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PREFACE

This RAND Memorandum is one in a continuing series on the techniques
of digital computer simulation, Each Memorandum covers a selected topic
or subject area in considerable detail. This study discusses basic
concepts. It provides a raticnale for simulation, discusses the design
and construction of simulation modeis, and relates simulation as a
techrique to current problems in simulation technology.

The Memoranda are being written so that they build upon one another
and provide an integrated coverage of all aspects of simulation. They
should be of particular interest to personnel of the AFLC Logistics
Simulation Center, Wright-Patterson Air Force Base, and to Air Force
systems designers and analysts. Persons concerned with computer appli-
cations and computer programming in general should also find the series
useful,

Computer simulation techniques have had a brief but impressive
history to which The RAND Corporation has contributed, starting with
one of the earliest uses of simulation for the analysis of large-scale

logistics systems 711, RAND has als~ published Memoranda on simulation

programming languages L2], the analysis of simulation~generated output

data {3, 4, 5], statistical aspects of modeling ib, 7], and models of
maintenance and logistics systems [8-12].

Simulation is now recognized as a standard systems analysis tool,
It has been, and is being, used in such diverse areds as weapon system
planning, hospital design, job shop manufacturing, and election fore-

casting.




SUMMARY

This Memorandum is one in a series of methodological studies
dealing with computer simulation techniques. While this study does
not lend itself to summary, the reader should find it useful to know
that it discusses the modeling process -- the steps taken in analyzing
a system and designing a computer program that allows a system's opera-
tions to be reproduced and studied. Subsequent Memoranda treat other
aspects of simulation methodology: computer programming languages,
model verification and validation, and experimental techniques, Taken
in concert, the Memoranda should provide material suitable for a

graduate-level text on simulation., Taken separately, they provide use-

ful informaticn for system designers, applications engineers, and

computer programmers.
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I. INTRODUCTION

PROBLEMS IN PERSPECTIVE

The world's problems are usually solved, vven if the "solution"
is to ignore a problem and hope it will go away. More often, people
search for new or better ways of doing things., When circumstances
permit, problems are solved optimally; but limitations of time, talent,
knowledge, and resources ordinarily dictate that the solutions found
arc not "best," but merely "better" than an existing state of affairs.
This is regrettable, but not entirely so -- it is always better to
make some progress than no progress at all, and we need reasonable
working solutions as well as optimal ones,

Workable solutions are obtained in many ways: by the use of
approximations, by the use of rules of thumb, by the evocation of res-
trictive assumptions, and by guesswork and crystal ball gazing. Some
of these "satisficing"* techniques are more scientific than others,
some are more comforting to a manager than to a scientist, some have
a chance of being applied intelligently, some have no hope at all.
Much has been written on the art of exccutive decisionmaking and the
pros and cons of various decision procedures. We shall not comment

upon such issues herej we mention them to set the scene for our topic:

PUT
i)

the use of computer simulation techniques for problem solving,
Two reasons that problems cannot be solved optimally arce lack of
time and talent. We shall gloss over these factors in our discussion
because they are relative; when time and talent are in short supply for
one person, they may not be for another. We shall consider limitations
such as knowledge and resources, which are absolute factors that pre-
¢lude anyone from obtaining optimal solutions to particular problems

at given points in time.

“A word coined by H. A, Simon to denote a solution procedure that
strives for an acceptable, satisfactory sclution rather than an optimal
or maximizing one,

.

‘“‘Tlxr(nlgluxut this Memorandum, the term problem-solvine_is used in
its broadest sense,  The reader is tree to attach almost any meaning
he wishes to it,




Consider first the problem of resources. Many problems can be
solved experimentally by manipulating the system in which they are
embedded, A common example of such a procedure is an automobile test
track on which automobile manufacturers test safety devices and comfort
equipment while designing and evaluating the components they plan to
install on next vear's cars. Unfortunately, many problems cannot be
handled this way, Facilities and equipment for experimentation may
not exist. Or, while facilities exist, they may not be used because
of cost or prohibitions on interference with ongoing system operations,
A materials supply system for a continucusly operating process typifies
a system that must be studied while operating to determine the effect
of new supply rates, but cannot chance the possibility of being inter-
rupted. A new auto freeway must be justified on its capacity to relieve
traffic congestion and improve transportation but cannot be built to
determine whether or not it should be built,

When a system cannot be studied directly (the necessary resources
are not available), it can be studied with a model. A model, which we
can loosely define as a representation of a system, can take many forms:
it can be iconic like a map or a scale mcdel car; it can be symbolic
like a set of equations; or it can be an analogy like an electric cir-
cuit that behaves like a water storage basin or a flowchart that des-
cribes how a system works, Different models exist for different pur-
poses, Iconic models make good visual aids but are usually unsuited
for predicting or explaining the behavior of systems; symbolic models
are good for prediction and explanation but cffer little as visual aids.

We normally study a system so that we can predict or explain its
behavior., We want to know how fast a new plane will fly, how much con-
gestion a new railroad line will relieve, how a new ordering policy will
affect customer service, if and why a proposed inventory review and re-
supply system will give better cost performance per customer served
than an existing system, These questions, and others like them, cannot
be answered by iconic models; they can be answerced by models compused
of mechanisms that are able to reproduce relevant aspects of system

performance and behavior (273




Let us now consider knowledge, which becomes a limiting factor
during the construction of a model, It is the crucial factor when one
attempts to formulate and sovlve a complex problem in analytical terms,
for despite the sophistication of today's mathematics there are many
complex problems that cannot be stated so that they can be solved analy-
tically, This is a comment both on the state of mathematics, and on
the complexity of the problems we want to solve and the irregularities
with which we compound them that frustrate our mathematical ability,
Were mathematics to advance instantaneously to a point where it could
solve all of today's problems it would not be long before we would

create new problems beyond its scope.

SOLUTIONS AND SIMULATION

A problem-solver resorts to numerical procedures when he has in-
sufficient knowledge to solve a problem analytically, Such procedures
provide uscable solutions by replacing complex problems with simpler
ones that can be solved, and that approximate solutions to the original
problems. A good example of such a procedure is the numerical integra-
tion of a mathematical function for which an integration formula does
not exist, One method of performing numerical integration is to fit a
series of rectangles of small width into the area beneath a function;
the total area of these rectangles, which can be calculated, approxi-
mates the area beneath the function, A result is cbtained by replacing
an analytical solution with a numerical one,

Analytical procedures are usually preferred over numerical ones,
as they are more dccurate and less costly to compute. When they are
not available, numerical procedures are used, The development of a
satisfactory numerical procedure is no small tisk in itself as there
often are a number of similar procedures a problem-solver can choose
from, cach having a particular mix of qualitics, such as degree of
error, computational speed, skill needed to apply the procedure, and
so forth, The use of numerical techniques places an added burden on
a person with a problem,  He must not only think about his problem,
but about procedures for estimating its solution (building a model) and

the errors inherent in the estimates (using the model),




Simulation is a term commonly applied to the use of models to study
systems. Since we are interested bere in models for explanation and
prediction, we rule out iconic models and similar descriptive represen-
tations. We consider a narrower definition of simulation =-- the use of
numerical models for the study of systems. These models can be analog
or symbolic. An example of an analog simulation model is a flowchart
representing the checkout process at a supermarket. The overall system
logic describes the checkout process by logical relationships and flow
paths. Particular parts of the model can be symbolic if they contain
mathematical or statistical procedures for determining such things as
the number of packages customers purchase and the amount of time each
customer spends in line.

While some writers would define studies of systems that are com-
pletely described by solvable mathematical equations as simulation
studies, this is not what we are describing. Such definitions are
normally found in the natural sciences and in studies of pure engineering

systems. To us, simulation is the use of a numerical model to study

%
the behavior of a system as it operates over time. In particular, we

are interested in models that are implemented on digital computers --
models that operate by advancing a system through time in discrete steps
rather than continuously, as is done on analog computers. We do not
discuss the concepts and techniques employed in simulating systems
whose state char es continuously over time. Such systems have tradi-
tionally been studied with analog computers, although digital computers
are being employed today. The technical journal Simulation is the best
source of information on continuous-time simulation,

Since simulation is an experimental, numerical technique, it is
usually more expensive to use than analytic solutions. It is normally
considered a technique of last resort, employed only if a problem cannot

be solved another way,  Yet, despite this, it is also widely used, for

*Nntc the use of the word "study" in the above definition, When
a simularion model is piven a set of input parameters and an initial
svstem state, it is "run' to deduce subsequent system states and esti-
mate measures ol system performance.  Different parameter scttings
produce d fferent svstem responses.,  These responses are studied to
determin: the set of parameter values that in some sense optimizes
system porformance. A simelation model i used in an experimental
manners 1t does not find or seck optimal system parameter scttings by
itselr,
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there are many problems that cannot be solved analytically, Indeed,
most of today's complex engineering and management studies include

simulation experiments. Let us see why this is so.

SIMULATION AND SYSTEMS ANALYSIS

Thus far we have discussed the simulation of systems without des-
cribing what a system is. We can at this point provide some intuitive
feel for the kinds of systems that simulation is used to investigate
while deferring a more complete and detailed description of a system
until Sec, III.

Two objects operate as a system when they are integrated so that
the performance of one affects that of the other. A study of one can-
not be made in isolation from the other without losing effects caused by
their interaction. Questions cannot be asked about the performance of
an integrated system by studying its components separately; they must
be studied together. When (subsystem) interactions do not exist, an
environment can be considered as containing several separate and distinct
systems, which can be studied independently,

More and more frequently, studies are made of complex systems com-
posed of large numbers of objects, each interacting with the other ac-
cording to (complicated) performance rules. This is due tv an increasing
recognition that systems must be treated as a whole and not as sums of
their component parts. As our technical knowledge has increased, so has
our awareness that we can unwittingly suboptimizew if we are not aware
of total system interactions and effects. The modern view is to define
a system in terms of its inputs, its outputs and the processes required
to transform one into the other., As the awareness of problem environ-
ments has broadened, so has the scope of the systems people study. The
concomitant effect has been the removal of problems from the reach of
analytic study.

The tendency has been to turn to simulation as a toul for studying
complex systems,  In fact, it is common to find the terms system_simy-

lotion and simulation used interchangeably,

b

A termlused Lo describe a process of Jocal optimization where sub-
systems are analyzed and designed separately, otten 1o the actvimeat of
the totel svstem,




When problems are viewed in a total systems peripective, it becomes

clear that properties of a total system are more important than those of
subsystems operating within it,

An example of two subsystems operating

together interactively is 2 supply system and a maintenance system at
an Air Force base.

Neither can exist without the other, fcr one sup-

plies what the other requests and vice versa. If cost is the measure

being used, total syctem cost must be the criterion, not Individaal

maincendnce and supply system costs. Reducing stock levels can degrade

maintenance performance; altered maintenance policies can affect demands
for steck replenishment,

The cost-ef{fectiveness of the two systems

- -
operating together must be the design criterion, since each subsystem
exists for the benefit of the whole, and not for itself.

Systems do not have to be large or complex for simulation to be
useful,

There are other reasons for using simulation that are inde-

pendent of a system's size or complexity. Two such reasons are require-

ments for experimental control ard the presence of statistical variation.
Simulation is often preferred over real woild experiments when
there are difficulties in controlling parameter changes in different

geographical locations or in keeping ambient environmental conditions

constant throughout a test, When a carefuily controlled environment

is required, as might be the case during the evalvation of a materiel

supply system serving many Air Force bases, simulation can provide

more control than world-wide test.

In other instances, analytical solutions exist for classes of
problems under restricted conditions, such as constant service facility
operating times; but when other conditions exist, e.g., when quantities
behave according to statistical distributions that have unpleasant
analytical properties, simulation may have to be used. Certain classes
of structurally simple analytical models, such as those for singlc-
channel waiting lines, must often be simulated rather than solved even
though they fit a system under study because their statistical proper-

ties do not admit analytical solutions.
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SIMULATION AS A TOOL FOR SYSTEMS ANALYSIS

There are two wayvs an analyst can look at measures of system per-
formance; he can lock at measures of average behavior or at measures
of dvnamic response. The sophisticated analyst looks at both,

Measures of average performance (means, standard deviations, his-
tograms) are the traditional outputs of systems studies. Typical per-
formance measures that are used in analyses of industrial and military
systems are average lengths of waiting limes, average durations of
idle and busy periods for machines and machine operators, and average
system throughputs. These measures aliow systems to be compared sta-
ticaliy; system A is usually preferred to system B if the values of its

' The assessment of "“better”

average performance measures are "better.’
Is made by analyzing the measures, taking into account their variation
vver time and other statistical properties.,

Often peopie are concerned with other than static comparisonms,
they not vnly want tc know what level a certain measure achieves but

also how it achieves it, They are concerned with system dynamics, the

way a system responds to different shocks and disturbances. Typical
dynamic performance measures are the sample correlogram and sample
spectrum. These measures portray the time-dependent behavior of systems;
they allow one to discriminate between systems that have identical
average performance but different behavioral characteristics. Using
then, one is able, for example, to select a system that responds fastest
to peak load conditions from two systems that, on the average, perform
the same,

Simulation is one of the few tools available for estimating system
dynamics. Most analytical techniques are only able to determine static
measures, dyna.unic performance measures being derivable analytically for
only a few, extremely simple systems.* Simulation has emerged as a

natural tcol for the dynamic study of large, complex systems.

This situation is not nearly as pronounced in studies of continu-
ously changing systems where systems of partial differential equations
can be solved to obtain dynamic response functions.




Many factors create a climate for simulation studies. Some that
ve have mentioned ave an increased interest in total systems analyses,
requirements for dynamic as well as static performance measures, and

the presence of fewer possibilities for real-life experimentation with

today's complex systems.

PLAN OF THE COMPUTER SIMULATION SERIES

Assuming that a researcher wants to do a simulation study, there

is a great deal of technical material he must master before he can do
a study well,

Unlike many other techaiques {(linear programming and
queueing theory, for example, which requirc extensive formal education),

simulation programs can be written with little training, and used to

produce realistic output. The trouble with casual approaches to simu-

iation lies in their proclivity to generate answers that seem correct

but actually are not, their excessive consumption of programming and

computer time, and their tendency to lead people down the garden path

until their moment of truth arrives.

One of the greatest difficulties

with simulation is the ease with which programs can be constructed

that only appear to veproduce the behavior of an object system. It

is one thing for a model to resemble a system, another to act like it.

This series of Memoranda presents the technical material needed

to conduct efficient simulation studies., This Memorandum thus far has

provided a rationale for simulation, explaining why it is needed and

how it can be used to advantage. Along the way it has defined many

basic terms, Tae remainder of the Memorandum describes the modeling

process, going in some detail into the components of models and the
procedures involved in their construction.

Other Memoranda in the series study simulation programming languages,
input data analysis and the generation of random variables, verification
and validation of models, the statistical analysis of data generated

by simulation models, and the experimental use of simulation models,




II. SIMULATION

Loosely speaking, simulation is the manipulation of a model of a
system in such a way that "properties'" of the system can be studied.
The manipulation may be by hand, by a computer (digital or analog) or
by combinations of people and computers working together. While there
are distinctive problems associated with different modes of manipula-
tion, they are in a great sense operational problems, and not basic to
the theory or substance of simulation itself. Topics germane to a
fundamental study of simulation are those that deal with and define the
key words in the definition above: model, system, properties and manip-
ulation., This section deals with these topics.

We simulate systems because we want to understand how they work,
determine the factors that influence their behavior, and observe how
they react te environmental changes. We are generally interested in
system response; we are interested in using simulation models to give
us information that will enable us to predict or control the future of
that segment of reality that a simulation model represents,

Simulation is done for a variety of reasons, some practical and
some theoretical. This section describes what we do when we '"simulate,"
pointing out in some detail those areas of critical importance to simu-
lation and thereby illustrating its limitation and advantages. This
will enable practitioners to use simulation to its greatest advantage
and enable simulation theorists and researchers to place their efforts,
be they broad or narrow, in a general perspective of simulation

methodology.

THEORIES

Scientists do research by developing theories and using them to
test hypotheses about, gain insights into, and predict the future of

the worlds these theories represent. A theory is a structured body

%
“The organization of this section was greatly influenced by Part
111, "The Organization" of [13].

|
|
|

i
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of knowledge about some phenomenon that allows us to make meaningful

explanatory or predictive statements about it. Some theories can be

‘ proven mathematically, others require empirical validation through

observation, collection and analysis of data. ‘ntil a theory has been

proven, it is called a hypothesis, indicating its conjectural status.
Much has been written about man's inability to validate theories in both
the physical and social sciences; it is often simple to show that rela-

tionships exist but difficult to demonstrate causality. To a great

extent the validation of hypotheses depends upon the measurement process.
Many theories have been usefully used for many years only to be disproved

later when more refined measuring instruments have shown that they are
only approximations.

In realistic terms, these "disproven’” theories

cease to be useful only when they can no longer be applied to practical
situations.

‘ Theories are generally compesed of implicit and explicit components.
A “theorymaker' states most of his assumptions and premises explicitly;

he leaves some things unstated either because they are derivative, i.e.,

stem from explicit assumptions, or are factors that are so wuch a part

of his environment that he takes them for granted. Each user of a

theory must be aware of these limiting factors, of the degree with which

his reality agrees with the assumptions underlying a theory and of the

approximations {if any) that he is accepting by using it.

MODELS

The words theory and model are often used interchangeably. While

this does not often lead to misunderstanding or difficulty, there is

an important difference between the two that is crucial to an under-
standing of simulation,

A model is formalized theory, a stylistic
interpretation of a body of propositions that a theory represents,
Just as there can be many theories of the working of a particular sys-

tem, there can be many models that formalize a theory.

This is well illustrated in simulation by the numerous simulation

programming languages that are available today Llé]. Generally, simu-

lation analysts and programmers develop an approach tu a simulation

study (a theory of system operation) and then code a model of the
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system in a particular simulation language. Each language particular-
izes the general approach to the problem in a unique model structure.
Each language brings a different formal mechanism to bear and provides

a slightly different interpretation of the theory.

ASSUMPTIONS

Just as theories rest on assumptions, so do models, The assump-
tions of theories are often quite general and accepted without dispute,
e.g., man is a rational decisionmaker. The assumptions of models are
sharper, more exposed and subject to more detailed discussion. This is
not to say that assumptions are more or less important when used in a
theory or a model; it is to say that the controversy that arises over
assumptions formalized in models is a function of their necessary
narrowness and application in particular, problem-oriented contexts.

As assumptions bound a theory and make it possible, they structure
a model and make it viable. The choice of assumptions depends on many
things: the nature of a model, the environment in which It exists, and
the use to which it will be put--to name but a few. The more highly
structured a model, the more numerous its assumptions. The narrower
a model becomes, the more use it must make of assumptions to limit the
world in which it is embedded and to create a suitable climate for
precision. But as a model becomes more structured and more refined,
as it increases its number of assumptions (both explicit and implicit),
questions of value as well as technical fact enter. Value-judgment
assumptions affect both the answers that a model can supply, and in-
terpretations that can be made of them,

It is most important that assumptions for simulation models be
clearly stated and not hidden in the complex morass of technique
known as computer programs. For it is the assumptions, much more
than the technical apparatus, that determine the purpose of a model,

and the credibility that can be ascribed to its predictions.




-12-

SCOPE OF A MODEL

Simple theories (models) are broad in scope, as they contain few
assumptions. Broad deductions can be derived from them. Complex
theories and highly structured models, on the other hand, are narrow
in scope. They are narrow because many questions that might be asked
of them are inherent in their structure, i.e., have been assumed away,
The more complex and structured a model becomes, the less able it is to
answer new and unexpected questions. Highly structured (empirical)
models are useful for answering carefully phrased, narrow questions;
models wigh low empirical content are able to respond to broader classes
of questions, but with less certainty. Scope must ultimately be deter=-
mined by the purpose of a model. There can be no abstract determination
of a "correct model," there can only be a determination that a model is
broad enough to answer questions asked of it. Thus, as a theory is
devised to explain something, a model is constructed to answer certain
classes of questions. The often heard statement "Build a simulation
model of system X for me," is as meaningless as the statement, "John,

I need a theory of the atmosphere." Without a statement of purpose,

there can be no theory, no model,

THE VALUE OF DETAIL

Since a model's value lies in the way it can be used, detail is
necessary only to the extent that it contributes to the precision of
model predictions or estimates without limiting the variety of questions
that can be asked. A general, aggregative model may have greater value
than a detailed and highly paramecterized one if the model is intended
to explore possibilities and not determine system operating character-
istics. Value must be placed on the utility of answers and not on
inherent model characteristics.

The subject of the proper congruence between model and ob ject
system is one of long standing. Must a model bear a one-to-one resem-
blance to its object system to be "useful," or need it only act like
it? And if it is just supposed to "act like it," exactly what does

this mean? Once again, the answer to this question lies in the purpose
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of a model. If the model is to be used as an analog, e.g., as a
small-scale operating system, then it must work much like the real
system; if it is to be used as a predictive device, then it need only
produce the correct outputs when it is given input parameters, without
regard for the mechanism used in transforming the input values to the
output results. Most often, simulation models are used both as explan-
atory (descriptive) and predictive devices, Given a set of input con-
ditions, a model is used to predict results and describe the way the
results are determined, i.e., the researcher is concerned with both
system response and system dynamics, Since people usually enter into
explanatory models without knowing exactly what it is they are trying
to explain, the pressure is to make everything as detailed as possible.
As a general principle, this is incorrect. A model should only be as
detailed as is necessary to answer the questions at hand; it should be
so designed, however, so it can be expanded to include more detail with-
out inordinate cost in those model areas which have a high probability
of becoming subsequent subjects of concern,

One more topic must be covered in connection with model detail--
uncertainty. A decisionmaker in search of a fact uses estimates of
the fact; he is concerned with the confidence he can place in any
estimate he is given, Since it costs money to ferret out facts, and
generally costs more as confidence requirements are increased, the
decisionmaker asks, "How much is it worth for me to know, with a cer-
tain degree of confidence, that fact X is true (or false)?'" The degree
of confidence a decisionmaker requires is of course beyond the scope
of this Memorandum. The problems of achieving stated degrees of con-
fidence are not., A simulation model designer must consider, from the
points of view of structure and data, the statistical aspects of the
system he is modeling.

Structural uncertainties arisc¢ from our imprecise knowledye of
how systems function, from our (occasional) inability to separate real
and apparent causes, and from the common crror of confusing correlation
and causation, Any modellthat is predicated on a certain structure
that has been arrived at through observation rather thaun the ry

runs the risk of making predictivns that must be qualified by




a statement, "If the system really acts this way, then...."

e £ T e A

A confi-

dence statement about structure might be: 'We are 95 percent certain

1 that components fail in this way; if they do, then we can support our
; level of operations with six aircraft.”

Accepting an uncertain struc-
ture is equivalent to making an assumption, and, as with all assumptions,
limits a model's scope and utility.

Uncertainties in simulation results caused by data elements are

due to difficulties in parameter estimation, in the selection of correct

statistical sampling distributions and in generatirg truly '"random"
sample data.

Two types of uncertainty exist: uncertainty caused by

input data errors (estimation) and uncertainty due to the statistical

nature of simulation models (randomness).

The second type shows itself
in problems associated with simulation model run length and output data
analysis.

Uncertainty and detail are therefore intimately related. We may

reduce the uncertainty in a model by improving its structure, i.e., by

perfecting the mechanisms that comprise it, but by doing so we may

increase uncertainty in the other sense, i.e., by replacing structural

uncertainty with statistical uncertainty. Uncertainty can almost always

be reduced; the interesting question is how does one arrive at a model

that has maximum utility and minimum uncertainty at lowest cost? While

this Memorandum cannot answer this question, it hopefully points out

important concepts and factors that enable a simulation user to move
in this direction,

SUMMARY

Before a simulation model is designed, two important questions must
be asked and answered:

(1) what use will be made of the model (what

questions will be asked); and (2) what are the requirements of accuracy
and precision?

Answuers to these questions determine the structure of a

model, as thev demand that certain assumptions be made, that certain
boundaries be iwposed and respected, that certain types of questions
~an and cannot be asked, that certain territories cannot be explored,

and that certain realities cannot be predicted,
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To be sure, it is almost always possible to create an extremely
general model, so highly parameterized and loosely structured that
almost anything can be asked of it. To do so places primary emphasis
on flexibility and secondary emphasis on efficiency; it implicitly states
that the overriding cost is reprogramming, e.g., adapting an existing
model to new conditions, and that costs such as initial programming
effort and time, computer execution time, and data analysis and prepara-
tion time are secondary. There are cases where such an approach is

justified, and naturally there are cases where it is not,
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I1, MODELING CONCEPTS

STATE DESCRIPTION OF A SYSTEM

Simulation models are constructed for the analysis of systems,
which we broadly define as bounded sectors of reality. One of the
first assumptions made in a simulation study is the boundary of the
world to be included in a model, The fact that models are selective
requires that system boundaries be defined and assumptions be made
concerning the way the enclosed system interacts with the world that
lies outsi its boundaries,

Once a system has been defined, the purpose of the simulation
study determines what a model of the system will look like, for there
can be many models of the same system., Models differ from one another
because (1) the theories that they formalize are differeat and (2) be-
cause they employ different technical mechanisms, It is the first of
these causes that we are concerned with here,

An example of a system that can have many models, i{,e,, theories
about how it operates, is an Air Force base, For any particular base
or for a generalized base structure there can be maintenance models,
personnel models, vperations models, and so forth., Each model is dif-
ferent, viewing the total system from a different point of view, and
yet including the same system elements, This {s done by means of
varying assumptions about how subsystems interact and by varying degrees
of detail in specifying system structure,

Systems are distinguished from one another by their static and
dynamic structures. The entities (objects such as people and machines)
that make up a system, along with their associated attributes (charac-

teristics such as age, weight and mental status) and membership

relationships (connections between entities, such as being a member

of a family, the Air Force, or the Masons) define its static structure.
The activities in which these entities engage specify its dynamic
structure, There can be systems with fdentical static structures and
different dynamic structures and vice versa. A model's ultimate use
determines its structure. A mode!l used for comparative statics may

have no dynamic structure; it may merely project changes in system




-17-

static structure on the basis of statistical or logical relationships.
A model used tn analyze dynamic behavior leans heavily on a structure
that explains how a system moves ahead in time from static state to
static state.

A system is said to be in a certain state when its entities have
properties unique to the state, These properties are such things as
numerical attributes of temperature, value and color, and logical re-
lationships of membership in groups or sets. Depending on the view
taken toward activities, whether they interact at discrete points or
over periods of time, there can be attributes associated with dynamic
as well as static system constructs, That is, an activity can be
fully or partially completed, be in progress or terminated, be waiting
for another activity to occur or be interrupting another activity, etc,
Viewed in a very general sense, there is no conflict in the description
of state as a static or dynamic phenomenon. For at all times, whether
between state changes as described in a static sense, or at system ac-
tivity intersections, the concept of a system state is completely de-
fined,

Viewed at a point in time, a system model is always in one of a
(perhaps enormous) number of states, Viewed over a period of time, a
system model passes through a succession of states as its entities un-
dergo system activities, change their attribute values and relationships,
and become eligible for subsequent activities and status positions,

Simulation is the manipulation of a model to reproduce the opera-
tions of a system as it moves through time, As such, a simulation an-
alyst is concerned with techniques that move a system from state to
state, and with techniques that draw inferences from these movements,
As we have previously pointed out, some simulations concern only static
aspects of system change; they concern the final values of entity and
system attributes and not how these values are obtained, Other studies
concern system dynamics; they are interested in the ways in which sys-
tems arrivc at different states, These different types of simulation
studies require different model structures, Models that concentrate on
static aspects of systems tend to be less detailed than those that con-
centrate on dynamics; they tend to be more statistical and less mechan-

istic, The degree to which a model is able to serve both purposes




~18-

efficiently is a function of the assumptions made about its internal

operations and the techniques used in its implementation.

SIMULATION MODEL STRUCTURE

A simulation model can be viewed as a system state generator.
Given an initial system state, it moves a system to new states using
information contained in the system, extracted from previous state
changes, and communicated from outside the system boundaries. A

simulation model is portraved structurally in Fig. 1.

EXTERNAL DATA

e Ly

STATIC SYSTEM DYNAMIC SYSTEM

DESCRIPTION DESCRIPTION

System memory el -

Decision rules
System state

Fig. 1 -- Structure of a simulation model

The static and dynamic system descriptions define a model's cur-

rent state. The system decision rules use the state data to determine

new system states., In so deing, they may use data external to the

system and information extracted from previous state changes. Models
t

that make use of such "remembered" information are called adaptive in
recognition of their ability to "learn" from previous experience.

A model's final structure is affected by more factors than one

might suppose. To name a few, it is affected by:
i» The purpose of the model.
; The accuracy and precision required of the output.

The detail required in the model to achieve the required precision.

The assumptions required at the system boundaries.
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The assumptions required within the system boundaries for
status representation
decision parameters
decision rules,
The availability of necessary data,
A model's design is thus complicated by a number of theoreiiral
and practical factors, Theoretical factors determine such tiings as
system boundary interactions and decision rules; practical factors modify
theoretical decisions, such as the fineness of detail incorporated in a

model. For this reason there must be a feedback loop in the modeling
process,

THE MODELING PROCESS

Viewed as an iterative process, modeling takes into consideration
the requirements of the model builder and the limitations of his environ-
ment. The final model, in both structure and implemertation, reflects:
the influences of the system being studied, the questions that are to
be asked about the system, and the environment in which the model is to
perform. Modeling is a constant balancing of costs: data collection
costs are balanced against costs (and benefits) of precision, computer
program execution costs are balanced against the costs of model repro-
gramming,

A five-stage iterative sequence describes the modeling process:

Stage 1: Statement of a problem in general system terms.,

Definition of gross system boundaries,
Statement of output(s) needed to solve the problem,

Stage 2: Statement of (initial) assumptions.
Definition of static and dynamic system structure,
Construction of minimal system model,
Assessment of assumptions in light of Stage 1 goals,

Stage 3: Determination of input data requirements and avail-
ability. If input data required are not available,
modify assumptions and model structure by returning
to Stage 2,

Stage 4: Determination of output possibilities, If output is
insufficient, modify assumptions and model structure
by returning to Stage 2.

Stage 5t Prepare precise specifications for final model, Select
a modeling and programming language, Reassess the impli-
cations of all assumptions for the future, Prepare a
detailed plan for use of the model.
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In Stage 1, a problem is discussed in problem-oriented terminology
to define a situation as the person with the problem sees it. The tasks
at this stage are (1) to define a problem well enough so that it can be
expressed in concrete terms and (2) to creatc an uadcrstanding of a
problem, as it is seen and as it will be solved, between the person
with the problem and the "problem-solver" (who may be the same person).
Problems at this level are generally stated first as "Something has to

be done about the way the shop is operating," and then, after some

discussion, refined to "We have a problem with too large an investment

" and finally, after considerable more

in work-in-process inventory,
discussion, narrowed to "What is the right mix of equipment for our
workload in the custom-built widget shop?"” By a process of gradual
narrowing, a problen can be phrased in terms of a limited system {the
custom-built widget shop), and stated objectives (find 'n equipment

mix that minimizes work-in-process inventory). When an *~jective and

a gross model are clear, outputs can be described that, when produced
by the model, enable realization of the objective.

Stage 2 takes the general system defined in Stage 1 and shapes it
into a workable simulation model. As a first step, all recognizable
assumptions are clearly stated. These are not 2'l the assumptions that
will be present in the finished model since (1) this stage aims at a

minimal model, i.e.,, one containing as little detail as possible, hence

minimal assumptions, and (2) assumptions may be present that are only
recognizable as such when they are fc:malized in mechanisms of the finail
model.

Next, given the object system, the problem statement and the list
of limiting assumptions, the structure of the model is developed. The
static structure dissects the object system into its component parts,
giving each part a unique name and set of characteristics., The dynamic
structure describes the way these components act and interact in the
system in performing their assigned functions.

Finally, the newly created static and dynamic structures are ex-
amined to sce if any new assumptions have been made that conflict with the
original goals of the system study, If there are conflicts, either the
model (static and dynamic structure or both) or the problem statement

must be revised, If there are not, the next stage of modeling can begin,
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At this stage the model is examined to determine its input data
requirements, Until now, data have been igrored, not letting precon-
ceived data structures or systems prejudice the form of the mcdel, Now
the model must be examined to see whether it calls for data that (1) de
not exist, (2) exist but cannot be collected and analyzed for one rea-
son or another (usually cost or time), or (3) exist but are not usable
(incomplete, biased, error-ridden). If this is so, the model must be
redesigned to do without these data; usually this calls for new assump-
tions about the system's behavior., Keeping each data element in mind,
the model builder returns to Stage 2 where he can make such changes that
are compatible with the total system,

Given a model structure and a source of 'good" data, the model must
next be examined to '"see what it can do." It must be analyzed to see

T what output it generates, and to determine its characteristics, Usually
. the output is sufficient and of the proper kind, This is not surprising,
since it has been the goal of the modeling project, But often the out-
put is not correct, Due to structural assumptions made along the way
or modifications necessitated by input data difficulties, the model may
have been changed sufficiently to preclude the generation of certain
kinds of data, Also, it is not at all unusual at this point to ask new
questions of the model, questions that were not thought of previously
and for which output provisions have not been made. The very existence
of the model, the fact that people are working with it and thinking
about its object system in concrete terms makes this almost a certainty,
| Again a return must be made to Step 2 to remedy these deficiencies,

In the end either of two things happen, a final model emerges or
the original problem (perhaps augmented by now) is declared unsolvable,
The latter is not usual, but it can happen if questions are asked that
require data that do not exist and cannot be synthesized or that concern
svstem functions whose mechanisms cannot be modeled,

Normally a model emerges, If it is not exactly what was flrst
asked for, it is close to it. It has the property of being minimal for
its task, i.e., it has evolved from a simple beginning, witn detail and
complexity added only when necessary. It has the maximum generality

(minimal assumptions built in) for the task for which it is to be used.
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This is important, for it is difficult enough to analyze a simple
system without complicating the task with extraneous detail.

This is the model that will be programmed for a computer, and,
after it is checked out and verified, run under different conditions,
studied and treated as if it were a small scale replica of the real
system. But before it is programmed, it is best reviewed in the
light of future as well as present plans. That this is necessary is
a comment on the pragmatics of model building and computer programming.
This is a stage where economic reality steps in and has its say on the
shape of the final product,

It costs money to program a model and run it on a computer. This
money is spent on system analysts, model building, data collection and
analysis personnel, computer programmers and statisticians. It is also
spent on computer running time, and on peripheral equipment support.
Generally, models that are specific and directed to narrow goals are more
efficient (with respect to computer running time) than general-purpose
models; they are often also cheaper to design. This is due to modeling
efficiencies made possible by taking advantage of the structural proper-
ties of particular situations. But when new questions are asked of nar-
row models, when new data elements must be recognized and inserted into
model structures, redesign and reprogramming costs must be paid. These
costs are often so steep that they are considered as penalties; they are
especially steep when new personnel must be recruited for the task.

And so a wige model builder looks to the future. He asks "What
might these investigators like to study (look at or alter) next?," and
designs models with as much flexibility as he can, wherever he can, with-
out paying expensive computer run time penalties., This cannot always be
done, and it is possible that a wrong guess will cost money in the long
run, but the nature of simulation and the way models are used, suggests

that it is a profitable general principle.




-23-

SUMMARY

Simulation is a flexible management tool, enabling almost any
system or situation to be studied in great detail, It is also a rela-
tively new and unstudied tool, promising great rewards at the (possible)
cost of great penalties.

Hopefully, Secs. I and II have defined simulation well enough so
that the reader now sees where it fits in management's toolkit. It is
a decisionmaking aid, as are all management science or operations research
techniques., Two of its greatest advantages are its almost complete lack of
dependence on particular methodological assumptions about the systems,
and the close look at system operations its methodology requires. Many
a dollar has been made on improvements made to existing systems after
careful analysis for simulation model building and data collection

brought design faults to light.
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IV. AN EXAMPLE OF SIMULATION MODELING

A SYSTEM

The system we use as an illustration is an office in which a
number of executives and secretaries work. It might be a real estate
office, a division of a life insurance company, a branch of the Federal
Government, or a small town newspaper. If the executives are doctors,
it might be a medical center or a records room in a large hospital.

The executives process incoming correspondence, place and answer tele-
phone calls, and hold conferences throughout a normal working day.
Periodically they call upon the secretaries to take dictation, do
typing and take charge of miscellaneous affairs.

The office manager has called for a review of the office, with an
eye toward personnel reallocations, changes in procedures, and possible
automation of selected clerical functions. He has requested that a
simulation study be conducted to answer certain specific questions.
Being a wise man, he realizes that the performance of the office system

must be judged as a whole and has established some system performance

criteria that he will use in rating various alternative office system
designs. He plans to evaluate these designs through questions he will
ask of the simulation model.
The system performance criteria specify that system design A is
preferred over systen design B Lf:
(1) Design A allows a greater volume of business to be transacted;
or
(2) Design A reduces the time taken to process business transac-
tions for a given volume of business; or
(3) Design A requires fewer secretaries for a given volume of
business and transaction processing time.
The ordering of the criteria implies that the ability to accommodate
business demands comes first, maximizatlon of executive and secretary

discretionary time comes sccond, and reduction of the secretarial staff

comes last.
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The office can be viewed as a closed system receiving requests for @
service from outside its boundaries, processing these requests, and re- 3
sponding to their originators. It is pictured abstractly in Fig. 2. :
This abstract model, given a frame of reference by a set of questions,

provides a starting point for developing a simulation model of the

e

office system.

Incoming
requests
L

Outgoing
responses
D

e
o

<t

T

2 A

e

EXECUTIVE OFFICES SECRETARIAL POOL

Fig. 2 -- Executive-secretary system

SOME_QUESTIONS

There are three general classes of questions that can be asked of
any simulation model; these questions felate to:

(1) Demands the environment makes on the model

(2) The structure of the model,

(3) The parameters <f the model.

A system exists to perform certain tasks, whose nature and inten-

sity drive the system. In our office system, the tasks imposed on the
executives are ' ~ermined by incoming transactions, By varying the

characteristics of these fransactions one can test the system's ability
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to respond to different workloads. Reasonable environmental questions
the office manager might ask are:
What will happen to system performance if the incoming workload
Ls increased by 10 percent?
What will happen to system performance if the office takes on
new kinds of tasks or changes the mix of existing tasks?
Another class of questions relates to the logical structure of a

system, its overall layout, information and material flows, and control-

ling decision rules. Questions asked of simulation models fall into this

category when people use simulation to design new facilities, or rede-
sign existing ones. The structure of a model is its most constraining
(as well as liberating) force, and questions about system structure

are difficult to answer. Some reasonable gtructural questions the

office manager might ask are:
Can the paperwork flow be redesigned to reduce, by 10 percent,
the time an average transaction stays in the office?

What will be the effect of switching from a single pool of
secretaries to several small pools assigned to particular
men?

Will system performance be improved or impaired by adding
an additional aftecrnoon coffee break for the secretaries?

The third class of questions concerns itself with variations in
existing system structures. This class is important as it concerns
the assessment of maximum system performance levels within existing
system design constraints. Exploration of system performance by vary-
ing its design parameters is known as scnsitivity analysis. Some rea-
sonable parametric questions the office manager might ask are:

What increase in system performance can be expected from only

hiring new secretaries who type at lecast 100 words per
minute?

What will be the effect of trading the existing copying machine
for a newer, high-speed model?
Similar questions suggest themselves in most systems. Our ailm
here is not to suggest particular questions, but to describe the class

of questions simulation models can bc used to answer, and to Impart a
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flavor for the way a simulation model is constructed. The reader
should note how the questions influence the model. For example, one
of the above questions assumes that a secretary's efficiency is a
function of the time since her last break. A model of secretarial
performance must take this factor into account if it is to answer

this question.

A MODEL

As we have seen, a model is a formalized theory of how a system
operates. Since any formal mechanism used to build a system model
exerts its own independent influence we must state at the outset
that the model we present is only intended to illustrate the way a

model is constructed. Other formal mechanisms will produce other

models, some more general, some narrower, some harder to deal with,
some easier. All would be constructed the same way, from a dissection
of a system into component parts and a formalization of its mechanisms
and how they work.

The formal modeling scheme that we use in this example is the

logical flowchart. The simulation theory that underlies the model

structure is that of discrete-change interaction. Other modeling

schemes such as decision tables [15] or relationship graphs [16] could
heve been used; other simulation theories such as transaction flows,
activity cycles or processes [17] could have been utilized. The reader
is urged to view this section with an open mind, accepting the example
as an illustration and not a prescription. A number of modeling and
simulation concepts are discussed in succeecding Memoranda in this
series, and the interested reader can refer to these or to the refer-
enced works for additional information. Discussion of them at this
point is beyond the scope of this text.

A flowchart (s a graphical display of functional activities that
take place in a system. Generic functions are indicated by standard-
fzed block shapes, with specific operations written inside each block.

Some common function blocks used in simulation modeling are pictured
in Fig. 3,
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Fig. 3 -- Typical flowchart symbols used in simulation mudeling




We use these flowchart symbols in our example. Computations that
change the system state directly or are used in changing state or moving

the system through time appear in computation blocks (Fig. 3a), compar-

isons appear in decision blocks (Fig. 3b). If a comparison is true,
flow proceeds down the path labeled YES; if false, down the path labeled
NO. Transfers between sections of a flowchart and among flowcharts

are indicated by transfer blocks (Fig. 3¢). Transfers are made when

computations do not proceed in sequence within a flowchart or when
different flowcharts refer to one another. Flowcharts are entered at

entry blocks (Fig. 3d) that indicate the beginning of a flowchart--

they start the pafh a particular logical flow can take. Scheduling

blocks (Fig. 3e) are points in a flowchart where references are made

to entry blocks that are not entered immediately, as through a trans-

fer block, but after the passage of an indicated amount of simulated time,
When such a block is encountered a "memo" is made in a list that enables
the indicated flowchart to be entered at the appropriate simulated

time. A "timing mechanism" permits simulated activities to proceed

in parallel or in series as the logic of the model indicates. This
concept is central to simulation, and is elaborated as we proceed

through the steps of model building.

There is only one event block (Fig. 3f) in each flowchart; it acts
like a transfer block with one important difference. It does not trans-
fer to an indicated event, but to an event selected from a list that
ranks previously scheduled events according to the simulated time when

"occur." When an event block is entered, control

they are supposed to
passes from the flowchart (event) | is in to the flowchart (event)
with the smallest scheduled value of simulation time. If this time is
different from the current simulation time it Ls used to advance the
"simulation clock." Events that change the clock happen one after
another in simulated time; events that leave the clock alone happen in
parallel, at the same simulated time. That is, although they are pro-

cessed sequentlially, they are thought of as occurring at the same time.
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Overall Model Structure

The model consists of five "events":
(1) A request to perform a task,
(2) Initiation cf a task,
(3) Review of a secretarial task,
(4) Availability of an executive a: the end of a rask,
— {5) Availability of a secretary at the end of a task.
Each event is either a starting or ending poini of an éctivitx that
takes place in the simulated system, Event flowcharts describe time-
independent actions that take place in am activity, and call upon one

another as simulated time elapses. A basic assumption of discrete-

change simulation models is that all system state changes take place

at activity boundaries. This is differeat from continuoua-change simu-

lation models that permit state changes to . tak2 place continuously as

simulated time advances, There are wayvs to mc@ei continuous change in
discrete change models, but these are "tricks of the trade" that are
not discussed here.*

Simulated time is advanced by what we have called a timing mechan-

ism. Whenever this wechanism raceives an instruction to do so, it up-

dates a simulation clock, and transfers to a selected event entry block,
taking actions that aférsupposed to occur at this pc.nt in time. As
events are processed, state changes take place, the model undergoes
dynamic revisions -~ the system is simulated.

The remainder of this section is devoted to modeling the office
system through these five events, clearing up the nctions of simulation,
and putting certain important technical considerations in perspective.
The discussion is very detailed and the reader is encouraged to get a

pencil and paper and work along as he reads.

A Request to Perform a Task

In most systems, jobs (tasks, requests) are initiated in either of

s,

w )
In fact it is hard to find them recorded anywhere and they are
usually passed on by word cf mouth among professional prograommers.,
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two ways, by mechanisms outside the system or by mechanisms within
“it. When jobs are initiated externally, they can be viewed as the
ocutputs of a black-box;* these outputs can be regular or periodic,
deterministic or predictable in a statistical sense, or irregular

aad completely indeterminate. When they are initiated internally,
it is usually through some legical mechanism whose operations are

known to or determined by the system,

When external inputs are regular and known, a mechanism can be
built into a simulation model that simulates the regularity. In a
sense, the simulation model is constructed so it contains a simulation
modal of the relevant world beyend its boundaries. In a large number
of simulation models, statistical regularities are cbserved in model
inputs (requests, jobs, tasks) and statistical methods used to simulate
them. A common method is to define the time between successive arrivals
(requests, jobs, tasks) as having some known statistical distribution
and to sample within the model to generate arrivals which, though they
are unequally spaced and might seem to occur at chance times, observe
the arrival pattern either present in the "real world" or deducible
from theory. It is sufficient here to recognize the necessity for
mechanisms that can produce such data without dwelling on the details
of how they do it [18,19].

When system inputs are irregular they can be transmitted to a
simulation model directly. This is usually done by putting data on
punched cards, paper or magnetic tape and incorporating a mechanism
in the simulation model for reading the data. Simulation models are
often run with two types of input: real world data to validate a
model by testing its behavior in known situations, and generated data

to observe its performance in new situations.

“A "black-box" is a closed system whose behavior is known, but

whose mechanisms are not. We know what it does, but not how it does
it. And, by definition, we don't care.

|
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We assume that executives in our office system have two types
of tasks: they process incoming communications (invoices, requests
for bids, price queries) and handle interoffice correspondence. These
tasks are not independent of one another; the former are produced by
mechanisms external to the office system, the latter are induced during
the course of daily operations. As they result in similar actions we
treat becth in the same event (flowchart). The event concerns itself
with "discovering" a request, and, for requests that have come from
outside the office system, determining the time of the next request
(either by reading it from a punched card or generating, by statistical
means, a time when it will arrive). But this is getting ahead of
ourselves, since before we start building an office model we must define
the system. We do this by defining the objects that "live" in the
system and assigning attributes to them. Table I lists these objects,
which we shall call entities from here on, and their attributes. Once
these entities and attributes have been defined, c:e can almost vi-

sualize how the system will be simulated.
Table 1

SYSTEM ENTITIES AND THEIR ATTRIBUTES

ngecutiVe Secretary Task
Position Skill in tyéing Type
Manager words/minute Invoice
Senior errors/100 words Price quotation
Junior Skill in dictation Bid
words /minute Telephone
errors/100 words Dictation
Skill in office work Typing
General rating 1-100
State State Characteristics
Busy Busy Time
Available Available Length
On-break On-break

|




Given the static structure defined in Table 1, the nature of the
request event, and some logic not yet described, we can construct a
flowchart model of the actions that take place when a request enters
the system. This model is illustrated in Fig. 4. Numbers to the left
of eacn flowchart block refer to commeats in the body of the text
that describe the opzrations that take place within the biock.

Block 1 is the entry point to the flowchart. It coatains a name
that will be used in subsequent flowcharis to refer to the 'task
request' event. The directed arrow ieading from it is a symbol com-
monly used to indicate a path and direction of flow.

Block 2 is a decision block that splits the logical flow depending
on the kind of request that has just occurred. To understand how this
block operates we must understand the concept vf an event occurrence.

An event occurs when its "time arrives," the time having been
previously recorded by an internal scheduling block or observed on an
input data card. The precise mechanisms that accomplish these tasks
differ among simulation programming packages and need not be stated
here. It suffices if the reader understands that there is some mech-
anism operating in the background of a simulation program, observing
data cards and previously scheduled events, ordering them by their
event times and "popping them up' when their time arrives. This in
fact is the function of the event selection block. The reader will
notice that every event terminates with a direct transfer to another
event, or with an event selection block, It is in event selection
blocks that time discriminations are made, events sequenced properly
in time and the simulation clock advanced.

When a request event is popped up the simulation program has
access to information associated with it, e.g. how it was caused.

The model is able to look at this information and take action on it.

If the request is for an internally generated task, the flowchart
leads directly to Block 5 where a question is asked to see Lf office
workers are available to process the request. If the request is for
an externally generated task, the program pauses in Block 3 to compute
(according to some statistical time distribution) or read (frua a data

card) information about the next arrival.

b ——— e
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Block 4 schedules the arrival of the next externally generated
request. When it does so it records a memo of a request arrival and
its time on a calendar cf events scheduled to occur. This calendar is
part of the selection mechanism employed in sequencing events and
advancing simulation time.

By the time the program arrives at Block 5 it is through with
scheduling future events and is concerned with processing the request
that has just arrived. Since real offices do not work continuously,
but pause for lunch and coffee breaks duri, the day, the model asks
in Block 5 if such a period is in progress. 1f it is, the request can-
not be processed immediately but must be filed for later handling. If
the request can be processed, Block 6 tran<fers control to the event
that does so.

Block 7 records a request that cannot be handled in a backlog file;
it might be an in-basket in real life and a table or list structure in
a computer program. The file entry is made so that when the office
workers return to their desks they see that tasks accumulated while
they were gone.

Block 8 directs the simulation program to select an event from
the time-ordered file of scheduled events. It might be another request
or the completion of a previous task. When the next event is selected
it may or may not indicate a simulation time advance. If it does not,
we think of it and the event just completed as occurring simultaneously;
although they are processed in series on the computer there is no time

advance and they are considered as happening at the same time.

Initiating a Task

Once the system has accepted a request, a match must be made
between it and the resources needed to fill it, A search is first
made for an executive, If one is found who is free and can handle
the request, a secretary ls procured if needed. The logic for this
event is shown in Fig. 5.

Block 1 as always is an entry block giving the symbolic name of

the event.

s i i A s kb o hin
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Block 2 starts the match between a task and its resources by
asking if the request just entered calls for a particular executive,
e.g., a telephone call for a certain person or a request for a price
quotation from a specialist in a certain area. If no particular exec-
utive is called for, Block 1 passes flow to Block 3 where an executive
is selected. If a certain person is requested, flow proceeds to Block
4 where a test is made to see if this person is available.

Block 3 is typical of a functional block whose description is
short but whose programming content might be large. A procedure to
select an executive can be brief, e.g., managers can do everything,
senior executives can do everything except give price quotations, junior
executives can only answer the telephone; or it can be long and elab-
orate, e.g., an executive is selected whose personal qualifications as
listed in his personnel file match the requirements of the task accord-
ing to a complex and computationally intricate formula. Many of a
simulation model's key assumptions are built into blocks such as this.
In this report we leave this block in its present "macro" level; in
a subsequent Memorandum we present a computer program for simulating
the office system and expand the block into detailed logical elements.

When an executive is selected, Block 3 transfers to Block 4, the
block to which control is passed if a particular executive is called
for.

Block 4 asks if the executive requested in Block 2 or selected
in Block 3 is available. It does so by exsmining the executive's
state (status code); if the code is "available" the cxecutive is free
to handle the request, if it is "busy" or "out on break” he is not.
Once again, as in Block 2, the flow logic is split depending on the
answer to this question,

If the selected executive is available, flow passes to Block 8
where processing of the task begins. Before we consider these actions
we should discuss what happens if the executive is not available.

Block 5 asks if a substitute is available for a busy executive,

implying that a substitution can be made and that a procedure exists




for finding one. This situation is a little like that of Block 3

where an executive is selected for a particular type of task. Block

5 could be expanded to a series of blocks describing a procedure for
selezting a substitute, testing for his availability, selecting another
substitute if necessary and so on until all possible candidates are
tried and accepted or rejected.

In our simplified model we do not
state this logic,

We only indicate that if a substitute cannot be

found, control passes to Block 6 which files the unprocessed task.
Block 6 of this event is identical to Block 6 of the request

event; it files information about the request for later processing.

This block appears in the simulation model whenever a request cannot
be processed and must be “remembered."

In Block 7 control is passed via an event selection block back

to the "timekeeping" mechanism of the simulation program. Since the

current request cannot be processed, the model must look at its calen-

dar of scheduled events to determine what to do next.

Returning to the case where an executive is available to process

a request, we ask next in Block 8 if a secretary is also needed. This
will be true if the request is for dictation or for some task where
instructions must be given; it will not be true if the task is simply

answering a telephone call. This question can be answered in a number

of ways in an operating computer program; as with most questions of

this type we leave the description of decisionmaking at the macro level,
namely, that a decision has to be made.

Block 9 starts the flow path for the case where a request can be

honored by an executive alone; it determines the amount of time he

will spend on the task. As with arrival times this can be computed,

read in as a constant value for all tasks of a given type, or read in

along with the request for the task. These are optlons that are left

to the operational computer program.

Block 10 puts the executive in the 'busy" state so that he cannot

be called on to do another task while he Is working on this one. He

will vemain in this state until the "executive avallable" cvent occurs;

this is scheduled in Block 1l to happen after the lapse of the previously
determined amount of time.
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Before proceeding with the simulation, the model must ask if
processing this task, e.g., answering a phone call, induces another
task, e.g., writing a memo. This is done in Block 12. If a task is
not induced, flow passes to Block 7 where the model is instructed to
select another event and proceed with the simulation. If a task is
induced, Block 13 determines its characteristics and passes them on
to Block 14 where the induced task is scheduled to be requested. Flow
then proceeds to Block 7.

If, back in Block 8 we found that a secretary was needed to work
along with the executive, control would have passed to Block 15 where
a secretary must be selected before a task starts. Block 15 probably
employs logic similar to that used in selecting executives for tasks.
This logic can pair a particular secretary with an executive, pool all
secretaries so that they are available to all executives, or employ
some intermediate scheme. As was done in selecting an executive, when
a secretary is chosen her status code must be tested to see if she is
available.

Block 16 performs this test. It, like Block 5, can be considered
as a macro block in which alternatives and availabilities are tested
until a decision is reached. If a secretary is not avuilable, a request
cannot be processed and must be filed along with other unprocessed
requests.

Once a secretary is found, Blocks 17, 18 and 19 determine the
time the executive and secretary will spend on the job, put the secre-
tary Ln the "busy'" state, and schedule the time when her work will be
reviewed. It {s not necessary that the executive and the secretary
work together on the task for the same period of time; separate cvents
are provided to schedule thelr release from the task at differcnt times.
The release times can, however, be the same Lf the task Ls a cooperative
effort.

Block 19 transfers control to Block 10 after completing its func-
tion, plcking up at a part of the flowchart that we have alrcady scen.

The reader should be able to see why and how this was done.
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Review of a Secretarial Task

One of our office rules is that every task a secretary performs
must be reviewed. When a secretary finishes a task she brings it tou
the attention of the executive who initiated it. If he is not avail-
able, she waits.* If he is available, he reviews the work and either
accepts it or notes corrections that must be made before another review.
The logic of the review event is shown in Fig. 6.

Block 1, as usual, names the event. Block 2 asks a question
about executive availability and transfers to Blocks 3 or 5 depending
on the answer.

Block 3 records the review task in the executive's incoming work
file if he is busy. The task is filed along with incoming requests
that were filed for reasons we saw in previous flowcharts. Block 4
calls on the simulation timing mechanism to select the next scheduled
event. The secretary is not assigned an "available" state, but remains
“"busy," waiting for the executive to become free and review her work.**

Block 5 is another macro block, hiding what might be an enormous
amount of logic behind the label "executive review of secretary's
work." This block will most likely contain different review criteria
for each kind of task a secretary can perfomm, one for dictation and
typing, one for filing, etc. The result of a review will be Yes if
the work is satisfactory or No with a list of corrections if Lt is
unsatisfactory.

Block 6 branches on the previously computed Yes or No. If the
task has been done satisfactorily, the secretary is put Lnto the
"available" state in Block 9, making her eligible for new tasks, and
scheduled to come available immediately (Block 10). An event scheduled
to occur with ne increase in simulation time will probably be executed
at once when the cevent returns control to the timing mechanism (Block
4). At least it will compete for immediate processing with other events

scheduled at the same time, L.e. occurring in parallel.

T
This may not be good office practice, bdt is a feature of our
example.
feve

Clf. abuve foutnote.

P
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An unsatisfactory task has its correction time computed in Block
7 and review reschcduled in Block 8.

Important things to notice about this event are its hidden basic
assumptions--a review task takes no time and a secretary stays with
a job until it gets reviewed. These assumptions can be easil: changed
to allow secretaries to do other work while waiting for reviews, cause

executives to spend ti-te making large-scale corrections, etc.

Executive Available at the End of a Task

This event marks the completion of an executive activity. It
returns an executive to an "available" state and determines his next
action: another task, a break for coffee or lunch or an idle (dis-
cretionary time) period. The event logic is shown in Fig. 7.

Biock | names the eveui. Block 2 puts the executive in an avail-
able state and asks questions about the next executive action. These
questions are asked in a specific order and imply certain things {rom
the logic rf the event we see that a lunch or coffee break cannot ytart
until a current job is completed, but will be taken when it is due
regardless of task backlogs. This is important as it assumes a priority
sequence imposed by the order in which questions are asked and not by
explicit priority statements.

Block 3, which decides if a break is due, al.. contains hidden
logic. When one considers the connections between events and the way
in which the model operates, he sees that if an exccutive is idle (in
the "available' state) and a break time occurs, there is no mechanism
that alerts him of this. By the way the model is constructed, breaks
can only be taken after the completion of jobs. This will have little
practical effect if: (a) the work rate is high in the office so that
there are no long periods of idle time possible or (b) the logic of
Block 3 looks al:ead and starts a break carly if one is almost due.

This small difficulty has been put in th. model to acquaint the reader
with problems that can occur when one sets out to build a model from

scratch.
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If a break is due, Block 4 places the exccutive in the "break"
state, Block 5 determines its duration, Biock 6 schedules the executive's
return to an availability condition (by executing this same event some
time in the future after the simulation clock has advanced past the
break peint), and Block 7 returns control to the event selection mech-
anism.

If a break is not due, the model must decide whether the executive
should be left in the available state or assigned to a waiting task.

It does this by looking, in Block 3, at the file in which we have been
putting requests that could not be processed. If the file is empty
the executive is left alone and control passed to Block 7 to select
the next event.

If the file is not empty the model must select a job. If there
is only one job in the file there is no problem. If there is more
than one there is a conflict situaticn that must be resolved. Conflict
is usually resolved by priority rules that assign values to differeat
types of jobs; a job is selected that has the highest (or perhaps
lowest) value. In cases with ties, multiple ranking criteria are used.
Possible criteria that might be used in this model are: time a job
arrives in the system, skill level required to process a job, etc.

The issue of selection rules is a complex one and a model that merely
says ""select a job" hides a lot of work that must bc done to develop
an operating model. For example, there are few organizations that
have well articulated and formalized priority rules, and a modeler
may have his hands full merely trying to find out the "rules of the
game."

Once a task has been selected, however, it is a relatively simple

thing to route the executive to the proper flowchart to process it.

This is shown in Blocks 10, 1l and 12.

Secretary available at the End of a Task

This event is similar to event 4 in both its intent and its form.
When a secretary is released from a task she becomes available and is

either sent on a break, put on a backlogged job or left idle, depending
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on current conditions. Blocks 1 through 10 in the flowchart of Fig. 8

correspond to similar blocks in Fig. 7 and need not be commented upon.

SUMMARY

A model is a mechauism for reproducing a system's performance.
When described in a formal manner, e.g., through flowcharts, a model

takes on a descriptive flavor that aids in understanding the processes

at work in a system, For this reason people are constantly at work
devising new modeling schemes [15,16,20].

In this section we have presented a simple system, posed some
questions that might be asked about its behavior and presented a model
that, with some elaboration, can be implemented on a digital computer.

We have indicated that this model is primarily illustrative, one of

many that could be designed and formalized to serve the same ends. We

Lo st

have tried to keep the model simple, hoping to preserve the overall
system structure in the reader's mind, since over-elaboration can
prevent a reader from seeing an underlying model structure. Yet we
have incorporated a moderate amount of complexity to keep the model
from being completelv trivial.

At this point we hope that an interested reader will take some
time out to think about the model, aboutr the various technical protlems
implementing it might present, about the kinds of data he would need
v0 use it, and about the way in which he would go about doing so. We
strongly suggest that he make up a set of sample data, e.g. a set of
executives and secretaries of various capabilities and a list of

requests to be input at different times, and work through the model.

It is only by attempting a simulation, even for a few events, that a
true feeling of "what it is all about" is formed. And it is only
through such an exercise that all cf a model's hidden and unstated

assumptions are exposed. We have left some for the reader to find.
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V. USING A SIMULATION MODEL

The basic concepts and techniques of simulation should now be
clear. A Glossary of simulation terminology is provided in the Appendi
for readers who wish to review the concepts wa have discussed.

While it is now possible for a reader with little or no previous
background to understand, evaluate and possibly construct a systems
simulation model, he will find when he attempts to do so that his dif-
ficulties have just begun. While he has mastered the "concept barrier"
he has an even higher "technical barrier" before him. This section
highlights some technical simulation problems. We will not discuss
them in any detail, for that is the purpose of other Memoranda in this
series, but we do make them known and draw the reader's attention to

their importance.

SIMULATION FROGRAMMING LANGUAGES

Traditionally, it has been a difficult and expensive task to go
from a flowchart model, such as we have presented here, to a running
computer simulation program. It has been difficult because communica-
tions are difficult between model builders and computer programmers,
because there are few widely available computer programming languages
rich enough to express simulation concepts in a natural way, and because
simulation requires special mechanisms that ordinary programming lan-
guages do not have. It has been a long road fcr most large scale simu-
lations and a tribute to their creators' patience and perseverence that
they have been done at all.

The situation is better today. A number of special-purpose simu-
lation programming languages exist that are designed for aiding model
design, reducing computer programming difficulties and gniding model
builders in the use of models. Most of these languages have been
designed with both the nonprofessional programmer and the computer
specialist in mind. Simulation programs written in these languages.
are intelligible to wide audiences and serve as model documentatious

as well as computer codes [21].
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i A person interested in doing computer simulation must therefore
know about computer programming languages. If he does not plan to do
programming himself he must still be able to understand different
simulation language concepts, for, as we have pointed ocut, it is these

concepts that determine the final structure of a simulation model.

DATA ANALYSIS

We have seen the impact of data on a model. Not only dn they
determine the accuracy of a model, but their presence (or absence)
~determines a model's scructure. Before a simulation model can be
completed, all the data elements used in it must be examined to deter-
mine their availability and quality. If they are available they must
be collected and analyzed, and hypotheses developed about them. Is
a certain data item a constant or should it be sampled from a statis-

tical distribution? If it is a constant what is its value? If it is

a random variable, what is its distribution? How does one sample from
such a distribution? These and similar questions manage to make data
analysis one of the most important tasks in "getting a simulation to
market."

Surprisingly littie has been written on this subject. Much can
and should be said. A model is only as good as its data; one cannot

underestimate the importance vf data or treat them casually.

MODEL VALIDATION

A model must not only contain sound data when it is run, it must
also be sound structurally. Before a model can be used it must be
tested to see that it does conform to the system for which it was
designed. It must be examined to insure that it responds as it should,
and that it performs as the real system would under different stresses,
data inputs and subsystem configurations,

Since rcal systems operate dynamically in time, simulation models
must be tested to insure that they behave the same way. It is rarely
enough that a model gives answers that -ne can observe in the real world.
Unless one is certain that a model behaves like the real world, he cannot

be sure that answers obtained under slightly different conditions will be
usable,
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A model of an existing system must be validated to be used. A
validated model is one whose results bear a measurable (absolute or
relative) relationship to results obtained in the real world. Analysis
of dynamic response and calibration go hand-in-hand; the former looks
at "how you got there," the latter at "where 'there' is."

Model validation requires the application of a substantial amount
of statistical know-how. The typical simulation model is a complex
of interlocking and interacting statistical relationships; a model
user must sort out and understand them. It is not often an easy task.
A body of literature is just forming that gives a model builder the

knowledge necessary to do it well [5].

EXPERIMENTATION AND ANALYSIS

Given a working, verified and validated program, one must decide
how to use it. In the main there are two types of questions people
are concerned with: (1) comparisons of alternatives and (2) studies
of system response over a range of parameter settings.

Comparisons are made when people want to discriminate between the
performance of a system under different operating policies, decision
rules or parameter settings. Does a first-come, first-served service
policy result in greater customer satisfaction than an earliest due-
date policy? Is there a degradation in system performance if a partic-
ular service rate is reduced 10 percent?

System response studies are made: to find parameter settings
that produce the best system response, to determine the sensitivity
of response around these optimum settings, and to determine the shapes
of response curves and surfaces. How many elevators do I need to have
no prospective passenger wait more than five minutes? How fast must
these elevators travel? Is the customer service a linear function of
the number of elevators or is the relationship more complex?

These and other nuestions must be answered on sound statistical
terms. In most cases classical statistical procedures cannot be used
because the simulation data do not satisfy assumptions necessary for
their application. For example, the presence of autocorrelation in

most time series gathered by simulation models makes it difficult to




determine how long to run a model to estimate, with predetermined
accuracy, the average value of the series. A literature is evolving

that treats these and other questions, and a simulation user must

familiarize himself with certain statistical techniques before he

attempts to draw inferences from simuiation studies [4,22]
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GLOSSARY OF SIMULATION TERMS

ACCURACY

ACTIVITY

AGGREGATION

ANALOG MODEL

ANALOG SIMULATION

ASSUMPTION
ATTRIBUTE

COMPRESSION OF TIME

CONTINUOUS-CHANGE MODEL

CONTROL VARIABLE
DECISION RULE

DESCRIPTIVE MODEL

DETERMINISTIC MODEL

tarch 17, 1966,

This Appendix is based on a Glossary preparcd by Stanley 5. Reed
(IBM) and Roger L. Sisson (University of Pennsylvania) and submitted
to the Workshop on Simulation held at the University of Pennsylvania,

Closeness of a model's response to response
observed in the real world.

A system function that usually takes time to
accomplish and results in a change in system
state, such as moving from one place to
another or repairing a defective part.

Representing several variables or factors
by one combined factor.

A model in which one set of properties
is used to represent another.

A simulation executed by an analog computer
(useful, in general, for simulating models
expressed as differential equations).

A fact or statement taken for granted.

A characteristic of an entity, such as the
age of a man or the length of a waiting line.

Simulating a given period of time in a shorter
period. (Time in a simulator does not
necessavily proceed at the same rate as real
time. In general, time is compressed; a unit
of real time passes in much less time in the
simulator; c.g., one year is compressed to,
say, ten minutes,)

A simulation model in which state changes
occur continuously as time progresses.

See PARAMETER.

A rule that defines a method for choosing one
of a number of alternatives based on the
values of factors at the time the choice is
made. The factors can be deterministic or
stochastic.
A model in the form of a narrative description
of a situation.

A model in which every factor is uniquely
determined when the factors te which it s
related are determined,




DIGITAL SIMULATION
DISCRETE-CHANGE MODEL

DISCRETE VARIABLE

DYNAMIC SYSTEM

DYNAMIC STRUCTURE

ENTITY

ENVIRONMENT

ESTIMATION

EVENT

EVENT TIME ADVANCE

FLOW CHART

INCREMENTAL TIME
ADVANCE

MATHREMATICAL MOUEL

MEASURE OF PERFORMANCE

MINIMAL MODEL

MODEL

A simulation executed by a digital computer.

A simulation model in which state changes
occur only at discrete points in time.

A variable whose value changes in steps, such
as whole numbers, rather than continuocusly.

A system whonse state changes with time during
its normal operation.

The time-dependent structure of a model; the

rules for moving a model from one system state
to another.

Any distinguishable item, being, or processing
unit within a model.

The surroundings in which a model is embedded.
A model usually "sees" its environment through
parameter settings and assumptions made about
its static and dynamic structure.

Determining the value of a system performance
measure by experimentation.

An instant in simulated time at which a change
to a new system state can take place. A
computer program describing how system state
changes take place. An activity is always

bounded by two events: start activity and
stop activity.

A method of time advance where time is incre- Y
mented from one event time to the next, which

may be an increment of several units of
simulated time.

A symbolism for representing scquential proce-
dures.

A method of time advance in which time is
incremented unit by unit in uniform steps.

A model formulated in accepted mathematical
symbols such that there is a mathematical
structure that permits the manipulation of
these symbols in useful ways.

A quantity whosce value can be used to judge
how well a system is opecating.

A model of a system containing the fewest
structural and data assumptions that is
su.ficient for a given purpose.

A represontation of an existing or proposed
system.
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See STOCHASTIC MODEL.

A condition in which no change in a controlled
variable can effect an improvement in the
measure of system performance.

A value which, when altered, changes the input
to a system. Parameters are system control
variables.

A model whose components are represented by
physical processes.

The degree of refinement with which a measure-
ment is stated. Associated with the reproduc-
ibility of estimates made from samples.

Determining a possible future value of a
system state or performance measure.

An instance of an activity during a simulation
that can last for a period of time.

Numbers produced by a deterministic method
that in many respects behave like randor
numbers.

Numbers, usually uniformly distribut.d between
0 and 1, that occur ia such a way as to be
completely unpredictable,

Time as represented within a simulation;
usually expressed in temrms of a basic unit
such as a second, a day or a week.

The manipulation of a system's model to
reprocauce iLts operations as it moves through
time.

A counter used in a simulation model that
acts as a clock as simulation time advances.

A formal terminology and set of programming
statements that can be used for, and that
facllitates, the construction of a simulation
model and computer program,

A computer prugram representing a specific
simulation model or, by parameters, a class
of models,

A computer program package that translaces

a medel expressed in a simulation language
into a computer program that can be exccuted
on a computer. (The software may include a
translator, statistical gencrators, libraries
of preprogrammed routines, input and output
editing routines, vctel)
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