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FOREWORD 

The work reported herein was sponsored by Headquarters,  Arnold 
Engineering Development Center (AEDC),  Air Force Systems Command 
(AFSC),  under Program Element 62410034,   Project 7778,   Task 777812. 
The report was prepared by ARO,  Inc.  (a subsidiary of Sverdrup & Parcel 
and Associates,   Inc.),   contract operator of AEDC,  AFSC,  Arnold Air 
Force Station,  Tennessee,  under Contract AF40(600)-1200.   The ARO 
Project Number was BB3708, and the manuscript was submitted for 
publication on July 11,   1967. 

The author is a consultant to Analytical Research,   Technical Staff, 
Office of the Managing Director,  ARO,  Inc. 

This technical report has been reviewed and is approved. 

Eric W. Kurgas Edward R.  Feicht 
Captain,  USAF Colonel,   USAF 
Directorate of Plans & Technology      Director of PLans &. Technology 

li 



AEDC-TR. 67-163 

ABSTRACT 

The state-of-the-art of jets exhausting into a subsonic crossflow 
is presented.    These studies complement the current research effort 
in development of an analytical description of the flow field created 
by a V/STOL aircraft. 
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SECTION I 
INTRODUCTION 

During the past year,  studies have been conducted at the Arnold Engi- 
neering Development Center to evaluate the design parameters for a wind 
tunnel facility for testing Vertical/Short Takeoff and Landing (V/STOL) 
aircraft.    An outgrowth of these studies was an investigation to determine 
a method of predicting the flow field created by a V/STOL aircraft in the 
hover and transition flight modes.    A literature search was initiated to 
ascertain what had been accomplished,  either analytically or experi- 
mentally, toward a description of the flow field due to a turbulent incom- 
pressible jet exhausting into a crosswind.    Some references on the fan-in- 
wing configuration are included. 

SECTION II 
DISCUSSION 

Various types of propulsion have been considered for providing the 
vertical thrust required by a V/STOL aircraft.    Some of these are "pure" 
jet,  fan-in-wing,  tilt wing or tilt engine,  stowed rotor,  and deflected 
slipstreams.    Because of the complexity of analysis of the flow field 
created by a propeller,  this investigation was narrowed to the analysis of 
a pure jet.    Obviously,  the flow field of the pure jet would not be identical 
to a propeller slipstream,  but the description of the flow field created by 
a pure jet exhausting into a crossflow could provide insight to a general 
V/STOL flow field solution.    For the case of a fan-in-wing or a propeller 
of high disc loadingj the pure jet flow would be a first approximation. 

T^e content of most reports on this subject usually falls into one;or 
■more of three categories:   the jet shape (cross section and trajectory), 
jet entrainment,  and surface pressures on the jet exit plane.    In keeping 
with this pattern, each of these facets will be discussed separately. 

2.1   JET SHAPE 

2,1.1   Cross Section 

As an axisymmetric jet leaves the nozzle into a crossflow,  the cross 
section of the jet is deformed into a kidney,  or horseshoe,  shape as shown 
in Fig.   1.    To explain the formation of this shape,  consider a circular 
cylinder in a uniform stream with the cylinder axis perpendicular to the 
stream.    The pressure distribution around the cylinder,  from potential 
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theory,  is given in Fig.  2 (Ref.   1).    Next,  consider the cylinder to have 
a plastic boundary and an internal pressure greater than that of the uni- 
form stream.    Because of the pressure distribution,  the boundary will 
assume an oblong contour with its major dimension perpendicular to the 
freestream.   Now,  consider the interaction of the jet with the crossflow. 
As the jet emerges from the nozzle,  a mixing layer is formed around the 
periphery of the jet.    These particles on the periphery of the jet have less 
energy than those in the core of the jet and they are deflected more by the 
crossflow.    Thus, the peripheral mixing and the pressure distribution on 
the boundary distort the jet into the shape of a kidney,   or horseshoe. 
Additional explanation of the shape of the cross section is given by 
Abramovich (Ref.  2),  and Keffer and Baines (Ref.   3). 

Fig. 1   Diagram of a Jet Exhausting into a Cross Wind 

The horseshoe cross-section shape has been observed experimentally 
by Jordinson (Ref.  4).    Abramovich states that the circular jet begins its 
deformation to the horseshoe shape at J0/d =» 1. 5.  Also,  from Jordinson's 
data it is seen that the cross section of the jet increases as the jet leaves 
the nozzle.    Abramovich approximates the growth of the jet by the follow- 
ing semiempirical equations: 

h  =  2.25 d + 0-22   I 

8  =  0.45 i  +  0.22   I (1) 
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where h is the dimension perpendicular to the free^.ream and 5 is the 
dimension parallel to the freestream at the jet centerline; these sym- 
bols are defined graphically in Fig.   1. 

120 150     180     210   240 

*»   deg 

300     330     360 

Fig. 2   Pressure Distribution around a Right Circular Cylinder in an Inviscid, 

Uniform Stream (^ Measured from the Stagnation Point) 

2.1.2   Jet Trajectory 

The trajectory of the centerline of the jet,  which is considered as 
the line of maximum velocity, has been described by several empirical 
equations.    Some of these equations are given below; they have been 
altered to conform to the coordinate system of Fig.   1. 

Abramovich presents the results of two different experiments.   From 
one of these,  in the range 2 < q.;/qm < 22, 

-1 i^r (2) 

In this experiment the total temperature ratio was varied over the range 
1 < Tta)/Tt; < 3.    Abramovich states that the ratio q^/qj,  in Eq.  (2), 

takes into account the influence of the temperature ratio on the trajectory 
of the jet.   From the other experiment,  in the range 12 < qi/qa, < 1000, 

5--ftfGf 
In addition,  Abramovich presents a method for calculating the influ- 

ence of the finite channel dimensions on the curvature of a jet.    The 
average velocity obtained from mixing the jet with freestream gas. 

Goo + Go 
Vc   = 
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is used to compute qc = yc (Vc
2/2).    Then qc is substituted into the above 

trajectory equations for q^, where A^ is the channel cross section, 7c 
is the specific weight of the mixture,  and G is gas weight flow. 

Monical (Ref.   5) curve fitted the data of J or dins on and obtained the 
following expression for p^ = pm; 

Jordinson's data were for values of V\IVW = 4,  6,  and 8. 

By curve fitting the data from their experiment,  Callaghan and 
Ruggeri (Ref.  5) found that 

for the range 2 < (pj Vj)/p„, VJ < 7,  and V. = 260 and 360 fps.    In sub- 
sequent experiments,  Callaghan,   et al.  (Refs.  6,   7,  and 8) compared 
the flow coefficients of circular,  square,  and elliptical orifices and the 
depth of penetration of jets issuing from these orifices perpendicularly " 
into an airstream.    They found that the elliptical orifice yielded the 
highest flow coefficients for a particular value of pressure ratio and jet 
total temperature.    In addition,  for orifices of equal area the square 
orifice, with two sides parallel to the freestream, had better penetra- 
tion than the circular orifice.   The penetration of the elliptical orifices 
was dependent on the axis ratio and axis orientation with respect to the 
freestream.    With the major axis parallel to the freestream,  greater 
penetration was obtained by increasing the axis ratio, 

Bradbury and Wood (Ref.   9) present the following trajectory equa- 
tions for pj = pB: 

f -  2'3 (l7)3   (f J J6> 

Keffer and Baines (Ref. 3) show that for their experiments the 
trajectories of the jet can be expressed as z/d = f [(Vj/V^Xx/d)] with 
Pj = p^.    They show further that by dividing the coordinates by R2, 
where R = VJVW, the jet centerline may be expressed by a single func- 
tion independent of velocity ratio.    This relationship is shown in Fig.  3, 
Note that this curve is plotted as '■ 

'■ " *        versus    x^^* 
dRa dRa 

where x' and £' denote the end of the potential core of the jet.   The poten- 
tial core is defined in Section 2.2. 
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Fig. 3   Jet Trajectory as a Function of (Vj/V^) with (p.   =   pTC) 

Heyson (Ref.   10) presents the following trajectory curve for a jet 
exhausting perpendicularly into the freestream: 

i - "I (W (7) 

In addition to the empirical equations, there have been several 
attempts to describe the jet trajectory theoretically.    Abramovich (Ref.  2)* 
presents the derivation for the following equation: 

39   Pi 
i ~\y, 

Cn    poo  Vo 
In + 0.i±(i+^7^±)] (8) 

*Much of the information on this topic which Abramovich presents in 
Ref. 2 is from Russian investigators. Consequently, many of his refer = 
ences could not be checked. 
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where Cn is the force coefficient on an arrow wing.    He uses Cn 
= 3 for 

a jet issuing from a circular nozzle.    In deriving this equation,  Eqs.   (1) 
were used for the growth of the jet. 

In their original form,  some of these trajectory equations contained 
terms which described a jet exhausting at an angle (other than 90 deg) 
with the freestream.    However, they have been written here for a jet 
exhausting perpendicular to the freestream. 

2.2  ENTRAPMENT 

It has been observed that the mass flow in a jet increases as the jet 
leaves the nozzle.    The additional mass flow is drawn from the atmosphere 
into which the jet is exhausting.    This process is known as entrainment. 

First,  consider the case of a circular jet exhausting into a quiescent 
atmosphere; a schematic representation of the flow is given in Fig. 4.    As 
the jet emerges from the nozzle,  it separates at the nozzle lip and a mixing 
layer develops at the jet boundary.    The mixing layer increases in thick- 
ness until it intersects the jet centerline; this point is defined as the begin- 
ning of the zone of established flow.    Between this point and the nozzle exit 
the mixing layer surrounds a conical portion of the pure jet flow which is 
described as the potential core.    The length of the potential core is approxi- 
mately six jet diameters, depending upon the Reynolds number and the" 
turbulence of the initial jet (Ref.   11).    Analytical investigation of this 
problem can be found in Refs.   1 and 12. 

Fig. 4   Schematic Representation of o Jet Exhausting into o 

Quiescent Atmosphere 
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Ricou and Spalding (Ref.   13) conducted an experiment to determine 
the amount of mass flow entrained by the jet exhausting into a static 
region.    They found that 

In an alternate form 

m = 0.282 bif PJ
A x <10) 

where M-, is the excess momentum of the jet. 

Bradbury and Wood (Ref.  9) altered Eq.  <8) to read 

$-™ $)*(:*-£)***'' (11) 

where x' is the end of the potential core.    In addition, they state that 

-^ =  1   +  0.1316 +- +  0.02384  /^-Y   for x < x' 
nij                                   d                            V d    /               - 

(12) 

14) states that 

m  =  0.1005 61 Pj Vj (-^\ for x <^x' (13) 

m   =   0.358 d1 pj Vj   RHor x > x' (14) 
and 

Keffer and Baines (Ref.  3) conducted an experiment of a circular jet 
directed normal to a uniform,  steady crosswind.    They state that the 
potential core is deflected and is approximately one-half as long as for the 
case of no crosswind.    It is their opinion that the entrainment is propor- 
tional to the difference between jet velocity and crosswind velocity rather 
than the component of the crosswind velocity parallel to the jet.    To sup- 
port this argument they develop several dimensionless functional rela- 
tions which correlate with their test data. 

2.3  SURFACE PRESSURES 

There are probably more experimental data available for the surface 
pressures on the jet exit plane than any other aspect of a jet exhausting 
into a crosswind.    This is understandable since data of this nature are 
relatively easy to obtain from a test.    References 9,   15,  and 16 are three 
of the better sources for these data.    These references present the pres- 
sure contours on the exit plant for various velocity ratios and plate 
configurations. 
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2.4  JET WAKE 

Separation of the crossflow from the jet boundary occurs just behind 
the midsection of the jet,  as in the analogous case of a right circular 
cylinder.    Thus,  a pair of contrarotating vortices is formed in the wake 
of the jet.    Both Abramovich (Ref. 2) and Jordinson (Ref. 4) present data 
which show that the velocity vectors behind the jet have components per- 
pendicular to the axis of the jet.    This indicates a circulatory, entraining 
flow in the wake of the jet. 

It is the opinion of Keffer and Baines (Ref.  3) that the vortices in 
the wake are the dominant mixing agents and exert a major effect on the 
flow.    In addition, they state that the vortices cause an internal circula- 
tion and large-scale mixing within the jet. 

2.5  FAN-IN-WING 

In recent months, the fan-in-wing propulsion system has been popular 
with designers of V/STOL aircraft.    Consequently, there have been several 
studies made,  both analytical and experimental,  of the flow field produced 
by a fan-in-wing and the parameters affecting its performance.    References 
17 through 26 present some of these studies. 

SECTION III 
CONCLUDING REMARKS 

The description of a jet exhausting into a subsonic crossflow has been 
presented along with a semiempirical equation to compute the growth of the 
jet cross section and several semiempirical equations for calculating 
the jet trajectory and entrainment.    It is apparent that experimental tech- 
niques have exerted a strong influence upon the form and/or constants 
involved for the equation developed from any particular experiment.   There 
is no information available to this author which would aid in the selection 
of one equation over another.    It is suggested that the sources of the in- 
formation be consulted before any of the equations are used.    In addition, 
references are given which present experimental data for exit plane sur- 
face pressures. 

References 17 through 26 relate to the fan-in-wing type of V/STOL 
propulsion. 



AEDC>TR-67-163 

As was stated in Section I, this report presents the results of a 
literature search.    It is solely intended to assist one who is initiating 
a jet efflux study; Refs.  2,  3,  4,  and 13 are highly recommended for 
this purpose also. 
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