
o0

THE DYNAMIC CHARACTERISTICS OF COMPUTER PROGRAMS

G. E. Bryan

August 1967

F3 6

-1-

TIlI: DI'NAM•1C CHARACTERISTICS OF COMPUTER PROGRAMS

G. L. Bryan*

TheI cAN[) Corporation, Santa Monica, Californla

Oil" of the qoals continuousIv 1. ef)Ie uL, in computer

programnilin,] is to scck out ways to ,mprove, by shortening,

thu av,)unt of time taken to solve problems on dicital com-

puters. One way to achieve this goal is through more

efficient use of the computing facilities which we have

today. Monitor systems made a great stride toward this

goal by autonating the sequencing of]obs through the com-

puting machine, making available on call a number of helpful

programs for compiling, assemblina, converting, and editing.

For a number of years a great white hope has been the multi-

plexing of programs within a single computing machine. It

is hoped that through this technique, idle times of one

program may be interleaved with computing times of a second

or third program with the combination making more efficient

use of the machine than any one of them could have made by

itself.

Any views expressed in this Paper are those of the
author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official op2in'on or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.

This Paper was presented at the Twenty-Second Annual
Meetintg of SIiARl, held in San Francisco, 2-6 M4arch 1964.

-2-

In mult iplex programn situations, importarnt questioun,

arise regarding storage allocation, algorithms for choosinq

the jobs to be run, proper timing of swapping of programs

in and out of main memory, and algorithms for switching

between programs which are already in memory. In order to

answer these questions and to design efficient algorithms,

a number of questions about the characteristics of the

programs being run need to be answered. Algorithms which

operate effectively in one mix of program characteristics

will operate inefficiently in other mixes. Some ot the

central questions involved are:

1) The distribution of program sizes.

2) The distribution of running times of programs.

3) The correlation, if any, between 1 and 2.

4) The characteristics of the use of storage by
programs.

5) Identification of idle intervals within a
pruqi Cfn, and finding their time distribution.

In category 5, two areas seem apparent. The first is

stop time between jobs for tape mounting, finding the next

job, dumping the program, etc.; the second, those intervals

during which a program waits for I/0 actions to complete.

Determining the answers to these questions in currcnt

operations will help us know whether program multiplexlng

is indeed a fruitful area for efficiency gains, and, if

it is, help us to find out what kinds of gains we can ex-

pect. We shoUld not, of course, neglect the fact that the

-3-

job characteristics which we measure today are in some

degree dependunt on the current method of operation. Pro-

grammers, quitt, cori,.,ctly, adapt their methods of operation

to the sstem in which they work; anyl change in the system

can Ile expected to change their habits somcwhit. It is

entirreLy possible, of course, that a systt m design for

multiplex ii.ogcram ol-Ceatlon will find gic.atvt utility and

greater solution efficiency than current systcms because

of the _,asing of the difficulties of storage allocation arid

secondary storage utilization.

In order to examine some of these questions in detail,

and to find the characteristics of programs using the com-

puter at RAND, a number of stat.istics have been gathered

on actual program runs. Preliminary results of these

studies are given below.

Storage Examination Program

The FORTRAN EXIT program, entered at the cnd of nearly

every FORTRAN job, has been modified to include a routine

which examines storage following the execution of each job.

Three categories of jobs are riot reflected in the statistics

gathered by this program:

1) Jobs which compile only.

2) Jobs so large that they cannot afford storage
for this program.

-4-

3) Jobs which are dumped from the machine before
reaching the LXIT routine..*

]he storage scan routine breaks core irtk, thire aroa:

the pcoogram artea, below the proqram break; the cor,1mon ar,0,

above the common break; and unused core, tlhat portion be-

t-.;en t • proaran 1brcal: ar.d thco•-:c break. Wit .'

of these areas, five types of cells are r'cordcd:

I) Those which are classed as decrenent int'egers.
If prefix tag and address of the word •te 0,
then it is assumed to be a decrcment integer.

2) Zeros, both plus and minus.

3) Instructions which have nine b ts equal to one
(AXT, TSX, LXD, SXD, etc.).

4) Floating-point numbers--those which have the nine
bit equal to one, except for those falling in
category 3.

5) All other cells which are presumably instructions.

The program punches an accounting card containing

these data, and this accounting card is later combined with

the ordinary accounting cards produced fo- the run.

SpecifiC additional data gained by combininq with the

regular accounting cards are log on time, execution time,

and number of output lines produced by the program.

Finally, the results of these cards for each job are

summarized by a program which produces histoarams of thp

data in various categoriesa

The limitation of this last category has beeýn elimi-
nated as of I February 1964 by including the storage scan
routine in the dump routine.

-5-

1relimiinary 1Pesults

Pat3 lhas been gatheied with this storage exan,.J.akion

P'C(] , I 1 i '-I.T 23 i,ecember 1963, and hi st ograms liave been

rui, on those programs xu'n between 30 December 1963 and

?' ;y 2 ,\L~ t 1 jobs wvrc r c:. each ia,.-,

Iii rds of them in prime shift.

Th,. gross breakdowns of all jols are shown in Fig. 1.

,lhe)L;stogrows described below are taken from statistics

cards produced by the 60 percent of programs marked in

Fig. 1 "FORTRAN Compile and Execute." As can be seen,

these jobs represent 48 percent of the running time. The

]oLs were xun on 19 different days during the period.

Figure 2 is the distribution of the number of O's

found in the rcgion of care between the 1pro~jram break and

coerwion; thius, it is the best measure we know of the number

of cells not used bL% the program. The bucket, or interval

size is given under the heading BKT, with the actual count

of 3obs and the percentage of jobs falling in each bucket

being given in the first two columns. Thus, the figure

shows that 64, or 3.7 percent of jobs, did not use between

0 and 10CC cells of core. In th-,s particular bucket,

representing very large jobs, the true figureý would be

larger by perhaps as much as 10 percent since a substantial

fraction of jobs are not reflected because they were too

large to use this special exit program.

Since the normal complement of FORTRAN library routines

occuJpieý- approximately 2500 to 3000 cells of memory, it is

| | | | | | | |

(\j

No 0

00

0'

-7-

TOTALS Lhkosto Itacs INOl L5(C. NOT Pc(GiiroE EOats

COUPk1 PACNI OKI I.IS100 RAP

~6 3.12K xmMMI

1.4 30 1x
32 1.8 4p X1MM
is 4.5 SK 1MMMIMIMM
34 2.0 6K 1MIM
24 1 .S ?w xxM
4? 2.? OR I x IM
P4 4.8 9K)))XIMMMII
34 2.0 ICK xMMX
!5 3.? INK $))XII
93 5.4 12K XXMIIMMIMIM
S? 3.3 1 3K MIMMIMI
35 2.0 14K XXMM
is 6.3 15K 111111313
38 2.? 16K MIRM
29 a1.? IK MIx x
to 1.0 IKa Ix
Is t .0 19K A b
28 1.6 20K 1MM
464 2.5 211K X1311
36 2.1 22K %IXMM

f? 3.9 24K XXX113MM
72 4.? 25K xxMMM1MI
f4 3.7 26K YXIXXXII
52 3.0 17K MMMIII
115 IC.1 2aK XIMIMMM1MMXXIMMMMMMM
leg 9.81 29K MIMIMNMMMMINIMMIMMXI
26 1.4 30K MIX
0 .0 31K
0 .0 32K

1732 TOTAL

FIGURE 2

-8-

not surprising that few jobs leave more than 30,000 celAs

unused. It is interesting, however, that 36 percent of

all programs would have run successfully in an 8K machine.

Two programs, ROCKET and SIMSCRIPT, seem to account

for the bulge in storage use in the 12-15K buckets. We

should not find it surprising that our machine utilization

characteristics are affected by popular programs.

Interestingly, only about 8 percent of programs would

not tit in core with some other program conumonly available.

Figure 3 presents the number of O's found anwhere in

memory--program area, unused storage, and common. Inter-

esting is the fact that 90 percent of programs leave half

of memory or more zero following their execution; 30 per-

cent of programs leave 90 percent of memory empty. Ex-

amination of Fig. 3--and Fig. 4 (which shows that the

number of floating-point cells found in memory is surpris-

ingly small--70 percent of programs with less than 2000

floating-point numbers)--makes immediately apparent that

many programs contain sparse matrices or allocated but un-

used tables. Clearly, in the case of sparse matrices,

storage allocation techniques of the list variety such as

IPL-V possesses would be of great value; and, in the

second case, a dynamic storage allocation scheme providing

storage only when requested would save large amounts of

storage for use by other programs.

Figure 5 shows actual program sizes as determined by

the number of instructions in the program and unused region.

ICJAL S TOTAL CF 1(10 CELLS

CCOtN T PACN1 8K 01 ~1SOGR AM

o .0 OK

0 .0 2 K
0 .c I K

o .0 4 K

1 1 6 K

2 .1 8 K
8 .5 9 K X
9 .5 1 CK
14 .2 11 K

14 .8 1 2,K A
51 3.3 13M ~xMxmxx
28 1.6 14K XXX
26 1.5 1 N K ~xA
44 2.5' 16K xxx
36 2.1 17K XXX

SI 5.3 IFIK XAXXX)

4 3 2.5 20K X
10 4.0 21K ~XXXXXXX
74 4,5 22K XX~WXXXXX
10 4.C 23K X xx

Icea 6.2 24K XXXXXXXXXXX
ss 5,5 25K(X~XXXXXXXKXX
S14 So4 26K XXXX~XX~XXX
144 8.3 27K XXXEXXNXXX~X~XX
144 8.3 28K XmXEX~XXXXXX~XXXE
302 22.1 299 XXXXXAXXXXXXXXXXXXXXXXX
121 ?.C 30K RmXXNXXX~XAXXX

C .C 31 K
0 .0 32K

1732 TOTAL

FIGURE 3

1-10

aO ' *fl I *I*I¶Q
-

o~ 19969
9

993919f

S20 I.) l 9

5.9F~ u 45 33

?ICTALS lOYAL CF PA(csq.C INSTPUCIION.S@ PPCG 0 tAILSE0

COUNT PMCivT SKI 1iISYOGRAie

o .0 OK
17 3.9 lK JX;iXNXX

52 31.*9 2K XIRXIXXXXRXXXXXIKXXXXXXEAXIX IEEE EEIXI1IEXiXIXKEERXmEIXXIKIENNXIM
?56 14.8 IK EIxNxxxxXXXXXXXEEXAEXEXXXXXEEE
169 9.6 4K XXIXVXXXXX)XEEEEIEE
113 Ob.5 5K XXXXIIXXEEIEER
It0 q.2 6K EIIEXJEJEEXAXXXXNE
es 4.9 7K EXIxxmxIxx
Ss 3.2 ex)XEIER
Ss 3.2 9K Exxxmm
47 2.7 10K AxExx
54 3.1 lKx ETEEZI
16 .9 12K XEX
1 I1 13K
t .I 14K
a .5 15K x

69 4.0 16K XEXzXXX
20 1.2 17K im
1 .I 18Kf
3 .2 19Kf
0 .0 20K
0 .0 21K
0 .0 22Mf
0 .0 2 3x
o .0 241(f
o .0 ? 5 ?
u C0 26K
o .0 21ff
0 .0 28K
a .0 29K
O .0 30K
r, .0 31 K
0 .0 32K

1?2 TO TAL

FIGURE 5

-12-

With the exception of the popular SIMSCRIPT and ROCKET,

which appear in the 16,000 instruction bucket, most pro-

grams are very small--50 percent being less than 4000 in-

structions long. This fact, coupled with the total alloca-

tion in Fig. 2, forces one to conclude that large amounts

of storage are assigned to tables.

Figure 6 presents the data of Fig. 5 (weighted by

straight multiplication) by the execution time of the pro-

gram involved. Since very little change in the distribution

is noted, we conclude that it is not possible to tell from

the number of instructions in a program how long it will

execute. I'm sure no one will be ;urprised by this fact.

Figure 7, however, plots the number of unused C's

weighted by execution time. This is the same data as in

Fig. 6 and show,. a very pronounced shift toward the larger

programs near the top of the chart. The peak of Fig. 6

in the small program region is completely missing from

Fig. 7. Thus, we note the strong correlation (as shown

again in a different way below) between the size of the

programs and their execution time. It seems to be a strong

characteristic of programs that if the space requested is

small, they will run a short time. If it Ls large, they

will run a long time.

In the 5K and 8K buckets may be seen the pronounced

effect of popular programs. This time, not particularly

big ones but long running.

VKFALS TOTAL ItlSTAtCTICNS. WEIGHTED Sy FEECUff IIPE

COUNT PMCNI SRI IýISTOGRAM

182 4.8 1~ * X X N~
255j201.9 6K IRxKxxEIxNlxmNNAXKKRK XXXNXXXXXXxxxxxxxx
2qc2 I.9 3K N)XXM3XP N3IXKI~EK

259 1.1 SK XX
196 3.3 9K IRUXXXE
q~t 3.9 109 XXX3XXXX
20Cs 6.4 lIK X3KRXXRXX XXNXX3NX
330 1.4 12K XX

3 .0 13K
25 .1I 14K
146 .6 ISK X
312 1.3 16K XXX
ICI .7 11K X
19 .1 lax
42 .2 lKx
C .0 2CK
0 .0 ?1K
0 .0 22K
0 .0 23K
o .o0 24K
0 .0 2SK
c .0 26K
0 .0 27K
a A0 26K
0 .0 29K
0 .0 301
0 .0 311I
o .0 329

24OC3 TOTAL

FIG-URE 6

-14-

TOTALS UktSEC ZERCS9 WE10-HO Eý FEXCLTE TIME

COUN~T PACftT NXT I IS TOGRiAP

1030 8.5 OK XXXXXXNRENRKXEXN
1720 7.2 1K XXXXNXXNNXXXX
C478 4.1 2K ~X~XZXX N
343 1.4 3K XXX
390 1.6 4K XXX

24Ca) 10.0 SK XXXXXRENXX E3NNNJZEEX
413 2.C 6K 33Rx

IC?? E..3 7K XA)mXX$XX
3630 15.1 SK X~XXXXX~XmXXXXXXXXXRXXXAXXXXXK
315 1.3 9 K AI X
Is$.8 ICK ~XX

1193 S.C lKx XX33ENN3x
813 3.4 12K 3XXJXXX
821 2.6 13K)IXXN
403 1.5 14K RXXX
689 2.9 15K X3XXKN
516 2.1 16K XXXX
374 1.6 17K xxN
ice .4 18K X
ICS .4 19K X
2?C .9 20K XX
463 2.0 21K RXXX
555 2.3 22K X~XXX
?e4 3.3 23K NNXNNXX

1256 S.2 24K XX~NXX NNNX
312 1.5 25K X~X
145 .6 26K X
644 2.? 27K XXXXE
U2 3.2 28K XNXXXN
315 1.6 29K KXX
26 .1 30K
o *.a 31K
o .0 32K

24CC3 TOTAL

FIGUREE 7

-15-

Figure 8 again demonstrates this shift by plotting

the total number of O's weighted by execution time. It,

too, reinforces the thought that b~g programs run a long

time and little programs run a short time. And remember,

these are not instructions in the program but total alloca-

tion of storage. Thus, while we cannot tell how long a

program m-ight ruLM by asking how many instructions the

program contained, we can tell by asking how many instruc-

tions plus how many cells of tables does it contain.

Figure 9 plots the number of jobs arriving at the

7090 in each hour of the day. Here the bucket column

represents an htur. Noteworthy are the first and second

shift lunch-hour dips at 12:00 and 20:00 hours. Also

apparent is the slow rise from early morning to full pro-

duction at 10:00, and from lunch time until full production

again at 2:00. It seems a full stomach is a bad thing for

programmers. Perhaps we should hire only hungry programmers.

Production of output for printing is a crucial one in

most installations, being one of the primary bottlenecks

hindering fast turnaround time. Figure 10 plots th3 number

of jobs occurring in each category of output volume. From

the figure, it can be seen that more than 50 percent of

jobs can be printed using a single 600-line-a-minute printer

in a time equivalent to the running time of the job. Per-

haps this is an indication that we should return to on-line

printing. We are certainly okay if we have sufficient

-16-

TOTALS ICTAL ZEACS@ liE!GIPIC 81 EXECLIF TIMB

C~OUNtT PRCPIT BKT PISTOGRAM

0 .0 OK
a .0 1K
0 .a 2K
0 .0 31(
o .0 49

23 . I 5K
26 .1 6K
33 . I 7sC
29 *.1 8 K

Io .7 9K x
is .3 ior~ x

127 .5 11 K X
141 .6 12K X
733 3.1 13K X~X~XX
133 *.6 14K X

18C7 7.5 15K XXXXXXXXXXXXXXX
2115 8.8 16K X~XXXXEXXXXXXXXXXXX
1278 503 Ilk X)zX.X~X~XX
34S6 14.6 18K ~X)XXX~mXmXXXXXX xxXXXXXXX)XXX
1035 4.3 19K XRXXXXXXX
770 3.? 20K NXAXXXX

1723 7.2 21K XXXXNXXXXXJXXXX
813 3.4 22K X~XXX)X

1135 4.7 23K XXXXXXXXX
1854 7.7 24K XX)XXXXXXXXXXXX
t1l8 4,7 251K XNXXXXXXXX
710 3o2 26K)X~XXX

1866 7.8 27K XXNXXXXXXXXXXX
186 3.3 28K XXXXXXX
11C6 7.4 29K ~XXXXXXX3XX)XXXX
198 .8 30K XX

0 .0 31K
o .0 32K

24003 TOTAL

FIGURE 8

-17-

tOTALS
fOAT AUS- LCKEU 15 AN tfrl).R

'UUNT FPACNT DK?
14SOCRAPI

16 1K xx
7 .4 2K x
9 .5 3K X
2 .1 4K
0 .0 5K
1 .1 61K
0 .0 7Kc

13 .8 SK XX
@a 4-6 9K Xx)X

166 9.6 I0K XXXXXXXXX
15? 8.8 11K XXXXXXXXXXXAýX
1C7 6.2 12IK Xxxxx
t26 1.3 13K xxNxNxNxxxxxXXE
111 10.0 14K XXXX~xxxxxx
170 9.8 15K xxxxxXXAXX
UC6 9.6 16K XxxxxXXXX
139 8.0 IlK XNXXXXNXXXNNIXXNX
113 6.5 In)(xxxxXX
IC'. 6.0 19K Xx~XXX
42 2.4 20K XNxxx
t5 3.8 ZlK NXxxxxXX
36 2.1 22'K XNXXX
28 1.6 23K XXX

0 A0 24K
o .0 25N
a .0 26K
0 .0 27K
0 .0 26K
o .0 29K
0 .0 30K
0 .0 31K
0 .0 12K

1732 TOTAL

FIGURE 9

--18--

?CI•ItL
6IIC3,IIIDs ttll~i I•I 'l'IC•.$.PsS flg kl3lf

IlL. Jfl9%

t0O~4I #B4I! lolI
•IltOCA i

*#A• 39.1 01 3.11 llll ml1ll 1 I 1 llll~llhilEll MII I1 t111111I3iiII1III l131III3I11II3 11l113II3 1I 3lll
040 9.?' |I 1313111131133h1111

3(4 4.1 3•1 333333333313

94 3*4 93 3313131|nll

II 4.1 41 lullhll
43 3.9 1= 33131

14 1.. 4 Pll|1

31) I.) I?' 3I3

II .1 li1 li

II .1 III II
* *9 73I 3
*, .3 1ie I

3? .1 96l I

02 .3 201 I!

44 .9 •Il II

9 .9 3)4

a .9 ?I Io
O .3 I743
40 .3 373

I .0 293

FIGURE 10

-19-

storage available with which to buffer the output so that

bursts of printed output from the program can be smoothed

for presentation to the printer.

Most installations have limits on the number of lines

which may be produced during the critical prime shift

hours; thus, thos. jobs which appear on this curve near the

tail end--the high output jobs--can be expected to occur

during the non-critical third shift.

Figure 11 weights 7090 on-time by the number of exe-

cution lines produced. Thus, it is a map of the printer

load during the day. Compare this figure with Fig. 9 and

note the attempt of the noon-time operator to run the jobs

which produce more output, possibly the longer jobs, during

his rather hectic session at the machine.

Running Times

Figure 12 presents a number of different distribu-

tions of running times of jobs taken from various studies.

Although there is a large variation in the number of jobs

run in any particular time category, it is clear that the

great bulk of jobs run for only a short amount ot time.

The limitations usually imposed dt computing installations

make this no surprise. Still, it is a bit surprising to

find 60 perceut or more programs executed in less than

two minutes.

Figure 13's scatter diagram presents a correlation of

the execution-time data together with the total program-size

-20-

p0 Il at

COUN y T PI tr. p I elk4Ir 61 EXEC LI NES IN ICOCO S of 1~~

148 6#60,tp

C .3 0K k
IC73 4.4 9K IIAN
l17 7. t o XW11KNIM
I S 5.6 1ItK
2C ? .5 Izk

27f$ 1 -?4 13K
lift 6.5 15K XvXk XX1464 6.C 16K XXkAj

I114q 7.2 19M yXAXjjX

352 3.0 20K AS*NNIX

651 3.5 23K mx
3

31mN

0 .0 24K

0 .0 16K
0 .0 27K
C .0 28K

0 .0 lox
0 .0 31 k
o .0 3.19

?4215 ICSAL

FIGURL 1

-21-

1-0

1/2-1/3/64

Per cent
of jobs

11/61-2/62

/o 7 -open shop

.01 ~'4000 jobs

.001 ---

Charged minutes

I1GURL 12

o W)

A q -~ 14

0N 8
<q 0

cl f-

Q- 0

D C.

-. c

(J)

! c x Cc 0 W

V C. C

CN - -.1 -

(sýa Jo Sp1) l~ 8o c ZnuC,

uI

-23-

data. As was seen in the histograms, there is a substantial

correlation between job size and running time. Note par-

ticularly the large group of jobs in tlie under-one-min-;te

running time arid less than 4000-in-words of storage category.

Again, since many of the jobs on the opposite end of the

spectrum---the large end--are run late at niqht, w(, find

small, short Dc-bs a pronounced character-i•tc of pi}iue

shift jobs.

Unused Time

In our supposedly advanced monitor controlled job shops,

we find substantial portions of unused time during even the

busierst hours of the day. Figure 14 is an example of this

characterist.. ý. 'he cent.er cu.ve plots the average for 6 days

of unused time during each hour. Note that we are never

able to utilize more than 50 minutes out of each hour. Tape

mounting, finding johs, and other delays attributable to

semi-manual operat-ion Are -eflected here. It is pl.bably

unreasonable to expect that any non-automatic system Would

be able to do better.

Figure 14 also plots the number of jobs logged on each

hour and the average time occupied by each job during that

hour. Interestingly, between 1C:00 in the morning and

8:00 in the eveniig the average job time does not vary

substantially from the overall average time, although late

at night large jobs were indeed run.

-24-

c'3.

* r

z CL(n I Eo
o - -U - 0 0 (b .

/ 7H

1- Aluo
C- I.-U9 A *o tdwoo 04"niapx* oid

sqoi oo00 e2V~
z

-25-

It should be pointed out that the wait times reflected

here are the non-charqe times--and thus do not reflect

waiting time within the program for tape 1/0 transmission,

rewinds, backspaevs, and waits for the operator to dump the

job, dial in tapes, or complete other marual operations.

Figure 15's scatter-diagram plots for each hour one

point on coordinates of number of jobs logged in, and idle

time for the hour. This diagram shows no correlation be-

tween idle time and nunber of jobs, indicating that the

job-shop monitor is working fine but that certain manual

delays are unavoidable and are independent of the number of

jobs being processed.

Summary

I believe that the above statistics demonstrate that

substaintial gains are achievable through a multiplexed

program mode of operation. Substantial numbers of programs

exist in the small-time and small-program size categories

to insure that programs can be easily found which will fit

available time-space slots. Further, because of these

factors, rather simple allocation algorithms will be suf-

ficient. We need not look far ahead in the input stream

to find a suitable job to fit the dimension available in

either time or space.

We have also shown that there are substantial gains

to be achieved in storage allocation areas--both in list

processing styles of storage allocation in which both the

-26-

00 0

43.0

0/

// 00

NOŽ. C\

JfloL 6utitnp uo pabboI sqof ;o jaqwflf

I

-27-

location and its contents are important data in the stor-

age reference, and in the dynamic storage requests in

which tables of nominal size are expended to fill the needs

of the program as it executes.

It would not be overstating the case to predict that

an efficiency or through-put gain of 100 percent is achiev-

able through implementation of these techniques.

