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Foreword 

The physical reasoning which led to the conclusion by the author that 
particle trajectories in a rotating field are stable in the plane of rotation 
functions as an introduction to the reader of the concept of plasm*-, confinement 
in a rotating field. 

The magnetic field's relation to Maxwell's equations is discussed and 
the induced electric field is presented, whereupon the equations of motion and 
their exact general solutions are given. 

The orbits of particles are derived for special limiting cases on 
the basis of the general solutions, and the orbits are compared with the analog 
computer solutions of the equations. 

It is shown that a rotating magnetic field alone is not enough to 
confine a plasma* but that the rotating field used in conjuction with other 
types of stationary fields should result in an effective plasma containment 
device. 

Finally, two additional, physically-possible rotating fields are 
introduced and their properties are discussed briefly. 

I. Orientation 

Interest in plasma physics has grown exponentially during the last 
decade; and during that time, many confinement devices have been proposed and 
some tested, but none were sufficient for confining that all-important 
substance—the thermonuclear plasma. All of the confinement devices to date 
have had a common fault: particle leakage. 

The basic method for confining a plasma, which is considered by some 
to be the only possible way, is to trap it in a Magnetic field. A major problem 
in plasma physics, therefore, is the design of a magnetic field which has 
minimal particle leakage. 

This paper describee another leaky field configuration., but there 
exists a possible application of the proposed device such that the leakage 
is acceptable (see Section VI). 

II. Introduction to the Rotating Field Concept. 

The reasoning which led to the conception of a rotating field for 
confining plasmas proceeded as follows: 

Confinement is achieved in the plane of rotation but not always in the 
direction normal to the plane of rotation. 
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(a) 

Figure 1 - Stepwise Rotating Magnetic Field, 

A particle spirals in a uniform magnetic field as in Figure 1(a). 
Hence, a partlclf would escape from a uniform field of finite dimensions. 
Suppose now the field in Figure 1(a) is suddenly replaced by the perpendicular 
field in Figure 1(b). The original component of °Jcial velocity is converted 
to azimuthal velocity and vice versa. so the particle is again moving along 
lines of force. If the field-rotation process is continued in this stepwise 
manner, some of the particle should possess orbits as shown in Figure 2(a). 

uu> 
(a) 

Figure 2 - Particle Orbit in a Stepwise Rotating Magnetic Field. 

But some particles, because their velocities are in the wrong 
direction at the instant the field changes, will possess orbits as in 
Figure 2(b). 

This clearly reveals the fact that particles tend to follow lines 
of force as they rotate.  Consider, now, a magnetic field rotating with a 
uniform angular frequency u>Q. If »0 is slightly smaller than the frequency 
of rotation w (Larn:or frequency) of the particle in the field, then the 
particle obviously spirals as in Figure 3. 

Figure 3 - Spiraling Orbit in Rotating Magnetic Field with CöQ < co. 
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But, if WQ is greater than M., a particle is turned by the field quicker than 
it can move along a field line and is therefore bounded within the plane of 
rotation. 

This, therefore, implies the following confinement conditions: 

(i) to < ca,: Particles are unconfined in the plane of rotation 

Particles are confined in the plane of rotation. (ii) coo >coL 

» =coT is called, hereafter, the critical frequency. 

In the confined state, most particles are however unconfined in the 
direction normal to the plane of rotation. This may be realized by considering 
a particle which is instantaneously moving upward in a field with « >(0

T» 

In one xy-plane* orbit, the particle will not have time to complete a IATüOT 

orbit (r,ince w >
«T){ and hence, after one period, the particle is still 

moving upward. Hence, the particle is unconfined in the z-direction. The 
exact condition for confinement in the z-direction will be derived later. 

III. Fields 

The rotating magnetic field, illustrated with respect to an xy- 
coordinate system in Figure 'f, is desired to have the form of Equation (l) for 
non-relativistic rotation. 

B = B [i sin © t + i  cos » t] 
—    n      — ft **       O 

(1) 

y The magnitude of the field is the 
constant B . Hence, Equation (l) 
represents a uniform rotating i'ield. 

FIGURE k.    Coordinate System. 

A necessary condition for B to be a physically possible field is for it to 
satisfy the wave equation: 

H.±*\ ■ 
C2 3t2 

(2) 

oee Figure if. 
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Substitution shows that Equation (1) is not a solution of Equation (2), which 
means that a uniform rotating field cannot exist. However, it is proven in 
Appendix 1 that Equation (1) represents an approximate solution of Equation (2), 
the approximation being valid for small frequence-distance products. 

The exact expression for the rotating field is derived in Appendix 1 
as 

B = B [i cos ay sin a> t + j cos ax cos w t]        (3) —  o ~" o  m o 

where a = — . 

As ay and ax -+ 0, Equation (3) reduces to Equation (1), 

The size of field necessary to contain a one hundred million degree 
plasma, given by the condition that the magnetic pressure 

P = B2/8n m 

exceeds the plasma pressure 

P = nkT, 
P 

is on the order of 30kG. It is presently beyond the state of the art to 
construct a 30kG field which rotates at the Larmor frequency; but, as discussed 
in Section VI, large rotating field3 may not be necessary. It is proposed that 
a small rotating field can be superimposed on a large stationary field, resulting 
in a practical device. 

The vector potential, defined by the equation 

B = V x A , CO 

is given by 

A = B [y sin « t - x cos co t] k (5) 

for the approximate field. The induced electric field is calculated by 
substituting Equation (5) in Faraday's law: 

R = - I 3A (6) 
c at ' ' 
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The resulting expression is: 

CO B 
E = — [y cos a) t + x sin co tj. (7) 
—    c       o       o • 

The exact expression for Ej, consistent with Equation (3), is given by 
the following: 

E s - B [sin ay cos co t + sin ax sin co t] k        (7a) 
—     00 o  —• 

Equation's (l) and (7) are the field equations which enter into the equations 
of motion derived in the next section. The simplified field expressions lead 
to differential equations which have exact solutions, and they are fairly 
accurate for co - OL . 

Both field's (1) and (3) con ?in another approximation which is not 
quite correct. It was assumed that v/c « 1 at every point in space where v 
is the speed of the field with respect to inertia! space, which is obviously 
a bad assumption for high frequencies of rotation or for large distances from 
the origin. Calculation shows, however, that the approximation is fair for 
co /o\  < 10 and Vx2+y2 < 10. For small frequency-distance products, the rela- 
tivistic field expressions reduce to Equations (1) and (7). All statements in 
this paragraph are proven in Appendix 2. 

IV. Equations of Motion of a Charged Particle in an Electromagnetic Field. 

(a) Laboratory Coordinates 

The equation of motion of a particle with charge q and mass m in a 
magnetic field B and an electric field E is obtained by applying the Lorentz 
force equation to Newton's second law  Th? vector equation of motion is: 

m jj£ = q [E ♦ i V x B] (8) 

Using the expression for Ederived in the previous section, the component 
equations are immediately written as: 

mV    = - •*- V    cos co t x c     z o 

"V     fVzsi*V (9) 
mw"    = - ~T (y>    cos » t + *»    sin co t) + 3- (v    cos co t - V    sin co t) z co o o o ex oy o 



-6 - RPD-937 

where: 

i = V 

z  = V 

y-vy do) 

Equations (9) are relatively complicated and their solutions are not immediately 
apparent. It is clear, however, that the sines and cosines are introduced by 
the rotating field, and therefore fransforming to a rotating reference frame 
should remove these factors and simplify the equations considerably. This 
indeed happens under such a transformation. 

(b) Rotating Coordinates 

A rotating reference frame is chcosen, as illustrated in Figure 5, 
according to the orthogonal transformation: 

sin co t       - cos co t o o 

.cos co t sin co t / 
(11) 

whereX and Y are rotating coordinates. 

Y 

FIGURE 5. 

The transformed equations are: 

X = -2coY + co2X 

Y = ♦ 2cooX + »Qh ♦ u£z   V 

- co Y L 

(12) 
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FIGURE y -100 

Rotating 

X(0) = Y(0) =  IV 

X(0) = Y(0) = IV 

K = 20 

Time Scale 1:1 

ö - Independ. Var, 

+100 
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where z ■ Z. 

(c) Time Scale Transformation 

Equation (12) may be represented more simply, paraaetrically, if 
one defines 

C - — (13) 

and transforms the time scale according to 

«0t * «T . (14) 

The resulting equations in rotating coordinates are 

dfx 
dt2 

A 
d*2 

2« H + ^ 

q.   2«S + A + eS 

dfz 
dr2 

dt 

1 dY 
K  dr 

dT (15) 

The equations in laboratory coordinates with transformed time scale are: 

d X 

dT?" 

& 

d^ 

dfz 
dt2 

V cos £c 
z 

V sin £T 
z 

(16) 

K (y cos £T + x sin ?T) + V cos C" - V sin ?T 
x        y 
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V. Solution of the Equations of Motion. 

The equations of motion will be solved exactly, and solutions 
corresponding to particular initial conditions will be given as calculated by 
hand or, in the case of more complicated solutions, as calculated from the 
differential equations by the analog computer. 

First, solutions will be obtained for the simpler equations in 
rotating coordinates. Then, the solutions will be transformed back to 
laboratory coordinates. 

Equations twelve are given in operator notation as the following 
matrix equation: 

2£D 

2        2 IF - K 

TVr 
The solutions are of the form   e where the D's are solutions to the 
characteristic determinant, 

- 2$> 

0 

2£) 

D 

0 

-D =    0 (18) 

(a) Critical Frequency 

The solutions to Equation (18) provide the critical frequency for 
confinement which was discussed in Section II. Equation (l8) reduces to the 
sixth order polynomial equation: 

D2 [D** + (252+D D2 + Z*- Z2]  = 0 (19) 

The first factor yields a double root D = 0 which corresponds to solutions of 
the form constant and T. It will be seen, later, that an expression of the 
forui T occurs in the ^-solution only. Hence, the stability of the X and I 
solutions depends on the second factor of Equation (19). This provides the 
four roots: 

D = ± .  /l + 2^+/^8E. (20) 
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Solutions are stable when 

1 + 2£* + Vl + 8? > 0, (21) 

which implies that £ > 1. This is equivalent to the critical frequency 
statement: 

(b) Solutions in Rotating Coordinates 

(i) Stable Solution 

Define 

and 

co 

w. 

VJ+og2 ,-p^ 
Jl* 2g2 - A+%1? 

(22) 

(23) 

Then, for £ > 1, solutions are linear forms which include only the expressions: 

constant, ft e     and e    . 

Substitution of the linear forms into the equations of motion determines 
the relations among constants, and, by using Euler's identity. 

e   -  cos <p + j sin <p , (24) 

the general solution in sine-cosine form is obtained.    The general stable 
solution in rotating coordinates is therefore 

■     I 
'co.2+?2-l" 

i=l   i-        i  J 

B.  cos (co.x +.a.) 

=     ) B.  sin (co.x + a.) + C 
L^        i ii 
i=l 

^ Bi ,2 =    j) — cos (co/c + a ) - TCT + D 

(25) 

(26) 

(27) 
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where a., B , C and D are arbitrary constants. 

The character of orbits can be derived directly from the general 
solution. For £ >  10, calculation shows that 

• * + e - i 
-± 1, 

which implies that the orbits are of the form: 

2     2 

(f") Mr") * 1 * * cos ''"V^ * (V"2IJ       <28) 

= t£7T^" where r = irB, + B 

and   e = 2  2 * 
Bl+B2 

The orbits for £ > 10 are, therefore, circles whose radii oscillate 
with the angular frequency (Cö--öJ_). For £ < 10, examination of the equations 
shows that the orbits are slightly elliptical and the oscillation of their radii 
is not purely sinusoidal. As £*•, the orbits are circles whose radii oscilates 
with the angular frequency fS", 

It follows that there are (§/(».-eO ) orbits in one oscillation. 
This fact is illustrated in the sample orbit, shown in Figure 9i which was 
plotted by the analog computer. 

The z-motion consists of stable oscillations superimposed upon a 
constant drift velocity V _,given by 

VzD r-.   -   K
2C. (29) 

The constant C is given in terms of initial conditions by 

Yo + (Ho , , C = -2 L--2 . (30) 
i - r 

Figure 6 shows a sample plot of the z-motion and the corresponding x and y 
motion for C / 0. Figure 7 shows z-motion and the corresponding x and y 
motion for C = 0. 
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z 
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FIGURE 7. 1 - 10V 
0 
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The time scale In the figures is represented by the variable 6 given 

8 = £T (31) 

where x  is defined by Equation (1*0. 

Equation (29) and (31) are combined to give an explicit expression 
for drift velocity in terms of initial conditions: 

I. + 
V 

(dZ) 
Vdx/c 

zO "  ,  1 

or 

a> Y + £ 
V n = -=-2—r° in real time. zu ,   1 

Calculation on the basis of the above equation shows that a particle, 
after a collision, will escape at rates on the order of 10'cm/sec. 

This implies that a rotating magnetic field alone is unsuitable for 
confining a thermonuclear plasma; but, as developed later in Section VI, the 
rotating field will have important applications to other plasma devices. 
Figures 5» 6, and 7 clearly illustrate the xy-stability. 

(ii) Unstable Solution 

Define a. = joo.        (i = 1, 2), (32) 

then the a.'s are real numbers, and the rotating solutions are linear forms 
which consist in linear combinations of the expression constant, T, +a^T and 
+a?T e 

e~  . The linear forms can be expressed in terms of hyperbolic functions, time 
and additive constants. 

The general xy-unstable solutions are given by: 

2 
X = Y    ajn±  sinh (af + ß±) (33) 

i=l 

= V K. cosh (a.T + ß.) + C Y = ) K. cosh (a^ + ß±) + C                         (3M 

i=l 

£ Ki                -2 - ) — sinh (a.T + ß.) - CCT + D                    (35) 
(__, a.       l   i 
i=l x 
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(36) 

and K., ß., C and D are arbitrary constants. 

Figure 8 illustrates «a XT-unstable solution. 

FIGURE 8. 

5 ■ -5 

dX 
 o 
dx 

- T 

= -5cm 
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(c) Solution in Laboratory Coordinates 

The general solution in laboratory coordinates is derived by 
applying Equations (11) and (1*0 to Equations (25), (26), and (27). The 
result is: 

-t 
i=l 

2 

V^2-i 
2&>. 

B. sin K*  cos (w.^+a.) - B. cos Z* sin (».T+a.) - C cos K* 
i i  i   i i  l 

y = y B± sin £t sin («B^+a.) 

i=l 

z = V 5= cos (co.x+a.) - CCT + D. 

r 2 2 l "V+r-i1 

2£o, 

(37) 

B cos ?T cos (to.T+a ) + C sin £T 

(38) 

(39) 

i=l 

As £■*••, the coefficients in square brackets approach 1, C+0, and (£-©.,) ■* 
(€-*>_) ■* 1/V2" , which gives the limiting solution 

x = Gx sin (^£-T + YX) 

y = G2 cos (^j-x + Y2). 

(40) 

(41) 

Equations (*f0) and (4l) may be combined to give the equation of the path in 
the xy-plane: 

2x 2 
72 + fs " GTG1

: 
C0S ^l'V = Sin (VY2) (42) 

°f  G2   l 2 

n 
The above is the equation of an ellipse. If Y-Y? = "5" and G = G?, the orbit 
is circular. It is interesting that the sense or the orbital angular momentum 
vector is only a function of the initial condil ons, and it does not tend to line 
up with the vector of the rotating field. 

The path in inertial space corresponding to Figure 5 is an ellipse with 

G.. = 56.6 cm . 

G = 1 cm 

rx = -i'i' 

Y2 = 90°. 
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The computer solution (Figure 9) gave corresponding results for the 
first half orbit; but by that tine, the ellipse had rotated in the -a   direction. 
This rotation was removed from the idealized elliptical orbit when it was assumed 
that %+<*.    For the orbit in Figure 9» K was 20—considerably less than infinity. 

The effect of including C 'Equations (37)-(39)) in the solution is to 
superimpose on the ellipse a small amplitude viggle with frequency K.    Since C 
varies as K    %  the effect is negligible at high frequency; but the wiggle was 
visible on computer runs for ? < 5» 

The revolution frequencies of the particle were checked in both 
coordinates systems on the analog computer and were found in excellent agree- 
ment with those predicted in the general solutions. The oscillation frequency 
of the orbit in rotating coordinates also checked. These important frequencies 
in radians per second are listed here: 

Angular frequency of revolution in lab coordinates = WT/V2" 

Angular frequency of revolution in rotating coordinates M CO 

Oscillation frequency of orbit in rotating coordinates = VZ ca 

VI. Applications of the Rotating Field. 

(a) Properties of the Rotating Field 

The following are properties of the rotating magnetic field, revealed 
in the computer solutions of the equations of motion, which suggest possible 
applications of rotating magnetic fields to other existing plasma confinement 
devices: 

A. All particles possess stable motion in planes parallel to the plane 
of field rotation when the angular frequency of field rotation <a   exceeds 
the Larmor frequency of the particle a,. 

B. Linear motion of a particle in a rotating field is partially trans- 
formed into azimuthal motion. 

C. Motion in the direction normal to the plane of rotation consists in 
a constant drift superimposed on a stable oscillatory component. 

(b) Suggested Applications 

The rotating field has obvious applications to the following three 
devices, each of which will be discussed in some detail: 

A. The Cusped Geometry 
B. The Magnetic Mirror 
C. The Stellerator 
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X(0) = Y(0) = IV 

X(0) = Y(0) = IV 

£ = 20 

Time Scale 1:1 

0 - Independ. Var. 

100 

FIGURE 9. 
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(i) The Cusped Geometry. 

Particle leakage in the cusped geometry occurs at: 

1. the line cusp. 

2. the points cusps. 

There seems to be two possible schemes for applying the rotating 
field to the cusped geometry in order to prevent, or at least decrease, 
leakage: 

1. The superposition of a rotating field locally In and parallel to a 
region which includes the line cusp, and the superposition of a rotating 
field locally near each point cusp in planes parallel to the line cusp. 

2. The superposition of a rotating field parallel to the line cusp 
throughout the field of the cusped geometry. The point cusps would 
have to reflect most of the particles that the rotating field forces 
normal to the rotation in order for the method to be feasable. This 
would evidently impose a restriction on the ratio of the rotating field 
to the cusp field. 

The system in (l) will now be considered. If a rotating field is 
applied locally in a region which includes the plane of the line cusp, particles 
tending to escape through the line cusp will be swept azimuthally against the 
cusp field lines. Both the reflective properties of the cusp field and the 
confining properties of the rotating field will confine the particles within 
the line cusp. Simultaneously, the drift velocity imparted to the particles 
by the rotating iield will move them from the rotating field into the portion 
of the cusp where the particles are in a confined state until they again 
approach a cusp. 

A local rotating field, it is here proposed, would be applied locally 
also at a value of Z** between the point cusp and the plane of the line cusp, 
nearer to the point cusp. Particles which are escaping along lines of force 
toward the point cusp will be deflected against the cusp field line by the 
rotating field; but, because of the Z-drift, will sometimes pass beyond the 
rotating field where they will reflect against the cusp field because of the 
circular motion which they acquired in the rotating field. 

Section VII (b) discusses a method of producing a rotating field 
which is especially suitable for the cusped geometry and mirror machines. 

(ii) The Magnetic Mirror. 

The rotating field could be applied to the Magnetic Mirror for the 

same reason application to the point cusp of the cusped geometry seems possible: 

Reference 3« 

** 
See Figure 10, 
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*" 

Plane of 
Line Cusp 

Point 
Cusp 

Cusp Field Line 

    Rotating Field Line 

FIGURE 10. The Rotating Magnetic Field Applied Locally 
to the Cusped Geometry Field. 
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Particles escaping along lines of force are given azimuthal motion 
by the rotating field which causes them to reflect from the curved field lines. 

Figure 11. 
A rotating field would be superimposed upon each mirror as shown in 

'Mirror Field 

* ^Rotating Field 

FIGURE 11.  The Rotating Magnetic Field Applied Locally to the 
Magnetic Mirror Field. 

(iii) The Stellerator 

The property of the rotating magnetic field which makes its application 
to the stellerator feasibile is the following: 

Particles have stable orbits in a rotating magnetic field when <a   > at- . 

The rotating magnetic field would be used as a focusing device in this 
application to return particles which have drifted from the axis of the stellerator 
because of the curvature and field gradient drifts which are inherent in the 
machine. A convenient position for the rotating fields would be on opposite legs 
of the stellerator as indicated in Figure 12. 

#m *4+ 
I 11111 

1 ' ! i   ! Mi1 

+H nm 
rTrfv" 

—Stellerator Field 

">Rotating Field 

FIGURE 12.  The Rotating Magnetic Field Applied Locally to the Stellerator. 
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VII. Alternate Rotating Fields. 

It was shown in Section III that an exactly uniform rotating magnetic 
field cannot exist. It is in order, therefore, to consider physically possible 
rotating fields and to note a few of their properties. 

(a) Crossed Electromagnetic Field 

A rotating magnetic field is formed by (1) the superposition of a 
plane-polarized EM wave which progresses parallel to the Z-axis upon (2) a 
plane-polarized EH wave which travels parallel to the y-axis and has the 
right phase relation with the previous wave. This system of waves will be 
referred to as a "crossed EM field". 

The correct field which fulfills the arbitrality imposed coordinates 
defined in the previous paragraph is expressed by Equations (43) to (46): 

Wave (1) 

B- = B sin (co t - oz) i (43) 
—X      0       o        ** 

Wave (2) 

E, = E sin (ut-os) i (44) —X     0      o       — 

B- = B cos (ut- ay) i (45) 
~~d o      o      — 

E- = E cos (co t - ay) k (46) 
—d o     o   "   — 

The total field at any point in space is given by 

B = B^ + B2 (47) 

E = E1 + E2 (48) 

The result is a non-uniform rotating magnetic field in the xy-plane 
and a non-uniform rotating electric field in the yz-plane. If/-CT is small, . 
the field is approximately uniform. For example, if co = 3x10 , then o =  10~ . 

The equations of motion for a « 1 in coordinates which rotate with 
the magnetic field were derived as: 

X + 2co Y - co   X = ca. c sin co t cos co t (49) 
o o L o o 

I - 2co X - co 2Y + cov    = coTc sin2 co t (50) 
o o L Z        L o 

.. • 
Z-Cü-Y + CüLCOXSCCLC COS CO t (51) 
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The solution of the characteristic determinant (Equation 52) of the 
associated homogeneous equations gives the result that 

2          2 
-  CÜ 

0 
2to D 

0 

-2co D 
o 

D2-co2 

0 

CO, CO 
L o 

ooLD 

*LD = 0 (52) 

The Z solution has a component which is again linear in tine, which makes one 
believe that Z-drift must be a fundamental property associated with rotating 
magnetic fields. The determinant also provides the result that the X and Y 
and solutions are stable for all co  , unlike the previous case, and the 
characteristic frequencies are 

co. y~2     T 
(53) 

CO- = CO 
2   o (5*0 

The inhcmogeneous equations can be solved, but this labor has not 
yet been attempted. 

♦ 2 
The characteristic determinant has the solution D = 0 which implies that 
there are solutions of the form 

>: = A^^ + B T 

y = A2 + B2T 

z = A3 + Bye, 

but substitution shows that A , B-, and B_ are all zero. 
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(b) Circularly-polarized Electromagnetic Field. 

A rotating magnetic field, as well as an RE field, is associated with 
a circularly-polarized EM field which traverses the Z axis. Such a field, which 
is self-consistent, is 

B = -i B cos (co t - a::) + i  B sin (cot - az) 
—  — o     o       ** o (55) 

E = i E sin (co t - az) + i E cos (cot -oz) (56) 
—  — o     0       ■"• o 

The equations of motion in laboratory and rotating coordinates are, respectively, 

V B 
rax = qE sin (cot - az) sin (cot - az) 

o c 

V B 
my = qE cos (cot - az) cos (cot - az) 

o c 

VB V B 
mz =  — sin (cot - az) + -*— cos (cot - az) c c 

(57) 

(58) 

(59) 

and 

X + 2coY-ooX = -(e- co.V,,) sin aZ 
00 w 

Y-2£oX-o)Y=(e- coV) cos aZ 
0     0 L ü 

Z = co (7 - co X) - (X + co Y) sin aZ 
L       O O 

where e 
qs. 
m 

(60) 

(61) 

(62) 

The XY rotation in the Z dimension, 

X cos aZ sin a Z 0 X 

Y - sin aZ cos a Z 0 V- 

Z 0 0     1 Y 

(65) 

removes the sine and cosine coefficients from the equations to give Equations 
(6<0 to (66). 
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V + OUY + 20UY - oY X + 2(0    [-ilfaXyl - ">    X = 0 (64) 0 o 

\1 _ aXy - 2CTXY - cT^a + 2to [X+OHYJ - «a Jt = at Y - e (65) 

Y + oo_ |i - otiLyX + cu-coXsO (66) 

No obvious result is immediate except that for small c% the magnetic field 
equations, if one replaces i by (-i), reduce to (**3) and (kj).    Thus, one 
expects the same behavior of the equations of motion for small a in this case 
as in the crossed field case. 

If interest is generated in regard to particle confinement in crossed 
fields or circularly-polarized fields, it may be feasible to attempt to solve 
the equations on the analog computer to check solutions for values of a other 
than the limiting one. 

It should be noted that the circularly-polarized field has the correct 
form for producing a rotating field in planes parallel to the line cusp if such 
a wave is transmitted along the axis of symmetry of a cusped geometry machine. 

VIII. Appendices. 

Appendix 1. Derivation of the Rotating Field which Reduces to the Given 
Uniform Field for Small a. 

The equations: 

B = B [i cos oy sin a» t + j cos ox cos «o t] (Al) 
— o — o   •"■ o 

E = -B [sin ay cos co t + sin ox sin CD t] k (A2) — oo o  - 

are derived here by assuming that: 

B = B [i sin o> t + j cos co t] is correct, deriving an expres- 
sion for E by Faraday's law and obtaining a second expression for B by Ampere's 
law. The total field is then equated to the sums of the first and second 
expressions for B, and the iteration process is repeated. Additional terms 
are simultaneously added to E. 

Faraday's law and Ampere's law are, respectively, 

1 9B 
yxE = --^ and (A3) 
—   —       c arc 

pB^I- (AM *     —      c   arc 
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First, assume the field is given by 

B, = B (i sin to t + j cos co t) —1   o —    o   ■"•    o (A5) 

and substitute B. in (A3), Faraday's law, to obtain the electric field 

osB 
E = - ■*— [y cos co t + x sin co t] • -    c  *    o        o (A6) 

Equation (A6) is then substituted in (A4), which gives a second approximation 
B2 to the field B: 

<n t    2 2      i B_ = - —rr B liy sin co t + jx cos co tj . —d. - d,    o —^     o   **      o (A?) 

Both B, and B_ are approximate solutions to Maxwell's equation [(A3) and (Ak)] , 
as B- i B- is an approximate solution. B. + B_ is substituted back into (A3) 
to give a new approximation to E: 

3- = - B —2    o 

10 3 
/CO .  o ^-™mV-h*-^,cos„t (A8) 

If the above process is continued, the fields are represented by 
the infinite series: 

B = B 
2 2        k k        6 6 

~[        2!c2      kt?     61? ' 

2 2      h k      6 6 
&L „£cS- + ... 

?!c       4!c       6!c 
cos CO t o (A9) 

and 

S = - B 
fcoy     33       55       77 
-ar _ Sa3L + 2aZ- _ «Sail + 

3!c3     5Jc5     7Ic7 
.    cos co t o 

+ /^.x.üi£ + ^£.^£' 
3!c^     5!c5     7ic7 ' ° 

(A10) 

The expressions in parentheses in 3 and E converge to sine and cosine 
respectively, so that Equations (Al) and (A2) are proven to be correct. 
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Appendix 2. Derivation of Relativistic Fields. 

For £ = 10, the velocity of the magnetic field lines approaches the 
speed of light at about 100 cm if K is referenced with respect to conditions 
for confinement of a deuteron at 100 million degrees. This implies that the 
situation must be described by relativistic equations for accuracy. 

Maxwell's equations, assumed to be Lorentz invariant by the first 
postulate of special relativity, have the sane form in a uniformly translating 
frame of reference. The lorentz field transformations are given by* 

B'ii = E, 

fl'l = TT? (2 - \ WJl 77* 

(All) 

(A12) 

E'II =E|| 

E'. = -pL=. (E + i VxB) . (A14) 

'./here 11 denotes components parallel and J, components perpendicular to the axis of 
translation, and ß = V/c. 

With the assumption that most of the motion occurs in the 9-direction 
equations (All) to (A1*0 are in cylindrical coordinates: 

£F 
co r 

B    _ -2_ (6xE) 
r       c r (A15) 

Be' = Be 

"*' = *£F 
co r 

B    - -2- (9xE) z        c z 

V = £F 
co r 

E    + — (8xB) r        c r 

Ee' = Ee 

OT 

co r 
E •  = -ri-»   E    + -2- (6xB) z        .L   „2      z        c      - - : 

where   ß 
co r 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 
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For simplicity, the low velocity fields are assumed in a rotating frame of 
reference since it is known the low velocity limit will be taken anyway. 

In order to have a uniform rotating field in inertial space, the 
field in rotating coordinates is the constant B and the electric field is 
zero. 

This gives: 

S • 
r 

= 0 

V = 0 

E • z = 0 

3 • r = B sin (9 - a t) 
o        o 

Be' = B cos (9 - co t) 
0         o 

B • 
z = 0 

Combining Equation (A15) to (A22) gives the results 

B 
r 

B cos (9 - co t) 
O            0 

■   «GF 

Be = B sin (9 - co t) 
O            0 

E 
z 

co r B cos (9 - co t) 
o  o        o 

cvCF 

(A21) 

(A22) 

(A23) 

(A24) 

(A25) 

In the low velocity limit limit (A23) to (A25) reduces to the low 
velocity limit equations±a Section III. 

If one sets £ = 10 and r = 10, one sees that ß = .03 and 

V£F /991 
« 1, 

which implies that using the non-relativistic equations gives fairly good 
accuracy up tothis limit of co r. 
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Appendix 3. Energy Integral. 

If the first equation of (12) is multiplied by X, the second 
multiplied by Y, the third multiplied by 2, and the resulting equations are 
added and integrated; the following conservation law results: 

2 

i (X2 * f2 + Z2) - ~ (X2 + I2) = Constant. 

This is the mathematical statement of an interesting property of rotating 
fields: the kinetic energy with respect to a rotating frame of reference 
minus the centrifugal potential is constant. 
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