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ABSTRACT 

A combination of creeping-wave analysis and diffraction theory 
has been developed for determining the radar cross section of bodies 
for which exact solutions are not available.    The known solutions for 
the perfectly conducting cylinder and sphere have been used to specify 
attenuation and diffraction coefficients for the creeping wave.    The 
creeping wave contribution is added to the geometrical optics or 
physical optics contribution from the specular point to determine the 
total scattered field.    It is demonstrated that this type of solution 
is applicable to ogives, ogives with spherical caps,   and prolate 
spheroids.    Wedge diffraction theory has been combined with creeping 
wave analysis to calculate the edge-onbackscatter of circular and 
ogival disks.     It is necessary to modify the magnitudes,   but not the 
forms,   of the creeping wave attenuation and diffraction coefficients 
when treating a creeping wave on an edge.     This form of analysis 
is adaptable to calculation of the radar cross section of composite 
bodies where both volumetric shapes and edges may occur in com- 
bination.     Once the specular points,  wedge diffraction points,   and 
the attachement points and paths of the creeping waves are determined 
the computation of the scattered field is straightforward. 
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LIST   OF SYMBOLS 

Electromagnetic   fields 

Uj is the incident electromagnetic field, 
U(j is the diffracted field, 
E0, H0 constants related to the electric and magnetic fields, 

respectively, 
Er is the radial electric field on a sphere, 
Hcj> is the phi component of magnetic field on the sphere 
E1 is the incident electric field, 
u(r, n, 4») a   scalar  field, 
v(r, n, 4>) the total scalar field, 
v   (r,n, 4>) the scalar geometrical optics field, 
Ecw the creeping wave component of the electric field, 
ESp the specular point component of the electric field, 

Diffraction coefficients 

Dj is the diffraction coefficient at the incidence point, 
Dt is the diffraction coefficient at the point of reradiation, 
D2 = Di*Dt, 
DQ„ is the square of the ogive diffraction coefficient, 
D2, the square of the disk diffraction coefficient, 

Attenuation coefficients 

a(p) is the complex attenuation coefficient as a function 
of local radius of curvature, 

a is a constant attenuation factor, 
as is the constant attenuation factor for the sphere, 
aoc is the constant attenuation factor for the cylinder, 
a0a is the constant attenuation factor for the ogive, 
a<j is the disk attenuation coefficient, 

Co-ordinates,   unit vectors,   and distances 

p is the radius of curvature in the direction of propagation, 
ds is the differential arc length, 
L is the path length along the body, 
a is the radius of a sphere or a semi-axis of a spheroid, 
r, R are distances from the phase reference point, 
rs is the radius of the spherical cap on the ogive, 
i a distance, 



a= l + cos(<j>) when used in the limit of an integral, 
x, y, z are rectangular coordinates 
b is a semi-axis of a spheroid, 
n the unit normal to a surface, 

x, y, z unit vectors of rectangular coordinates, 

v unit vector in the direction of propagation, 
S difference in path length between specular and 

creeping wave components for the prolate spheroid, 
S, L«i, L2     are distances associated with the ogive and are 

defined in a figure, 

Reflection and transmission coefficients 

V is a voltage reflection coefficient for the ogive, 
r = (ZS-Z0)/(ZS + Z0) ,   the reflection coefficient for the 

spherically capped ogive, 
TQS 

= 2 ZS/(ZS + Z0),   the transmission coefficient for the 
spherically capped ogive, 

Rw and Tw are reflection and transmission coefficients obtained 
using wedge diffraction theory, 

Rt is the tip reflection coefficient for the ogive, 
Tj. is the tip transmission coefficient for the ogive, 

Impedances 

Zs is the creeping wave impedance of the sphere, 
Z0 is the impedance of free space, 

Angl es 

90, 9j are angles defined in a figure for spherically 
capped ogive, 

9,<j> are angles defined in reference to figures, 
6g_ angular location of the specular point, 

Miscellaneous 

k, k0 =   2TT/\ 

F(rj, r2) is the relative phase function between source and 
observation points, 

X. is the wavelength in free space, 
IT = circumference of circle/diameter of circle,   or 
•tr =3. 1415926535897 approximately 
N an integer 
T a dummy variable of integration, 
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j = V-l 
a the radar cross section, 
Ul is a constant related to the diffraction coefficient, 
U2 is a constant related to the attenuation coefficient, 
Rö the ratio or the radius of curvature in the direction 

of propagation of the creeping wave to the 
orthogonal radius of curvature, 

vg(r,n,<ji) is the Pauli wedge diffraction coefficient, 
WA is the included angle of the wedge 
n = (2TT - WA)/IT 

G(9,(j)) is the antenna gain. 
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MEMORANDUM   ON ANALYSIS  OF  ECHO AREA  OF   TARGETS 
USING GEOMETRICAL   THEORY  OF  DIFFRACTION 

AND CREEPING  WAVE   THEORY 

INTRODUCTION 

This report is a preliminary attempt to extend the creeping-wave 
analysis to bodies for which it has not previously been applied.    Several 
new approaches incorporating geometric diffraction theory and wedge 
diffraction concepts are proposed and evaluated.    This report is intended 
to summarize the work that has been completed to date and to indicate 
problem areas which must be investigated in order to develop a consist- 
ent creeping-wave theory of scattering.    It is not intended to represent 
a complete analysis of the problem. 

The determination of the radar cross section of targets composed 
of volumetric shapes, ducts, fins, and edges is a difficult but important 
problem. One approach to this problem is to approximate the target by 
a collection of shapes for which the individual scattering properties are 
known and thus estimate the scattered field in a given direction by 
locating the dominant scatterers and adding their contributions. 

A major flaw in this approach is that a general technique for 
analyzing the part of the body that is in the shadow region or the region 
not directly illuminated by the incident wave is lacking.    Peters1   showed 
that a traveling-wave technique is applicable for long thin bodies such as 
the ogive where the dominant scattering mechanism is chiefly influenced 
by the part of the body in the shadow region.    This technique has been 
used by all researchers   for this type of target despite objections that 
it lacks mathematical rigor.    Franz and Depperman,     Keller and Levy ' 
and others have developed the creeping wave for successfully treating 
the shadow region of the cylinder.    Similar treatment of the sphere has 
recently been developed.      However these solutions are restricted to 
bodies for which canonical solutions are available.    The major purpose 
of this report is to show that the shadow region of a target can be treated 
by a relatively simple procedure. 

Another approach is the use of point-matching boundary value 
techniques to generate a system of linear equations which may be solved 
for the surface currents using a computer.    The scattered field is then 
computed from the surface currents.    In this second approach one is 
limited by the capacity of the computer and the long computation time. 
This report demonstrates that the techniques of the geometrical theory 
of diffraction and creeping wave theory offer a means by which the scat- 
tering of a composite target can be evaluated to engineering accuracy 
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using relatively simple formulations which do not require large amounts 
of computation time.    In addition,   this analysis allows the evaluation of 
interactions between the component parts of the scatterer.    At the pre- 
sent time only several simple scatterers have been treated.    These in- 
clude the ogive,    '    the spherically capped ogive,8  the finite cone, 10 the 
cone-sphere,     and the disk for edge-on aspects. 

The techniques of the geometrical theory of diffraction and creep- 
ing-wave analysis depend upon the assumption that the propagation paths 
of the diffracted and creeping-wave fields may be described using ray 
tracing and that diffraction is a local phenomenon.    These assumptions 
make it possible to determine the contributing scattering mechanisms 
of the target for a given direction and also allow the calculation of inter- 
actions between parts of the scatterer.    The scattered fields are then 
obtained by summation of the individual contributions. 

In order to develop    useful diffraction and attenuation coefficients 
for bodies of revolution,   the scattering of the perfectly conducting sphere 
has been evaluated in the form of a specular point contribution plus a 
creeping-wave contribution.    Physical optics has been assumed to apply 
to the specular point and the creeping-wave diffraction and attenuation 
coefficients have been obtained by matching the exact back scattered 
field at a single value of kQa.    These values were then used to calculate 
both backscattered and bistatic fields for a range of k0a values.    The 
excellent result obtained indicated that such a format was useful.    This 
form of solution was then extended to calculate the back scattered fields 
of a prolate spheroid with good results.    The application of this form of 
solution to the ogive and spherically capped ogive had been done previously ' 
and is in agreement with the formulation proposed here. 

The impulse technique has also been applied to obtain the scattered 
fields for the prolate spheroid      and for the cone sphere.     Basically the 
impulse solution for the cone sphere is forced to contain the creeping- 
wave contribution by transforming to the time domain the exact scattered 
fields for the sphere,   after subtraction of the specular scattered fields. 
The impulse solution for the prolate spheroid makes use of the required 
behavior in the time domain of the scattered fields to treat the shadow 
region of the spheroid; i.e.,   the moment conditions are enforced.    This 
is a clever and rewarding technique which should be pursued further. 

In the present report the earlier studies applying the geometrical 
theory of diffraction technique to these non-canonical shapes are sum- 
marized and certain significent points are clarified.    In addition certain 
new mechanisms are introduced. 



The wedge diffraction coefficient has been applied to the problem 
of determining the creeping-wave fields which are transmitted and 
reflected at a discontinuity of the first derivative of the surface on a body 
of revolution.    Results obtained using this formulation indicate that,   to a 
first approximation,  the wedge diffraction coefficient is applicable to 
bodies of revolution,   and thus to three-dimensional scattering in spite 
of the two-dimensional nature of the wedge scattering problem.    The 
wedge diffraction coefficient has also been applied in combination with 
creeping waves to determine the scattered fields of a circular disk and 
a "flat ogive" with excellent results.    These results indicate that an 
extension of these techniques to the analysis of finite edges,   such as 
occur on fins,   is practical.    Furthermore,   the relatively simple form 
of the equations involved in these computations indicates that this approach 
could be useful in identifying the geometry in the shadow region. 

The creeping wave and diffraction form of analysis permits a simple 
physical picture of the scattering process.    The calculation of the scat- 
tered field is straightforward,  with the diffraction and attenuation coef 
ficients being simple formulas to evaluate,   or program for automatic 
computation.    In general the time required to compute a full 360° back 
scatter pattern in increments of 2° is less than one minute on an IBM 
7094.    Thus this technique seems valuable in the determination of radar 
cross section of complex targets. 

New solutions presented in this report include the flat ogive, 
circular disk for edge-on incidence,   the ogive of revolution,   and the 
prolate spheroid. 

I. CREEPING  WAVE ANALYSIS  OF 
BODIES  OF  REVOLUTION 

A.     Review of the Analysis of a Sphere 

The concept of creeping waves was introduced by Franz and 
Depperman '      for the interpretation of the scalar solution for diffraction 
by a circular cylinder or sphere.    Senior and Goodrich     have obtained a 
representation similar to that of Franz and Depperman through the appli- 
cation of the Watson transformation to the Mie series solution for the 

Q 

sphere.    Moreland,   Peters,   and Kilcoyne    have applied approximate dif- 
fraction and attenuation coefficients developed by Peters11  to calculate both 

15 monostatic and bistatic cross sections of the sphere.    Kouyoumjian      has 
also presented a creeping-wave solution for the sphere which includes all 
higher-order modes.    The approach presented here is that of Moreland, 
Peters,   and Kilcoyne. 



Referring to Fig.   1 we see that,   according to the geometrical theory 
of diffraction,   a portion of the energy incident upon the sphere is trapped 
at the point of tangency,   point A.    The ratio of trapped field to incident 
field is defined as the diffraction coefficient.    The trapped energy then 
travels about the curved body and is attenuated by radiation tangential 
to the body as it travels.    Finally,   energy is radiated along a tangent 
to the body in the scattering direction of interest.    The diffraction and 
attenuation coefficients which describe this process are a function of 
the radii of curvature of the body in wavelengths.    The diffracted field for 
the lowest-order creeping-wave mode is given by 

;i) 
Ud 

Ui 

-J 

DiDt e 

»B 
c0L + \     a(p)ds 

^A F(r1( r2) , 

where 

U| is the incident field, 
Ud is the diffracted field, 
r> is the diffraction coefficient at the incidence point, 
Dt is the diffraction coefficient at the point of re radiation, 

TRANSMITTER 

RECEIVER 
Fig.   1.    Scattering by creeping-wave fields 



cx(p) is the complex attenuation coefficient as a function of 
local radius of curvature, 

ds     is the differential arc length, 
L      is the path length along the body, 
kD     is the free space propagation factor,   and 
F(rj, r2) is the phase function relating source and observation 

points. 

If the body has constant curvature,   as for the sphere,   the radius of 
curvature at points A and B are equal and the complex attenuation co- 
efficient is constant.    Thus Eq. (1) can be written as 

ui 

Cases for which Eq. (1) must be used are illustrated later as for the 
prolate and oblate spheroids.    In such a case the local radii of curvature 
at points A and B must be used to evaluate D\ and Dt>   and the integral in 
Eq. (1) must be evaluated. 

The diffraction and attenuation coefficients have been derived by 
comparing solutions in this form to canonical solutions for cylinders, 
elliptic cylinders,   and spheres.       This simple description is compli- 
cated,   however,   by the presence of higher-order modes and the existence 
of higher-order terms in D and o. which depend upon the orthogonal radius 
of curvature. 

In the case of the sphere,   Keller      introduces an additional factor 
to account for the convergence of rays as they propagate along a geodesic 
(great circles for the sphere).    Keller has evaluated this spreading factor 
by comparison with the asymptotic form of the exact solution of the scat- 
tered fields by the sphere.    He finds that the diffraction coefficient and 
the attenuation coefficient are identical to those for the cylinder.    He also 
introduces a phase jump which results from the caustic formed at the rear 
of the sphere by the rays propagating along the geodesic.    Senior      has 
extended the formulation of the creeping-wave component of the fields 
scattered by a sphere of small radius by introducing the second term in 
the asymptotic expansion.    His results are in excellent agreement with 
the exact values,   but his analysis cannot be written in a form utilizing 
diffraction coefficients . 

The approach suggested by Moreland,   Peters and Kilcoyne,8  and 
adopted here,   differs from the above in that the exact magnetic fields at 
the surface of the sphere are used to determine the complex attenuation 



coefficient.    This approach should include all modes if an accurate approxi- 
mation to the exact magnetic fields on the surface can be generated.    It 
has been found that throughout the resonance region the attenuation factor 
for the creeping wave is approximately 

(3) a« - 1 a 
2 oc 

where 

1 
Z zl <Xoa>>   (£) 

f    J 
TT 

a       is the sphere radius, 
k0     is the free space propagation factor,   and 
aoC   is the attenuation factor for the lowest  order 

creeping-wave mode on the cylinder. 

The diffraction coefficient,   D,   has been found by multiplying the 
diffraction coefficient of the lowest-order creeping wave on the cylinder 
by a constant.    The constant is determined by matching the exact creep- 
ing-wave fields on the sphere using the attenuation coefficient given by 
Eq •  (3).    The diffraction coefficient is then found to have the form 

(4) 

IT 

2 i      i-      "J TZ 
Do = 0.27 a3 \3 e 

The process through which these values for the diffraction and 
attenuation coefficients were obtained is simple and is as follows:    The 
magnetic field shown in Fig. Z in the shadow region on the surface of the 
sphere is written as the sum of two creeping waves as 

(5) Hcj) - H0 

■(Jk0 + 
+ e 

(jk0 + as) a(l- ej 

a.).(| + e) 

and the radial electric field may be written as 



(6) 

r INCIDENT 
HO  * 

PLANE WAVE 

BACKSCATTERED 
CREEPING     ""   a. 

WAVES 

f INCIDENT 
PLANE WAVE > 

Fig.  2.    Creeping waves of the sphere. 

-(jk0 + as)a(l-e) 

(jk0 + as)a(|+e) 

Er - E0 

-  e 

Now H0 and E0 are chosen to match the exact solution as closely as possible 
for some value of k0a.    A value of kpa =  10 was chosen.    Then,   assuming 
as to be of the form of aoc one obtains Eq.  (3).    In slightly abbreviated 
fashion one may write 

(7) a« = 0.84 a - 3 

.    TT 

3   0   b 

Next,   the exact scattered fields are compared to the fields predicted using 
Eq.  (2) and the magnitude of D2 is determined. 

The form of Eqs . (5) and (6) assumes that the creeping waves are 
launched at points 6 = TT/2 and 9 = -TT/2 and travel in opposite directions 



about the sphere.    For other attachment points,   the paths are parallel to 
this great circle at the point of attachment.    The direction of the creeping 
waves at the point of attachment is fixed by the Poynting vector of the 
incident field.    After the wave is attached to the surface the minor creep- 
ing wave attenuates rapidly,  while the major creeping wave is attenuated 
slowly.    Thus the resulting surface wave at some point removed from the 
shadow boundary has only a radial component of electric field.    However 
the existence of both <p and 6 components of the magnetic field at the point 
of attachment causes a tilt of the Poynting vector on the surface.    For 
points on the shadow boundary removed from the major wave axis this 
tilt precludes the convergence of rays to form a single caustic at the 
rear of the sphere. 

This approximate form may be compared to the exact solution for 
the fields on the surface of the sphere along this great circle route 
through straightforward computation.    These fields are illustrated in 
Fig.  3 for a range of k0a values.    It is seen that fields of the form given 
in Eqs •  (5) and (6) are a reasonable approximation to the exact fields. 
In addition the backscattered fields due to the creeping wave may be 
written as 

- ik   R 
(8) Ecw = 2 D2

S e"J2koa e-(Jko + as)^a     £_ ^_        > 

R 

where R is the observation distance from the center of the sphere.    The 
magnitude and phase  of the creeping wave obtained using Eq. (8) can be 
compared to the magnitude and phase of the exact creeping-wave fields 
obtained by subtracting the specular point contribution of the physical 
optics term from the exact scattered fields; i.e., 

(9) E^act  =EexaCt(k0a)+   (l  - -i— 
cw V        J2koa 

w here the factor e~J   °  /R has been suppressed. 

The magnitudes of the exact and approximate creeping-wave components 
are compared in Fig. 4 and their phases are compared in Fig.  5.    The 
agreement is good for a wide range of k0a values,   thus establishing the 
usefulness of Eq. (8). 

The concept of two creeping waves propagating around the sphere 
may also be used to determine the bistatic scattering in the plane of 
incidence in a simple manner.    Referring to Fig.  6 we see that the com- 
ponents of the bistatic field are 
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Es   ,   the specularly reflected field (where it exists); 
Ecwl.   the creeping-wave field reradiated at point A; and 
Ecw2>   the creeping-wave field reradiated at point B. 

Thus one may write,   the specular term in the form 14 

(10) Esp(e) = - 1 - cos 

j2k0 cosJ 

2   J 

a    e-jk0R 
2R 

and the creeping-wave fields may be written as 

(11) ECwl + Ecw2 = Ds    e 2   .-J2k0« re-(jk0 + a, ) 6a 

+ e 
(jk0 + aB) (2Tr-9)aj 

R 
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where 

It  = a sin 

2.5 

Using the above equations the scattering cross  section    may be written as 

(12) 
7T a2 

1 cos 

j2k0 cos3 

Z_^_    e-Jk0£ 

-(jk0 + as)ea        -(jk0 + as)(27T-9)a 
+ e 
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Fig.  5.    Phase of backscattered fields due to creeping waves . 

A comparison of the approximate bistatic fields calculated using 
Eqs .  (10) and (11) and the exact bistatic fields is presented in Fig. 7. 

It is noted that these computations were made by Moreland,   Peters,   and 
Kilcoyne.      Several computer programs pertaining to both monostatic 
and bistatic scattering by the sphere are presented in Appendix B.    Results 
obtained using these programs are in agreement with the calculations of 
Moreland et al. 

This form of the creeping-wave solution for the sphere has the 
advantage of a simple format.    The questions of the behavior of the 
creeping wave fields in the vicinity of the caustic predicted by optics 
at the back of the sphere are avoided.   Also it will be seen that this 
approach lends itself to a straightforward extension to the analysis of 
scattering by other bodies of revolution.    Furthermore,   the consistent 
results obtained for monostatic and bistatic radar cross section indicate 
that there is no need to include an integration of the creeping-wave fields 
about the shadow boundary for the back-scatter case; i.e.,  to include a 
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Fig.   6.    Bistatic scattering of the sphere. 

glory ray effect.    This is consistent with the description of the ray path 
geometry given previously.    The reader should be cautioned,   however, 
that this approach ensures success for the back scatter case in that the 
effect of caustics,   glory rays,   etc.  can be included in the assignment of 
values for the diffraction coefficient.    For this description to be valid 
requires that there be no exceptions to it.    A contradiction causes the 
entire explanation to collapse. 

B.    Analysis of Backscatter by the 
Prolate Spheroid 

The prolate spheroid is similar,   with regard to the form of the 
creeping-wave solution,   to the sphere.    As in the case of the sphere,   the 
scattered fields are composed of physical optics and creeping-wave con- 
tributions.    However,   for the prolate spheroid,   the paths followed by the 
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creeping waves on the body are,   in general,   ellipses.    Thus the radius 
of curvature in the direction of propagation is continually changing and 
it is necessary to compute the integral in Eq. (1).    The coordinate system 
used for the prolate spheroid is shown in Fig .  8. 

INCIDENT FIELD 

_xf. .  y2+z2  . , 
o2 *      b2 

Fig. 8.    Coordinates for the prolate spheroid. 

12 
The prolate spheroid has previously been studied by Moffatt      using 

time domain analysis.   Moffatt's approach is similar to the creeping-wave 
approach in that he approximates the impulse response through the use of 
a "physical optics" contribution in the form of an impulse at time t = 0, 
which decays and joins into a creeping-wave return at time t = TD (where 
T0 corresponds to the time required for the   creeping   wave to propagate 
around the spheroid).    The form of the impulse response postulated by 
Moffatt is shown in Fig.  9. 

Following this line of reasoning and referring to Fig.   10 we may 
write the back scattered creeping-wave field for a wave incident in the 
x-y plane,   with polarization lying in the x-y plane,   as 

■»B 

(13) 'CW 2 D' ■jk oLe 

-f  a(p)ds 
«A 
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A,B, DETERMINED FROM PHYSICAL OPTICS (SHORT TIME) 

T0    DETERMINED BY  GEOMETRY AND POLARIZATION 

Fig.  9.    Impulse response of the prolate spheroid. 

where 

■r L =    \       ds 
JA 

and 

ds = differential arc length. 

A similar expression may be written for arbitrary incidence 
direction and polarization,   as illustrated in Fig.   11,   but we shall examine 
the simplest case.    For the case illustrated in Fig.   10 (parallel polari- 
zation) we may write the radius of curvature in the incidence plane contain- 
ing the E vector as 

(14) p   = (a2 sin2 4> + b2 cos2 <|>)      Iab , 

which is readily derivable from the parametric form of the equation of 
the ellipse.    Likewise the differential element of arc length is 
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Fig.   10.    Scattering of the prolate spheroid. 

(15) ds 
2 2 2 2 

a    sin    4> + b    cos    c+3   dc|> 

Using the form of the diffraction and attenuation coefficients given in 
Eqs . (4) and (7) and leaving the magnitude of the coefficients open to 
evaluation using experimental data,   one may write the creeping wave as 
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Fig.   11 .    General incidence angle and polarization 
scattering by a prolate spheroid. 
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1 2 
(16) Ecw = 2(U1) pj^3e      12 e 4>i 

p*a ,  
ir   -jkQ \        la2 sin2 q> + b   cos2 4>  d<j> 

•   e 

.<U2) aJ * ."I   J    (ab, * <» .jkoR 
4>l J a2 sin2 <|> + b2 cos2 <|>      . e_ 

R 

where 

p.   is the local radius of curvature at point A (due to   symmetry 
pA= PB

) 

and the phase reference is taken to be the point (0, 0, 0). 

In order to determine the location of the points of attachment and de- 
parture A and B for an arbitrary incidence angle we must determine the 
points on the spheroid where the incident electric field vector is parallel 
to the normal to the spheroid.    This is easily done for the special case 
illustrated in Fig.   10 through use of the equation of the surface and the 
cross product of the electric vector and the normal vector; i.e., 

(17) *L    + ll = 1 
a2 b2 

and 

A nX  E'= 0 , 

where 

A n  = 

and 

E   = - x sin 9 + y cos 9 . 

Zl 



Using the above relations two equations in two unknowns are obtained, 
the unknowns being the x and y coordinates of the attachment points. 
It is noted that the attachment points are located at (Tx^. + yg) because 
of the symmetry of the body.    Solving,   one obtains 

2   -*- 0 ,,„> a     sin 
(18) xA=  T 

B |a2 sin2 9 + b2 cos2 9 

and 

(19) yA=± 
b2   cos 8 

B Ja2 sin2 9 + b2 cos2 6 

Likewise it is necessary to determine the point of specular reflection 
so that the proper phase between the "physical optics" contribution and 
the creeping waves can be specified.    This is easily done using the 
relations 

(20) *i +-*i  = 1 

and 

where 

a2      b2 

A      A 
v X  n = 0, 

A        A A 
v = x cos 6   - y sin 0 ; 

which results in 

— 0 nn a    COS 
(21) xsp = 

v|a2 cos 0+ b2   sin 0 

and 

/-> T \ _ b2 sin 8 (22) ysp 

Ja2 cos 0 + b2 sin 0 
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Thus,   referring to Fig.  10,   the path length difference between the 
specular and creeping-wave components can be written as 

(23) S   = + xsP +y2sP     cos(e- 9sp) 

where 

esp = arc tan |ysp/xsp| 

Another obstacle to surmount in this analysis is the fact that a 
closed-form expression of the physical optics contribution for the 
specular term of the prolate spheroid at arbitrary incidence angles 
does not exist.    Moffatt      has derived a time domain solution for the 
physical optics term by considering the rate of change of cross section 
that a plane parallel to the incident wavefront encounters as it inter- 
cepts the spheroid.    This process is illustrated in Fig.   12.    Rather 
than terminating this process at the shadow boundary,   as is customary 
for physical optics,   Moffatt terminates the physical optics integral when 
the maximum cross section is obtained.    Transforming,   Moffatt's time 
domain    representation and discarding the contribution due to the ter- 
mination of the integral,   as is required in creeping-wave analysis,   one 
may write the "physical optics" (i.e.,   the specular point) contribution 
as17 

(24) E sp 
1 b2 a 

2 b2 sin2 e + a2 cos2 e 

J 2k0S 

1 - 
j2kjb2 sin2 9 + a2 cos2 9 

Computation of the total field for the prolate spheroid is now accomplished 
using Eqs .  (6) and (24).    However,   the computation is not as easy as for 
that of the sphere because of the presence of the integrals in Eq.  (16). 
In order to perform the integration,numerical integration was employed 
using a computer program written to calculate the back scattered fields. 
This computer program is presented in .Appendix B.    Also,   it remains 
to determine the constants Ul and U2 . 

23 



Fig.   12.    Physical optics approximation for the prolate spheroid, 
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The computer program allows an easy determination of the proper 
values of the parameters Ul and U2 through the process of iteration and 
comparison. 

It seems reasonable to expect that the value Ul for the diffraction 
constant is comparable to that of the sphere.    As a first approximation 
Ul is taken equal to the value for the sphere,   i.e.,   (0.27).    Also it 
seems reasonable that the value for the attenuation coefficient should 
be reasonably close to that of the sphere for spheroids of moderate 
eccentricities.    The case of the 2:1 spheroid is examined here since 
a large amount of data are available for this target.    It is of interest 
to compare the maximum and minimum radii of curvature for a 2:1 
prolate spheroid.    It is apparent that the maximum and minimum radii 
of curvature in the x-y plane occur at © = 0 and tr/2,   respectively. 
Using Eq. (14) we find that 

(25) Pmin = j 

and 

p =  4b 

thus the ratio pmin/ pmax =    ^    . 

If we define the ratio of the radius of curvature in the direction of 
propagation of the creeping wave to the orthogonal radius of curvature 
to be RQ,   we have the following correspondence: 

Body Ra U2 

Cylinder 0 1.68 

Sphere 1 0.84 

2:1 Prolate Spheroid Rcx^n = 1 Not yet 
(Parallel Polarization)   R™ = 4 determined 

Thus one expects that the value of U2 for the prolate spheroid will be 
equal to or less than that of the sphere,   and may indeed vary along the 
surface of the spheroid.    However,  to a first approximation a constant 
value of U2 will be assumed,   since the form of a possible correction 
term to the attenuation coefficient is not known. 
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Using the computer program,   the back scatter as a function of 
incidence angle was computed for a range of U2 values for 0.2 to 0.8, 
and with Ul equal to 0.27.    The results of these computations are shown 
in Fig.   13.    It is seen that for kQa values greater than approximately 
3.0,   satisfactory results are obtained.    However,   the present form of 
the analysis results in a creeping wave contribution which is too large 
for values of kQa less than 3.0.    As a further check computations over 
a range of k0a values were made for the special case (perpendicular 
polarization) shown in Fig.   14.    Here we see that the path traversed 
by the creeping wave is circular with a value Ra = 1/2,   and U2 was 
chosen to be 0.84 as a first approximation.    An adaptation of the previous 
computer program for the sphere was made by using the "physical optics" 
form for the spheroid.    The resultant program is presented in Appendix B. 
Figure 15 presents the results of this computation,   and it is seen that 
excellent agreement between the computed and measured values is obtained 
It is also noted that the curve computed using creeping-wave theory is the 
same as (within computational accuracy) the curve predicted by Moffatt 
using time domain analysis. 
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Fig.   13.    Backscatter patterns of the prolate spheroid for a 
range of U2 values (parallel polarization). 
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2e"" 

Fig.   14.    Scattering by the prolate spheroid for perpendicular 
polarization and 6 = 90° . 

From the excellent results of Fig.  15 it would seem that a more 
accurate calculation of the patterns of Fig.   13 should be possible for 
small values of kQa.    The inaccuracies in Fig.   13 for small values of 
k0a are seen to occur in the region about 6 =0 (i.e.,  nose-on).   A 
possible explanation of these inaccuracies is that the effects of the small 
radius of curvature at the "nose" of the spheroid are not accurately pre- 
dicted by a single term in the attenuation coefficient.    Another possibility 
is that a reflection occurs at or near the nose thus decreasing the effect 
of the creeping-wave fields.    Future work should be devoted to extension 
of the analysis to smaller spheroids and the formulation of a computer 
program for a general angle of incidence.   A goal of this research would 
be to evaluate the constant associated with the attenuation factor as a 
function of the ratio of the principal radii of curvature;  i.e.,   a more 
accurate form for U2 vs.  Ra should be found.    The values for Ra = 0, 
1,   and oo  have already been established within reasonable limits. 
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C.     Analysis of the Ogive and Spherically 
Capped Ogive in the Near Nose-On 
Region 

The backscatter of the ogive has been treated by Peters    using a 
traveling wave antenna approach.    A modification of this traveling wave 
analysis has been developed by Peters     which accounts for radiation 
losses through use of a creeping-wave attenuation.    Cohen7  experiment- 
ally determined values for the reflection at a tip of the ogive.    Here we 
shall show that a consistent picture of scattering by the ogive can be 
formulated using creeping-wave analysis and application of geometrical 
theory of diffraction techniques .    In particular it is shown that the wedge 

18 diffraction coefficient derived by Pauli      is applicable to the determina- 
tion of the tip reflection and transmission coefficients . 

Figure  16 shows the ogive and the coordinate system.    As in the 
case of the prolate spheroid,   incident energy is trapped at points A and 
B where the incident electric vector is parallel to the normal to the 
surface.    These creeping waves travel along the ogive until they en- 
counter the tip. 

At the tip,   part of the creeping-wave energy is diffracted as 
creeping waves on all geodesies containing the tip and the remainder 
is radiated from the tip.    The previous treatment      assumed that the 
creeping-wave fields on all of the geodesies have equal magnitudes. 
This is approximately correct but the small differences in the magni- 
tudes will yield the on-axis creeping-wave field which can be observed 
in the measurements reported by Blore.19    Off-axis the creeping wave 
return is a result of the creeping waves which propagate on the ogive 
in the plane defined by the incidence direction and the incident E-field. 
In this plane the effect of the tip can be characterized by reflection and 
transmission coefficients at the tip.    Siegel et al      have derived an ex- 
pression for the physical optics scattering by the ogive by assuming that 
for both monostatic and bistatic returns in the near nose-on region the 
illuminated tip is the dominant scatterer.    Their expression for on-axis 
backscatter is 

' (C°*"T) . rr,,„.-»h<i_ 
16TT \Ukr r       2       -J2kr u6) ,M.X,a,>?J   .1X«°»-^-^ 

Referring to Fig.   16,   the backscattered fields attributed to the 
creeping waves may be written as 
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Fig.  16.    Coordinate system for the ogive 

(27) 

where 

-cw E1'  D2 JRt [e<Jko + aog> 'Li e"J -i2k0s 

+   e (jk0 + aog) • 2L2    „+j2k0s ] 

♦ *Tt [.-<*.+ w<^H} jig 

D      is the ogive diffraction coefficient, 

Rt     is the tip reflection coefficient, 

Tt     is the tip transmission coeffection, 

3^ 



aoe  is the ogive attenuation coefficient,   and 

S, Lj, L2 are as shown in Fig.   16. 

Bistatic radar cross section measurements of the ogive have shown 
that the energy incident on the tip is scattered by the tip along each 
geodesic on the ogive; i.e.,   these tip-scattered fields show no <|> 
dependence.    This agrees with the results of the equivalent antenna 
approach,   for which no <\> variation of the field was assumed.    Thus 
a factor of I/SIZTT is introduced to account for the lack of >}> dependence 
of the tip-scattered fields.   Again attachment points A and B are 
determined by finding the points on the surface where the normal to 
the surface is parallel to the incident electric vector.    Straight- 
forward analysis results in the relations 

(28) S    = h sin 6, 

1-^-9] 

r{S. + e 

In the case of the ogive Peters      has postulated that the diffraction 
coefficient remains unchanged from that of the sphere and that the 
attenuation coefficient is 

1 *       A      J "6 
(29) aog = ^as  =   0.21a   -' X"3   e 

It is proposed here that the reflection and transmission coefficients 
be determined using wedge diffraction theory and geometric diffraction 
theory. 

It is seen from Fig.   17a that the tangent planes to the surface at the 
tip of the ogive,   which are normal to the plane defined by the incidence 
direction and the electric field vector,   form a wedge.    Using the wedge 
diffraction formulation of Pauli18 we write 

(30) Rt = N/27kr~eJkr  vB(r, n, IT) 
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TANGENT 
PLANES 

Fig.   17.   Tangent planes at the tip of the ogive 

and 

where 

Xt = 'vZTTkr    e^        Vg(r, n, nir)   , 

n a    _  (2TT - WA) 
IT 

and where the form of vg given in Eq.  (48) for large values of kQr is 
employed.    Only the relative magnitude of the diffracted fields is utilized, 
resulting in the multiplication of vg by the factor N/2irkr e^T .   Previously, 
Cohen7   had used an experimental approach to determine values of the 
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reflection coefficient.    His method actually determined the sum of the 
reflected and transmitted components. 

The radar cross section for long thin bodies has been derived by 
considering the body to be an equivalent lossless antenna.1 The radar 
cross section of an antenna is 

(31) _ „2   G2(e>9) .2 o- = v 

where 

G(9i©) is the gain of the antenna, 

6,9 are '.he far field angles,   and 

Y is the voltage reflection coefficient at the distant end. 

The approximate echo area obtained by this equivalent antenna approach 
is compared in Fig.  18 to the experimental echo area.    The difference 
between this lossless theoretical picture and experimental values is 
attributed to a loss mechanism.    This loss mechanism could not result 

-•--•--•--•   TRAVELING   WAVE 

-A--A-A--A  CREEPING WAVE 

R =14.OH 

'  ■  9.5Gc 

RADIATION   LOSS 
CORRECTION NO RADIATION 

LOSS 

-20* 0 20* 

Fig.   18.    Backscattered field patterns of the ogive. 
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from energy absorption since the target is nearly perfectly conducting. 
It has been shown11   that this loss mechanism is due to radiation,   and 
that the attenuation coefficient appropriate to determining the loss is 
that of Eq.  (29).    Thus the geometrical theory of diffraction solution 
can be used in the previous equivalent antenna approach to correct the 
lossless radar cross section computation.    Computing the gain pattern, 
G(Q,cj)),   as in the previous analysis11-7  and using the ogive attenuation 
coefficient to correct the gain for radiation loss,   one obtains 

(32) 
^lossless 

-a«i + e-a£2 

The resultant cross section computed using this correction for radiation 
loss is shown in Fig.  18 and is seen to be in excellent agreement with 
the experimental results. 

Equation (27) has been used to calculate the maximum scattered 
fields for ogives having tip angles of 40°  and 30° with radii of 11 . 3X. 
and 77\,   respectively.    A result is shown in Fig.   18.    It is seen that 
satisfactory agreement was obtained in the case of the 40°  ogive but 
the agreement in the case of the 30°  angle was not as good.    In addition, 
the scattered fields on-axis were computed using Eq.  (33); 

(33) Eaxis=   Ei°2 J2Rte-(Jko + a°g),2:Ll   +2Tte
(-jko + a°g)'2Ll] 

2 e"JkR 

2TTR 

Equation (33) for the on-axis field    was obtained by assuming that the 
form of Eq.  (27) holds and that the fields diffracted by the tip in the 
shadow follow geodesies on the ogive.    Also it is assumed that the tip- 
scattered fields are uniform thus producing a radial field distribution 
at the shadow boundary.    Integration of the contributions around the 
shadow boundary produces the factor of two difference in Eq.  (27) and 
(33).    Results obtained using Eq. (33) were compared with the results 
obtained by Blore19 for an ogive with a tip angle of 40° and a radius of 
5.65X.    It was found that Eq. (33) did not accurately predict the axial 
creeping-wave contribution because the magnitude    of  |T|   -   [R|  was 
too large.    The results of Blore indicate that the on-axis creeping-wave 
contribution must be of the same order of magnitude as the tip-scattered 
field,  which may be expressed as 
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(34) 

The above results indicate that ' Rt,   and    Tt    are nearly equal,   a fact 
not predicted by wedge diffraction. 

Unfortunately Rt and Tt are evaluated for two-dimensional geometry. 
There is no canonical solution for these diffraction parameters when 
the wedge is  replaced by a cone tip canonical surface.    However this 
approach does explain the presence of the creeping-wave term for the 
ogive on-axis  in that Rj. and Tt are different in magnitude,   thus result- 
ing in an on-axis creeping-wave contribution,   although the resulting 
contribution is in error.    Further theoretical and experimental exami- 
nation of this problem is required in order to obtain a more accurate 
solution for the ogive. 

Moreland, Peters, and Kilcoyne have applied creeping-wave theory 
to analysis of a spherically capped ogive as shown in Fig. 19. They have 
expressed the scattered field as 

(35) E. = E1 D*     e"2Y^ 'Og 

+ 2Tns  T 

g^ofr   re-J^o« + ^ogre+e-zYogr0n 

OS   xso 
Jjk0«+ Ygrg^ + jir) 1 

ZTTR 

where 

Yog 

eo,e1 

a°g 

D°g 

Vs 

jk0 + aog - 

radius of curvature of the ogive, 

radius of the spherical cap, 

angles shown in Fig.   19, 

attenuation coefficient of ogive, 

diffraction coefficient, 

jk0 + as ,   and 

attenuation coefficient of the sphere. 
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Fig.   19.    The spherically capped ogive. 

The reflection coefficient,   T,   and the transmission coefficients,   T0s 
and Tso»   arise because of the change of surface impedance at the junction 
of the ogive and sphere.    The surface impedance of the ogive is taken to 
be ZQ,   the impedance of free space,   and the surface impedance of the 
sphere is taken to be the ratio of ED to H    for the fields of the major 
creeping waves postulated in Eqs.  (5) and (6) for the sphere.    Referring 
to Fig.  3 we see that this  ratio is dependent upon the sphere radius and 
can be determined from the exact fields of the sphere for a given radius. 
Thus  F and Tos can be written as 

(36) v.h. 
ZS   +   ZQ 

and 

(37) T os 
2Z, 

Zs + Zo 
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Moreland et al    found that it was necessary to assign a negative value to 
T in order to obtain meaningful results,   but offered no explanation for 
this phenomenon.    The explanation for the difference in sign between the 
terms in Eq.  (35) is illustrated in Fig.  20 and is explained using geo- 
metrical theory of diffraction analysis.    It is known that if a ray path 
encounters a discontinuity in a surface (as shown in Fig.  20   ) the 
incident ray is diffracted at the discontinuity giving rise to the exist- 
ence of a caustic at that point.    The case of a "ring" discontinuity,   as 
exists here,   introduces a phase shift of TT/ 2 radians in the ray passing 
through the discontinuity.    Figure 20   ,   due to Kouyoumjian, 15   illustrates 
this process.    If the process of reflection and transmission of the incident 
ray is described as follows,   it is seen that this phase shift must be taken 
into account.    The process may be described in the following steps:     The 
incident ray,   which is bound to the surface,   encounters the discontinuity 
and gives rise to reflected and radiated fields.    The reflected field is 
obtained using Eq.  (36).    Next the radiated field in the direction of the 
surface is obtained from the transmission coefficient.    The transmitted 

SHADOW  BOUNDARY 

TOP VIEW 
WAVEFRONT - 

INCIDENT 
RAY 

CAUSTIC 

WAVEFRONT 

SIDE  VIEW 

Fig.  20.    Diffraction at a surface discontinuity 
which gives rise to a caustic. 

3V 



field proceeds through the discontinuity undergoing a phase shift due to 
the caustic of the radiated rays and re-attaches itself to the surface. 
Since the transmitted field undergoes this process twice in its travel 
around the spherically capped ogive,   the total phase shift is TT   radians. 
In addition,   the factor 1 /\TZT\  proposed by Moreland et al is retained to 
account for the rotational symmetry of the caustic which causes dif- 
fracted rays to propagate along the spherical cap in directions other 
than that of the plane of incidence,   thus decreasing the backscattered 
field.    Combining all the terms the total expression for the backscat- 
tered field is 

(38) Es = E*D&g e-2V8o i"r [e-j2k°{ + ^gr% e'^og^ 

+ 2 Tos Tos    re-J(ko< + Ysrs2e1+j2Trf 

The results of the computation for the spherically capped ogive are 
presented in Fig.  21 and compared to experimental measurement. 
It is seen that in the near nose-on region the results are in good agree- 
ment with measurement.    This form of creeping-wave analysis,   coupled 
with the traveling wave picture and physical optics,   allows prediction of 
the backscattered field of the ogive over a wide range of incidence 
directions and k0a values.    It should be noted that the impedance of the 
creeping wave is obtained by a best fit of the fields at the surface of the 
sphere in the entire shadow region.    This would include the fields close 
to the point at the rear.    It has been noted that this is a region of poor 
fit,   regardless of the approximation used,  because there are fields pre- 
sent here which are not included in the simple creeping-wave picture. 
This creeping wave picture,   as noted previously,   does not include a 
caustic at the point at the rear.    Further improvement in these results 
would be anticipated if the fields were more closely matched by two 
creeping waves at a distance removed from the rear point and if multiple 
interactions are included. 

II.        CREEPING  WAVE  ANALYSIS   OF   PLANAR 
TARGETS   FOR  EDGE-ON  INCIDENCE 

A.     The Circular Disk 

Ufimtsev2 and DeVore and Kouyoumjian have treated the circular 
disk for arbitrary incidence angle and polarization using diffraction tech- 
niques.    For the case of edge-on incidence with polarization parallel to the 
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Fig. 21 .    Backscattered field pattern of the 
spherically capped ogive. 
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edge (as shown in Fig.  22) it is possible to construct a solution using 
creeping-wave concepts.    First the specular return is computed by- 
applying geometrical optics in the plane of the disk and edge diffraction 
in the plane normal to the edge.   As seen from Fig. 22,   the geometrical 
optics spreading factor in the plane of the disk can be found by considera- 
tion of the reflected rays.    It is seen that these reflected rays diverge 
from the virtual focus located a distance a/2 from the center of the disk. 
The geometrical optics spreading factor is written as 

[(P1P2/(P1+   0(P2  +   OP, 
15 

where for plane wave incidence px ~*00 •    In this case p2  is the focal   x 

distance a/2 and thus the space attenuation factor becomes (a/(a+2£))2 

Combining the space attenuation factor and the result using the edge 
diffraction coefficient of Appendix A we have,   for the backscattered 
field from the specular point, 

I 
inc 

GEO.   OPTICS 

Fig.  22.    Scattering by a circular disk edge on, 
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<39)     E*p = -lj^ 
■i\ e-jkR 

e   
R 

Next it is postulated that two creeping waves travel around the disk,   as 
in the case of the cylinder and sphere.    Thus the creeping-wave back- 
scattered field can be written in the form 

(40) Ecw =  - 2D2
d e-J2k°a  e~(jk° + ad^a    e'jkR 

R 

It remains to determine the attenuation and diffraction coefficients which 
apply to such a target.    If the disk is considered to be the limiting case of 
an oblate spheroid,  it is seen that the ratio of the orthogonal radii of 
curvature at the edge of the disk can be expressed as 

(41) Ra = %      • 
b 

where a and b are shown in Fig.  23. 

Now,   as the oblate spheroid is  "squashed down" into a disk and 
b — 0 it is seen that the ratio R —oo.    Relating this to the previous ratios 
of the cylinder,   sphere,   and ogive it is reasonable to expect that the 
attenuation coefficient will possess a magnitude U2 on the order of or 
smaller than that of the ogive.    As a first trial a value U2 = 0.21 (i.e., 
that of the ogive) was chosen.    It is more difficult to speculate about the 
form and magnitude of Dd so the experimental data of DeVore and 
Kouyoumjiam have been used to determine Dd.    The experimental data 
indicate a deep null in the cross section for a value of kQa = 6.    Using 
Eq.  (40) and taking a, = a      the total field was set equal to zero for 
kQa = 6.    Next it is postulated that Dd

2 is of the same functional form 
as previously stated.    This calculation results in 

- i _HL    i • 3'ir i • 3™ 
(42) Dd

2 = 0.0974  a-3 k~> e  ' ~±Z e  
J T * 2. D2^^   e  J  4"      . 

This value of D2   was then used in connection with the computer program 
in Appendix B to calculate the curve shown in Fig.  24.    In order to check 
the results for kQa values larger than those reported by DeVore and 
Kouyoumjiam,   additional measurements were made.    These measurements 
are shown as a range of values because the difficulty in obtaining great 
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Fig.  23.    The oblate spheroid as an approximation to the disk. 

precision in the measurements of such low cross section targets.    It is 
seen that this analysis yields results which are in surprising agreement 
with measurement.    It seems reasonable to examine other edge-on con- 
figurations to determine if significent creeping-wave contributions are 
caused by edges. 

B.    Analysis of the Flat "Ogive" 

The analysis of the flat ogive parallels that of the ogive of revolution 
with the attenuation and diffraction coefficients developed for the disk sub- 
stituted for the previous ogive attenuation and diffraction coefficients. 
Again,   Pauli's form for wedge diffraction is employed to specify reflection 
and transmission coefficients at the tip.    However,  for the case of the flat 
ogive the tip is treated as a wedge rather than as a point in the determination 

44 



MEASURED 
• • • • DEVORE 8 KOUYOUNJIAN 

CREEPING WAVE 

y 

O.OI 

o.ooi L_J_L_L i    I    i 
10 15 20 

ka 
25 

Fig.  2.4.    Backscattering by the circular disk edge one 
for a range of kQa values. 
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of the geometrical optics spreading factor.    The wedge diffraction coef- 
ficient given in Appendix A accounts for this spreading of rays.    The 
resulting expression for the scattered field is 

(43) Es = E{Dz
d JRw[e-(Jko + aog) *2L,  e-j2k0s 

+ e-(Jk0 + aog)2L2    +J2k 

"] 
2Twre-(Jko + aog)(Li + L2)] e-JkR 

where 

2 
Dd      ^s given by Eq« (42) , 

RW and T"w are given by Eq.  (30) , 

aoe is the ogive attenuation coefficient,   and 

Li, L2>   and s are shown in Fig.   16  . 

Equation (43) has been used to calculate the echo area of the flat ogive 
and the results are presented in Fig.  25.    It is noted that the maximum 
return of the flat ogive,   as measured and calculated,   is greater than the 
return of the ogive of revolution.    This is a result of the difference in 
the geometrical optics spreading at the tip.    Whereas the ogive tip dif- 
fracts energy into all sectors of three-dimensional space,   the flat ogive 
wedge concentrates the diffracted energy in the plane of the flat ogive. 
Thus the geometrical optics spreading factors at the tip differ by 2TT 

which compensates for the lower diffraction coefficient of the flat ogive 
and results in a higher return for the flat ogive.    This rather surprising 
fact is substantiated by the measurements shown in Fig.  25 and it is seen 
that good agreement between theory and experiment is obtained. 

The results of the analysis of the flat ogive indicate that large 
creeping-wave contributions to the scattered field of a target can result 
from the presence of edges.    This type of creeping-wave contribution is 
limited to the plane containing the "fin".    In scattering directions where 
the creeping wave on the edge does not contribute,   it is possible to obtain 
an estimate of the scattered field using wedge diffraction techniques.     ' 
At the present time only an estimate is possible because the diffraction 
coefficient for a finite edge is not known.    This estimate is obtained by 
applying the diffraction coefficient in the plane normal to the edge and 
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Fig. 25.    Backscatter of the "flat" ogive 
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assuming that the edge acts as a traveling wave antenna with constant 
current excitation in the plane(s) containing the edge.       Such an 
assumption does not meet the boundary condition on a finite edge but 
does provide an estimate of the maximum  scattered field. 

Further study of the effects of creeping waves on edges in com- 
bination with boundary value techniques may lead to a diffraction type 
solution for scattering by a finite edge.     Such a solution will allow 
rapid calculation of the effects of the presence of fins and edges on a 
target. 

III.      CONCLUSIONS 

It has been demonstrated that the geometrical theory of diffraction 
which incorporates edge diffraction,   creeping wave,   and geometrical 
optics techniques can be applied to the problem of scattering by volu- 
metric bodies and edges.    In the sample cases considered (spheres, 
prolate spheroids,   ogives,   capped ogives,   disks,   and flat ogives) 
solutions for the backscattered fields were obtained in simple analytical 
form.    Computation of the backscattered fields using these simple forms 
is straightforward and takes but a small amount of time on a computer. 
The nature of the geometrical theory of diffraction solution makes it 
easy to determine the major scattering centers on a target through the 
use of ray-tracing techniques and simple computations.    Thus a rapid 
estimate of radar cross section can be obtained for a special case. 

Current limitations on this method include the lack of a diffraction 
solution for scattering by a finite edge,   and the unknown dependence of 
the attenuation and diffraction coefficients on the orthogonal radius of 
curvature of a solid body.    However,   results obtained to date indicate 
that the effects of the orthogonal radius of curvature may be approximated 
with good accuracy.    It also appears that no problem exists for which 
continued research would not yield a solution.    A satisfactory approxi- 
mation for the scattering by a finite edge seems possible using a combina- 
tion of diffraction and boundary value techniques.    Any problem that cannot 
be solved analytically can be solved by experimental techniques; e.g.,  the 
reflection and transmission coefficients for the ogive.    The unifying char- 
acteristics of the method offer the expectation that the shadow region geo- 
metry of more complex targets could be included in radar cross section 
solutions,   or even that the characteristics of the shadow region could be 
determined from the measured scattered fields caused by the electro- 
magnetic energy that has propagated through this region. 
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IV.      RECOMMENDATIONS  FOR  FUTURE  RESEARCH 

The concept of creeping wave diffraction has been established in 
this report for geometries that have not been previously considered 
from this point of view.    It remains to obtain more precise values of 
the diffraction coefficients and attenuation factors for the shapes dis- 
cussed herein.    These efforts should not be restricted to any one ap- 
proach.    Experimental data and modern computational methods such 
as the point matching boundary value techniques as well as the concepts 
of wedge diffraction should be used to obtain improved values for these 
quantities . 

Applications of wedge diffraction and the impedance of the creep- 
ing wave should be made to evaluate the effects of a discontinuity in the 
shadow region.    Attention should be focused on the exact fields at the 
surface of the sphere.   A serious attempt should be made to reconstruct 
these fields from the creeping wave point of view.    Such studies should 
yield a more profound understanding of the creeping wave mechanisms 
and the limitations of this approach.    The study should be extended to 
geometries other than those discussed in this report.    An ultimate goal 
of this approach would be to reduce the computation of the scattered 
fields of this type to the level that practicing engineers could readily 
evaluate them or conversely that a generalized computer program could 
perform this task for a body of general shape. 

The applications to antenna theory should not be overlooked.    An 
aircraft is a curved surface.    An antenna on such a surface could be 
effected by such a creeping wave.    Ground planes could be terminated in 
a curved edge.    This would reduce irregularities that appear in antenna 
patterns mounted on such a ground plane.    In this case it becomes 
necessary to separate the diffraction coefficient into its two components 
as trapping and launching mechanisms do not necessarily occur together, 
i.e.,   the antenna parameters would replace one or the other of these on 
transmission or reception respectively. 
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APPENDIX A 

In order to satisfactorily calculate diffracted rays it is necessary 
to determine the diffraction of plane and cylindrical waves by a wedge. 
This has previously been done (see Ref. 24) and an expanded treatment 
is presented here.    Sommerfeld obtained the solution for a perfectly con- 
ducting wedge composed of two half-planes with a plane wave incident on 
the wedge.    Sommerfeld also obtained an explicit form of the solution for 

lft zero wedge angle; i.e.,   a half-plane.    Pauli      determined an explicit 
form for the  general wedge .    Oberhettinger     presents a different form 
for the general wedge which he obtained using Green's function techniques. 

The diffraction of a cylindrical wave by a wedge is obtained by the 
use of reciprocity,   together with Pauli's expressions for wedge diffraction. 
Pauli's expressions give the diffraction of a plane wave by a wedge for a 
general angle of incidence and for polarization either perpendicular or 
parallel to the edge of the wedge.    The total field at observation point P 
of cylindrical co-ordinates (r,i\i),   as shown in Fig.  26,   is given by 

Fig.  26.    Diffraction by a wedge of included angle (2-n)ir, 
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(44) u(r, n,i)j) = v(r, n, ty-<\>0) ± v(r, n, I|J+IJJ0) 

for a plane wave incident from direction \\iQ.    The plus sign applies for 
the polarization of the electric field perpendicular to the edge 

9u 
9n 

= 0 
edge 

and the minus sign applies for polarization parallel to the edge (u[    ,      =0J 
The quantities v(r,4>) are given by ^ 

(45) v(r, n, 9) = v*(r, n, 9) + vß(r, n, 9) , 

where v' (r, n, 9) is the geometrical optics field; and is given by 

(46) 

where 

v*(r, n, <(>) =   < 
exp[ jkr cos (9 + 2TT nN)J , -IT + 2TT nN < 9 < TT + 2TT nN 

0 otherwise, 

N = 0,   +1,  ±2, • 

vB(r, n, 4>) is the diffracted field for a wedge of angle WA = (2-n)Tr; and is 
given by 

TT 

J4 
(47) vB(r, n,9) = 

-S/TT      \n n) 

cos   — 
2 

TT 9 
COS   n   -    COS   n 

jkr cos 9 
»oo 2 

e"JT 

iakr 
dx 

•   •   •        > 

where a = 1 + cos 9  . 
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Equation (47) is composed of a leading term plus higher-order 
terms which are negligible for large values of kr.    For large values of 
(akr) Eq. (47) becomes 

-j(kr + ir/4) 
(48) vR(r,n,4>)  = 

1 TT 
— sin — 
n n 

IT 4> 
cos — - cos 

n n 
^2irk] 

The diffracted field,   as expressed by Eq.  (48),   is that from which the 
asymptotic diffraction coefficients of the geometrical theory of dif- 
fraction are obtained.       Since this expression is valid only for large 
values of (akr),   it is not valid on the shadow boundary because a = 0 
there.    Then Eq.  (47) must be used,  which gives the value of the dif- 
fracted field on the shadow boundary as 

(49) vB(r,n,TT) =Tl  e_jkr 

{ 
upper sign for <J> = TT " 
lower sign for (j> = TT+ 

The value of v(r, <(>) on the shadow boundary can then be obtained 
from Eqs.  (45),   (46),   and (49) as 

(50) v(r, n, TT) =    i e"jkr  +  •   •   •      , 

which is one-half of the incident field on the illuminated side of the 
shadow boundary. 

The series representation of Vg given in Eq.  (45) is valid every- 
where except for the values 

(51) 4> = + Tr + 2TrnN,   nil,   N = ±1,  ±2, 

Near these values the series representation converges slowly,   and the 
periodicity property of the exact function v(r, n, 4>) can be used to overcome 
convergence difficulties near these values.    The exact function v(r, n, 4>) 
is periodic in 2Trn so that 
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(52) v(r, n, <|) + 2imN) = v(r, n, <}>),   N = 0, + 1,  + 2, 

Therefore,   if the series representation of vg converges slowly because 
<j> is near one of the values expressed by N £ 0 in Eq.  (51),   the periodicity 
property of Eq.  (52) can be used to represent v(r, \>) by employing the 
series representation near $ = + ir(N = 0).    The only case for which all 
boundaries are regular and the substitution of Eq. (52) is not necessary 
is for the thin half-plane,   in which case n = 2. 

We now examine the behavior of the diffraction coefficient vg(r, n, cj)) 
for the case illustrated in Fig. 27 in which two reflected rays exist at 
angles ipi  and *\tz •    We first examine the values of cj) = \\> + ijjQ for the dif- 
fracted rays corresponding to the directions of these reflected rays. 

REFLECTED 
WAVE    NO. 

Fig.  27 .    Case of diffraction by a wedge where 
two reflected rays exist. 
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The values of the pertinent angles are 

(53) \\>i   = TT -   i\i0 ,        tyz - (2nTr - IT) - \\)0 

Thus the values of 4> = i|> + ijj0 are 

(54) 4>! = TT , 4>2 = (2niT - TT)  . 

For 4>i = TT Eq. (47) expresses the value of the diffraction coefficient and 
thus the total field at i|> = i|*i is one-half the geometrical optics reflected 
field on the illuminated side of the shadow boundary,   as given by Eq.  (50) 

However,   for cj>2 = Znir - TT  and n £ 2,   Eq.  (47) is not analytic and 
consequently the following substitution is made: 

[55) v(r,n,cj>) — v(r, n, 4>-2TT n) 

for values of 

(56) (p >  im 

The region over which the subtitution of Eq.  (55) is made,   as expressed 
by Eq. (56),   is determined from the symmetry property of v(r, n, 4>); i .e . 

(57) v(r, n, -<p) = v(r, n, +c)>) 

That is,   if the substitution of Eq.  (55) is made for values of <J) < im,   then 
the substituted values of cj> - 2Trn are closer to the value of non-analyticity 
TT -2mr than the original values of $ were to the value of non-analyticity 
2nTT-TT.    It is also noted that the value substituted for v(r, n, <J>2) is 
v(r, n, -TT),   which corresponds to the correct value for a shadow boundary. 

The equations given in this Appendix apply for plane-wave incidence, 
but they can be used for cylindrical-wave incidence as shown below. Con- 
sider the two situations shown in Fig.  26.    It is desired to find the field u 
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in some direction £ for the wedge illuminated by a cylindrical wave with 
its source located at (x0, a).    By reciprocity the field ua is equal to the 
field ut, which is located at the point (r = x0,ijj = a) and with a plane wave 
incident from the direction 4>0 = £•    The value of u^ is given by Eq.  (47). 
Thus using the property expressed in Eq.  (44) the solution for diffraction 
of a cylindrical wave by a wedge becomes 

(58) ua = v(x0. n, |+ a) ± v(x0, n, i- a) 

The field at infinity is given by Eq.  (58) for a perfectly conducting wedge 
illuminated by the line source at (x0. a) • 

If the quantity (akx0) is sufficiently large for Eq. (48) to be valid, 
then the diffraction pattern for cylindrical-wave incidence has the same 
form as that for plane-wave incidence.    In other words,   the diffraction 
for cylindrical-wave incidence is the same as that for plane-wave inci- 
dence in regions sufficiently removed from the shadow boundaries.    The 
region near the shadow boundary in which Eq.  (47) must be used increases 
for decreasing values of x0 and may encompass all 360 degrees. 
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APPENDIX  B 
A  LISTING OF   COMPUTER  PROGRAMS 

USED IN  THE   PREPARATION OF   THIS  REPORT 

These programs are coded in SCATRAN,   an automatic compiler 
language developed by the Numerical Computation Center of The Ohio 
State University.    SCATRAN is similar to FORTRAN IV  in the form 
of arithmetic expressions used.    An experienced programmer can easily 
translate these SCATRAN programs into any desired language. 
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•»# RUN 
*»» DUMP LOWER CORE 
»** SCATRAN 

C DIFFRACTION ANALYSIS OF bACKSCATTER BY A CIRCULAR DISC-EDGE 
ON- 

C OGIVE ATTENUATION AND DIFFRACTION COEFFICIENTS USED- 
C WAVELENGTHM .- 

COMPLEX(El.E2.E3tE4.E5tCEXPL..DSQ.ALPH.X5.ECW«tCWT«ET0T)- 
C0MPLEXCE6)- 

START     PI =3.1415927- 
TP*2.*PI- 
Ul=0.0974- 
U2=0.210- 
R13=l./3.- 
R23=2./3.- 
PI6=Pl/6.- 
PI12=P1/12.- 
READINPUT.8.(NKA)- 
WRITE0UTPUT.3.(NKA>- 
READlNPUT«7.CSFKA.OELKA)- 
WRITE0UTPUT.2. (SFKA.DELKA )- 
WRITE0UTPUT.2- 
E1»C0S.(P!12>-.1.SIN.(PI12>- 
E2=C0S.<PI6)+.I.SIN.(PI6>- 
E6=C0S.(PI4)-.I.SIN.(Pl4>- 
DOTHROUGH(S100>.I = 1 •1 . I.LE.NKA- 
FI«1-1- 
FKA*SFKA*F1#DELKA- 
A=FKA/TP- 
Fl=FLPFL.<A.R13)- 
DSQ=U1*F1*E1- 
F2=l./FLPFL.(A.R23)- 
ALPH=U2»F2»E2- 
X3*2.»FKA- 
E3=C0S.(X3)-.I.SIN.(X3>- 
FL*P1*A- 
FLK=PI*FKA- 
E4=COS.(FLK)-.I.SIN.(FLK>- 
X5=-FL*ALPH +.I.O.- 
E5=CEXPL.(X5>- 
ECW=DSQ«E3#E4»E5- 
ECWT=2.#ECW- 
ESP*-(SORT.(A/2.)>/TP- 
ESP*ESP*E6- 
ETOT=ESP-ECWT- 
Y1*.REAL.ET0T- 
Y2=.IMAG.ETOT- 
FETSQ=(Y1*YI>+(Y2*Y2)- 
SIGMA«4.«FETS0/(A«A)- 
WRITEOUTPUT.2•(FKA.DSO.ALPH,ETOT•SIGMA)- 
WRITE0UTPUT.2- 

S100       CONTINUE- 
CALLSUBROUTINE( )=ENDJOB.( >- 
ENDPROGRAM(START >- 

»*» DATA 
00500 
0.1        0.1 
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M»» WUN 
»*» DUMP LOWER CORE 
*»* 5CATRAN 

C DIFFRACTION ANALYSIS OF bACKSCATTER ÜY A SPHERE - 
c A CHECK ON REPORT OSURF iais-5- 
C WAVELENGTH=1.- 

COMPLEX(El.E2.E3«E4.E5.CEXPL..DS0.ALPH.X5.ECW.ECWT.ET0T.EP0 
)- 

START      PI=3.1415927- 
TP=2.*P1- l 

Ul=0.270- 
U2=0.210- 

R13=l./3.- 
R23=2./3.- 
PI6=PI/6.- 
PI12=PI/J2.- 
RADEG=57.29578- 
READINPUT.8.(NKA)- 
WRITE0UTPUT.3« (NKA)- 
READINPUT.7.(SFKA.DELKA)- 
WRITE0UTPUT.2. <SFKA.OELKA)- 
WRITE0UTPUT.2- 
E1=C0S.<P!12)-.I.S1N.(PI12>- 
E2=COS.<PI6)+.I.SIN.(P16>- 
DOTHROUGH(S100).1=1 ,1 . 1.LE.NKA- 
Fl=1-1- 
FKA=SFKA+FI»DELKA- 

A=FKA/TP- 
F1=FLPFL.(A.R13)- 
DSQ=U1*F1»E1- 
F2=FLPFL.(FKA.R13>- 
X1=0»750«PI- 
F3=FLPFL.(XI.R23)- 
ALPH=F2»F3*E2/(4.»A)- 
X3=2.*FKA- 

E3 = COS.(X3)-»I»SIN« CX3)- 
FL=PI*A- 
FLK=PI*FKA- 
E4=C0S.(FLK)-.I.SIN.<FI_K>- 
X5=-FL*ALPH +.I.O.- 
E5=CEXPL.(X5)- 
ECW=DSQ«E3*E4»E5- 
ECWT=2.«ECW- 
EPO=-0.5*A-.I.A/(4.*FKA)- 
ET0T=EP0-ECWT- 
Yl=.REAL.ETOT- 
Y2=.1MAG.ET0T- 
FETSQ=(Y1*Y1>+<Y2«Y2>- 
SIGMA=4.*FETSQ/(A*A )- 
Y3=.REAL.ECWT- 
Y4=.IMAG.ECWT- 
FMECW=SQRT.<Y3*Y3+Y4*Y4)- 
PHECW=FATAN2.(Y4.Y3)- 
PHDEC=RADEG»PHECW- 
WRITEOUTPUT.2.(FKA.SIGMA.EPO.ETOT.FMECW t PMDEC)- 
WRITEOUTPUT.2- 

S100       CONTINUE- 
CALLSUBROUTINE! >=ENDJ0B.< >- 
ENDPROGRAM(START)- 

»«« DATA 
00500 
0.1 0.1 
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•*» RUN 
»»• DUMP i_0«ltW COWL 
*** SCATRAN 

C DIFFRACTION ANALYSIS OF HACKSCATTER dv A SPMEME - 
C A CHECK ON REPORT OSURF 1815-5- 
C olSTATIC SCATTER OF A SPHERL- 
C A'AVELENGTHr 1 .- 

COMPLEX(E1.E2.CEXPL..DSQ.ALPH.EC*.ECWT.ETOT.EPO)- 
COMPLEX«ALPM1 .ALDI «ALD2.EXL.EXL1«EXL2 >- 

START      PI=3.1415927- 
TP=2.»P|- 
Ul=0.270- 
U2=0.2l0- 
R13=l./3.- 
P23=2./3.- 
PI6=P|/6.- 
Pl12=P!/12.- 
RADEG=57.29578- 
READ INPUT.8i(NKA.NTHETA)- 
WRITE OUTPUT.3.(NKA.NTHETA)- 
READ INPUT.7.(SFKA.OELKA.THETS.DELTH)- 
WRITE OUTPUT.2.(SFKA.DELKA.THETS.DELTH)- 
WRITEOUTPUT.2- 
El=COS.<P|12)-.1.SIN.(PI 12 J- 
E2=C0S.(PI6)+.I.SIN.(PI6)- 
DO THROUGH(SlOO).J»l.1.J.LE.NTMETA - 
FJ=J-1- 
THETD=THTS+FJ»DELTH- 
THETA=DEGRAD»THETD- 
THET2=PI-THETA- 
THET3=THET2/2.- 
WWITE OUTPUT.FMT1.(THETD)- 

F FMT1        (5X.Q»B I STATIC ANGLE « «.Fl5.8>- 
WR1TE OUTPUT.FMT2- 

F FMT2       (120M      KA SIGMA REEPO IMEPO 
RETOT IMETOT FMECW PMDEC 

>- 
DOTHROUGM(S100).I * 1.1.t.LE.NKA- 
Fl=1-1- 
FKA=SFKA+F!»DELKA- 
A=FKA/TP- 
FK=FKA/A- 
F1»FLPFL.(A.RI3)- 
DSQ=U1»F1»EI- 
F2=FLPFL.(FKA,R13>- 
XI*0.750*PI- 
F3=FLPFL.(XI«R23>- 
ALPH»F2#F3»E2/'(4.»A )- 
COS3=COS.(THET3>- 
EPOK-I.-.l.COS.(THET2)/(2.«FKA*C0S3»C0S3*C0S3))*0»S*A- 
DL=A»SlN.<THET2>- 
D2KL=2.«F<»0L- 
ALPMI=ALPH*.I.FK- 
DL1=A»TMETA- 
DL2=(TP-THETA)»A- 
ALD1=-ALPH1»DL1- 

ALD2=-ALPH1»DL2- 

EXL=C0S.(D2KL)-.I.SIN.(02KL)- 
EXL1=CEXPL.(ALDI)- 
EXL2=CEXPL.(AL02)- 
ECWT=-DSQ»EXL*(EXL1+EXL2 >- 
ETOT=EPO*ECWT- 
Yl*.REAL.ETOT- 
Y2*.IMAG.ET0T- 

59 



FETSQ*<Y1»Y1>+(Y2»Y2)- 
S1GMA=4.»FETSQ/(A»A)- 
Y3=.REAL.ECWT- 
Y4=.lMAG.ECWT- 
FMECW=SQRT.(Y3«Y3+Y4»Y4>- 
PHECW*FATAN2.<Y4«Y3)- 
PHDEC»RADEG»PHECW- 
WW I TEOU TPUT.2.(FK A.SIGMA .EPO.E TOT.FMECW.PHDEC) ■ 
WRITE0UTPUT.2- 

S100       CONTINUE- 
CALLSU3ROUTINE( >»ENDJOB. ( )- 
ENDPROGRAM(START)- 

*»• DATA 

• •• w js^ 

•••        DUMP LOWER CORE 
•«• SCATRAN 

C BACKSCATTER FROM A PROLATE SPHEROID- 
C SCATTERING IN THE PLANE 90 DEGREES FROM THE MAJOR AXIS- 
C WAVELENGTH*1.- 

COMPLEX(EJ.E2.E3.E4.E5.CEXPL..DSQ.ALPH.XS.ECW.ECWT.ET0T.EP0 
>- 

START      PI»3»1415927- 
TP=2.»PI- 
Ul=0.270- 
U2=0.210- 
R13=l./3.- 
R23=2./3.- 
PI6=Pt/6.- 
PI12*PI/12.- 
RADEG=57.29578- 
RAT|0=2.- 
READlNPuT.e.(NKA>- 
WRITEOUTPUT.3.(NKA)- 
READ INPUT,7.(SFKA.OELKA)- 
WRITE0UTPUT.2. (SFKA.DELKA )- 
WRITE0UTPUT,2- 
E1=C0S.(PI 12)-.I.SIN.(PI 12)- 
E2=C0S.(PI6)+.1.SIN.(PI6>- 
OOTHROUGH(S100)•I"I•1•I.LE.NKA- 
FI=I-1- 
FKA=SFKA+FI«DELKA- 
A=FKA/TP- 
F1=FLPFL.(A.R13)- 
DSQ=UI*F1»E1- 
F2»FLPFL.(FKA.R13)- 
Xl=0«750»Pf- 
F3=FLPFL.(XI.R23>- 
ALPH=F2«F3»E2/(4.»A>- 
X3=2.»FKA- 
E3=C0S.(X3)-.I.SIN.(X3)- 
FL=PI»A- 
FLK«Pi»FKA- 
E4=C0S.(FLK)-.I.SIN.(FLKI- 
X5=-FL*ALPH +.I.O.- 
E5=CEXPL.(X5)- 
ECW=DS0*E3«E4*E5- 
ECWT=2.»ECW- 
FAM*A»RATIO- 
EGO«0.5*FAM- 
EPOaEGO+.I.O.- 
ETOT=-EPO-ECWT- 
Yls.REAL.ETOT- 
Y2=.IMAG.ETOT- 
FETSQ»(YI*Y1)+(Y2*Y2)- 
SIGMA=4.*F£TSQ/(A»A>- 
SIGMAW=2.»TP#FETSQ- 
SIGLOG=LOG.(SIGMAW)- 
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Y3=.REAL.ECWT- 

Y4«.IMAG.ECWT- 
FMECW»SQRT.(Y3»Y3-t-Y4«Y4>- 
PHECW=FATAN2.(Y4.Y3)- 
PHOEC=RAOEG«PHECW- 
WRITE0UTPUT.2.(FKA.SIGMA.EPO.ETOT.FMECW.PHOEO- 
WRITE0UTPUT.2- 

WRITEOUTPUT.2.(FKA.SIGMA*.SIGLOG)- 
WRITEOUTPUT.2- 

S100       CONTINUE- 

CALLSUBROUTINE()=ENDJOB.()- 
ENOPROGRAM(START >- 

••• DATA 
00500 
0.1 0.1 

••# RUN 
#** DUMP LOWER CORE 
#** SCATRAN 

C    BACKSCATTER FROM A PROLATE SPHEROID USING GEOMETRICAL OPTICS AND 
CREEPING WAVE ANALYSIS - 

C FA = SEMI MAJOR AXIS - 
C FB * SEMI MINOR AXIS - 
C THT = ANGLE FROM MAJOR AXIS - 
C WAVE = WAVELENGTH - 

COMPLEX(ALPHL.GAMMAL.AECW.PL1.PL2.PHS.DSQ.ECW.ETOT>- 
C0MPLEXCE1.E2.E3)- 
COMPLEX(CEXPL.)- 
COMPLEX <CGO.EGOC)- 
COMPLEX(EPO)- 

C COMPUTE LIST OF CONSTANTS - 
START      PI=3.1415927- 

TP=2.»PI- 
PI2=PI/2.- 
Ul=0.270- 
U2=0.210- 
U2S=0.450- 

DELU2=0.050- 
NU2=3- 
R13»l./3.- 
R23=2./3.- 
R32=3./2.- 
Pl4=PI/4.- 
PI34*3.»PI4- 
PI6=PI/6.- 
PII2=PI/12.- 
RADEG=57.29578- 
DEGRAD=0.01745329- 
E1=C0S.(PI 12)-.I.SIN.(PI 12)- 
E2*C0S.(PI6)+.I.SIN.(PI6)- 
E3=C0S.(PI34)+.I.SIN.(PI34)- 
FEX=-0.5- 
FEXK= 0.5- 
READ INPUT.7.(FA.FB.THTS.DTHT>- 
WRITE OUTPUT.2«(FA.FB.THTS.DTHT)- 
READ INPUT.8.  (NTHT.NWAVE>- 
WRITE0UTPUT.3. (NTHT.NWAVE )- 
WRITE OUTPUT.2- 
FAB=FA*FB- 
G3«FLPFL.(FAB.R23 >- 
DOTHROUGH(S100).I=1.1.1.LE.NWAVE - 
READ INPUT.7.(WAVE>- 
FK=TP/WAVE - 
G1=FLPFL.(WAVE.R23)- 
G2=FLPFL.(WAVE.R13)- 
FKA=FK*FA- 
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WRITE OUTPUT,FMT1.(WAVE) - 
F FMTl        (5X.Q* WAVELENGTH = *.F15.8>- 

WRITE OUTPUT,FMT5, (FKA )- 
F FMT5        (5X.Q#FKA = *,F10.5)- 

DO THROUGH(Si 00>.KK=J . 1 .KK.LE.NU2- 
FKK=KK- 
U2=U2S+FKK»DELU2- 
WR1TE OUTPUT,FMT3.<U2>- 

F FMT3        (5X.Q* U2= «,FI0.5) 
WRITE OUTPUT,FMT2- 

F FMT2        (12CH THT REECW IMECW REEGO 
IMEGO RETOT I ME TOT SIGMA 

)- 
C COMPUTE THE COMPLEX ATTENUATION CONSTANT OF THE CREEPING 

WAVE USING THE ELLIPTIC INTEGRAL - 
TCWI=PI2- 
TCW2=3.»PIS- 
CALL SUBROUTINE(PALPH)=FINCP.(TCWI,TCW2.0.01,2,FA,F8,FEX) - 
ALPHL=U2«E2»PALPH#G3/G2- 

C COMPUTE THE PATH LENGTH USING THE ELLIPTIC INTEGRAL - 
CALLSUBROUTINE(PALPHK)=F!NCP.(TCWI ,TCW2,0.0| •2,FA,FB,FEXK ) - 
FKTL=EK*PALPHK- 
GAMMAL=-ALPHL-.I«FKTL - 
AECW*CEXPL.(GAMMAL) - 
DO THROuGH(SlO),J»l,1,J.LE.NTHT - 
FJ = J - 
THT*THTS+FJ#DTHT - 
RTHT=DEGRAD*THT - 

C COMPUTE POINTS OF ATTACHMENT AND DEPARTURE OF THE CREEPING 
WAVE - 
CS1=COS.(RTHT) - 
SSI=SIN.(RTHT) - 
CS2*CSI«CS1 - 
SS2=SS1*SSI - 
XP=FA#FA*SS1/S0RT.<FA#FA#SS2*EB#FB#CS2 >- 
XP=.ABS.XP- 
XM=-XP - 
YSO=FB*FB*(I.-<XP«XP/(FA*FA>)) - 
YP=SQRT.(YSQ) - 
YM=-YP - 
ANGl=FATAN2. (YP.XP) - 
TCWI=PI-ANG1- 
TCW2=PI+TCW1 - 

C COMPUTE THE CREEPING WAVE . GEOMETRICAL OPTICS, AND TOTAL 
BACKSCATTERED FIELDS - 
FR=SQRT.(XP*XP+YP*YP)- 
S1=FR«SIN.(TCW1-PI2-RTHT)- 
S2=S1 - 
FKS1=FK«S1- 
FKS2=FK*S2- 
PL1=1•+•1«Oo- 
PL2*1•+.I«0.- 
PHS=PL1+PL2- 

C COMPUTE DSQ USING THE LOCAL RADIUS OF CURVATURE - 
COSL=COS.(ANG1)- 
SINL=SIN.(ANG1)- 
FRLA=FA»SINL- 
FRLB=FB*COSL- 
FRLP=FRLA#FRLA+FRLB»FRLB- 
FRL=(FLPFL.<FRLP,R32))/FAB- 
F1=FLPFL•(FRL,R13)- 
DSQ=U1*F1*G1*E1- 
ECW=-DSQ*AECW#PHS- 
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XGO=FA*FA*CSl/SORT.(FA#FA»CS2+FB*FB»SS2J- 
XGO=.ABS.XGO- 
YGO=FB*SORT. ( I . -XGO*XGO/ (F A«FA ) )- 
YGO=.ABS«YGO- 
THTG0=FATAN2.(YGO.XGO)- 
FRGO=SQRT.(XGO»XGO+YGO»YGO)- 
RTGO=RTHT-THTGO- 
SGO=FRGO»COS.(RTGO>- 
SSG0=2.»FK*SG0- 
CGO=COS.(SSGO>♦.I.SIN.<SSGO)- 

SRGO=FB*FB«SS2+FA»FA»CS2- 
SQWGO=SURT.<SRGO)- 

FACT=0.5*FB»FB*FA/SRGO- 
EPO=-FACT*( 1 .+.1.1./<2.*KK#SQRGO ) )- 
EGOC=EPO*CGO- 

ETOT=EGOC4-ECW- 
EMAG1».REAL.ETOT- 
EM AG2*. IMAG.ETOT- 
EMSQ=EMAG1*EMAG1+EMAG2*EMAG2- 
SIGMA»2.* TP*EMSQ/(WAVE»WAVE)- 
WR I TEOUTPUT . 2 . < THT • ECHT. EGOC . ETOT . S I GMA ) - 

WRITE OUTPUT.FMT4.<S1>- 
F FMT4        (5X.Q* SI ■ *.F10.5>- 

ECW1=.REAL.ECW- 
ECW2*.IMAG«ECW- 
FMECW«SQRT»<ECW1«ECWI+ECW2*ECW2>- 
EGOl«.REAL.EGOC- 
EG02= • I MAG.EGOO 
FMEGO»SORT.<EG0l*EGOl+EG02*EG02>- 
WRITEOUTPUT• 2 . «FMECW.FMEGO)- 
SIGMAL = LOG.(S1GMA)- 
SIGMAL«10.*SIGMAL- 
WRITE OUTPUT.FMT6. «SIGMAD- 

F FMT6       <5X.Q»SIGMAL= *.FI0.5>- 
WR1TE OUTPUT.2- 

S10        CONTINUE- 
SIOO       CONTlNUE- 

CALL SUBROUTINE()»ENDJOB.<)- 
SUBROUT1NE(SSS)* FINCP.(FLL « FUL•ERRR.NX.FMA.FMB.F E X) ■ 

FN*NX- 
DEL = < FUL-FLL)/FN- 
SSS»0.- 
ERR=0.0l»ERRR/FN- 
A=FLL- 
OOTHROUGH(S40).NNXs|.1.NNX.LE.NX- 
MXX=0- 
B=A+OEL- 
ss=o.- 
MX»2- 
DX*DEL/2.- 
LX*I- 
X = A- 
TRANSFERT0<S15>- 

S5 TRAZ=DX»SS- 
MX»1- 
LX=1- 
OX«DEL- 

SlO        SS=0.- 
LX=LX+1- 
DX»0.S»DX- 
X=A*DX- 
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S15        D0THR0UGH(S20 >•IX = 1.1•IX.LE.MX- 
GSIN=FMA#SIN.<X>- 
GCOS=FMB*COS.<X>- 
GGSS=GS1N»GSIN+GCOS*GCOS- 
FSS*FLPFL.<GGSS.FEX)- 

S18        SS=SS+FSS- 
520 X=X+2.»DX- 

PROVlDED<LX.E.1)•TRANSFERTO<S5)- 
MX = 2*>MX- 

521 TRAP=0.5*TRAZ+0X*SS- 
DIF..ABS.(TRAP-TRAZ)- 
PROvlDED(DIF.GE.DIP).MXX=MXX+1- 
DIP=DIF- 

522 SIMP=<4.*TRAP-TRAZ)/3.- 
523 FNCP=(16»*SIMP-S1MZ)/15.- 
524 ER=.ABS.<1,-FNCZ/FNCP)- 

TRAZ=TRAP- 
SIMZ=SIMP- 

FNCZ=FNCP- 
525 PROVIDED<LX.L.4).TRANSFERTO<S10>- 
526 PROVlDED<MXX.G.4>.TRANSFERTO<S30)- 
527 PROVlDED<ER.G.ERR)»TRANSFER TO (S10>- 
S30       SSS«SSS+FNCP- 
S40        AsA+DEL- 
SSO        CONTINUE- 

NORMAL EXIT - 
END SUBPROGRAM- 

C  »#»  ORDER OF DATA CARDS #*#- 
C  CARD 1 F0RMAT«7»(FA.FB»THTS«DTHT ) - 
C  CARD 2 FORMAT.8«(NTHT.NWAVE) - 
C   NEXT NWAVE CARDS  FORMAT«7.(WAVE> - 

END PROGRAM(START) - 
#»* DATA 
4.0        2.0       -2.0 2.0 

0004600003 
4.18879 
3.59038 
3.14159 
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»»• RUN 
*•* DUMP LOWER CORE 
### SCATRAN 

C   BACKSCATTER FROM A PROLATE SPHEROID USING GEOMETRICAL OPTICS AND 
CREEPING WAVE ANALYSIS - 

C E FIELD PARALLEL TO PLANE OF INCIDENCE- 
C FA = SEMI MAJOR AXIS - 
C FB * SEMI MINOR AXIS - 
C TMT *    ANGLE FROM MAJOR AXIS - 
C WAVE * WAVELENGTH - 

COMPLEXCALPHL.GAMMAL.AECW.PLl«PL2.PHS«DSQ.ECW.ETOT)- 
COMPLEX(EI.E2.E3)- 
COMPLEX(CEXPL•>- 
COMPLEX(CGO.EGOC)- 
COMPLEX(EPO)- 

C COMPUTE LIST OF CONSTANTS - 
START      Pl=3.1415927- 

TP*2*»P|- 
PI2=PI/2.- 
U I »0.270- 
R13«l./3.- 
R23«2./3.- 
R32*3./2.- 
P|4»Pl/4.- 
PI34»3»*PI4- 
PI6»PI/6.- 
PlJ2»P1/I2»- 
RADEG»57.2957B- 
DEGRAD-0.01745329- 
E1»C0S.(PI12)-.I.SIN.(PI12>- 
E2=C0S.(PI6)+.I.SIN.(PI6>- 
E3*C0S*(PI 34) + .I.SIN.(PI 34)- 
FEXK* 0.5- 
READ INPUT.7.(FA.Fb.FKAS.DFKA>- 
WRITE OUTPUT.2.(FA.FB.FKAS.DFKA)- 
READ INPUT.8.(NKA)- 
WRITE OUTPUT.3.INKA)- 
READ INPUT.7.(THT)- 
WRITE OUTPUT.2.(THT)- 
WRITE OUTPUT.2- 
RTHT»DEGRAD*THT - 
FAB*FA*FB- 
G3»FLPFL•(FAB.R23I- 
DO THROUGH(SI 00).I«l.1.I.LE.NKA- 
FI = I- 
FKA.FKA5MFI-I . )*DFKA- 
FK=FKA/FA- 
WAVE«TP/FK- 
G1«FLPFL.(WAVE.R23)- 
G2»FLPFL.(WAVE.R13)- 
FKA»FK»FA- 
WRITE OUTPUT.FMT1.(WAVE) - 

F FMTl       (5X.Q» WAVELENGTH ■ «.F]5.8>- 
WRITE OUTPUT.FMT5.<FKA>- 

F FMT5       (5X.0*FKA « *.FlO»5>- 
WRITE OUTPUT.FMT2- 

F FMT2       (120H        THT REECW IMECW REEGO 
IMEGO RETOT IMETOT SIGMA 

)- 
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COMPUTE THE COMPLEX ATTENUATION CONSTANT OF THE CREEPING 
WAVE USING THE ELLIPTIC INTEGRAL - 
TCW|=PI2- 
TCW2=PI- 
CALL SUBROUTINE(PALPH)= FINTA.<TCWI.TCW2.5.00.2.FA.FB>- 

ALPHL=E2*PALPM/G2- 
ALPHL=2.*ALPHL 

COMPUTE THE PATH LENGTH USING THE ELLIPTIC INTEGRAL - 
CALL SUBROUTINE(PALPHK)=F|NCP.(TCW I .TCW2. I.00.2.FA.FB.FEXK)- 
PALPH<=2.*PALPHK- 
FKTL=FK»PALPHK- 
GAMMAL=-ALPHL-»I»FKTL - 
AECW=CEXPL. (GAMMAL ) - 
COMPUTE POINTS OF ATTACHMENT AND DEPARTURE OF THE CREEPING 
WAVE - 
CS1=C0S.(RTHT) - 
SSI=SIN.(RTHT) - 
CS2=CSI*CS1 - 
SS2*SS1*SS1 - 
XP=FA#FA#SS1/SORT.(FA*FA»SS2+FB»FB*CS2 )- 
XP=.ABS.XP- 
XM=-XP - 
YSQ=FB*FB«( 1,-<XP*XP/(FA»FA) ) ) - 
VPiSQRT.(YSQ) - 
YM=-YP - 
ANG1=FATAN2.(YP.XP) - 
TCWI=PI-ANG1- 
TCW2=PI*TCW1 - 
COMPUTE THE CREEPING WAVE . GEOMETRICAL OPTICS. AND TOTAL 
BACKSCATTERED FIELDS - 
FR=SQRT.(XP»XP+YP«YP)- 
Sl=FR«S1N.(TCWI-PI2-RTHT )- 
S2=S1 - 
FKS1»FK*S1- 
FKS2=FK«S2- 
PLl=l.+.I.O.- 
PL2»1•+•I.0.- 
PHS=PLI+PL2- 
COMPUTE DSQ USING THE LOCAL RADIUS OF CURVATURE - 
COSL = COS.(ANG1 )- 
SINL=SIN.tANG1>- 
FRLA=FA#SINL- 
FRLB=FB»COSL- 

FRLP=FRLA#FRLA+FRLB*FRLB- 

FRL=(FLPFL.(FRLP.R32)1/FA6- 

FI=FLPFL »(FRL.R13)- 

DSQ=U1*FI*G1»E1- 

ECW=-DSQ»AECW*PHS- 

XGO=FA#FA*CSI/'SQRT. <FA*FA#CS2+FB*FB#SS2 >- 
XG0=.ABS«X60- 
YGO=FB»SORT.(I.-XGO*XGO/<FA»FA))- 
YGO=.ABS.YGO- 
THTGO=FATAN2.(YGO.XGO)- 
FRGO=SQRT.(XGO*XGO+YGO»YGO)- 
RTGO=RTHT-THTGO- 
SGO=FRGO*COS.(RTGO)- 
SSG0=2.*FK*SG0- 
CGO=COS.<SSGO>+.I.SIN.(SSGO)- 
SRG0=FB»FB*SS2+FA*FA*CS2- 
SQRGO-SORT.fSRGO >- 
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FACT«0.5*FB*FB»FA/SRGO- 
EPO»-FACT*< !•♦•!•1./<2.*FK*S0RG0) )- 
EGOC«EPO»CGO- 
ET0T*EGOC*ECW- 
EMAGI».REAL.ETOT- 
EMAG2«.IMAG.ETOT- 
EMSO'EMAG 1 »EM AG 1 *EMAG2*EMAG2- 
SIGMA*2.#TP*EMSQ/<WAVE»WAVE)- 
WRITEOUTPUT.2. <THT.ECW.EGOC.ETOT.SIGMA>- 

WRITE OUTPUT.FMT4.<si)- 
F FMT4       (5X.0* SI ■ ».F10.5)- 

ECW1=.REAL.ECW- 
ECW2=.1MAG.ECW- 
FMECW*SQRT.<ECW1*ECW1+ECW2»ECW21- 
EGOJs.REAL.EGOC- 
EG02*.IMAG.EGOC- 
FMEGO»SQRT.(EGOl«EGOJ+EG02#EG02)- 
S I GMAi_ = l_OG. ( S I GMA )- 
S I GMA|_= 10, «SIGNAL- 
WRITE OUTPUT.FMT6«(SIGMAL.FMECW.FMEGO)- 

F FMT6       <5X.0#SIGMAL= *.F10.5.2X.Q#FMECW« ».FI 5.7.2X.Q»FMEGO« *.F1S. 
71- 
WRITE OUTPUT.2- 

SlO       CONTINUE- 
S100      CONTINUE- 

CALL SUBROUTINEC)»ENDJOB.()- 
SUBROUTINE(SSS)=F!NTA.(FLL.FUL.EWRR.NX.FMA•FMB)- 
PI«3.1415927- 
R23*2./3.- 
FN=NX- 
OEL=(FUL-FLL>/FN- 
SSS=0.- 
ERR=0.01«ERRR/FN- 
A=FLL- 
DOTHROUGH< S40)«NNXzl,i «NNX.LE.NX- 
MXX=0- 
B*A+DEL- 
SS»0.- 
MX«2- 
OX-OEL/2.- 
LXM- 
X-A- 
TRANSFERT0CSI5)- 

S5 TRAZ*DX#SS- 
MX»t- 
LX*1- 
DX*DEL- 

SIO       SS"0.- 
LX«LX*1- 
0X»0.5»0X- 
X-A+DX- 

S15       OOTHROUGH(S20).IX«1.1.IX.LE.MX- 
SINX=SIN.1X1- 
COSX»COS»<X>- 
BSIN»FMB*SINX- 
BCOS=FMB*COSX- 
ASIN»FMA«SINX- 
ACOS»FMA*COSX- 
AACOS«.ABS.(ACOS)- 
FRE=SORT.(ACOS»ACOS*BSIN*BSIN)- 
FRS2"ASIN*AS IN*BCOS»BCOS- 
FRS=SQRT.(FRS21- 
FRP»FRS2*FBS/< FMA*FMB)- 
CPSI»-BCOS/FRS2- 
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SIPSI'SQRT.C I.-CPSI*CPSI )- 
PSI=FATAN2.(SIPS1.CPSI)- 
PROVIDED<PSI.L.0.01).TRANSFER TO(516)- 
AO=FRE*SlN«(PI-X)/SIN.(PS I )- 
AO=.ABS. < ACM- 
TRANSFER T0«S17)- 

516 AO=FMA- 
517 CONTINUE- 

DXE»AACOS-AO«COS.<PS1)- 

BO=FMB«SORT.(1.-DXE*DXE/<FMA*FMA))- 
FRO=BO»BO/AO- 
RAT=FRP/FRO- 
XRAT=0.840*RAT- 
U2*0.20+< 1,48/EXPE. (XRAT ) )- 
FARG = FLPFL. (FRP.R23)- 
FSS=U2»FRS/FARG- 

S18        SS=SS+FSS- 
520 X=X+2.»DX- 

PROvIDEDd-X.E.l). TRANSFERT0<S5>- 
MX=2*MX- 

521 TRAP=0.5»TRA2+DX*SS- 
DIF = .ABS.< TRAP-TRAZ)- 
PROVIDED<DIF.GE.DIP).MXX=MXX+1- 
DIP*D!F- 

522 SIMP=<4.*TRAP-TRAZ>/3.- 
523 FNCP*<16.*SIMP-SIMZ)/15.- 
524 ER=.ABS.<l.-FNCZ/FNCP)- 

TRAZ=TRAP- 
SIMZ=S!MP- 
FNCZ=FNCP- 

525 PR0VIDED(LX.L.4).TRANSFERT0(S10)- 
526 PR0VIDED(MXX.G.4).TRANSFERTO<S30>- 
527 PROVlDED(ER.G.ERR).TRANSFER TO (SlO>- 
S30        SSS=SSS+FNCP- 
S40        A=A+DEL- 
S50 CONTINUE- 

NORMAL EXIT - 
END SUBPROGRAM- 
SUBROUTINE < SSS > = FINCP•< FLL « FUL.ERRR.NX.FMA «FMB.FEX >- 

FN»NX- 
DEL*(FUL-FLL)/FN- 
sss=o.- 
ERR=0.01»ERRR/FN- 
A=Fl_L- 
DOTHROUGMI S40 ) iNNX>l . 1 .NNX.I_E»NX- 
MXX=0- 
B=A+DEL- 
ss=o.- 
MX = 2- 
DX*DEL/2.- 
LX=1- 
X=A- 
TRANSFERTO(SIS)- 

S5 TRAZ=DX*SS- 
MX«1- 
LX"|- 
DX=DEL- 

SIO      ss»o.- 
LX=LX+J- 
DX=0.5*DX- 
X»A+DX- 
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S15 DOTHROUGHC S20 > . I X=1 . 1 . I X.LE.MX- 
GSIN-FMA#SIN.<X>- 
GCOS=FMB*COS.(X)- 
GGSS=GSIN*GSIN+GCOS»GCOS- 
FSS»F|_PFL.<GGSS.FEX>- 

S18       SS=SS+FSS- 
520 X*X+2.»DX- 

PROVlDED<LX.E»1)«TRANSFERT0<S5)- 
MX«2*MX- 

521 TRAP = 0.5*TRAZ-fOX*SS- 
0 IFa«ABS*(TRAP-TRAZ)- 
PROVlDED<DIF»GE.DlP).MXX-MXX+1- 

D1P=D1F- 
522 SIMP=<4.»TRAP-TRAZ)/3.- 
523 FNCP=(16.*31MP-SIMZ)/15.- 
524 ER=.ABS.<1.-FNCZ/FNCP)- 

TRAZ=TRAP- 
SIMZ=S1MP- 
FNCZ=FNCP- 

525 PR0VIDED<LX.L.4).TRANSFERTO(S10 ) - 
526 PR0VIDED<MXX.G.4) .TRANSFERTO<S30 )- 
527 PROvIOED(ER.G.ERR)«TRANSFER TO <S10>- 
S30        SSS=SSS+FNCP- 
S40        A=A+DEL- 
S50        CONTINUE- 

NORMAL EXIT - 
END SUBPROGRAM- 

C  •»*  ORDER OF DATA CARDS *«*- 
C DATA CARD 1 FORMAT.7.(FA«FBtFKAS«DFKA)■ 
C DATA CARD 2 FORMAT.8.(NKA>- 
C DATA CARD 3 FORMAT.7.(THT )- 

END PROGRAM(START) - 
*** DATA 
2.0        1.0        0.5 0.1 

001 00 
90. 
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