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ABSTRACT 

The radar scattering by a conducting hemisphere for incidence along the 

symmetry axis has been determined as a function of frequency, bistatic 

angle, and polarization. From this frequency domain information, the 

short-pulse response is constructed using Fourier synthesis. The range 

resolution thus afforded permits identification of various contributions to 

the scattering — in particular, that due to edge diffraction. Results ob- 

tained from the geometrical theory of diffraction are inqualitativeagree- 

ment with those obtained here. 
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SHORT-PULSE SCATTERING BY A HEMISPHERE 

I. INTRODUCTION 

The electromagnetic scattering from finite targets may often be explained as the cc herent 
sum of returns from individual scattering centers.    For example,  the scattering from £  sphere 
consists of specular and creeping-wave contributions.    The known behavior of a scatter ng center 
on a simple target may be applied to a similar scattering center on a more complex tar jet which 
is not amenable to analytical solution.    For the nose-on backscattering from a cone-sphere,  ' 

the tip and joint returns given by the physical-optics approximation,  combined with the  ireeping- 
wave return for a sphere, yield results in good agreement with experiment. 

Another scattering center of interest is the edge, found on cylinders and flat-backe i cones, 
which is usually treated using the geometrical theory of diffraction. This involves the applica- 

tion of a two-dimensional theory to a three-dimensional problem. A different approach to edge 

scattering is obtained by considering the exactly soluble problem of scattering by a hemisphere. 
It is assumed that the edge contribution to the hemisphere scattering is representative cf other 

rectangular edge scatterers. 
In this report,  the scattering by a conducting hemisphere for incidence along the synmetry 

axis (nose-on) is determined as a function of frequency,  bistatic angle,  and polarization     In 

general,  the resulting scattering patterns are complex and difficult to interpret.    Using the short- 
pulse response obtained from the frequency domain response by Fourier synthesis,  indi ädual 
contributions of each scattering center may be resolved.    Once these returns are located and 
identified,  the CW scattering is more easily interpreted. 

The remainder of the report is devoted to consideration of individual scattering centers.    The 
behavior of each return as a function of frequency,   bistatic angle,  and polarization is obained and 
compared with that predicted using other techniques.    Particular emphasis is given to edge dif- 

fraction,  where the present results are compared with those given by the geometrical th ?ory of 
diffraction. 

II. SCATTERING BY A HEMISPHERE 

The formal solution for the CW scattering from a conducting hemisphere of radius  ft was 
4 

obtained by Kennaugh   in 1950 and will only be outlined here.    Kennaugh's solution applies for 
arbitrary angles of incidence and scattering,  but except in special cases,  it is not suitab.e for 
numerical computation.    In this report,  we treat only the case of nose-on incidence,  for which 

his results simplify considerably. 
The origin is chosen so that the spherical and flat surfaces of the hemisphere have donstant 

coordinate values r = R and 9 = TT/2,  respectively (Fig. 1).    The space external to the henisphere 
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HORIZONTAL 
POLARIZATION REGION H 

Fig. 1.    Geometry of hemisphere scattering. 

is then separated into two regions,  with different eigenfunction expansions for the electromag- 

netic fields in each region.    The electric field in both regions must satisfy the vector Helmholtz 
equation 

(V2 + k2) E = 0 k = Zir/ wavelength (1) 

and may be expanded in terms of spherical harmonics and spherical Bessel and Hankel functions. 

The incident wave propagating along the z-axis (symmetry axis) contains only the first azimuthal 

modes (spherical harmonics of order one),  and symmetry of the surface implies that only these 

modes will occur in the scattered fields.    Without loss of generality,  we further assume the in- 

cident wave is polarized in the x-direction. 

In region I (r < R;  9 > n/Z), the electric field expansion must remain finite at the origin and 
satisfy the boundary conditions E    = E     = 0 on the flat surface of the hemisphere,   G = ir/Z.    Such 
an expansion is 

Ej = r cos <p   0L2n Zr; 
2n(2n + 1) 

fcF—  J2n(kr)P2n(cose» 

+ 0 cos <p  ]_Jy2 ,.l 
2n-l dP 

2n-lJ2n-l   sin 9 
+ r?.J 

2n 
2nJ2n     d9 

;in<p   YJ 
dP 2n-l 

-<psin<p   Z,y2n-lJ2n-l   ~W + r?.J 
2n 

2nJ2n  sin 9 (2) 

where the star on some of the spherical Bessel functions denotes the operation [d/d(kr) + l/(kr)] 

on the function.    The coefficients y2     . and T ~    will be determined by the requirement that E 
be continuous from region  I to region II. 

In region II (r > R),  the total E-field is the sum of the incident and scattered fields 

En = r cos tp   YJ 
n(V 1}   (b j    +d  h  JP1 

kr n n       n  n      n 



p1 dp1 

+ e cos „ I (anjn ♦ cnhn) ^ ♦ (bnJ* ♦ dnh*) -gg- 

n 

dp1 P
1 

- £ sin ,  2 <Vn + <=n
hn> ü# ♦ <bn£  + dnh* ) 5JJL 

n 

with a    = i    (2n + l)/n(n + 1) = i b  .    The spherical Hankel functions are those correspoi ding to 

outgoing waves.    The scattering coefficients c    and d   are determined by requiring the electric 

(3) 

and magnetic fields in region II to satisfy boundary conditions E,      = 0 on the spherical 

of the hemisphere (r = R,  6 < it/2.) and to be continuous across the boundary surface r = 

0 > 7r/2.    The first step in this process involves projecting combinations of Eqs. (2) and 

associated Legendre polynomials to convert the differential equations to systems of alge 

equations.    These are then combined to yield the following matrix equation for the c  ,d 

terms of the known a   , b n    n 

Surface 

R, 
(3) with 

araic 

in 

y  C        c+A        a=0 ^     n,m m        n,m m 

y,  D       d+B        b     = 0 <-i     n,m m        n,m m 

all n (4) 

with 

A = m(m + 1) [2M j    <5 -j-N^n n,m l      m,mJm n,m     Jm   n,mJ 

B = m(m + 1) [2M j* Ö -i    NCVC111 n,m m,mJm n,m     Jm   n,m  ' 

C = m(m + 1) [2M h   6 - h* Nodd] n,m l      m,m m n,m       m   n,m' 

D = m(m + 1) [2M h* 6 - h    N even] n,m m,m m n,m       m   n,m  ' 

even =   y / }   ^ j      ) 

n,m u       2p,n    2p,m/     2p,2p' XJ2p'J2p' 

N 

M 

n rn =   2 <M2p-l.nM2p-l.n/M2p-1.2p-l> ÜZpVW 
P 

Cn      i   i 
=   \        P   P     sine dG = M n,m     J   /_    n   m m,n 

= n(n + l)/(2n + 1)      ;       m = n 

= 0 ;       m + n even,  m ^ n 

(_ 1)(m+n+l)/2       (n + l) m(m + 1) (n + 1)1 ml 
(n - m) (n + m + 1)       .m+n+ir.n_M.,  /IUMI

2 

U    2    '" * 2'"' 

n odd,  m e^en 

(interchange n  and m for n even,  m odd) 

In the above equations,  the spherical Bessel and Hankel functions are evaluated at kR. 



Fig. 2.    Backscattering from hemisphere. 

Fig. 3.    Scattering from hemisphere; ß = 30°,  HH polarization. 



If only a finite number of equations and terms in each equation is retained,  Eqs. (4) may be 
solved numerically for the c    and d  .    From numerical computation,  typically the number of 
terms required for convergence is of the order of 1.6 kR.    Once the c    and d    have been deter- 
mined,  the scattered field is obtained from Eq. (3). 

Knowledge of the scattered electric field vector for all 0 and  <p  is sufficient to spelcify the 
scattering matrix.    For simplicity,  consideration will be restricted to the principal polarization 

basis for which the scattering matrix is diagonal.    The two polarizations considered correspond 

to E-plane scattering where the incident and scattered electric fields are in the plane of scat- 
tering defined by the incident and scattering directions, and H-plane scattering where the inci- 

dent and scattered electric fields are perpendicular to the plane of scattering.     If the pi line of 

the transmitter,  target,  and receiver is taken as the horizontal plane,  E-plane scattering cor- 

responds to HH polarization while H-plane scattering corresponds to VV polarization.    rfhis is 
indicated in Fig. 1.    In terms of the scattered electric field, the scattering amplitudes fc r var- 
ious polarizations are given by 

AHH(«=V rr2 E„sc (9 = ß,  if = 0) 

Avv<0) -J 2 _, sc 4?rr    E „ (0 = ß,   <p = TT/2) 

2 The radar cross section is given by a = | A |   .    We may note from Eq. (3) that for the case of 

backscattering (/3 = 0), the HH and VV amplitudes are identical and hence will not be distinguished. 
Numerical solutions to Eqs. (3) through (5) have been obtained for values of kR from 0.2 to 

20 in steps of 0.2,  for ß from 0° to 150° in steps of 30°,  and for both HH and VV polari2ation. 
Calculations were not performed for kR > 20 due to excessive computer time and storage require- 
ments.    The radar cross section normalized to 7rR    is presented as a function of kR for hack- 
scattering (ß = 0°) in Fig. 2 and for ß = 30°,   HH polarization,  in Fig. 3.    Also shown in F 
experimental points obtained by Blore and Musal.     The theoretical backscattering cross 

(5) 

[g. 2 are 

section 
btween is an oscillatory function of kR and could be interpreted as resulting from interference b 

two scattering centers with individual cross sections of the order of 7rR  .    As shown in Stc. IV, 

there are actually two strong and two weaker contributions to the backscattering from the  hem- 
isphere.    The cross section for ß = 30° in Fig. 3 is considerably more complicated and d fficult 
to interpret in the frequency domain.    However,  in the time domain,  the interpretation simplifies 
considerably.    The technique used to obtain the short-pulse response is outlined in the following 

section. 

III.    SHORT-PULSE RESPONSE 

As indicated in Figs. 2 and 3,  the scattering by a hemisphere is a complicated function of 

frequency.    Interpretation of these results may be simplified by using the notion of scattering 
centers.     Interference between rays having different optical paths has been evoked to explain 

1 2 the frequency dependence of scattering from various targets. '     The usefulness of this technique 

is somewhat restricted,  however,  due to the difficulty in identifying individual returns on com- 

plicated targets from data in the frequency domain.    By considering the scattering in the time 

domain,  the problem simplifies due to the temporal resolution of returns having different 

optical paths.    By calculating the scattering of appropriate short-pulse incident signals,  Jt is 

possible to obtain a sequence of scattered pulses,  each corresponding to a distinct scattering 



center.    In practice,  this technique is limited by the separation and frequency dependence of 

individual returns,  the pulse width used,  and the accuracy and extent of data in the frequency 

domain.    Examples of   the use and limitations of short-pulse scattering are described in sub- 

sequent sections. 
Given the frequency dependence of the hemisphere scattering amplitude A(kR) as calculated 

in the previous section,  it is possible to construct the scattering of a short-pulse signal using 

Fourier synthesis.    Since A(kR) was calculated only for discrete values of kR,  it is necessary 

to use a Fourier series representation rather than a Fourier transform.    This causes no dif- 

ficulty since Fourier transforms performed numerically are in reality Fourier series.    After 

presenting the series used for short-pulse synthesis,  we will consider the consequences of this 

finite sampling. 
An incident signal may be written in the time domain as 

Em(t) =   2 E(con) exp(-iwnt)      ,       wn - n = nfi (6) 

where   12   is the fundamental frequency in the Fourier series and E(u>) is the frequency repre- 

sentation of the incident signal.    From Eq. (6) and knowledge of the scattering amplitude,  the 

scattered signal may be written as 

Esc(t) =  YJ 
A

(%) 
E

<%) exp(-iwnt) (7) 

It is useful to convert Eqs. (6) and (7) to dimensionless forms by normalizing time,  distance, 

and frequency in terms of the hemisphere radius,   R.    If the electric fields are written as func- 

tions of radar range x = ct/2,  Eqs. (6) and (7) become 

Em(x) =   YJ 
E<kn

R) exp[-2i(knR) (x/R)] (8) 

and 

ESC(x) =   2 A(knR) E(knR) exp[-2i(knR) (x/R)] (9) 

with k  R = nö = nfiR/c.    The resulting signals will be periodic in x/R with period TT/ö.    The 

minimum value of 6  is 0.2,  determined by the calculational increment in A(kR).    This provides 
7 8 a maximum signal period of about 15R.    A similar technique has been used by Rheinstein  '    in 

investigating the scattering by conducting and dielectric spheres.    He used a smaller calculational 

increment to obtain signal periods greater than 50 R.    This was necessary in his case due to the 
long optical paths of some returns.    A much shorter period is adequate in the present case,  as 

is shown in the next section.    Since the incident and thus the scattered signal repeat after a 
distance 7TR/<5,  any return delayed by this distance or greater will "fold over" and appear to have 

a shorter delay.    Such ambiguous returns can easily be recognized,   however,   since their loca- 

tion changes with changes in Ö. 

For the present report,  a truncated Gaussian spectrum was used for E(kR),   giving an inci- 

dent signal in the form of a modified Gaussian pulse.    In particular: 



E(kR) = 
A exp[-A2(kR-koR)2/2] 

0 

|kR-kQR| < 3/A 

otherwise (10) 

where A  is the pulse width in units of R and k R is proportional to the center or carrier fre- 
O in    2 

quency.    The resulting incident signal is calculated using Eq. (8).    In Fig. 4,   |E    |     is graphed 

as a function of x/R for ö = 0.4, A = 0.4,  kQR = 8.    The sidelobe level is determined by t le 
truncation point used in Eq. (10) and is below any expected return.    Using Eqs. (9) and (10),  the 
scattered field may be calculated.    In Figs. 5 through 7,   | E  C|    normalized to TTR    is grj phed 
as a function of x/R for bistatic angles of 0°,   30°,  and 120°.    This is equivalent to an A-scope 

presentation of the detected power.    Various returns are identified and will be discussed 

more detail in subsequent sections. 

Fig. 4.    Incident pulse shape. 

Fig. 5.    Short pulse response of hemisphere; 
ß = 0°, k R = 8. r o 
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Fig. 6.    Short pulse response of hemisphere,    (a) ß = 30°, kQR = 8,  HH polarization, 
(b) ß = 30°, k0R = 8, W polarization. 
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Fig. 7.    Short pulse response of hemisphere,    (a^ 
(b) ß = 120°, k0R = 8, W polarization. 

ß = 120°, k0R = 8,  HH polarization. 
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SPECULAR 
x =  -R 

SINGLE   DIFFRACTION 
x   ■ 0 

DOUBLE DIFFRACTION 
x   ■ R 

CREEPING W^VE 
x = irR/2 

IV. RAY PATHS 

A ray path is defined as a line connecting the transmitter,  target,  and receiver whioh is of 

stationary (usually minimum) length.    Such paths include direct rays,  specularly reflected rays, 
9 

edge diffracted rays,  and surface rays.     As an example of ray paths on a hemisphere,   Fig. 8 

presents the first four contributions to the backscattering return along with the correspo iding 

radar ranges. It should be noted that the creeping-wave path shown in Fig. 8 differs from what 

will be called the creeping wave for bistatic scattering 

(Fig. 9). The four resolved returns indicated in Fig. 8 

are clearly evident in the short-pulse backscattering 

response given in Fig. 5. This time domain presen- 

tation should be contrasted with the frequency domain 

presentation given in Fig. 2. Use of the time domain 

solution permits direct identification of both large 

and small contributions having different optical path 

lengths. Although Fig. 5 represents the case kR = 3, 

a sequence of short-pulse responses for varying cen- 

ter frequencies can show the behavior of individual 

scattering returns as a function of frequency. Before 

presenting results for individual returns, we will con- 

sider some of the ray paths for bistatic scattering. 

For   the  case of   backscattering,   all ray paths 

contributing to a given scattering center return have 
,, . _. . . ,      .. Fig. 8.   Backscattering ray paths, 
the same radar range.   This is no longer true for bi- a     ' r 

static  scattering,  as  may be  seen  in  Fig. 1.    A ray 

scattered by the upper part of the hemisphere edge travels less distance than a ray scatteired 

by the lower part.    Thus,  bistatic scattering permits resolution of isolated portions of tht  edge 

scatterers.    Table I and Fig. 9 show the ray path and radar range for all returns undergoiig two 

or less edge diffractions.    These returns include one specular,  three singly-diffracted,  aid six 

doubly-diffracted rays.    Figure 10 presents a graph of radar range for these returns as a func- 

tion of bistatic angle.    Additional rays are undergoing three or more edge diffractions wh: ch may 

precede some of the rays considered over certain ranges of ß.    For example,  there is a triply- 

diffracted return which occurs at x/R = 2.0 for ß = 0° and then joins smoothly to the curve for 

ray path 6 at ß = 90°.    The backscattering returns shown in Fig. 8 are evident at ß = 0° in   ^ig. 10. 

Note that for bistatic scattering,   ray path 4 is called the creeping wave.    Figure 10 shows that 

for certain values of ß,  two or more ray paths have the same radar range.    In these casen,  it 

will be impossible to resolve or identify the individual returns. 

At this point,  it is necessary to describe the technique used for obtaining the returns  from 

individual scattering centers.    In this section we consider only backscattering,  although the same 

technique was used to obtain the bistatic results presented in the following sections.    By c ilcu- 

lating a as a function of x for a variety of center frequencies and pulse widths,  knowledg«  of 

the short-pulse contribution of individual scattering centers may be obtained.    Thus, the nose- 

on short-pulse backscatter from a cylinder or flat-backed cone is expected to have compor ents 

analogous to the singly- or doubly-diffracted waves on the hemisphere.    However,  these results 

cannot be used directly to predict the contribution of individual scattering centers to the CV 



TABLE 1 

RAY PATHS ON  HEMISPHERE 

No. Name 
Bistatic 
Angles 

No. 
of Edge 

Diffractions 

Surface Waves 

Radar Range 
(in Units of R) 

Spherical 
Surface 

Flat 
Surface 

1 Specular 0-180 0 No No -cos(ß/2) 

2 Leading Edge 0-180 1 No No -(sinß)/2 

3 Trailing Edge 90-180 1 No No (sinß)/2 

4 Creeping Wave 0-180 1 Yes No P/2 

5 Double Diffraction 0-180 2 No Yes l-(sinß)/2 

6 90-180 2 No Yes 1 +(sinß)/2 

7 0-180 2 Yes No (ir-sinß)/2 

8 90 - 180 2 Yes No (w + sinß)/2 

9 0-180 2 Yes Yes l+ß/2 

10 ' 0-180 2 Yes No (tr + ß)/2 

RAY PATH 
NUMBER 

ß < 90" 

1 "a 
^ 

2 a 

ß > 90« 

^3 

Fig. 9.    Bistatic scattering ray paths. 

30 60 90 )20 150 180 

BISTATIC SCATTERING ANGLE ß 

Fig. 10.    Radar range as a function of bistatic angle. 
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g 
amplitude.    Rheinstein   obtained the CW amplitudes of the specular and creeping-wave returns 

from a sphere by separating the short-pulse response into two distinct contributions and trans- 

forming each contribution separately back to the frequency domain (equivalent to a Watsoh trans- 

form).    This was possible because these two returns were completely resolvable due both to 

their separation (R + irR/2 in radar range) and to the pulse resolution used.    Unfortunately, this 

technique cannot be used for the hemisphere.    The singly- and doubly-diffracted returns   "all in 

the range interval between the specular and creeping wave,  considerably decreasing the £ epa- 

ration of individual returns.    Furthermore,  higher-resolution pulses cannot be used without de- 
termining the CW scattering amplitude for kR > 20.    As a result,  the individual returns overlap 

and interfere to a certain extent. 
The results obtained from the short-pulse response have been moderately improved lj>y 

assuming the CW scattering amplitude to have the form 

A(kR) =  YJ 
Ai exp(2ikx.) 

th 

(11) 

where A. and x. are the amplitude and location of the i     return.    The x. are chosen to coifre- 
spond to the four returns under consideration,   and the A. are then determined to best fit the CW 
response as a function of kR.    By fitting to the CW amplitude over successive small range s of kR, 

the frequency dependence of individual returns may be estimated.    Results for CT./TTR  ,  wl ere 
i      i 2 1 

a. = | A. I   ,  are presented as a function of kR in Fig. 11.    It must be remembered that these 
numerical results are only approximate,  particularly for the weaker scatterers.    Several fea- 

tures of these results may be noted.    The specular return is fairly close to the optics valifre 
o/irR    = 1 and is roughly independent of kR.    The increase in the specular return at low fie- 

Q 

quency    cannot be observed using the present technique.    The singly-diffracted return is i.p- 

proximately a factor of two larger than the value O/TTR    = 16/27 predicted by Keller's geomet- 

rical diffraction theory,    with both being independent of kR.    Geometrical diffraction theory ' 
predicts the doubly-diffracted return to be O/TTR    = 64/9?rkR.    The doubly-diffracted return 

shown in Fig. 11 is considerably weaker and decreases with kR more rapidly than l/kR.    r,he 

creeping-wave return in Fig. 11 is substantially weaker than the other three. 

CM       10 
DC 

b 

10" 

SPECULAR ^L 
SINGLE DIFFRACTION 

^\ SINGLE DIFFRACTION 
-    (geometric diffraction theory) 

DOUBLE DIFFRACTION 
(geometric diffraction theory) 

DOUBLE  DIFFRACTION 

CREEPING   WAVE 

8 12 

Fig. 11.    Contributions to hemisphere backscattering. 
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The same technique is used to obtain the bistatic scattering results presented in the fol- 

lowing sections.    For each bistatic angle and polarization,  an equation equivalent to Eq. (11) is 

solved to obtain the behavior of the three or four dominant returns.    As each return is consid- 

ered,  the present results are compared with results obtained using a different technique.    In 

particular, the results for edge scattering are compared with the predictions of the geometrical 

diffraction theory. 

V.     SPECULAR RETURN 

The specular return which follows ray path 1 is usually the dominant contribution to the 

hemisphere scattering.    It is predicted by geometrical and physical optics as well as by exact 

theory.    The specular contribution for ß = 0° is shown in Fig. 11.    Figure 12 presents the spec- 

ular return for ß = 30°,  60°,   90°,  and 120° for both HH and VV polarizations.    For ß = 150°, 

the specular return cannot be resolved from the leading-edge return.    The results shown in 

Fig. 12 may be compared with expressions for the specular return from a sphere: 

gHH = d _ 14 sin2 (ft/2) - 1    + 

TTR
2 4(kR)2 cos6 (ß/2) 

gVV _ i _ 14 sin2(/3/2) - cos2/? 

TTR
2 4(kR)2 cos   03/2) 

(12a) 

(12b) 

While it is clear that additional terms would be required to obtain the oscillations in Fig. 12, 

several features of the specular return may be explained qualitatively from the kR and  ß de- 

pendence indicated in Eq. (12).    As kR increases,   a approaches 7rR  ,  and the departure of a 

from 7rR    increases with increasinjg ß.    The second terms in Eq. (12) are of the same order of 

magnitude as this departure. 

KR 

(a) 

kR 

(b) 

Fig. 12.    Specular return,    (a) HH polarization,    (b) VV polarization. 
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VI.   EDGE RETURNS 

In this section we consider only the leading-edge return which follows ray path 2 and ihe 

trailing-edge return which follows ray path 3.    (This exists only for ß ^ 90°.)   The doubly • 

diffracted contributions (ray paths 5 through 10) are generally much weaker and were included 

only for ß = 0°.    Before giving the results of the present analysis,  it is of interest to consider 

the application of geometric diffraction theory to these returns. 

Geometric diffraction theory calculates the contribution of each ray path to the scattering 

by combining geometric ray tracing with two-dimensional edge diffraction theory.    The geb- 
3 <* metric factors and diffraction coefficients for edge scattering have been given by Keller ' 

and Bechtel      as functions of the wedge angle (90° for the hemisphere),  scattering angles,  and 

radius of curvature (R).    Specializing their results to the present case,  we have for the leading 

edge 

"HH 

TTR
2 

"VV 

.R2 

4 A  , ,20n-2 
37rkRsin/3   fc + COS (f}1 

= 0 

and for the trailing edge 

HH 

TTR 

"VV 

,R2 

3rrkR sin/3  l2 
l*  +cos ,2-^,-2 

= 0 

(13a) 

(13b) 

(14a) 

14b) 

As shown in  Fig. 1,  a vertically polarized incident signal propagates along one side of the 

hemisphere wedge scatterer with the electric field tangential to the surface.    Since a two- 

dimensional wedge cannot support such a wave,  the VV return predicted by geometrical dif- 

fraction theory in Eqs. (13) and (14) is zero.    For the actual hemisphere,  however,  the W 

return is finite due to the curvature of the edge and the spherical surface. 

Figures 13 and 14 show the leading- and trailing-edge returns obtained from the present 

method.    For HH polarization,  the diffraction theory results are also presented.    The HH 

leading-edge return has the l/kR dependence indicated in Eq. (13a).    In addition,  the cross 

section initially decreases and then increases with ß as predicted by diffraction theory.    Hbw- 

ever,  the magnitude of the cross section is larger than that given by diffraction theory by fac- 

tors of from 4 to 7.    The VV leading-edge return,  while not zero,  is generally considerably 

weaker than the HH return.    Furthermore,  as kR increases and geometric diffraction theory- 

becomes more valid,  the VV return decreases more rapidly than the HH return.    The ß de ■ 
pendence of the VV return is not apparent since the kR dependence changes with ß. 

The trailing-edge return for HH polarization has a l/(kR)    dependence rather than l/kl, as 

predicted by diffraction theory,  with both showing an increase of a with ß.    The l/(kR)    de >end- 

ence is characteristic of doubly-diffracted waves    and may reflect a contribution of ray patl   5 

(see Fig. 10) to the trailing-edge return.    Depending on the value of kR,  the trailing-edge return 

is moderately or considerably weaker than predicted by diffraction theory.    The VV trailing- 

edge return is generally comparable to the HH return,  decreasing with kR and increasing w: th ß. 
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Fig. 13.    Leading edge returns,    (a) HH polarization,    (b) W polarization. 
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TABLE II 

CROSS SECTION OF EDGE  RETURNS 

ß Polarization 

a/irR2 

Leading Edge Trailing Edge 

Present 
Results 

Diffraction 
Theory 

Present 
Results 

Diffraction 
Theory 

30 HH 3(kR)_1 0.4(kR)_1 - — 

30 W 50(kR)"4 0 - - 

60 HH 2(kRf1 0.3(kR)_1 _ _ 

60 W 23(kR)"4 0 - - 

90 HH 1.8(kR)"1 0.4(kR)_1 0.8(kR)"2 1.6(kR)_1 

90 VV 12(kR)"5/2 0 3(kR)'4 0 

120 HH S.^kRf1 l.O(kR)"1 1.3(kR)"2 2.4(kR)"1 

120 VV 5(kRf3/2 0 0.35(kR)_1 0 

150 HH — 7.2(kR)_1 12(kR)"2 16(kR)_1 

150 VV - 0 14(kR)"3/2 0 

However,  its dependence on these parameters is not particularly regular.    The kR and ß 

dependence of the various edge returns is summarized in Table II. 

It appears that geometrical diffraction theory provides a good qualitative description of the 

leading-edge return and a fair description of the trailing-edge return for HH polarization. For 

VV polarization,  diffraction theory predicts zero return in disagreement with present results. 
This behavior may be compared with that of diffraction theory results for backscattering from 

10 a flat-backed cone.        For HH polarization,   diffraction theory is in good agreement with experi- 
ment for large kR.    For VV polarization,  however,  the agreement is poor for near nose-on 
incidence and becomes worse as the cone angle decreases (wedge angle approaches 90c).    These 
results are for long pulse signals and represent combined leading- and trailing-edge returns. 

12 For experimental short-pulse backscattering from a flat-backed cone,      the leading and trailing 

edges have been resolved and similar behavior observed. It thus seems that geometrical dif- 
fraction theory can provide qualitatively useful results for HH polarization but is of restricted 
value for VV polarization. 

VII.    CREEPING-WAVE RETURN 

For bistatic scattering, the creeping-wave return considered follows ray path 4 (Fig. 9). 

The incident signal is diffracted at the trailing edge and a surface wave launched. This wave 
propagates along the surface of the hemisphere for a distance R/3 and then radiates toward the 

lo 



receiver. To calculate the amplitude of this creeping-wave return, it is necessary to deter- 

mine the edge diffraction coefficient for launching the creeping wave, the attenuation of th: 

wave as it propagates, and finally, the radiation coefficient in the direction of scattering. The 

diffraction coefficient should only depend on kR and not on ß for nose-on incidence. The prop- 
agation and radiation effects should be identical with the known results for creeping waves on 

spheres. We shall restrict our consideration to the case of HH polarization since the VV 
creeping-wave returns were generally weaker and less reliable. The ß dependence of thi 5 re- 

turn may be obtained from the leading term in the creeping-wave return for a sphere 

w> ^ expl-l.OZfkR/Z)1/3/*] 

All factors independent of ß have been ignored in Eq. (15). A comparison of present results 

with Eq. (15) for kR = 10 is shown in Fig. 15, where a sin/3/7rR is plotted as a function of ]ß. 

The agreement seems good although not conclusive.    By writing 

SB . Bgg? expUOT/Z,1^ ffl 
7TR 

sin/3 

(15) 

(16) 

and finding the best estimate of F for each value of kR,  we may obtain the dependence of t le 
edge diffraction coefficient on kR.    This has been done but the results are inconclusive.    There 
appears to be a slight decrease in F(kR) with increasing kR,  but fluctuations in the observed 
values of F are substantially greater than this systematic decrease.    The values of F(kR) 

Eq. (16) generally fall between 0.02 and 0.2. 
While the creeping-wave return can be resolved and identified,  it appears to be too wdak to 

permit accurate measurement and thus,  extrapolation to other targets.    The results obtained 
are in reasonable agreement with creeping-wave theory but are not sufficiently reliable to 

mit any more definitive statements. 
The doubly-diffracted returns (ray paths 5 through 10), while occasionally observed in 

short-pulse response, are generally weaker than the creeping-wave return and are ignorer 

this report. 

in 

per- 

the 

in 

Fig. 15.   Creeping-wave return vs bistatic angle;       H 
kR= 10,  HH polarization. of* 
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vin.   CONCLUSIONS 

In this report,  the electromagnetic scattering from a conducting hemisphere at nose-on 

incidence has been considered from a short-pulse viewpoint.    The CW scattering amplitude 

was calculated as a function of frequency,  bistatic angle,   and polarization.    From this infor- 

mation,  the short-pulse response was constructed by Fourier synthesis.    This permitted res- 

olution and identification of individual contributions of each scattering center having different 

ray path lengths.    The more important of these returns were then isolated and investigated in 

more detail to determine their frequency,   bistatic angle,  and polarization dependence.    For 
bistatic scattering,  the specular,  leading- and trailing-edge diffraction and creeping-wave re- 

turns were considered.    Doubly-diffracted waves were discussed briefly for bistatic scattering 
but were considered in more detail for backscattering.    Results obtained for individual returns 

were compared with other appropriate theoretical predictions;  qualitative and some quantitative 

agreement was observed. 

Of particular interest was the comparison of the edge returns with those calculated using 

geometrical diffraction theory.    For HH polarization (E-plane scattering),  geometrical dif- 

fraction theory provides a good qualitative estimate of the frequency and angle dependence of 

edge scattering,   although the numerical results differ by a factor of about five (geometrical 

diffraction theory results are too small).    For VV polarization (H-plane scattering),   Keller's 

geometrical diffraction theory predicts zero edge scattering,  while the observed scattering 

is finite.    This is not unexpected since diffraction theory has been shown to be poor for VV 

polarization for other targets. 

The bistatic scattering results presented here are of interest primarily for comparison 

with results of approximate theory and this has been emphasized in the report.    For application 

to scattering from other targets (for example,  the edge of a finite cylinder),  it would be de- 

sirable to extend the present results to off nose-on incidence.    This extension is straightfor- 
ward in principle,   but in practice,   would be quite difficult. 
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