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ABSTRACT

The radar scattering by a conducting hemisphere for incidence along the
symmetry axis has been determined as a function of frequency, bistatic
angle, and polarization. From this frequency domain information, the
short-pulse response is constructed using Fourier synthesis. The range
resolution thus afforded permits identification of various contributions to
the scattering — in particular, that due to edge diffraction. Results ob-
tained from the geometrical theory of diffractionare inqualitative agree-

ment with those obtained here.
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SHORT-PULSE SCATTERING BY A HEMISPHERE

I. INTRODUCTION

The electromagnetic scattering from finite targets may often be explained as the cgherent
sum of returns from individual scattering centers. For example, the scattering from g sphere
consists of specular and creeping-wave contributions. The known behavior of a scattering center
on a simple target may be applied to a similar scattering center on a more complex target which
is not amenable to analytical solution. For the nose-on backscattering from a cone-sphere,i'
the tip and joint returns given by the physical-optics approximation, combined with the freeping-
wave return for a sphere, yield results in good agreement with experiment.

Another scattering center of interest is the edge, found on cylinders and flat-backed cones,
which is usually treated using the geometrical theory of diffraction.3 This involves the applica-
tion of a two-dimensional theory to a three-dimensional problem. A different approachito edge
scattering is obtained by considering the exactly soluble problem of scattering by a hemjsphere.

It is assumed that the edge contribution to the hemisphere scattering is representative df other
rectangular edge scatterers.

In this report, the scattering by a conducting hemisphere for incidence along the syilnmetry
axis (nose-on) is determined as a function of frequency, bistatic angle, and polarization| In
general, the resulting scattering patterns are complex and difficult to interpret. Using the short-
pulse response obtained from the frequency domain response by Fourier synthesis, indiyidual
contributions of each scattering center may be resolved. Once these returns are located and
identified, the CW scattering is more easily interpreted. |

The remainder of the report is devoted to consideration of individual scattering centers. The
behavior of each return as a function of frequency, bistatic angle, and polarization is obtained and
compared with that predicted using other techniques. Particular emphasis is given to edge dif-
fraction, where the present results are compared with those given by the geometrical theory of

diffraction.

II. SCATTERING BY A HEMISPHERE

The formal solution for the CW scattering from a conducting hemisphere of radius R was
obtained by Kennaugh4 in 1950 and will only be outlined here. Kennaugh's solution appliés for
arbitrary angles of incidence and scattering, but except in special cases, it is not suitab‘}e for
numerical computation. In this report, we treat only the case of nose-on incidence, for which
his results simplify considerably. [

The origin is chosen so that the spherical and flat surfaces of the hemisphere have constant

coordinate values r = R and © = /2, respectively (Fig.1). The space external to the hethisphere
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Fig. 1. Geometry of hemisphere scattering.

is then separated into two regions, with different eigenfunction expansions for the electromag-
netic fields in each region. The electric field in both regions must satisfy the vector Helmholtz
equation

@2 +k¥)E=0 , k= 2r/wavelength (1)

and may be expanded in terms of spherical harmonics and spherical Bessel and Hankel functions.
The incident wave propagating along the z-axis (symmetry axis) contains only the first azimuthal
modes (spherical harmonics of order one), and symmetry of the surface implies that only these
modes will occur in the scattered fields. Without loss of generality, we further assume the in-
cident wave is polarized in the x-direction.

In region I (r < R; © > 7/2), the electric field expansion must remain finite at the origin and
satisfy the boundary conditions Er = qu = 0 on the flat surface of the hemisphere, © = 7/2. Such

an expansion is

PN \'\ Zn(;_n + ’1) g 1
hI =rcose¢ /, an — JZn(kr) PZn(COS 0)
n
1 1
P dP
A 3 2n-1 T3 &
+ O cos ¢ z Yon-132n-1 sme * I‘ZnJZn de
n
1 1
dp p
N . N . 2n-1 3 _@_
— @ sin g Z, Y2n-192n-1 do A FZnJZn sin © i
n

where the star on some of the spherical Bessel functions denotes the operation [d/d(kr) + 1/(kr)]
on the function. The coefficients Yan-1 and I‘2n will be determined by the requirement that E

be continuous from region I to region II.

In region II (r » R), the total E-field is the sum of the incident and scattered fields
- N n(n + 1) . 1
EII = I CoS ¢ Z 5 (ann + dnhn) Pn
n




pl ap!

N \ . _n_ & * n
+ 6 cos ¢ Z, (a‘n‘]n + cnhn) <G + (bn‘]n * dnhn g0
n
1 1
n . n . h dPn % * Pn
—¢sing 2, (@] + ¢, n) do * (b * dnhn) sin © 3)
n

with a - i (2n + 1)/nn + 1) =i bn' The spherical Hankel functions are those corresponding to
outgoing waves. The scattering coefficients <, and dn are determined by requiring the glectric

and magnetic fields in region II to satisfy boundary conditions E 0 on the spherical $urface

of the hemisphere (r = R, 0 < 1r/2) and to be continuous across tt:: boundary surface r =|R,

© > 1/2. The first step in this process involves projecting combinations of Egs. (2) and {3) with
associated Legendre polynomials to convert the differential equations to systems of algepraic
equations. These are then combined to yield the following matrix equation for the Ch dn in

terms of the known a, bn

Z/C c +A a 0

n,m m n,m m
m
all n (4)
2D d +B b =0
n,m m nm m
m
with
A m(m + 1) [2M__j_ 6 —j* N°99
n,m m,m n,m m n,m
B m(m + 1) [2M___j* 6 —j NEVeYy
n,m m,m'm n,m m n,m
C _=m(m+1)[2M_ _h_ s _ —h*N°99
n,m m,m m n,m m n,m
D m(m + 1) [2M h* s —h_NEVEM
n,m m,m m n,m m n,m
even T / 1
Nn,m o (MZp,nMZp,m‘ MZp,Zp) (JZp/JZp)
P
odd W . /%
Nom = & Map_ g nMap g m/Map_1,2p-1) Uzpo1/3354)
P
T 1.1
M g‘ P P sin®de =M
n m m,n

n,m ‘1r/2
nn + 1)/(2n + 1) m =n
0 ; m+neven, m#n
(m+n+1)/2 R
O™ mme ) e Ol g, dven

M—m) (n+m+ m+n+li n+ 1, m

2 (== )
(interchange n and m for n even, m odd)

In the above equations, the spherical Bessel and Hankel functions are evaluated at kR.
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If only a finite number of equations and terms in each equation is retained, Egs. (4)may be
solved numerically for the <, and dn. From numerical computation, typically the number of
terms required for convergence is of the order of 1.6 kR. Once the <, and dn have been|/deter-
mined, the scattered field is obtained from Egq. (3).

Knowledge of the scattered electric field vector for all © and ¢ is sufficient to specify the
scattering matrix. For simplicity, consideration will be restricted to the principal poldrization
basis for which the scattering matrix is diagonal. The two polarizations considered correspond
to E-plane scattering where the incident and scattered electric fields are in the plane of|scat-
tering defined by the incident and scattering directions, and H-plane scattering where the inci-
dent and scattered electric fields are perpendicular to the plane of scattering.5 If the plane of
the transmitter, target, and receiver is taken as the horizontal plane, E-plane scattering cor-
responds to HH polarization while H-plane scattering corresponds to VV polarization. This is
indicated in Fig. 1. In terms of the scattered electric field, the scattering amplitudes fdr var-

ious polarizations are given by

2

Apg(B) =N4mr® EgC (0 = 8, ¢ = 0)

_ 2 ., sc _
AyyB) =N4mr“E T (© =8, ¢

n

r/2) . (5)

The radar cross section is given by ¢ = IAIZ. We may note from Eq. (3) that for the case of
backscattering (8 = 0), the HH and VV amplitudes are identical and hence will not be distinguished.
Numerical solutions to Egs. (3) through (5) have been obtained for values of kR from|0.2 to

20 in steps of 0.2, for B from 0° to 150° in steps of 30°, and for both HH and VV polariation.
Calculations were not performed for kR > 20 due to excessive computer time and storagd require-
ments. The radar cross section normalized to 7rR'2 is presented as a function of kR for bBack-
scattering (8 = 0°) in Fig. 2 and for 8 = 30°, HH polarization, in Fig.3. Also shown in Fig. 2 are
experimental points obtained by Blore and Musa1.6 The theoretical backscattering cross|section
is an oscillatory function of kR and could be interpreted as resulting from interference bgtween
two scattering centers with individual cross sections of the order of 1rR2. As shown in S¢c. 1V,
there are actually two strong and two weaker contributions to the backscattering from thgq hem-
isphere. The cross section for g = 30° in Fig.3 is considerably more complicated and difficult
to interpret in the frequency domain. However, in the time domain, the interpretation simplifies
considerably. The technique used to obtain the short-pulse response is outlined in the following

section.

III. SHORT-PULSE RESPONSE

As indicated in Figs. 2 and 3, the scattering by a hemisphere is a complicated functidn of
frequency. Interpretation of these results may be simplified by using the notion of scattering
centers.3 Interference between rays having different optical paths has been evoked to explain

the frequency dependence of scattering from various targets.i‘z

The usefulness of this technique
is somewhat restricted, however, due to the difficulty in identifying individual returns on|/ com-
plicated targets from data in the frequency domain. By considering the scattering in the time
domain, the problem simplifies due to the temporal resolution of returns having different
optical paths. By calculating the scattering of appropriate short-pulse incident signals, it is

possible to obtain a sequence of scattered pulses, each corresponding to a distinct scattefing




center. In practice, this technique is limited by the separation and frequency dependence of

individual returns, the pulse width used, and the accuracy and extent of data in the frequency
domain. Examples of the use and limitations of short-pulse scattering are described in sub-
sequent sections.

Given the frequency dependence of the hemisphere scattering amplitude A(kR) as calculated
in the previous section, it is possible to construct the scattering of a short-pulse signal using
Fourier synthesis. Since A(kR) was calculated only for discrete values of kR, it is necessary
to use a Fourier series representation rather than a Fourier transform. This causes no dif-
ficulty since Fourier transforms performed numerically are in reality Fourier series. After
presenting the series used for short-pulse synthesis, we will consider the consequences of this
finite sampling.

An incident signal may be written in the time domain as

EM(t) = ), E(w,) exp (-iw_t) w_ = nQ (6)

n
where @ is the fundamental frequency in the Fourier series and E(w) is the frequency repre-
sentation of the incident signal. From Eq. (6) and knowledge of the scattering amplitude, the

scattered signal may be written as

sc N . s
ESCit) = ), A(w ) E(w ) exp (~iw t)
n
It is useful to convert Egs. (6) and (7) to dimensionless forms by normalizing time, distance,
and frequency in terms of the hemisphere radius, R. If the eclectric fields are written as func-

tions of radar range x = ct/2, Egs. (6) and (7) become

E™(x) = ), E(k_R) exp[-2i(k_R) (x/R)]
n

sSC

ES¢(x) = ) A(k_R) E(k R) exp[-2i(k R) (x/R)]

n

with knR né = nQR/c. The resulting signals will be periodic in x/R with period 7/6. The
minimum value of 6 is 0.2, determined by the calculational increment in A(kR). This provides
a maximum signal period of about 15R. A similar technique has been used by Rh«-inwvinT’H in
investigating the scattering by conducting and dielectric spheres. He used a smaller calculational
increment to obtain signal periods greater than 50 R. This was necessary in his case due to the
long optical paths of some returns. A much shorter period is adequate in the present case, as
is shown in the next section. Since the incident and thus the scattered signal repeat after a
distance TR/6, any return delayed by this distance or greater will "fold over" and appear to have
a shorter delay. Such ambiguous returns can easily be recognized, however, since their loca-
tion changes with changes in 6.

For the present report, a truncated Gaussian spectrum was used for E(kR), giving an inci-

dent signal in the form of a modified Gaussian pulse. In particular:




A exp[-a%(kR -k R)?/2) ; |kR-k R|<3/a
E(kR) - o o

0 ; otherwise (10)
where A is the pulse width in units of R and kOR is proportional to the center or carrier fre-
quency. The resulting incident signal is calculated using Eq. (8). In Fig. 4, | Em‘ ¢ is griaphed
as a function of x/R for 6 = 0.4, .A = 0.4, kOR 8. The sidelobe level is determined by the
truncation point used in Eq. (10) and is below any expected return. Using Egs. (9) and (10), the
scattered field may be calculated. In Figs.5 through 7, [ES(‘| 2 normalized to 7R” is grdphed
as a function of x/R for bistatic angles of 0°, 30°, and 120°. This is equivalent to an A-scope
presentation of the detected power. Various returns are identified and will be discussed|in

more detail in subsequent sections.
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IV. RAY PATHS

A ray path is defined as a line connecting the transmitter, target, and receiver whidh is of
stationary (usually minimum) length. Such paths include direct rays, specularly reflected rays,
edge diffracted rays, and surface rays.9 As an example of ray paths on a hemisphere, Hig.8
presents the first four contributions to the backscattering return along with the correspohding
radar ranges. It should be noted that the creeping-wave path shown in Fig. 8 differs fromh what
will be called the creeping wave for bistatic scattering
(Fig.9). The four resolved returns indicated in Fig.8 - —
are clearly evident in the short-pulse backscattering

response given in Fig. 5. This time domain presen-

—
tation should be contrasted with the frequency domain -
presentation given in Fig. 2. Use of the time domain
solution permits direct identification of both large SZEfL:l&AR S'NGLEx DJ':)FRACT'ON
and small contributions having different optical path
lengths. Although Fig. 5 represents the case kR = 3,
a sequence of short-pulse responses for varying cen-
ter frequencies can show the behavior of individual
scattering returns as a function of frequency. Before
presenting results for individual returns, we will con-
sider some of the ray paths for bistatic scattering. -
For the case of backscattering, all ray paths DOUBLE’D:F;RACTION mff’:ﬁfzw“z

contributing to a given scattering center return have

the same radarrange. This is no longer true for bi- Fig. 8. Backaccttaring ray peths,
static scattering, as may be seen in Fig.1. A ray
scattered by the upper part of the hemisphere edge travels less distance than a ray scattered

by the lower part. Thus, bistatic scattering permits resolution of isolated portions of thd edge
scatterers. Table I and Fig. 9 show the ray path and radar range for all returns undergoihg two
or less edge diffractions. These returns include one specular, three singly-diffracted, ahd six
doubly-diffracted rays. Figure 10 presents a graph of radar range for these returns as a|func-
tion of bistatic angle. Additional rays are undergoing three or more edge diffractions which may
precede some of the rays considered over certain ranges of 8. For example, there is a friply-
diffracted return which occurs at x/R = 2.0 for 8 = 0° and then joins smoothly to the curve for
ray path 6 at 8 = 90°. The backscattering returns shown in Fig. 8 are evident at 8 = 0° in Fig. 10.
Note that for bistatic scattering, ray path 4 is called the creeping wave. Figure 10 shows|that
for certain values of B, two or more ray paths have the same radar range. In these case§, it
will be impossible to resolve or identify the individual returns.

At this point, it is necessary to describe the technique used for obtaining the returns from
individual scattering centers. In this section we consider only backscattering, although the same
technique was used to obtain the bistatic results presented in the following sections. By calcu-
lating o as a function of x for a variety of center frequencies and pulse widths, knowledgé of
the short-pulse contribution of individual scattering centers may be obtained. Thus, the npse-
on short-pulse backscatter from a cylinder or flat-backed cone is expected to have comporjents
analogous to the singly- or doubly-diffracted waves on the hemisphere. However, these résults

cannot be used directly to predict the contribution of individual scattering centers to the CW




TABLE |
RAY PATHS ON HEMISPHERE
No. Surface Waves
Bistatic of Edge | Spherical | Flat Radar Range
No. Name Angles | Diffractions | Surface | Surface | (in Units of R)
1 | Specular 0-180 0 No No —cos (B/2)
2 | Leading Edge 0-180 1 No No —(sinp)/2
3 | Trailing Edge 90‘— 180 1 No No (sinB)/2
4 | Creeping Wave 0-180 i Yes No B/2 1
5 | Double Diffraction | 0 —180 2 No Yes 1= snnB)/2
6 90 — 180 2 No Yes (sinp)/2 !
7 0-180 2 Yes No (m —smB)/Z
8 -180 2 Yes No (r +sinB)/2
9 0-180 2 Yes Yes 1+ B/2
10 ] 0-180 2 Yes No (m + B)/2
Woueen B Breor

3-41-10708

A

RETURN 1 [3-41-10707]

fayl/al

L] . ) | j (R | |
3 6C 90 120 150 180
BISTATIC SCATTERING ANGLE g8

l~
sadbdhble ol

[aya

Fig. 9. Bistatic scattering ray paths. Fig. 10. Radar range as a function of bistatic angle.




amplitude. Rheins’cein8 obtained the CW amplitudes of the specular and creeping-wave réturns
from a sphere by separating the short-pulse response into two distinct contributions and trans-
forming each contribution separately back to the frequency domain (equivalent to a Watsoh trans-
form). This was possible because these two returns were completely resolvable due both to
their separation (R + 7R/2 in radar range) and to the pulse resolution used. Unfortunately, this
technique cannot be used for the hemisphere. The singly- and doubly-diffracted returns fall in
the range interval between the specular and creeping wave, considerably decreasing the depa-
ration of individual returns. Furthermore, higher-resolution pulses cannot be used without de-
termining the CW scattering amplitude for kR > 20. As a result, the individual returns overlap
and interfere to a certain extent.

The results obtained from the short-pulse response have been moderately improved by

assuming the CW scattering amplitude to have the form

A(KR) = ), A, exp (2ikx,) (11)

where Ai and x; are the amplitude and location of the ith

return. The X, are chosen to corre-
spond to the four returns under consideration, and the Ai are then determined to best fit the CW
response as a function of kR. By fitting to the CW amplitude over successive small rangds of kR,
the frequency dependence of individual returns may be estimated. Results for ai/rRZ, where

o, = |Aii , are presented as a function of kR in Fig. 11. It must be remembered that thede
numerical results are only approximate, particularly for the weaker scatterers. Several fea-
tures of these results may be noted. The specular return is fairly close to the optics value
or/er2 = 1 and is roughly independent of kR. The increase in the specular return at low frie-
quency8 cannot be observed using the present technique. The singly-diffracted return is ap-
proximately a factor of two larger than the value a/1rR2 = 16/27 predicted by Keller's geomet-
rical diffraction theory,3 with both being independent of kR. Geometrical diffraction theory3’10
predicts the doubly-diffracted return to be a/ﬂ'R2 = 64/971kR. The doubly-diffracted return
shown in Fig. 11 is considerably weaker and decreases with kR more rapidly than 1/kR. The

creeping-wave return in Fig. 11 is substantially weaker than the other three.
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Fig. 11. Contributions to hemisphere backscattering.
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The same technique is used to obtain the bistatic scattering results presented in the fol-

lowing sections. For each bistatic angle and polarization, an equation equivalent to Eq. (11) is
solved to obtain the behavior of the three or four dominant returns. As each return is consid-
ered, the present results are compared with results obtained using a different technique. In
particular, the results for edge scattering are compared with the predictions of the geometrical

diffraction theory.

V. SPECULAR RETURN

The specular return which follows ray path 1 is usually the dominant contribution to the
hemisphere scattering. It is predicted by geometrical and physical optics as well as by exact
theory. The specular contribution for 8 = 0° is shown in Fig. 11. Figure 12 presents the spec-
ular return for g = 30°, 60°, 90°, and 120° for both HH and VV polarizations. For g8 = 150°,
the specular return cannot be resolved from the leading-edge return. The results shown in

Fig. 12 may be compared with expressions for the specular return from a sphnrn:“

(o} . 2
H}gzi_ism (B/2) — 1 . (12a)

R 4(kR)® cos® (8/2)

., 2 2

\/\2 _ 4 _ 14 sin Z(QZZ)—COS B, (12b)
TR 4(kR)” cos (B8/2)

While it is clear that additional terms would be required to obtain the oscillations in Fig. 12,
several features of the specular return may be explained qualitatively from the kR and B de-
pendence indicated in Eq. (12). As kR increases, o approaches 1rR2, and the departure of o
from -/rR'2 increases with increasing B. The second terms in Eq. (12) are of the same order of

magnitude as this departure.

B - - T
L L

120¢

30° //\(\ 7
60°

120°

T T

o/wRZ

T

90°

Fig. 12. Specular return. (a) HH polarization. (b) VV polarization.

12




VI. EDGE RETURNS

In this section we consider only the leading-edge return which follows ray path 2 and the
trailing-edge return which follows ray path 3. (This exists only for 82> 90°.) The doublyt
diffracted contributions (ray paths 5 through 10) are generally much weaker and were incliided
only for 8 = 0°. Before giving the results of the present analysis, it is of interest to consider
the application of geometric diffraction theory to these returns.

Geometric diffraction theory calculates the contribution of each ray path to the scattefing
by combining geometric ray tracing with two-dimensional edge diffraction theory. The gep-
metric factors and diffraction coefficients for edge scattering have been given by Keller3'
and Bechtel10 as functions of the wedge angle (90° for the hemisphere), scattering angles,| and
radius of curvature (R). Specializing their results to the present case, we have for the leading
edge

o
HH _ 4 1 28,.-2
Z = 3zkrsmg lz T s (13a)
TR
o
_V‘Z’ =0 (13b)
TR
and for the trailing edge
o
HH _ 4 1 2w + 2B,,-2
3 = 3zkRsing lz teos(&z—N) (14a)
7R
o
L‘é =0 . (14b)
7R

As shown in Fig.1, a vertically polarized incident signal propagates along one side of thed
hemisphere wedge scatterer with the electric field tangential to the surface. Since a two-
dimensional wedge cannot support such a wave, the VV return predicted by geometrical dif}-
fraction theory in Eqgs. (13) and (14) is zero. For the actual hemisphere, however, the VV
return is finite due to the curvature of the edge and the spherical surface.

Figures 13 and 14 show the leading- and trailing-edge returns obtained from the present
method. For HH polarization, the diffraction theory results are also presented. The HH
leading-edge return has the 1/kR dependence indicated in Eq. (13a). In addition, the cross
section initially decreases and then increases with B as predicted by diffraction theory. Hpw-
ever, the magnitude of the cross section is larger than that given by diffraction theory by fac-
tors of from 4 to 7. The VV leading-edge return, while not zero, is generally considerably
weaker than the HH return. Furthermore, as kR increases and geometric diffraction theorjy
becomes more valid, the VV return decreases more rapidly than the HH return. The 8 de+
pendence of the VV return is not apparent since the kR dependence changes with B.

The trailing-edge return for HH polarization has a 1/(kR)2 dependence rather than 1/kR as
predicted by diffraction theory, with both showing an increase of ¢ with 8. The 1/(kR)2 depend -
ence is characteristic of doubly-diffracted waves3 and may reflect a contribution of ray path 5
(see Fig. 10) to the trailing-edge return. Depending on the value of kR, the trailing-edge return
is moderately or considerably weaker than predicted by diffraction theory. The VV trailing-
edge return is generally comparable to the HH return, decreasing with kR and increasing with 8.
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TABLE 1l
CROSS SECTION OF EDGE RETURNS
a/uR2
Leading Edge Trailing Edge
Present Diffraction Present Diffraction
B Polarization Results Theory Results Theory
-1 -1
30 HH 3(kR) 0. 4(kR) - —
30 vV 50(I<R)'4 0 - .
60 HH 2(kR)”! 0.3(kR)”" - _
60 W 23(kR)™4 0 - _
-1 ] -2 -1
90 HH 1.8(kR) 0.4(kR) 0.8(kR) 1.6(kR)
90 WV 2&R)>2 | o 3kR) ™4 0
-1 -1 2 -1
120 HH 5.4(kR) 1.0(kR) 1.3(kR) 2.4(kR)
120 W 5(kR)" Y2 0 0.35kR)" | o
-1 ; -1
150 HH - 7.2(kR) 12(kR) 16(kR)
150 W - 0 14k Y2 | o
However, its dependence on these parameters is not particularly regular. The kR and B

dependence of the various edge returns is summarized in Table II.

It appears that geometrical diffraction theory provides a good qualitative description of the
leading-edge return and a fair description of the trailing-edge return for HH polarization. For
VV polarization, diffraction theory predicts zero return in disagreement with present results.
This behavior may be compared with that of diffraction theory results for backscattering from
a flat-backed cone-.1 For HH polarization, diffraction theory is in good agreement with experi-
ment for large kR. For VV polarization, however, the agreement is poor for near nose-on
These

results are for long pulse signals and represent combined leading- and trailing-edge returns,

incidence and becomes worse as the cone angle decreases (wedge angle approaches 90°),
For experimental short-pulse backscattering from a flat-backed cone,1 the leading and trailing
edges have been resolved and similar behavior observed. It thus seems that geometrical dif-
fraction theory can provide qualitatively useful results for HH polarization but is of restricted

value for VV polarization.

VII. CREEPING-WAVE RETURN

For bistatic scattering, the creeping-wave return considered follows ray path 4 (Fig. 9).
The incident signal is diffracted at the trailing edge and a surface wave launched. This wave

propagates along the surface of the hemisphere for a distance RB and then radiates toward the
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receiver. To calculate the amplitude of this creeping-wave return, it is necessary to det?pr-
mine the edge diffraction coefficient for launching the creeping wave, the attenuation of this
wave as it propagates, and finally, the radiation coefficient in the direction of scattering. | The
diffraction coefficient should only depend on kR and not on B for nose-on incidence. The prop-
agation and radiation effects should be identical with the known results for creeping waves|on
spheres. We shall restrict our consideration to the case of HH polarization since the VV
creeping-wave returns were generally weaker and less reliable. The B8 dependence of thip re-
turn may be obtained from the leading term in the creeping-wave return for a sphere

1 1/3

(8 Sinj P [-1.02(kR/2) Bl . (15)
All factors independent of B have been ignored in Eq. (15). A comparison of present results
with Eq. (15) for kR = 10 is shown in Fig. 15, where ¢ sin B/'rrR2 is plotted as a function of 8.

The agreement seems good although not conclusive. By writing

0.
HH _ F(kR) 1/3
RS SinB exp [1.02(kR/2) B] o

and finding the best estimate of F for each value of kR, we may obtain the dependence of the
edge diffraction coefficient on kR. This has been done but the results are inconclusive. There
appears to be a slight decrease in F(kR) with increasing kR, but fluctuations in the observed
values of F are substantially greater than this systematic decrease. The values of F(kR)|in
Eq. (16) generally fall between 0.02 and 0.2.

While the creeping-wave return can be resolved and identified, it appears to be too weak to
permit accurate measurement and thus, extrapolation to other targets. The results obtained
are in reasonable agreement with creeping-wave theory but are not sufficiently reliable to jper-
mit any more definitive statements.

The doubly-diffracted returns (ray paths 5 through 10), while occasionally observed in the
short-pulse response, are generally weaker than the creeping-wave return and are ignored in

this report.
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Fig. 15. Creeping-wave return vs bistatic angle;
kR =10, HH polarization.
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VIII. CONCLUSIONS

In this report, the electromagnetic scattering from a conducting hemisphere at nose-on
incidence has been considered from a short-pulse viewpoint. The CW scattering amplitude
was calculated as a function of frequency, bistatic angle, and polarization. ¥rom this infor-
mation, the short-pulse response was constructed by Fourier synthesis. This permitted res-
olution and identification of individual contributions of each scattering center having different
ray path lengths. The more important of these returns were then isolated and investigated in
more detail to determine their frequency, bistatic angle, and polarization dependence. For
bistatic scattering, the specular, leading- and trailing-edge diffraction and creeping-wave re-
turns were considered. Doubly-diffracted waves were discussed briefly for bistatic scattering
but were considered in more detail for backscattering. Results obtained for individual returns
were compared with other appropriate theoretical predictions; qualitative and some quantitative
agreement was observed.

Of particular interest was the comparison of the edge returns with those calculated using
geometrical diffraction theory. For HH polarization (E-plane scattering), geometrical dif-
fraction theory provides a good qualitative estimate of the frequency and angle dependence of
edge scattering, although the numerical results differ by a factor of about five (geometrical
diffraction theory results are too small), For VV polarization (H-plane scattering), Keller's
geometrical diffraction theory predicts zero edge scattering, while the observed scattering
is finite. This is not unexpected since diffraction theory has been shown to be poor for VV
polarization for other targets.

The bistatic scattering results presented here are of interest primarily for comparison
with results of approximate theory and this has been emphasized in the report. For application
to scattering from other targets (for example, the edge of a finite cylinder), it would be de-
sirable to extend the present results to off nose-on incidence. This extension is straightfor-

ward in principle, but in practice, would be quite difficult.
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