implies that the measures

induced by these monotone "unctions coi.verge weakly. Finally, this last result

implies that the distribution -' the optimal stopping times and the optimal

costs converge. Thus we have established in a rigorous manner the relationship

between the discrete models and the continuous analog.

8. Other Work on Convergence of Processes in Applied Probability

In this final section we shall mention briefly some other work on conver-

gence of processes. The area of applied probability in which diffusion

approximations have been most widely used is population genetics. This work

was initiated by Ficher and Wright in the 1930's. We have not discussed any

of these applications since a comprehensive review is available by Kimura (1964).

A subsequent parer which treats diffusion approximations in genetics from the

point of view discussed here is Karlin and McGregor (1964).

In branching processes several papers have recently appeared which deal

with convergerce of piocesses, These papers are Lamperti (1967), Lauperti and

Ney (1967), and Lamperti (1967).

Distribution-free statistics such as those of the Kolmogorov-Smirnov and

Cramfr-von-Mises types can be defined as functionals on the seruence of empiri-

cal stochastic processes. Ccvergence of these processes has been studied by

joob, Donsker, and Prokhorov. For an excellent summary of this work, complete

references, and further extensions the reader should consult Pyke (1965). Two

, additional papers which deal with order statistics and related random variables

are Dwass (1964) and Lamperti. (1964).
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1. Introduction.

Certain techniques which were developed for sequential analysis have

been found to apply to a wide variety of problems including some stochastic

control problems. We shall outline these techniques and indicate how

they may be applied. The main tool is the representation of incoming

information in terms of continuous time Wiener process which relates these

problems to the solution of A1 ree Boundary Problems involving the heat

equation.

2. Some Problems.

Consider the following distinct problems.

Problem 1. (A Sequential Analysis Problem). The random variable x 4.

21 2
normally- distributed with unknown mean I and known variance a The

- Pr/epared with the partial support of NSF Gran. GP 5705. An

amplifted version of this paper will be rubmitted to Sankhya.

-_ We shall use the fp~lowing notation throughout the paper. Let

(x) ( . -x/ and $(x) - ' t T(y)dy to represent the

standard normal density and cumulative distributlon functionss. The

normal distribution with mean & and variance z,2 As ý(.A, )

and has density n(x:ua 2) = 0 ,-1P(x-)i)/a. and cdf $[(x-u)/oi.

We denote the probability distribution (law) of a random variable

X by X(N) and its mathematical expectation by E(X). t(X:Yj

rind E(X!Y, represent. tre conditlonal distribution and expectAtion

of X given Y



statistician must decide whether p > 0 or k < 0 and the cost of an

incorrect decision is kpl., k > 0. He is permitted to sample sequentially

(one observation at a time) at a cost of c per observation. He

may stop sampling at any time and make a decision. The total cost will

be cn if the decision is correct and cn + kI41 if it is wrong where

n is the number of observations taken. The cost is a random variable

whose distribution depends on the unknown u and the (sequential)

procedure used.

To determine an optimal procedure one must specify some criterion

of optimality. It is convenient to treat this problem in a Bayesian

context assuming that the unknown " is normally distributed with mean

and variance o, (both known). Then a sequential procedure deter-

mines an expected cost, and one may seek that procedure which minimizes

the expected cost.

Problem 2. (A ctoppang Problem,. Let [X, -m < n < O1 be a stochastic

proce5 such that X - x is specified and X n+ = X n+Un where the

u. are independently ard normally distributed with mean 0 and variance

1. Tnu, i- is convenient to think of X changing as the subscript n
n

1nc-e,9, eý tc :er". 4For each n < 0, an observer can stop the process

-)nd j:I'2 or it. can wait till n : 0 at which point he collects

.f X > -I nd X)o if X < 0- However, he must pay 1 for each
0- 00

o-ervr-j1 io'. "n. consWt tes an optimal procedure for stopping?

Protierm kl (iocKe. Control-InfInite Fuel). A rocket is directed toward
"A! ctrta ,r, timPe points It. i, instruments make measurements

e•1 L:.--!ng tr• ditance by which it will miss. The mics, distance can



then be adjusted by an "instantaneous" use of fuel. The cost of missing

by an amount y is ky2 . The cost per unit of fuel is c. As much

fuel as is desired is available. How should fuel be allocated to minimize

expected total cost?

Certain simplifications and specifications are necessary to make

this problem meaningful and tractable. The assumption of an infinite

supply of available fuel is already such a simplifying assumption. Let

us replace the natural two-dimensional miss vector by a one dimensional

value which can take on positive and negative values. Let us assume that

if an amount of fuel L is used at time t the miss distance is changed

by ±e(t), where e(t) represents the efficiency of fuel at time t.

Since fuel is used to change direction, the efficiency e(t) is greatest

at the beginning of the flight when the rocket is far away from the target.

We shall assume that the amount of fuel used and its effect can be con-

trolled and measured with precision. Let us now assume that the mea-

surements estimating the miss distance are xi at time tI where the

xi are independent and normally distributed with mean equal to the miss

distance (provided no additional fuel is used) and known variance equal

2
to ai

Here as in the Sequential Analysis problem, the performance

charactertstics of a procedure depend on the unknown value of a funda-

mental parameter. In t.he Sequential Analysis problem that was u. Here

it is the unknown miss distance that would be obtained if no adjustments

were made. As in the sequential analysis problem we find it convenient

to assume that the unknown miss distance has a normal prior distribution

with specified mean "o and variance %. Then there is an exrected



cost for each procedure and the problem of selecting an optimal procedure

is meaningful.

These three problems have more flavor if the competing factors are

indicated qualitatively. In the sequential problem, after much data

has been accumulated one is either reasonably certain of the sign of g

or that IgI is so smell that the loss of deciding wrong is less than

the cost of another observation. Here one expects the proper procedure

to be such that one stops and makes a decision when the current estimate

of jpj is sufficiently large and continues sampling otherwise. What

constitutes sufficiently large depends on, and should decrease with, the

number of observations or equivalently the preeision of the estimate. It

can be shown that after a certain sample size it pays to stop no matter

what the current estimate of JA, .s.

In the .topping Problem, it it clear thet if X is sufficiently

negative (depending on n) one ought to pay the cost of continuing one

more step. It is to be expected that there are limits yn so that for

Xn < yn. it pays to continue and for ., Yn it pey,3 to stop.

In the rocket problem, -.hen the rocket i close to targetp fuel

effiel'ney vty t" so :ow that evtn throuigh tne m d~ istanCe Ii practically

* knovw' ont •o:1nt ':.- r,"1 - h u'•' d.utice were very great.

When *.he rccM~t 1 -'.r riy te -tref asrrec' ie bý t the uiot

i di.stanos 1 not voe. knwn oind •o ow 1;* re.•tnt t o roke n adJ-•stment

f "for r.or vi" or•ho~flIng or 1do .... n * t he -ro% dre't . Here r ne

should expect the solAin to• * the f 0 0%1tn# property. There IBM

Lm . ?, 1! ta t~ ~ . mte i hti~ xe

A



to ly1  It seewn reasonable to e.;-ec, th~e Y, to be Iarge at the

beginning of flight and -3t The end of the ijand relatively sum11

in between.

For specific value:- of the conetants, all three of these problems

can be solved numericaily ey the trickward induction techniques of dynamic

programming. 'Yor the i-equeiit.s. -in&ysis prcwlem, care mutct be taken

to initiate the bac~cvard ind~iction st -3 sam~ple size n s.&fficiently large

so thatý no matter -ihat the es*.Iate of' .~ is, the optimal procedure Will

lead to a decisl.on rather .hisr to additionsal tamp-ling. 711he technique of

the backward in-Luctian c!ýn f tu~inar.-ed by the equation

(2.1)z inf EjLn n r.n,'~ n n'

Where r, is thze expected cj5 of an optimwt. procedure given the

histo-y 4r . to i'Age P, A a , i describei the hiaitory uip to
(nt n r,

s~tage n+' which ninva bm ra ?dt.-. w~t diatriVxton der~ending on n end

th tcOt ~ en at ;ý-ie n. :*. pozeltle to 4 t e . ir. th

~;~r.; zd ty t h :wane snd vir!-,4mie of' ti* pooterior 4is-trtb iton of IA

t. T)Pfl F~ot \, %F~ y tit.Fe' to dteecrit*' ~ he

h~~~n if wtnh ~ in 4"e'rut Pr.# * optiuml prccedure.nn

-,-nt top;.dig prot&es (X a0

*f~r ' ~"' &t ~ f~ Ax --Owe-reecthu4 n 0 implies

a ~n o ~ .n.~~A' i t he Ct4ice of

~ ~ sj -jd x+ U- hieO



O Thus

P =(A min( (mn-1), m-, (xu9(u)dul

and the beat action for X. x is to stop or continue depending on

which of the two terms in the bracke*'s Is smaller. Having evaluated

O.IX),one can in principle proceed in the same way to obtain o_-,

and optima decision for n -2as a function of X_,, etc.

The rocket and se,,Uientia2. anaiy-sts problem seem more complex in

that they involve tl-e posierior dCstribt~lions, but the calculus of

posterior distributions (t-i be discussed In Section 5)when dealing with

normal random vsriab.les and normall prifors permits th'ese problems to be

treated with equal facility.

inl a iense then, these probleaw am~ trivial. 'If, howiever, it Is

desirod to derive some. overall v~iew of L~ow tho iolutions depend on the
varlc.'us paraweters, *he stmpi #-x!. xtnF1ve nutwricai caiculations

of 'the backward !ndu,:ton -3rw nvid~V

Ar' .t~r.7,;)cr~4c !A,ý Fi~ tr,~ relo,-'ee to large .'auple

thor i h ~~CCs thv - eloe- ýe Crgreot w~ r~r~dim vt o Ie~i by

anbla'---.s ;n..'.ý ttir 'n T-iý-Z ýr;e of Phu Wiener

yr~s r* e#~d~ ~v4-w and -ový t.;; copvtert the problem to

OfWe !ft W.t", t1, I v co ~ dreet q,.ietions con

5. W'u'ner Procter.

~ k'r* Independently ond Identleaiiy distributed

wzttý er-In hm *a ~r I rc '.'t X x #x., .* Thevi for



n > m>0, XnXn-(mis:independent of X1,X2,1... XM and normally distri-
buedwih ea advariance (n-mis When nisare

graph of the discrete Xn proceos resembles the anaiagous, continuous

tim~e procr-s- (X(t): 0 < t} which hazz the following properties. The

function X(t) is continuous, X(0) = 0, and for 0 < tl t2 ,

X(t2 )-X(t I) is independent of tX(t)- 0 < t < t9 and is normally

distributed with mean "(t 2.-t I)and variance q t2 tI) Thsmyb

referred to as ak Gaussian process w~ith independent incremuents or as a

2
W..ener process with drift ,and variance a per unit time. Typically

the drift !.- not referred to when we consider the case p. - 0. There

isa triv~iaI tut occassl~onuily usef"d variation where X(t)' is initiated

at the polnt, X(t. x rather than at X(0) 0. Notationally it is
0 0

convenient to refer to the process by the equ~ations

Etd~tt>- odt

VarldX(t)) 2 -

Tnis Is ezpeeiAally conven~ien'ý for veriotions of the Wiener process which

are der!-md ty ch~anging t';e scsiits. Observe that if E~dX(tI)J 0 and

VuA .; dt. the tzrantormatIon vsa* ,~ct *eX(t) yields

EI~X*'t*) 0 nd, Var~dXI*1.*tj dts.

AttL&o*h t~he btýrplr.g problem. ýPri*blm ~,Section Z2 does not Involve

vi .nfa1.Jn p~r**c**ts a n analogý-* of this :robalem can be posed in

toara~zi,t 4 cetin.u-W tv* Wteoor rrocevv v~t~tout drift orgn atIng from
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j• 4. Posterior Distributions.

Inasmuch as the Sequential Analysis and Rocket Control problems

invo..ve unknown parameters which may be estimated by incoming data, both

have a statistical component. For statistical problems in a Bayesian

context, the posterior distribution of the unknown parameter is crucial.

In the discrete case suppose that p has prior distribution

f(o(ý o2) (normal with mean 4o andvariance ao), and for given •,

the data xl,x 2 , ... ,xn are independent with distribution laws

2 2'(xi) =)(W, ff), aid c2 known. Then the posterior distribution of

Sgiven the data is (see (181).

S(4.1) t(4Xl,...,Xn) = (yn, sn)

where

(422) y 2 2 2+ - .- 2)G',2 y ro xl +...+X a- /<-° [+a .+a n > 0
n 0n P n 0 . n -

and

(4.3) -1_ o-. -1.-2+,-+'+o2
n on 1

Here Yn' tne mean of the posterior distribution, may be called the

(posterior) Bayes Estimate of ý. It is a weighted average of the

indtvidual estimates xi weighted by the precisions (T,2) where the

prior distribution is treated as an estimate with mean o and precision

o 0 Similarly Yn may be regarded as a summary of the previous
-1

information and as an estimate of 4 with precision s 1
n

Since Y is the Bayes estimate of 4, one should expect that for
1n

S~8

• ,% .
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n > m, E(Yn vM) = M It -s Gomewhat more surprising to find by routine

but tedious calculations that

(4.4) {'/.n' !Y) =4(O, sm-s) n > m>o .

5. Continuous Time Problems.

The results of section 4 are of consequence in the continuous time

analogue of 'he sequential analysis problem which we now state.

Protlenm i. (Sequential Analysis, Continuous Time). Find an optimal

procedure for testing H: > 0 vs. H2" g < 0 when the cost of an in-

correct decision is kjpl, the cost of sampling is c per ur-it time,

and the data consistc of a Wiener process X(t) unknown drift A and

2known variance a per unit time. Tne unknown value of • has prior

distribution tG() =fl(')

As a consequence of the results of section 4 we have for Problem 1*,

the posterior distribution of 4 given by

(5.1) X(t 0 < t' < t) =ý(Y(s),s)

where
2 22 -2 2+-2 2

(5.2/ +

(5,5) U + tar
0

and Y(s) is a Wiener process in the -s scale, originating at

(yo, s) = ( ),%), i.e,

.(54) EFdY(s)) 0 , VartdY(s)) = -ds

9

""4



SNote that s decreases from so •2 as information accumulates.
0

Since the X process can be recovered from the Y process it

sufficies to deal with the latter which measures the current estimate

of 4 and which is easier to analyze.

In the sequential. problem, when the statistician stops sampling he

must decide between H; 1 > 0 and H2; 4 < 0. The posterior expected

cost associated with deciding in favor of H1 at time t (when

Y(s) = y) is then

0
•k jjijn(k;Y's)d•i

This quantity is readily computed and found to be k' 1&*(y/l V) where

*+(u) = qP(u)-u[l-D(u)]. Similarly the posterior expected cost associated

with deciding • < 0 is kis'*(u) where *-(u) = c(u)+u0(u). It is

easy to see that if sampling is stopped at Y(s) = y the decizion should

be made on the basis of the sign of y and the expected cost of deciding

plus the cost of sampling is given by

(5.5) d(y,s) = ca-2 s + k•/?,(y/lr') - ca 2 /10

where

(=P(u)-u[l-O(u)I u > 0

(5.6) *(u)

ý(Pu)+uO(u) u < 0

Thus the continuous time sequential analysis problem may be regarded

simply as the following stopping problemý The Wiener process Y(s) is

& observed. The statistician may stop at any value of r > 0 and pay

10



d(Y(s),s). Find the stopping procedure which minimizes the expected

cost. In this version of the problem using the posterior Bayes Estimate,

the statistical aspects involving the unknown parameter L have been

abstracted.

The original discrete time sequential problem can also be described

in terms of this stopping problem by adding the proviso that allowable

stopping values of s are restricted to s where• o'Slys2,1...,P

-2 2 1
s = (ao +n'). At this point it should be reasonably straightforward

n 0

for the reader to see that the discrete version can be treated numerically

by backward induction in terms of the Y(s) process starting from

2 22 2 2
s < c /k V (0) = 21rc/ko

We now present the continuous time version of the stopping Problem

2 of Section 2.

Problem 2*. (Stopping Problem). Let Y(A) be a Wiener process in the

-s scale with EfdY(s)) = 0, Var[dY(s))= -ds, originating from

(YO, s 0 ). Let

(5.7) d(y,s) [_y2 i nSif y(O and smO

d-s otherwise (s > 0)

Find the stopping time to minimize Etd(Y(s),s)j.

A more literal translation of Problem 2 of Section 2 would yield

a stopping cost d*(y,s) d(y,s) + so. Since the difference is constant

it does not affect the solution.

While the rules of computing posterior distributions extend to the

rocket control problem, that problem is not trivially reduced to a

i.1



C stopping problem. However, we shall see that the continuous version

of the infinite fuel problem posed in Section 2 is also equivalent to

a related stopping problem.

6. Continuous Time Stopping Problems: Relevance of Stopping Sets.

A general class of stopping problems may be described as follows.

Let Y(s) be a Wiener process in the -s scale originating from

(YoSo) with E(dY(s)) = 0 and Var{dY(s)) - -ds. Let d(y,s) be a

specified stopping cost. Select a stopping procedure S to minimize

the risk

(6.1) b(y 0 ,so) -- Etd(Y(S),S))

A stopping procedure S is a measurable rule which determines the

stopping time S in terms of the "past historyý' of Y(s). Technically,

in measure theoretic terms this may be translated to mean

(6.2) (S > s1) g.{(Y(s); so _ s > sI]

where the right hand side is the Borel Field generated by the process

from so to 8s1 Stopping procedures my be subjected to restrictions

which are either of the form that stopping is not allowed on certain

sets of points (y,s) or that stopping is automatic on other sets.

For example in the continuous time versions of both problems 1 and 2 of

Section 2, stopping must take place if sa 0. In a trivial sense the

discrete time version of the sequential analysis problem may be regarded

as a continuous time problem where stopping is not permitted except at

12
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a certain set of values of s.

While the discrete time problems of Section 2 ar.e theoretically

trivial insofar as the solutions can be computed by )ackward induction

this is not the case for the continuous time problems. Even discrete

time problems with an infinite sequence of possible decision times lead

to difficulties. The problems of the existence and characterization of

solutions are deep and much remains to be done to obtain precise rigorous

results for the continuous time problem. We shall proceed in a heuristic

fashion conveniently ignoring some of the more delicate questions which

have to be faced ultimately.

Let

(6.3) p(yo, s) = inf b(yo, S0)

among all procedures S. Note that p(yo,5o) < d(yo, so). Since Y

is a process of independ, nt increments, it follows that p(y,s) also

represents the best thaG can be expected once Y(s) - y is reached,

irrespective of how it was reached. Then, a characterization of an

optimal procedure (under regularity conditions) is described by

(W) S0 . "Stop as soon as p(Y(s),s).- d(Y(s),S)"

Since the optimal procedure S0 is characterized by the continuation

set

(6.4) Co " ((ys): p(ys) < d(y,s))

and the stopping set

(6•.5) ' (yos); p(ys) d(ys))

13



we shall restrict our attention to Trocedures which can be represented

by a continuation set o or its complement the stopping set .

It is interesting to note that the characterization (I) does not

depend on the initial point (y 0s) and thus it yields the solution

for all initial points simultaneously, minimizing b(ys) uniformly

for all (y,s).

Under suitable regularity conditions on d(y,s), the solution of

the continuous time stopping problems may be approximated by discrete

time versions corresponding to a finite sequence of permitted stopping

times (S,,S2,...,Sn). Since a discrete version permits less choice,

the corresponding optimal risk p* is larger and the corresponding

optimal continuation set intersects s = sI on a smaller set than
01

does o As more elements are adjoined to the set of permitted stopping

times, p* decreases and the set where P intersects s = sI increases.
01

In this way p and Co may be derived as limits of monotone sequences.

7. Stopping Problems. Relevance of Heat Eluation.

The Wiener process is intimately related to the heat equation.

Suppose, for example that b(y,s) is the expected cost corresponding

to an open continuation set ( and stopping cost d(y,s). Then we shall

demonstrate that

(7.1) b (y,s) - b (ys) (ys) C
Yyy

while

(7.2) b(ys) - d(ys) (y,s) c 40

Suppose (ys) E(. Then, the probability of stopping between s+5 and

14.



s is 0(8 ) and Y changes from Y(s+5 ) to Y(G). Consequently

b(y,s+b E(b(Y(s).,s)IY(s+8 ) y) + 0(b

(7.3)

where we use w as a generic 1?(0,i) random variable

b(y.,s+.8) E~b(y,s)+w-V-r'b (y,s)+ vw2 ( )b (y, s)+...) + 0(~ 5
y Yy

Sb(y,s) + ' b (Y.s)( 5 ) + 0( B

and

b s b~y

Doob has elaborated on the relationship between the Wiener process

and the heat equation indicating that it represents the natural way in

which to study the heat equation. To digress briefly and omitting

regularity conditions, a subparabolic function u on an open set D

is such that for a Wiener process Y(s) originating at (ys)

(7.-4) u(y,s) < E(u(Y(S),S))

where S is the time when Y(s) first hits the boundary of an open net

11 C D of which (y,s) is an interior point. A parabolic function is

one for which the inequality is replaced by equality. If the second

derivatives are continuous then

(7-5) 1Y u

15



for subparabolic functions with equality for parabolic functionn. Thus

solutions of the heat equation are identified with parabolic functions.

To solve the Dirichlet Problem (solution of U a = u in C' subject

to u - f on the boundary of 4) Doob takes u(y,s) - E(f(Y(S),S)).

The concept of subparabolic functions provides another characterization

of the optimal risk. We observe that

Mil) p(ys) is the maximal subparabolic function which is less

than or equal to d(y, s).

To see that p is subparabolic, take an arbitrary set I of which

(ys) is an interior point. Then E(p(Y(S),S)) represents the risk

associated with the suboptiuml procedure which does not stop as long as

(Y(s),s) c 4 but which proceeds optimally thereafter. Thus

(7.6) P(ls) < E(lYIS),S))

and p is subparabolic. Let o1 be any subparabolic function such that

p, d. Usin the optimal continuation ot ofor we have,

for (ys) C COP

l~y, s) - £(d(Y(So),So)) ) E(Ol(Y(so),So)) o ll(y,s)

if (y1,) 4 foj, p(ys) - d(y,,s) _ l(y,s) which corletes the proof.

Given a function u(ya) and a continuation set Wt can we

determine whether (u,p) i (.e. whether (u/*) solve the

Optiation problem associated with the stopping problem A suffieent

condition is the following.

16



IA

(III) If u < di is a subparabolic function which is parabolic on

the open continuation set and u -d elsewhere, then

(u4d) spe ). the sollhtiori of the optimization pro lam,

To show this, note that since u < d isa subparabolic,, u < p.

But u is the risk corresponding to the continuation sct %.Hence

u >0

8. F'toping Problems - Free B~oundary Problem.

Associated with a procedure described by a continuation set awe

have a risk function b(y.,s) which satisfies the heat equation in

subject to the boundary condition b = d. The solution of the optiml

stopping problem minimizes b everywhere. Now we present the character-

ization

(IV) p (yps) d Y (y~s) on tne boundary ofgo

While the Dirichiet problem of finding b which sat isfies Ele heat

equation in a given w. subject to b 6 on the boundary Is referred

to as a boundary value problem,, that of finding b and so that

b *on the boundary also$, is referred to as a Stefa or free
Y (ly

i'roble (f.bop. ). Property (lv) states that the solution of the opti-

miatonproblem Is the solution of the (f -b -p,)

To deemostrate (TV),, let ut assume that (yop.s0) is a point on a

portion of the boundary above uictih are stopping poozats and below which

ane continuation point s and thatd exists at (08) Tben since

o((.as )mdyts for y > y the right hand derivative 0.(7,6 ).

d (Ya Fs For y Cyp O(yo so <d(yos ) and hanc.YO 0 000

17



C 0;( 0~50)dy(Y."S 0 )* Now we note that

since the right hand side corresponds to the risk of the siibopizsl

procedure where one insists on sampling fro t + to a 0 and proceding

ptIinall thereafter. But

p~y~V~i,~ 0  - (y0,30) + UV4 tO(Y 0 1 a0 ) + o(Vi') V > 0

(8.2)P
a 0(yj.so )+ UNR P0 (Y,. )+ O(V,5) W >

E(O(yO4V'rb #so)) - p(y0.so) +)rb (dr ovtq(v)dw~o;fVCP(v)dv)+OcV 6")

Thus

Assuming that 'the difference quotient jQ(yv%- ,s ~ ojo) is)

boundd Itfollos tht d y > 0whic com ine ith the preceding

reul gives o dy, on the boundary which artablishes (IV).

1aiurning to tht fre boundary "rolea (t.b.p.) the following

question Aris... Is a tolution -of the f~b~p. necessarily a solution

of the optinitat ion problem? The answer Is z~provided certain additional3

cotslitons are estiaf led. That additiona~l conditions are required Is

_ clear from the follovir4 considerations. Suppose thet (uod) Is a



solution of both the f-b-p. Uyy u on u d and u. d
2 y

on the boundary) and the optimization problem (u p ).If the
0

problem is modified by sharply decreasing d below u on part of

then (u,4) remains a solution of the free boundary problem but the

solution of the optimization problem changes. If d is sharply decreased

on a small part of the stopping set near the boundary of C, the ctitmel

continuation region should be enlarged but here again (u,) remains

a solution of the free toundary problem.

These examples l.ead to sufficient conditions which are related to

III. One of these (V) may be paraphrased to state that if one can't

trivially improve on u (as was possible in the above counterexamples)

then ua. Let

(8.3) h(ys;s') - E(h(y+wf4,,s')) a > a'

(V) If u is the risk corresponding to the continuation set I and

(1) u(y,s) < d(y,s) and

(ii) u(y,as.') > d(y,a) for (y,)

then (u,N ) olve- t opV t ,mira tion Drab

While (V) does not invoke the f.b.p. condition, that condition can

be usod to prove condition (11) of (V). This yields

(vI) It (U,#,) ts a solution of the C.b.p. where Ls a continuation

set and u end 4 have bounded derivatives up to third order

and

(1) u(Y,S) d(ys) and

19



d > d on
() 2yy s -

then (u,•) is a solution of the optimization problem.

In some applications (VI) is not enough because some of the conditions

break down as s approaches its lower limit a (possibly - I. in

that case it suffices to invoke some supplementary condition which

ironlies

(8.4) Sup ju(y,s)-P(ys)- C
s-4

0

9. Solutions, Bounds and Expansions for Stopping Problems.

In the continuous version of Problem 2, we have a stopping problem

which may be represented by

d(y,s) -s for s > 0 and for y> 0, s = 0
S~2

d(y,s) = -y -s for y < 0, s = 0

This problem.has the trivial solution where 4o0= t(y,s): y < 0, s > 0)

and

P(y,s) -s for y> 0, s > 0

(9.2) 2
P(Ys) -Y -s for y < 0, s > 0

The pair (p,:) is a solution of the (f.b.p.) since p d and py y

for y = 0. Property (V), Section 8 applies as does a modified version

of Property (VI), Section 8 (a modification is required because p and

d are not bounded).

Generally stopping problems are not so easily solved. It is useful

lip
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to derive bounds on p and CO. To illustrate let us introduce a new

stopping problem the importance of which will be discussed later.

Problem 4. A stopping problem involving Y(s), EdY(s) O, Var dY(s) -dsp

Sfor s=O, y>O

S(9-3) d(y,s)= for s > O, y> 0

0 for s > 0, y= 0

and stopping is enforced when Y(s) = 0 or s = 0.

Note that if s is large, the chances of obtaining Y(s) = 0 (and

zero cost) before s = 0 is large and so one is encouraged to continue

unless Y is large. If s is small, the cost of stopping, (sl) is

large compared to the cost of waiting till s - 0 (approximately Y)

unless Y is large and one is encouraged to continue unless Y is

large. Thus one expects (f to have Ex boundary which is high for s

large and s small.

Let u(y,s) be an arbitrary solution of the heat equation. Let

Sbe the set on which u(y,s) = d(y,s). If 6 is the boundary of a

continuation set~tne risk for the procedure defined by the continuation

set is b(ys) = u(y,s) on 9 and b(y,s) - d(y,s) on S. But

then p(y,s) < b(y,s). Thus if (yo, So) is a point of ' where u < d,

then p(YoSo) < d(yosZ) and (yo, So) is a continuation point for

the optimal procedure,

For Problem 4 take ul(Yis) = y which is a solution of the heat

equation. (f ((y,s): 0,< y < 1 a > 0). Since us(y",) < s at

every point of C, C and the

21
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boundary Yl(s) = s is a lower bound for the optimal boundary y(s),

i.e.

S(9.4) -Y(s) > Yl(S) •-s1•

We now describe a method of finding upper bounds for the optimal

boundary. In more general context these represent outer bounds for (o"

Let u(y,s) be a solution of the heat equation. Let d be the set

on which u (y,s) = d (y,s). Let i be the continuation set for which
y y

6 is the boundary. If u $ d on & let h(s) = u(y,s) - d(y,s) along

the boundary 6 and let d*(y,s) = d(y,s) + h(s). Then (uA) is

a solution of the f.b.p. for d*(y,s). Suppose that (u4) is also a

solution of the optimality problem for d* and h(s) < 0 for s < s2

and h(s 2 ) 0 0. Then the modified problem is a more "advantageous"

problem than the original for s = s2 and

p(y,s 2 ) > u(y,s 2 )

If (is a stopping point for the modified problem

(9-5) P(y2,s2) u(y 2,s 2 ) d*(y 2,s2) d(y 2,s2)

and (Y2 ,S 2 ) is a stopping point for the original problem.

In review we obtain outer bounds on the continuation set by finding
arbitrary solutions of the heat equation which are suitable (i.e.

u-d < 0 along the boundary where uy d y). In principle this method

is as elementary as the other method but in application it is usually

more delicate.

To illustrate

22



1 2

u2 (ys) = y - Be2 sinh ay

is a solution of the heat equation for which u2y = dy y 0 when y - y 2 (s)

which is determined by

1 2

1 - Ia cosh ay = 0

For s = 0, u2 - d < 0. Along the boundary y a Y2 (S)) u2 -d take on

negative values for small positive s. The smallest positive value s2

of s ) (if any)) where u2 -d vanishes is described by

1 2

y-Be 2  sinh ay=s

Any pair of parameters (a,B) which yields such a pair (y 2 ,s 2 ) may be

used and the corresponding point (Y2 ,s 2 ) is a point of do" To find

the best such point for a given s we select a and B to minimize3(u.-d) 2P

Y2 . If for fixed (a,B), -O-s- > 0 at (y 2 ,s 2 ) it would be possible

to adjust a and B to decrease y2 . Thus we impose the third condition

a(u 2 -d)

212
Ba2 7 a s -2e cosh ay a as

Together the three conditions lead to the representation for an outer

bound Y2Y2() for the boundary, i.e. ' (a) '(a) where Y2(e)

satisfies

(9.6) 20/2 (re 1112 *tanhiý (-0-1)-1/21
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It is of interest that s < y2 () + s s2 which indicates that y
-1

is well approximated by s for small s. For large s better approxi-

mations are obtained by using similar arguments with solutions of the

heat equation of the form

U M A(( Y),/12 h>O
~sh (Vs+h)"

which yield the lower bound

(9.7) •(a) --0,5 Y(s)

and the upper bound

(9.8) 4(5) U (6+h)1/2 > p(s)

where h > e satisfies s m el/2h( h/2 l/2 )-l Together these show
that '(s) = 51/2 l+O(s'l for large .

•i~ ~ forhe larg 9.ae t h

Another but related approach to approximating the optimal boundary

consists of finding asymptotic expansions for the risk and boundary

near distinguished points of s; these distinguished roints are typically

the end points of the range of interest. For example 9 a 0 and -

are important in examples 1 , 2, and 4. The proofs that the formal

expansions derived by methods to be briefly described do indeed represent

approximations to the desired solution depend on arguments of the type

described above.

One important class of solutions of the heat equation used in

generating expansions is that generated by "sources of heat" along a

vertical (a * constant) line. Thus

24i



(9.9) Uo(y~s) s'1/2 c(a) a Y1

represents a point source of heat at (y,s) = (0,0) and yields a

solution of the heat equation for s > 0. Similarly, functions of the

form

~y~) = i (y-s') h(y')dy' = h(y+w-r)(P(w)dw

satisfy the heat equation.

Such techniques lead to asymptotic expansions for the optimal

solution of the sequential analysis problem (Problem 1* of Section 5) of

the form

a(s) - 7(8)8"-/2 ( (log a2s3 - log 8x - 6(log a2 a )l + ") as s -

1)s"/2 1 3/2 a2 s3 7 4 6 a s-e
a(s) - -(ss 'Z as3/ (1- = + .... s as s 0

where a = k/c4

10. Control Problem.

Let us return to the rocket control problem (Problem 3, Section 2).

For reasons to be discussed later an important case can be described in

its continuous time version as follows.

Problem 3*. One observes Y(s), a Wiener process in the -s scale orig-

inating at (yo0 s0 ) with E(dY(s)j - 0 and Var(dY(s)) a -do. As a

decreases to 0, Y(s) may be adjusted inatantaneously at any a > 0 by

an amount A at a cost of 1l4d(s) where d(a) - a'. In addition to

the accumulated cost due to the adjustments of Y(s.), there is a coat of

25
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Y2(0)" Find the rule for adjusting Y(s) which minimizes the

expected cost.

The discrete time version of this problem corresponds to the specifi-

cation of a finite set of si, so> sI> 62> > sn

changes (corresponding to the use of fuel) are permitted. Let p*(Y,si)

represent the expected additional cost associated with the optimal

procedure for the discrete time version given Y(s ) - Yi Since it is

possible to change y instantaneously at a cost of d(si) per unit y

P*(Y,Si) < P*(Y',Si) + d(si)IY'-yI

from which it follows that

6p*(Y s)
(10.1) I ('s <d(si)

With a slight variation of this approach let p*(Y,si) represent the

optimal risk at s = s, subject to the restriction that fuel is not

used at s =s. Here

(10.2) P*(y,si) - inf(p*(y,,s) + d(sh)Iy,-yI3

$ ~y'

Regarded as a function of y, p* has straight line sections with slope

S•dy = ±d(si), where it pays to use fuel. Elsewhere, it does not pay

to use fuel and I•/6yJ .< Thus the optimal policy is described

by an action set and a continuation or no-action set. If (ySi) is on

the action set one moves to a point (3,si) on the boundary of the

continuation set by applying fuel. Otherwise no fuel is used at this

stage It is possible to show that p* is symnetric and decreasing in

26
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ilyl Hence the optimal continuation set is described by -34(s) < y <(s).

Let us proceed to the continuous time version of the problem for

which the above characterization still applies. The boundary of the

optimal no-action set is given by ±"(s). We restrict our attention to

procedures which may be described by a symmetric no-action set with

boundary ±y,(s) and let b(y,s) be the additional expected cost given

Y(s) = y associated with such a procedure. We shall show that b(ys)

satisfies the following conditions

1

(10.3) • by(ys) = by(Ys) on the no-action set

(10.4) 1 b y.s b 5(y,s) on the no-action set

(10.5) b y(y,s) - d(s) - s"1 on that part of the boundary

and action set for which

y >Op a > 0

(10.6) by(0,s) - 0 for s > 0

(10.7) by(yO) - y for y > O

However, in Problem 4 of Section 9, we described a stopping problem

whose solution uniformly minimizes b subject to the restrictions
y

(10.4-10.7). Consequently the optimal expected cost for our control

problem can be obtained by integrating the solution of the stopping

problem, Problem 4. The optimal no-action set is the optimal continuation

set of the stopping problem.

In this particular case we have been fortunate and profited from

the symmetry. Otherwise we would have, for arbitrary procedures described

27
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9 by no-action sets, that b(y,s) satisfies (10.3), (1O.J), (10.7) and (10.5)

replaced by

(10.5') b (y,s) - id(s) on the boundary and action set

The optimality condition required to determine the free boundary would

be

(10.8) Py y(ys) - 0 on the boundary

This corresponds to (Py)y - dy, and thus the derivative of the exlcted

cost of the control problem satisfies the same (tf.b.p.) as do the otimil

stoDmina problems.

In these discussions several claim were made which require some

support. First let us deal with the formulation of Problem 3*. Suppose

that Incoming data used to estimate the miss distance have variance

Inversely proportional to the distance to target. Then the reasoning

of Section 4 applied to a continuous time version Indicates that at any

given time)the posterior distribution of the miss distance ts 4(Y(s),s)

where Y(s) the current estimte of the miss distance Is a Wiener

process in the -s scale and s, masuring the total cumulated precision

is Liven by

S o;,2 ft a 2 (t a -2  -2 .].4 +e.,

00

where to is the total required time of fllht. For siqplicity let us

o2 '12assume that the two quantities, % and wto both of vhich are

ordinarily small, cancel iving
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a-i (to.t)- .

Let us also assume that the amount of fuel required to change the miss

distance by an amount a is proportional to the distance to target.

Then

e(t) ckt(to-t) 6 l(a)

and hence

(10.9) 8(s) as •

Since s a 0 corresponds to infinite precision and time or arrival,
the coat or missings ki (O). Now let s* - h2 a and hY(,).

Then Y* is a Viener process in the s* scale and, in terms of s8

and 1

(s). a*(s*) = ah2s*"'

ky2(O), kh'2[y*(s*)12

Selecting -2 * ah2 gives us a starred problem here the costs are

proportional to those of Problem 3*.

The fact that b satisfies the but equation In the Interior of

the no-action set follows by the typical argment. This In turn I3l*es

that by satisfies the beat equation. sAaftions (10.6) and (10.7)

follow from the sysetry and te al cost.

To Justify (10.5) one mAst oonsuler behavior ear the ban".

are,, one puzli• g aspect at the continuous tim versiLon a our pollcy

which was delibeztelty evaded met now be faced. Suppose that the
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boundary y1 (a) is a well behaved function of s, Then if (yps) is

on the action set, the policy caes for bringing Y(s) to yl(s). Iater

the unadjusted Y(s) is a rather complicated function and is bound to

leave the no action region "im;*diately" after It is brought to the

boundary. Sam does one compute the amount of fuel that is used in the

msny Infinitesimal departures and returns? Fortunately this can be

conveniently expressed in rerns of

(10-10) x(e) - axio, sup [•l(s')-'YJ(s"'J1
5 > a' > a

where Y1 (s'() is the original (unadjusted) Wiener .-ocess aud in the

neighborhood of an upper bounary point (y 1(so),so) of the no-actior

set, the adjusted process behaves like

(lo.U) r(s) - Y1(,) - 6

If Y(s)-Yl(so) ad yl(s) bas *in--t. slope then for small 6,

£(Kys0 )) ftt,(6l/2)) where W * up Wit) and W(t) is a
0 <tl

standard Wiener process. Moreover the use of a r~ietleo -principle

yields P([K>] ) 2P(W(l)>a) for a' 0 aA hence

(M,12) 5{K(.o,)) .zsl121vi) . -. 0

where 1(v•) a1(o,1).

No, to wmntr•te (10.) at an er boudary point (y.•so) it

IS eany to see that b+(yo,) d(so). Ve shall n sboh that

• ba(70• d(so) asssoz that 0(y,1) - b(yss-) a 0(b). sotwen

'0
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time s0 and So-B0 the process originating from (yo,so) is adjusted

by a total amount M(so-5) and at time so-5 is at Y(so-6) - Yl(so-6)-

M(s 0-).

b(y, so) = E(d(s 0 )M(s0 -6) + b(Y(so-6),s 0 -8)) + 0(b)

E(b(yo0 ,s) * b[(Y1 (S0 -e)-yo-M(so0 -)] + d(so)M(so-) + 0(s))

b(yOs 0 ) - [b-d(sO)3E(M(so-O)) + o( 1/2)
y 0 0

Since E(M(s -8)) is approximately (•/,)I/2, the desired result

follows.

Finally, we demonstrate that optimality implies that or 0 on

the bAn•dary. First, since by is constant above (y ,s
y~ 00

+~' (Y Pe) 0. Second, since 10j d(s ) i'n the noO-ction set,

,(yo > 0. The suboptim.1 proc.ýaure in which no action is taken from

a + B to a0, and an optumal policy is followed thereafter bas

risk b where

I3



4 P(yos 0+ 6 )<b E(p(Yo04V•, So

0 0 - p y, v8 s0)3

pb = P-b<~()p + 0()s 2 ýy

P < 0
yy-

which implies pyy = 0.

Thus- e see that p and , the partial derivative of the optimal

risk and the optimal no-action set for the control problem correspond)

to a solution of the free boundary problem determined by d(s). This is

the case even without the benefit of the symmetry which we used. Further-

more in the more general case where the cost of fuel per unit change

of y is represented by d(y,s), the boundary conditions for p

would be py = d and pyy = dy.

11. Summary and Remarks.

Approximating discrete time problems by continuous time problems

invoking the Wiener process makes it possible to apply the analytic methods

of partial differential equations to problems of sequ.ential analysis,

which are basically special examples of stopping problems, and to certain

stochastic control problems. It was seen that the solution of stopping

problems reduce to the solution of free boundary problems involving the

beat equation. Almost arbitrary solutions of the heat equation could

be used to provide bounds on the solution of stopping problems. Asymptotic

expan31ons far the solution are obtainable by use of relatively simple

classes of solutions of the heat equation.
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It is difficult to state and prove rigorously "nice" theorems of

the kind "the solution of the optimization problem is a solution of the

Sf.b.p.". It would be desirable to have such theorems which invoke only

conditions on the elements in the statement of the problem such as the

function d(y,s). Most proofs seem to involve conditions on the nature

of the inknown solutions. This problem seems hard to avoid because the

solutions of certain problems of interest have singular points where

the f.b.p. condition breaks down. On the other hand the sufficiency

theorems which permit one to recognize when a given candidate is a solution

of the optimization problem, are much more amenable to useful statements

which can be reasonably applied. Fortunately these sufficiency results

are the more important ones because they are the ones invoked in applying

the methods of bounding solutions of stated problems in terms of arbitrary

solutions of the heat equation and solutior.s of related optimum problems.

The rocket control problem has a continuous time formulation similar

Lai certain aspects to that of the stopping problem and here the derivative

of the optimal expected cost also is a solution of the f.b.p.

A rocket control problem where fuel is free but only a finite amount

is available, is more difficult to treat. A role analagous to that of

Py in the infinite fuel case is played by V - pu + e(s)py where u isOyy

the amount of fuel available and e(s) is the change in y obtainable

from a unit of fuel. Since V measures the rate of gain derived from

using fuel, V < 0 on the no-action set and V - 0 on the action set.

Bounds and expansions have been derived for the solution of this problem

subject to the following conjecture. Let a taxed version of the control

problem be such that at s so fuel is free, but later, (a < So), fuel
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must be paid for and fuel remaining at s = 0 must be taxed. For a

situation where the original untaxed problem calls for the use of fuel

at s = so, the taxed version also calls for the use of fuel then.

An approximation has been derived which relates the continuous time

solution to discrete time solutions of stopping problems with finely

spaced intervals between the permitted stopping times.

Work has been carried out on continuous time stopping problems which

do not involve the heat equation. These include that of Mikhalevich

[19] where the Poisson process leads to a difference differential equation

and a pair of diffusion equations of Shiryaev [221 where the number of

possible values of • are finite and past history is summarized by a

few posterior probabilities rather than (Y(s),s). Bather [4,51 hat

* considered certain problems which involve ordinary differential equptions

because of the stationarity of these problems.

The history of these ideas and methods is long and complicated and

the following is a bare outline of related references.

Backward induction - Dynamic programming - (2], (8).

Stopping problems (discrete time) (141, [171, [24], [251.

Stopping problems (continuous time) - (1], [3], (41], [5], (91, [101,

[11], (12], [13], (16], (191,

(20], [22].

Rocket control- [6], [7], [21], [26].

Heat equation - (15].

Expository article - (23].

34
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RELIABILITY THEORY

by

Richard E. Barlow

Closure under the Formation of Coherent Structures

Perhaps the most common structures for reliability consideration are the

series structures

c1 cc ... cn

with Boolean structure function

(A)i=x 1 x 2 "' xn

where the indicator variable

1 1 if the ith component, ci , works

0 otherwise

and the parallel itructures

c

--0 Scn

with Boolean structure function

O(x) - I V xV2 V V xn
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where x Vy - 1 if and only if x o I or y- or x - 1 , y- I . Also

important are the k out of n structures which work if any k or more of the

a components work. The 2 out of 3 structure, for example, can also be represented

in term of series and parallel structures if we allow replication; i.e.,

c 1 c 2

0 -
cI c3

The Boolean structure function for this special structure is

44.) a X XZ V x x3 V xlX •
1 2 23 1 3

More generally, we have the following:

DEFINITION A oohernt structure is a couple (C, *) consisting of:

) a set of components C a-{cf, c2  ... , cn) ;

2) a Boolean function # defined on vectors x a (xl. ... , xn) of

binary indicator variables and satisfying

(1) 4*9)-0 and *D- ;

(ii) I .< z (coordinatewise) implies *(x) (X)

Let X be a binary random variable corresponding to the Ith component

end let

PIX1 - 1) - p1



p3
P aX 01 - - pi-q

Let X. (X1, x2 , ... , x) n P- (pl' P2 ' "". P,) and assum that the X 'a

are mutually independent.

DEFINITION The reZiability unotion of the coherent structure (C, #) is

hp)-F[*XX)-I p -.

It is easy to show that h(p) is an increasing function of p for coherent

structures.

We now wish to study the random time at which a coherent structure fail* as

distinct from describing ics condition at a specified time. To do this, let

T1 , T2  ... , Tn denote the failure times of components. The reliability of the

ith component at time t is

FI(t) - 4IT• ) t

Let

SI I if Ti I t

0 otherwise

and let T be the time to failure of the structure. Then T ) r if e&d only if

i011(t)] - I where X(t) - (1X(t), X2(t), ... , Xn(t)) . The reliabillty at ties

t of the structure is

P(t) - I - F(t) - P(T t) - Pa((I(t)] - I)

where 1(t) - (11 (t). p2 (t), ... , P(t) .

Suppose ws build a coherent structure from stochastically ladepeadent com-

ponents whose failure times follow an expononti.' low; i.e.,
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F I (t) - p(-Ait) for Ai , t >0

If the structure is a series structure then the lifetime of the structure, T

again has an exponential distribution. Hovever, in the parallel case it is easy to

verify that T is not exponentially distributed. What can we say in general about

the properties of the distribution of T ? Birnbaum, Ieary and Karshall (1966)

have actually charvcteriaed this class of distributions. It is perhaps easiest to

describe this class in terms of the failure rate function. Let F be a distribution

on (0, -) with density f and

r(t) f(t) for t > 0
1 -- (t)

Then, intuitively, r(t)dt is the conditional probability of failure in (t, t + dt)

given survival to time t . Note that

(t) - 1 - F(t) - etp 11 r(u)dul

DFZINIIO A distribution F such that T(O) a 0 to celled I.RA (for increasing

failure rate average) if and only if

-logP (t)/t

is noodecreoaing in t 3 0

If F ha a density f , then it is easy to verify that F to IFA iff

r(u)du is nondecreesing in t 0 . Note that exponential distributions are

IFA.

In J= t (iUrnbaum, Leery and Marshall). The llAU class of distributions is

closed under the formation of coherent structures. Furthermore, the closure under

coherent structures of the exponential class of distributions is dense in the IYA

clase with respoct to limits In distribution; i.e.,
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(IFPA)CS (I•.A) (exp)cs LD

We omic the proof to this theorem. The key to the proof of this theorem 13 an

inequality which is of independent interest.

THEOREM 2: (Birnbaum, teary and Marshall). If h is the reliability function of

a coherent structure and 0 is defined on [0, 11 by either

(M) O(u) - -U log u

(ii) *(u) - -(1 - u) log (1 - u) (the dual of (i))

or (lit) *(u) - u(i - U)

then the inequality

holds for all R vectoLi.

1! p0 * p2 * ' p= n p and O(u) - u(l - u) then

l2. rn AhQ)

and () becodes

pq h(p)f( - h(p))dp

for 0 < p t I . (The strict Inequality can be sham for p in the open interval

using the fact that all components ere assumed essential.) If h(po) . p0 . then

h(p)* ,e - .h(P.hiP°) PO -o1 Po)

i.e., at a croasing point of h*(p) i p by h(p) we see that h(p) is Increasing

and has slope I so that we have the situation in Figurz 1.
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h (p)

0 p - p

Po1

FIGURE 1

Since h(p) is increasing it can cross h(p) - p at most once and from below.

The usefulness of this result follows from the fact that a redundant structure

with reliability function h(p) will have higher reliability than a single com-

ponent for component reliability p > po " This result was first discovered by

Moore and Shannon (1956) for two terminal networks.

PROOF OF THEORE( 2:

The proof is by induction. For n - 1 , *(x) - x with h(p) - p and we

have equality in (1).

Now we assume the theorem is true for n - 1 . We claim (1) is true for

h(l, a). Either *(1n, x) is coherent or *(1n, x) 1 In eithex case

h(ln, I) satisfies (1).

We claim (1) is true for h(On, k) . Either ,(On' x) is coherent or

#(0n' 3) 0 . In either case, h(0, (n ) satisfies (1).

Now ,ý .) x*(1. x)+ (1 - X),(O, x) and

n nr + 1 x)# 'x
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h(p) - E * ) n P nh(ln 2.) + (I - P n)h(O . p.)

Also

-- - h(l. h(O ,n )

Hence

(2) n h (.) M-1 ah(p)

+ fh(l' p) - h(On', p)1 #(pn)

Now we substitute into (2) using

h(p) -Pnh(In, P) + (1 - Pn)h(On, 0 ))

so that

n •h•.) n-Ih(,
I ap- WP ) " Pn ni ON )

n-I Lh (O, p)
+ (I - pI) AE ho O(p)

i-i aP1 • ()

+ [h{1. p) - h(O. n)jo(p.)

By the induction hypothesis, this is

np *Ih (In. t)j + (1in 1 P~.ho. )

+ jh(I. a) - h(O, k)j*(p,)

We viii be done If We can show

Pa 1h (In, p.)j + (I - P3) # h (o n)

+ jh(i. nZ) - h(O, a.A O(pn) *;[h(p))

Lot r p h .h(I, p) and h(On, )"h . To show
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r(hl) + (1 - r)(h.) + b - ho]J(r)

> *[rhi + (1 - r)hoj

i.e., to show

#lrhi + (1 - r)ho] - *(ho)

I r*(h,) - r*(ho)+ (h, - ho)*(r)

TO SHOW (i): Let *(u) - -u log u . We claim

r*(hl) - r*(ho) + (hb - ho)*(r) - *(rhl) - *(rho)

Substituting in for *(u) it is obvious. Hence we need only show

[rhl + (I - r)ho1 -*1ho1 < *[rhj - *[rho.

This is jeometrically obvious from the concavity of O(u) - -u log u

TO SLOW (lit): Let *(u) - u(1 - u). We need only show

rh1(l - h) + (I - r)ho(l - ho) +(h 1 - ho)r( - 0)

> lrh1 + (1 - rOholj 11 rhl - (1I r)bhj

or

2rI (1-Oh+ ÷(h, - hr(l - 0 r) .b' + (1- 2

or
r~22r(irOh h + (I-r,'h2 rh2 - (I-r)b2
1 0l o 0 0

+ (ho h")r(o - r) 0

or

-2 + h 2 + -h h >0
0 0

a - .- .



or

-(h - ho) 2 + (h1 - ho) > 0

which is obvious.//

Bounds on Failure Distributions

Classes of Failure Distributions. The IFRA Failure distributions mentioned

earlier are theoretically attractive because of their closure proporty with

respect to coherent structures. They also possess an interesting graphical

property which is useful in theoretical investigations. Let

I - e"x for x > 0

G(x) 0 otherwise.

Then the graph of

-log(l - F(x)] - G-1 F(x)

is starshaped with respect to the origin for x > 0 ; i.e., x in x > 0

implies that the "upper side" of every point on the graph of G IF(x) is

"vlvsible" from the origin. Figure 2 is an Illustration of a starshaped fumction

with respect to the origin which is not convex.
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I

G F• - (x)

0

F IGURE 2.

Note that G7-I(x) is convex for x > 0 if and only if it is starshaped with

respect to every point on its graph.

In replacement policy problems especially, one is often concerned with the

conditional failure distribution given survival to time t ; i.e.,

•t(z) - P(X > t + x I X > t) P(t + x)

It is mathematically convenient, and also intuitively plausible in some situations,

that the conditional failure distribution of an assembly should also exhibit

some "wearout" characteristic if the original failure distribution exhibits such

a characteristic. It Is, however, easy to provide examples of IFUA distributions

which are not only wot conditionally IFRA but are in fact conditionally DFUA for

some t > 0 . Hence we say ask the question: What is the largest olaea of

dietributimt. in the 1PM class which win 1PM upon conditioning on the left?

That is we want



L

-log~ (x)
-gft X) _____F____t _

x x

nondecreasig in x > 0 for every t > 0. Clearly this vill be true only if

the graph of -logF(x) is starshaped with respect to every point on the graph.

It follows that -logF(x) is convex for x > 0 . If F has a density f

then the failure rate function

r(x) f(x)
1 - F(x)

must be nondecreasing in x > 0 . We call this class of distributions the InR

class, for increasing failure rate.

As we have seen, the exponential distribution provides the basis for an

ý.teresting hierarchy of failure distributions. The representation in Figure 3,

suggested by James Esary, emphasizes the central role of the exponential distribu-

tion. apecial classes noted in the figure are the Weibull class with densities

f(t) - QtO-le-At' for a , , t 0

and the gamma class with densities

•(I) - • (t for a A t > 0

S V
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FIGMK 3. 3.EPRUSIN TION MO FANILIKS
Of LIFE DISTRIDUTIONS
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The No-Data Probler. In the aerospace and electronics industries one of a

kind assemblies sre common. For such assemblies no life testing results are

availabla. All that is available in many cases is the engineers' past experience

with similar components. Contractual obligations however often require a re-

liability statement - also warranties require a reliability assessment; e.g., it

may be required that the asecmbly opet,,te properly for 1000 hours with probability

.99.

The mean life of an assembly 1e a concept with which all laymen are familiar

and engineers will make statements in terms of mean life far sooner than they will

make a probability statement. Hence, even in the absence of data, engineers will

often estimate the mean life for a new pioce of equipment based on past experience.

We can translate this mean life statement into a conservative probability state-

ment using bounds based only on intoitively reasonable assumptions. More generally,
th

given an r moment we can state the following result (see Barlow and Marshall

(1964)):

THEOREM 3: If F is IFR, F(0) - 0 , r > I ane Wr " fxrdF(x) , then

1 F(t) *Xp [.t/(0dr t t r

(1) 1
S0 t j prr

where Ar r /r(r + I) . This inequality is sharp.

PROOF

We can actually prove a more general but loes motivated result ail the proof

is easy. Suppose F and C are any two continuous distribtiona satiofylog

F(O) - G(O) * 0 . G1 F) is convex for x ) 0 And fxrdF(a) *J"a'dC(X1 r

0 0
for r 1 . Let X(Y) have distribution F (C) and X r(Y ) have dLstributioo

F (C). we claim Fr(x) Is convex in x 0 . Note
r r r r
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G-1F (x) - [1(
r r

and assuming differentiablit)

dxrrl
d G IF W rrt-'Fz) (G-'F)' .,r

r -r 1

The first factor in increasing in x since G- F is starshaped and r > 1 The

second factor is increasing in x mince G-1F is convex.

Nov let Xr, r , ... , xY , .. , vr) denote a raudom sample from

Fr(G) . Then since Gc1 F is convex

r r r r

and

r G

"r rr [.I

vhere -t denotes stochanstic equality. Letting n . , we have by the strong

sad

1ev of large numbers

Sr(u ) <G r( 1 )

E r r n- rr

or
I I

;tGr [ r~y

Since F crosses C at Roet once and from below if at all, we have

I

F(t)G(t) for r

Letting G(t) 1 - eiiIrtIA,] for t 0 we *sasly see that JtdG(t)

0
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and (1) Is immediate. Since F IFR allows the possibility of a jump at the right

end of its interval of support, the proof is completed using limiting arguments.
1 1

The bound for t > Lr is attained by the distribu. ttion degenerate at Vr

which is a limit of IPR distributions.//

Since It is well known that G r.)r is always nondecreasing in r > 0 for

distributions on the positive axis, we see that higher moments enable us to obtain
1

nontrivial bounds over a greater range. To prove that (u r) r is nondecreasing in
r

r > 0 for distributions on the positive axis, let #(x) xr where r < r'

Then * is convex for x > 0 and

r--

-E1E C I n ,X) a Xr
or

1_!

r in jr'n A, -<lx, •
where X1 , X ... X It is a random sample from a distribution F such that

F(O') - 0 and i.r f x . dF(x) Applying the strong law of large numbers we have

LII

1 G )
t•j) :(ur,

r

for r t r'

t•nfortunxtely the nontrivial port of the bound in (1) is decreasing In r 3- 1

This follow# from the fact that for IUA Ol-,ributi ia X r + j

decreasing in r 0 , or equival*ntly. -loger is storshaped for r -0- . It is

interesting that for IFRA and IFN distributions, the geometrical properties of

-4
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F(x) are inherited by the "norralized" moments A r p /r(r + I) ; i.e., if

-logP(x) is starshaped (convex) in x > 0 , then -logr :.s starshaped (convex)

in r > 0

r~ ~jrdF(x) the r (rrI1)
THEOREM, 4: If F is IFRA and then X ( r +is

0
nonincreasing in r > 0

PROOF

Let s < t and note Vi -s xS-lF(x)dx

0

o I
s s s - dx .

0 1

Since F is IFRA, xS- F(x) crosses xS-le-X/s exactly once and from above,

say at x0  Hence if ý is an increasing function
o1

- O(x)xs- (X) f(x) -xS -le- /s dx

0 0

CO (x) ]O X 0 s1lf(x) -xs51Jx/Asj dx < 0

t-s
Let *(x) - x Then

f -sr xs-i-i)d <f t-~ s-i -xIXs
l iijtS F(~d -J xftstss

0 0

" - r(t + 1)(s)
1 1

or (xt)t < (As)s which was to be proved.//

Additional probability bounds may be found in Barlow and Marshall (1964),

(1965) and (1966).
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14ARKOVIAN DECISION PROCESSES - AVERAGE COST CRITnMN 1

by

Cyrus Dorman
Columbia University

1. Introduction

We are concerned with the optimal control of

certain types of dynamic systems. We assume such a system

is observed periodically at times tmo,l,... . After each

observation the system is classified into one of a possible

number of states. Lot X denote the space of possible

states. X will be assumed to be either finite or donmerable.

After each classification one of a possible number of

decisions is implemonted. Let Ki denote the number of

possible decisions when the system is in state i, i ( I.

The sequence of implemonted decisions interactawith the

chance environment to effect the evolution of the system.

IThis research was supported by the Army, Navy, Air Force
and HAIA under a contract adminiseored by the Officae of

Naval Resoerchs Contract Noar 266(55) - E*mo42 -0 9 9 . fe-
production in whole or in part is permitted for any
purpose of the United States Goverment.
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Mlore specifically let f Yt 1, t-nOt,,.. denote

the successive observed.states of the system. Let

At }I t-nOl,... denote the successive decisions.kip~e-.

i........... . _,uvd:inpiU3 Assume that when Y i and

Awk a known cost wik is incurred. The numbers { W }
* may be expected costs rather than actual costs. In such

a case we assume a distribution of costs dependent upon

the state i and decision k from which the expected cost

can be computed.

A Ija or 2licy R for controlling the system is

a set of functions (. (ht Y, ) y }. twO*..*.,, where

t Yoe A0, ..... Y,, At D k 0, and I D k
i k

Dk (ht'l. Yt) is to be interpreted as the probability of

implemienting decision k at time t given the "history" ht_1

and the "present state" Yt. Thus a rule specifies, at

each point in time, a chance mechanism to be used in

deciding which action to take. The rule is only permittedI to depend on the history of states and decisions.

Given a rule R and a probability distribution over

the initial state Y0 we assume the sequence { yt, at A

is a stochastic process defined over the joint space of I

and the possible decision*. Throughout we shall assue that

PY 0 -i i) I , is known. Moreover, we ass that there
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are known transition probabilities {qij (k) }such that
for every iJ and k

qj (kc) uP{Y~us I ht...iYt is A mk

independent of t and ht-l. In words, when, at any time t,

the state ± is observed and decision k is mmdos then

qij (k) denotes the probability that the system will be

observed in state J at time t + 1. Under this latter

assumption we refer to the process i ti At I as a Markovian

Decision Pr.Ocs. It shall be emphasized, howeve; that

fYt At } is not necessarily a •srkov process. For When

R is such that Dk (ht.1 , Yt ) is a function of ht.l. the

process { Y'. At I will not be Markovian. If, however,

Dk(ht. 1 , Yt) is a fuIhction of yt and t for every t-O,l,...,

then { Yt I is a NMrkov process. And,, if Dk (ht-10 1t) is

only a fuctio'ofn Y for every t then { Yt I s a Markov

chain with stationary transition probabilities.

Let Wt j t O, I, ... be defined as folloasa

Vt W 1k if Yt " t "a k, 1 ,#99##x 8
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Given a policy R and an in..., state YO i, then the

sequence { Wt }, t - 0, 1, ... , is a stochastic process.

We can speak of the expected cost at time t as

IRRWt BZk PR{ Yt aJ, At k Y,. ±
j k jk R --

where SR and PR denotes the expectation and probability

under the policy R. We, of course, assume that the costs

tWik J are such that BR Wt exists.

Let T

i.e. is the expected average cost incurred by the

system up to time T given Y0 = i and R is the policy con-

trolling the system.

Let

S(i) - UaR inf T (i)
R TqW R.OT

M&e grbl Vae conmidegation An MIJ 2M it• A&t

For what follows it is convenient to consider

tbre classes of policies. The first is the class of all

I

0-1 - -
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policies of the form described. Trat is, all policies which,

at each point in time, use past states and decisions as a

basis for making a decision. We let 0 denote this class.

2e second class is the class which uses, at each point in

time, the state of the system * thbt instant as a basis

for making a decision. We shall refer to this class as

the class of stationary Markovian policies and denote this

class by 0'. The third cl#s is the sub class of C' in

which the policies are not of a random character. We

denote this class by CO. A policy R E CO may be thought

of as a function defined over the states with range in the

set of possible decisions; to each state there corresponds

a unique decision. We refer to G" as the class of determinjxWic

stationary tarkovian policies.

We shall divide the following discussion into two

parts. One for the' ase where I is finite; thoother, for

where I is denumorable. In going from the finite to the

denumerably infinite, mathematical questions arise which

are not yet settled.

2. Finite Number of States.

The fundamental fact concerning the problem at

hand for this finite state case can be ounmarised as

Theorem Ig i Ki < a , i ( I, Md I A& finite, JUM there

exists a policy R f C" !b ainiaga • a(i), i E I.



6

The above theorem has been more or less, proved, by several

Athors (See [1•, (2), (3), [4]). Each prcof relies on

what we refer to as

Theorem 2. If Ki < f, i E 1, and j is finite, then there

ex!stE a volicy Ra E C" which minimizes

#R ("a) - a c~t ER Wt , iE'

y are a i.1 given number between zero and one.

*i (i,a) if often of economic relevance. It is referred to

as the expected discounted (with discount factor a) cost

criterion.

Theorem 2 is usually taken as self-evident. However, for

proof see (5) and [6]. On letting a - I and using an

appropriate Tauberian theorem •e.g. 1 (1-•) *Ri,) -

when R is such that ed (i) J tom c

established.
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Theorem 1 carries with it two advantaqes. the

class C" contains only a finite number of policies ,even

though the number may be astronomically large) and under

any R E CH Yt I is a Narkov chain with stationery

transition probabilities. As a result, finite :'•oritbas

for minimizing VR (i) over R E C" are obtainable.

Two methods for obtaining the optimal R E CO

have been advanced. One method involves linear prograuming.

(See [71, (3] )- The other is a derivate of dynamic pro-

graming (see [83, [2]). We indicate the latter method

first.

Let R 4 be an arbitrary policy4 . It can, be

shown that there exists a unique set of numbers

gR R
Svi J*i I satisfying

() + v. ,j. + (Rv . i .
A

and

(2) 1 o .0 L

where w in and (R)

j
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denote the cost w and transition probability qij (k)
involved at state i under policy R; n R is the limiting

(as T-o.) expected proportion of time that the system is in

state j given it is initially in state i. The theory of

Narkov chains indicates how the limiting valuesi [nRt)

can be obtained.

One can also, see that R n i2 w1  W Vti

For each i E 1, let 9 denote the set of

decisions for which either (a)
A

¶ij (k) g 1 R< g R

or (b)

Iij (k) g" 9R

and

w .+ T ?£(k) v, < giRt + .

jet in. a policy R' as follows: For at least one i such

that |1 is non-empty prescribe a decision in 3 when in

itate i. ror all states i where a i s epty or where one
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does not prescribe a decision in i, make the decision

dictated by policy R. We shall call the mapping from

R to R' a policy iteration.

It can be shown that TPR, (i) C PR (i) * i E I.

Theequality way hold because of the possible presence of

transient states in the Markov chain associated with policy

R'. Thus the policy improvement procedure starts with an

arbitrary policy R. and carries out successive po~icv

iterations until no more can be made. Since there are only

a finite number of policies in C" this stage must be

reached. (Actually, this is not obvious because of the

possibility that (p R' (i) - iR(i) , i E I. That is. an

argument must be made to show that cycles of policies will

not occur.) At the termination of the successive policy

iterations we must have, if R* is the terminal polic:.

(3) 9 i* _+ .* min W + (• v1 .r
k

and

(4) A

From thw 4  it con be shown that Re is optimal.

Thus, the sequence of policy iterations terninatts at an

optimal policy within a finite number cf iterations.
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-The policy improvement procedure simplifies

under the asssmptlon.

(A) I contains at at most one ergodic class

uf brates for every R E C".

Under (A),gR - S; independent of the initial state i,

part (a) of the definitio7, of •i is unnecessary, and
T1

(4) of the terminal will always hold.

Let qpm) (i) i...,u be defined in a

manner similar to TR(i) except that 4iM) (i) in

defined with respect to costs { w[) }, m-1,...,M.

Although the policy iwprovement procedure is powerful

enough to obtain an optimal solution to the problem under

discussion, n.nder general conditions (provided the number

of states is not too large))it does 'not provide an algorithm

for soving the more complicated problem:

Minimize CP(')

subjevt to

qR(i, k bW m

where bim m - l,...M are given constants.
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When (A) holds the method of linear programming

is effective for obtaining an optimal policy. Under (A)

0lij = 0jS , independent of i, tpR(i)- 3 nH DR wVk

j k

C(m) (i) n D R m I ....... M

wh-re DR denotes the probability of making decision k
J..k

when in state i; the Dik I define a rule RE C.

The } must satisfy the steady state equations:

R o

II -' 3' fl~ A tik(k) o
ik

= 1
.J

R RIf one makes the transformation Xik = ni Dik one gets

the linear programming problem
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XX • xk ikl
min i ik wA

subject to Xik • 0 khl,...,Ki , i E 1

x~ I~ I x k t3 4fj* (ký - 0, i~

jk

k i k

jjk

x ik bm mi - 1 *0 .. S..,.

if I X*jk } is a solution to the above problem then the

optimal policy R* C C' is defined by setting

D . X.iA if )X*i > o0)X ik

and arbitrary if • X*ik A 0.

k



'13

If N 0 0, i.e. no additional constraints are

imposed, the method is an alternative to the policy

iteration procedure under condition (A).

The question of how to solve the problem with

additional constraints without assuming (A) remains open.

In general, an optimal policy need not exist in C'. One

can assert. however, (See [9flthat under (A) an optimal

policy will Axist in C'.

It should be pointed out that the solution to

the problem of mininmiing VR(i) need not be unique. The

question arises as to whether some solutions might not be

better than others. That is, other criteridn, not

explicitly put into the problem, may, in part, be relevant.

For example, it has been shown (see (2] 1, that there

exists a policy RD E C" such that #R (i,G) is miniaize4

for all a and near enough to 1. When this is the case

R1 also minimizes eOR(i). No computational procedure has

yet been given to find such a policy. Heever, a

procedure (see [10J)has been given for finding a policy

R** having the property that

Needless to say, ROO also iniamies ()R(I).
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3. Dengirable State Case

Let us turn from the finite case to the case

where I is denumerably infinite and ask ourselves

whether the basic facts as put forth in theorems 1 and 2

remains the same.

The following modification of theorem 2 can be

shown (see (5) and [6) ).

Theorem 2'. Z Xi < " C I, and { wiA } bounded,
Sthere exists a nolicv R ( C" w linilzes

s (it ) , i E X.

If Ki - - it can be easily shown that theorem 2'

need not hold. If the { wik A are not bounded it can

also be shown that the result does not hold in general

(see [6)). Thus, we might ask if the conclusions of

theorem 1 hold under the conditions of theorem 2'.

An example [11) has been given showing that the

conditions of theorem 2' do not guarantee the conclusions

of theorem 1. Moreover, the example shows that an optimal

policy R for miniaising eR (i) may not exist. This

counter-example also implies that there may not be a policy

a E CO which minimizes *a (*AOC for all a near enough

to 1, as in the case when I is finite. ror if such were

the case, it would be possible to show that q~t (i) could

always be optimized.

- -'C -
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A more surprising counter-example (see (121 )

shows that an optimal policy may not exist in C' but it

may in C'. Thus, if restricted to stationary policies, a

policy involving randomization may prove to be more

effective than one that is deterministic. The counter-example

exploits the fact that denumerable state Markov chains may

have recurrent null states--a property denied finite state

chains.

An even more surprising counter-example (see [13) )

shows that PR (i) may be minimized by a policy in

C-Cs, whereas no optimal policy exists in C1. Thus, in order

to obtain an optimal policy one may find it necessary to go

beyond the class of stationary Markovian policies. This

fact seems to run counter to one's intttion regarding the

problem under discussion. The literature has numerous

remarks asserting the reasonableness of assuming that an'

optimal policy is stationary.

What develops as an interesting mathematical

question is that of determining the weakest conditions under

which it can be asserted that a policy a f CII is optimal.

In [12] and [14]the following was proved.

Theorem 3 - !4ppez2~ f w M& bound~a. IL there exists
bound2# n&W , (vj.jl

satisfying

(5) g . Vi m {wn + qij ) v
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thm &M exists P policy R* E C' ich is optimal. The

poliy is L jalement decision k - whih minimizes

Sgh LJ 1 "j o•_ (5) ' each i E I. Also,

g n ,R (i), i E P.

Note that (5) is related to (1) with gi * g.

Actually, theorem 3 can be generalized to the case where

the g,\ are not all equal and (1) and (2) replace (5)-

Conditions implying the hypothesis of theorem 3

can be given. The approach is to define- a policy improve-

ment procedure similar to the one discussed in the finite

state case and show that in the limit one gets a policy

R E CIO satisfying (5).

We define a policy iteration as follows:

Let R E CI be given. Assume a solution gR, { v }, jE I

to the system of equations

(6) g + vR " wiR + qi j(IJ vjR, i E I

exists. (The system (6) is treated in [151.) Define R'

by chousitag, for each i E I, that decision 4- 4i which

minimizees
"wik + ij(&) v

The transformation from R to R' is the policy iteration.

Note that the policy iteration, here, is defined more

stringently than for the finite state case. By a policy
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improvement procedure we mean starting with an arbitrary

policy R% E C'I, letting Rn+l denote the policy obtained

by a policy iteration on R ,n , 0,1,.... If, for any

n, %+, = Rn , then equations (5) are satisfied and

Sis optimal. Otherwise, one may or may not obtain an

optimal policy as n-w. It is of interest to provide con-

ditions under which I % }converges to an optimal policy.

Let us list the following conditions.

(B) For every R EC'', the associated Markov chain is

irreducible and positive recurrent.

(C) For every R e C'I there exists a bounded solution

gR, {v R }, j I I to (6). The solutions are

uniformly bounded over R ( C'I.

(D) For every i E I, inf R> 0REC'' '1

can assert (see (10] )

Theorem 4. If Ki < X , i { 1, wik I M boundged IdA

(a), (C), MA (D) hg.4, then . LI 2i4 g .y Em2

pr2oedure conxS8 I an ojkhau1 ioks u fl E C' I.

The proof of theorem 4 involves shoving that

the limiting policy does yield a solution to (5)- Under

weaker conditions, i.e. (a) and (C), it can be shown
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that a solution to (5) exists. Therefore, an optimal

policy is in C". However, it is not clear toat a policy

improvment procedure will converge to an optimal policy.

conditions are given in [15) gmaranteeing (c)l

slightly weaker conditions may be given in [131. A better

approach to the existence question would, in all likelihood,

avoid the equations (5) and (6).
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a broad mathematical framsotok is considered that include$

stochastic learning models with distance diminishing operators

for experiments with finite numbers of responses and simple con-

tingent reinforcemsnt. Convergence theorems are presented that

subsums xast previous results about such models,, and extend them

'in a variety of ways. These theorems permits for example,, the

first treatment of the asymptotic behavior of the general linear

model with experiimsnter-subject controlled events and no absorbing

barriers. Some npw results are also given for certain two-process

discrimination learning models and for models with finit, state
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1. INTRODUCTION

Suppose that a subject is repeatedly exposed to an

experimental situation in which various responses are possible,
or trial

and suppose that each such exposureAcan alter the subject'a

response tendencies in the situation. It is assumed that the

subject' a response tendencies on trial n

are determined by his state Sn at that tise. The set of

possible states is denoted S and called the state *Pace. The

th
effect of the n trial is represented by the occurrence of a

certain event 3 n The set of possible events is denoted

* and referre! * asa tha event___t e. The quantities Sn and zn are

to be considered random variables. The corresponding small letters

a n and en are used to indicate particular values of these variables,

and, in general, s and e denote elements of the state and event

spaces, respectively.

To represent the fact that the occurrence of an event effects

a change of state, with each event e is associated a mapping fr(.)0
of S into S such that, if an - s and Sn a s, then Sn+I = f (s).

Thus

E Sl n f tfn (Sn)

for n a 1. The function f (.) will be called the operator for the

event • or esiply an event operatox. Throughout the paper it is
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assumed that

It is furtkfr vapposed that the learning situation is memory-less

end temporally homogeneous, in the sense that the probabilities

of the vsa:iou i possible events on trial n depend only on the state

on %ria. n, "nd not on earlier states or events, or on the trial

number. Teat is, there is a real valued function 9.(-) on 8 x

such that

B3 P "a( * a01 ) - o (a), and

Ps(nn+l - +l Initj - esj 1 n) 4pen+l (fel..pn

for n , 1, where

1 n() f (.. ( 1 (8M)) n(i.

Throughout the paper state subscripts on probabilities and ex-

pectations are initial states, that is, values of 8i.

Two examples will be discussed in seotion 31 a linear riodel

for ordinary two-choice learning, and a two-stago linear" discrim-

inat ion 1t..ninj model. in the first linear !o41l, the

state is the probability of one of the responses, so S a [0, 11.

in the linear discriumination learning model the state is a pair

of probabilities that deterimine, respectively, the "response
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probabilities at the two stages. Thus, S 1 ,0, 1] x (0, I1. 3

In these examples each event involves the babject'ox overt response

(suitably coded), the observable outcome of that response (i.e.,

the experimenter's response), and, sometimes, a hypothetical

occurrence that is not directly observfable (e.g., the state of

attention on a trial). The force of assumption H3 for the

experimenter is to limit reinforcement

schedules to those in which the ouzcome probabilities depend only

on the immediately preceding rsponse, that is, to simple contin-

gent schedules.

The research reported i.n thin paper is directed toward

understanding the asymptotic behavior of the stochastic processes

(Sn] and (Bn) for P class of models with distance diminishing

event operators tt, be defined below by imposing additional restric-

tions on the functions f and qý. This class generalizes the familiar

linear models, and the latter provide much of the motivation for

the axioms for the for~nr.

To discuss distance diminishing* event operators,

it is necessary to assume that S is a metric

space with respect to some metric d. A formulation

in terms of luclideen space and root-sum-square

distance would yield sufficient generality to cover the linear

models of Section 3. Such a formulation would, hmwver, restrict

generality without any redeeming simplification.

i t~
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moreover, a treatment in terms of gesieral metric spaces highlights

those aspects that are crucial to the theory. For these reasons
oaly

it is aasumedpthat

34 (S,d) is a_ I tic jsp•_.

The reader who prefers a Kuclidean setting can easily

specialize most of what follows to suit his preferences. The next

assumption is suggested by the linear examples of Section 3:

S5 (S, d) is coMoact.

The remaining hypotheses are most easily stated in terms of

the following notations. If * and g are mappings of S into the

real numbers and into s, respectively1 their maximum *difference

quotients* m(O) and •(g) are defined by

sup and (1.2)got d(s, a') a

u(q) - sup d(g(s), a(s'))
d(s, s') ' (l.a)

whether or not these are finite. If, for instance, S is a real

interval (with d(s, 0') - Is - s'I) and * is differentiable through-

out 8, m(O) is the supremum of I•'(s)I. The hypothesis

N6 (% < "a fo t2e
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is a mare regularity condition. The next two assumtioms, bhovmgr,

are genuinely restrictive.

17 IL(fe •Sl& all • ZO, and

lbfTnva e 8 thekre J& L 1oilnjAdgqt k jantbM J=k

events e, ... ,*0 ek suchAl

I•(fl...sok) < 1 EMd 40.. S )> 0

'who re

'el...en(S)-P*(ij - e(,B S n). (1.4).

Zn N8 it is understood that the integers and events associated

with different states may be different.

The inequality

d(g(s), g(s)) s .t(g)d(s, a') (1.5)

for mappings g of 8 into S suggests that such a function be called

diastnsa 4ilAninb)Aa if IL (g) S I and LU"Ua h

if IL(g) < 1. Hypothesis 37 then says that all event operators are

distance diminishing, while HS says chat* whatever the present

state, som finite sequence of %vents vith strictly distawne dix-

inishing cumulative effect can occur on subsequent trials. Both

37 and 38 (with k - 1 for all states), are satisfied, for example,

If all event operator& are strictly distance diminishing.



It is now possible to introduce the following preciae end

Convenient terminology*

I& j. distance diminishing nodel ( sim].v a_ model) i t. (f. HpS

2 x s IMsoIFo., H.-N) ff2 x ato -t_)& nom mntLVf MLtJ nnbes,

Z % (a) n Is MA3 2, 84, 855, 36, 37 ad 8 MauiEla 9 .

.efinition 1.2. aSacsgtac ss2_t (S ) n (an) i& Ua
=0 a, s d 3i, resnectivelX ire associated ith the model If _ey

satisfvRIl and 33.
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2. SURV3'Y OF RISULTS

most remarks on earlier work by other author will be deferred

until Section 4.

a. Theorels concerning states

The process (S ) associated with any distance dininishirnqn

model is a markov process with stationary transition probabilities

given by

K(s, A'• = es) a P(S 2 C ()2.1)

e: f (s)cAe

for (borel) subsets A of S. The n step transition probabilities

for the process are given by

K (, A) L 0. (s) -P 8(S n cA). (2.2)
1n}(e .... en

1' n

n* (a) e A

for n & 1. Xt is convenaent to lot X(0)(a, A) be I if a # A ond 0 otherwise.

Functions like K and K n), probability owasures in their second

variable for each value of their first, and masurable in their

first variable tor each value of their second, will be

called stochastic k*egTieJ.

A basic problem in the asymp,-totic behavior of it(nK) a. " as

n -.-. Before considering this question, it is necessery to
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specify w,'at is meat by dconvergene- of a sequence 1•,n of

-obabil, ty measures an a to a probability measure u an S. The

?,i:qpr A-.e notion is mbig I It aoUWeIWs to AL if for any nowel

mubeet A of 8

it0k) s lininf IL (A) and lin sayn..uMp t(A) S I&1)

where A is the i.ate:ior and A is the closure ot A. If, $or instanceO

8 io a real Interval, sucn Co~vergence ia eqjlvalent to Convergence

of distribution functions at all points c.. cont•iuity of the niit -

the usual notion of convergence for distribution functions. The

xtension of this notion to stochastic kernels that vill be used

bel•w is as follows.

valves uniformly t& aL flIuk1 km Kif, JK an B aal g

(•(, A) - at(s. A) 6 x 0S ) +

"•LAU&a a * t s Lo s.

If a Udm"4t stochastic kernem K *• Cs A) is indepeadent of 4 for

all A, it Is eoumtims natural to write K (A) instead of X*(s, A).

Aside gnm this so of notatlon Defiaition 2.1 is maffected.

A •loesly resatad problem is the asymptotic behavior of

riuncuis .(j*a )I (nm ats, for istanos) whet * isa to"

valued functLionan a. o noties of dtarargmo tow was iau ot

eal valued functions on S are Lopoftuet In •hat follous. For my

soch fu'tmetle- 4aflr ivt ard 310 by



li-sup 7~ 4a(2.4

171 " 1vJ + m(7). (2.4,

The class of continuoug; reul valued functions an 8 La denoted C(5)

(note that T7 < i if 7 c C(S)), and the subclass on which m(7) <-

(and thus D7i < a) is denoted CL. A sequenca (Ya) of functions in

C(S) converges uniformly to 7 tC(S) if 17a - 7J 4*0 a n -* a. A

stronger notion of convergence, applicable to functions in CL, is

Iv 71 - 0 as n -*a. If S is a real Anterval then the collection

D of functions with a bounded derivative is a closed subset of CL
in the sense that, if 7 a , 7 a CL, and li/a.. Iv - 0i 0 then

7 aD. since Il- Ir I + for any,, ID it follos stht
and 17 7ii -.0

*Open ZiOa. ,. if f 0 and% eDforll, eu andif

S' D. then a.(v(n)] a D for all n a I. Thus these observatians

are applicable to () - . ((s()] e . - ( . n.(( .

Theorem 2.1 gives sma inforuation about the asymptotio

behMvior of ( a) for distance diminishing models with no furtber

asaew.tions.

Mge 2.1. Wr MY distance imA~nA 10 Vg L th
~e -J1 RJ) (i/) -o M A a -* ur -

ia ~ ~ ~ U M Lhai uLK uSL A92 a#k£ &S
IK ) aCL. V=L ju<a nt1

n .
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for all n it I and %'CL, where

a-(SOD)] - fI(s')K (s, ds'). (2.6)

The notation E[*(s,,) ! for the expectation of ' with respect

to the asymptotic distribution K a(s, -) is not meant to suggest

that there is a random variable S to which Sn converges with

probability 1. Though such convergence occurs, for example, under

the hypotheses of Theorem 2.3, it does not occur in general.

Two situations will now be discussed in which the conclusions

of Theorem 2.1 can be substantially strengthened. The first is

characterized by the loss, asymptotically, of all information about

the initial state; the second, by the convergence of Sn to absorb-

ing states with probability 1. Both occur frequently in mathematical

learning theory. To describe hypotheses that lead to these situa-

tions, it is convenient to have a notation for the set of values

that Sn+I takes on with positive probability when S1 - a. This

set is denoted T (s):
n

T n() (5': K (n)(a, (')) > 0) (2.7)

An ab3orbing state is, of course, one that, once entered, cannot

be left; that is, K(s, (a)) - 1 or T1 (s) - (s). Another convenient

notation is d(A, B) for the (minimum) distance between two subsets

A and B of St
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d (A, B) - inf d (s, s) (2.8)
SCA, soeB

If B in the unit set (b), then d(A, B) is written d(A, b).

Theorem 2.2 shows that, to obtain asymptotic independence of

the initial state, it suffices to assume that

H9 lir d(T n(s), T n(s)) - 0 for all a, a' C S.
n-4 n

Theorem 2.3 shows that, to obtain convergence to absorbing states,

it suffices to assume that:

HlO There are a finite number of absorbing states *i, .0o, an*

such that, for Mn a e S, there is some a (8) for which

nlim d(T n(s), a () = 0.

It is easy to see thatH9 andMOare inconsistent except when there

is exactly one absorbing state, in which case they are equivalent.

Theorem 2.2. If a distance diminishing model satisfies N9,

then the asymptotic distribution K (8, - K (-) does not doend

on the initial state s, and K conv)tqs u to K •

are constants a < l and C < m such that

w- )]I(s,)CJI a cnl,, (2.9)

for n a Iand ad C CL, WMjazE[*(S )1 - f(s)K"(ds).

- S
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T2boza 2.3. LLjL dsawfea diinshn JabIDI a.satisfie LOS0,O
-tm UK sa. tic MRca. (8 n) converges with probability1  to

p rno abobr s. oM any 1 a i , An1 function
Mb , .. , b Ama m mzama,

,,,(a) - bsings to c.ra !unklm 7 b Z=lb1 71 (a) JA ti

A f f egmation a[(s 2 ) ] ( (s) hat ha,2 the w ix

(n)
Vela 7(aj) - •. Tht stochastic kernels K converge uni-

for*lV K and K(a, -) wLqht yi(s) jo ai, so that

* z 5 (wS=)] -I vi(s)*(ai)" There are < 1 and C < s uch that

SIIl.[*(sn) ] - 3 (s) 111 S CanlWl (2.10)

ýfor all n a 1 and ~'6 CL.

These theorems suggest the folloting terminology:

Definition 2.2. A distance diminishing model is ergodic if

it satisfies 39, and absorbing if it satiaiies RIO.

Note that, whereas in Theorem 2.1 only the convergence of

Cesaro averages is asserted, in Theorem-.2.2 and 2.3 the sequences

(K (n)) and (z.[*(Sn )1 themselves converge. It is also worth

pointing out that, although it is oi little importance that (2.9)

and (2.10) imply jE*. ((S)1 - 3.[v,(s )1I1 -. 0 insteed of simply

I .*(s(s 0)-J)-#0, it is of considerable importance that

these fornulas give a geometric rate of convergence, independent

of * as long as I*Il1 is less than some fixed constant.

Proofi of Theorems 2.1 - 2.3 are given in Section 5. The

main tool used is the uniform ergodic theorem of Ionescu Tulces

and Marinescu (1950). The results given above do not exhaust
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the implications of this theorem, even for distance diminishing

models, as will be seen in section 5.

b. nhorems Concerning@ Ln.

consider sons characteristic CA that pertains to 1 consecutive

events, J a 1: e.g., Oresponse R occurs on trial no (I a 1), ftb

responses on trials n and n+l differO (A a 2), or 'outcome 0 occurs

on trial n and response R on trial n+l'(1 - 2). It is often of

interest to know the asymptotic behavior of the probability that

(En, ... , 3n+£. ) has the property CA. Let 3£ be the set of n

A I
tuples of eventu, and let A1 be the subset of 3 that corresponds

to CA that is, A (Cei, ... , • 1) a (I 1 , ... , oe) has the property

C J). Then it is the asymrptotic behavior of

P(n) (A) a P ((3 * an#0** * (2.11)
a n n+i-l

that is in question. Theorem 2.4, which applies to both ergodic

and absorbirg models, gives much inforxation.

.22M 2.4. = Mny MIs Mi Ao b in Eft t] oa a.n

L < -a Ab UhMa. JU jaA 1 a ljlM A C 1,A

Ip.(n) (A1 ) - P(2.12)

S( (1) (A )"(s, ds'), (2.13)p;•LP 5 .f (A )
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d a (2.9) m (2.10).

In the ergodic case the subscript a on P (A2 ) can, of course,

be dropped.

Th following corollary for absorbing models is very useful.

Q 2.5. ILaun AhAnR& nkz M al MW% A A C 31 bma..

=At P ) (l 0LU a 1(1), ... +_ to tal M

V=~ prohbmit 1, Dal

NIIz.[II a Lam/( - a). (2.14)

bZ. funtion X C) " 3(XI ja . M cnius jgj.glution gL lba

x(a) - (1) (A1) + 33 (X(8 2 )]aa

g.,bis X (aL) -0, t - 1, ... , N.

The next theorem concerns ergodic models, and requires some

additional notation for its statement. Let b be a real. valued

function on B. Then the asymptotic expectations of h( n) and

h( n)h(3 n+ ) are denoted 3(hb ()] and (h(R ()h ( )+j )1, respectively.

Thus

3(h(3)J - Z h(e)? ((e)), and (2.15)

fees3(h(il~h(,+ )I * -e*~:~helhejtP( Ce1, ... , e~1 1

(2.16)
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In typical applications h will be the indicator function of som

A C 3, so that hl)h() is the number of occurrences of evnts

in A during the block of n trials beginning on trial m. In this

case,

[h(Z0)] = PowA),

E[h(E )h(E B+1) = Po(A x×A), and

h(h(B) (Bj)] = P,(A x @j-1 x A) for J k 2.

Thbeore 2.6.(J) For any gogig modl jBX K~a n yl MJ~ i

funtinh qjS, _Q ege

2 -2+2 2ICh (z)] -B(Ih(E )] (+ 2 (Z[h( ()h(8+)H - I Ch(ZM) (2.17)
jul

~M aM- L non- ative conslant %h2

( qL) someich < -• 1m, n I

. m+n-l - n[h(3.)] - -112 (2.18)

Co. ue.l, he law oZ large numbers

lia Itm £ hI o) - Ch(3.)]J - 0 (2.19)

holds ira &a.

(iii) IL 2 > 0, Qj central limit theorem
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, id h::) - n3ChW,,))

ni,. i 15a <-.J ,xp(-t 2/2) dt (2.20)

is s~aza. zLarJ.as E s.

A distance diminishing model can be regarded as an example of

what Iosifescu (1963) calls a m r system V= gom-

j connme•tin. Theorem 2.6 is a consequence of Theorem 2.4 and

a theorem of Iosifescu on such systems. Results in this subsection

will be proved in Section 6.
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3. ZXAeLNS

The examples to be discussed have been selected so as to

illustrate a variety of ramifications of the theory developed in

Sections 1 and 2.

a. Linegr Mdels.JQ R i menter-fubiSct Z Ints

Suppose that the subject in a learning experiment has response

alternatives A ana A2 on each trial, and that, following response

Ai, one of two observable outcomes 0il and 12 occurs. It is

assumed that 0 1j and 02j positively reinforce Aj. in the weak

sense that they do not decrease the probability of A j. The outcome

probabilities are supposed to depend at most on the most recent'

response. Let Aion and 0ij'n denote, respectively, the occurrence

of A. and 0.. on trial n, and denote the pr4bility P(Ov •An)
1 1 j,n ion

by rij.

Linear models with experimenter-sttbject controlled events

(Bush and Mostoller (1955)) for this situation can be described

o'ithin the framework of Section I by identifying pn, the (condi-

tional) probability ok A In with the state Sn, by identifying

.the response-outcome pair that occurs on trial n with the event 2no

and by making the following stipulationse

s = [O, 13, d(p, pe) - Ip- p11, (3.1)

(i, J) - (AI, o1) and ((- W, J) 1 1, ij s 2), (3.2)
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f i -(p) 1 - Oi~j)p + o j6Ol• (3.3)

911 (P) - (pa 1i + (1 - P)b12),Tr, (3.4)

ii + 'r2 Is, and 0 e i # 1 for I s 2. (3.5)

in (3.3) and (3.4), i is the xronecker 6.

For cmvenieac•., any system ((3, d)# it, f, 4) of sets snd functio•n

satisfying (3.1) - (3.5) will be referted to as a f M-ralor

J. In this terminology, (3.1) - (3.5) define a six-paramoter

family of four-operator models, one for each choice of 011' e1 2,

S21* 922, 'r11 and 22 consistent with (3.5). Since n(oi1 ) - rj

and 10[(fi) - (1 - eij) A 1, it is clear that any four-operator

model satisfies all of the conditions of Definition 1.1 except

perhaps .

The asymptotic behevior of the process (pn) associated with-

a four-operator model depends critically on the number of absorbing

states. looem 3.1 catalogues the absorbing states for a four-

0mretor VdOl.

S3.1. aIt 1 J kN AL AMd T12 - 0

ore 1 2 " 0. t&SUM 2lL 2"XdU 0 RL

e 21 0. &JIM p (0, 1) A& AMMUd L am9nvLL" B U XU

(1. j) 63, e6•- J9ar~ r *•-0 /Za sLaM aLa ~ma

a sohs, od £i 2L T ft 00a SM gm AUra.m" .

at~~ UK goa AR r I ...... A91
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troog. A state p c (0, 1) is absorbing if and only if# for

any (1, 1) c, either f (p) - p (in which case S a0 an4

fi (x) 0 x) or 9ji (P) - 0 (in which case 0 a 0 and Yij W) a 0).

The state I is absorbing if and only if I- -9 1311) a I

or 1r2 ' 912(1) a 0. The assertion concernin the state 0 is

proved similarly. O.3oD.

"the next len, tells which four-operator smodes satisfy 0.

1m, 3.2. four-grtar = A L.u

=A g"Xj~ AL& (1# 2), # a a 1 AMJAiL 2) hw

.th 0>o and -lri > 0.

02s. Suppose that the condition given by the lean Is mat.

I f > 0 then 9 1j (p) - p-r• , > 0 and 1L(f Ij I) 01 .- 3.1 < 1.

Similarly. if p < I then 9 2 j (p) > 0 and (f 2) <1. t hao bU is

satisfied with k - 1 for all states.

Suppose that the condition fails. fte for som I g (1. 2)

and all j 4 (1, ),* i e or ) 0. o io•f the cas I-1

and I - 2 can be treated similarly, only i a I vlUl be onuslered.

It follows from Lema 3.1 on taking 2 - 3 that I to Mm Wotibng

state. Thus n ....9 k(k1) > 0 implies mj a I sad r

6 le k. kt then o- foro 1 ja, k amit-(C'"

W. ies not satisfi Ld.
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Clearly a distance diminishing four-operator vmdel is non-trivial.

With one inconsequential exception, 4istaeace dimi•ishing

four operator models ore either orgodic or abeekb~nq. Theoremn

3.1 and 3.2 show slightly more.

O C 3.1. IL miU• t 0 L 1 A& Qzrtk•.2T L kI LUL-

it . &Mia i a zob . Rigor (i) *eal. &U a 1 m Li #4

L(1in ga I t AGAM C.

in.t MMMA est 9M .lAn 11 in. &UOD 404.....

The behavicr of the pross (p) when 8, 1 I and - i for

i o j is cL lately transperent. starting at p the process min

on its first step to I vith probability I - p and to 0 with prob-

ability p, and thereafter alternates between tbhee two extrme
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states. This c model is of no psychological interest and

will be discussed no further.

P 9QfL 2L Thoorsm 3.1. By Leao 3.1 if neither 0 nor I is

absorbing then O. > 0 and v. > 0 for i P J, and the model is

distance diminishinq by Janun 3.2.

Suppose i21 < 1. Then by considering first the case p - 0,

then p > 0 and e = 1, and finally p > 0 and 01 2 < 1, is

seen that (1 1 np E Tnp) ior all n 9 1. Thus d(. n(p), T n(q)) Asee tht { n n)n

n-1
(l - 8 p- qI - 0 as n -* , anid the model is ergodic accord-

ing to Definition 2.1. By synmetry the same conclusion obtains

if 'r12 < 1. Suppose that 012 < 1. Then (I - B1 2 )np i T (p) for

all p > 0 and n * ,1, a Tn(0) for all n sj 19

Since both sequences tend to 0, erqodicity follows , "me conclusion

rollows by sym,•etry when C021 < 1.. T'hus if Ii) does not hold

the nodel is ergodic. Q.3.D.

Po4 g[Ji~jgjX 3.2. The conaition given by Lem 1.2 for

x tour-operator rodal to be distance diminishinq allows four pos-

stbillties. These are distinguished by the values of sJi i a 1 2t

AIs 2 at j, 1 0 , •J2 W 2; CS 2; and,

D, 2, 2- I. lAms 3.1 shovs that D is inconsistent with

the existence of absorbing states. ThIS it rswMin to show that

a nodel is abeorbinq under A, R, or c if there are absorbing &tat**.

Under A, I- ( e 21n(1 -p) c Tn(p) for all a d I ad21 n

0Ap 1, so d(Tn (p), 1) & (1 - ) "n -0 as n -,.a. This implies

that 0 is not an absorbinq state. By assuaption, hover, there
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is at least one absorbing state, so I is absorbing. But then

da~d(Tn(P), 1) = 0 for all 0 A p A 1 izplies thst the model is
n-aw( n(p,1

absorbing. By nynmstry the model is also absorbing under 9.

If 0 is nct absorbing V21 > 0 and e21 > 0 by Lamm 3.1. Thus,

if C holds, A Joaes nlso. and the model is absorbing. If C holds,

and 1 is not 'absorbing, the "eam conclusion follows by symitry.

Condition C impl1sei that (1 - 022) np Tn(p) for p < 1, 1

(1- ni1) (I - p) E T n(p) for p > Oand 11' 922 > 0. Thus if

both 0 and 1 are absorbing, MOis satisfied with j(l) - 1, j(0) = 0

and j(p) = I or 0 for 0 < p < 1. Q.E.D.

As a consequence of Theorems 3.1 and 3.2 all of the theorems

of Section 2 for ergodic models are valid for non-cyclic four-operator

models without absorbing states, and all theorems of Section 2 for

absorbing models are valid for distance diminishing four-operator

models with absorbing states. A few illustrative specializations

of the theoremorof Section 2 to the case at hand will now be given.

The first concerns convergence of the moments 2 (pn] of the process
n}-

Theorem 3.3. For any non-cyclic distance diminishing four-

operator model there are constants C < - and a < 1 such that

It1.[p[] -_.(p)v SC(v + 1)an (3.6)

for all real v a 1 and positive integers n. M R .p ]

haaa & bounaA deative.
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This is obtained from (2.9) and (2.10) by noting that the

function V(p) - pV belongs to D with I = 1 and m(*) , =

so that VII V + 1.

If 0 is the only absorbing state of a distance diminishing

four-operator model, Theorem 2.3 implies that lim n_-pn = 0 with

probability 1, whatever the value of p1. It is conceivable, how-

ever, that the convergence is sufficiently slow that the total

number X of AI responses is infinite with positiveprobability.

Furthermore, even if A is finite with probability I, it might have

an inzinite mean. Similarly, even though pn converges to 0 or I

in the case of two aosorbing states, a priori considerations do

not rule out the possibility that the total number Y of alterna-

tions between responses is infinite, or barring that, that its

mean is infinite. Theorem 3.4 axcluces these possibilities.

T 3.4. "-U 0 j the 20n1 a s q tLt j of M distange

d-minishin - rao model, Ilan X, =t total n r oi A

ggsp is f inite with probability 1, pAn VB. [X] < . Ioth

0 L 1 =a absorbonq s&Ates of a distange S fp_=-og rAt•or

m t Y, t total n gk alternations• between resoonses,

it ji wl probability 1 and jig.[YJ] <.

Naturally the first assertion is still true if 1 replaces 0

as the only absorbing state and X is the total number of A2

responses.
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Proof. Let B and D be the subsets of 3 and 2 , respectively,,

defined by

B - (1, 1), (1, 2)) and (3.7)

Then 3n EBif and only if A 1occurs on trial n, and (Z, )' Ele

D if and only if there is a response alternation between trials

n and n+l. Since P0 )(B) - 0, and, if both 0 and 1 are absorbing,
~0) 0

P~l)D) P(1)D) - 0, the conclusions of the theorem follow

directly from Corollary 2.5. Q.E.D.

If h is the indicator function of the subset B of 3 given

by (3.7), then An - h (Ed is the indicator random variable of A, n

and I£~- A is the frequency of A1 in the block of n trials

beginning on trial m4. Theorems 3.1 and 2.6 yield a law of large

numbers and, perhapsa, a central limit theorem for this quantity

for any non-cyclic four-operator model with no absorbing states.

The full power of this result cones into play when the quantities

z(A.. in.p( n and 2h can be computed explicitly in terms

of the parameters of the model. This is the case, for instance,

when all e ijare equal.

Theorem 3.5. L% four-operator I wih0i - e > 0 for 1

i, j 9 2, and, r'w > 0 for i pf j,. but not e - r"12 M ~r21 -1,i

orodc The law of lag nilers
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lhi [ (((Hia)s - 1)21 = 0 (3.8)

and central limit theorem

(i m <x) -t 2/2)dt,lira ... a 2. ,e --- (3.9)

hold, where

S= r 2 1 /( 2 1 + 71 2 ), (3.10)

2 +1 - r1) 71[ + 7 + 2(1 - 8) ()7r + + +~ ( 2( .... ,

"21 ' 12 ( 2 - 1) + 2(1 - rl 2 -r) (3.11)

and S n,n is the total number of A .resvonmes in the n trial block

beginning on trial m.

Outline of Proof. Ergodicity follows from Theorem 3.)., so

Theorem 2.6 is applicable Straightforward computation yields

E[pG] - EC(A] - 1, (3.12)

E[p 2] _ 12 + PI*( 1 - ()/(2 - 8) + 2(1 - 7 - -(1 ")]# (3.13)

111i•(AA.+1 1 (l -O),3(p.] +7r11 03p-] and (3.14)

2[(A A 3 [A (3- 0(r 'EA A - [A) (3.15)
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for k a 1. These formulas permit computation of a - a, the series

in (2.17). The reault,recorded in (3.11), is positive, since

0 < A < 1, and either '11 + T2 2 > 0 or (1 e) > 0. 0.3.D.

The equality

M (p) -p -('l12 + '21) p)

where

M (p) P (0 1,n or 021,niPn = P)I

shows that the asymptote i of A response probability for the

linxear moI0. with equal e's is associated w•ith rhe asymptotic

equality of the probability of A1 and the p-obability of reinforce-

ment of A1 :

lim P(O ln or 2 ) = lim P(A ,n).
n-w 11n-*o

such probability matching is a well known prediction of the linear

model with equal 9'a. Theorem 3.5 contains a much stronger predic-

tion. The law of large numbers (3.8) asserts that the proportion

(1/b) Smn of AI responses for ! single subject in a long block of

trials is close to I with high probability. The terms Oclose* and

"highm are further quantified by the central limit theorem (3.9).

To illustrate, if reinforcement is noncontingent with "11 - V21 =75

and e in small (that is, learning is slow), then a 2 & 2r(l - 0) -

.375 so that, in a block of 400 trials conmmncing on trial 100, the
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probability is approximately .01 that (1/ 4 0 0 )SI00,400 will depart

from .75 by as much as (2. '8) (.612)/20 = .079.

There is one modification of the four-operator model examples

of which have occurred sufficiently frequently in the literature

(see Estes and Suppes (1959), Norman (1964), and Yellott (1965))

to warrant comment here. If, following any of the outcomes 0ij,

conditioning is a::• tý be effective (i.e., p 1n+1 f j(pn))

with probzýA;ility an, otherwise, ineffective (i.e., p 1n+1 Pn)

a five-opErator model is obtained. It is easy to amend

(3.2) - (3.5) to obtai a formal description within the framework

of Section 1. Such an addition of an identity operator does not

affect the valid4lY] of any of the results preceding Theorem 3.5

(or their proofs) ;.-ovided that • is everywhere replaced by

7. .c. . The first sentence o4 the amended Theorem 3.5 should read:13 13

A five-operator mouxel with 8e e9 > 0 and c = > 0 for 1 1i,
1L; ii

j 1 2, and Trj > C for i j J, but not 0 = c - w - i* - 1, is

ergodic. Also (3.A) should be replaced by

0 2  ý( - IL Fr 2U1 ce) ](3.16)"V21 + Vl2 L 11 22 c((2 - 9) + 2(1 - •i 1 - ir2 2 )(1 - 0)) 1

and P should be replced by c*i in (3.14) and (3.15). An interesting

iaplication of (3.16) is that lim .A 2 < a, whereas, if c9 < 1,

lim C402 -a . Thus the variance of the total number of A1 responses

in a long block of trials nay be useful in deciding whether a given

instance of "slow l>arninq* is due to small 0 or small c.

I_
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b. Wm@gX. HSt 1

LoveJoy's (1966) Model I is a simple model fOr simultaneous

discrimination learning. Let the relevant stimalus dimension

be brightness, and lot white (W) be positive and black (3) be

negative. on each trial the subject is supposed either to attend

to brightness (A) or not (i), which events have probabilities P n(A)

and I - Pn (A). Given A the prol ability of the response appropriate

to white is Pn(WIA), while giver A the probability of this response

is 1/2. The subject's state on trial n is then described by the

vector (P n(A), P n(WIA)), and the state space is

S - ((p, p'): 0 s p, p' 6 13.

This is a compact mtric space with respect to the ordinary

euclidean metric d.

The events are the elements of

8 a ((As W), (As, n), (A# w), (As 8))s

the corresponding transformations are

fAW(p' p') - (01P + (1 - 01)10 3PI + (1 -03))s

f£A(p, PI) - (0 2p, 04P' + (I -04)),
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fjw (p, p') (alp p' ), and

S(p' p,) - (a2P + (1 - a2) * P')

where 0 < al, a2' a3' %4 < 1, and their probabilities are

9AW(P' pI) - pp"

9AB(P' p') - p(1 - p')

9Xw(p, p') - (1 -p)/2, and

%•(p, p') - (1 - p)/2.

Any system ((S, d), Z, f, 0) of sets and functions satisfying the

above stipulations will be called a discrimination model of tym I

below.

Terem 3.6. AnY discrimination mod of t 1 j d~l3sta

diminishinq and absorbing with s le sorbn state (1, 1).

_roof. Axiom H6 is satisfied because of the continuous

differentiability of the qOs, and H7 follows from

ý'"AW) - maxa(al, 03) < 1,

u fha) - max(0 2 , 04) < 1, and

S(fXw) - b'(f* ) 1 1.
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.tius it remains only to verify S8 and RIO.

Sofe that, as a consequence of (1.5), for any mnppings f and

of linto 8 such that g (f) < a and p (1) < a, the inequality

lk (f '(f )g (g)

obtains, where f * g(s) * f(g(s)). This implies that IL 0 .)
1 if % - (A, w). Nov 9AW(p, pl) > 0 throughout

8s - ((p, p)t p >0O P, 0),O

so to complete the verification of H8 it suffices to show that if

(p. p0) el 9, there is a k A 2 and there are events e1 , I .. ,

such that f. (p, i c) a I and 90(p. p') > 0. If

0 < pl 1, % (O0 p0) > 0 and WO(O p') W8 while if 0 < p I 1s

9B(p,, 0) > 0 and f (p, 0) c 8'. FTPnz11* f- (0, O)iias positive

first and null second coordinate, so fj"p 0) c 81 sad

0),) > C. �ince 9- (0, 0) > 0 the latter inequality

implies %,jug (00 0) > 0.

The above argument shows that for any (p, pl) t 2 there to

a point s, aT ( p) 2 .Since f maps a$ into S1 it

follows ~~~~WI ttat n p )fraa weeti t he Iterate

of fj* lose#.
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(0) J j) f f(j)fA f( a AN ) a 0. B~at tor any

(q, q') e S and n a 0p

f(nix (q, q') "( 1 q)al, -1 -a q,)a3),

so

S(n) P

d(Tn+kl (p, pl), (1, 1)) A d(fAt (aPP) (1, 1))

, (a2n + a2n1/2 -) 0 .. n -0.-.
1 3

Sinc- (1, 1) is obviously an absorbing state, the verification o.'

MIO is complete. Q.B.D.

Here is a sample of what can be concluded about Lovjoy';

Model I on the basis of Theorem 3.6, Theorem 2.3, and Corollary 2.5.

U2Mg3. 7. 2021. 2L.. I, I ii.n n (A) - l

1i% -40P n(VIA) - I prob ability~x 1. MU AM. ggA~AaR C <m

ma a < I xwr =k -

U3.P•P(A)P 5 (WIA)] - IN a C((v 2 + 0 1)2/+ ,n (3.17)

&j &a ML v, w A I a s uointl. AMMU n. Ma IM.L uIM.

Z Qt 2 9 EuU gAn& UWA M,.. U I md IN.(s]I ( -.

Ua 1 m 2  1 - 9 and a3 - 04 I -

a p (p ] * (3 - p)/e + 2(1 - p)/e(. (3.1)
po p
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EL- Tb. first statement follows directly from Theorem 2.3.

The second follows from (2.10) on taking *(p, ps) - p Vp and

noting that M() A (v2 + C2)1/2 as a consequence of the man value

theorem and the Schwartz inequality. The third statement follows

from Corollary 2.5 on tak ig A(1) - ((A, B), (X, 3)) so that

Pp, (A (1)) - p(l - p') + (I - p)/2. Since the function X(p, p')

(1 - p)/@ + 2(l - p')/0' is obviously continuous with X(l, 1) - 0,

(3.18) is proved by verifying that this function satisfies the

fanctional equation given in the statement of Corollary 2.5 when

oa a 2 a 1 - eand a3 = a i4 - . Q.E.D.

Of the two learning rate parameters appearing in (3.18), 0'

is associated with the response learning process (P (WjA)j, while

O is associated with the perceptual learning process IP (A)).
n

Suppose that the discrimination problem under consideration (with

PI(A) - p and PI WIA) - p') has been preceded by j trials of a

previous (reversed) problem with black the positive stimulus.

Then p will tend to increse and p' to decrease as j increases.

Thus overtraining tends to decrease (1 - p)/9 and to increase

2(1 - pl)/G'. Which effect predominates and determines the effect

of overtraining on 8pKp [Z] will depend on the magnitudes af e and
Ap I

'., large 0 and small W' leading to ar. incrase in errors with

overtraining, and smll 0 and large 08 lead-

ing to a decrease in errors with overtraining -- the "overlearning

reversal effect.' This oversimplified argument ignores the
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effect of the magnitudes of e and e' on p end p', but it nofe the

l5e5 suggests the power of (3.18).

In concluding this subsection it is worth remarking that the

theory of Section 2 is also applicable to Bush's (1965, pp. 172-175)

linear operator version of Wyckoff's (1952) discrimination model

when P - 1/2. In that case, (xn, Yn, un) can be taken to be the

state on trial n, and this triple determines the error probability

on trial n. When there are only two learniz; rate perameters,

e9 > 0 for (x n and fy)n, and e > 0 for (un ), the expected total

errors is given by

3 £.z (1 - u)/e + 2(1 - x)/@. + 2y/0'.
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4. B01N RNHIARUS ON PREIUOUS NOPS

Theorem 2.2 includes the main convergence theorem of Onicescu

and Xihoc (1935, section 5), and an ergodic theorem of Ionebcu

Tulcea (1959, Section 8). It includes many of Karlin's (1953)

results, and has points of contact with the work of Lamperti and

suppes (1959) and Iosifescu and Theodorescu (1965). None of this

previous work covers the general non-cyclic four-operator (linear)

model without absorbing states. Karlin's results are concerned,

for the most part, with two-operator models, that is, four-operator

models with 911 - e21 ' 01 and 0 -2 -= 2. The main ergodic

theorem of losifescu and Theodorescu (1965, Theorem 2) is not

applicable to any four-operator model, since one of its assumptions

is that there is sovm positive integer k, positive real number 0,

and response Ai , such that response A.i has probability at least

a on trial k + 1, regardless of the initial probability of Ai

and the responses and outcomes on trials 1 through k. Such a

hypothosis would he more appropriate if some of-the operators in

(3.3) had fixed points other than 0 or 1.

The method of Lamperti and Suppes is somewhat different from

that of the presont paper, and has a certain shortcoming. Consider

a two-operator model with e1, 1 2 > 0 and 0 < T1 2 , r21 < 1. Such

a model satisfies the hypotheses of Lamperti and Suppes' Theorem

4.1 (with ml -, k* 1 or 2, and m0 - 0) if their event " .nji

is idenf.ified with *Oljn or 0 2jn in the notation of Subsection 3a.



Morman 37.

One of the conclusions of that theorem is that, for all positive

Vintegers v, a1  a 3 (pV converges as n -tm, to a quantity a,integerty, alm

R(pV] which does not depend on the initial A response probability

p. The a notation is theirs. This conclusion follows, of course,

from Theorem 2.2 of the present paper (along with an estimate of

the rate of convergence that their method does not yield). But

the author has found no arguments in their paper that bear directly

on the lack of dependence of the limit on p. (Their notation,

e.g. av , does not even refer to p.) The only kind of conclusion

that can be drawn from the arguments given by Lamperti and Suppes

is that (in the notation of the present paper), for any p,

.. .. j-

converges as n -4 - to a quantity that does not depend on k or
The recent corrections (Lamperti and Suppes (1965))

illi .1 ."'' ik' jk This is not quite what is required. .
of the Lamnerti and Suppes paper do not affect this observation. The
method of Lamperti and Suppes is an extension of the method used

by Doeblin and Fortet (1937) to study what they call chas•n (B).

It appears that Doeblin and Fortetls treatment of Onicescu and

Nihoc' s 1 1oai253a ckm i & (cbatnes (0 - 4N) by means of

their theory of chains@ (?4) has the same shortcoming.

A distance diminishin,' fur-cperator model with two absorbing

states necessarily has Rii, i > 0 for i = 1, 2 and either
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= 0 or e8l = 0 for i SO J. Thus it has two effective operators

and, perhaps, an identity operator. Such models were studied by

Karlin (1953), and the implications of Theorem 2.3 for these

models do not add much to his results. The generality of Theorem

2.3 is roughly comparable to that of Kennedy's (1957) theorems,

though Kennedy's assumptions exclude Lovejoy's Model I.

The argodic theorem of Ionescu Tulcea and Marinescu (1950)

used in the proof of Theorems 2.1 - 2.3 extends earlier work by

Doeblin and Fortet (1937, see section titled "Nose sur une &quation

fonctionnelle "). The condition H9 wak used by Jamison (1964).

Let Y be the total number of response alternations for a

distance diminishing four-operator model with two absorbing

barriers. That y is finite with probability 1 (see

Theorem 3.4) follows, in the special case Tit = 1, eii = e > 0,

1 • i a 2, trom a result of Rose (1954, Corollary 2 of Theorem 5).

Theorems 3 and 4 of Iosifescu and Theodorescu (1965) give

results like those of Theorem 2.6 of the present paper for a sub-

class of the class of models to which their Theorem 2 is applicable.

This class of models is disjoint from the class of four-operator

models, as was pointed out above. However, once Theorem 2.4 has

been proved, a theorem of Iosifescu (1963) leads to Theorem 2.6.

To the results in Theorem 3.5 and its five-operator generalization

could be added
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'var (S a) 2 + 0(n-1/2
n p mun +~

which also follows from Theorem 2.6. In the special case of

noncontingent reinforcenmnt and c - 1, the result is a consequende

of Theorem 8.10 of Nstes and Suppes (1959). A similar result for

limm var p(S m, ) when reinforcement is noncontingent and 0 < c S 1

follows from formula (2.16) of Yellott (1965).
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5. PADOOB OF THBRIPM CONCZRNI G STAT? S

,1E. issic prqodiC Theoreu

In this section only, C(S) is the set of _.Mlex jluged con-

tinuous functions on 8, and .(',j-j, 1-.1, and CL are redefined

accordingly (see (1.2), (:.3), (2.4) and the santence following

(2.4)). The spaces C(S) and CL are Banach spaces with respect to

the norms 1-1 and 11-11 respectively, The space CL is also a noremd

linear space with respect to 1.1. The norm of a bounded linear

operator on C(S) or CL is denoted in the same way as the norm of

an elemaet of these spaces. Thus if U is a bounded linear operator

on C(S) its norm ie

lul - sup lulI,
f C(S)l

while if U is a bounded linear operator on CL its norm is

Pull s sup llu*hI.

Finally, if U is an operator on CL, bounded with inspect to I,

its norm is denoted luCL , thus

l CL 82 uljul, - sip juv'j.
L CLs

If U is a linear operator on a linear space W over the complex
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nuubers, and if A is a conplex numers D(N) denotes the We of

all x e w such that Ux - Ax. obviously D(A) is a l.•=r subspece

of W and always contains 0. If D(C) contains an element x pf 0#

A is an siqaenvalue of U.

One of the mathematical cornerstones of this paper is the

following lemm, which is a specialization of a uniform ergocic

theorem of Xonescu Tulcea and Marineacu (1950, Section 9) along

lines suggested by these authors (Ionescu Tulces and Narinescu,

1950, Section 10).

Lmme 5.1. Lt U be a linear operator on CL h that

(i) lulCL • 1,

(ii) U is bounded with respect the norm a, nd

(iii)for some positive into k and real numbers 0 A r <1 and R.<

m(U)*) 6 ratm) + [1*1

for _j * 9 CL. Then

(a) there are at most P ii~4.te nE&2, of eigenvalues

AIR )A2"". p of U for which -l1,

(b) for !a paAitiv = M n

n +l"
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when V A_ k ui §M lea POaer Ot CLL, oad with

U to -to ,

2(c) u1 - ui, uiu -O0for i j uiv- v±•O
i i -V .0

(d) D (X) - U±(CL) is finite diuansional, 1 - 1, ... , p, and

(e) for Ha < a and h > 0,

lvn1 11 S /(a + h)n

for all positive inteoqrs n.

This lemma will be applied to the restriction to CL of the

bounded linear operator

U* (a) - l[(82) 81( 2 V(fe(f}))Ve(9)(.)

SER

on C(S) associated with any distance diminishing model. This
operator is of interest because its (n - rt iterate, applied to

a function * E C(S), gives the expectation of *(S n) as a function

of the initial stiatei that is,

n a t. This formula is easily prove by indction. it holds by

definition for n - I and n - 2, and,, if it holds for an n a 1,

then
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as[*,(sn+l) z a- [K[ ls n+1)I s21A

S(U'-T 
p(s 2) ] - UN ,(

Theorem 5.1. TI.M conclusio., (a) - (a) .U wInM 5.1 bJ. 1Q2

&J&. oR1a Utds) - 3 8 (S2 ) I as~iae W,= j aX m~s ditM iI

ithing Mad. jI addition 1 it pal gna. kJak U U D D(1) cjoing

III constant f3•jiJ on S.

Throughout the rest of this paper it will be assumed, without

loss of generality, that X I 3 and 'A Pf 1, j a 2, ... , p, where

the X )'s are the eigenvalues of U of modulus 1.1

- The last statement o2 the theorem _ obvious. It thus

remains only to verify the hypotheses of Lama% 5.1. For any c € CL

UV,(a) - UW(s')

- £:\*(fe(s)) - *(f (s'))") a (a) + E V,(f (s'l)(qelS) - e
s a W a 0 -

IU*(s) - U'*(s')I '

J IIfe (f)) - ',(f (s'W)IP (S) + L I*(f (a))I (a) -4P (s')a

S m(*) £ d(f (S)}, f (a'))I () + 0 (I m(p ))d(a, a')

S .(.) + S.. d(s, a'),
Lo
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by R7. Thus U* C CL as e consquer*e of 86# %Ad

ni(u,) S m(*) + zj 1 m(q ). (5.3)

Clearly

JuWls)I i Z i'(f*(,,))k (,,) ,S 1*,J

so

lu*Il ' IwI .

Therefore (i) is satisfied, and

U m(*) + {•' (1 + Z tM(% ))

I() + Z 9A (4p o

so (ii) is satisfied also.
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bHypothesis (iii) of Lemea 5.1 will now be verified. Let k(s)

be the integer and e .$ . es~k(s) the events in the statement

of Be.° for oachs a 8 let

3(a) -(t s 94.0 (t) > 0).
,loe* s,k(s)

since

"9t) -' se nt)bO21o* f Ct) ... 4P Cf 1**n Ct))

is continuous for any events el, ... , en, 5(s) is open. Further-

morea s 3 (s). Since 8 is compact the open covering (Z(s)s

a c s has a finite oubeovering SC(1 ), ... , SC(*)o Let k£ m k sO)

and let X - maxlSis£ki. If t I Zls5), let of

j -1, .. , k1 . Clearly it is possible to choos e', P e...*t,k +1' **-

e'tj iuch a way that

(t) 0.qrt,l" t,K

Hypothesis 87 implies •I, I f, ent

so tT:- ir.alW.ty

is obtained from H8. Thus the integer K, which does not depend

an to and the system ea , *o of events satisfy 96. There-

fore it can be assumed without loss of generality that the integer

k in IS does not depend on the state.
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If t *CL and s, s' aS than

a ~ #(vf (S) ( Vf (81094(s
- £... 3 e. eJ

+ 0 1~l *gt k (we, I-.% (a). % Lee* (all)

therefore

-. ) + i*1 Z a(C .. %)]4d. .').

Now CL is closet under Rultiplication and W3dsr composit.Lon vLt-L

umppings of 8 into 9 for which p(f) <a. Thus 9o *" CL for

any events 0V, a. o and

_ 0 15.4)
O1 6...O
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It follows that for a s'

iukv,(a) - UJ, (s,)/d(a, ')

m ' M • (fe .e.)e-
" L + ] .- ) . - + !'Ilmk

1 k
Sm(•e...k ) <I + (ie*" (.e))

6 ... e 1 + ... eO:

1 kc1

m ( . + (+•e1- ) +e) mk'

where

Smax Ii(f. ) ( (5.5)
el..e 21 k

gA1(fe1.. k #<1

and

S=L min. (a) > 0. (5.6)

g.(fe* . )(.o)<1 kk

The latter inequality As a consequence of NO, H; and the contan-

uity of the T a ek. Therefore
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m(Uk#) , rm(*) + kiV' (5.7)

where r N )A + (1 - 4) < 1, and (iii) of IAoan 5.1 is satisfied. Q.R.D.

Though it constitutes a slight digression and will not be used

in the sequel, an additional consequence of (5.3) and (5.7) is

worth pointing out. From these inequalities

m(Un*) I m(t) + n vim and (5.8)

m(Unk*) 6 m(*) + I*I k/(1 - r), (5,9)

n a 0, are easily obtained by induction. Those yield, on combination,

Mr(U•*) , m(;p) + I*I((k - 1)ml + %/(I - r)), (5.10)

valid for all * f CL and j a 0. It follows that (Uj*) is equi-

continuous. This, together with the fact that CL is dense in

C(S) (as a consequence of the stone-Weierstrass Theorem) and

Jll, - 1, implies that, for any 9 c c(s), (uj*) is equicontinuous.
1965)

in the terminology of Jamison (1964,#the operator U on C(s)

associated with any distance diminishing model is u• o 93a

in the terminology of Feller (1966) the corresponding stochastic

kernel K is rgular.

b. proof of The 2.1

The following loema includes most of the assertions of

aiheorem 2.1.
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esam :. n 4 2L WX d lM din hng w &%Uri l&

gtuhals g. )t -'.L KO nIh jtha~ (2. 5) IaJlig wher-Xa 3 1 0(840 Jj

a kx (2.K.
]Pro ves 5.2. Theorem 5.1 iqplies that

glel i Z ll + vll-. ill

as n -too. Therefore there is a constant if < a such that

lhnie < V (5.11)

for all n a 0.
n-l

Let U, - ()A) Z U . Then, by Theorem 5.1,
J-O

n

an (I/-)(x =U') + (I/%) Z U
J-l

• In( u)+ Jln • U, + zln V.

i-i iuI Jul.

Therefore

P n
UU1  mA)(1 U) + (]-A) I )'[(1 -I )/V = flu + (IA) z vi,

so that

On Ulf CeA
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where

p
c- (1 + w) + 2 Z ljuil/ll - Al + MA.

i-2

Thus, for any e E CL,

Iluin - u1p'I * 0u1n - ri1 ljv'll , clII*IAA, (5.12)

and, a fortiori,

liin.l%* - Ul*I-0 (5.13)

for all * e CL.

Since CL is dense in C(S) and I6nl - 1 for n a 1, it follows

that (5.13) holds for all * c C(S), where U1 has been extended

(uniquely) to a bounded linear operator on C(S). Since the

operators U on C(S) are all positive and presec-e constants, (5.13)n

implies that the same is true of U 1. Thus, for any a a s, U1 *(s)

is a positive linear functional on C(S) with ur(s) - I where r(s) a

1. Nonce, by the Riess representation theorem, there is a (unique)

borel probability measure KXn(s, .) on S such that

U1l(s) - f *(s')Kls, dao') (5.14)

for all 0 e C(S). In view of (5.14), (5.12) reduces to (2.5).
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That K is a stochastic kernel follows from the fact, now

to be proved, that e(? , A) t Cý for eveaz- Norel subset A. This

in obviously true if A - B. Supposi that A is an open set such .

that its complemnt i is not empty. For j I 1 define q a CL by

( if d(s, 1) 1/.

J4'¶ j(as W) if d(so 1) Ij. ( 5

Than -

I(iif a 4 A

0OifsaC

Where 1,% is the indicator function of the set A, and the convergence

Is mnnotonic. Therefore

Ila VIi. (a) -IsA(s°)x (a, do') = (s, A) (5.17)

for all a 4 S. By Theorem 5.1, D(1) - 71(CL) is a finite dimn-

sioual subspace of CL. Bance there exists a constant J < u such

that Ivi 'jIVI for all * 4 D(l). Therefore

IU9i0 (81) - Ulq 1'i(82)11 a a(uli)d(sV, 812 )

' JIgULqhld(ls1, s2) S Jd(o,• s2)

for all j I and i s s' 4. Nquatiou (5.17) then yields# an

letting j approamh *,

I 1(. 1 , A) - ( A) s? a d(., a.
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If A is an arbitrary Sorel set, a V9s 2 C 65and 4 > 0 the

regularity of KR(si, -) insures the existence of an open set Aloe

such that A D :A and

K'(sp' AiK6  A) & c

for i #, 2. Thus A A1 6 fl A2 ,c is open and

U U

0 s K ,(j .A) -A (tsis A) sN t

i - 1, 2. Combination of themse inequalities with the result of

the last paragrapb yields

jle(s l A) - e(s 2, A) I a jd(sia *2 + 2c,

or, since c is arbitrary,

IK'ls1 , A) - K (a 2, A)1 S Jd(s.1 , 82.

Thus K(., A) a CL with m(K (., A)) 9 J for all Sorel subsets

A of 8. Q.E.D.

Actually, this proof gives (2.5) for the complex as well as

real valued functions #, though this is not important here.

To complete the proof of Theorem 2.1 it remains only to prove

1aM 5.3. Th oca stic k)ZnI

unfym t&. KO

trw Denote (l/n)Z'-1 X( byJ-0
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Since

n a

it suffices to show that if A is open,

8j(, A) - 6 A in(@, A) - (5.19)

for all a if n is sufficiently large, vhile if 3 is closed,

x (so3) fe'(B B) +4

for all s if n is sUfficiently large, The statemant concerning v
closed "to follc's from that concerning open sets by taking comr-

plevents" so only open sets need be considered. There is no loss

In generality in assuming A pf . By (5.15), (t) 1 A aI(t) for all

t aS a5s
in (as A) a

i;-- (s, A) + (Ugij(s) - K'(s, A)] + [q j (a) U In (8)]

e K(s, A) - lU1 1(.) - Y."(- A)j - 10 - U1Ynjl.

since the convergence in (5.17) is monotonic and thi limit is

oontLnuous, convergence Is uniform by Dini's thoorem. Choose

jso large that

l- K'- A) I < s/2.

Tbhe (3.13) applied to i I mplies (5.19) for all a 4 a if n

is sMufclently large. Q.3.D.
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Theoren 5.1 asserts that D(l), the linear spac of V £ CL

such that U* = ', contains all constant functions. If, in addition,

it is known that D(1) is one dimensional, that is, the only * C CL

such that U* - * are constants, then it can be concluded that the

probability measure K (a, ") - K'(') does not depend on a. For,

by (d) of Lemma 5.1, U * is a constant function for any f C CL,

and thus for any * C C(S). Therefore, in view of (5.14). for any

a, a' e S,

fS *(t)K (s, dt) - f S*(t)K (s , dt)

for all 'c C(S). This implies that K M(a, it K(s' .), a"

cleaimd. It is, incidentally, easy to show that K(-) is the

unique stationary probability distribution of (2 ), from which it

follows (Breizn (1960)) that

n

z- ,,) - 81#(S

with probability 1, for any * t C(S) and any initial state.
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c. IML gL Zbgg= 2. 2

SSuppose that a distance diminishing model has the property

that the associated operator U on CL has no eigenvalue of modulus

I other then 1. Then Theorem 5.1 implies that

l!e• - U1N - HVnH" , i/(l + h)".

Therefore, for any -0 s CL

Hun - U V' I MII*,/(1 + h)n, (5.20)

and, for any 'c C(S),

li, jIe - U i - 0. (5.21)
n-4P

From (5.21) it follows that K (n) convrges uniformly to K", just

as uniform convergence of K to K4 followed from (5.13) inn

Subsection 5b. That is to say, when (0.21) holds the proof of

Lem - 5.3 remains valid if in and Un are everywhere replaced by

K (n and n. If, in adition, the only I c CL for which V# -

are constants, then K0(s, -) - Ks(-) does not depend on s, as was

shown in the last peragraph of Subsection 5b. Therefore (0.20)

reduces to (2.9) (with C - (1 + h) and a - 1/(1 + hi, and all

of the conclusions of Theorem 2.2 hold. To complete the proof of

Theorem 2.2 it thus suffioes to prove the following two lamme.
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j. 5.4. If a Cistance diminishin@ model satisfiee, ff9,

thui. 1 is the only siggityalus of U of modulus 1.

o 5.5. ;f a distance diminishing model satisfies 29,

then the only c,•ntinuous solutions of U"' - * Are constants.

The arguments given below follow similar arguments by Jamison

(1964).

Proof of LmumS 5.4. Suppose INI - 1, X #1, 1 V O, and c E W

so that U'l' 0 ?•. 1iý()l e C'S) so there is an sO C S.

ýV I ) -max I %(a)J I =t

Clearly (a(s0) 1 0. Now U - •' where i,, */, W 0(so), I* I -

I*I/I*(s0)1 - I and V'(s 0 ) - . un )n., so U'{(SO) . ,n.

For n - i, 2, ... let B n a ( n ) Cletrly K (SoB
empty.

1 for all n a 1. Since K(.0 , D1) - 1, J o wd e!1Lt a1 t a1. Then

, (1) . N, un.,,(, 1S) M an d K(n) (, I n+I) - 1. but

INn+i - ,h I -) - 11 > 0. since w' is unifornly continuous there

=.Ists 6 > 0 such that d(s', s") < ( implies It,*') - v'')is <

IN - iI. if 04 q an and s" a n+ then 1**(s0) - *1(s*) -1)

so d(nf , sV) a 6. Therefore d(Bn, a n+1 , n 1 , 2, ... But

Bn TnO) and n+ )Tn{e) so d(Tn(5O), T(S) a 6, n - 1, 2,

Thus R9 is violated. O.B.D.
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pEigL 9L !& 5.5. Suppose that there exists a real valued

non-constent functifn * c CS) such that U# - y. Let M - mx w

*(s0) and m- min -*(a 1 ). Thenm >m. LetC (a, *((s) -m) and

C"= {8 (at* -( ). )?* so so la,0) a Nande e1) -a.

S•drefora ( W (g 4,) 1 1, so CD ). (a ) and

C d T nIs) for all n i i. By tm u-iirm continuity of * there

exists a 6 > 0 such that d(s, 0') < 6 implies jy(s) - '(s')1 < M -

If s C CM and a' E C then 10P(s) - *(j')I - M - m, so d(s, 0') k 6.

Thbrefors d(T(s 0 ), Tn(Si)) a 6 for all n i 1. ThusH9 is violated.

So under the hypotheses of Leoma 5.5 there is no real valued non-

constant * e C(S) for which U* -

Suppose *1 e C(S), U*1 - W. Then

U Re V' + iU Im M Re "0 + i Im '.

Thus U Re' = Re ' and U im' Im *0'. out Re a1 and Im' ake

continuos and real valued, so Re *' and Im V1' are constants.

Thus *' is e (complex valued) constant function. Therefore all

continiaout solutions of U* - * are constants. O.L.D.

d. ý.ro: of Theorem 2.3

The firet paragraph of Subsection Sc shows that, to obtain the

uniform cciverqence of y(n) to t.he limiting kernel Kf of Theorem 2.1,

and to obtain (2.10) with [0(S)] defined as in (2.6), it ruffices

to prove Lama 5.6 below. All leums in this subsection refer to
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a distnce disinishing m•al satslfyin7 aIU,

mef SUPPO'. WjW AV Wl'ter% IN - 1, X~ p 1, and -a C (8) . Lot

00be a state fo: wtaic~l I *~(as0$1 - Ifl and lat C (st *(e

A n#( ()),1 hj 2.. * NOW Ue*(a 0 ) -•*(so) ths K (a 05 =

1, and Cn T(sa). By HI0 thgre exists a sequence ft s euch that

Ftn C TA (sa and li dOd(t n, a8 {SO) = 0. Benco lim_ o*(tn )

*( ). ut t 6 Cn, so 0(tn -n, 0 ), which converges only

if (s) =0. Hence j - I•and *(s) a 0. Thus W is not an

eigenvalue of U. O.R.D.

The proof that 8s converges with probability 1 hust be deferred
na

until more information hz& bean obtained about K . The next two

lemmas provide such information. In thr worli that follows, A -

(ai: 1 6 i S NJ is the net of absorbing states.

LEm 5 . 7 . L b1, ... , baN re MX N scalars, there it one and

9 one * e C(S) suc tha t U - * nd f(a i) = bi, i - l, ... , N.

This function belongA to CL.

•.o. (1) Uniqueneis. First, the following maximum modulus

principle will be proved: If * £ C(S) and UW * Vi, then all maxima

of 1'(.)I occur on A (and possibly elsewhere). Let so be a state

such that W O(s0)I - I*I, and let C - fat *(a) = Vic 0 )). since

P(a 0) - (SO), K (n) (BOYC) - 1, so C *Tn(sO).BY U1O there exists

a sequence tnsuch that tn C Tn (0) and limhn.4 d(tn, aj(S)) 0.
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Thuemo. 0 ii Vet a*(a , J(0 ndIl . D0 )1tt WC 1o*(1.

*'(•) for all 2 CA;-•. Then C(S),

and ¢ (a- 0 f or a11 a t ,.* Thus 0 P, so a)) W *1(a)
S(2) existence. Since tnfls} 9 9s[.),•Sn~l)], un* s) - '/'01•

for all a e A n - e• C(S). Thus V1 (s) - liin-oU U'(*)= *(a) for

all s C A.

Let wa, *.., )m e CL with i(a) - b i e.g.,

Sil(a) =(I - d(s, at))+

where F - miniqfjd(asi a.) and x+ is x or 0 depending on whether

x ? 0 or 0. It will now be shown that

Y(s) = ( Z k) uWj

is the function sought. Clearly y e CL, and

N N
S(aj) J1 b w (a) i Z - Z b =• bii(a ) b J.

Finally,

N N
U7 = i=d biUUlwi = i bjUlw - - .. D.

Um 5.8. 1[ i = 1, ... , N, Up t A 7i kI thi continu2 g function
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N
l("(s, J- = n .vy1 -i1,81a1

JsaK Don ) , -21h 7v (s)5 MI(U ) .

KI~o~a rot ii c~s) haeb & '(s) = 1A.i_ aaaslalt aind m SI a.

.CMearyX, * d C(S) m '(Jj a a 6,

N

N
Proof. For o,: C(s) le.t Re) yia*-i and V" -

Clearly e, C (S) , and 1PI(A ) l*a ; (a it ego me~..,N

Also

N N
Uý *,(a)Iv MY,(a) 1  , n

Thue, by Lam-u 5.7, w h i, vtdch Is the seiond *sartion of

L•una 5.8.

now

z~~ -Y 0M)5(dt

a(t ) (dt)
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for ill 4 6 C(s). This yields the first assertion of the

1amm. Q.1.D.
U

Nov that it is known that X (s, i) is concentrated on A

and the functions 7 , are available, probability 1 convergence of

3n can be proved.

lam 5.9. L" wxt a AA s•e 0 a(s, 8 !n).h

amawku±lU 1 t& & a M. , point, S..go A. .EU ,0 IQU& 3I, mtL B

aL 8, (8, 9) = a(s a B) . ticlar

P a (S =

P . It is a simple consequence of the triangle inequality that

the function d(-, A) on S belongs to CL, and clearly d(ai, A) - 0,

i l, ...*# we Thus 1a (d(SA)] 0 , so that

US,[d(S nP A)]U & Canlld(-, MYl

for all n a. 1. The initial state is regarded as fixed throughout

the following discussion. Since

(aid(a, A)] A COcId(., A)i

it follows that

nil (saf n A)] S Cld(-, A)Ica4 - cI).
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By the monotone convergence theorem the order of sunntion and

expectation on the left can be interchanged to obtain

U

a IB Zd (S, n <A)] <

Therefore Z d(S , A) < -, and~consequentl.y, lim. d(S , A) w 0
nil n n-0 n

with probability 1.

For any i 1 1, ... , N,

S[y i(Sn+I )IS n .. , s1 1 "y (S[S n+ s ft i(Sn

so (Yi(Sn)) is a martingale. Since it is bounded (by IvjI), it

converges with probability 1.

Let 0 be the event lim n. d(S n, A) - 0 and imni-Tyi(Sn) exists,

i 1, ... , N* in the underlying sample space. The above arguwants

show that P (0) - 1. Let w c G. Since S is compact, every5

subsequence of (S (n W) has a convergent subsequence, and, since

d(Sn (w), A) -. 0 as n a.., all subsequential limit points of (S (n )

are in A. Suppose that ai and &i,, i p is, are two distinct sub-

sequential liLit points -- say Sn (W} - .ai and S n# (0)) -#a,, a

j -•. Then

(S -.v,0(at) 1 and

7 i (S n. (o) • i (sit) -a O,
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which ontradicts the convergence of (-L(an (C)). Thus all

convergent subsequencesof (Sn(Q)) conva--j to the a&= point of

A. Denote this point S,(c). It follow that lS()

Therefore linS = S with probability 1. This implies that the

amynpotic distribution of S8 is the "ano as the distrAbution of

S as i.o., KO(s, B) a P (SM e B) for all Borel subsets 3 of S.

Finally i(s) - Ps(Sao a i) follows by taking B (a Q.D.

This completes the proof of Theorem 2.3.
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6. PROOFS OF TIDrUNS CO•NRNO 3VMMS

a. P .gf .2L Zbeg 2.4

The equality

p(n) (A ) a Z [P((z , AI
a a n 'n+s_1) A ns

can be rewritten in the form

(n) (A) .a R [s(A ) *s )] ("1

where

*(s) -P (A). (6.2)

Thus (2.12), with L - C(D+l), follows from (2.9), (2.10), and

the following lemma.

1iay. 6.* 1. !~ML Radsac di.1zbshig. mAel. tbr iA&

ml) ( •)) ( D (6.3)

•z• ~ ~~ aJLJ•z L• x.

P . For any i, j a 1, a, a' c S, and Ai+ a a±4+

p(1) (Ai+j) pl) (Ai+j)
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fo (a) p(1) (A~1

ole**. Oe 0 *0 K 1 Goes

whemre A1 smU.s '~il A i+j
1 i 1~ +1

51.6£ (A) .~ *.. * 6

+ (4 p7ise)~.e~~1 (A i~)

ol.o*S 1 1i.G

Thus

W~l (A 1+ ±~)( ~

+ '1 *i 'Ie' * (A'~

0~~~ 11 "*iW
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I n1  (a) (f M)d(s, a') + a, d(s, O')
1 ±$

where

n (1) (A1)

and ai is given by (5.4). (Note that n 1 a ml.)

Two cases are now distinguished.

~a:l 1 i- I. Then

Sl(1) (A +j) PM p (A) 1+1 (n, + al)d(a, s),

so nj+1 S n + mI or, by induction,

nr S j -l. (6.4)

QUa 21 1 - k, where k is an integer that atisfiese S for all a.

It was shown in the proof of Theorem 5.1 that soch an integer exists,

and that there is a constant 0 S r < I such that

. , ... (a) Qf . ) , r

01..a k.

for all a c S. Thus
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IP (1) (A-k+j) p(1) 0.k+j,. r + m)d(+,

so

a nr+ + sk. (6.5)

This formlwa and a suiple induction on v imply

V-1
nJ+vk njrv + s(Z r4 )

too

for v aO. Thus

nj+vk +r m+k/(l - r)

SjmrV + mk/(1 - r)

by (6.4). but any positive intoger I can be represented as

£ -vk+ fJ fortom v 0and0gj <k. Thus

nS (1 - 1)mI + xk/( ( r) -D

for all J 1 1. A,1.D.

b. Phf yL Ggtalf hi 2.5

Under the. hypotheses of the corollary,
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® (1)A

p (AAl - p (A )y (a) -0.
5 i-i1

Thus (2.12) implies

lip(n) (A lU 6 Ln

for n & 1. Thus the series P (n)(A) converges in the norm
n-i a

fll'l to an element of CL, and

(n)A (' )1 ,7, (n) Ua L/( r 66
jl "ŽPs} (A)}Ij s £ jjpn• (A )U , I•/(l - a). (6.6)

n-i n=l

Lot

1 it (a, "'' ) n A1

0 if (I n' E n+-) ' A

S(n) A• ),s
Then X -X and 8 xI P(n (A so

n-i n a n 0

a (X] - p(Al , (6.7)

for all a c S. This, in combination with (6.6), gives (2.14).

C)early

x(s) a (x 1) + a x
n- 2

I(? (A1 ) + a [( [ X Is
Sa n 2

na 2
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"P (A) + [ W

and X(ai) - 0, i - 1, 5.., I. If X) is another continuous

function satisfying these conditions then A - - X' e C(S) with

U- & and M(ai) - 0, i L, ... , N. Thus 6 (*) -F 0 byTheorem 2.3. Q.S.D.

c. Po of_•_Th r 2.6

As was remarked in Section 2, a distance diminishing

mocel can be regarded as an example of a homogeneous random system

with complete connections. In the notational style of this paper

(losifecculs is somewhat diffezent), a homogeneous random system

with complete connections is a system ((S,4), (8, '), f, 9) such

that (S, ) ard (9,h)) are *aasurable spaces, f. (-) is a rmiasurable

mapping of 3 , S into S, v (s) ia a probability. measure un !

for each s E and qA (1) is a measurable real vailed function on

6 for each A -. An associated stocha3tic process JE n for such

a system sat.!,fies

H3V P 'E e A) ('VA (s) and

P a (zn - AILJ I e., 1 6 j 9 n) (f a0)n

for n k 1, s •. , and A E •. Under B4, • can be taken to be the

Borel subsets o' S. Under H2, ';h can be taken to be all subsets

of E, and ý. (s) is o probability measure on 'ý if and only if



Norman 69.

there is a non-negative real valued function V.(s) on 2 such that

eeA

and Z Ez () 0 1. Then R3 is equivalent to 33. Also, the

measursbility requirenmnts on f and are weaker than continuity

of f (a) and Pa (), which are, in turn, weaker then NG and R7.

The following lemma was proved (but not stated formally) by

Iosifescu (1963, Chapter 3, Section 3).

M~tDg A P a (A t 2- "Aa Aa Wei Lu s I a"
• Kbniaa/ lt~hk Z•:inln <~ IDA Lnd. LYo Y A • 1, 3.~k~bJ ri

iP(n) - <
8 n

a• e•. S , n, 1 9 1z, ADI A• L •p , _%b &a 2L .tt_ conlugio

The quantity P (n)(A i) is defined in (2.11).

For an ergodic model the probability emasure P (A}) w P (A I

defined in (2.13) does not depend on a. Therefore (2.17) implies

the hypotheses o0 Lemma 6.1 with e n Lan, and the conclusions ot

Theorem 2.6 follow.
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APOIFI~t~ NVDILS WITS FINITE STATE SPACES

a. 7

The following definition is analogous to Definition 1.1.

A~iL~ Axaman W6, R .fs0J&fos et

""~A"AU& ".L f. ORR) 2L I x a j=S,Md 4p (-)R I&a IL U M11M 2 .(' 9,aa ae x S sq h -Vg~y j nuaes,

Definition 1.2 def ine* associated stochastic processes (Sn)

and (Un) for any such model. It is possible to develop~by the

methods of Sections 5 and 6. a theory of finite state models that

completely parallels the theory of distance diminishing models

surveyed in Section 2. This will not be done here, since the

results concerning states obtained by these relatively complicated

methods are, if anything, slightly inferior to those that can be "

obtained by applying the well known theory of finite Markov chains

(see Kemeny and Snell (1960) and Feller (1957)) to the process

(S n]q ) owever, the results concerning events in the ergodic case

are new and important. Therefore, a development will be presented

that leads to the letter results as directly as possible. Appli-

cations to stimulus-sampling theory will be given in Subsection b.II
The natural analogue of N9 for finite state models is

HU' For Lny a, a' c S, T (s) T(s') is not emptyif n is
n_ n

sufficientiX large.
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This is equivalent to

R9' The finite Markov chain (S ) has single ergodiLc st, and

this set is regular.

The terminology for finite Markov chains used in this appendix

fol)ows Kemeny and Snell (1960). By analogy with Definition 2.2,

a finite stete model that satisfies H9' will be called orgoic.

The reader should note, however, that the associated process ks nn

need not be an ergodic Markov chain, since it may have transient

states. If there happen not to be any transient states, the

chain is ergodic and regular.

Lemma I is analogous to Theorem 2.3.

14MI. Xa_ ercodn finite stUe. JUdjthere ar_ con-

Jsjflts C <W #M.4 ai < I I~ gro 2a2bJULkýL gitib~o IC g

n to

E*[ (so)I 1(*()II ((s 0n). (L)
I j" Lk j A _SAIWI LJWaU~I11iLU 2a S A n A 1, whx

I xoo. Let b :,- the number oC statca. To tacxijitat..:

tis- of matrix notation the states are denoted a , s
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The transition intrix P and the

colus vector c oorrespondinq to * are then defined by

PI = K(si# (ail and u *(xi). (3)

Thon

a. n i (4)

for n 4 1.

Ther& is a stochastic matrix A, all of whose rows are the

same, say (si, ... , aN), and there are constants b < m-and a < I

such that

1(Pn-2),j - Aijl 4 ban- 1  (5)

for all n 4! I and I 4 i, j S N. When (S is rwqular, this

assertion is Corollary 4.1.5 of Kemeny and Snell (1960). When

Isn) has transient states, that Corollary can be suppleemnted by

Kenwny and Snell's Corollary 3.1.2 and a strsiqhtforward additional

argument to obtain (5). Let K be the probability measure on S

with K((as )) - a., and let 2(*(S6)" be any coordinate of AO.

Then (2) holds and

in'(s*(an)H - '[t(s) )I a i (Pen') - (A**) i

11
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n-i
S (p A

Jal

•2- 1 (P~zl - Aijl !(,a

9 Nba" n-11

This gives (1) with C w tb/a, Q.E.D.

The next lemms parailols ThAcrem 2.4.

IP (n) WAt P'4 me (A Ca n (6)

LU alln, I a,1 3 Ai

P-(At) X p (A) ()KK()) (7)

reS

And4 C Wjj a &Me &L in I&W 1.

Pr22- Just a0 in the proof of Theorem 2.4, (6.1) and (6.2)

hold. Thus (6) follows from Lema 1. O.l.D.

Theorem I is the main result of this subsection.

nagm . I i AU 21 a1 &. gL •Zm 2.6 hq"J LM.
an• sm• L•~k caa mh.
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•. A finite state model can be regarded as a homogeneous

random system with complete connections, in the same sense that a

distance diminishing model can be so regarded (see the first para-

graph of Subsection 6c -- if j and t are taken to be the collections

of all subsets of 8 and 3, respectively, the measurability condi-

tions in the definition of such a system evaporate). Thus Lemma

6.1 is applicable, and Theorem 1 follows from Lemma 2. Q.*.D.

b- Awlic31toiL t& i -ia3 l9n 32Mh.o

Consider the general two-choice situation described in the

first paragraph of Subsection 3a. The state Sn at the beginning of

trial n for the N element component model with fixed sample size v

(Nates (1959)) can be taken to be the number of stimulus elements

conditioned to response A at the beginning of the tria] Thus

s M (0, 1 , ..q# NJ, (8)

a finite set. The event space K can be taken to be

3 - ((i, J, k, A)s 0 1 i 6 v, 1 A J, k A 2, 0 S A A 1) (9)

where i is the number of stimulus elements in the trial sample

conditioned to A2 , A1 is the response and ask the trial outcome,

and 1 - 1 or 0 depending on whether or not conditioning is effec-

tive. The corresponding event operators can be written
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f-il(a) - a + iuin(i, N - a), (10)

fij2() - a - min(v - i, a), and (11)

f ijkO(a) a.. (.12)

Of ccurse, i elements conditioned to A2 cannot be drawn if i >

N - s, so the definition of fijl (s) is irrelevant in this case.

The definition given in (10) makes fijll(-) monotonic throughout

S. The same holds for (11). The operators given by (10) and (11)

are, incidentally, analogous in form to the linear operators

f(p) - p + 8(I - p) and g(p) = p - Op,

if taking the minimum of two numbers is regarded as analogous to

multiplying them. Finally, the corresponding operator application

probabilities are

"(ijk(N) Njk Cjk]i (13)

whe re (p)i a 611P + 5 2(- " p ] " 11P + 51011 - p), cjk is

to be interpreted as the prokability that conditioning is effective

if outcome 0 occurs, and J ' is 0 unless 0 A m A J.
jkm

For any choice of N a V 1 and 0 is Ti j S 1, (8) - (13)

define a finite state model that will be referred tc below as a
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Tboa 2 . & find~ salzein AiM. mod XLQ Yi adCj2"Jr

~ 2.. 1 i, A 2 AAegdc

Pro. It is clear that if Sn < N then the sample on trial

n will contain elements conditioned to A2 with positive probability.

Given such a sample, A2,n will occur and be followed b", 021,n with

positive probability, and conditioning will ýi effective with

positive probability. Thus S > S with positive probability,nl n

and it follows that the state N can be reached from any state.

Thus there is only one ergodic set, and it contains N. Furthermore,

if S n N then A occurs with probability 1, and 0lln follo,1sn l,n l

with poative probability. So Sn+l = N with positive probability,

and the Prgodic set is regular. Q.E.D.

It follows trom Theoreursl and 2 that the conclusions of

Theorem 1.6 are available for any f.xed sample size model with

0 i , : 7for all i and j. Letting D be the subset

D -a (i, 3,k, i)i 1,1

ot E, and h(E ), where h is the indicator function of D,
n

the cuncl -tons of Theorem 2.6 include • law of large numbers

and, poss-. ., a central limi•t theorerm for the number S
mmn

ti'n-IA •A rtb.or.se &,i the n trial block starting on trial n.
vt lipj , _sio o 2 2

A simple hission for 0 2 .a 2  be readily calculated for the
hcn

p attXn m(._:, I (v - I) with equal c under noncontinqent reiniorcerent.
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Tho'h a 3. A IM W A v 1 , < -

r21 - I < , ij c > 0

m a mn 2 a 0

&A genra limit theorem

Sm : - rl 7r / x

r\ x) - exp(-t /2,dt

where

aa Tr 1(1 - 1 )(1 + 2(1 -c)/c).

Prcof. That

E[h(E )] 'im P(A l, ) 1
n-rn

follows from (37) in Atkinson and Estes (1963). Tb. value o0. 2

can be obtaired iror. (2.17) and Atkinson and Sate*' formula (41). .I.

rhe nwt, ods of this subsection are equally applicable to the

conrponent moo.-,. 4ith ixed samlinq probabilities (gates (1959)).
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Abstract

A family of linear models for learning in two choice

situations is considered. These models have in common the

assumption that nonroward has no effect on response probability.

The function v(P) that relates asymptotic probability of one of

the responses to its initial probability in studied intensively.

It is shown to be closely related to the total number X(p) of

response alternations. The asymptotic probability of making the

less favorable response is shown to be small when the learning

rates associated with reward are small. Finally, some of the

basic analytic :!unction theoretic properties of y (p) are presented.
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1. Intodct2n

Throughout this section we consider a two choice (A or A 2)

animal learning experimant where, on any trial, response A is

rollowed by reward (event £j) with probability vi > 0. Occurrence

of A or Bi on trial n is denoted Ai,n or 9.i,n, and a subject's

probability of A1,n is denoted Pn" When correction or retracing

is permitted after a nonreinforced response (an "error"), asymp-

totic A response probability is found to depend on a nunber of

factors, among them the species of the subject and the type of

discrimination required (Bitterman, 1965). In such experiments

reward has always been set up for exactly one of the two responses

before each trial so that reinforcement is noncontingent, i.e.

r- 1r-T2 = r. Noncorrection experiments using both contingent

and noncontingen* reinforcement, on the other hand, have consis-

tently yielded very high asymptotic proportions of choices of

the response with the highest probability of being rewarded

(Bitterman, Woodinsky, and Candland, 1958; Behrend and Bitterman,

1961; Brody, 1965; Mayar, 19601 Parducci and Polt, 1958: Stanley,

1950; and Weinstock, North, Brody, and Lo~uidice, 1965).

The possibility has often been considered that the effect of

nonreinforcement in these experiments might be nil or practically

nil. This assumption, embedded within linear learning models, has

interesting consequences. When coupled with the auxiliary
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assumption that a reinforced correction response has the same

effect on response probability as a reinforced original response,

it leads to the transition rules

{(l-)pn + G if A1,nal,n or A2, n2,n

Pn+ (1)

(1-8)pn if A2,n 32,n or Al,n l,n

for pn" The probabilities that the first and second rows are

applicable are easily seen to be r and 1-v respectively. This

model is quite useful psychologically end quite well understood

mathematically. It predicts probability matching:

lien-. PpA l,n r

for any value p of p1.

The corresponding linear model for the noncorrection experi-

ment has transition equations

1Pn + a1 if Al,nlE,n

Pn+ - (1-82)pn if A2,n 2,n (2)

Pn if A l,n l,n or A 2012,n'

3I a els2 > 0. For the sake of the present discussion we suppose
that 9 -.2 - 9, but the more general model, which might arise,

for instance, if the magnitudes or delays of the rewards B and E
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were unequal, is also treated below. The identity operator or

two absorbing barrier linear model (2) has been considered by many

investigators (Bush and Mosteller, 1955, pp. 291-294; Brody, 1965t

Weinstock, et al, 1965) in this setting with considerable success.
(See the last two paragraphs of this paper for an observation that suggests that
the model may have been more successful than the authors of the latter paper
realized.) There are no special difficulties in deriving predictions from

this model either by mathematical approximation techniques (Bush

and Aosteller, 1955, pp. 286-291; Mosteller and Tatsuoka, 1960)

or by Monte Carlo methods (Brody, 1965: Weinstock, 1_ S., 1965).

Nevertheless there are some large gaps in our knowledge about

this model. The purpose of this paper is to fill some of these.

The quantities

S(p) - lim P p(A ,) (3)

and

x(p) -a z total number of response alternations) (4)

are of basic interest. There are practically no cases (i.e.

special parameter values) for which simple formulas for y and X

are known. The research reported below began as an attempt to

provide the first proof that, in the equal theta c^"e, the asymp-

totic probability of choosing the unfavorable side is omill, at

least when 9 is small; that is, 7(p) -# 0 as 9 -4 0 if > > '1 ,

9, = 02 = 9, and 0 a p < 1. It developed into a fairly general

investigation of the functionp 7 and X. The lemmus of Section 2



provide the foundation for the subsequent development. The mman

result of Section 3 Is a relation between X and y that essentially

reduces the study of the former to that of the latter. The two

special cases 1 r 2 - I and *1 - e2 of this result are easily

derivable from formulas relating the asymptotic priobability of A1

to the total number of runs of A Is that Bush (1959, Sections 5

and 6) obtained by another method. Zn Section 4 bounds are obtained

for ) that are suffiaiently precise to permit deduction that the

asymptotic probability of choosing the unfavorable side is simll when

the learning rates are small. The theorem of Section 5 is concerned

with the analytic character of 7. most of the results of that section

are extensions or refinsmnts of those of Karlin (1953, Sections I

and 5), who concentrated on the case Tl - a"1.

2. -ntals

Throughout the remainder of the paper we will be concerned

with the identity operator model (2) under the conditioni

1' ,2' Wl2 > 0.

For any (real valued) function * on (0,11 we define j*l by

Iv'I - sup *(p) l.
OSpSl

We let D be the class of all differentiable functions with

bounded derivative on [0,1]. Such functions are necessarily

-i•inuova. If # a D, its norm 1*1 is defined by

-• -1 + iv1.
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Thus the relation lim n -11 1 - 0 for *n e , D is tantamount

to the uniform convergence of V' to !# and of n to *'. The
n n

operator

UJ(p) - 3[*(Pn+li)pn '), i.e.

UW(p) - *((l-9 IP+I1)p + 01-92lP) 2(1-0 + 0(p)(1- 1P-I2(1-p)) (5)

maps D into D and is linear and positive (that is, it promervs

nonnegative functions). It can be shown by a simple inductive

argument that

Un*(p) _ fp OPn+1)], (6)

t.h

Oa p&1, wherd Vn is the n iterate of the operator U.

Lemoan I and 2 below follow easily from the results of

Norman (1967, see especially Subsection a of Section 3).

ieffm. 1. The 2ni sksing~ stats ibinrimr) RL am mrkov

Gs&u (p ) " I ia 0 a I. M02 Yj Iovsaility
n n-l1 1& 1 rado abobn sat• pa. M USAG OPp(Al~n-}l €n

vmL•s iAL n I-&.

7(P) " p(po M 1). (7)

M fjati 7 k~ga L D pALM ili I& g" g ntinuga folutio
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a. '17U (8)

h"~~ ~ ~ OWkadryYAlg 0#d7(1) * 1 1k IeL..

7&, (p) - (1 -7 () b7 (~p)

I& a&L 2DX conn2us IIL.L253 I~h IM Ulya,b Ya,b'

7&,b0) M 7&,b (1) - b, hr 1ka.a. < 1 jAg C <w- qh&Lat

Iz(*(pn)] -z.(t(FM)]U1 gCanp*I

"LAU* auVv(D gn it 1.

I&M 2. 22&. tQ&.al niAJW Y gL a a2rngatji ktqasa I~~n~

A& i .nLaite k N Drtkbilit 1. ja =~. LUZ IDY 0 p 1

9 Y < 0. TIMfunction x(P) - I~Y Piw C Y D

aW~uia 229A m ukg~Lt 2L bAt Lwaa~ mfalusw~.±

x (2-) (1-0)
11 r-2 .2'p(1-P) +~ UX(P) (0

&a wic 1Lh )( () - (1) - 0.

Let X be the indicator random vsriabi-ý for t~h. event A .

s ince

Y Ix n+1 xn

it follow that (Xn ) converip with probeibitity 1. Lot X 40be the

limiting random veriablt. Clearly X W, (0.1) with probability 1.,

E4
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and it is plausible that X p with probability 1. To prove

this we note that

P p (X , P) - P p (x a p OMO, + p(X = O, pawl)

= Cp[X (1-p )] + Ep (i-X )p I*I

lir E (xn (-Pn)) + lim E p(-x n)p n
n-#oo Pn-*a

rli Ep[E[X n(-Pn) Ipn]] + lirm Ep[EI[(-X n})pnlPnn-sac n-- cc

lim - + irn Bp (l-E[XnEPn :

- 2 lia i M (l-Pn) Pn] , - [ ()1 -p ] 0.

Therefore -(fp) has the following behavioral interpretations

P V(X 1)p-

Since X is an indicator, X - I means that X - I for all but an -

nite nimber of n, i.e. A for all but a finite number of n.l,n

A sstndard notatioo for the latter event i# lim inf Al,n. There-

fo ) >(p) P (Ira imnf A ).
Pn

If * ( 0 with 0(0) - 0 and *(I) - i (e.g. #(p) - p) then

• g(p )J -(l 0)(l-y(p)) + v'%)Y(p) - 7(P).p a
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Thus (9) and (6) imply that H un - ii converges geometrically

to 0 as n -em. This gives us an iterative method of Lrpproximating

y that should be useful in numerical computations.

The functions 7 and X andthe operator U depend on four para-

metors. mhen it is necessary to call attention to the dependence

on some of these parameters we use notations such as m (p;vlV2),

7(P; 1,92,,i2.)I and U e 7  2' The study of the dependence

cf 7 upon its parameters is considerably simplified by the follow-

ing lemma whicn states the obvious fact that the probability of

absorption on response A1 when the parameters are 91 a2I, and

72 and p is the initial probability of A1 ip the same as the prob-

ability of absorption on A2 when the paxanetere are 82' l' "'2'

and r 1 and p is the initial probability of A2 so that 1-p is the

initial probability of A1 .

LeM 3.

7(PIGP1,O 2, "I,• 1 - 7(2-p; 9
2, 1 PT2,P7r).

Another proof of this equality is obtained by verifying that the

function

4(p) - 1 - Y(J- P,, 2, ,'r2 0 r 1

belongs to D, awd satisfies the functional equation

U 8 0 2 1 7, , Ir2
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and the boundary conditions 10(0) - 0 *(l) - 1. We use a similar

method to prove the following lemma, which is only slightly lees

obvious than the prec3ding one.

& 4. E A 0 < x 5 1(/mmx(w 1 ,w 2 )

)(pjXTIxv 2 ) - 7(pw1 5 w2 )-

In other words, y depends on a Ind Ta only through their ratio.

Poe[. The functional equat.on (8) for y(pr 7,7 2 ) iS equiva-

lent to

(rlp + 7r(l-p))7(p1 1 ,w2)

,rlpy((l-G1 )p + 0%1rl'r,2 ) + r2 (1-p)Y((l- 0
2 )p.w1 ,w 2 ).

Multiplying both sides by x we seo that 7(p; T,r 2 ) satisfies an

equation equivalent to the functional equation for 7(p~xT TxwxV 2 O.E.D.

In particular, the absorption probability y(p:v, v) for the case

7 = 72 a v does not depend on v. a

We now describe a nmthod that permits us to obtain bounds on

the solutions ? and ) of the functional equations (8) and (10) by

solving corresponding functional inequalities.

Definition. 3ug Q V1 n (0,1] J1 s eiijar (199M "a
subregqr)larp) ) (=, %) U#(p) f=r j 0 S p 5 1.

These concepts are standard in the potential theory of Markov

processes (see, for inatance, Kemeny, Snell, and Knapp (1966)).
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The next leae shows the usefulr.ss of these notions and justifies

the terminology.

LSM S. LI*±. e' D hj 2IIIZ3~cruar (gi aeiaul) Wj #'(O) a.

A (1)}-b -b. MM (p)A5)a y 7,b(p)) were 7,b(P) i Ithe 2on-

XLanau J unc lw g Y=~h (0,b(0) - a _DI (1,b(1) - b.

Pr,2J•. since 0(p) a (5) U*(p) and Un is a positive linear

ierator, ?V'(p) a (S) U"i #(p) for all n & 0. But

lira UOn(p) ,, 1 p[(p - Yb(p)
n-40 p 0o ~

by Lemna 1. Thus *(p) i y 7sb (p) for all 0 9 p A 1. Q.E.D.

Leama 5 implies the slightly more general Lemma 6.

urn 6. SM2 thaa = 1, *, qzj, g e D, all three functions

vanish At 0 A at 1, AGA

V'(p) a (M) g(p) + u*,(p),

4(p) - g(p) + Ut(p).

MM a (p) ia (S) *(p) Lo all. 0 5 p 5 1.

Zz.ol. Let 6(p) - #,(p) - 0(p). Then A e D, A is superregular

(sabregular), and 4(0) - 6(l) - 0. Hance by Leoma 5,

A(p) ' (s) Yo(p) . 0
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for all 0 1 p S 1. Q.3.D.

We remark that Lemmas 5 and 6 generalize immediately to the

general absorbing distance diminishing models treated by Norman

(1967).

3. Alternations

Let I be the identity function on the real line: I(p) a p,

and let B (p) ' p(l-p). A simple computation yields the following

important result.

Lemma 7. UI - I + (91 i - 0
2 r2 )B.

Taking 0l1 = 0 22 and using the characterization of 7 given in

Lemma 1, we obtain

Theorem 1. l e022 =L2, hn- I

When 911 9 '2V2 Lemma 7 leods to a relation betwemn y and X.

Theorem 2. IL el 1 r I f02 r2,hn

~ j2-8 r -80X - 1 2- "). (

2 r222 11

Proof. Let the function on the right be denoted F. Since

I and y are continuous, F is too. And since I and y agree at 0

and 1, F(0) - F(1) - 0. Finally
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U 2-8 1:1-'2"(1 Ut
2 2-0 1 1

2-8 i- (I + (9 ?r -9 )B y-

S2 2-e 81

by (8) and Lemma 7. So

UF - F - (2-8 1w1 -92 2 )",

which is equivalent to (10). Thus Lemma 2 implies X F F. Q.E.D.

By evaluating both sides of (11) at the random point p, and

taking expectations we obtain a relation

Z[Y] - 2-9 "11-e : (P(A 1 1 ) i P(p. 1))

6 2 -2"e 2 i 1

between the three quantities E[Y], P(A, 1 ), and P(p 1) that

does not depend on the distribution of p1 . This relation can be

tested empirically once 01 and 02 have been esti~ated. Alter-

natively, when 0= 92 a 9, it can be used to estimate 9. Since

the alL ition probabilities are not changed when v, and T2 are

both muiL;iplied by the same constant, the quantity P(A,) -

P(p - 1) ciro be cancelled to obtain

"x'4 • ( -2 x (91 r 1 +a 2w2 ))

3 (x y x (2 -x'(8 7+9272'
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where the reinforcement probabilities corresponding to Z ()y]

are zrI and zT2 . In particular, if x and x' are small, or 01 and

02 are small, or now coubination of the two,

C(x)[XI
S(xI) [y] x"

In Section 4 we use (11) and our results on the asymptotic

behavior of y as the thetam become small to obtain an asymtotic

expression for )(.

The next lemma will help us derive bounds for X when 0 -"=

822.

Lenuu a. a 1'rl ' 92 "2

(1 - G1 O2max(w1 ,r 2 ))B(p) 5 UI(p) S (1 - 10 2 min(wIv 2 ))B(p).

Proof. A straightforward computation shows that, for any-

8 02, r V and v2

UB(p) - B(p)(l - O l -2(1-e 2 )r 2 ]p - -( 1-(12)

When Gl7l - 2 this reduces to
1% 2

UB (p) - S(p)(l - 22 r - e ,

22P - 9lW(-p)).

Since 2 - 9T and G 2 1 -me2w2 the leon follows. Q.X.D.
2 2 21 1 1 22
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2-01 T1-9 2 V2 3(P) % (P) 2-e 1_ 2 r2 W.18 2 max (T 1"2) Bp 1 a(P 2 e min (rl, Y)

Zrol. It follows from Lenmma 8 that the function F(p) on

the right (left) satisfies

F(p) k (S) (2-0 1 V-8 2 2)B(p) + UF(p).

Since these are the functional inequalities corresponding to (10),

an application of Lemma 6 completes the proof. Q.E.D.

These bounds are tight when '1-'2 is small. In the impor-

tant special case i1 " 12 (and 9 - B2) they yield X exactly.
71 1 2

Coolr. 9e w 82 eAnd W, W W2 v,
2 2 -V

x (- v B.

4. Sanll Learning Rates

In this section we will show that if r 1 and ir2 are fixed and

(31,2 ) approaches (0,0) along a line in the B1 f a2 plane for

which 92I2 > 0 1w, then 7(P;0 1 ,0 2 ) -# 0 for all 0 9 p < 1. More-

over the convergence is extremely rapid. The inequality 92 2 >

a ,-'anay be thought of as indicating that A2 ais the most favor-

able response. When 91 - 92 this inequality reduces to r2 > V,
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as, intuitively, it should. Analogous results for 81 "1 > 922

may be obtained by applying the results established below to

7(l-P;e 2, 1'I 2Pl) and using Lemma 3.

We assume throughout this section that (9,.9 ) is confined

to a line through the origin in the 81, 0 plane on which

ef• 1 . This line is characterized by the ratio 8 - 8/a2, and

9 and 9 are of the form
1 2

el -e, •6 =9 (13)

0 < 0 min(l,l/1). Clearly C > 0 and, if

then

1 > w:. (14)

For any x,9 > 0, let *x'q be the function on (0,1] defined by

*x'8(p) 
a exp/ e.

Most of our effort in thiMs section goes into the proof of the

following lemma.

Ijiuiu 9. There RX& 22vitives cosaj~lt y a Y(wU)O and

z - z (w, C) L~ah tIal * ~y, 11 jujqua &a Az~ SU. M~ngIULU

o 0 < 0 S min(l,1/C).
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proof. For any x > 0 and 0 p 9 1

Cu0l, e• *X,) (P)

l x9 a- ) p +/ 0 x 2P/e (2-P) + 11- w1 p-- 2 1(•1.))]

r xC (l-p) -XP
-x*ae(P)lI + ( - 1)rp - (1 -* )w 2 (-P)]

by (13). Thus *xG is subregular (superreqular) for all 0 < 8 |

min(1,1/C) if and only if

(e- l)wlp a (5) U1 - a.c')lw2 (l-p) (15)

for all 0 A p S 1. (The reader should note that these inequalities

do not involve 0.) However the difference between the two sides

of (15) is continuous throughout (0,1], therefore these inequalities

hold throughout (0,1] if and only if they hold throughout (0,1),

i.e.

(1 - exp) 1-p )

for all 0 < p < I. In terms of the function V on (-a,.) defined

by

(eu 1)/u if u r 0

V(u) - (16)
I if u a0,
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*x,e is subregular (superregular) for all 0 < 8 S ;6n(ll/t) if

and only if

f (p,x)a() (17)V(-xp)

for all 0 < p < 1.

Now

1

V(u) ef eUdw

for all real u. Since the integrand is positive, V(u) > 0 for all

real u. By taking the derivatives under the integral sign we s"o

that

V (k) (u) wfwkeuWdw

@0

for k a 1 or 2. Thus V (u) > 0 for all real u, so V is strictly

increasing. It follows that

H(u) - lnV(u) (18)

is also strictly increasing. Furthermore

H' (u) - i•_~-i•
v 2 (u)
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(w - v -u)/V(u})•) dvA(u)

so H'(u) > 0 for all real u, and H is conwx.

writing

A (p,x) - ff(x(l-p)) - H(-xp), (19)

(17) and (18) qive

II * (p~x)

XC(Px) - a (20*

We mast now distinguish two cases.

"K 1. C • 1. For 0 s p s 1,

(O/ p) (p, x) - -x(CH' (x(l-()) - H (-xp). (21)

Since ' (Cx(l-p)) is 0, and it 1

CM'(Cx(l-p)) - H'(-xp) a H'(Cx(1-p)) - H (-xp)

S0

since the convexity of H implies that H' is nondecreasing.

Equation (21) then yields

Waob C (Px) S 0,

so t.'at
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a(11x) A A(p,x) S A (Oox)

for all 0 < p < 1. But. A (1,x) - -H(-x) and L (Ox) - H(Cx), so

-H(-x) S A (p,x) a H(Cx)

or

a ( sx) S V(Cx) (22)
V(-x) fp

for all 0 < p < I Az d 0.

ggj 2. 1 , 1. In this cae

A, (p, X) C(p,x) l(PX)

since H is nondecteasinq. we us- in cas e, though, that A (',x)

is nonincreasing. Hence

a(1,.Cx) x 6 (px) f a(0,X)

i.e.

-H(-Cx) S aC(p.x) I H(x),

There fore

v(-Cx) fC (Px) 6 V(x)
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for all 0 < p < I and x > 0.

Returning for the moment to the general case, note that

limu..g Viu) - 0, V(O) - 1, and limurn V(u) - u, and recall

t'at V is continuous and strictly increasing. Since Ccn < 1, the

equation

V(x') - l/CW (24)

has a unique root x' - xl'(w,C) in (O,.), while the equation

V(xN) * (25)

has a unique root x" - x"(w,C) in (-ao,0). Now consider again the

cases discussed ,>wove. In case I (Q A 1) let

y = -x* and z x'/C. (26,

Then from (22),

_.__ __ z •(p,,,
V(xM) V(-y)

wihile

f (p)Z) 6 V(Cz) - V(x')

for all 0 < p < 1. In cam 2 (Q a ) let

y - -x"/C and a - XW.
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Ther. from (23)

A f (py) and f (pz) 9 V(x')

for all 0 < p < 1. Therefore, in either case,

1S f (py) and f (pz) S-

for all 0 < p < 1. Referring back to the sentence containing

equation (17) we sae that °, is subrejular and *Z,8 is super-

regular for all 0 <e min(l,1/4). Q.3.D.

Though we will not need them below, we note that the proof

gives simple formulas for y and z. The function V is defined by

(16). The points x' and x" are defined in terms of V by (24) and

(25), and y and z are defined in terms of x' and x" by (26) when

I. 1 and by (27) when • S 1.

It is easy to see that the classes of superregular and sub-

regular functions are closed under addition and multipiication

by nonnegative constants. Further, the constant functions are

regular, hence both superregular and subregular. For any x > 0,

*x,(P ) > f , 0(0) - 1, therefore

, * Xel9 (p) - 1
x,9 ex l) -- 128)

is supeziuquiar or subregular if 'x,9 is. Also *x£e a D, with
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x,0(01 = 0 and 0x-8(1) - 1. Thus, combining Ler 9 and Lemia 5

ws obtain the following theorem.

Th19M 4. Tbhnxs aza 22ijty 2onstantA y y(w,) and

X a (29)Y08(P) 7 (P; a, 2 Z (p) (29)

00 mine(1,1/C) ad 0 p 1

f r.QXllYo .<e 0 < ( min(/1,/C) & 0 pp s1

Y (P) s 1 /0z(l-p)/, (30)

lime0 7 (p) 0 (31)

if 0 S p < 1.

PrLopf. A simple calculation shows that

-zp/9
z, O(P) z(l-p)/o -z/9

and the second factor on the right clearly does not exceed

unity. Q.E.D.

Equation (30) suggests that when the learning rates are small the

probability of being absorbed on the tufavorable side is very small.

Combining (31) with Theorem 2 we imemdiately obtain
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Theorem 5. E. 0 < p <

X (P) 22 -

2 2 1'1

a -s 0.

Thus when 0272 > 91r1 (or, more generally, when 02V2 3 01.7) and

9 is small, the mean number of alternations is of the order of

magnitude of 1/0, and tends to be inversely proportional to the

difference le2 VR2- 1 V19 in favorability between the two responses.

when 92V2 a 01 V and 9 is small the mean number of alternations is

of the order of magnitude of 1/92 by Thoorem 3. Thus if the

learning rates are small we exlxtct many more alternations whhn

the two responses are approximately oqually favorable tha:i Wnrn

one is much more favorable than the other.

S. y as an Analytic Eunetion

In this section we assume that the reader is familiar with

the elements of the theory of analytic functiorns as presented, for

example, by Knopp (1945), whose terminology we follow.

In order to motivate our results, consider the case e2 a 1,

(1 < I. Then, since y(O) - 0, (8) reduces to

ýy (P) - Y (g1 (p))w 1 pl/C ,Vp+r2 (l-v:1 (3 2)

where
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g (p) -, (1i0 1 p + 0"

(we will also use tha notation

g 2 (p) - (1-0 2 ) p

-below.) Iterating (32), and rk calling that y is continuous with
0

7(1) - lowe obtain.

7(p) - A(P)/J(P) (33)

where

A(p) - g g_ (p),
nWO

n (l)g[g),n )+ (1-gl,n (p0)),

th
g 1 ,0 (p) - p, and gl,n is the n iterate of g], n a L Since

gln (P) ( n (-p), n A 0, the infinite products A(p) and

J(p) converge for all compl.ex numbers p. So the for.ula (33)

serves to comitinue 7 analytically into the complex plane C. If

-2 = •1 then J(p) m 1 and y is entire. If 712 P v, then y has a

pole of order 1 at each point that is a zero of one of the factors

of J(p). Since T1p + w2 (l-p) - 0 if and only if p - c where

c a T * 2 s
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these zeros are just the points glI (c) that gln maps into c

for some n - 0. Note that c > 1 or c < 0 dependin4 on whether

Jr2 > TI or T2 77 and that the sequence c, g (c), gl, 2 (c),
2 •

of po.-s -s confined to (c,-) or (-m,c!, respectively, in these

two caseý.

These examples ,nd that given by Theorem 1 suggest all of

the possibilities f-r the qualitative analytic character of 7

that arise in the gen ral case treated in Theorem 6, which

summarizes our results. The theorem shows that y is always

meromorphic and occasionally entire. Whenever there are polos,

c is the one closest to (0,1].

If c is a pole and its distance from (0,11 is less than 1

then there will be points x in [0,1] such that the Taylor series

- (n)

( =n (p-x)n (34)
n=0 n.

about x does not converge fc, all 0 . p ; 1. In such cases an

attempt to compute the sequence b (n) (x)) by the conventional

method of substituting (34) into (8) and equating coefficients o

(px)n on the two sides of the resulting uquation seems doomed t(

failure. In fact, little progress has been made to date in com-

puting these coefficients even in cases where this obstacle is

not present. Theorem 6 gives some information about them. For

instance, when c is a pole the standard formula for the radius

of convergence yields
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i-. supq I7 (x) I/nh ,

for 0 5 c S 1. Moreover the theorem specifies the sign of

7 (xn for all n a 0.

To state Theorem 6, sow's new notation will be needed. The

function 6 is defined by

A(Y) - w2 (l - (1-(- ( 1 -e7)Y) (35)

for y a 1. B is the set of all points that map into c under

repeated application of g1 and g2, i.e.

. . .-(. )))) nAl and i . I or 2 for all lSj,,n) t(c).
n n-i 1

(36)

For any real y, (y] is the smallest integer greater than y.

Finally, we note from (5) that U may be regardod ao an operator

on complex valued functions of a complex variable. W4e shall

sointmes so regard it below.

•9_qr-sn 6. 4A• se 92w2 > 9lS1 N I > 910 2

a. IIf #2 > "1 then y can be continued analytically throug-

ot C - B. The point c in aole of order I and every other poin

.91 X is it p~s .2l ofod 1 or a reul point of y. Po all
(in)

n a 1 "A 0 S p S 1, 7 (p) > 0.

b. If 'N2 - '1 -Ld- 7' can -12 22ant-n"a- anlt'* oy

LDn.1i c2!ia jLX j .pi L21 !.Uj n a1 0 9 p 1 1,



(n) n n n(n-1i/2 (37)0 < - 1 p) 9 n! 2 . ... ,
n
j=l (1I•n)

where n 1 - min(H •2).
c. If r < i. there is a unique x > I for wnich

ti(x) 0.

x 1 s An ý.n t eger Jh y_ ), 1Lolynomial of

deie x, ajnAg. 7 (n ) > 0 f o_/ aL p 1 9 n Ls x AD.A 0 ; p % I-

ii. ~i X a__ fl _• imf sa tha 7 •a

analytialy thpqho.U C - E. JbI 29n c is 1 29A order 1,

anrd every point of F is either a p of o I 22 e aegula

(n)

point of 1. Fo___r any 0 -• p 4 1, y(n. (p) > 0 Al 1 5 n S ( x]__ri

n-[x] is a positive e inteqe, r 7) (p) ( 0 a[ n-(x] j. a

positive odd integer.

Th& functional ec'iation (8) hods 9-1 PLU Uf -tbg t3tonuign

The proof of Theorem 6 is fairly routine, but rather

intricate. Limitations of space prevent inclusion of mre

than the following brief sketch.

SMetch 9 r . An inequality is obtained relating the

quantities I (U*) (0)1 for a smooth function *. When *(0) " 0

and 1(l) - 1 this inequality yields a bound for 17(n) I on

taking the limit as m -# -. When I v .r2 thi bound in t

expression on the right side of (37), and it follows that

y is entire. When r 1 12 this bound shows that 7 can be1 2

extended to a function anelytic in an oval including (0,11

and having c on its boundary. The functional equation (6)

can be rewritten WV - 7 where
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W*C"() - € *j (z))w(z) + *)g2(z)) (1- (M))
I2

and w(c) r /(7rz + ,2(l-z)). The fumctions 0-Y pr ';'de

a sequence o analytic continuations of 7 into regions whose

union is C - E. From tho equation Wy(z) - y(z) it can be

seen that ' is at worst • pole of order 1 of f, and frorý, this

it follow ,;hat each point of 2 is either P pole of orifur 1

or a reqc.-Isr point. If c itt regular, all are regular. To

prove thu assertion about the signs of the derivati,•es of 7,

we consider, for each hypothesis about thfi paravaters of the

mdel, the class of nonnegative functiono having derivatives

with the pattern of signs indicated by the theorem, with,

howevei. strict inequalities replaced by weak inequalicies.

It is 4hovn that U preserves this class. Since I .elongs to
thiaý,*-mv and(U111)(n)

thi ~ so nd u~' '~(p) -. ~ (p) a - ri -Y :oo) ,' n m to

thin c.. -t alro. A supplementary argulzat uairicj cb, ,alyticitx'

of y ' -a) Is strict inequalities. Fir-Ly, the n?.-' results

on tVý s),ýrs of the derivatives of -f ;.nd the eit4.ty of 7

if c : n trilar point ar* shown tc ;)roclude ro,..-ilaxity of

c in toor (a, and (cii). Q.E.D.
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Surveying the cases treated in Thoorem 6 ww see that in all

of them 72(p) > 0 for 0 A p S 1. This implies that if p, has a
A

distribution F with umen gi and positive variance, and if corres-

ponding probabilities and expectations are indicated by subscript

F's, then

PF (lim inf A l,n= wIrl ( n H

i y7•A) + ml,n )(p) EF [(p - 1}/2

> 7(t) - P ý(lm in l A ,n

Thus, if 'he d-.:tribution of p1 over a group of animals has

mean 1/2 and positive variance, :he proportion absorbed on the

unfavorable side wiIl Lend to exeoed the corresponding proportiin

for zero variance.fSince all of the stat rate for the .75 group

of Experiment 1 of Weinstock, ". ja (1965) had p1 = 1/2, and since

there is no reason to believe that this condition was met by all

of the real rats, the above result may help to explain why a few

more real rats than stat rats ,ere absorbed on the unfavorable

side.
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1. Examples of measurement theory

1.1 Definition of measurement

Measurement, in its broadest sense, consists of the correspondence

between mathematical objects, such as ical numbers, vectors, or operators,

and empirical objects, such as heavy bodies, forces, colors, etc. The

correspondence is based on an isomorphism between observ'ble formai pro-

perties of the empirical objects and the formal properties characterizing

the mathematical objects. For example, in the measurement of mass, posi-

tive real numbers are assigned to heavy objects, so that the order of the

numbers reflects the order of the objects, as determined by a suitable

balance, and the addition of real nLuvbers corresponds to combining cf

objects.

M•any instances of measurement are like the measurenent of mass, inso-

far as they involve construction of a real-valued function :hat nreserves

the order and additive struature of an empirical system. Such construc-

tions are based ultimately on the theorem, diie to Holder [13]. that any

Archimedean fully ordered group is isomorphic to a subgroup of the ordered

group of additive real numbers. I shall present a formal statement and

proof of this theorem in the next section. Folowing this, I shall present

two applications of Holder's theorem. In the first application, the addi-

tive structure in the empirical objects is given directly, similar to com-

bining heavy objects in the same pan of a balance. This is called exten-

sius nwaeupwment. In the second Applicition, no additive structure is givcn

'irectly. but nevertheless, an associative binary operation can oe u2ofined.

and liellder's theorem applied.



1.2 H•lder's Theorem

DEFINITION 1.1 Let G be a group, with binary operation (.,y) • xy and

identity e, and let > be a total order on G. The pair (G,2) 4.s called an

ordered grotq' if for all xy,z c G, x > y implies both xz > yz and

zx >_ zy. The ordered group (G,>) is called Archimedeom if for all

x,y £ G, with x > e, there exists some positive Integer n such that

nX > y.

We shall denote the ordered additive group of real numbers by (Re,+,>).

THEOREM 1.1 Let (G,>) be cm Archimedemit ordered group. Then (G,2_) is

iAomorphic to a subgroup of (Re,+,2). Moreoer,6 the isomor-phism is unique

up to multiptication by a positive constant.

Procf: Let G+ = {xjx > e). We can distinguish 2 cases:

A) G÷ has a lower bound x1 > e,

B) inf G÷ - e. (G a {e( is a trivial case.)

In case A), for any y c G, there exists a unique integer n (positive,

negative, or zero) such that xn I y 1 . If Y 0 xnP then x -Y

is in G+ but is < xI, a contradiction. Thus, y a xI.n Hence, G is

cycl:c with generator xl, and the theorem follows; the subgroup of (Re,.,_)

is any discrete subgroup.

For case B), let x E G and y £ G be arbitrary; then there exists

a unique integer N(x,y) such that xN(x y)< y < xN(xy)l* Clearly, for

xx' c G, y G, we have
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[N(x,x') + 1][N(x',y) + 1] > N(x,y) > N(x,x')N(x',y). (1)

Let {xk} be any sequence in G" which converges to e. It is easy to show

that for any y c G÷, N(xk,y) - +-, while for y-1 G+, N(xkY) 6 -a.

For any y,z c G, with z # e and for k,t sufficiently large, we have

by (1),

N(xk,y) [N(xk,xt) + 1][N(xty) + 1]

N xk"zT N(xk,xt)N(xtz) (2)

If we fix £ and let k - ®, taking the limsup on the left and right in

(2), we obtain

N(xky) N(xty) + 1
limsup N(xk,z) .()

Now taking the liminf on the right in (3), as t - ®, we find that

lim N(xk,y)/N(xk,z) exists (and is finite, as is easily seer). For fixed

Y£ c G÷, define

*(Y) = lim N(xk,Y)

It is easily shown that * is an isomorphism of (G,>) onto a subgroup of

(Re,+,>). To this end, one can use the fact that for any x c G , y'z E G,

NCx,y) + N(x,z) + I : N(xyz) > N(x,y) + N(x,z). (4)

To show uniqueness of the isomorphism, let *t be any other isomorphism;

then clearly, for any k,y

N(xky)o'(xk) <_ $'(y) [(Xky) + l]$'{xk).

It follows that

lim N(xkYl , ý(y)

'7N k-m 

.
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4'

so that *' • a*, where a - *'(yl) > 0. This completes the proof

of Theorem 1.1.

For a different proof, see Birkhoff [ 3], p. 300. The proof given above

has the advantages of being easily generalized, and of constructing the

isomorphism # in a manner similar to actual neasurement procedures. These

points will be made more clearly in sections (1 .3) and (2.2).

1.3 Extensive measurement

In extensive measurement, one starts with an empirical system that

includes an associative binary operation. Placing 2 heavy objects

together in the ame pan of a balance is one example; others are found in

the usual measurement procedures for length, where rods are combined by

laying them end to end, and for time, whore time intervals are concatenated

by using the sae event to mark the end of one interval and the beginning

of another.

The following set of weak, logically independent axioms is due to

Suppes (33].

PrImttives: K, a nonempty set

Q, a binary relation on K

•, a binary function on K, (xy) - x~y.

Axioms: For all x,y,z c K

1. if x(y and y)z, then xQz

2. x~y c K

3. (x~y).: Q x,(ytz)
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4. Jf xQy, then x*z Q z*y

S. if not xQy, then there exists w r K such that x Q yw

and y*w Q x

6. not x*y Q x

7. if xQy, then there is a positive integer n such that y Q nx

[lx -x, nx - (n - 1)x * xl.

We can prove the following measurement theorem.

THEORE14 1.2 If (K,Q,,) satisfies Axioms 1-7, then theve eiste a real-

,)alued function * on K euch that for all x,y c K

(i) xQy if and only if *(x) < 4(y)

(ii) *(x.y) - #(x) * 4(y).

Furtheryore, * ie unique up to ulZtiplioation by a positivt const.'t.

Theorem 1.2 Includes a representation theorem for extensive measurement--

a theorem specifyinR that real-valued assignments can be constructed that

preserve the empirically given structure--and a uniqueness theorem, limitinl

the class of possible representations. Uniqueness theorems are quite imp.:

tant in measurement, since they determine what sorts of statements about

measured values are meanirngful. M4easurement representations that are uMiek:u,

up to multiplication by a positive constant are called rqtio acclse, becat;

ratios are preserved by permissible changes in representation. Thus, thc

qtatement "X is twice as tall as Y" is meaningful, independent of the on-,

chosen for measurement of length.
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To prove Theorem 1.2, it is convenient to introduce a relation - on K:

x - y if xQy and yQx. From the axioms, - can be shown to be an equivalence

relation. Moieover, it can be shown that Q,, induce a total order, >, and

a binary operation, +, on the set of equivalence classes, K/-. The system

(K/-,-,>) satisfies all the propelties of G÷ in Holder's Theorem; in par-

ticular, although inverses do not exist, K/- is closed under subtraction of

smaller elements from larger ones (see Axiom 5). This permits the proof of

HOlder's Theorem to be carried through, with no change, for (K/-,+,>);

t'As lUtter is proved isomorphic to a subsemigroup of the additive semi-

group of positive real numbers. The isomorphism yields the measurement

representation required in Theorem 1.2. Uniqueness follows similarly from

the uniqueness argument for Hilder's Theorem.

Finally, I should like to point out the close relation between the

construction of the isomorphism #, in Theorem 1.1 or 1.2, and actual procedures

for assigning real numbers to objects. Consider the case where K consists

of straight rods, and x.y is formed by laying end-to-end one replica of rod

x and one of rod y. Lsying rods side-by-side permits comparisons, esta-

blishing xQy, etc. Measurement is carried out ýy forming a estmdard

SeqiaW x, 2Zx, ... , nx (we use additive notation) laying 1, 2, ... , n

replicas of x end-to-end. To neasure y in feet, we form the ratio of N(x,y)

to N(x,y,), where y, is a standard foot-ruler. The generator of the standard

sequence, x, is chosen sufficiently small to attain any desired accuracy of

masureemt. Equation (4) shows that the approximate messures, N(x,y)/N(x,y 1 ),

are approximately additive. The main point of Theorem 1.1 was to show that

N(x,y)!N(x,yl) converges as x is taken arbitrarily small.
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1.4 Conjoint measurement

In the social sciences, it is rare to find associative binary opera-

tions that can be used for extensive measurement. However, it is common to

observe an ordering of objects, where position in the ordering depends on

the values of 2 or more independently controllable factors. Such a situatiGo,

is represented formally by a transitive relation > defined oser a product set,

n
A = R A.. The simplest law goverring the dependence of ordinal positior,

i-i

on the different factors is an additive one:
n

(al •..., an i (a i

where # is a real-valued , order-preserving function on A and each €i is a

real-valued function on A.. If such functions can be constructed, we say1

that addit-.'*t coioipt meaaurwre, t is feasible for the system A1, . ,,n

The functions #i and * provide measurement scales for the factors A. and hie

observed output, relative to which an additive law holds.

Additive conjoint measurement has a coplex history. ho*wever, it was

the publication of a set of sufficient conditlcns, by i,,-( ind Tukey (24ý

in 1964, that created widespread ln'rrest. The most i;,.rtant ntic.,iat Intl

of their work was published by Debreu 99 ), The Luce-TuKt', axi.)ms, which

apply to the .asz A - A1  A,-, are cisentially the foi,,-:o.

Fr'-.zttiLe: Alp A nonewpty sets

a a binary relation on .k X A1 X A-.

1. > is a weak order; i.e. it is transitive and 3,i 2 icne,

are comparable.



2. Any change in one factor can be exactly compensated by a change

in the uthe•r; i.e., if a c A, bI c Al, then there exists b2 c A2 ,

such that a - "bl1 b2 ) (- means > and <_; and similarly for the

otb-Lr factor.

Axiom 2 is called thc ro2labtity ,xiom, since we "sol a" for b 2 , given

3. For any (al,a 2 ),( 1 1,b 2 ),(cI,1,') c A, if (al,b 2 ) > (blc 2 ) and

(bl~2 b (ib), ti-.n (al,a2,) >_ (cic2)

Axiom 3 is called the copceliation ariom, since, given an additive repre-

sentation, we can add Lm the 2 antecedent inequalities and cancel b + bý*

yielding the conclusion. This condition is illustrated geometrically in

terms of i.ndifference curves in the A1 x A2 plane, in Figure 1. In the

theor/ of webs, this is called tne Thomsen condition (see Acz~l, Pickert,

and Rado [1]).

C u q y g s ta € C MO U I
U S ED 00 C i TRCQTIW g

C'UOV1[$ WW•*CH MUSTS(MINDIFFiAINEIC9 €V"IS

Fig. 1. The rancellation axiom illustrated for indifference curves. If
two "flights of stairs" are inscribed between two indifferen-e
curves, as shown, then alternate intersections lie on the indif-
fereiice curve when the kancellation axiom is true. (Taken from
Luce & Tukey (241, p.7';. (The author wishes to thank Academic
Press, la fer permiss ion to reprint this figure from the
Journal of Mathematical Psychology.)



4. A sequence ((aii,a2j)ii'j 0, 11, :2, ... } in A is c-lled a

dual standard sequence if (a,.a 2 ) - (alk,a 2t) iff i + j - k + t.

If {(alia j)} is a J,,al standard sequence, then for any a e A,
2i~

there exist nfm with (aln a2 n) a > (am ,a.,).

Axiom 4 is called the Arehinedean axiorn It is easily verified thct Axiom%

1, 3, and 4 are necessary for additive conjoint measurement; solvability

is not.

THEOREM 1.3 If (A1 ,A2,) 8atisf Axioms 1-4, thE'n them exist reaZ-vaZued

futzmct-*o#a ( h A, 01 on A1. 02 on A2 , such that for all (aia 2 ),(blob 2 ) c A

(i0 (al,a 2 ) > (bl,b 2 ) if and onZy if O(a 1,a 2 ) > 0(bl~ b

(ii) O(al,a 2) = 41(a1) + f 2 (a 2).

urthemoe, if f', , *2 am any other such f•nctions, then th.re are

real nzetbers a > 0,81,82 such that i= i t *' # a + I 2.

It should be noted that the uniq.eness clause of this theorem is the

best that cuuld be expected. Such a representation is called intervaZ acate

measurement; ratio. of intervals are invariant under permissible transfor-

mations. (A more standard term would be affine scale, since the affine ratio

is invariant,)

I shall sketch a proof of Theorem 1.3, based on Hdlder's Theorem, which

was published by Krantz [17].

0 0 0Choose an arbitrary ora ,a 2) in A. By solvability, any

equivalence class of A contains elemonts of forms (bla ) and (aI b2).

Defire an operation, +, on A/., by
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0 0
(b 1 ,a 2 ) + (a 11b2) 0 (b 1 ,b.).

I shall show that - is well-defined and that (A/-,•,_) is an Archimedean

ordered group, where >_ is defined in the natural way on A/-.
0 0 )ad(0 0

If (bloa2) - (al,c 2) and (al,b 2) - (cl,a2), then by cancellation,

(bl,b2 ) - (clc 2 ). It follows that + is welZ-defined and comutative,

since the equivalence class determined by adding arbitrary reprt.entations

0 0of the form (bl,a 2 ), (a 1 ,b 2 ) is the same as that determined by adding

arbitrary representations in the reverse order.

To prove associativity represent 3 arbitrary equivalence classes as

(bl,a 2 ), (a ,b 2), (cloa0). By solvability find c2 ,d 2 c A2  such that00

(b1 ,b 2) - (a 1 ,c 2 ) and (cl,b 2) (a 1 ,d 2). By definition of 2, cancellation,

and connutativity,

0 0 0
[(bla 2 ) + (al,b 2 )I + (cla0 (c

(bld 2)
0 0 0

= (b 1 a2) + [(al,b2 ) + (cla 2)].
C 0

Obviously, the equivalence class of a is the identity, and if (blsb 2) a a

then (a0,b2) and (bl,a 2 ) are inverse. Hence, (A/-,+) is a commutative

group. Note that the results so far use only properties of -.

0 0 0
If (bl,a 2 ) > (cl,a 2 ), and (ald 2 .) is arbitrary, fiad d1 A

with (cl,a)0 (dlod2). By cancellation, applied to (bl,a2) > (d 1 ,d 2),
0

(d1ld 2) (cl,a 2 ), we obtain (bl,d 2 ) > (cl,d 2 ), or
0 0 d20 l 0

(bl,a 2 ) + (a, >d) (c13a!) + (al,d 2 ).

Thus, (A/-,+,>) is an ordered group. Finally, the Archimedean property

follows easily from Axiom 4.



II

6y Holder's Theorem, there is an isomorphism * of (A/-,+,,2) onto
0 0

a subgroup of (Re,+,>). Let 0l(bl) = *(bl,a 2 ), *2 (b2 ) 0 *(al,b2 ). Then

ý(bl, 2) * #1(bi) + 02 (b 2 ) as specified by Theorem 1.3. The uniqueness

clause follows from the fact that, if f', I, * are any functions satis-

fying (i) and (ii) of Theorem 1.3, then

(blb 2 ) -" *1(b 1 ) - 01(a0) + *21(b2) - a

is an isomoxphism of (A/-,+,?) into (Re,+,!), and so, by Holder's Theorem

must differ from * by multiplication by a positive constant. This completes

the proof.

Construction of the isomorphism f, and thus of the measurement scales

01 *Ip ý29 depends on the construction of a standard sequence in (A/-,+,._),

as in the proofs of Theorems 1.1 and 1.2. This amounts to measuring the

0 0
deviation of any (blob 2 ) from (a 1 ,a 2 ) in terms of multiples of a small

0 0urit deviation from (alIa 2).
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2. Some new problems generated by applying theories of measurement
in the social sciences.

2.1 'rhe role of measurement theory in social science

For the physical scientist, measurement theory is properly a branch

of philosophy. The axioms for extensive measurement of mass, length,

or time provide a foundational analysis of long-established procedures.

However, these axioms are too trivial to claim the status of laws of

physics; rather, they are obvious properties of measurement operations,

and are taken for granted in the actual practice of measurement.

Furthermore, in testing nontrivial laws that specify rules of com-

bination for 2 or more variables, the physicist need not rely on an

axiomatic analysis of the sort provided by conjoint measurement theory.

For example, the equation of state for an ideal gas, pV/T = constant,

and the second law of motion, F = ma, are stated in terms of numerical

scales obtained by extensive measurement, and are directly testable by

numerical calculations.

In the social sciences, there are no measurement procedures comparable

to the ones used for measurement of mass, length, and time. Therefore,

when an axiomatic theory of measurement is applied in a social science

co:•text, the axioms are not obvious properties of long-established pro-

cedures; rather, they are a set of proposed laws, which are not at all

trivial. Some of the laws may be qualitative, i.e., directly testable

by observations involving order or class membership. The axioms of addi-

tive conjoint measurement are of this sort. Other laws may be numerical,
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for example, the assertion that 2 variables combine additively. These

numerical laws cannot be tested as simply as in physics, since nc,

numerical scales are specified for the variables. Rather, they must

be tested by searching for numerical scales that satisfy the laws, or by

testing other laws that imply or are implied by the given numerical laws.

In short, at the present stage of development of quantitative theory in

social science, it is impossible to separate the search for interesting

empirical laws from the discovery and refinement of measurement procedures.

ks a consequence of the above situation, measurement theory is of

more than philosophical interest for social science. By providing an

axiomatic theory for various numerical laws, one proposes qualitative

experiments that distinguish between laws, and techniques of measurement

wherc none existed previously. One result of the more dynamic and inte-

gral role of measurement theory in social science is that the discoveries or

the difficulties encountered in empirical studies constitute an important

source of new mathematical problcms.

The next S sections are devoted to an overview of 5 areas in which

new mathematical problems have emerged from the requirements of social

science quantification: foundations of geometry, ordered rings, theory

of models, semiorders, and error theory. The problems in foundations of

geometry and in ordered rings were generated by the attempt to axiomatize

laws other than the simple additive combination of variables: geometric

laws, and polynomial combination laws, respectively. These topics will be

rursued in more depth in lectures 3 and 4. The problems in theory of

modcl%, semiorders, and error theory derive from difficulties in
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realizing idealized primitives of measurement Lieory, such as total

orderings, amid the doubts and errors of real data.

2.2 Foundations of geometry

Geometrical models are heavily used in social science as a basis

for quantitative treatments of similarity or correlation. For example,

suppose that one has a set of objects, A, and obtains some measure of

the dissimilarity of any 2 objects in A. This measure gives rise to

an order relation on A x A. To represent the dissimilarity ordering

by a geometric model, one tries to map the objects of A into a metric

space, where the ordering of metric distances corresponds to the observed

ordering of dissimilarities. In 1962, Shepard [31] published a practi-

cal method of computing a representation for a finite set A, in low-

dimensional Euclidean space, which yields the best approximation (for a

given dimension) to the dissimilarity ordering on A x A. Since then,

this sort of measurement has been widely practiced, with little concern

over appropriate foundations.

In terms of measurement theory, the problem of foundations may be

stated as follows: given a set A, an observable ordering > of the pairs

of elements of A, and a class C of metric spaces (the desired geometric

representation), what axioms (empirical laws) must be satisfied, in order

for there to be a metric d on A, such that (A,d) is in class C, and such

that (x,y) . (z,w) it and only if d(x,y) -' d(z,w)? From the viewpoint

of the classical field of foundations of geometry, we are asking for an
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axiomatization of geometries of class C, in terms of the undefined

(primitive) notions of a set of points and a quaternary relation on

the points.

The classical axiom systems for foundations ct Euclidean geometry

(see Blumenthal [4 ]) generally involve undefined notions of point,

congruence of point paire (a quaternary relation), and coZZinear between-

neSS of point triples (a ternary relation). Sometimes, lines, and

incidence of points and lines are also taken as primitive. In the study

of empirical similarity, the required primitives (incidence of a point

on a line, or collinear betweenness) do not seer. to arise in any natural

way. Thus, the problem of developing geometric measurement theories for

similarity generates new problems in foundations of geometry, that is,

axiomatizing different forms of metric geometry in terms of a single

quaternary relation. One such axiomatization will be presented in detail

in lecture 3, and some further possibilities will be mentioned briefly

in lecture 4.

2.3 Ordered rings

Another source of problems is found in the g&."ral theory of conjoint

measurement. Given a set of factors, AP ... , A , and an order relation
n

> on A - R AP, various laws of combination for the different factors can
i-1

be considered, besides the additive law discussed in lecture 1. The following

definition is quite general.
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DEFINITION 2.1 Let A1, ... An be nonempty sets, with > a binary relation
n

on A a H Ai. Let f be a real-valued function of n real variables.
, i-I

We say that (Al, ... , An,>.-) is docompoeabZe relative to f if there exist

real-valued functions *, *i' "'" *n' with # defined on A and *4 on A1 ,

such that for a - (aI, ... , an), b u (bi, .... bn) c A,

(i) a >_b if and only if *(a) _ (b)

(ii) *(a) - f[#1 (a 1 ), _. on(an

The function f gives the rule of combination for the variables; *,
4 ..." 4 n give appropriate measurement scales. The problem of measure-

ment theory is to specify axioms (empirical laws) that are ;4ecessary

and/or sufficient for decomposability relative to a specified rule f.

This problem becomes fairly tractable when the function f is a polynomial

in n variables. Moreover, quite a few miniature theories have been pro-

posed, which explicitly posit polynomial rules of combination for a set

of factors.

For one simple illustratiou of polynomial combinations rules, consider

the relationship of the evaluative (moral) connotation of combinations of

quantitative adverbs with adjectives, as a function of the adverb and

of the adjective. The overall moral connotation of a combination such as

"slightly evil" is better described as a multiplicative, rather than an

additive combination of "slightly" and "evil", To see this, note that

"slightly evil" would be razed batter than "very evil", while "slightly

pleasant" would be rated worse than "very pleasant". These opposite

orderings of "slightly" and "very" correspond to multiplying numerical
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scale values of the modifiers by moral values of opposite sign for

"evil" and "pleasant". Studies of moral connotation that 'clude

the above example•, and use a multiplicative combination rule, were

carried out by Cliff [ 8]. Many oLher miniature theories involve

mixtures of additive and multipli itive combinations, i.e., more

general polynomials.

The basic tool for polynomial onjoint measurement is the ring analog

of H61der's theorem: an ArchimeJ an ordered ring (with nontriviA multi-

plication) is isomorphic to a un.que subring of the ordered ring of

real numbers. (See Birkhoff t 3j, p. 398). This tool can be used in

at least 2 ways. One procedure is analogous to the proof of Theorem

1.3 on additive conioint measurement: one introduces ring operations,

*, • directly into the set of equivalence classes, AI-. The definitions

of + and • depend on the h.Ruthesized polynomial; the required axioms

are those for which the syst,-:< iA'A-, +, -, }) becomes an Archimedean

ordered ring. A different .trategy is to let each relation statement of

form a _ b correspond to a suitable polynomial inequality. Obtaininr

tha required functions is equivalent to solving a set of simultaneous

polynomial inequalities. Ph1i i•las to the study of partial orders on

polynomial rings. In p-•-i:.::.-, the foll w'inf question seems to be un-

solved and of interest: for iha! classrs of partially ordered rings is

an extenrdon possible to an Archimedean total order' This problem is

discussed by Tverskv [3.,; for sc-e results an extensions of partial

orders, iee Fuchs [flJ.
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2.4 Factorial designs; theory of models

n
Civen a binary relat.ion > on n Ai, a common experimental procedure

Jul
is to sample a finite subset 8i of Ai, i a , ., n, and to observe

n
the ordering > only on R B.. This is called a factorial design. Certain

axioms of poly,.mial conjoint measurement theories, such as solvability and

Archimedean axioms, are untestable in such an experiment. But even if

the untested axioms are valid in the entire empirical system

(Al, ... , 0A n,> while the testable axioms are verified in (B1 , ... , Bn,>),

it may still be false that (B1, ... , Bn,>) is decomposable relative to

the polynomial combination rule in question. Testing this decomposability

amounts to searching for a simultaneous solution to a finite set of

polynomial inequalities, a problem which is computationally demanding

and for waich there seems to be no general algorithm.

Thus, the problem arises of ayiomatizing polynomial combination rules

for finite systems. Here, the theory of models,, developed by Tarski (34],

is relevant. Using results from this theory. Scott and Suppes [30j proved

a theorem that implies that there is no finite axiomatization for "inite

systems of additive conjoint measurement, by universal sentences in the

first order functional calculus. One may conjecture that there is no finite

axiomatizatiom, in first-order functional calculus, for any system of

polynomial conjoint measure*ment.
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2.5 Semiorders

The binary or quaternary relations of extensive, conjoint, or metric

space measurement are generally assumed to be transitive. In practice,

2 types of intransitivity are observed:

(i) x - y, y - z, but. x > z,

(ii) x > y, y > z, but z > x.

The first type may occur because differences between x and y and between

y and z are too small to be detected, but add up to a detectable

difference between x and z.

Type (i) intransitivities occur in a formal system called a semi-

order, introduced by Luce f2lj. 'his involves 2 binary relations, P

(strict preference) and I (intransitive indifferer.ce).

Let juxtaposition denote the usual relation product. i.e., x PI z

if there exists y such that xPy and yvz; let P* be the reflection of

P in the diagonal, i.e., x P* y it yPx. We can define a sesiorder

as follows.

DEFINITION 2.Z (X,P,I) is a ue..i.',x'r if X is a set, and Pl are binary

relations or: X, such that

I. {P,P',Il is a partition of X - X

PIPc P

p2
3. P I* •is empty.
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V1 W

Fig. 2. Illustration of axims 2 (left) and 3 (right) for a
semioTder. The configuration on the left implies
xPw. The configuration on the right is asserted to be
impossible.

The content of conditions 2 and 3 is depicted in Figure 2. In the

left diagram, xPy, ylz, zPw, and the conclusion is xPw. In the

right hand diagram, x P2 z (via y) and x 1 2 z (via w); the asser-

tion is that no such configuration exists.

One of the main results on semiorders is that any seniorder defines a

natural complete order.

THEOREM 2.1. Let (X,P,I) be a semiord•r. Define x - y if for all

z £ X, xlz iff ylz, ad x > y if neither y PI x nor y IP x.

Then, -is ai eauivalence relation and > induces a total order on the

equivalence classes X/-.

The proof of this theorem is a useful exercise.

Several problems arise in connection with semiorders. One problem is

to ayiomatiLe carious forps of measurement, replacing the usual order rela-

tion by a semiorder. This can be done in a trivial way using the defined

total order of Theorem 2.1, but the real point is to show that, in a

semiordered systc.,i, one can attain any desired accuracy of measurement from



appropriate finite sets of PI observAtions. This has been donp for

extensive measurement by Krantz [183,

A second type of problem is to desi with type (ii) intransitivlties.

One way to account for these is by assumi•p shifts ii dimensions that

determine the decision. For example, in purchasing a new car, each

additional accessory may seem worth the added cost, but the toval cost

of several may drive one back to the basic model. Below some threshold,

the cost dimension is ignored; above, it is decisive. One right capture

this by assuming 2 semiorders (X,P1 ,1 1 ), (X,P 2 ,I 2 ) over the same base set

X, and defining the "lexicographic product", P = PI U (I1 n Pf2l

I 0 1n 12' That is, xPy if xPly (the first dimension is decisive)

or if x(lI fl P2)y. Obviously, P need not be transitive. The interesting

question is to charactertae lexicographic products of seuiorders: given

a pair of relations, P,I, what properties guarantee the existenct of

P1'll P2 ,1 2 such that (X,P 1 , I) and (XP 2,1 2 ) are semiorders and (P,I)

is their lexicographic product? In empirical terms, can one infer the

latent dimensional structure from a pattern of intransitivities?

22.6 Error theory

One of the most serious bars to testing the axioms of various measurement

theories is the presence of "random" error. One way to deal with this

difficulty is to s perimpose a probability model on the algebr ic one.

For example, in conjoint measurement, one might assume that a ?alr (al,a 2)

corresponds to a Gaussian random variable with expectation M(al,a 2); one

jI
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might interpret (al,a 2 ) > (bl,b 2 ) to mean that M(al.a 2 ) M(bl,b 2 ).

Axioms such as transitivity or cancellation [1, 3 of (1.4)] are testable

statistical hypotheses.

A criticism of the conventional statistical approach is that, if

the measurement axioms are satisfied, then the construction of measurement

scales induces transformations of the random variables. It is at least

as reasonable to assume that the transformed random variables, rather than

the original ones, satisfy a tractable probabilistic model, but this

greatly complicates the statistical treatment.

More generally, one may wish to deal with random error in a manner

that is less arbitrary than assumption of a special probabilistic model.

It may be desirable to incorporate error processes more directly into the

system of primitives and axioms.

An extreme version of the incorporation of error processes into a

measurement axiomatization is to base the measurement entirely on error.

For example, given a family of real-valued random variables, one may seek

a transformation of the real numbers such that the transformed random

variables are identically distributed except for translations. If this

can be done, the transformation in question provides a measurement scale

that regularizes the error theory. Levine [201 explored this problem

quite deeply; among other results, he showed that if such a transformation

exists, for a family of 3 or more random variables, then it is unique up to

changes of origin and unit, i.e., we have interval scale measurement.

Thus, the error theory has run away with the measurement procedure--there

is no longer any room for basing measurement on an extensive operation,
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a geometric model, or a polynomial combination rule. Some intermediate

manner of incorporating random error in the measurement process would

seem desirable.
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3. Metrics with additive segments

3.1 Preview

A Aetric space (X,d) is a metric with additive segments if for any

x,z c X, there is an isometry f of the real interval [O,d(x,z)] into

X, such that f(O) - x, f(d(x,z))= z. Most metric spaces studied in

geometry are of this type: e.g., Riemannien spaces, or G-spaces (Buse-

mann, [7]). in this lecture, I examine the foundations of metrics with

additive segments, starting with an ordering of pairs. More precisely,

given a set A, and an ordering • on A x A (or a mapping (x,y) - xy

of A x A onto a totally ordered set, (P,_)), what axioms guarantee the

existence of an order-preserving real-valued function * on P such that for

d(xy) - #(Ay), (A,d) is a metric with additive segments? The source

of this problem is the demand fur a geometric model of dissimilarities,

discussed in (2.2).

The key to analyzing foundations of metrics with additive segments is

the ternary relation <xyz>, which, in terms of t metric, can be defined

as d(xy) * d(yz) - d(x,z). We must define this relation, and establish

its main properties, using the ordering alone. Once this is done, we

define a binary operation in P as follows: xy * x'y' = uw if xy = uv,

x'y' - v-*, and <uvw). This operation, however, cannot necessarily be

defined for all pairs (xy,x'y') (there may not exist additive segments

of arbitrary length). Thus, in order to apply Holder's theorem to the

system (P,.,_), we must establish a version of it that applies when the
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binary operation is defined only for sufficiently small elements. This

sort of locdl theorem has other important applications. In the next

section, I shall state it, sketch its proof, and indicate the applications

to extensive and conjoint measurement. In succeeding sections, I shall

return to the question of metrics with additive segzints.

3.2 A bounded version of HOlder's Theorem

DEFINITION 3.1 Let G be a set, with biiary rel..tions ý,, B on G, and a

binary operation (x,y) - x + y from 3 to G. The quadruple (G.B..,8 )

will be called a poeitive ordred locaZ eovigrcfe if the following are

true for all xy,z,x',y' c C:

1. > is a total order

2. if (x,y) E B, x , x', y y', then (ylx') t B

3. if (x,y), (x+yz) c E, then (yz), (x,y~z) c B and

(x ' y) + z a x + (y + z)

4. if x >Iy and (x,z) c B, then x + z > y + z and

z X>Z+ y

5. if (x,y) cB, then x + y > x

6. if z > x, then there exists y c G with (x,y) c B and

Z > X + y.

A positive ordered local semigroup is Archimidaea if for all x,y c G.

(nJnx defined, y > nx) is finite.

Note that by property 2. (xy) L B iff (y.xý c B; from this, we

know that y + z, z + x, z + y are defined in property 4.
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THEOREM 3.1 Let (GB,+,>I be an Archimedean positive ordered ocat semi-

group. Let G' a {x:3y, (xy) c B). Then there is a reaZ-vatued function

Son G' ouch that for aZZ x,y E G'

Mi) x _> y iff O(x) > (y)

(ii) if (x,y) c B, then f(x + y) a *(x) + 4(y).

Moreover, if 0, ý' are any 2 such functions, then *' * • for some

> 0.

The proof of Theorem 3.1 is like that ofTheorem 1.1 in all essen-

tial details. We note only 2 slight differences. First, for x,y c G',

y > x, define N(x,y) tr be the largest n for which nx is defined and

y > nx. If (x,y) E B, then y > nx implies (n + l)x is defined;

hence, for (x,y) E B, we have [N(x,y) + lix > y > N(x,y)x, as in

Theorem 1.1.

Second, the use of inverses in Theorem 1.1 is solely to provide
-l

elements of form y x, where y < x. The seoe effect is achieved here by

finding y' such that y + y' < x, using property 6 of Definition 3.1.

Theorem 3.1 is clearly applicable to extensive measurement, for the

case where there is a practical upper bound on the size of elements that

can be compared, This has been discussed by Luce and Marley [231. Less

obvious is the application of the theorem to a more realistic version of

conjoint measurefent. The solvability axiom (Axiom 2 of (1.4)) essentially

forces the set A/- to be a subgroup of real numbers, whereas in practice,

one would like to restrict attention to a bounded substt of such a subgroup.

This corresponds to the fact that one cannot in practice always solve
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equations of the form a - (bl,b 2 ) for b2 , given a, b V The

change on the first factor may be so large, as to be unmatchable within

A2. To deal with this case, solvability has been replaced by a much

more realistic assumption (Debreu [9 ]; Luce [22]) called vee"tioted

aoZvabi Zityi:

2'. For all a E A, b c A, if there exist c, c2 such that
1 1-1

(bl,3 2 ) > a > (bl,c 2 ), then there exists c2 such that

a - (b1 ,c 2 ); and a similar assumption with the roles of Al,

A2 interchanged.

In this more restricted situation, one can order "positive differences"

between elements of A1 by comparison with a "difference" in A2 : namely defirne

a -b, !a' - b• if there exist a2 ,b2 E A2 such that

(allb) _ (b,,a2) (b',2)> (al,b2

Certain positive differences can then be "added" by laying off equivalent

differences end-to-end. An additional axiom, similar to the cncellation

axiom of (1.4), is required, and minor modifications of the Archimedean

axiom (Axiom 4 of (1.4)) are needed, but given these, the bounded Holder's

theorem can be applied to the system of positive differences on each

factor, AI and A2 . Ultimately, this leads to the same conclusion as that

of Theorem 1.3, based on much weaker assumptions*.

This use of positive differences on each component in a system of
additive conjoint measurement is unpublished; it draws on material
from a book in preparation, by R. D. Luce, P. Suppes, A. Tverekyo and
the present author. For a slightly different treatment based on
Axiom 2', see Luce (22].
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3.3 The ternary relation <xyl)

We return now to consideration of a set A, and a mapping (x,y) -* xy

of A x A onto a total order (P,>). If there exists a function * from P

to the reals, which preserves order, such that d(x,y) * 4(xy) is a

metric with additive segments, then the following 4 axioms are easily seen

to be necessary.

1. For x 0 y, xx = yy < xy.

2. xy- yx.

3. If xy < uw, then there exists v such that xy - uv and

(uvw).

4. If x 0 y, then for any u,w there exist x0 .... ), xn such

that x0 . u, x 1 w, and for i - 1, ... , n, x _ixi< xy.

Axioms 1, 2, and 4 are stated entirely in terms of the ordering R but

Axiom 3 involves the ternary relation (uvw). In teims of the desired

metric, this means d(u,v) * d(vw) - d(u,w). However, we shall define

( ) in terms of the ordering alone. We do this by noticing that, if

d(x,y) * d(y,z) - d(xz), then the distance d(y',z) achieves a minimum

at y' - y, for all points y' on or inside the sphere with center x and

radius d(xy). This characterization of y uses only ordinal relations.

DEFINITION 3.2 <xyz>L if for all x', y', z' such that x'y' < xy and

xz < x'zt, both of the following hold:

(i) yz <y'z'

(ii) if yz - y'z', then xy - x'y' and xt - x111

Define <xyz) if both (xyz)L and <zyx)1 .
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Roughly speaking, <xyz> L holds if yz is minimal among all y'z'

such that y' is inside a sphere of radius xy and x' is outside a concentric

sphere with radius xz. The relation <xyz) is simply the symmetric form:

clearly, <xyz> iff (zyx>. Henceforth, in Axiom 3 above, the relation

< ) will be understood to be the one defined by Definition 3.2. From

this definition, we obtain the following useful lemma (only Axiom 2 is

used in the proof).

LEMMA 3.1 If <xyz), x'y'_< xy, y'z' < yz, and xz < x'zt, then

<x'ytz').

This follows because if any inequality were strict, then (ii) of the

definition would yield a contradiction of one of the other inequalities.

Hence x'y' - xy, y'z' a yz, and xz w X and <x'y'zv> follows.

We also note that from Axioms I aid 2 and Definition 3.2, if <xyz>,

then xy,yz <_ xz. Given these preliminary results, we can prove the.

following fundamental theorem.

THEOREM 3.2 If Axiome 1-3 hoZd, and if <xyz> and (xzw>, tihen

<yzw> and <xyw).

Proof: First we prove (yzw>. From xz < xw and <xyZ>L, we have

yz -. yw. By Axiom 3, choose z' such that yz - yz' and <yz'w). By

Lemma 3.1, it suffices to show zw < z'w. Since <xYZ>L and yz' <yz.

we have xz' < xz; but then, by (xzw)L, zw < z'w follows as required.
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Next we show <xyw>. Note that wy I wx; otherwise, if wx < wy,

then <wzx)L implies zx < zy, contradicting <zyxý. By Axiom 3,

choose y' with wy a wy' and <wy'x). By Lemma 3.1, it will suffice to

show that xy < xy'.

From <yzv>, wz < wy'. Construct z' with wz = wz' and <wz'y'>.

Suppose xy' < xy. Then by <xyz>, either xz' < xz, or yz < ytz'.

The former is false, since <xzw> and xz' < xz imply zw < z'w; and

the latter is wrong, because (wz'y'), wz = wz', and wy u wy' imply

y'z' < yz. Hence, we conclude that xy I xy', as required. This completes

the proof of Theorem 3.2

Theorem 3.2 states the basic property of the ternary relation < >,

which is needed to construct a metric; as will be seen in the next seciton,

it corresponds to associativity of the operation + defined on P.

3.4 Existence and uniqueness of a metric

DEFINITION 3.3 Let A,P, be as above, and let < > be given by

Definition 3.2. Define a binary operation * on P by xy + x'y' - uw

if xy a uv, x'y' = vw, and (uvw>.

We note that this is well defined. Let P1 • P - (xx), and let

B - ((xy,x'y')jxy + x'y') is defined . Then the following theorem can be

proved.
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THEORE0 3.3* If Arioms 1-3 of (3.3) hold, then (P1,B,.*,) is a poeitiv

ordered Zocal semi'group; if Axiom 4 also holds, than it is AVoiandap

as Zell. Hence, if Axiom-? 1-4 hold, then there is a metrio d on A such

that

(i) xy ! x'y' iff dCxy) ! d(x',y')

(ii) <xyz) iff d(x,y) + d(y.z) - d(x,z).

Moreover, d is unique Wp to simiZarity trsfom',ation (i.e., d is a ratio

ecale).

Proof: The proof that (P 1 ,B,+,_) is a positive ordered local semigroup

if Axioms 1-4 hold is almost immediate. To illustrate# we prove asocia-

tivity (in the sense of property 3, Definition 3.1). Suppose (xyx'y')

and (xy + x'y',x"y'') c B. Let uv - xy + x'y' and vw a x''y', with

<uvw). Let u'v' = xy, v'w' = x'y', with (u'v'w'). Then u'w' a uv.

Since uWv' < uv, there exists z with u'v' - uz and <uzv). By

Theorem 3.2, <zvw> and <uzw). By Definition 3.2, zv = xty'. Thus,

x'y' + x"''y is defined and w zw; so xy + (x'y' + x''y'') is defined

and = uw = (xy + x'y') + x''y"'.

From Theorem 3.1, there exists a real-valued function # on P such that

xy > x'y' iff oCxy) > *(x'y') and #(xy + x'y') a *(xy) + *(x'y'). We

note that there is at most one p -P" iePl
1I * I ie., a maximal element of

P, if such exists. We define d on A x A by

d(x,y) = (.(xy) if xy C P,

0 if x y,

sup{f(uv)juv £ Pp) if xy is maximal.

The results in (3.3)-(3.S) are essentially due to Beals and Krantz [ 2].
They considered a somewhat more general situation. The version presented
here, particularly Theorem 3.3, draws on unpublished material from a book
in preparation by Luce, Suppes, Tversky, and Krantz.
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Obviously, xy .. x~y' iff d(x~y) d(x',y,) and (xyz) iff

d(x ' . d(yz) = d(x,z). The triangle inequality follows from the

definition of < >. Also, by Axiom 4, if xy is maximal in F, then

sup{4(uv) Iuv £ P} is finite. ThM!s, d is a metric satisfying (i) and

(ii). Clearly, any other metric d' with the same properties defines a

,.utction *' on P1 with the same prcnertivs as ; a' = , hence,

di = ad, follow frcR, the uniqueness assertion of Theorem 3.1. This

completes the proof of Theorem 3.3.

3,S Existence of segmnts

Note that Axioms 1-4 of (3.3) can be satisfied by the set A = (xy,z),

with xy - yz < xz. In fact, <xyz) holds, and the oily d satisfying

Theorem 3.3 is given by d(x,y) = d(y,z) = D, d(x~z) = 2D, where D > 0

ii arbitrary. Such finite examples are avooded if we impose the requirement

that any x,z E A be joined by an additive segent. as defined in (3.1).

One way to guarantee this is to impose 2 additional conditions, nondis-

Scrl!e'ness and completeness:

5. P - {xx} has no minimal element.

6. If x. is a sequence in A such that for u ý v, x.x. < uv for

all but finitely many (i,j), then there exists y c A such that

for u $ v, xiY < uv for all but finitely many i. That is, any

Cauchy sequence converges.

We call a subset Y of A a partial segment from x to z if (i) x,z E Y

and (ii) for any u,v c Y, 4xuv> or <xvui. The set y is a segment from

x to z if it is a maximal nartial segment from x to z. By Zorn's lemma,
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for any x,z, there exists a segment y from x to z. We wish to show that

y is isometric to [O,d(x,z)j. For y E y, let f(y) = d(x,y). Obviously,

d(u,v) a jf(u) - f(v)[, so f is an isometry of y into [O,d(x,z)]. It

iremains only to show that f is onto. For this, we use Axioms 5 and 6

above.

Let t be c (O,d(x,z)). Let y = {y c YIf(Y) < t}, Y2 - {y c YIf(y) > ti.

From Axiom 6 it is easily shown that f attains its maximum in yI at some

ye c y, and its minimum in y at Y2 E Y2 ' For example, if ui is a

sequence in Y such that d(xipi) -, sup{f(y)ly c yl, then by Axiom 6,

ui - yl c A, and it is easy to see that y U {yl} is a partial segrent.

It follows by maximality that yl c y; Y2 is treated similarly. If

= y2, then f(yi) - f(y 2 ) t, and the required preimage of t in y

has been constructed. But for Y1 # Y2, we can use Axioms 5 and 3 to choose

y with (ylyy 2 ), and y d yl,y 2. By construction, y $ y, but by

1heorem 3.2, y U {y} is a partial segment, contradicting the maximality

of y. Thus, yl = Y2 as required. This completes the proof of the

following theorem (whose converse is obviously true also):

THEOREM 3.4 Let A,P,> satisfy Axions 1-6. Then there is a metric d on

A, uique if to multiplication by a positie constaflt, such that (A,d) is

a complete metric apace with additive segments, and such that xy > x'y'

iff d(x,y) '> d(x',y').
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4. Polynomial measurement theories

4.1 Independence and sign-dependence

n
If > is a binary relation on n Ai, where n > 2, it induces other

i=l
binary relations on products of any m factors, where m < n, For example,

n m
if b is a fixed element of TI A., and a,a' are elements of T A.,

i=m+l i1
we can dofine

a >_(b) a' if (a,b) > (a',b).
n

Thus any choice of a fixed b c R A. induces a relation >(b) on
m a=51+ 1
Ti A.. Similarly, choosing fixed components in any subset of factors

induces a binary relation over the product of the remaining factors.

One of the things that makes the study of polynomial combination laws

fiuitful is that, for binary relations obeying such laws, the induced

relation >(b) varies in regular and interesting ways as a function of

the vector of fixed components, b. Recall that, according to Definition

2.1, (AV, ... , An,>) satisfies a polynomial combination law f provided
n

that there are real-valued functions *i on Ai and * on H Ai, such
Sil

that * is order-preserving and 0 = f(O1, "". n)" A simple example

of regularity of induced relations occurs if

f(x ... , xn) - g(xl, ... , x m) + h(x ml, ... , x n). In that case, it is
n

obvious that >(b) is independent of b, for b E H A,; the ordering
m i=m+e

of elements of H A. depends only on the values of g(*ll ... I ,M)

ili m n
We say in this case that H A. is independent of H A.. In the

iP1 n i-m+l
simplest case, f(xI, ... , x irk xi, and any subset of factors is

i= i
independent of its complement. We say in this case that the system
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(All ---I Ano>) is completely independent; complete independence is thus

a necessary condition for additive conjoint measurement in n factors.

A subset of factors can be independent of a proper subset of its

complement, even when it is not ir.nependent of the entire complement;

this occurs when an induced relation, >(bc), does not depend on the

vector of components represented by b, for fixed c. For example, when

f fx 2 1,x 3) - (x1 +. 2)x V A1 is independent of A2, and vice versa,

although AI need not be independent of A2 x A3.

If f(xl, -. 9, xn) = g(xIp ... , xm) • h(xm+l, ... , xn), then the
m

induced ordering of elements in II A. depends not only on g(fl, " m)
i=l

but on whether h(m+1i .... O *n) is positive, negative, or zero. Thus,
n 0 S
H Ai can be partitioned into at most 3 subsets, S', S S . All

i=m*l 1
induced orders _o(b) are identical for b E S+, and are the reverse of

>(b) for b c S, while >(b) is degenerate (the universal relation)
Im

for b c S . We express this partition property by saying that n A.
n iulR

is sign-dependent on R A.. Independence of is the special case of
i=m+l 1

sign-independence on in which only S+ or S-is nonempty. Thus, for

(xI + x2 )x 3 , A1 x A2  and A3 are mutually sign-dependent. Tt is not

true, however, tha- AI x A3 is sign-dependent on A2 . In fact, for

x3 > x3 ,

(x X (.X XI if Y2 -xlIX 3 - xl'x
(xI + Y2X 3 > (x• + Y2 )X• iff Y2 3-

x' - x3

so that the value of y 2 - 02 (a 2 ) at which the order of (xl,x 3) and

(xi,x;) reverses is not fixed, leading to a partition, but varies with

xI, x3 , xI, x3 .
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Independence and sign-dependence properties are good examples of

qualitative laws. Independence is subject to straightforward experimental

testing, wherever order relations can be determined; when satisfied, it

strongly indicates that the effects of certain variables can be evaluated

apart from consideration of the fixed values of other variables. Sign-

dependence is similarly testable; moreover, it has a kind of special

"flavor", since a large effect can be produced in 2 completely different

ways, by combination of two "positive" values or of two "negative" values.

An instance of sign-dependence was discussed in section (2.4) where

moral evaluations of descriptive adverb-adjective combindtions were

studied, e.g., "slightly evil", etc. There, the adverb factor is sign-

dependent ..n the adjective factor; "evil" is in the Spart of A2 . It

scarcely needs experimental testing to show that sigp-dependence is more

appropriate than independence, and hence, that multiplication is more

appropriate than addition. The detailed accuracy of a multiplicative mvdel

is, of course, another question.

In general, particular polynomials exhibit more or le~s idiosyncratic

patterns of independence and sign-dependence; thus, it is possible, on

the basis of empirical information concerning these p--operties, to

diagnose appropriate polynomial combination rules, or at least, to

narrow the field.

4.2 Additive conjoint measurement and independent dimensions in
geometry

It was indicated previously that a system of additive conjoint measure-

men~t ls completely independent. Surprisingly, a partial converse can be
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proved! if (A1 , ... , A ,n_) satisfies complete independence, restric-

ted solvability, and an Archimedean condition, and if n > 3, then
n

(Ai, ... , A n ) is decomposable relative to x.. (Recall thatni=l 1

restricted solvability means that any shift on n - 1 factors can

be compensated by a shift on the nth factor, given that certain boundedness

conditions hold.) Since restricted solvability and Archimedean c.nditions

are usually assumed to be valid empirically, this means that if n > 3

(in the sense that there are at least 3 nontrivial factors), complete

independence is the empirical equivalent to additivity of the factors.*

(No such result holds for n = 2; in that case, the cancellation a.iom

(Axiom 3 of (1.4)) is required.) The proof relies on the bounded HOlder

theorem established in (3.1) but it is quite complicated and I shall not

present it here. It can be greatly simplified if unrestricted solvability

is assumed.

It was recognized by Tversky [361 that additive conjoint measurement

can be profitably applied to metric representation of similarity orderings.

Suppose that we have a dissimilarity ordering > on A x A, as in section
n

3, but that the set A is endowed with product structure, A - U A..
irli

If the ordering on A ' A is to be represented by a Euclidean metric d,

with the sets A. as a complete set of orthogonal coordinates, then there1

are functions *. on Ai such that
11/

d(ab) n [ J1 i*a2) - 1 22

A topological version of this theorem was published by Debreu [9 1.
The present version is due to R. D. Luce, and is taken from material
for a book in preparation by R. D. Luce, P. Suppes, A. Tversky, and
the present author.
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This equation can be generalized in 2 ways:

d(a,b) a F "!1 oi (ai Obi (1)

d(a,b) a F [ I10(a 1) - , 1 (b 1)I, ... , Ion(a) - *n(bn)Ij. (2)

In (1), F is a strictly increasing function of 1 variable, while in (2),

F is strictly increasing in each of the n variables. Equation (1)

specifies that dimensions combine additively to determine dissimilarity,

while (2) specifies that the contribution of any one dimension can be

represented by absolute differences of scale values.

If d is not required to be a metric, then Equation (1) is simply the

equation of additive conjoint measurement, in n variables. Similarly,

when d Yieed not be a metric, then the absolute difference representation,

on any one dimension, can be analyzed by methods very close to those of

additive conjoint measurement in 2 variables. (Absolute difference repre-

sentations have been extensively studied by Pfanzagl [281.)

If we combine the conditions for n-factor additivity (across dimensions),

for 2-factor additivity (within each dimension), and for a metric with

additive segments (section 3 above), then, as was shown by Tversky, the

metric d is constrained to the form,

d(ab x F1  i (a) - i(bf) (3)
ial I

where F is an increasing function, satisfying F(Ca 8) > F(a) + F(8).

|



If F(a) a , then d is the Minkowski r-metric. I do

not know w'at other functions F, if any, yield a metric with additive

segments satisfying Equation (3); but if the additive segments are

required to lie on algebraic straight lines (in the coordinates
th

Ol(a1), ... , On(an)), then the r power is the only solution. These

considerations lead to an axiomatization of the Minkowski r-metrics
n

in terms of the primitives A - N A. and > on A x A. The Fuclidean
i- i

case, r = 2, can be distinguished by numerous properties, for example,

the fact that all rotations are isometries.

raIf we let F(a) = e - 1, r > 0, then (3) yields a metric, but

only points differing in exactly one dimension can be joined by an addi-

tive segment. The geometry of this "exponential metric" seems not to

have been studied.

4.3 Simple polynomials

We now return to consideration of polynomial combination rules more

general than additivity. The independence or sign-dependence properties

that are logically necessary for a given pclynomial are usually not

sufficient, even if appropriate solvability and Archimedean conditions are

assumed. In this respect, the pure additive and pure multiplicative

rules are exceptional. For one class of polynomial combination rules,

called simple polynomials, there is a general schema for finding a

sufficient set of axioms. This class is defined as follows: (1) single

variables are simple polynomials; (ii) if fI and f2 are simple polynomials

with disjoint variables, then f + f, and flf are simple poly-



4,.0

nomials; (iii) no polynomials are simple except by virtue of (i) and

(ii). More formally:

DEFINITION 4.1 Let F[Y] be a ring of polynomials in the indeterminates

Y. Then StY] is the smallest subset of F[Y] such that

(i) Y C S[Y]

(ii) if YI,Y 2 c Y, with YI fn Y2 empty, then for any f 1  St[YI]

and f 2 C S[Y2 ], fl + f2  and flf 2 f S[Y].

The elements of StY] are the sinrZe polynomiala of F[Y].

To axiomatize polynomial conjoint measurement, relative to a simple

polynomial f, for (A1  .... A ,>), we proceed to introduce a series of

addition and multiplication operations in the set A/-. An addition opera-

tion is introduced for each decomposition of a simple component of f as

the sum of smaller simple components with nonoverlapping variables, and

similarly for multiplications. The manner of introducing these operations

is the same as in section (1.4), e.g., (b1 ,aO) + (aO .bb,) - (blob

0 0 0where a - (aIa 2 ) is the origin (or unit, for multiplication). How-

ever, one must be careful to keep the origin the same for all additions,

the unit the same for all multiplications, and to choose the origin as

a multiplicative zero. In addition to suitable sign-dependence, solva-

bility and Archimedean conditions, three classes of axioms need to be

introduced:

(i) appropriate cancellation conditions, I'ke A/xiom 3 of (1.4), that

guarantee that the operations introduced are ýell-defined, commutative,

and associative;
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(ii) conditions guaranteeing that all the addition operations have

the same effect, as do all the multiplications;

(iii) a condition that is used to prove distributivity of multipli-

cation over addition.

Of course, all these axioms may not be logically independent, so that some

of them may be eliminable in any given instance.

Rather than give complete abstract details of this general schema,

I shall sketch an illustration for 4-factor conjoint measurement, relative

to the polynomial x1x 2 + xIx 4.
0 00 00O

We choose a suitable origin, a = (a0,a 2 ,a 3 ,a4 . and a suitable unit,

1 1 1 0 0 0 0 1 1
a - (aloa2l a3,4 (a ,aa 3 , a ). Addition is defined by

0 , 0 0 0 ,b ,bs tb )
(blob 2,a 3a4) 4 (aIa 2b 3 'b4 ) 30b, (bl 21  4).

Two different multiplications are defined by,

100 1 0 0 00
(b 9 al2 ,a 3 ,a4 ) (a ,b2,a 3 ,a4 ) = (bIb 2 a ,a

0 0 1 0, 0 1 0 0
(al,a 2 ,b3 ,a 4 ) (a aa2 ,a 3, 4  (al0,0abb

These definitions are chosen so that any element b of A/- satisfies

1 00 1 0 0(blob 2 ,b 3 ,b 4b (bl,,a0 3 ,a 4 a (al,b,a 3 ,a 4 )

00 1 0 0 1
+ (a, • 2 ,b3 ,a 4) • (a .a2 ,a 3 b4 ).

Once we have constructed a ring isomorphism o f (A/-,+,-,-) into

1 0 0
(Re,*,,>), we can define t I ¢(I) blJ, ,&4), etc., and obtain,

from the previous equation and the isosorphism property, the desired

relation

4(b) A ¢ (bl)*,(b') .. ; l •) eb



- 42 -

0 1

Unlike the simple addit:.v• cdse, tie origin a and w.,it al must

be chosen with som care. ond the sclvability and canceIlatit co•.ditions

must be formulated to tik.il note of eccertions. 'n partic.ilar, we 3¼rt

by asstming that A x A, and A3 x A4  are mutualby ind.pendent, while
1 4

1 and A2 , as well as A and A4, are mutuilly sign-dependent. For

0
i - 1, 2, 3, 4, a. must -e chosen in the ti-cl&s aetermi-.ý, d giv,-

dependence, while a. must re chosen outside the 0-clus. 'fhIs •goo s jt

to choosing the additive origin to be the multip}1icxý ve zeru, inu the

multiplication to be nontrivial. The solvability .1 canceilation condi.-

tion-, must be formulated with due care for divisi½. b-.ý zero. Las-y, same

delicacy is required in designating + and - signs, relative to sign-depen-

dence. Once all this is done, and suitibýk> conditions of typ (ii) on"

(iii) are imposed, guaranteeing that the multidlications coincide Lnd

are distributive over addition, we obtain an ordered ring, as required.

ro illustrate the derivwtion of type (•i. and (iii) a.xiacs, I indl-

cate one :hat guarantees distributvitv of multiv'.i ý ••n over addition.

Represent 3 arbitrary equivalence cisses by
1 0 0

b - (bl,a2 ,a 3, a4 ) a

0 0 1
c -(aaa 2 , b3 ,a 4

1 03 0d (ab~aa (a ,a at

Then b • d ) c d- (bl.b 2.b 3 ,b 4 )

1 Ib c N (bl,a 2 ,b 3 ,a 4 ).

Choose c such that (b, 2 ,ba 4 a (c 1 , a .. •: Then
1 39.4. 4.

(b + c) d a b"0 4!
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Thus, the requireI axiom is one that permits us to infer, from the

equivalences
1 0 0 0 01l

(a , ba 0 a - (a 0,a0,a'ta1 ,2,a3, ) 4 a1 ,2,a3, .4

1 1 1 0 0
(ba 2',3, 3) 4 (c 1 2,a2 ,a 3 ,a )

the conclus-ion

(b b b b0 0(blb 2' b3b4) (clb 2 ,a 3 ,a 4 )0

i.e., b • d + c • d (t + c) d. With some extra trouble, the requ-red

axiom can be formulated as a general condition, independent of the choice

o.f the a, aX and logically necessary for the desired polynomial combine-

.-U l e,

':inal'y, note that all thc ayi . ir.rodused, except for solvability,

tu'., out to be logically necisn' conditions for the given polynomial

combination rule. ýt woull be i.-tarestinfg to reformulate the above treat-

ment of polynomi&I Neasurement with restricted solv&bility, obtaining

only a subset of an ordered ring, but thlis ku)aii. •n open problem, which

may involve considerable technical 4itffizulty.
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S. The measurement of color

5,1 Metameric matches and vectorial representation

The psychological laws on which color measurement is based were

clearly enunciated by H. Grassman in 1853 [121, and bear his name.

These laws, and the measurement techniques based on theta, are of par-

ticular interest, because of their simplicity and beauty, and because

they involve an unusual blend of physics, physiology, and psychology.

The empirical basis of color measurement involves a physically defined

binary operation, additive co-or mixture, :.nd a psychological equivalence

relation, metanerfum. Grassman's laws, which relate these primitives,

have clearcut physiological implications (Brindley [5 ], pp. 198-218).

Thus, color measurement has long been the point of derarture for physio-

logical and psychological color theories.

The measurement representation for colors involves vectors over the

real numbers, rather then real numbers alone. International standards

for the vectorial representation of colors were adopted in 1931 by the

International Commission on Illumination (ICI) [15]. Extensive discussions

of these color meat•arement standards may be found in the .works of

Wright [37] and Stiles [32].

In this first section, we assume that the stimulus whose color is

to be measured consists of a smalt, homogeneous patch of light, viewed

under standardized conditions. Such a stimulus is specified by a

function g~ving its energy*, or energy density, for each wavelength in

* The tem "energy" is used in a broad sense; depending on the nature of

the stimulus, various measures derived from energy may be more appropriate,
e.g., power, power per unit area of source, etc. For any change of units
the nonnegative measures that correspond to )ior stimuli need only be
altered by a suitable constant factor.
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the visible portion of the electromagnetic spectrum (wavelengths from

4 x 10.7 to 7 x 10.7 meters, approximately). Thus, a color stimulus

may be considered to correspond to a nonnegative (energy) measure defined

on the Borel subsets of a real interval.

Additive olior mixture means sumation of the energy in the mixed

stimuli. For example, if stimuli b and c are produced by illuminating

the same portion of a screen with light from two different projectors,

then the mixture, b + c, is produced by turning both projectors on at

once. In fact, the cotuw'tably additive real-valued set functions on the

Borel subsets of the visible spectrum form a vector space over the reals,

which we denote B; the nonnegative elements of B, which correspond exactly

to the possible specifications of color stimuli, form a convex cone in

B, denoted C. Additive color mixture corresponds to vector addition in

C.

Two distinct elements of C may correspond to color stimuli that look

alike in color, We say that such stimuli are a metane,-tc match, or more

simply, are metaners. We denote the relation of metamerism by -. With

suitable experimental methods, for a normal observer, - can be considered

to be an equivalence relation on C, to a very high degree of approximation.

There are many examples of metameric matches: for instance, a stimulus

with a "bimodal" energy distribution, with most of the energy in the

"red" and "green" parts of the visible spectrum, is metameric to an

appropriate "unimodal" stimulus with most uf its energy concentrated in

the "yellow" part of the spectrum.
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Let M be the set of differences of metameric pairs, i.e.,

M4 = {did c B, and for some b,c c C, with b - c, d = b - c0.

The content of Graseman's third Zlo is that M is a linear subspace if B.

This experimental finding has been confirmed in modern studies to a high

degree of approximation, over a wide range of conditions (see Brindley,

[5 1, p, 211). We can now state -uccinctly the classical experimental

law of color mixture, the Law of Trichromacy (G(assman 's firest aw):

For a normal observer, dim B/M = 3.

An observer is called dichromatic if dim B/M = 2, and monochromatic

(totally color blind) if dim B/M = 1.

Standardized systems of color measurement employ a convenient basis

for B/M. For b c C, the coordinates of b + M relative to the basis

in B/M are called tristimuZus coordinates of b. Thus, two stimuli have

the same tristimulus coordinates if and only if they are metameric.

The ICI standards specify tristimulus coordinates for an average standard

observer, for approximately monochromatic stimuli (point measures). The

tristimulus coordinates for more general stimuli are computed by approxi-

matin- these as suns of monochromatic stimuli.

Another useful set of coordinates is obtained by regarding the tri-

stimulus coordinates for b as homogeneous (projective) coordinates for

the one-dimensional subspace generated by b + M. If these homogeneous

coordinates are normalized so they sun to 1, they are called chromaticity

coordinates. Two stimuli have the same chromaticity coordinates if a

scalar multiple (change in overall energy level) of one of them is meta-

meric to the other.
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5.2 Photopigments

The biological effects of light are mediated through absorption

by photopigments. The absorbing properties of a photopigment are

specified by a spectral absorptance fuiction p. For wavelength X,

p(X) is the frak tion of the incident energy at wavelength X which is

absorbed by the pigments and converted ilto electrochemical energy.

For a photopigm.,nt in humaan visual receptýrs, it is convenient to

include in p(Xi the wavelength-dependent alterations in the stimulus

between the point where it is specified by a measure and the point

where it is absorbed by a receptor, e.g., reflection at the cornea,

absorption and scattering in the ocular media. If this is done, then

the average n.unber of quanta absorbed and converted into electrochemi-

cal energy, from a stimulus b, by a photopigment p, is proportional to

f X p(X) db(A).

The integral is taien over the visible spcctrtun; the factor X is intro-

duced because average quanta/unit Quergy is propertional to 'avelength.

Thus, a photopigment p defines a lina functional on C, and by the natural

extension, on B as well. (bepa rtI urc f'rom linearity occur insofar as the

photopigment is appreciably depleted by the ensuing photochemical reac-

tion).

Grassman's laws would be explaineii if we assume that there are 3

linearly independent photopigments, p1, , P'. P3' which mediate zolor

vision. The intrsectin of th, iuill-. .t. • of the p, would be exactly

M. The p, definc linear funktiol 1 n (mh/, which span the dual space

of B/M. Their dal basis yield-, Ji a • I. *'d coordinate system in B/M.
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Relative to this basis, the ith tristimulus coordinate of b is pre-

cisely pi(b) = f Api(X)db(A), the effective quantal absorption of

stimulus b by Pi. Wle may hope to account for various other properties

of color (for example, color discriminability or perceived hue) in a

simple way in terms of those coordinates, which represent the basic physio-

logical responses (the "Grundempfindungen" of Helmholtz). This is the

thesis of the Young-Helmholtz theor.y of color vision.

An important variant of the 3-pigment hypothesis postulates n linearly

independent photopigments, PI' "'' Pn', n > 3, which in turn contri-

bute linearly to 3 independent outputs ql, q29 q3 ' where

n

q= a. p., i 1, 2, 3.

The qi are again linear functionals on B, whose null-spaces intersect

in M, and which induce a preferred coordinate system in B/M. This

variant allows a stage of "recoding", represented by the linear trans-

formation (a..), between photopigment absorption and the basic outputs
1j

that determine other aspects of color vision, such as discriminability,

subjective appearance, etc. This sort of recoding is a feature of many

color theories, particularly, the Hering opponent-colors theory as

quantified by Hurvich and Jameson [141.

There is strong evidence that, if such a recoding does take place,

nevertheless, only 3 independent photopigments are involved, i.e., n a 3.

The key to the argument is the finding that metameric matches are not

broken down by moderate adaptation to colored lights. If b - c for normal

adaptation, then the appearance of both b anc c changes after adaptation to

colored light, but except for extreme adaptations, b and c still match in color.
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It is generally assuned that the effe.:t of adaptation involves

(among other things) bleaching of the photopigments, i.e., the spectral

absorptance function pi is multiplied by a corstant ti, where 1 - ti

represents the fraction bleached. Let P be the space of linear functionals

on B spanned by pl, ... , pn. Then the equations

Tpi . tip, i -- 1, ... , n

define a linear operator T of P onto itself, with eigenvectors pi. Let

Q be the subspace of P spanned by q, q2 'q 3. Dimensionality considera-

tions show that Q consists of all the linear functionals on B which

vanish on M. Since adaptation leaves metameric pairs invariant, b - c

implies that Tqi(b) = Tqi(c) for i - 1, 2, 3; that is, if b - c F M,

then Tqi(b - c) = 0, i a 1, 2, 3. Hence, Tq, E Q, i = 1, 2, 3,

and it follows that the subspace Q is invariant under all transformations

of form T. This implies that Q is spanned by 3 of the vectors

PI "." Pn'* Hence, so far as mediation of color vision is concerned,

there are exactly 3 independent photopigments.

Recently, improved spectrophotometric techniques have yielded direct

evidence that there art 3 photopigments in human retinal cones (Rushton

[29]; Marks, Dobelle, 5 MacNichol [26]). The question of whethersignifi-

cant recoding of the 3 photopigment outputs takes place is still a key

one for color theory, but seems not to be decidable on the basis of

color-matching data alone.

If the t. are distinct, then the minimun polynomial of T, acting in Q,

Smust have form (x - t 1 )(x - tX)(x - t ). Since the only eigenvectors

associated with tik are multiples of pi , it follows that p1 3 p1 9 pI3 Q,kPi 'P 2 i '
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5.3 Color appearance

Tristimulus coordinates, determined by fixing an arbitrary basis

for B/M, convey no information about the phenomenal appearance of color.

Wuch of the literature on psychology and physiology of color is devoted

to establishing a preferred (linear or curvilinear) coordinate system

in B/M, in terms of which color appearance, including color discrimina-

bility and similarity, can be accounted for, and to characterizing changes

of color appearance, correlated with changes in viewing conditions, as

transformations in these preferred coordinates. As was shown in the

previous section, the photopigments provide one system of preferred

coordinates, but the possibility of -ecoding needs to be considered.

The most popular color theory involving recoding is the opponent-

colors theory of Hering. This was quantified by Hurvich and Jameson [14].

It is based on the observation that the qualities of color appearance

can be grouped into 3 pairs, red-green, yellow-blue, and white-black,

Any color partakes of at most one quality from each pair. The pairs are

opponent, in the sense chat additive mixture prod ices cancellation: if

b looks red and c looks green, then, under the same viewing conditions,

b + c looks either less red than b or less green than c or neither red

nor green. This suggests that the three recoded outputs, ql,q 2 ,q 3 of

the previous section, consist of a red-green output [ql(b) > 0 if b looks

red, < 0 if b looks green], a yellow-blue output, and a white-black out-

put. These outputs depend on the photopigment absorptions,



as indicated in the linear equations of the previous section, but also

on other aspects of viewing conditions, particularly, the presence of

other stimuli in adjacent parts of the visual field.

Quantitative versions of opponent-colors theory give a good account

not only of the basic opponent-color qualities, but of many other aspects

of color appearance. For example, Euclidean distances calculated in

terms of differe-ices in the red-green and yellow-blue coordinates,

give a reasonably good account of color similarity for monochromatic

stimuli of constant brightness (Krantz [16]). This example shows how

color measurement makes contact with some of the more general psychologi-

cal measurement ideas presented in earlier lectures, in particular, with

problems of measurement of similarity. Color measurement also makes

contact with polynomial measurement; for example, Hurvich and Jameson

postulated interrelations among some of the subjective qualities of color

that follow polynomial combination rules.

The facts of color appearance, especially the existence of opponent

pairs of qualities such as red-green, etc., and the usefulness of opponent-

pairs as explanations for other color phenomena, make it relatively certain

that opponent-color recoding is the proper basis for color theory,

although many quantitative details remain to be worked out. Clearcut

physiological evidence for opponent-color recoding has been obtained

from microelectrode recording of neural activity in the monkey's visual

system, by DeValois and his coworkers [10]. The exact physiological

mechanisms remain a mystery.
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In concluding the study of color theory and color appearance, I

should like to touch on the problem of dependence of color appearance

on viewing conditions. This dependence is quite dramatic. For instance,

a stimulus that looks reddish-yellow under "normal" conditions may

look yellow-green after exposing the eye :o a red adapting light, or

in the presence of a bright red stimulus simultaneously shown in an

adjacent part of the visual field. The most precise tool for studying

these changes is cr08s-context matching. If we denote different spatio-

temporal contexts by a,T etc., and denote by b° stimulus b viewed in

context a, then we can define b° - cl to mean that stimulus b, viewed

in context a, has the same color as stimulus c, viewed in context T. With

appropriate experimental methods, - can be regarded as an equivalence

relation. b0 a ca means that b is metameric to c, and, as indicated

earlier, it has been found that b - c implies bT  ct for a wide

range of contexts T.

A pair of contexts, o,T defines a function: f (c) a b
a TT

iff b0 . c . This is defined for every c c C whose appearance, in

context T, can be matched by the appearance of some stimulus in context

a. Also, f is well-defined on the corresponding subset of B/N,
0,T

and its range can be considered a subset of B/M. The study of context

effects on color appearance is thus reduced to study of the properties

of vector-valued functions of vectors, of form foT"

In the first section above, it was pointed out that one effect of

exposure to an adapting light is likely to be bleaching of photopigments,

Pi 6 tiPi. If we postulate that equal appearance corresponds to equal
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photopipment outputs, then the corresponding fumctions f representinga,?

changes in this effect of adaptation must te all representable by diagonal

matrices in the coordinates corresponding to the dual basis of the Pi.

This is called the von Kries coefficient law [27]. During the 1950's,

several unsuccessful ALttempts were made to use empirical deteiminations

of the functions f to determine the required coordinate system, and0,!

hence, to find the photopigment absorptance curves ([6],[25]). However,

the functions f seem much better represented by a linear transfomation
0,?

plus a translation than by linear transformations alone. A paper by

Krantz [19] provides a general theoretical framework for study of functions

defined by cross-context matching, and yields the prediction of linear

transformation-plus-translation as a special case in B/N.
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The modern, -tored program digital computer is about twenty years old. !t..

advent and the remarlable improvements in its components and circuitry have r

a deep interest in the theory of Automata and the methodology of problbm fornu-

lation and solution by such devicer. Out of the study of computers and the stu>

of new formulations of various problems there ha - emerged the field of Computer

Science, which includes (but is not limited to) such sub-fieldo as computer cir-

cuitry, machine organization and logical design, numerical analy'sis, theory or

programming, theory of automata and switching theory.

Comluter science is closely related to mathematics; indeed, numnricCl anal>.>.

is a branch of mathematics while many of the problems arising from the desia6n arn

use of computers are intimately associated with questions In combinatorial z'atbe-

matics, abstract algebra _rnd synmbolic logic. But an even more fundamental rela-

tionship also exists. The inhcrent structure of a computer forces one who suce;,-

fu1.ly studies or uses it to strive for the type of generuli>.y, abstraction nnd

close attention to .)gicrL detail that Is characteristic of rvathematica' argvmennt-.

A brief review of the logically distinct units of a compute. system is useN1

ii. understanding the nature and th, growth of various sub-fields t. Computer Scietce.

Inasmuch rs such a device Is a gencral-purpree one and automatic (ie. independent

of the human operator after the solution of a problem ,.tarts) it should contain

certain main organs: (1) a central processing unit (an arithmetic unit), (P) a

memory, (3) a control unit and (4) input-output devices.

The function of the central processing unit (CPU) is to perform variou7 Drcrr,-

tions on arrays or bits contained in it. These arrsys of bite are usually cvlled

words and may represent numbers or non-numerical data drawn from many diverse feic (n.

The crucial point is that with modern electronic techniques, the CPU can perfor?.

its operations with fantastic speeds, 106 to 108 operations per second for some C11'7



2.

and sam, opretions. Thus if the computer is to be used in a manner commensurate

with its Abilities, it must have available t, it at speeds comparable to its exe-

cution speEds a sequence of operators and operands.

Srch sequences are kept in the memory of the computer.

There must be an organ in the computer which will automatically call forth the
various operators and operands and txecute the. former. This device is called the
control of the computer. The list of distinct operations which the control can

execute is called the code of the computer.

These three units are interial to the computer itself. Miere must also exist

devices, the input-output organ, whereby the human operator and the machine can

comunicate with each other.

'"he design and construction of devices with the properties listed above has

stimulated great interest in physical phenomena which may be exploited to construct

cocuponents for computers. Thus many computer laboratories have studied and are

continuing to study the possibility of using lasers and masers as computer memories.

The possibility of using cyrogenic techniques in the construction of computers has

also been under intensive examination.

The design and construction of computers has also stimulated a -great deal of

theoretical work ranging from the "practical" aspects of switching theory to the

theory of automata. I would characterize the first limit mentioned above as being

concerned with problems such as the following: What is the minimum number of ele-

ments with the ability to perform prescribed elementary logical operations (for

example to accept as input two logical variables x and y and to have as an output

the single logica7 variable "x and y") needed to construct a device capable of forming

a given Boolean furwction of n Boolean variables.

Automata theory may be said to have originated with Turing's work [I] on the

general definition of what is meant by a computing automaton. Present day prob-

lems in this logical - mathematical theory are concerned with abstract models of

devices whose behavior at a particular instant of time depend not only on the pre-



.;ent input to the machine, but ;*pnerallly on the entire past history of the device

including past inputs. In the main it is essentially a chapter in formal logic

and as such has the property characterized by von Neumann[2] of being "cut off

from the best cultivated portions of mathematics, and forced onto the most diffi-

cult part of the mathematical terrain, into combinatorics".

In the payer from which the above quotation :as taken, von Neumann predicted

that autoiuatc, theory would cliffer from formal logic in two respects: "(i) The

actual 2cngth of 'chains of' reasoning', that ir, the chains of operations, will

have to be considered and (2) 'Thcc operationr of 'oric....vill have to be treated

by procedures which allow excýptions vith low but nor-zero probabilities". He

expected that the need to taLc account of point (2) would bring the theory of auto-

r;ata closer to analysis than to comnbinatories. This has not happened as yet.

Current research in Auto2mata theory is concerned with problems arising in connec-

tion with the use of computers, in contrast to the design of computers. Thus

many workers in the field are studying amnong other topics, the theory of program-

ming )anguages, algebraic coding theory and pattern recognition.

'Then computers are used in problem "solving" they must be fuinished with

programs: lists of instructions which must be scanned by the control and executcd.

If this were just a linear scanning of the sequence of instructions which remain

unchanged in form, then matters w.ould be simyle. Pro$jraxnming a problem for the

machine would consistin translating a meaningful text from one language (for

example, the language of mathematics in which the planner will have conceived the

problem) into another A.anuaege (that one of the code of the computer).

This is not the case. Because computers execute orders with great; speeds,

it is necessary to use iterative and inductive algorithms for problem solving.

Then the relation between the program to the mathematically conceived procedure

of solution is not a statical one, that of translation, but highly dynamical.:

A program stands not simply for Its contents at a given time in reference to a

given set of memory locations, but more fully for an-, succession of passages of

the control through it with any succession of modified contents to be found by the

control there; all of this being determined by all other orders of the sequence



of instructions (in conjunction with that instruction now being executed by the

control).

The theory of programing is in part concerned with techniques for providing

a dynamic background to control the automatic evolution of a meaning. von Neumann

and Goldstlne[3] who so characterized programming viewed that subject as a new

branch of formal logics and indicated methods for mastering vrrious pai-ts of it.

Their work and that of a large body of subsequent workers has been devoted to tech-

niques involved in preparing problems for solution by a computer.

Problem oriented programing lan~guages w,1 a; ALCO[, FORTRAN and a bost of

others have been devised. In addition special languages for dealing with special

types of problems such as COBOL, SNOBOL and LISP have also been created.

The existence of these languages and the compilers they require an well as

the desire to have efficient use of computcrs h~s led to the introduction of opera-

ting programs, monitoring systems and executive systems. That is, programs that

oversee the v'se of the computing equipment. .his development has led to the crea-

tion of a special class of programmers who are called system program, ers and who

have created a branch of programming cale! z,!:te-rmn prorraminr.

Although the original impetus for dCVOILupiln modern computers arose from the

need for better, bigger and faster "arfthmet.c :nlc. nes", computers are now being

increasingly used for such non-ntmnrieaL taikz a5 the simulation of various complex

systems, the solution of problems involviig ,y complicated logi~al operations

and even the design of new computers and comrcputer systems. The above list of uses

is by no means exhaustive and many of thc u-.et have grown into .uophiaticated bodies

of knowledge with an associated theory that is gtven a label as ' sub-field of

Computer Science.

Zince other lectures will cover some of these fields in detail I shall con-

finc. the remainder of my time to problemu arisi•g when one atttnpts to understand

the errors involved when one uses a modern computer to obtain zcmerical rolutions

of mathematically formulated uradferlying physloal or engineerlui; problems. J. von

N'eumann and N.H. I. * G ld st Inh [ ] ave i-,•h. , 2 .*,: fo h ,w rI-. ,r s our, ( ,



5.

errors in obtaining numerical solutions of an umderlying physical or engineering

problem:

I ERRORS OF FORMULATION. These arise due to the fact that the mathematical

formulation of an underlying physical or engineering problem represents such a

problem only with certain idealisations, simplifications and neglections. In

other words the problcm that is actually formulated to be solved mathematically,

the problem that is called the rigorous mathematical problem, is in itself an

approximation to some other problem.

There are many examples of these approximations. Thus in the theory of

fluid mechanics the notion of a perfect fluid, one without viscosity and without

heat conductivity, is an approximate representation of a real compressible fluid.

In certain circumstances it represents the behavior of a compressible fluid ade-

quately and its importance arises from this fact. However in other cases it is

completely inadequate to deal with the physicul problem involved and heat conduo.

tivity and viscosity have to be admitted into the theory, Even the theory of a

viscous heat conducting compressible fluid, which is much more involved than that

of r. perfect fluid, is inadequate for some problems. These problems rcnuire the

replacement of the representation of a fluid as a continuum by the representation

of a fluid as a collection of molecules, as is done in the klnetic theory of

gases. Thus in this one field we find that successively finer representations of

the physical problem have to b,, nmde and that the mathematical tools needed for

making these refinements are quite different in character.

It is the relationship between the errors of formulation and those listed

below that I want to stress today.

II ERROR.• IN VALUM, OF I'ARM PR.1, The mathematical formulation of a problem,

with the Idealisations discussed under I, may involve parameters whose values have

to be inserted in a numerical computaticn. However, these rarameters may not be

known with sufficient accuracy and t~us will introduce errors which Vey then "infect"

the solution.
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The discussion of the effects of this source of errors lead- to the following

mathematical problem: Are the solutions of the rigorous mathematical problem (the

approximation to the underlying problem) continuous functions of the parameter?

Depending on the answer to this question the importance of the errors of this

category can be assessed.

III ERRORS OF TRUNCATION. The mathematical problem described under I may

involve transcendental functions and operations which will have to be evaluated

by use of a finite sequence of elementary arithmetic operations. For example,

the exponential function and the trignometric functions are usually evaluated

by the use of polynomial or rational function approximations and intergrals and

derivatives are evaluated by quadrature formulas and finite difference approxi-

mations respectively.

Thus the rigorous mathematical problem which is an approximation to an under-

lying problem is further approximated for computational reasons. The interaction

between these two approximations is not sufficiently stressed by the people who

prepare problems for and make use of computers to obtain numerical solutions of

problems.

The approximation of one problem bý another raises two mathematical questions

of classical numerical analysis: (I) the qLuetion of convergence and (2) the

question of otability. These queitions car. be illustrated by considering a problem

involving ordinary or partial differential equations.

When the differential equation is replaced by a finite difference equation

a mesh is Introduced over the Independent variables. That is, only discrete sets

of values of the independent variables are used in the problem. The question

arises as to the behavior of the solution of the Jifference equations a& the number

of elements in this set increases. One must search for those discrete formulations

of the problem which have the property that their solution converges to the solu-

tion of the transcendental problem as the number of elements in the discrete set

becomes infinite.
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The stat iity prob'.em involves the question as to whether the solution of

the differential equations and the approximating difference equations are con-

tinuous functions of the initial end boundary conditions. This question is of

importance in :,-4'.w of the fact that because of round-off errors, which will be

discussed below, it is impossible to satisfy these conditions exactly. Thus

one needs some assurance that the errors introduced from this scurce will not

amplify but will indeed decrease in importance, that is, will damp out.

IV ROUND-OFF E•JORS. These errors arise because the "elementary arithmetic

operations" of a computing machine are not rigorously and faultlessly performed.

Thus in F. digital machine real numbers x and y are replaced by digital approxi-

matiors ; and ý respectively. The quantities x I y may then have correspondirg

digital representations, that Is, we may have

x :+ y .=

However as far as products and quotients are concerned, these are governed by the

relations

TX7Y x y r"') y +np

(Xl/) (q) a +

y

1(p) n() (q) ha• n() r terad-ferosf

where n (and and (and are the rowdoff errors of

multiplication and division respectively.

Rou.Wd-off errors are cz old as the art of computation Itse f. !06 multi-

plicatioons and d~visions were not rounded-off even ellementary cooputations would

soem lead to the use of reams of paper. !-..wevrr, with the advent of high-speed

coQuters the great numbers of such arithmetic operations beome po.slhle and

o must consider the effect these errors havm on the validity of th- results obtafrned.
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There is as yet no general theorem governing the effect of round-off errors

and every problem formulated for machine solution has to be analyzed separately

to obtain an estimate of what the round-off error is and what importance it has

for the problem at hand.

The problems with which the theory of round-off and truncation errors should

be concerned are closely related to the problem posed by Kronecker when he in-

sisted that mathematics be formulated in a manner which involved finite construc-

tions. When we formulate problems for solution by computing machines we are

attempting to follow Kronecker's dictum with at least one important modification:

namely, arithmetic is not being carried out faultlessly. The saving grace, if

any, being that the errors committed in the arithmetic processes are known.

The formulation of such a theory presents a challenge to pure and applied

mathematicians as deep and as important as any problems presently being dealt

with. Unfortunately many people are unaware of this challenge. Many mathema-

ticians seem to feel that problems connected with computation are concerned

solely with arithmetic, a subject whose avoidance was partly responsible for

their becoming interested in mathematics, and therefore such problems are to be

shunned.

I now wish to turn to the discussion of the interaction between the errors

of formulation and the errors o" truncation. My thesis is that such an interaction

exists and that it may be profitably #-xploited to obtain easier and more correct

computing algorithms for dealing w4th various problems. I shall illustrate this

thesis by examples. Before doing this I should point out that the existencL of

present day (and future) computing machines make (and will make) the exploitation

of this interaction possible in nome cases where without such machines it is not

feasible to do anything very different from what has been done in the past.

I shall first discuss what may be considered a ridiculous example but what

I hope will not long be a ridiculouts one. This example is concerned with a method

for dealing with problems In the thef.oAy of fluid dynamics. That theory deals with
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a continuum over which there are various fields defined: the velocity field,

the pressure field and the den3sty field. The physicist considers the ±Auid as

a collection of molecules moving about in space in accordance with certain Laws

of motion and introduces these various fields in terms of averages of other quan-

tities defined for the molecules themselves.

When a problem in fluid dynamics is formulated in terms of a continuum and

fields defined over thir, continuum which satisfy certain differential equations

and when these equations are replaced by finite difference equations we are in

effect replacing the ituid by a discrete collection of particl).es. One should

then ask the question as to what relation this collection of particles has with

the physicist's molecules. Indeed one should ask why go through this chain of

approximations at alti' Can we rnr.t deal with the physicist's molecules directly

and won't this giv,• more significant results than the former procedure?

The answer to the second question scems to be that with existing computers

we cannot keep trrnck of enou4 h molecules for a long enough time to make it into

a feasible methol for handlirntg fluid dynamics problems. However this answer needs

to be looked at closely. (.r;, reason for this is that no sharp estimates are at

hand as to when the law of i1arge numbers becomes operative; will an assembly of

thousands of molecules behave essentially the same as 1023 molecules as far as

the central limit theorem of probability ic concerned or are 1023 molecules really

needed?

The work of Nordsiece and Hicksr5l on the application of Monte Carlo tech-

niques to the solution of the Boltzmann equation shows that computers may be

effectively used in obtaining the molecular velocity distribution under condi-

tions far from equilibrium. Hence computers enable one to deal with many fluid

dynamical problems in a quite novel manner.

There are many instances in which discrete problems are approximated by dif-

ferential equations which in turn are approximated by difference equations and
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then solved by use of cemputing instruments. Thus errors of formulation and trun-

cation are needlessly introduced, for with the advent of modern high-speed conmputers

the original discrete problem could be handled directly.

Many boundary valued differential equation problems originate from variational

principles. This fact can be used to obtain simpler and easily solved discrete

approximations to the defining equations for the unknown fanctions. This is

another illustration of the fact that the interaction between the formulation

process and the truncation process may be exploited to obtain more meaningful and

ore accurate approximations to problems posed for numerical solution by computers.

I shall not discuss this point further but refer you to a paper(6" where this ap-

proach has been used on Sturm-Liouville differential equations.

I shall devote the remainder of my remarks to the interaction of round-off

errors and truncation errorr. Consider the problem of solving the equaticn

x (X) ()

or a computer. We shall assume that x is a real scalar variable and G (x) is a

function such that there exists real numbers r and b for which

IG(x) - rl < b Ix- rl

where

0 <b< 1

This condition insures the convergence to r of the sequence of xn's defined by

xn+l = G (x n) n = 01,0 ..... (

When one wishes to find the numbers x satisfying equation (1) one may attenmt
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to do this by generating on a computer the sequence of xn's satisfying equa-

tion (2). However because of truncation errors one will attempt to solve an

equation of the form

Vn + = H (Vn) n OL... (3)

where

H (x) = G (x) + W(x) (I)

and

IC (x)I l a (5)

a being a constant. The function H (x) is some algebraic approximation to the

function G (x) which in turn may be a transcendental function. The function

is the truncation error and a is a bound for it.

Descloux (T] has shown that for any V the sequence Vn defined by equation

(3) is bounded and all its points of accumulation V satisfy the inequality

ValIV - r l < I b

He has further shown that the scheme given by equation (3) is the best possible

one for solving equation (2) in the following nense: for given a and b there exists

a function H(x) for which it is impossible to find an algorithm using only H, a

and b providing closer points of accumulation to r than the algorithm (3).

Because of round-off errors a computer will not generate the sequence Vn. If

the computer uses fixed point arithmetic it will generate a sequence of integers

Yn+1 G (yn) + n'R
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where I ]R is calied a rounding procedure and [x]Ris any integer-valued function

of x satisfying the inequality

I[XJ " X < 1.

The normal rounding procedure is defined as

1x]N - [x+O. .51

This is the procedure that is usually used in hand computations and is incorporated

in many computers. Descloux showed that for any y0 the sequence of integers

defined by

n+ 1 - 0 [o n + +(n]

there exists an N such that

lyn - rl I+(
1-b 2 (1 b)

for

n > N;

furthermore for given a and b, there exists a function G and errorsf for

which the bound is attained.

Equation (6) then tells us what accuracy can be expected in solving equation

(1) by the iterative scheme (2) when given truncation and round-off errors are

introduced. He has obtained the corresponding result when floating point arith-

metic is used. I shall not give it here. The point I wish to stress is that con-

vergence may be in error by a significant amcunt.

I'!
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Let us consider an example. Suppose we wish to solve the equation

x T .Xo

The problem is a trivial one but let us suppose that Ve do not know that the solu-

tion is x = 0 but attempt to solve the equation by generating the sequence

% +i ' zV n °Vn+l n

If we use fixed point arithmetic with the decimal or binary point at the right of
the registers we shall generate the sequence of integers

cT 1

Thus startingwith yo n 8, weobtain Y oy~ ,2  6p y m 5oy4  4o y5 a 4,y u 4

n 3 5. Thuz the binary machine solution will be 4 x 2 where p is the number of

binary bits in the machine representation of numbers. Of course if p is large

this error is tolerable. On the other hand the result

x 4 xx2"p

is due to the fact that

1 1

2 (1 b)

Hence If b Is close to mope the error may Yer, well be intolerable.

Equation (6) furnishes one with a basis for evaaluiti different truncating

scheme. Thus if jal t€ 1 for each of two trmcating euhemes Vie error in the
2

result will be minly determined by the round-off and hence *.her* Is no reason for

using the more elaborate truncation procedure.
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2he question as to Aether round-off procedures can be devised which lead to

better results has also been considered by Descloux. He extended rome results of

A. Norduleck and shoved that there exiats a round-off procedure such that the yn
satisfying

SYn+ 1 Yn ¥+ (G (yn) +En" yn] A

are such that for any yos there exists an N such that

Iv + 1 r< r-A- + 1

for

n>N.

That is the round-off error can be reduced to one bit in the last place. The

round-off procedure is called Anomalous rounding for it violates one's intuition.

Its rules ar

[X]A : for lxi 1 I_[XIAl _ x

for lxi I IXI Al 1•x.

Thus when x is small enough one rounds up, that is, increases the errcr due to

rounding. No one has yet been able to extend these results to the case of vector

problems. That is, to the case where x is a vector and G (x) is a vector

valued function. Thus there remains an open important problem in understanding

the interaction between round-off errors and truncation errors.
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TWO DIKOI-5IOJ4AL VISUAL GWJ4I.¶RY

We shall try to describe a geometry based exclusively on the

concept "from my position I see an object A to the left of objsc. A".

Iwo dimensional meaik % .""6 an ooserver and all observed objects

are on the two dimensional kuclidoan plans.

For the objects we ahall take marked points on the Euclidean

plans (intuitively, they are visible and individually distinguishable

object8s). The observer will be characterized by his angle of vision

w.,ich can vary from 0 to 360 degrees. The observer's position on the

plane in characterized by a point (the point where he is standing)

And the angle equal to his visual angle with the vertex in the point,

(the angle covers the area he is observing). The observation from such

a position is the permutation (sequence) of marked points which are

within his visual angle listed in order from left to right

.1. .2.I

eA

A
*8

0 Isee

In the first ;icture the observer has a visual angle of 360 degrees

Frrom his position markea by 0, he masi the observation [A, M, CJ,

( se ^ce A to the left of h, and 6 to the left of C). Is the second
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I
picture the observer's visual angle is 9W de&rees and his obst-vation

is fi, D, CJ, Ai is not in his field of vision.

Remark, ge shall not consider the cases in wich the observer'.

kobition is in a straight line joining two visible pointo so thtit one of*

them is directly in front of another; but this restriction can be

easily avoided.

Let be riv.- a set of observational points A ana a cL, of marked

points Y from points 0 in X will be calied the description of Y. Zuct.

tri;let (X, Y, a) will be called a visual geometry. its the concepts of such

a geometry we admit only those which can be defined in terms of Lthe deacriptior.

of Y. for example, in the geometry where X is the whole plans and

a-S 180 degreoe we can express the fact thit point A lieb within the

triangle 6, 1$, G in the following way: in no obetrvation in waich

".A* b, C, D are viaible does A occupy outer-most left or outer-most

right position.

In the rJae in wnich Y hh exactly n elements there are orly finitely

many 1.ossible descriptions of the zet Y (Lh* d.escription is.a net of

permutations with elmentn in Y). In oome cah,,ea more exact eitimitiuna can

be riven. F'or exAs; lIe, when A is a wlYe, pla.ne and a *a360 U0ejrevG the

number of dlffeicnt deecriptiona of Y hot; tne mapnitude of r,

In c.,,ie *nen tne .e Y cun it•.ts of' ilI oints on ttic iti.-nc (or

any dense art ,'f polnt3) t,•,r th• rebultiiq. tcomwtry is .ffine reonctry i'n

the folluwint Oerne: if ttie att A cuttoin.i at 1e&&t four non-coikinear

)oil.ts, then the. only trnaftae -tion of tnt. i I r,& into itc,'r wflLch

1.re;. rvce the o, 3•. JoTi -ore r it Iine trrasforx.Ltiona.

I.. •



It follows from the last theorem that if we have two comfiguzations

of points which are not equivalant in affine geometry we can always

add such finite set of points to each configuration so that they will

not be equivalant (will have different properties) in respective finits

geometries.

This shows that better approximations of affine concept4 can be

achieved by extending met Y of visible points and not set X of

observation points, what can be called a type of context sensitivity,

I
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