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ABSTRACT
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in detail. A scheme for the software paging of binary
program space is outlined,
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1. GENERAL ORGANIZATION OF CORE STORAGE

1.1 ZONES

The directly addressable core storage available to the LISP 2 system is par-
titioned into a set of zones. Each zone belongs to a particular class according
to the types of structural units permitted within it. Each zone, furthermore,
is divided into two distinct areas. The active area contains well-defined units

whose types are among those allowed by the class. The free area is that part of
the zone not in current use, and available for the building of new structures.
The words of core storage that constitute a zone are always contiguous by address.

1.2 LAYOUT OF CORE STORAGE

The storage map for a LISP 2 job concerns the partitioning of available core
storage into zones. In preparation for the demands of tasking and/or paging in
a time-shared environment, the flexibility of the storage map must be enhanced
considerably for the 360 LISP 2 system as compared with its Q-32 counterpart.

There are three priacipal amendments to the Q-32 scheme through which the
desired degree of flexibility can be achieved: First, no restrictions should
be placed upon the order in which zones appear in core storage; second, any
number of zones of a particular class should be able to exist simultaneously
and non-contiguously in core--for example, there may be two distinct list node
zones used by different portions of a program; third, as mentioned previously,
it should be relatively easy for a programmer to define a new zone. The remain-
der of this section is devoted to the impact of these three amendments on the
problems of storage allocation.,

1.3 THE QUANTIZED CORE MAP

Available core storage is partitiontd into zones in such a way that the boundaries
between adjacent zones are all multiples of some constant power of two (defined

by the variable QUANTUM). This obviously means that each zone contains a number
of bytes that is a multiple of QUANTUM. Thus, one may say that core storage is
quantized, and ore may call the set of bytes (beginning at address J*QUANTUM and
extending throagh address (J+l)*QUANTUM-I) the jh quantum of core storage.

The uanti,_d core map is simply a table whose J- entry describes some of the
properties of the JI.n quantum. In particular, the jth entry contains a refer-
ence to the zone descriptor Z of the zone to which the Jth quantum belongs.
The zone descriptor Z is used to elicit more information on the contentii or the
*tJ_ quantum and its relationship to neighboring quanta.
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Given a core address A, the quantum into which A points is easily determined by
dividing the difference of A and QORG (origin of lowest-addressed question) by
QUANTUM, and ignoring any remainder (this computation may be performed by a
shift instruction). Thus, for example, one may find the class manager of the
zone into which an address A points by the following three steps: (1) find the
quantum J to which A points; (2) use J to index the quantized storage map and
obtain the zone descriptor Z; and (3) access component MANAGER (Z), which yields
the class manager for the zone into which A points. The quantized core map is
used extensively in the type determination primitives and garbage collector,
where the type of unit to which an arbitrary core address refers must be com-
puted efficiently.

The value of QUANTUM chosen for an implementation depends not only on the
machine, but on the available core storage as well. For the 360, 210, 211, or
212 would seem to be an appropriate choice.

There are two variables, SYSORG and SYSEND, which indicate--respectively--the
lower and upper bound addresses for core storage available to a particular
LISP 2 job. All zones that contain units known to the LISP 2 system must be
located between SYSORG and SYSEND (whose values are multiples of QUANTUM). An,
zone whose boundaries fall outside this intervcl is termed a virtual zone. Since
pointers into a virtual zone cannot refer to actual structural units, they may
be used to represent absolute, unstructured quantities. Three general format
address intervals have been so used in Q-32 LISP 2: [0, 1) for Boolans;
[2000008, 377777 for small, unsigned integers; and [4000008, 77777-10] for

small, signed integers. Similar conventions will be adopted for the 360. Virtual

zone quanta must be included in the quantized core map except for that which
would contain addresc zero,

1.4 SPACE SELECTION

At any time, there may exist in core any number (.f zones of a particular class.
However, allocation functions for that class do not want to be given extra
arguments specifying in which zone they are to build their structural units.
There exists a dilemma: one wants functions which can build units in any zone
of a given class, yet one does not want to specify explicitly which zone they
are to use every time they are called. (Who, for example, would be willing to
supply a third argument to CONS?)

To resolve this dilemma, a selection mechanism for zones must be used. At any
given time for each class, one zone of that class is said to be selectedi and
all allocation functions for that class build units in that zone.
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A zone selection is made in a program by calling the function SPACESELECT in
section LISP; SPACESELECT takes one argument, the name of a zone, and selects
it for that class to which it is known to belong,

A possibility arising from the allowed multiplicity of zones of a particular
class is that of creating in lieu of garbage collection a new zone of that
class in an otherwise empty portion of core storage. The advantage of this
scheme, if core is apportioned among zones in such a way as to leave a minimum
of free area in each, is that new zones of a particular class can be created on
demand as free areas of other zones if that class becomes exhausted. Of course$
when all empty space is gone, a garbage collection must be performed, but the
need for garbage collection is eliminated in the situation where some zone is
depleted while another zone contains a large free area. One possible dis-
advantage of such a scheme is that core may become fragmented unless that part
of garbage collection which deals with reallocation of structural units is
capable of reassigning and moving units from one zone to another. Methods for
accomplishing such inter-zone transfers are understood and appear to be feasible.

The zone selection mechanism defined here is patterned after that used success-
fully in Q-32 LISP 1.5 and LISP 2 for input/output device selection.

1.5 CLASS DEFINITION AND SPACE CREATION

For LISP 2 to be a truly flexible and efficient system, it is desirable to
provide the user with facilities for defining a new class of zones and for
creating instances of it. For example, if the user wishes to work extensively
with SLIP cells or a particular type of field unit, he should be able to devote
one or more zones exclusively to these units in order to achieve maximum
efficiency in storing and maintaining them. Even if these valid user demands
were to be ignored, there still remains the problem of defining within and for
the system itself the multitude (approximately a score) of standard zone classes.
The need for a formal mechanism for defining classes and creating zones cannot
be denied.

Fortunately, the organization of storage in terms of zone descriptors, zone
managers, unit descriptors, etc. provides a sound framework for the required
facilities, To define a new class of zones it is necessary to create and
appropriately initialize a manager for it, A function CLASSDEFINE will be
available to perform this service; it will take as parameters the initializa-
tion for all components of the manager. Of course, many of these initializations
are primitive functionals for use in garbage collection and type determination,
and although what is expected of each of them can be stated quite simply, it is
still system programming and beyond the domain of the average user. Thus,
standard sets or subsets of parameters for the common cases will have to be
provided in much the same way standard parameters are provided for opening input/
output files. Alternatively, or additionally, it may be possible to generate
the appropriate prrameters from declarations made by the user for those units
that can occur it ..ie zone.
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Once a class has been defined, a zone of that class may be created by expro-
priating an area of core (most likely from empty space), creating a proper zone
descriptor for it, and updating the quantized core map. The function SPACECREATE
will take as arguments the initialization parameters for the zone to be created,
and will perform the required modifications of and additions to the storage map.

2. PROGRAM ZONES

The priiram zones for LISP 2 are those that are involved in function calling
sequence linkages. This group includes fixed program space, storage map space,
binary program space, and pushdown stack space, These four, though decidedly
dissi-nilar in character, are so interrelated in the mechanics of a function call
that ,they must be treated together.

2.1 CONSTRAINTS AND PURPOSES

The principal motivation in the design of program structure is that of providing
a workable and efficient function-to-function calling sequence. A solution is
Judged workable not only by its ability to effect a call, but also from the
viewpoint of backtracing and garbage collecting the pushdown stacks. Any measure
of efficiency of a particular solution must balance both time and space considera-
tions.

The constraints on a function-to-function calling sequence (i.e., those features
of the system that must function properly within any proposed scheme) are the

following:

1, All calls must be recursive.

2. If, upon entrance to a function, either of the pushdown
stacks is found to be insufficient, it must be possible
t garbage collect at that point in time.

3. It must be possible, upon entrance to a function, to
unwind the stacks with fluid variable-restoration to
any higher level, and to continue processing in the
function to which one has unwound.

4. It must be possible Curing garbage collection to seek
out and update all reference pointers on the symbolic
stack (the most difficult problem is that of correcting
return addresses when binary programs move).
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The two most important efficiency considerations are:

1, The in-line code required to perform and parameterize
a call should be minimized (subject to the constraints
stated above).

2. Base registers should ie allocated so as to minfmize
the time and code required to load base addresscs,,
but the number of general registers so allocated should
also be minimized.

Before setting down the detailed configurations of the four program zones, it

is useful to describe their functions in a general way.

2.1.1 Fixed Program Spa.e

Fixed program space acts as the anchor for LISP 2 as a system. It is always
to be found at a fixed location in core, and its contents are always available
for reference. Among other things, fixed structure space may contain:

1. the system sign-on code

2. function-to-function linkage routines

3. special-purpose code sequences to accomplish simple
tasks (such as fluid bindings) that require too much
space to appear in-line

4. quantized core maps

5. base address tables for fixed unit zones (Identifier
space, quote cell space, etc.)

6. commonly occurring, unstructured constants

2.1.2 Storage Map Space

Storage map space is used only for storagc management descriptors. The system
descriptors, zone descriptors, zone managers, and possibly a part or all of the
quantized core map are found here. The justification for this space is based
on the need for treating these descriptors in a special way during garbage
collection--they cannot be allowed to wander about core as can other structural
units. Storage map space is a uniform field unit zone; thus all of the various
typ-s of descriptors appearing within it musti be of the same size.
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2.1.3 Pushdown Stack Space

The configuration of pushdownstack space has a great impact upon that part of
the-system devoted to the production of executable code (the compiler and
assembler). This is due to the fact that pushdown stacks must be designed to
conform to the constraints on calling sequences stated earlier in this section,
and the compiler and assembler must in turn conform to the conventions for
using the stacks. A pushdown stack is divided into intervals, each of which
provides space in which an active function may store its arguments, return
information, lexical variable values, and partial results.

2.1.4 Binary Proram Space

Binary program space contains executable code for LISP 2 functions. Each function
in the zone is represented by a structure which is termed a binary program image
(BPI) or, more precisely, a resident tinary image (RBI) to distinguish it from
BPI's in secondary storage. A BPI is produced by the LISP 2 assembler (LAP)
from its symbolic arguments, which are usual.ly generated by the compiler but
which may be supplied independently by the tLser. LAP is not a general-purpose
assembler: its features are specifically designed to interface with the LISP 2
c mpiler, garbage collector, storage conventions for fixed structures, and the
pushdown s'.acks. (LAP is described fully in TM-3417/40o/0o.)

Any BPI -which is generated by LAP must be re-entrant and dynamically relocatable.
To satisfy these two requirements, all scratch space needed by a function must
be obtained from the pushdown stacks or general registers (accumulators), and
any reference from a BPI to a word within or without it must be available for
updating by the garbage collector.

2.2 PROGRAM STRUCTURE SPACES

The fixed program space for the 360 is illustrated in Figure 1. It anchors the
LISP 2 system because general register 15 is at all times kept equal to the
fixed program origin (FPO) and thus any part of the space within the interval
[FPO, FPO+212] is always immediately accessible. Fixed program space can not
be said to contain structural units as can be seen in Figure 1; however there
are several distinct labeled areas serving the following purposes:

FNINK Function-to-function linkage code must be located
at FPO, i.e., register 15 must always point to it

LINKAGES Other functional P.nd ROUTINE link and return code
(FMCALL, RTCALL, RETURN, etc.)

OUTLINE Special-purpose code sequences; calls from 111's for
reasons of efficiency (FLBIND, FLRI5'T, S[E'l'LOC, etc.)

I
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FP FNLINK

LINKAG93

OUTLINES A < 212 bytes

SIGNON

FIXEDBASES

CONSTANTS

QCMAP

ETC

FPP

PE -o

Figure 1. Fixed Program Space

F!
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SIGNON Sign-on code for LISP 2 system with monitor linkage;
also rescue error restart according to monitor
capabilities

FIXEDBASES A set of base address tables for fixed structure zones
(see Section 3), loads from which are generated by LAP
on certain references to fixed units (see the LAP
document); each table contains some number (1-16) of
full words, the th element of which contains the base
address of the 1 th quantum of the class of space to
which it applies; the entry names for these tables are:
CHBASE, IDBASE, QTBASE, FLBASE, OWBASE, ENBASE, and
FNBASE; these base address tables must be updated when-
ever fixed unit zones are crtated, destroyed, or moved

CONSTANTS Commonly occurring absolute field constants, e~g.,
n n-.l n m-1 12 o)

integers {n, -n, 2n , 2 -2n , -2m , 2 n,o;

reals {n, -n, 10n , -1 0 n}) virtual integers {n, -n); etc.
for reasonable, small, integral values of n

QCMAP The quantized core map (see Section 1.3)

ETC Other useful things

Data and code are generated into fixed program space by LAP when an origin is
given in its LISTING argument; when this is done, entries may be defined for
future reference. All names given in the above descriptions of labeled areas
are entry names,

One possible configuration of puehdown stack space for the 360 is illustrated
in Figure 2. Two active areas, the absolute stack and the reference stack, may
be observed. Each of the two stacks consists of a sequence of called function
intervals; for each called function interval on the absolute stack there is a
corresponding interval on the reference stack. Such a pair of called function
intervals constitutes a pushdown stack unit. The stacks expand away from the
stack-space boundaries PDO and PDE toward one another as the recursive depth of
called functions increases. As each function is entered, a new interval comes
into existence for it on both the reference and absolute stacks; when that
function is exited, the intervals are removed.
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A snapshot cross-section of each of the two stacks is shown in Figure 2 at a
moment during the execution of function g, which has previously been called
from function 1L and which is in the process of calling function h. The called
function intervals for g appear in full in the figure, and with no loss of

generality, the substructure of the intervals can be described in terms ol that
shown for g.

An interval on the absolute stack can only contain "absolute" rields and is
allowed to have "holes," i.e., fields whose values are unknown and irrelevant.
Conversely, a reference stack interval can only contain "reference" fields and
can have no "holes," except for the portion A, the significance of which is
defined below (return-block and register-block). In either case, a pointer to

any field on either stack is legitimate for general format, but the format of
the field it refers to cannot always be determined.

A called function interval on the absolute stack (such an interval for g is
covered by AASPf in Figure 2) consists of:

1. scratch space for the calling function (absolute
quantities)

2. stack-transmitted absolute arguments which have been
evaluated by the calling function prior to calling a
sub-function

A called function interval on the reference stack (that for g is covered by

ASP in Figure 2) consists of:
f

1. scratch space for the calling function (reference

quantities)

2. stack-transmitted symbolic arguments evaluated by

the calling function prior to calling a sub-function

3. a register-block

4. a return-block

I
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Low Addresses
PDO !

ASPf --p

Scratchspace used by
calling function f

I 1st. absolute org of g

2nd. absolute arg of g
Absolute Stack

I t absolute org of g
ASPg Scratch space for g

Args transmitted on the
stack for called function h

Free Stack Area

Args transmitted on the
stack for called function h

Scratch space for g G

Last reg. transmitted arg of g

Register transmitted orgs of g E

Other safe regs A
D

Abs. stack PTR (SSPf)

f Relative Addr Base for f (RABf) 
Reference Stack

Return to f

Referencestac PTR (SS Pf)

Kth reference arg of g on the stack

2nd reference arg of g

1st reference arg of g

Scratch space used by
calling function f.

SSPf

PDE -.

High Addresses

Figure 2. Pushdown Stack Space For The 360

I
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The return-block (C) for the 360 consists of:

1. previous absolute stack pointer (ASPf)

2. binary program base address for calling function (RAB )

3. return location in calling function (RETf) (with implicit
call parameters)

h. previous reference stack pointer (SSP ) (the address of
this element in the previous return-bock).

The register-block (B) is made up of two parts:

1. register-transmitted arguments for the function (E)

2. contents of registers which are saved by function g
upon entry and restored upon exit.

The sum E+D = B is an implementation constant reflecting the number of registers
allotted to the compiler less those allocated for scratch and communication.
The arguments of the function that are transmitted on the stack are distributed
in sequences on the reference stack (E) and/or on the absolute stack. In most
cases on the S/360, real arguments are transmitted in the float..--point
registers.

In each 360 calling sequence there is a parameter called the MAP which estab-
lishes for each constituent of the register block whether that constituent is
a reference field or not. This MAP is used by the garbage collector in its
marking scan of tne reference stack. In scanning from the current SSP toward
PDE, it looks only at the reference fields and can distinguish between general,
functional, locative, and state restoration formats.

The state restoration format is a special field format that can appear only on
the reference stack; it is used to hold, among other things, a set of saved
variable bindings that are to be later restored. It requires a special format
on the stack so that it can be recognized by the stack-unwind portion of the
TRY-EXIT feature, which must do the restoration.

A diagram of binary program space is presented in Figure 3; it is seen to
contain units called binary program images (BPI's). A possible configuration
of a binary program image for the 360 is illustrated in Figure 4. The complex-
ity of the division of a BPI into code sections results entirely from the base
addressing scheme of the machine; no jump can be made to a location more tha,
212 bytes past a given base register. Only those functions, therefore, that
assemble into a 3PI of more than 102h words require more than one code section,
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BPO "

BPI1

BPI2

BPI3

BPI4

BPI
m

BPP

BPE -

BPI are binary program images (they are of diverse dimensions)
k

r Figure 3. Binary Program Space
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Figure 4 shows the formats for binary program images in the 360. A fuller
description of a BPI, together with the calling sequence that binds it to otherBPI's through its function descriptor, can be found in the LAP document
(TM-3417/400/0).

FNBIN
(pointer from 1 FNDESC
function descriptor)

nI  r1

First Code Section

Executable Code (size nl)

Remotes (size r

0 r 1
n2 r 2

Second Code Section
Executable Code (size n,)

Remotes (size r2 )

n re-

Last Code SectionExecutable Code (.z n:)

Remotes (size r

Figure 4. Possible Design of BPI for the 360
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3. FxIb UNITS

Fixed units are defined in LISP 2 to be those structural units that can be
referred to directly from a binary program image (BPI). Included in this group
are identifiers, quote cells, free variable structures, and function descrip-
tore.

The fact that fixed structures are referred to from BPI's imposes two require-
ments on each such structure: (1) that it be located in a fixed position with
respect to some base address, and (2) that it contain a count of the number of
references to it from all active BPI's. These requirements result from the
decision to exempt BPI's from garbage collector processing except when it is
necessary to update relative addresses within them.

The fixed location and reference count problems are compounded on the 360 by
the-desire to make references to fixed units as efficient as possible. This
may be accomplished by minimizing base rqgister loading, which in turn demands
that those fields of a unit that are most commonly referenced be packed densely
within a page. The best apparent solution to this problem is to separate each
'fixed structure into two parts. One part contains commonly referenced fields,
and its core address is the site address of the structure. The other part
contains all other fields; its location must be obtainable from the side address
by a simple transformation. This solution has been adopted for the 360 with
some trepidation; the problems of storage allocation and maintenance arising
from it are manifold.

FIELD UNIT AND ARRAY ZONES

Field unit and array zones contain Liost of the structures commonly manipulated
by a user program. Field unit zones come in three styles--pure,uniform, and
mixed-whereas array zones come in only the "detailed header" style.

5. TYPE REPRESENTATION

Fields that contain type Information have by now appeared in a multitude of
structural units: among these are free variables, function descriptors, and
unit descriptors. In describing these, the type-representing fields have
merely been specified to be in general format. The problem of type encoding
remains to be discussed; this is done below.

5.11 TYPE ENCODING

Within the Q-32 LISP 2 system, there exists a rather elaborate scheme for
encoding the declaration and type information associated with a
structural unit. When such a unit is created by the functions CREATE or
MAKEFREE, the argument representing Its type is transformed from symbolic L
format into a sequence-of 6-bit bytes. This byte sequence is then stored in
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the newij generated unit in one of several ways, depending upon its length.
Later, when the functions STYPE or FTYPE are called upon to retrieve the type,
the inverse transformation from byte sequence to S-expression is made.

The Justification for the Q-32 encoding scheme rests solely upon the considera-
tion that a byte sequence will require less storage space on the average than
woule the equivalent S-expression. Against this purported advantage must be
weighed the obvious disadvantages. Encoding and decoding byte sequences is a
time-consuming operation, especially for decoding, where often much structure
is generated for transient usage (such as type checking, argument classifica-
tion, and field format determination within the primitives and garbage
collector). A substantial amount of obscure code in the system is devoted to
encoding and decoding. The encoding scheme is clumsy and difficult to extend;
this limitation is especially serious in view of the proposed addition of
format type and table definition features to LISP 2, which will expand con-
siderably the syntax of types. To meet the requirements of the expected expanf-
sion of this syntax would require a complete redesign of the byte-encoding
scheme.

The first step toward solving the difficulties of type encoding seems to
dictate abandonment of byte sequences in favor of something more flexible--for
instance, ';-expressions. The second step is to find a way to keep storage
requirements for the more flexible format at a tolerable level. Is this
possible? First of all, it can be observed that, out of a large sample of
declaration data, there will be large subsets, all elements of which are of the
same type. Furthermore, if one considers not simply the complete declarations,
but rather all the dotted pairs of which they are ultimately composed, it Is
intuitively clear that the number of distinct pairs is low In proportion to tile
size of the sample as a whole. Thus, the answer to the question seems to be
that indeed, storage requirements for declaration data in S-expression format
can be kept within reason if, whenever the sub-parts of two types are equal,
they in fact are represented uniquely.

5.2 HCONS

A feasible scheme for realizing unique internal representation of data has been
described by J. McCarthy and is termed "hash-CONSing". In order to illustrate
this term, it is useful to define an H-expression in terms of a function HCONS:

1. Any identifier or Boolean is an Kl-expression

2. If Il and H2 are I-expressions, then lCONS (111, 112)
is an H-expression

3. if' Ill and 112 are Il-expressions, then EQUAILN (IIl, 112) 0EQN (ill, I.)

i. CAR (IICONS (Ill, 11?)) = Ill and (IDI? (IICONS (111, 1i:)) = II1

5. NOT ATOM (1ICONS (I1, 112))
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Clearly, an H-expression, as defined above, differs from a general S-expression
in two respects: it is internally unique (property 3 above), and it allows

only identifiers and Booleans as atomic elements. (Other, less restrictive

definitions are possible within LISP 2.) In additfon, implementation considera-
tions impose the constraint that the CAR and CDR fields of a node created by

HCONS may not be altered. Fortunately, these restrictions on H-expressions do

not hinder their use in representing declaration data. Types in IL presently
include as atoms only identifiers, small integers, an' NIL. Also, once a type

has been copied from S-expression to li-expression, it need never be transformed

the other way, since in all practical later use it is indistinguishable from an
S-expression (properties h and 5). In addition to their usefulness for represent-

ing types, H-expressions can be of great value for many user applications.

Implementation of the function HICONS requires a hash to be performrd on its two

arguments in order to select a small subset of all existing hashed nodes (the

structures created by CONS) to be searched for one whose CAR and CDR fields
are equal (EQN) to the first and second arguments, respectively. If such a

node is encountered in the bucket, it is already guaranteed to be unique and a

pointer to it is returnad as the value of HCONS. If none such is found, a new
node can be added to the subset with full confidence that it too will be unique.

The specific problem in a LISP primitive HCONS is in representing the partition-

ing of hashed nodes into subsets, termed buckets, consistent with the hash

computation. Two possibilities come immediately to mind: the easier but more

space-consuming is to keep (unhashed) lists of hashed nodes for each bucket;

the less space-consuming but more complex solution is to divide the space con-

taining hashed nodes into a number of areas equal to the number of buckets

determined by the hashing algorithm, with an escape mechanism for an area over-

flow. A good compromise seems to involve representina a hashed node by three
address-size fields: the CAR field, the CDR field, and a field to link the node

to another one in the same bucket. This can be done easily on a machine such as

the 360 at a cost of 1-1/2 words per node, provided a spccia' hashed node zone

is defined. This appears to be a tolerable price to pay for hashed nodes in
view of the limited use anticipated for them. Heavier use of hash-CON~ing than
that now anticipated could Justify a more elaborate atd efrfcient scheme.

As a summary and conclusion to the foregoing discussion of type encoding for

LISP 2, the following points can be made:

1. The syntax of declaration information will expand
substantially with the coming of format and type
definition features; increased subspecification in

declarations will extend to structural units as well

as to variable types.

2. To meet these needs, type encoding in terms of byte
sequences must be abandoned in favor of S-expressions,
or something similar, which can be p-ocessed more
quickly and flexibly.
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3. Hash-CONSing into H-expressions preserves all the advantages
of an S-expression format for declarations while reducing

the storage requirements by a large factor,

4. A new class of zones will have to be defined for unique
nodes. These unique values must be compatible with other
list nodes in the layout of the CAR and CDR fields. A
reference into a zone of this class must be deemed non-
atomic by ATOM.

6. SOFTWARE PAGING OF BINARY PROGRAM SPACE

LISP 2 systems, unlike LISP 1.5, are characterized by large memory requirements,
4-o the extent that the total space requirement for BPI's alone exceeds available
core storage. This growth of binary program space is a natural side effect of
(3) the expected growth of the LISP 2 language; (2) the increased sophistication
of the compiler and the resident general storage management facilitips; (3) the
addition of a number of program modules to the LISP 2 system, suLh as the syntax-
directed facility, the pattern-matching facility, and the interactive edit/debug
facility; (4) the traditional growth of program modules in the expected LISP 2

application areas.

The following paragraphs outline a proposed software paging scheme for the
dynamic management of binary program space. The scheme assumes a fast random-
access secondary storage device is available for the storage of binary programs.
The scheme assigns memory residence to those binary programs that are immediately
rele-,ant to the current process, and depends on heuristic methods for automatic
task recognition and automatic measurement of the relevancy of particular
programs to the current task. The scheme operates dynamically, is largely
independent of the automatic general storage reclamation provided by the garbage
collector, and proceeds with little user interaction. A set of user-oriented
commands provides substantial control of the status of binary programs at the
points where user control is essential.

Such a scheme for the management of binary program space is motivated by the
following considerations:

A small fraction of the BPI's are necessary to process the
current task;

An increase in the amount of memory space available for
structural units will result in an increase in the mean
time between garbage collections, and a corresponding
decrease in the overhead for general storage reclamation;
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*" A general-purpose program chaining mechanism will benefit the
programmer in large-scale application areas;

* Binary progrsm space should be modular, in the sense that
the user always has easy access to the parts of the system
relevant to his current program, and is not penalized for
the parts of the system he does not use;

Experience gained by sinmalating paging in our restricted
sense will lead to some insight into the organization of
binary program space most desirable in a hardware paging
environment. Functions that are frequently part of the
smune task should be stored together on secondary storage
in task clusters.

6.1 BINARY AND SECONDARY PROGRAM SPACE (BPS, SPS)

The compiled code for a LISP 2 function or procedure is called a binary image
or a binary program. Some characteristics of binary programs are that (1) they
occupy less space than the IL representation of the function or procedure they
represent, and (2) they may be processed an order of magnitude faster than the
corresponding IL representation. However, the essential characteristic of the
binary program for the management of BPS is that (3) binary programs are a
read-only data form. That is, once the compiled code for a function has been
assembled, it may not be changed except through recompilation and re-assembly
of a modified version of the original, with the current version being excised.

A BPI that is in memory is called a resident binary image (RBI). The primary
characteristics of an RBI are that (1) it is executable, and may be used in the
current task directly if it is required, and (2) it is completely relocatable,
in the sense that its location in memory may be varied dynamically without
affecting the outcome of the current task. The memory space reserved for hold-
ing RBI's is called binary program space (BPS). Because an RBI is relocatable,
binary program space can be compacted whenever a particular RBI is deleted, and
the memory space occupied by the RBI can then be used for other RBI's or
temporary data structures.

Secondary program space (SPS) is an area on a random access storage device, and
is used for storage of binary programs, A binary program that is stored in SPS
is called a stored binary image (SBI) The characteristics of an SBI are that
(1) it is not executable, so that if it is required in the current task, then
it must be load,-1 into memory; (2) the address of the SBI is available to the
resident binary program management facility, so that the SBI can be made
resident by loading it from the random access SPS; (3) the SBI is written onto
secondary storage once, under user control, when the SBI is first compiled, so
that SPS is treated as a read-only device except for the initial recording and
later reclamation; (4) the SBI is read into memory whenever it is not resident
and is required by the current task.
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There must be a garbage collector for SPS, though it may be completely indepen-

dent of LISP 2. A LISP 2 dependent garbage collector would require

The physical address of each SBI

The garbage collection of SPS would involve copying secondary
storage into secondary storage using the information held in
the function descriptors, and updating the addresses of the
SBI's in SPS. When an SBI is deleted from SPS, the function
descriptor must be retained until the SPS address has been
used by the secondary garbage collector.

A LISP independent garbage collector for SPS would require:

A symbolic address assigned to each SBI at the time of its
creation

The garbage collector may reallocate SPS without changing
the symbolic address, and so without affecting LISP.

6.2 USER CONTROL FACILITIES

The management of binary program space depends on the following control

facilities:

COMPILE and LAP, to produce in memory a relocatable binary
image of a function.

* EXCISE, to remove all traces of a binary image.

STOREBI, to store a copy of the binary image of a function
on secondary storage, so that it may be reloaded when

necessary.

EXCISEBI, to remove the copy of the binary image from
secondary storage.

DELETEBI, to remove a binary image from memory when a
copy exists on secondary storage, in order to reallocate
the memory space occupied by the binary image.

LOADBI, to generate in memory a binary image of a function
from the copy on secondary storage. This i implicit
whenever a function is called after the binary image was

discarded with )ELETE'BT.



26 April 1967 2h TM-3417/550/00

These facilities are described in greater detail later. The essential idea is
that COMPILE and LAP are necessary to generate the binary image of a function,
but they are not useful for regenerating the binary image, which would be
necessary if the user had excised the binary image and then wanted to activate
it.

By storing the binary image on secondary storage, the user attains a higher degree
of freedom. The binary image in core may be regenerated by loading a copy from
secondary storage. When the current core copy of the binary image is not
actively involved in the current task, it may be deleted. Note that DELETEBI
is merely a temporary removal from residence, whereas EXCISE is a complete purge.

The user may delete binary images under program control. This facility should
be useful whenever the binary program requirements of a task can be anticipated.
For the more general case of the absence of user control, a heuristic method for
automatically deleting and reloading binary images is proposed. The method seeks
to optimize the use of binary program space relative to dynamic storage require-
ments and relative to the cost of deleting and subsequently reloading binary
images. The method is designed primarily to supplement the user's application
of the DELETEBI and LOADBI facilities in accordance with current task require-
ments.

6.2.1 LAP

This is the interface between the compiler and the internal storage conventions.
It is the final step in transforming symbolic code into executable code. The
effect of LAP is to transform the S-expression output (LAP code) into a relocat-
able binary image (RBI) in memory. The symbolic references to structures and
function descriptors in fixed space become explicit references. The count cells
in the referenced fixed units are incremented, and a function descriptor for the
RBI is created. All accesses to the RBI are accomplished via the function
descriptor. This assembly process may be termed linking.

6.2.2 EXCISE

The effect of EXCISE is to destroy the effects of LAP and of STOREBI: the binary
images of a function in memory and on secondary storage are made inaccessible to
the user, and the memory space and secondary storage space reserved for the binary
image are released for general re-allocation. An EXCISE is implicit before a
function is assembled. If there is no binary image of a function, then the
EXCISE has no effect. An EXCISEBI is implicit before an EXCISE.

If the function cannot be excised, then the value of EXCISE (fn) is NIL. A
function cannot be excised if it is active on the pushdown stack. The detailed
effects of the EXCISE are:
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1. The function descriptor is made into an error trap
so that the message FUNCTION EXCISED can be printed
if the user attempts to activate the binary image

before the function is recompiled.

2. For each reference from the binary image to a fixed
unit, the corresponding count field is decremented.

The count field is a number associated with any fixed unit to indicate the
number of references from BPS. References to fixed units (identifiers, quote
cells, free variables, and function descriptors) are determined by examining
the code itself or a bit map of it stored with the RBI. The core space
occupied by a fixed unit is reclaimable if the reference count is zero and if
there are no references to it from active list structure or from the pushdown
stack.

After an EXCISE, a function may be restored only by re-assembling, which
usually involves recompiling. Thus EXCISE is an expensive space-maker if the

user wishes to run the function at some later time. The EXCISE is of limited
usefulness, providing benefits only when the user's specific problem area is

not serviced by the resident library functions, and when the user recompiled

functions. It does not directly solve the problem of making space when LISP 2
is in the depths of recursion.

MAKE A LOADABLE BINARY IMAGE, (STOREBI function name)

The RBI of the function is written onto secondary storage, and a field of the
function descriptor is set to the address of the RBI in secondary storage. The
field is zero if the RBI has not been written onto secondary storage. The copy
of the binary image in secondary storage is termed a loadable binary image, or
SBI. There is never more than one SBI for a given function.

Once an SBI has been created for a function, the RBI is redundant to the extent
that it may be restored from secondary storage by a IELOAD operation. The SBI
includes the relocation information normally associated with the RBI. When the
RBI is not involved in the current task, the memory locations occupied by the
RBI may be reclaimed by the garbage collector. When an IlT is deleted, the
function descriptor must be replaced by a trap to a routine to load the RBI and
re-activate the function descriptor,

6.3 AUTOMATIC TASK RECOGNITION

Included here are definitions of the concepts of task and task relevance.
* The relation of these and other concepts in the management of binary program

space is summarized in Figure 5.
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Active functions are on
the stack waiting for
other active functions c ry Program Space
to return values. (SPS) is the secondary

Jstorage space reserved
Task-relevant functions will be for holding binary images.
called at some time in proces- A stored binary image
sing the current task. (SBI) is

(1) not directly execut-

Binary Program Space (BPS) is the memory able

space reserved for holding binary images. (2) loadable into BPS if
A resident binary image (RBI) is it is not resident
(1) directly executable and if it is required

by the current task
(2) completely relocatable. (3) deletable from BPS

whenever it is

inactive.

Figure 5. Automatic Task Recognition
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A task is the computation that occurs during the time between an input to the
supervisor and the time tP supervisor is ready for another input. A task is
characterized by the set of functions called before the pushdown stack returns
to the supervisory level. We refer to tasks as disjoint or independent if
they involve disparate sets of functions. A supervisory level or dispatch
level is a level of the stack corresponding to the portion of the stack
reserved for the local variables of a supervisor. A supervisoi or dispatcher
is a binary program from which substantially diqjoint tasks may be initiated.
The possibility of several supervisory levels is a slight complication of the
concept of task. We will think of the deepest supervisory level as the current
supervisor, and any task initiated from that level will be called the current
task.

A sequence of inputs to the LISP 2 supervisor will ordinarily include several
disjoint tasks, and often the binary programs involved in all the tasks cannot
reside in memory throughout the processing of the inputs. It is important to
anticipate the binary program requirements of each task so as to reduce the
overhead due to loading and unloading binary programs for the different tasks.
It is also desirable to react to task requirements automatically, to avoid
burdening the user with "housekeeping" details.

A task may be anticipated simply by listing the functions to be used in pro-
cessing t"e task. This is burdensome, error-prone, and difficult to do in
general. An alternative is to consider the set of functions referenced by a
given function, together with all the functions referenced by those functions,
etc. The advantage of this alternative is that the set of referenced functions
can be derived automatically from an initial function. The disadvantage is
that it overestimates the requirements of the task: too much memory space is
allocated for functions that are not subsequently involved in the task.

The proposed solution is based on the following observatioajs. Fuknctions that
belong to the same section are written and compiled together, and they tend to
be involved in similar tasks. Conversely, functions in different sections tend
to belong to disjoint tasks. Of course, these observations do not hold for
section LISP$ which contains miscellaneous functions of general utility.

The primary advantage of identifying tasks with sections is that it capitalizes
on the existing LISP 2 structure to solve two important problems associated
with task anticipation:

1. The user has a simple, natural method for describing the
set functions associated with a particular task. fie
accomplishes this by organizing his function definitlons
into functionally connected groups called sections.

2. Automatic task recognition can be performed ef''lclenLly
by measuring the percentage occupancy of the pushdown
stack for each section.

I.
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Associated with each function descriptor is a task relevance index (TRI). The
TRI is a real number in the range 0 to 1 which heuristically measures the

frequency with which the resident binary image (RBI) for a function is necessary
to process the current task. The TRI varies dynamically. It is operationally
defined by a reward-and-punishment scheme as follows:

1. The TRI is initialized to 5.

2. After each censvs of BPS, the TRI for a function

a. is rewarded if the binary image of the function
is active,

TRI - 0 * TRI + (1 - 0)

b. is punished if the binary image of the function
is resident but inactive,

TRI 0 * TRI

c. is ignored if the RBI is not in memory.

This scheme has the following properties:

1. The TRI converges to the percentage of times the Trill
was rewarded relative to the number of times the TRI
was either rewarded or punished.

2. A smaller value of a produces faster reaction of the TRI,
whereas a larger va:lue produces a slower, more stable

convergence.

A census is a survey of the binary images in the system for the purposes of
determining their status with respect to activity, deletability and task
relevance. A binary image is active if there is a return address to the RBI
on the pushdown stack. A binary image is deletable if it is not active, and

if there is a corresponding SBI on the secondary storage. The task relevance
is a combination of the task relevance index and the activity of functions

belonging to the same section.

The purpose of the census is to recover a predetermined amount of memory space

by deleting, if possible, the irrelevant RBI's from BPS. A census occurs when

a "growing pain" is invoked by the general storage reclaimer for the purpo-es

of increasing the amount of free storage. A census also occurs when a function

required by the current task is not resident in BPS. This latter condition is

recognized because the function descriptor for the function contains a trap to

the LOADBI routine.
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The concept of task relevance is sufficiently flexible so that a threshold may
be set before the census, such that all deletable RBI's below the threshold in
relevance will be deleted. A problem that is not well underrtood as of this
writing is what to do if an insufficient amount of BPS is released by the
census. One alternative is to lower the threshold, but proper design of the
threshold setting should eliminate this alternative. If all the resident
binary programs are strictly not deletable, then the required space can be
obtained only by invoking the general storage reclaimer, which may result in a
growing pain.

The heuristics associated with the management of binary program space are
directed entirely at selecting which of the deletable RBI's should actually
be deleted. If all the functions to be used by a task are in memory at the
start of the task, then there will be no overhead due to loading of SBI's from
SPS, provided a census is not invoked either by the general storage reclaimer
or inadvertently by the user through the application of the LOADBI function.
The heuristics seek to retain as residents those RBI's that have a good likeli-
hood of being used again before the next census. Also, the heuristics seek to
expel those residents that are unlikely to be used again in the near future.
One of our basic assumptions is that recent activity is a reasonable measure of
the 5mmediate future activity. And one of our basic goals is to minimize the
memory requirements of binary programs.

6.4 REMAINING ISSUES

Many of the details of the software paging scheme have been left unclear,
simply because little experience with the scheme has been obtained. One of the
major questions to be settled through experimentation is the computation of the
task relevance of a given function.

The section name can be related to task relevance by measuring the percentage
occupancy of the stack by the functions in the section. Tt may be better to
take a weighted percentage, such as the sum of the TRI's of active functions in
the section. Alternately, it may be desirable to keep a section index, to vary
dynamically, and to measure the recent overall activity of the section, or the
cohesion of the section, etc.

Other variables have been proposed as relevant to the question of whether or
not a deletable RBI should be deleted. These miscellaneous variables include:
(1) the size of the RBI, because it is cheaper per instruction to load large
functions and release the space; (2) the frequency of loading; (3) the time of
the last load; (4) the frequency of calls of the function during the current
task; (5) the static call count, or the number of references to the RBil from
BPS; (6) the number of calling sequences in the RBI; (7) etc.

It is likely that the accuracy of the task relevance index (Till) can he
improved by setting up a "reward trap" after a census for the deletable ll l's.
The purpose of the trap would be to reward the Tr if the Bill was used bel'ore
the next census.
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