
to 

t SENSITIVITY ANALYSIS IN 

MULTITERMINAL FLOW NETWORKS 

by 

Francisco K. Rado 

OPERATIONS RESEARCH CENTER 

COLLEGE   OF   ENGINEERING 

CLEARINGHOUbf 

m  <r.    H"  •■ r 

Thii document hrrz br*r\ enn; 
for public ichc.zo r- ' ^J<" 
dürtribution 13 nall.-i^J. 

rovod ■ 

IJ 

0»C 67-22 
JUNE 1967 

D D C 

SPP 2 7 19^7 

c 
UNIVERSITY   OF   C A L I F 0 R N I A - B E R K E L E Y 

6° 



f 

I 

—n 

SENSITIVITY ANALYSIS IN MULTITERMINAL FLOW NETWORKS 

by 

Francisco K. Rado 
Operations Research Center 

University of California, Berkeley 

June 1967 ORC 67-22 

This research has been partially supported by the U.S. Army Research 
Office-Durham, Contract DA-31-124-ARO-D-331, and the National Science 
Foundation under Grant GK-1684 with the University of California. 
Reproduction in whole or in part is permitted for any purpose of the 
United States Government. 



' **• jwm r— ".—. . •-  . -u -;,.T.~:—-rrr 

ABSTRACT 

Algorithms are given for determining the influence of varying 
the capacity of an arc or of several arcs with linearly related 
capacities, on the maximal flows between every pair of nodes in 
an undirected network. This work builds upon the fundamental 
work of Gomory and Hu, and is closely related to the approach 
of Elmaghraby, who also gives algorithms for solving these 
problems. 
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SECTION I 

Description of the Problem 

0 

Given a network G in which ell arcs have finite capacities, a 

standard computational procedure due to Ford and Fulkerson [1] yields 

the maximal flow from one node called the source to another called the 

sink. 

The problem of determining the maximal flows between every pair of 

nodes in an undirected network is called the maximal flow multi-terminal 

problem. Although there may be many pairs of nodes, there are at most 

n-1 different maximal multi-terminal flows, where n is the number of 

nodes in G . 

The first problem solved in the present work is that of determining 

how varying of the capacity of an arc in a given range affects the n-1 

values of the maximal flows. The second one generalizes Che first by 

allowing the capacities of any subset of arcs of the network to depend 

linearly on a parameter constrained to a specified range, and then asks 

for the relation between the parameter values and the maximal flow values. 

Briefly, the first problem is the sensitivity analysis of multi- 

terminal flow networks to changes in the capacity of one arc. The aecond 

extends this analysis to several arcs for a special kind of network; namely, 

one in which the capacities of the arcs are linearly related. Our chief 

result is the derivation of two algorithms that solve these problems. 
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Introductory Section 

Because the fundamental results concerning maximal flows In networks 

•re well known (see, e.g., [1]),   we will review them here only to the 

extent necessary to establish the notation and definitions useful to this 

paper. Let G - G(N,A) denote a network where N Is the set of nodes 

and A the set of arcs of G . The arc a.. Joining node 1, to node ± 

has capacity C. .  If the maximum amount of flow that this arc can carry 

from node !_ to node ±   Is C. . . 

If the arc can carry a flow of C.. units either from 1. to J. or 

from J. to jL it Is said that the arc Is undirected. If every arc of A 

has that property, we speak of an undirected network. 

Maximum flow - Minimum out Theorem, Corollaries and algorithms 

related to it: 

A cut 0 In G(N,A) separating nodes s. and t. Is a set of arcs 

{a. /leX, jeX) • (X,X) where s, e X and t. e X . It also partitions the 

nodes In two subsets: X and X . The capacity C(X,X) of the cut 

(X,X) Is the sum of the capacities of the arcs of (X,X) . 

The maximal flow - minimum cut theorem states: 

For any network ehe maximal flow f_ from £ to t. Is equal to the 

minimal cut capacity of all cuts separating s. and t, . 

A path from node X. to node X  Is a sequence of arcs 

{(Xk, Xk+1)}, k-1, .... n-1 , where \ * *     If Wp • 

Some corollaries of the theorem, for undirected networks, are: 

A cut (X,X)  Is minimal If and only If every maximal flow f^ saturates 

all arcs of (X,X) with flows going from X to X . A flow X Is maximal 

If and only if there is no flow augmenting path with respect to f_ . 
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The algorithms for this problem are systematic searches of paths from 

source to sink, such that through each path we can carry a new flow given 

by the minimum of the differences of the capacities of the arcs of the path 

and the flows, In the direction of the path, already carried by them. 

Multi-terminal network ftauB: 

Sometimes the knowledge of the maximal flow between several or all 

pairs of nodes can be very useful. By naming any 2 nodes 1. and ^ 

source and sink, we can find the maximal flow f.. between ^ and by the 

standard algorithms. Applying this procedure 5 (n-1) times, (the number 

of combinations of two nodes In n) yields a maximal flow between every 

pair of nodes. (The maximal flow limited by capacity between jL and JL 

is the same as the maximal flow between J[ and !_ for an undirected 

network.) 

Gomory and Hu [3] have shown that there are not more than n-1 different 

maximal flows and they .an be found by solving only n-1 maximum flow 

problems (some of which are determined In smaller networks than the 

original). 

To describe the Gomory and Hu approach, we Introduce the following 

additional definition: 

A connected set of arcs Is one In which there is a path between every 

two nodes. 

A cycle  is a path in which the first and last node coincide. 

A tree  is a connected set of arcs with no cycles. 

A epanning tree  of a network is a tree that includes all the nodes of 

the network. 

A maximal spanning tree  is one in which the sum of the capacities of 

the arcs is maximal. 



We now show that Cher« are at most n-1 different values of f.., (l.jcN) 

Theorem (2):    A necessary and sufficient condition for all f.., 

'ik' 'lk to *** tt,e maxlBum flo^8 between nodes i   and ±  ; ±   and k ; and 

i, and k respectively is that 

(1) flk.>MlnCV v • 

To BhM neoeaaity:    Suppose flk < Mln (f^^ f^j.) t then by the maximal flow- 

minimal cut theorem there Is a cut (X, X) with node 1, in X and k in 

X , such that the capacity of the cut is equal to f.. . Now node ±   belongs 

either to X or to X . 

If it is in X , f k > C(X, X) . 

It It la In X , f^ > C(X, X) . 

In both cases a contradiction is obtained. 

(2) By Induction flp > Mln (f^, fJk, fkl f ) . 

To ehev sufficiency:    Let H a "modified" network composed of the same nodes 

G but with arcs connecting every pair of nodes 1, J and with capacities 

equal to the fj..'* of G . 

Now we construct the maximal spanning tree of H . We shall refer to 

the arcs of this tree as "links." Any f.  of H that does not appear as a 

link of the maximal spanning tree satisfies: 

<3> 'ip^^ir ^k V 

f.  will denote the maximal flow of the link and is equal to Its capacity. 
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where   f    , f k,  .... f       form the unique path    (X    , X k,  .... X    ) 

connecting nodes    1.   and   £   within the tree.    For If the Inequality did not 

hold, the smallest link of the path could be removed and the direct link 

f.      substituted to form a tree with larger value. 

From (2) and  (3), we conclude: 

(4) f.    - Mln (f..,  ....  f    )   . ip 1J op 

As there arc only n-1 links In the tree, we have shown that there are 

at most n-1 different values of the maximal flows. 

In order to construct the maximal spanning tree, we Introduce the 

notion of a condensed network. 

Suppose that a maximal flow problem f has been solved between the 

source £ and the sink .t by locating a minimal cut (X, X) with £ In 

X and .t In X . To find f.. where nodes 1, and ± are at the same 

side of the cut (X, X) , say In X , we create a condensed network Q by 

shrinking all the nodes of X Into a single node to which all the arcs of 

the minimal cut are attached. Several arcs Joining the same pair of nodes 

can be replaced by a single arc whose capacity Is given by the sum of the 

capacities of the arcs composing it. 

Lemma; 

The maximal flow between two ordinary nodes i_ and J. in the 

condensed network Q Is numerically equal to the flow f.. in G . 

Proof: 

f.. In G Is never greater than the flow between i   and J. In Q 

because shrinking the nodes of X In G to a single node X In Q Is 
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equivalent to making all area Joining the nodes of X of Infinite capacity. 

On the other hand f.. In G Is never smaller than the flow in Q 

becauae If the f.. In Q haa any flow. y    from a node In X to X , 

there Is a set of arcs from X to X In the original network with a total 

capacity of at least y .    This statement can be made about every arc 

connecting the set X with the node X . 

The Gomory and Hu procedure for constructing the tree Is the following: 

Take any two nodes and find a minimal cut (X, X) separating then. We 

repreaent this by two nodes 

©• <D 

connected by a link with the value of the cut. In X are listed all the 

nodes of the sec X and In X the others. We now repeat the process. 

Choose two nodes In X (or two In X) and solve the flow problem In the 

condensed network In which X (or X) Is a single node. The resulting 

cut haa a value f, and Is represented by a link connecting the two parts 

Into which X is divided by the cut, say, X. , and X, . X Is attached 

to X.  If It Is In the same part of the cut as X  , to X, If It Is In 

the same part as X, • 

The procedure Is continued In the same way until each condensed node 

consists of only one node. 

Examples of this procedure are given In subsequent Illustrations of the 

algorithms of this paper, which use Che Gomory and Hu mechod as a subroutine. 
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Leama: 

The maximal flow between any two nodes of the original network it eirply 

the nin if^t  f^*   *"• fir^    oi  the »«rles of links of the tree connecting 

the two nodes. 

VTe now prove in an indirect way that the tree constructed as above 

corresponds to the maximal spanning tree of the modified network. 

We have f^ < min (fj, f2, .... fr) ; for each f. on the path 

connecting nodes jl and ±   is attached to a cut separating i, and ±  . 

The following figures illustrate odr discussion« 

1 

corresponding final tree 

numbers in arcs are capacities and 
curve lines are the cuts 

The proof of the reverse inequality is more difficult. It will be 

shown that, at any stage of the construction, if a link of capacity X 

Joins nodes X and Y in the tree, then there is an x In X and a y 

in T such that f  - f . xy  - 

The proof is by induction. It is clearly true at the first stage. 

Let's suppose it is true in the r  stage and we will see that is still true 

in the next one. Consider X and Y , two contiguous condensed nodes of 

the tree at the r  stage (r links, r+1 condensed nodes) and xcX and 

ycY and f  ■ jf ■ capacity of the link (X, Y) . Suppose Y has more 
*y 

than 1 node, at least has nodes s, and t, , where the possibility than any . 



one of  this being equal to    £    ^s not excluded.    In  the next stage the set 

Y    divides  In   Y1    and    Y2    with    s^    in   Y1    and    t.    In    Y2  .    We may 

assume that    x   is attached to   Y.   . 

Now    s    and    t    are the  two nodes such that    f      ■ f'     is the 
— — st 

capacity of the link    (Y.JYJ)   .    With respect to    f, ,  there are two cases. 

If    x    i8  in   Yi»  f        i8 «till equal to   X •     If    i    is  in    Y,   , we shall 

show that     f      - f   . xs     — 

By Lemma 1,  condensing    Y«    to a single node in the original network does 

not affect    f      .    Denoting by bars  the maximal flows  in the condensed network, 

we have: 

f      - f xs        xs 

f    > f    - f 
xy xy 

yt 

r  > f   - f . ts -    ts 

By Theorem 2, f  > Mln (f  , f fc. L ] and hence f  - f  > Mln (f.f ] '        *  xs       xy  yt  ts xs   xs - 

But  f' ^ f because a cut of capacity f' separates X. an^ X • Thus 

f  ■ f , as was to be shown. 
xs  — 
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In consequence,  the capacities of the links In the final tree actually 

represent maximal flows between its adjacent nodes. 

Now from formulas 2 and 3 of Theorem 2, we get: 

flp>Mln(f1J.  fJk.   ....fop) 

flp<Mln(fir  fJk.   ....fop) 

where    1 j, Jk,   .... op  , are the links of the tree joining    1.    and    £ , 

and we get    f.    - Mln (f    ,  ..., f    )    showing that the final  tree obtained 

above corresponds to the maximal spanning tree defined earlier.    Because 

of the way it is obtained, we will call this tree the cut-tree. 

In the next section, we discuss the influence on the cut-tree of a 

change in the capacity of 1 arc. 
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SECTION II 

Sgnaitlvlty Analyals of Multiterminal Flow Networks Under Variation of the 
Capacity of 1  Arc 

In this section an algorithm Is developed for the effect on the 

naxlmal flow between any 2 nodes of the reduction or Increase tn the capacity 

of any arc.    The capacity of all arcs except arc    b     (where arc    a    Is any of 

Che arcs of the network) will be considered constant,  and arc    ji    will have 

a capacity    C(a)  - €_    where    _e    Is a parameter  that  can take all  the values 

In the range    [0  ; C(a) ]   . 

Our goal Is  to find  the  relation between  the value of    c.    and  the 

resulting cut-trees for an undirected network. 

There are ranges of the value of   £ ,  let us say for all    e/s    between 

e-     and    e«  , for which one cut-tree is enough  to describe the maximal flows 

between all pairs of nodes;  moreover,  there is a finite number of cut-trees 

that successively correspond to the variation of the value of    £_    from    0    to 

C(a)   . 

T H- 
C(a) 

-» e 

Cut-tree 
1 

Cut-tree 
2 

Cut-tree 
3 

Algorithm 

Step 1; 

Construct the cut-tree of  the network: 

a)     In each step of  this  construction put an initial capacity of zero 
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to the arc .!. • Determine the maximal flow between the two nodes 

currently designated source and sink. 

b) Reset the capacity of arc .!. to C(a) - £ and continue maximizing 

the flow until it results in a cut -set. The value of the flow 

f(X,X) through each cut-set (X,X) can be an expression of one of 

these three types: 

I) A constant a (this means that the flow didn't change from 

a) to b) and the cut-set is not through arc .!.) • 

II) A function of £ as: y-£ where y is a constant. (Cut-

set through arc .!. • ) 

III) A constant 8 if £ < k • (The maximal flow did change froa 

a) to b) and the cut-se t is not through arc ~ for £ < k .) 

We record the value of k associated with each 8 • 

Step 2: 

a) If the cut-tree do.esn' t have any k it will represent the maximal 

* * flows between any pair of nodes, for 0 < £ ~ C(a ) where C (a) 
. 

will represent the current value· of C(a) , the value of the 

capacity in the specific cycle. (Initially * C (a) • C(a).) 

b ) If there are some values of k , take the smallest of them and 

recompute the maximal-flow between the two nodes of the link. Two 

things can happen: Either the value of such k remat ns the same 

in which case follow Step (3) or it is increased in which case it has 

to be compared to the others and if it is still the smallest. go to 

Step (3). otherwise go back to Step (2), phase b. 

Step 3: 

After all the computations in Step (2) , we let * k • smallest 

{k recomp•1 ted }. 

* * If k > C (a), this is the last cycle and as in Step (2), ·the tree 
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represents the maximal flows for all the positive values of the 

current capacity of arc a . - . otherwise replace the capacity of arc 

.!.- • (C (a) - £) by • ((C (a) * - k ) ... e:) where • (C (a) * - k ) will be 

the current valu.,. . f * C (a) f or the next cycle. Go to Step (1). 

There is an exaL~le application of the algorithm a t the end of the 

paper. 

The network used is the same one used by Elmaghraby to facilitate a 

comparison of our method and his. 

Justification of the Algorithm 

In the construction of the cut-tree, the maximum flow be lveen two nodes 

i and j is det~rmined in one of two ways: Either directly by a standard 

computation of the maximum flow between these nodes or indirectly as a 

result of computing maximal flows between other nodes. If the maximum flow 

is found by a direct computation, sending the maximum possible amount of 

flow through arcs other than arc ~ , and only subsequently using the arc ~ , 

we indeed get the maximum value of k for hich the expression of the link 

represents the maximum flow between the two nodes. 

If the maximum flow between nodes 1 and i is determined by co1~putating 

of the flow between nodes £ and ~ where £ of ~ or both are different 

from i and i , and if the capacity of the link (i,j) is of the form 

B(k) , this value of k could have been constrained by any other link of 

the type II, and so a function of e: • In this case it will be detected in 

Step (2) of the algorithm. 

An example will help to understand this situation. The numbers in the 

trees and links are the respective capacities. 



Let's suppose that after a first step in developing a cut-tree, w 

arrive at this situation: 

r duced network cut-tr~e 

If we choose nodes ~ and ~ for the next st p, w get: (The numbers 

in heavy black ar the flows). 

cut-set 

8 

Maximum flo•J .. 6 + 8 + (10 -£) • 24 - £ • 

Now solving for nodes @ and 0 

cut-tree 

13 
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Maximum flow: 

15 + 6 + 2 [8] c 23 [8] 

(That is, maximum flow is 23 if £ < 8 .) 

There is only one link, namely the one connecting nodes @ and (J; that 

has an associated k value: k c 8 This link was computed direc tly 

because we did solve the maximum flow be tween ([)and (2). 
Now we will see what happens if that link is obtained in another way. 

Beginning again, we now look for the maximum flow between (]) and (2). 

Maximum flow: 8 + 6 + 9 [1] • 23 [1] 

Between G) and @ we get the same maximum flow as before. So the cut-tree 

will now be: 

37-£ 23[1] 
7 
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We see that in this case we have k c 1 , but the link ~ - {1) was not 

directly computed, we computed links ® - (j) and @ - @ .) So we can 

compute ~ - (j) to check the value k • 1 and (as before) we get k • 8 • 

Applications 

Following are some problems to which our algorithm can be applied. 

1. Electricity line network of a country under partial failure or reparation 

of a line between two cities. 

2. Similar problems with commodities like wate r or gas in a city, or flows 

of wate r for the event of fire in a "dry" city. 

3 . City of one-way (or almost one way) freeways where the direction of the 

freeways can be reversed, and where the people go to different places at 

specific times and the optimal number of lanes of a new highway is under 

study. 

4. Constructing roads in a war problem "Jungle": 

Given a set of detachments (nodes) defending an area and very limited 

means of transportation (capacities), find a maxin1um fll"f!·' of soldiers 

between the detachment that happens to be idle to the one un~er attack. 
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'x<tmple 

t Original Network 

19 Cycle 

Cut-set between ~ and (Z). 

The maximum flow without using arc (2 , 5) was 21
1 

using it, is 23. 

2[11] ___ .., 
cut set 

cut-tree 

t Explanation : Black wavy lines are cut-sets, heavy black lines are 
flows when c(a) = 0 , dashes a re using ar c ~ . 



Cut set be tween ~ and ~· 

1 [3) --... 
---+9[4] 10[3] 

17 

cut tree. 

Cut set between ~ and ~· 

13-c 
-~~.~------------~~ 

----15 

cut tree 

,, 
' .. .,' ' 8 I 
I 

17 
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I 

Cut set betw en 0 and ®· 

(reduced network) 

15 1 8 

13 

cut-tree . 

Cut set between ~ and(§). 

cut-tree . 

4 



Cut set between Q) and @ . 

· (reduced network) 

Cut tree for tlr t cycle 

(27-c) does not interfere 
because maximum ( c) a 13 

19 

The link (3,6) with value 37[3] is the one that has the minimum k , k • 3 . 

As link (3,6) , was computed directly, it is not possible to improve that 

value and still have the same cut tree. This cut tree represents the maximum 

flows of the original network for 0 < c < 3 • 

Now, we replace the capacity of arc (2,5) by 13-3-c • 10-c and begin 

again. 
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Second Cycle 

Original network with  the  capacity of arc  (2,5)   reduced to 10-c   . 

Cut set between  (5)  and  @. 

10-e 

Cut  tree  . 

37-e 



Cut set between G) and (j). 

(reduced network) 

Cut tree. 

Cut set between G) and ®. 

Cut tree. 

37-£ 

21 

37-£ 23(1] 1:\ '__;,_.,:,___\.!._; 
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Cut set between Q)  and (7), 

(reduced network). 

Cut tree 

Cut set between Q) and Q2) 

Cut tree. © © 
23 24-E 

Q^j^t^-Ji^y^—Q 



Cut set between (2)  and  Q). 
23 

Cut tree. 

0     Q 
19 33-e 

23 2A-e 

23m, 

The only link with k > 0 is link (6,7) with k - 1 ; as link (6,7) Is not 

the result of the computation of the cut set between @ and Q) but Instead 

it was of \J)  -  (T)  and (s) - (fy , we have to compute the maximum flow between 

(?) and (7), to check the value of k . 

Cut set between (ö) and ^^. 

Now we see that k can 

be improved till k ■ 8 

Cut tree, 

15 

This cut tree 

represents the original 

network  for 

3<e<8+3-ll 

© 
23 

G^-O-2^ 37-£ 
24-E 

23(8] 

<Z> 
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Third cycle 

Original network wi th the capaci y of Arc (2,5) r duced to 2-c . 

Cut set between G) and @. 

2- t 

·----~ 

17 

Cut t r ee. 

29- t 



Cut set between ~ and ~· 

Cut tree. 

l2i\ 
\:j;) 

Cut set between ~ and {2). 

Cut tree. 

25 

29-£ 16-£ !'":'\ 1---0 

29-£ 23-£ 
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Cut set be tween @ and 0. 

Cut tree. 

19 29- £ 1 t-------1 

Cut set between 0 and ~· 

Cut tree. 

25- £ 29-£ 
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Cut set between ~ and ~· 

Definitive cut tree for third cycle. 

19 29- t 
6 

23-t 16-t 7 ,__ __ --{ 5 
1 \-o------f 

We did not get any value of k , so, this cu t tree r presents the original 

networK for the maximal flows between any two nodes for 11 < t < 13. i.e., 

t • 11 in the original network corresponds to £ • 0 in this cut tre~; t • 13 

in the original network corresponds to t • 2 in this cut tree. 

i.e., maximal flow between @ and G) is 23 regardless of £ , 
II II @ " " 0" the minimum of 

(23 and 25-t ) . 
II " CD " " CD is the minimum of 

(23-t, :l9·-t , 25-£ and 19) 
' 

etc. 
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SECT'ION 111 

SENSITIVITY ANALVS1H OF MULTITERMINAL FLOW NETWORKS UNDKR VAHLATFON OF THK 
CAPACITY OK SI! VI. I LA I. ARCS 

We gfcnerali x.id the results of the previous section by allowing several 

of the arcs of the network to be linear functions of a parameter.  Further 

generalizations (several parameters or nonlinear functions of them) will 

not be attempted in the present work. 

The algorithm is very similar to the ont discussed in the first p;irt. 

Now we have arcs with capacities of throe types: 

CiJ ; Clj + alJX ; Clj " aii* "ii   > 0 

We will try to find the sequence of cut-trees that represent the maximal 

flows between any two arcs, when x varies over the real numbers between 0 

and some arbitrary maximum x . 

When the capacity of an arc becomes 0 , we simply erase such an arc not 

having defined negative capacities. 

The AlRorlthm 

Step 1; 

Following the Gomory-Hu procedure, we construct the cut-tree of the 

network, In each step, using the labeling algorithm of Ford-Fulkerson to 

maximize the flow between nodes r and s (generic nodes) . 

As a result of the above, we will have in each arc  (i,j)  a flow» 

f.  and a residual capacity r,  representing the difference between the 

capacity and the flow through the arc. Also, we will have a cut-set and the 

value of its capacity. 

f..  can be of one of three types:  f  ; f  + a. ,x and  f.1.1 ~ aitx 
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fij , a1 j > 0 

r 1j can be of one of three types: rij 

r ij , Bij ~ 0 • 

For the flows and residual capacities of the types and 

rij - Bijx , we compute the maximum value of x, call it k , that we can 

have before any flow or capaci ty becomes negative. 

t 

Three cases can occur: 

1) There is no value of k , i.e., no flows go through arcs that can 

be affected by x In this case, compute the next link. 

2) The value of k is greater than the maximum x , we want to 

consider. Go to the next link. 

3) The value of k is greater than 0 but smaller than maximum x • 

In this case, reset the value of the capacities that depend on 

Compute again the same maximum flow in this network with 

modified capacities. 

If both the cut-set and the expression of maximum flow don't change, 

we get a new value of k that should be added to the previous k , 

and if this value is Still smaller than maximum X we repeat again 

t and again until either 

If the network is not too complicated an intelligent assignment of flow3 
will frequently yield the optimal values in the first try without requiring 
successive adjustments. In the example that follows only two or thr e 
repet itions were required at each stage . The value of the residual 
capacity is written beside the flow only when necessary for und rstanding. 
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we ore In Case 2.  or cither  the cut-set or  the  expression of   the 

maximum flow change  in which  case we have finished  the computation 

of  the link. 

Step II; 

Applies when we have completed the computation of the n-1 links. 

Now we have the cut-tree. 

Take the link with the smallest value of k .  If this value 1B larger 

than maximum x , we have finished, otherwise, If the link was coropuled 

directly go to Step 3; if it was not computed directly compute again tlu- 

value of this link getting the same value of k or a larger one. Go back t( 

Step 2. 

Step III; 

The value of k obtained in Step 2 gives the range for what the last 

tree is valid. 

I.e., the first tree is valid for 0 < x < k , the second for 

k. < x < (k. + kj etc. 

Reset the values of the capacities that are functions of x to 

I ciJ + kaiJ + aijx cii * V 
and instead of 

C1J " kaij " aijX c13 - V 

go back to Step I for a new cycle. 

Justification of the Algorithm 

In Step I, we maximize the flow between two nodes.  This can be 

accomplished in many ways.  Each way leaves some residual capacities and 

flows as a function of x that tend to zero with the increase of the value 



I 
of x , yielding an upper bound k on the value of x • 

Chaneing the capacities of the arcs of the types 

l cij + aijx 

cij - aijx I to 

we can change the amount of flow carried by the different arcs to get the 

minimum rest riction and hence the maximal value of k • 

In Step II, as in the previous algorithm (and for the same reasons), 

we compute again the k corresponding to the link with minimum k , if it 

was not computed directly. 

Important 

In any direct computation the value of k can get larger or stay the 

same, but never get smaller, becaus~ it is limited by all the restrictions 

imposed by the cut-sets that were computed indirectly to get the link we 

are considering. 

When we compute the link directly, fewer restrict i ons result and the 

maximum value of a function cannot diminish. 

Examples of Applications 

1) The network consists of one way highways, some of asphal and 

some of concrete. 

The capacity of the highways will be given the number of lanes, 

and the speed of the cars on the asphalt lanes decreases 

proportionally (for some range) to the a~ount of rain. Thus, the 

capacity of a four lane concrete highway is 4, while the capacity 

31 
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of a A lane asphalt highway is 4 - Ax  , etc. 

2)     Tht- network consists of  electric  lines  going  from power phnfs   to 

the cities.    Some  of  the  plants  are hydraulic  plants and  ctliors  .irt 

thermal.     Because of increase of coal costs  It  is  under consldoral'on 

to decrease the capacity  of  the coal  plants  and   to Increase  the 

capacity of  the hydraulic  ones.     (In this  case artificial  arcs wltli 

the capacities  of   the plants have  to be added  to   the network.) 

Comments   for the Second Algorithm 

The problem solved by  the second algorithm was   taken   from nn unpubl fsli.d 

paper by  Elmaghraby.    The example  presented  Is also his,   to facilitate  an 

eventual  comparison of methods. 

Step I of the present algorithm is essentially similar  to the one in 

his paper. 

Step  II, which differs   from the approach of Elmaghraby,  provides a way 

to bypass  the construction of superfluous cut-trees. 

J 
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Example 

Orlglna]   network 

Sensitivity analysis will be done   for    X    In the range  for  this m Itl- 

terminal  network.     0  < X < 6.66 

Construction of  the first cut-tree or   (first  cycle). 

F - X - 0 - 

14 - 2X - 0 

X 

X 

changes. 

No iteration was  done because  it  is  evident that for    X >  7    the cut-set 

t 

(i> 
19[7] 

Flow - 19 

CS.     it.   the cut-set 

for    X <  7   . 

CS-     is   the cut-set 

for    X >  7   . 

The same thing happens most of  the  time  throughout  this  example. 
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First  iteration      W 

8 - X - 0 

9 -  2X - 0 

X - 4 

X - A.5 

17-2X 

X -  A Flow = 23^X 

Second iteration 

»5-X-O     >   X-^s 

»i-2X-0    >  X-Jt 

Third iteration 

We  see that  for    X-0    CS.   ,   the cut-set  is still 

the  same, but for any positive value of    X  ,   is    CS2 

k.A+l£=4.25 G> imi 
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13 - 3X - 0 >X < 4.33 

23+X[A.25) 

11-1/3-2X-0 

5-2/3-X-O    >X-5-2/3 

Flow "23 

;7[A.33] 

Q- 19[7] l23+X[4.25] <D 

23[5.66] 
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1-X=0 >X=1 

0- 

3-X-O >X-3 

© 

Qy-mn Q 36-xti 

Flow -  37-2X 

37-2X[3] 

23+X[A.25] 

23(5.66] 

© 
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Link (2,6) has the smallt'st value of k , k - 1 . As this link was 

not computed directly but Instead of It were (2,3) and (3,0), we have to 

check Its value. 

CS 

QULI 

4 - 2X - 0 
Flow - 36 - X  [2] 

As we see, the value of k , has been improved to k - 2 . It happens 

that it Is still the smallest, and this time it has been computed directly, 

so we cannot improve any more. 

This cut-tree (the last one)   represents the maximum flows In the 

network for values of    x  :    0  < X < 2    .    The next cut-tree will represent 

the maximum flows for values of    X    larger than    2  .    The upper limit will 

be found in the same way we got  the upper limit 2 for the  first cut-tree. 
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Second Cycle 

first iteration 

Flow - 34 - 3X 

second iteration 

lO+X 

3 - 2X - 0 >X - 1.5 

Flow - 19-3X-34-(3.5)-3X 

After  that  the cut-set is  the same,  but  the structure of the link changes 

to    16 - 2X  . 

k - 5 + 1.5 - 6.5 

34-3X[6.5] 
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2 -  X ^ 0 > X -  2 

3X(6 ■^LQJ^HL^ 

11 -  x - 0    > X - n 

12 -  X - 0    > X - 12 

5 -  X - 0    > X -  5 

34-3X[6.5] 

Flow - 27 



AO 

No restriction in    X 

G> 
19 34-3X[6.5] 

Flow = 19 

9-1/3 - 2X - 0 —> X - A-2/3 

4-2/3 - X - 0 —> X - 4-2/3 

Q—£ 0»-3WS'g Flow - 23 

23[4.66] 

ö 
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13 - 2X » 0  ■ > X - 6.5 

10 - 2X - 0    >X -=  5 

G> 

Q) 0 
33-2X[5] 

JLL,(j>i^3XL6z5J 0 

27(5] 

25+X[2] <D 
Flow -  33 - 2X 

23[4.66] 

6 
Minimum k in this final cut-tree is 2 , from 

link (6,7) , as it was not computed directly, it is 

necessary to compute it again. 

19 - 3X - 0 

7 - 2X - 0 

Now we get 

k - 3.5 for link (6,7) , 

it is still the smallest, so 

it is definitive. 
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Third Cycle 

6 - 2X = 0  > X - 3 

For X > 3 the 

function describing 

the maximum flow 

changes to  17.5 - X . 

3.S+X 

Flow = 23.5 - 3X 

23.5-3X[3] 

1.5 - X • 0  > X - 1.5 

23.5-3X[3] 

7 
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7.5-X-O  > x-7.5 

Flow - 28.5-X 

23.5-3X[3] -0ii±HLlL__0^m^_0 

No restriction 

Q—1^—Q-il±2HH^ ^^^li^7)JIil^0 

Flow - 19 

mm 



AA 

l-l/6-X"0  > X=l-l/6 

2-1/3-2X-0 >y=l-l/6 

0 

©- 19 

23[1- 1/6] 

23.5-3X[3] 

6-1/3,1-1/6-X) 

(3-2/3,2-1/3 7\) 

e 28.5-X[7.5] /rr\  27(1.5] ©-^-0 

3-2X>=0  > X=1.5 

Maximum restriction 
given by link (2,A) , 
k ■ 1-1/6 , it was not 
computed directly.  It is 
checked in the next 
page. 

0 

Flow =23 

7.5-X 

26 - 2X[1.5] Flow = 26 - 2X 

G^-^—(b 23.5-3X[3]    /^N28.5-X[7.51    _N27[1.5]  ^^  0 — ©- © 
23[l-l/6] 

© 

—-   - 
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1-1/6-X-O     X-l-1/6 

2-1/3-2X-0    X-l-1/6 

No Improvement In the 
value of k Is possible. 

(6-1/3,1-1/6-X) 

(3-2/3,2-1/3-2X) 

Resume 

o; »17]   _   36-XI21 —0 
for    0 < X < 2 

Q) 
33-2X[5) 

27(5] 

0-i?_(i)it!üÜiL02±^il__Q 

Q 

23(4.66] 

© 
for   2 < X < 5.5 

26-2X[1.5] 

O-M) 23.5-3X[3] ^^   28.5-X[7.5]    ^-^   27[1.5] 

<i) ay^^o 
23(1-1/6] 

for    5.5 < X < 6.66 

© 

-J 



/.(. 

SECTION IV 

COMMKNTS. COMPARISONS 

Professor Salah E. Elmaghraby of the Department of Industrial 

Administration of Yale University has two algorithms (2] and (A] 

that solve the same problems. 
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