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ABSTRACT: The phenomena associated with the vertical water
entry of 2-inch-diameter aluminum spheres striking the water
surface at 28 feet per second have been investigated by the
use of hydrophones placed beluw the water surfa-e.

The pressure recordings from the hydrophones have been ana-
lyzed for the three distinct phases of the water-entry
problem: namely, (1) impact phase, (2) cavity flow phase,
and (3) cavity collapse.

The impact phase has been analyzed by means of a dipole
theory and a momentum equation. These have been compared to
the results of other theoretical and experimental investiga-
tors and the actual pressure as measured at a point in the
fluid. The comparison of measured and calculated pressures
is not very good during this initial phase of water entry.
The acceleration acting on the body as computed by the
momentum equation agrees well with the results of other
experimental and theoretical investigators.

The cavity flow phase was analyzed by the potential theory
of a half-body placed in a uniform flow since the shape of
the water-entry cavity is very similar to a half-body. A
comparison of actual pressures recorded with those as pze-
dicted by the half-body theory show agreement within ten
percent both outside and inside the cavity.
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HYDRODYNAMIC PRESSURE MEASUREMENTS OF THE VERTICAL WATER
ENTRY OF A SPHERE

The material presetited in this report was the outcome of the
conception that the axial force acting on a missile during
its water-eDtry phase could be related to the acoustic pres-
sure measured at some point in the water. The usefulness of
such an idea would be of tremendous value in the design of
water-entry missiles.

This problem is one of great complexity, due mainly to the
transient nature of the phenomenon of water entry.

E, F, SCHREITER
Captain, USN
Commander
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INTRODUCTION

It is well known that missiles entering water produce
sounds both in the air and beneath the water surface. The
dripping of a faucet onto a pail of water is probably the
most common example of this complex phenomenon. More than
sixty years ago Worthington, reference (1), used single-
spark photography to discover the cavity which followed the
entry of droplets and spheres into water. His excellent
photographic study showed qualitatively the splash, surface
seal of the cavity, cavity closure, formation of re-entrant
jets, and many other details associated with the water entry
of spheres, both free fall and propelled from an air gun into
water. More than forty years ago Mallock, reference (2),
repeated some of the experiments of Worthington and gave a
tentative explanation of the shapes of the cavities produced.
Since the sounds produced by the water-impact, when observed
in air, were similar to a musical character, Mallock attributed
them to the vibration of the cavity formed behind the imping-
ing missile. About 1933, Minnaert, reference (3), explained
the origin of underwater sound by bubbles and determined the
resonant frequency of a bubble in volume pulsation for a
reversible adiabatic (isentropic) process. Milne-Thomson,
reference (4), gives essentially the same relationship for an
isothermal process where the pressure in the spherical cavity
does not deviate too much from the surrounding pressure of
the fluid. The original work of Worthington was repeated and
extended with more modern equipment by Richardson, refer-
ences (5) and (6), and May, reference (7). Richardson con-
cluded that at the instant of cavity closure the steady state
of the cavity could be represented by a potential flow due
to a source together with a linear sink of the same tctal
strength stretching from the source vertically up to some dis-
tant point from the closure. Although the deceleration which
the sphere is actually experiencing is ignored, the potential
solution is a good approximation to the field of flow in this
pseudo-steady case. Despite the rather crude instrumentation,
Richardson found that the pressure in the cavity remained
nearly atmospheric until the cavity closed. As the cavity
closed, large oscillations of the pressure in the cavity
supervened but were rapidly damped and rose in frequency with
time. He concluded that the underwater sound was mainly due
to damped pulsations of volume excited by collapse of the
cavity or its parts, May was mainly concerned with the scal-
ing of cavities formed when spheres entered water. He found
that Froude scaling was a good first approximation in
describing cavity beha"lp4r and that some improvement is
effected by the pressure-density scaling of the atmosphere
above the water, The ener-gy 1ot b a mrisile during the

1
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open-cavity phase of its water entry was found to be used up
principally in the formation of the cavity. For a given drag
force the cavity shape after water entry was found to be
independent of the nose shape of the missile.

Present Problem. This report had its conception in the
idea that the axial force on a missile entering water verti-
cally could somehow be related to the pressure measured at
some point in the fluid. A phase shift would be evident due
to the finite speed of sound in the fluid, but the advantages
of using such a system to monitor the water-entry forces on
missiles would be of paramount importancc, No physical con-
tact with the missile of any type of instrumental equipment
would be required. Accelerometers placed in the water-entry
missile require either internal recording, trailing cables,
or radiotelemetry to transmit the data from the accelerometer
and store it by some means. Besides many other disadvantages
the above items are either costly or limited to low-entry
velocities. By using the pressure measuring technique of
determining water-entry forces, no special models or launching
guns would be required. Pressure measurements could be taken
conveniently anywhere in the fluid and could be directly
recorded on fast writing, quick response oscilloscopes. Trig-
gering the recording scope would be no problem since another
pressure gage could be used as a signalling device to the
scope, set at a distance away from the pressure pickup gage
such that a sufficient length of zero base line would be
recorded.

Since the pressure gage would already be in the water,
it would be of interest to continue the pressure signal
monitoring and record the entire pressure at the gage due to
the history of the cavity developed by the model.

DESCRIPTION OF THE WATER-ENTRY CHENOMENA OF A SPHERE

Impact and Missile Oscillation

This is defined to be the stage of water entry where the
highest force on the missile is generated, and,hencepin the
time domain of highest pressures on the nose of the missile.
The order of magnitude of the time required for the missile
to experience the maximum water-entry force is generally
found to be the time required for the missile to travel one-
tenth of its radius at the constant water-entry velocity.
During this time, there is no separation of the water flow

2
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from the nose of the missile; i.e., there is complete contact
between the surface of the sphere that has pierced the water
surface and the water itself. If the missile has rigidity
and a high enough natural frequency, forced vibration of the
missile may start at this time and continue until the natural
damping nullifies the oscillations.

Open Cavity Flow

After the impact phase just described, the water flow
around the sphere separates at approximately 67 degrees up
from the initial contact point. It is at this time that the
cavity is formed behind the sphere. As the cavity grows
larger and longer, the top of the cavity will dome over to
seal the lower portion from the atmosphere. This .s caused
by the water which splashed up from the original water
surface. At this time, the cavity is closed to the atmos-
phere. As the missile continues to move on its trajectory,
" volume of the cavity expands and the pressure in the

cavity is relieved due to this expansion. The pressure in
the cavity may vary considerably from one part of the cavity
to another,

Cavity Collapse and Cavity Oscillation

The diameter at any cavity cross section will reach its
maximum dimension when the energy given to a unit layer of
water by the missile equals the work done in expanding the
cavity against the hydrostatic pressure at that cross section.
After this time, the diameter will decrease principally due
to the difference in pressure between that in the cavity and
the hydrostatic head. This decrease of the diameter is what
is called cavity collapse. The cavity collapse may be gen-
erally categorized in three distinct types; namely, point
closures, line closures, and base closures, reference (8).
The cavity diameters will decrease in some fashion resembling
the outline of an hourglass. At the waist of tite hourglass
figure of the cavity, the cavity will pinch off into two
separate cavities. The upper section of the cavity will move
toward tht surface of the water while the lower portion of
the cavity will move toward the model, thus forming a closed,
slender cavity trailing the model. Sometimes, instead of the
cavity closing at a point in the hourglass fashion, closure
of the cavity will take place almost simultaneously over a
large length of the cavity. This type of cavity collapse is
called a line closure, A lower entrance veocit-y of the
missile is required to obtain the line closure of the cavity

3
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as compared to the point closure. The third type of cavity
collapse, the base closure, occurs at still lower entrance
velocities than the line closure. The base closurb seems to
be the most conuon type of cavity closure observed. The ase
closure represents an acceleration of the rear of the cavity
from the surface of the water to the missile. The above three
types of cavity closure can generally be found for any one
missile by varying the entrance velocity. If the initial
velocity of the entering missile is held constant, the three
types of cavity closure can be obtained generally by varying
the weight of the missile.

After the deep closure of the cavity takes place, whether
line, point, or base closure, the cavity will oscillate in
volume due to th transient nature of the closed cavity phe-
nomenon. The pulsations of the air-filled cavity that is
formed in the water are usually more severc than the shock
wave that is propagated through the water on entry impact.

DESCRIPTION OF TEST FACILITY AND INSTRUMENTATION

The experimental equipment required to obtain pressure

information at a point in the water due to a model entering
the water can be extremely simple. The electronic problems
associated with such a test setup may prove to be extremely
troublesome.

The test equipment and procedure as used in this report
may be described in the following manner.

Two-inch-diameter aluminum spheres were dropped verti-
cally through a five-foot section of 2-1/4-inch I.D. glass
tubing onto a water surface. The glass tubing served as a
guide and was aligned in two planes by means of an air-
bubble level so that its axis would be perpendicular to
the water surface. The water surface was contained in a
glass-walled, rectangular tank, approximately 20 feet long
by 5 feet wide and 9 feet deep. The free-fall drop height
of the spheres was approximately 13 feet. A brass rod
mounted at the center of the taqk and protruding through
the water surface served as a positioning mounting for
two hydrophones. The lower hydrophone was the pressure
pickup transducer that recorded all pressure signatures.
The hydrophone above the pressure pickup served as a trig-
gering device for the recording oscilloscope. The axis of
the pickup hydrophone was normal to the trajectory of the

4
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dropped spheres. The triggering hydrophone located approxi-
mately four inches above the pickup hydrophone and parallel
to it was rotated approximately 60 degrees with respect to
the pickup hydrophone so that its interference with the
pressure wave to be measured would be negligible. Interfer-
ence of the pressure wave will occur and has been measured
when the hydrophones are improperly placed. Below the hydro-
phones and on the floor of the tank -,ere placed a nylon rope
impact mat and a turkey-wire catch b, ket. The nylon impact
mat prevented the spheres from damaging the protective coat-
ing on the steel floor of the tank. The catch basket
retained the spheres un the bottom of the tank and was raised
to the first story floor by means of a retrieving nylon rope
whenever the supply of spheres was exhausted.

Placement of the pickup hydrophone was achieved by
means of a plumb line dropped through he center of the glass
guide tube. This hydrophone was generally located 12 inches
below the surface of the water and 6 inches to one side of
the sphere's straight line trajectory.

The pickup hydrophone was fed into an impedance matching
device (cathode follower) when necessary, then into the oper-
ational filter (when used), and finally into the vertical.
amplifier of the recording oscillo3cope. The oscilloscope
trace was photographed with a Polaroid camera attached to the
oscilloscope CRT. The triggering hydrophone was fed into the
vertical amplifier of another oscilloscope. The "plus gate
out" of this oscilloscope was then used to give a signal to
sweep the recording oscilloscope. By this means various trig-
gering signal levels could be achieved to trigger the recording
oscilloscope.

To photographically record the water entry and cavity
phenomena, a Fastax high-speed camera was used, operating at
approximately 1,000 frames per second. Timing marks of 500
cycles per second were placed on one edge of the film as it
advanced through the camera, thus giving an accurate indica-
tion of the instantaneous framing rate of the camera. Since
the water-entry tank was placed in a relatively narrow room,
a front-surface mirro was used to effectively increase the
optical path betwaen the water-entry events and the high-
speed camera. This permitted a sufficiently large image to
be obtained on the photographic motion picture film without
optical distortion taking place.
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EQUIPMENT AND INSTRUMENTATION

Tap Water

Tank, 20 feet x 5 feet x 9 feet deep

2-inch-diameter aluminum alloy 6061 ST6 spheres

Pressure transducer hydrophone, Model LC-10, lead zirconate
titanate sensing element, with low noise cable
manufactured by Atlentic Research Corporation,
Alexandria, Virginia

Oscilloscope, Model 1805, with a 0.01 go rise time,
Model 1824 High Gain Differential Preamplifier,
manufactured by Hickok Electrical Instrument Company,
Cleveland, Ohio

Oscilloscope, Type 561 A, with a 0.10 go rise time
type 2A63 Differential Amplifier, manufactured by
Tektronix, Inc., Portland, Oregon

Oscilloscope Pol~roid Camera, Model C-12, manufactured by
the Tektronix, Inc., Portland, Oregon

Fastax High-Speed Camera, variable speed, manufactured by
the Wollensak Division of Revere Camera (Division of
the 3M Co.) Rochester, New York

Extraneous paraphernalia such as: impact mat, catch basket,
retrieving rope, front surface mirror, mounting rods,
glass guide tube, cathode follower, operational filters,
and coaxial hookup cables

THEORETICAL AND EXPERIMENTAL ANALYSIS

Impact Phase

Figure 1 shows a typical oscilloscope recording of the
impact pressure, as seen by the crystal pressure gage, pro-
duced by a 2-inch-diameter aluminum sphere entering the water
surface normally at 28 feet per second. The pressure gage
was located approximately four inches t1h i-e water surface
and four inches from the straight line trajectory of the sphere.

7
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U.1 0
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ORIENTATION OF PRESSURE
GAGE WITH RESPECT TO

IMPACT POINT

i411

FIG. 1 A TYPICAL IMPACT PRESSURE RECORDING
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The oscilloscope sweep was triggered by the use of another
pressure gage placed above and to one side of the pressure
pickup gage.

At the moment the sphere touches the water surface, the
pressure gage gives out an impulse signal rising to a finite
value in some time less than five microseconds. Approxi-
mately 30 microseconds later the signal lowers to a constant
value of about one-third its former peak, remaining there for
a time greater than 400 microseconds.

The peak pressure recorded by this gage in the above
case is 0.356 psi (above its original static pressure). The
gage is located 5.66 inches away from the impact point and
45 degrees from the line of entry. The theoretical impact
pressure, pcV, on the nose of the sphere is 1,815 psi. The
large difference cannot be explained by any correction of
the radius and direction angle to the gage. It is therefore
assumed, and very reasonably so, that the pressure gage
"undershoots" impulsive pressure rises imposed upon itself.
The "natural frequency" of the gage anQ the recording system
is very high since the output rises to a peak value in less
than 5 microseconds, but an infinite natural frequency would
be required to read the 1,815 psi value.

The shape of the pressure pu'se just discussed will be
analyzed in the following sections.

Dipole Theory. The dipole theory (Appendix A) enables
one to calculate the pressure generated in the surrounding
fluid by a vibrating solid sphere. For this first approxi-
mation, the time history of the force acting on the sphere
need only be known. This first approximation is based on
the result that the motion of the sphere (and hence its
velocity and acceleration) may be assumed to be composed of
an infinite sum of cosine terms, varying both in frequency
and amplitude.

In this case the resulting pressure generated at a
point in the fluid due to the motion of a sphere passing into
the fluid while under the influence of a time varying force
F(t) is

[ r r 1
cos 0 F(t-c) + F-C) (1)[ r2  rcJ

9
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where p = pressure at some point in the fluid

0 = the directional angle to the point

r = distance to the point

c = speed of sound in the fluid

t = time

In the above equation the term that is proportional to
iir is generally called the2 far-field term while the term
that is proportional to 1/r is called the near-field term.

The force F(t) may be read directly from the pressure
equation if the voltage from the pressure transducer is fed
into an electronic low-pass filter (Appendix A). The equa-
tion of the filter is similar ti the pressure equation. The
RC time constant of the filter must equal the ratio r/c; i.e.,
the ratio of the radius to the pressure pickup point over the
speed of sound in the fluid When the output of the low-pass
filter is multiplied by 8nr /cos 0, the resulting number will
be the axial force acting on the sphere.

The results of the preceding equations will be compared
later to theoretical and experimental results of the author
and other experimental and theoretical investigators.

Momentum Equation. A theoretical equation for the
acceleration produced on a sphere at water-entry impact has
been derived in Appendix B. The theory closely paraliels
von Karman's investigation intt the stress analysis of sea-
plane floats during landing. The acceleration is found to
be a function of the virtual mass of the sphere which changes
as a function of the depth of submergence of the sphere below
the water surface.

The final equation for the water-entry acceleration on a
2-inch-diameter aluminum sphere is:

d2y -V0 (0.345)x(l-y) dy/dt

dt 2  [1 + 0.115 x3 ] 2

where y = the penetration of the sphere below the
water surface

14
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Vo  the initial water-entry velocity of the
sphere

x = the radius of the circle which is the inter-
section of the sphere and the plane water
surface

t time; all lengths are in inches and time is
in seconds.

The above equation for the acceleration of the sphere
was solved in incremental steps of y in ten thousandths of
an inch. The velocity was corrected at each increment since
the sphere suffered a continual attrition of speed as it
passed through the water surface.

After the acceleration of the sphere was determined the
impact drag coefficient was calculated by use of the follow-
ing relationship:

CD = V°  (3)
pAV0

where CD = impact drag coefficient

m = mass of the sphere

p = density of the water

A = maximum cross-sectional area of the sphere

V = initial entrance velocity of the sphere.o

The average impact pressure across the wetted area of
the sphere was then determined as the ratio of the force act-
ing on the lphere to the intersected cross-sectional area;.,e,.,

Tie above equations will be compared in a later section

to the results of other experimental and theoretical investi-
gators.

Shilfman and Spencer Theory. More than 15 years ago
Drs. Shiffman and Spencer, reference (11), of the Applied
Mathematica Group at New York University determined mathe-
matically the force acting on a body with a spherical nose
during its ,ater-entry impact phase.

11
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The solution approximated the sphere by an expanding lens
and took into account the disturbance of the surface of the
water. The disturbance of the water surface led to two types
of corrections for the water-impact force on the sphere. The
first correction took into account the upward rise of the
surface of the water as it wets a larger portion of the enter-
ing sphere, thereby increasing the resistance of the water to
the entering body. Secondly, the rising surface relaxes some-
what the restraint imposed on the body, thereby causing a
decrease in the impact force. These two corrections partly
vounterbalance each other. The disturbance of the water sur-
face was analyzed by using a combination of theory and results
derived by experiment.

The theoretical results of Shiffman and Spencer will be
compared in a later section to the results of other theoreti-
cal and experimental investigators.

Mosteller Experiments. Less than ten years ago Mosteller,
reference (12), at the Naval Ordnance Test Station, China Lake,
determined experimentally the water-entry force on a spherical
nosed model striking the water vertically.

He launched 2-inch-diameter spherical nosed models at
low velocities (25-75 fps) and various angles (15-90 degrees)
into water. The models were instrumentated with bariunm-
titanate crystal accelerometers, the signal-out coaxial cable
hanging freely to a fixed point in the launching tank.

It should be pointed out that the recorded acceleration
at water entry is a function of (1) the water-entry forcing
function, (2) missile-body response, (3) accelerometer
response, and (4) the response of the recording system.
Mosteller, however, was able to discriminate between forcing
function and body response by the use of low-pass filters
on the output of the crystal accelerometer. These filters
allowed the passage of the low-frequency components of the
watetr-entry forcing function and attenuated the relatively
high-frequency components of the body response to a negligi-
ble value.

The most accurate drag coefficient curves given by
Mosteller are the ones for which the data were taken at an
entrance velocity of 25 fps. This is a result of the low-
frequency cutoff of the filter used andhence, its inability
to follow the rise of the input signal. The effect of the
missile-body response is also less at these lower entrance
velocities.

12
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The experimental results of Mosteller will be compared
in a later section to the results of other theoretical and
experimental investigators.

Open Cavity Flow, Half-Body Theory

The shape of the cavity produced by the entrance of a
sphere into water may be approximated by the shape of a half-
body in a uniform flow. (Appendix C)

The shape of the water-entry cavity produced by a 2-inch-
diameter sphere may be approximated on a polar coordinate
graph by:

e
r = secant (4)

where r = radial distance, in inches, to the point

on the half-body

8 = directional angle, in radians, to the point.

The shape of the cavity as produced by the vertical
entry of a 2-inch-diameter model into water will be compared
later to the shape of the theoretical half-body.

Pressure Around the Open Cavity. The pressure at
any point in the fluid due to the motion of the cavity through
the fluid is predicted by the half-body theory (Appendix C)
for a 2-inch-diameter sphere as;

AP = 2 r- 2 cos a - r- 4  (5)
iO2

jPU

where tp = rise in pressure at a point over the
pressure at infinity

r = ratio of the radial distance to the

radius of the sphere

8 = directional angle, in radians, to the point

p density of the fluid

U = velocity of the sphere.

13
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In the above equation the instantaneous velocity of the
sphere is used for U instead of holding the velocity of the
sphere, U, constant. This adjusted velocity correction is
applied to the motion of the sphere by assuming that the
cavity drag coefficient of the sphere is equal to 0.30 (as
measured by standard water-tunnol techniques). By this
method, the steady state nature of the potential flow solu-
tion to the half-body problem is transposed to a pseudo-
steady state problem, thus allowing a correction to the ever
changing velocity of the sphere. This is a reasonable assump-
tion to make for an approximate solution to the pressure
distribution around the half-body since the change of velocity
of the sphere, with respect to time or distance, is not
violent.

The pressure as predicted by the half-body pressure
equation will be compared in a later section to the pressure
as predicted by the velocity-corrected half-bod,- solution
and also to actual presiure measurements made at a point in
the water.

Pressure in the Cavity. As the sphere passes through
the water surface and generates an open cavity behind it,
one would not expect that the pressure in the cavity will
deviate too much from the atmospheric pressure or local
hydrostatic value on the wall of the cavity, reference (5).

Also, the pressure across the cavity wall would not be
expected to be discontinuous, although the space derivative
of this pressure at the cavity wall may be discontinuous.

Many difficulties arise when one attempts to measure
the pressure in a cavity behind a moving body, reference (5).
If the pressure measuring instrument is mounted in the missile,
it must withstand the impact forces and deceleration applied
to it while trying to monitor the minute pressure changes in
the cavity. The pressure instrument must not be sensitive to
acceleration and a means must be provided to record the pres-
sure signal.

Reference 7 describes an attempt made aporoximately
fifteen years ago to measure the cavity made by a water-
entry missile. The pressure transducer used was of a
rather bulky nature and the velocity of the model was
low. An examination of the motion oicture films revealed
that the pressure transducer was not in the cavity, but
rather that the cavity flowed around the gate. The
pressure gate refused to penetrate the cavity wall, probably

14
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due to the low radial velocity of the cavity wall and the
surface tension of the water.

The pressure gages used in the present investigation
are of such a small size and configuration so as to allow
penetration of the cavity wall by the gage. The pressures
have been taken at a point in the water as the water-entry
cavi y was allowed to envelope the pressure gage.

The pressure in the cavity has been approximated by use
of the pressure equation as derived for the half-boy flow
theory (Appendix C). A velocity correction has also been
applied to this theory.

The comparison of these three results will be made in
a later section.

Bubble Oscillation at Cavity Collapse

As the water-entry cavity collapses, the closure seals

the atmosphere from the lower portion of the cavity and the
model. This lower portion of the cavity will then pulsate
in a volume mode as it moves along with the missile.

The volume attached to the missile has been approxi-
mated as a bubble and the fzequency of oscillations of the
bubble has been derived analytically in Appendix D.

High-speed motion pictures allow a visual observation
of the pseudo-steady cavity (bubble) trailing the sphere.
The dimensions of the cavity may be made from the film to
determine its theoretical frequency of oscillation.

A comparison of the experimentally observed oscillation
of the cavity bubble will be made, in a later section, with
those predicted by the theoretical equation of the bubble
oscillation.

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Impact Phase

Results of Dipole Theory. In order to test the valid-
ity of the dipole theory of water impact of a sphere entering
water vertically (Appendix A), experimental tests were

15
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performed using a pressure gage and an operational filter.
Figure 2 is a typical example of one of these tests.

V11

0-
0

0 0 -450
TIME (SECONDS)-

SPHERE, ALUMINUM, 2 INCH DIAMETER.

WATER ENTRANCE VELOCITY, 29 fps.
PRESSURE GAGE, 14 INCHES BELOW WATER

SURFACE AND 6 INCHES FROM TRAJECTORY
OF SPHERE°

SENSITIVITY OF PRESSURE GAGE NO. 18, 6.85 psi!V
TIME CONSTANT OF RC FILTER, 260 M- SECONDS.

FIG. 2 PRESSURE TAKEN AT A POINT IN THE FLUID
AND THE RESULTING OUTPUT OF THE
OPERATIONAL FILTER
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In this test a 2-inch-diameter aluminum sphere was
dropped from a height of appzoximately 13 feet above the
water surface. A 5-foot section of 2-1/4-inch I.D. glass
tubing was used as an alignment for the dropped sphere.
The pickup pressure gage was located approximately 14 inches
below the water surface and 6 inches from the straight line
trajectory of the sphere.

The first picture of figure 2 is a trace on the oscil-
loscope face as recorded by the pressure gage. The
sensitivity of the gage used was 6.85 volts/psi. The sweep-
ing rate of the scope was 50 gs/cm (50 microseconds per
large division). The vertical amplifier sensitivity of the
scope was 2 mv/cm (2 millivolts per large division); hence,
0.0137 psi/cm on the vertical scale. This is a typical
pressure trace as recorded by a pressure gage placed beneath
the water surface (i.e., similar to figure 1).

The second picture of figure 2 is a trace of the out-
put of the operational filter, fed by the pressure gage just
described above. The sweep rate again is 50 ps/cm but the
vertical sensitivity is now 1 mv/cm. The scopes were
triggered by a second pressure gage placed above and to one
side of the pickup pressure gage.

The time constant of the operational filter was made
equal to the distance between the impact point and the
pressure gage divided by the speed of sound in the water.
Thus,

Ro = 15 inches ft, =260 ps (6)
c 4800 ft./sec. * 12 inches

Now the dipole theory says that we2may multiply the
output of the operational filter by 8nr /cos 8 to obtain the
force on the sphere. There is, of course, a time lag (phase
factor) of r/c, the time required for the pulse to reach the
pickup gage. From the lower picture of figure 2, the peak
force felt by the sphere on water impact is then

F p r2  8n(15.3 in.) 2  6.85 psi 0.002 volt x 0.8 cm

cos 8 0.923 volt X cm

(7)

or F = 70 pounds.

17
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The peak impact drag coefficient for this fc:'e may then
be calculated as:

F = jp CD A V2

7 b. 62.4 lb. sec. 2 /2/ ft
70ls. ( ft.3) (32.2 ft. ) (12)(sec.

or CD = 3.8 (8)

and the time to reach this peak is approximately 50 Ls.

Sphere Vibrations. The high-frequency vibrations of
the constant pressure trace shown in figure 2 indicate
interesting phenomena. At first this occurrence was
attributed to the ringing of the pressure gage; i.e., excita-
tiorn of the natural frequency of the crystal pressure gage.
The period of these vibrations is of the order of magnitude
of 15 "s. The period of the natural frequency of the crystal
is certainly much less than this since the rise time of the
beginning of the trace is approximately five s or less. The
vibrations were then thought to be d-e to the sphere. Prob-
ably the most important mode of vibration excited in a
rigid solid sphere falling vertically and striking the water
surface is the spheroidal one. In this mode the sphere is
distorted into an ellipsoid of revolution, and the frequency
of this mode of vibration, reference 14, is given by

0.3C
f l where o is Poisson's ratio for the

sphere, a is the radius of the sphere, and Cs is the velocity
of sound in the sphere. For the 2-inch-diameter aluminum
sphere, the frequency and period of oscillation are given as:

f = 0.3 (16,740 ft. ) 12 in./ft. (9)
sec. (1 in.) (1 + 0.332)e

f = 52,300 cps

and T = 19 is; hence, it is concluded thet the very high-
frequency vibrations superimposed on the water impact pres-
sure trace are due to the spheroidal vibrations of the
aluminum sphere.

Momentum Equation Results. The results of the momentum
equation previously described have been calculated as

18
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outlined in Appendix B. The results of these equations
have been plotted in figures 3, 4, 5, and 6. Figure 3 is a
plot of the acceleration acting on the sphere (-dly/dt2 )

versus time and the fraction of the radius that is submerged
in the water. The impact is the result of the 2-inch-
diameter aluminum sphere striking the water surface verti-
cally with a velocity of 28 feet per second. The peak
acceleration acting on the sphere is 17,500 in./sec. 2 and
occurs at 710 ±s. This time of peak force occurs when the
sphere has submerged approximately 25 percent of its radius
below the water surface.

18000

16000

140CO

12000

1200MC MENTUM
THEORY

U
z

-B 8000
'4 MOSTELLER

EXPERIMENT

6000

0I4000

2000

0 400 800 1200 1600 2000

TIME (,SECONDS)

0 0.1 0.2 0.3 0.4 0.5 0.6

yR

FIG. 3 WATER-ENTRY ACCELERATION OF A SPHERE VERSUS TIME
(MOMENTUM THEORY AND MOSTELLER EXPERIMENT)
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equation theory. This is
esnentially the same curve

1.2 j F , as plotted in figure 3 since

MOMENTUM the drag coefficient is
1.1 THEORY

1.0 2 C D = 222 (10)
pAy0

0.9 / The peak impact drag coeffi-
(cient for the sphere is

0.8 CD (peak) = 1.15 and occurs

0.7 1 S- 90 ,

u 0.6 LENSH 80

0.5 S-S MODIFIED 70

0.4 MOSTELLER
EXPERIMENT 600.'.

0.2 - 5°0

0.1 40 MOMENTUM THEORY
,-MEASURED PRESSURE

0 0 0 30 / AT A POINT
0 0. 1 0.2 0.3 0.4 0.5 0.6 EXTRAPOLATED TO

THE SPHERE BY
(y/R) or tVo/R 20 R2 LAW

10
FIG. 4 DRAG COEFFICIENT FOR
SPHERICAL-NOSE WATER ENTRY 0-J--..__
(SHIFFMAN-SPENCER LENS AND 0 400 800 1200 1603 2000
MODIFIED, MOMENTUM THEORY,
AND MOSTELLER EXPERIMENT) TIME (/USECONDS)

Figure 4 contains a plot
of the drag coefficient of the FIG. 5 AVERAGE PRESSURE ACROSS
sphere versus the fraction of WETTED AREA OF SPHERE VERSUS
the radius submerged below the TIME (MOMENTUM THEORY AND COR-
water surface for the momentum RECTED MEASURED PRESSURE)
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at the same time just described above; ioe., when the sphere
has submerged approximately 25 percent of its radius below
the water surface.

Figure 5 contains a plot of the average pressure across
the nose of the sphere versus time, as predicted by the
momentum equation theory. The 2-inch-diameter aluminum
sphere is striking the water surface with a velocity of 28
fps, as before. At time t = 0, the momentum theory predicts
an infinite pressure across the face of the sphere. This
occurs since the initial contact between the sphere and the
water surface is essentially the same as the impact of a
flat plate striking a flat water surface, both surfaces being
initially parallel. An infinite pressure, of course, cannot
occur when the sphere strikes the water surface due to the
finite value of the compressibility of the water. Von Karman
predicts an impact pressure, in this case, of a value equal
to pcV. For the sphere striking the water surface with a
velocity of 28 feet per second, the effect of the compressibil-
ity on the impact pressure on the nose of the sphere is

P = (62.4 lb ) (32. 2 sec2 ) ( 4 8 0 0 -ft 28 __ ft2

pVft 3  ft sec 1 sec)/k1 4 4 in 2 )

= 181C psi (11)

This value is approximately 18 times the maximum pressure
shown on the graph. Since the momentum theory predicts a
very sharp decrease from infinity in the average pressure
across the face of the sphere, von Karman's value of the im-
pact pressure, pcV, is a plausible value.

Figure 6 is an extrapolation of the average pressure
(momentum equation across the face of an inpacting sphere to
a point that is 1 inch below the water surface and 2 inches
from the line of impact). The extrapolation was assumed to be
able to be perfcrmed in the fo-iowing manner. The pressure
at a point in the fluid was assumed to vary according (see
figure 7) to the law

p(r, 9)= p0 cos 9 r (12)
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WATER ENTRY VELOCITY = 28 fp5

WA'TER SURFACE

P

2" -

FIG. 7 CORRECTION APPLIED TO MOMENTUM
EQUATION PRESSURE

This says that the pressure at a point in the flid will
decrease as the product of 1/r2 and the cosine of the direc-
tion angle. The value of ro for the 2-inch 3phere is I inch;
hence,

p(r, p) = Cos 2

r
The values of r and 0 were calculated at various increments
of the depth of submergence of the sphere belw the water
surface. The impact pressure as described by the momentum
equation was then multiplied by the ratio cos 0/r2 at the
appropriate points for the depth of submergence of the sphere.
The results of this equation are plotted in figure 6, the
variables being pressure and time. The shape of the curve
has the same general appearance as tha shape of the results
of the pressure across the face of the sphere as calculated
by the momentum equation.
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Shiffman and S3encer Theory. The results of the drag
coefficient for the vertical water entry of a sphere as
determined by Shiffman and Spencer, reference (11), are
plotted on figure 4. The modLfied lens theory of Shiffman
and Spencer takes into account the rise of the water sur-
face around the sides of the sphere. The modified lens
theory for the drag coefficient of the sphere peaks at a
higher value and sooner than their first approximate theory
for the flow about an expanding lens. The modified lens
theory results in a peak impact drag coefficient of 106
occurring at a depth of submergence of 0.125 times the radius.
This compares favorably with the results of the momentum
equation plotted on the same graph.

Figure 6 contains a plot of the pressure resulting at
a point as calculated by the dipole theory using the values
of the drag coefficient of the modified Shiffman and Spencer
theory. The F and P terms of the force on the sphere in the
dipole theory were determined from the drag coefficient curve
of Shiffman and Spencer. The analysis was carried out for
the point that was 1 inch below the water surface and 2 inches
to one side of the sphere's trajectory, The results of the
analysis are compared, on the same graph, to the actual
pressure measured at the point and the extrapolated press-re
as predicted by the momentum equation. The agreement among
the pressures resulting from these three methods is not too
good. The extrapolated momentum equation pressure is gen-
erally much larger than the actual pressure measured while
the Shiffman and Spencer-Dipole theory is generally smaller.

Mosteller Eocperimental Results. The results of the
impact drag coefficient of a sphere as determined experi-
mentally by Mosteller are presented in figures 3 and 4. The
acceleration of the sphere as found by Mosteller is compared
to the acceleration as predicted by the momentum equation
(figure 3). The agreement between these two is very good.
Mosteller found a peak impact drag coefficient, for the
sphere, of 1.17 occurring at a depth of submergence of the
radius of 0.10. The two theorie3 for the impact drag
coefficient of Shiffman and Spencer are plotted on figure 4
alung with the results of Mostell.er and the momentum equa-
tion, Agreement among all of the results is very good.

Cavi:y Flow Phase

After the sphere strikes the water surface, a cavity is
formed behind the sphere. Figure 8 shows the sequence of
even Ls following the impact phase of the sphere. It is a
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FIG. G 'WATER-ENTRY CAVITY PRODUOCED BY A SPHERE
2-INCH-DIAMETER, ALUMINUM, 28 FT/SEC
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contact print of high-speed 16-mm film taken during water
entry of a 2-inch-diameter aluminum sphere striking the
water surface at 28 feet per second. The film speed is
approximately 1000 frames per second.

One frame of this film
(approximately frame No. 40)
was projected onto a sheet
of paper such that the nose
of the cavity would coincide
with a previously drawn 2-
inch-diameter circle. The
shape of the cavity as pre-
dicted by potential flow
theory of the half-body
(Appendix C) was then plotted
on the same paper. These
results are shown in figure 9.
The nose of the actual cavity
is more pointed than that
predicted by the half-body

I approximation, but the com-

EXPERIMENTAL RESUL.TS parison is more favorable
on the after-body section.

.- POTENTIAL THEORY
Open Cavity Pressure

FULL SCALE Results. Figure 10 is a
Vo = 28 fps composite of pictures taken

of the pressure trace of a
gage placed 12 inches belowv
the water surface and 6
inches to one side of the
trajectory of the sphere.
The 2-inch-diameter aluminum
sphere is striking the water
surface at 28 feet per second.
The vertical scale of each of
the pictures is the same,
0.0307 psi/cm, but the time

FIG. 9 COMPARISON OF AN ACTUAL scale of each picture is
CAVITY SHAPE WITH POTENTIAL different. The first pic-
THEORY SHAPE ture describes the impact

phase, as previously dis-
cussed. The following
pictures in figure 10 describe
the approach of the sphere
to the pressure gage.
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A better view of the pressure trace just described may
be had in figure 11. This has been composed of four pictures
from figure 10 such that one continuous pressure trace results.
The vertical pressure scale is constant over all of the trace;
the time scale changes in each of the four divisions of the
trace. The position of the sphere at various times is indi-
cated above the pressure trace.

The rise in pressure as the sphere approaches the gage
(figures 10 and 11) has been plotted on figure 12 and is
compared t the pressure predicted by the half-body theory
(Appendix C). When the velocity correction is applied to
the pressure predicted by the half-body theory, agreement is
obtained with the actual pressure measured (within 10 percent).
This analogy has not been carried on past the point when the
sphere is opposite the pressure gage. At this time figure 8
shows that the cavity is starting to close; hence, it does
not maintain the shape as predicted by the half-body theory
and the resulting pressures would not be expected to agree.

- 2 IN. DIA ALUMINUM SPHERE, V. = 28 fps

WATER SURFACE _f _+--PRESSURE GAGE
611 1 LOCATION

ESPHERE SUBMERGENCE
N IDEPTH (INCHES'--

0
IIX~ I_________

liI I
r -iI Ii

IU[ "TIME
" 0

<3I I I-

50wj H uSA 50p S H H2MS 20 F MS

0 0.30 MS 4 MS 20 MS 200 MS

FIG. 11 COMPOSITE TRACE OF THE PRESSURE RECORD
OBTAINED FOR THE WATER ENTRY OF A SPHERE

28



NOLTR 66-70

This closing of the cavity results in a higher negative
pressure than the half-body theory would predict and is not
included on the graph since the analogy breaks down.

0.011

0.010-

HALF-BODY THEORY

0.009 -

0.008

0.007 - THEORETICAL,04./' VELOCITY

CORRECTION
wI 0.006

uj 0.005

0.004 EXPERIMENTAL

0.003 2 IN. DIA SPHERE
Vo = 25 fps
GAGE: 6 IN. HOR

0.002 12 IN. VERT

0.001

0 2 4 6 8 I0 12 14 16

VERTICAL DISTANCE FROM GAGE, INCHES
+ .- TIME

FIG. 12 PRESSURE IN THE FLUID DUE TO CAVITY FORMATION
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FIG. 13 MOTION OF A WATER-ENTRY CP'ITY PAST A PRESSURE GAGE

30



NOLTR 66-70

Measured Pressure in the Cavity, In order to place
a pr-essure gage in a water-entry cavity, the cavity had to
be allowed to expand around the gage. The pressure gage in
figure 8 (lower prong, left-hand side) was never in the
water-entry cavity at any time. To get the pressure gage
into thie cavity a test was performed whereby the gage was
placed 5 inches below the water surface, and the acoustic
center of the pressure gage was placed 2 inches from the
straight line trajectory of the sphere. Figure 13 is a
contact paint showing the pressure gage in the cavity. The
lower prong in the pictures is the pressure gage (in the
plane of the pictures) while the upper prong is the trigger
gage (rotated away from the pressure gage). The pressure
gage was determined to be in the cavity for several reasons.
The pressure gage was positioned as close as possible to
the trajectory of the sphere. In some instances the sphere
actually brushed the tip of the gage, as determined by off-
scale spikes of the pressure trace. Frame No. 51 (for
instance) shows a clearer image of the pressure gage than of
the trigger gage.. This is because the trigger gage is
positioned just behind the cavity. Light from the trigger
gage must travel through two walls of the cavity, thereby
blurring the image. The background of the picture, which is
2-1/2 feet behind the cavity, loes not photograph at all
through the cavity. Frames 141 through 146 show the pres-
sure gage coming out of the upler cavity after point closure.
Surface tension between the water and the neoprene covering
on the pressure gage results in a small meniscus as the
cavity pulls away from the tip of the pressure gage.

The pressure trace from the gage of figure 13 is plotted
on figure 14 along with the theoretical calculations of the
half-body theory (Appendix C). The agreement between the
two is very good both in time and magnitude.

Bubble Oscillation

Figure 15 is a lower view of the water-entry cavity and
a continuation of figure 8. The cavity closure results in
the high pressures recorded in figures 10 and 11. The low
frequency of oscillation recorded at activity closure may
be attributed to the transient nature of the formation of
the closed bubble (closed cavity) around the sphere.
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A spherical bubble of gas will oscillate according to
the frequency equation (Appendix D):

1/2

T =_ (13)

where T = period of oscillation

= mean radius of bubble

p = density of the surrounding fluid

k = ratio of specific heats of the gas in
the bubble

p = pressure in the fluid surrounding the
bubble

The bubble around the sphere is approximately three
inches in diameter (figv-e 15). This bubble is approximately
18 inches below the surface of the water, where the surround-
ing pressure is 15.335 psiao The period of a spherical bubble
of oscillation may then be given as the following, if air,
k = 1.4, is assumed to be the gas in the bubble:

0.03615 lb./in.
3  1/2

T = 2r (1.5 in.) J
(3) (1.4) (15.335 lb. (386 in. )

in. 2 sec. 2

T = 0.0113 sec. (14)

The period of oscillation of the bubble agrees very well
with the period of oscillations found in figures 10 and 11.
The volume change of the bubble cannot be detected in figure 15
since its motion is very small compared to the size of the
bubble.

DISCUSSION OF RESULTS

The analysis of the water entry of missiles is a compli-
cated problem. As shown in this report, the impact phase is the
most difficult to analyze, both experimentally and theoretically,
and rightly so, mainly due to its inherent transient nature.
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The water-entry force on a sphere striking the water
surface vertically has been approximated by the use of a
momentum theory, not unlike von Karman's analysis of the
landing impact on seaplane floats. The results of this
theory compare well with the theoretical results of Shiffman
and Spencer and the experimental results of Mosteller. Better
results could probably be obtained if the effects of the free
surface of the water were taken into account. Correlation,
with theory, of the impact pressure measurements taken under
water could not be obtained. The theoretical impact pressure,
pcV, of the sphere could not be detected with the crystal
pressure gages.

The shape of the early water-entry cavity may be approxi-
mated by the potential theory of a source in a uniform flow.
Good agreement is obtained between the shape of the cavity
produced and that predicted by theory. Better correlation
probably would result if a combination of sources and sinks
was used instead of the single source. Pressures recorded
in the water around the expanding water-entry cavity agree
well with che pressures predicted by the potential theory
for the cavity shape. This accuracy could be improved if a
combination of sources and sinks was used.

Pressures measured in the cavity agreed well with those
predicted by the potential theory for the cavity flow phase.
There is some doubt whether or not this approximation is
valid for pressures in the cavity since it is generally
assumed that the cavity pressure is atmospheric when the cav-
ity is open. If this were true, then the pressure records
taken in the cavity would be hard to explain since a varia-
tion in pressure was recorded.

The frequency of vibration of the closed cavity after
cavity collapse was closely correlated with the theory of
a pulsating spherical bubble. Even though the shape oi the
cavity was not spherical, good agreement was obtained with

the actual period of vibration measured.
The above analysis indicated that more effort must be

brought to bear on the impact phase of the water entry of

missiles, both experimentally and theoretically. It is
suggested that:

1. The impact pressure distribution versus time be
determined from large-scale water-entry drops of hemispheres.
This should also be done with high-frequency crystal pres-
sure gages aad accelerometers.
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2. The variation of the pressure in the fluid withdistance and angle be determined considering the effect of
the free surface.
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APPENDIX A

DERIVATION OF THE DIPOI.E THEORY

By means of a dipole theory it is possible to calculate
the pressure generated in the surrounding fluid by a vibrat-
ing solid sphere. Lamb (reference (9)) states that "this is
almost the only problem of the kind which can be completely
solved," and "the results throw a good deal of light on other
cases."

Let the velocity of the sphere be expressed in complex
notation as

U = Ae i n t  (A-1)

int
The velocity potential of a dipole Ce at the origin

is

- cos 0 k = n/c (A-2)
4rT 6 r \

and when the partial differentiation is performed

4 2-ikr e t Cos 9 (A-3)

Let us examine the case when kr <<l.

Then

c If X
r<< = - n 2 (A-4)

and hence at points less than X/2n, kr will be less than 1.
when the radius a of the sphere is small compared with X/2n,
then in the immediate neighborhood of the sphere, the velocity
potenLial can be reduced to

int4n r-  Cos (A-5)

A-I
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The radial velocity of the fluid on the sphere is then

i n t
SCe(A-6)

This must be equal to the velocity of the sphere at the
same point, which is

U cos = Ae i n t cos q (A-7)

The constant is then found to be C = 2na 3A.

The complete solution for the velocity potential is then

a3A (1 + ikr) e-ikr e int Cos (A-8)-2-- r2 o A 8

The reaction on the sphere due to the flid may be
calculated by dividing the surface of the sphere into zones
by planes perpendicular to the directio,, of motion of the
sphere, Thus,

ade

-* x

a ~a sin te

The increment of force in the x-direction on one of the
zones is

dF = -pn(2a sin e)a d cos (A-9)

A-2
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For any instant velocity U of the sphere, the velocity
potential reduces to

Ua3  cos 0 (A-10)

The pressure on the sphp-e is then found by

1 dU

a P a
: fl paU cos 3

and Fx  -Jo a- I n 2a sin 9 a d 0 cos 0Jo 2
= 3 sin cos 2  d9

FX= -p a 3 n ind

Fx = -p a3 r 
- cos 3 0

3 -a U =0

Fx = 2 a 3 ti (A-li)

The force on the sphere is independent of its velocity
and depends only on the acceleration of the sphere.

The equation of motion of the sphere can be written as:

dU 2 3 (-1cSt - a TT U F(t) (A-12)

where M = mass of sphere

U = velocity of sphere

p = density of fluid

a = radius of sphere

F(t) = extraneous forces on sphere

and then

(M + 2 r o a d3) F(t) (A-13)

A-3
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We originally let the velocity of the sphere be
U = Ae in t. Let the extraneous force applied to the sphere
be F(t) = Fo ein t. Substituting into the above equation for
a sphere of the same density as the fluid,

4 pa3 + 2 a3) Aine int = Fo eint

Fo
or A = 2a 3 pin (A-14)

When the expression for A is substituted back into the
equation for the velocity potential, we have

Fo e i n t '1 + ikr 1  -ikr
4.npcik r cos 3 (A-IS)

The pressure at any point can then be found from p =

pin FO e i n t 1I + ikr) e "Cos

4npcin/c r

cos 9 FO e1ln in Fq eint eikr
P r 2  + rc J

Cos 9F(t - r/c)+ - /c ) (A-16)
P 4r r2 rc

From the above equation one can find the Pressure
generated at a point in the fluid due to the motion of a
sphere (of the same fluid) under a force F(t) = Fo e i nt.

But since the fluld is only on approximately cne side
of the sphere, the pressure equation should be halved; hence,

cos E [F(t tc) -c
"2 rc J (A-17)

Operational Filter. The equation for the output of a
low-pass electronic filter may be written as follows:

Ro Cc d(8/Co) + 8/Co = E(t) (A-18)
dt

A-4
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If the sphere is of aluminum instead of the same fluid,
say water, then the expression for p is found from the
following:

cos 0 F(t - r +c) F(t -rc) (A-19)
8.68- n r2  rc J

This would be a more accurate indication of the pressure.

E(t) Ro cc Vout - q/co (A-20)

where E(t) the input voltage

Vout = the output voltage

Ro = resistance of the circuit

Co = capacitance of the circuit

q = charge

The voitage out across the capacitance of the filter
circuit is

Vout = q/Co (A-21)

The pressure equation from the following section may be
written as follows:

r h~t-r/c) + F(t - r/c) 8nr 2
- = tc- p (A-22)
c Cose

The pressure equation and the filter equation are quite
similar. If the time constant (Ro Co) of the filter circuit
is made equal to the ratio r/c (the radius to the pressure
pickup point over the speed of sound in the fluid), the out-
put across the capacitor may be multiplied by rr 2  to give

cos 9
directly the axial force acting 

on the sonere.

A-5
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APPENDIX B

DERIVATION OF THE MOMENTUM EQUATION

In connection with his investigation into the stress
analysis of seaplane floats during landing, von Karman
presented his famous approximation to the problem by use
of the momentum equation and found that his theoretical
results checked very well with experimental results. This
has been applied to the water-entry problem of spheres in
a similar manner.

Consider a sphere perpendicularly piercing a water
surface, as follows:

m water
r surface

y

where m = the mass of the sphere

r = the radius of the sphere

y = depth of penetration of the sphere below
the water surface

x = the radius of that circle which is the
intersection of the undisturbed water
surface and the sphere.

The total momentum equation for the system can be
written as follows:

m = mv + f (x)V (B-1)

where m = the mass of the sphere

Vo = the initial velocity of the sphere

B-1
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V = the instantaneous velocity of the sphere

f(x) = some "added mass" of fluid that is moving
with the velocity V of the sphere (varies
with x).

The momentum equation can be written in the form:

V = V1 (B-2)

The equation could now be solved, and the complete motion
of the sphere could be determined, if the f(x) term were
known.

As a first approximation to f(x), consider a thin flat
circular plate moving in an infinite fluid. Added mass
coefficients for this case are well known both theoreti-
cally and experimentally, reference (13). The presented
cross-sectional area of the sphere to the water surface
could be considered as a flat plate that changes dimensions
with time (as shown in the diagram).

The added mass for a thin flat circular plate moving
perpendicular to its surface is

(0.64) 4 x 3  (B-3)

that is, the added mass is 64 percent of a sphere of fluid
whose radius is equal to the radius of the plate. But in
the case of the sphere entering water, fluid is moving on
only one side of the imaginary plate; therefore, one-half
of the apparent increase of mass for the plate is assumed.
,he term f(x) can be written as

0.64 4 ' 3 (B-4)

Solving the equation for V is now simple. We have that

V -- - V (B-5)
dt 1 + f(

m

B- 2
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and differentiating the expression for the velocity with
respect to time, we have

_ V[+ fx1 2  dx (B-6)
dt2  -m m dx dt

which is the acceleration of the sphere.

From the geometry of the sphere entering the water
surface, we have that

2 2 2
r 2 x + (r - y)

or x 2= 2ry - y2  (B-7)

Differentiating the above expression with respect to time
and solving for dx/dt, we find that

dx r- Y vy (B-8)

dt =  x dt

The space derivacive of the added mass term f(x) is

0.64 4 2
2- Fin 3x (B-9)

Substituting the appropriate terms into the equation for
the acceleratioa of the sphere, we have

M -l.28pVo x(r - y)dy/dt

2 m 3  ]
If the sphere, as in our case, is taken to be aluminum
(0.100 lbs./in.3 ) and the fluid is water (62.4 lbs./ft. 3 ),
for a 2-inch-diameter sphere, we have

d 2 (0. 345)x (I-v) dv/dt
-Vo 0 (B-li)

where the dimensions of x and y are in inches and time is

i.n seconds. It woul.d have been possible to find the force

B-1
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on the sphere directly from the above equation (i.e.,
F - m y) if one were to assume that dy/dt were constant
throughout the motion of the sphere through the water sur-
face. Instead, a finer approximate solution will result if
the velocity of the sphere is corrected at each point the
calculation of the acceleration is made. This ,as done for
the case of the 2-inch-diameter aluminum sphere entering the
water normally at a velocity of 28 feet per second.

Increments of the vertical distance y were taken at
0.03U inch. At each point the variable x was calculated
from the geometric relationships previously described. Over
the first increment, the acceleration was calculated using
the values of x, y, Vo and dy/dt. The value of dy/dt over
the first increment is, of course, Vo . The time to the end
of the first increment is given as the ratio of the distance
increment to the velocity over that increment. The value
of the acceleration just calculated is used to correct the
velocity for the beginning of the second increment. The
change of velocity over tlie first increment is given as the
integral of the product of the acceleration and the time.
In this case, it is the product of the acceleration and the
time increment. This value of the change of velocity is
subtracted from the original velocity to give the new
corrected velocity to be used at the beginning of the second
increment.

The above procedure was repeated for 61 such increments
of distance. After this point the calculations were
terminated, since the flow around the sphere separates and
the added mass approximation for the momentum theorem is no
longer valid. This separation point occurs at approximately
67 degrees up the side of the sphere and can be seen from
the photographs and line drawing of the water-entry cavity.

After the values of the acceleration were calculated,
the standard impact drag coefficient curve was plotted by
use of the following relationship:

CD - 2 z(B-12)
pAVo

where CD = impact drag coefficient

m z mass of the sphere

p - density of the fluid

B-4
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A = maximum cross-sectional area of the
sphere

Vo = initial entrance velocity of the sphere.

This curve has been plotted and compared with two of
Shiffman's and Spencer's theoretical drag coefficient curves
and one of Mosteller's experimental curves. The agreement
is very good except for a slight positive shift in time of
the results of the momentum equation.

Pressure Results from the Momentum Equation. The
equation for the acceleration of the sphere as it traverses
through the water surface allows one to find the axial force
on the sphere: thus,

-2

F=m = VoL + tI--I1 x j dx

11 T4dx dt

-Vo 0.64 4 p3X Ii_ x2d

F 1 + 0. 115x 3  2 3 Tx (x) dt (B-13)

An average impact pressure across the wetted area of
the sphere could be defined as the total force on the sphere
divided by the cross-sectional area of the sphere intersected
by the plane water surfacej i.e., nx 2 . Then

Pressure across the F
face of the sphere =

=-Vo(1.2 x 14 (B-14)
(i + 0.115x3) \ x / dt

where distances are measured in inches, time is measured in
seconds, and pressure in psi.

The pressure has been calculated at each of the 61 points
previously mentioned and plotted as a function of time.

It is easily seen that the pressure across the face of
the sphere at time t = 0 is undefined in the above equation.
The large value of pressure is due to the supersonic rate
of growth of the wetted area of the sphere (reference (15)),
and will assume a finite value due tc the compressibility of
the water. An approximate value of this pressure can be
calculated in the following manner, due to von Karman. When
the sphere first contacts the flat water surface, pressure is

B- 5
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propagated at the nose with the local speed of sound, cl.
The mass of fluid accelerated in a small time, dt, acrcss a
small area of the nose, dA, is given by pcldA dt. The veloc-
ity of this mass of fluid was increased from zero to Vo in
the time dt; hence, the small force acting on this mass is

dF - pcjdAd 2 = pclVodA. The pressure across the nose is

then given by dF/dA = pcIVo .

6- 6
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APPENDIX C

DERIVATION OF THE HYDRODYNAMIC PRESSURES
RESULTING FROM HALF-BODY FLOW THEORY

If the formation of the cavity, as produced by the
entrance of a sphere into water, is stopped on high-speed
motion-picture film, a resemblance is seen between the cav-
ity shape and that of a half-body in a moving fluid.

The shape of the half-body and the resulting pressure
field can be derived in the following manner.

The velocity potential for a source of strength m
located at the origin is, m

4rr

The velocity potential for a kniform stream of fluid
having a velocity U in the negative x direction is,

= Ur cos 8 (C-1)

The uniform flow and the source flow may be combined
by adding the two velocity potential functions,

4m + Ur cos 9 (C-2)
4nr --

The stream function and the velocity potential are
related in the following way in spherical polar coordinates:

.- i = -sin e 6_ar 68

at 2 .
=r sin 9 (C-3)

Using these relationships, it is easy to show that the
stream function is given by

m Ur 2  2
= - cos + - 2 sin 8 (C-4)

C-I
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The stagnation point on the body is that point where
the fluid velocity is zero with respect to the body. Hence,
the velocity components of the fluid must be zero at that
point, and

Vr= r 0, V r0 (C-5)

which leads to

-nr2 -U cos P = 0, U sin 8 = 0 (C-6)4n r 2

hence

8 = 0 and r =in r s  (C-7)

which are the coordinates of the stagnation point.

The value of the stream function which goes through the
stagnation point is then n and h- nce the equation of
the stream surface is s 4n '

cos 8 + 2T7-U r 2 sin 2 9 = 1m

m - Cos x + cos
or r = Usinz xV 1 + cos 8

r 2~rUV~ 0(c-8)r 1. mU /f + os (C

r / 1 sec - which is thy equation of the half-

body in the uniform flow.

Let the radius of a circular section of the half-body
be denoted by y(r, 6) = r sin 0. When this is substituted
into the equation for the half-body surface,

cos + 2_U r 2 sin 2 0 1 (C-9)
m

t C-2
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the radius at that circular section is found to be

y2= (1 - cos 0) - (C-10)

The maximum value of the radius occurs at 8 = n, and its
value is

f m (C-11)
YMAX (c-il

The dynamic pressure (pressure intensity) at any point

is given by 6p = E(U2-q2) where q is the total velocity of
2

the fluid at the point. Hence,

q2 _ (,,)2 (i 3 2  U 2 m mU cos

6r/ -6) 1 +6,t 2r 4  2nr 2

and
6 pU 2  m cos 0 _ m2 (-2)

2 =,- r Zu l6r2r4U 

In oider to match the cavity produced by spheres enter-
ing water to that of a half-body shape, the curvature of the
noses of the two shapes must be almost identical; i.e., the
radius to the stagnation point of the half-body must equal
the radius of the sphere.

Hence,

sphere r s I (C-13)

and the equation of the stream surface is then

r= rs sec (C-14)

The pressure equation then becontes

= 2 rs 2 Cos 9 -(rs) 4 (C-i5)
1/2pU 2  (r15

C-3
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The half-body shape has been plotted by letting the
radius to the stagnation point equal one inch. This has
been plotted on an outline of the shape of the cavity
produced by a 2-inch-diameter sphere entering water verti-
cally. As can be seen from the common plot, the comparison
of the two shapes is very good. The worst disagreement
occurs at the nose of the cavities where the actual cavity
produced by the sphere is more pointed than that predicted
by the half-body approximation.

Since good agreement was obtained between the half-body
shape and the actual shape of the cavity produced by the
sphere, one would expect to obtain similar agreement between
pressures predicted by the half-body equation and those as
measured at some point in the fluid.

1. Pressure Around the Open Cavity. In the theory for
the half-body approximation for the shape of the cavity
produced by a sphere at water entry, an equation is given
for the pressure at any point in the fluid.

By means of this equation one can determine the pressure
at any point along a line that is parallel to the path
traveled by the sphere. In an effect, this simulates the
passing by the pressure gage of the cavity produced by a
sphere entering water.

The value of the velocity used in this equation is the
velocity of the free-stream flow, or in the case of the
transposed motion, the velocity of the sphere through the
stagnant fluid.

In the actual case, after the sphere enters the water
surface the velocity does not remain constant but suffers a
continual attrition due to the drag on the sphere. Hence,
in the pressure equation, the velccity must be corrected to
a lower value as the sphere travels along its path. The
correction may be found in the following manner: In the
open cavity phase, the only force that is acting on the
sphere, neglecting gravity, is the hydrodynamic drag. In
this case the drag coefficient is given fairly accurately by
the value of 0.30. Hence, the motion of the sphere after
water-entry impact may be described by the usual differential
equation

My= -/2pCDA9 2  (C-16)

C-4
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the solution of which is, in velocity-distance variables,

I
V e -~- mP CD X (C-17)
VC,

The instantaneous velocity of the sphere may be calculated
an,, plotted as a function of the distance traveled by the
sphere. This new velocity is then substituted into the
equation for the pressure., thus giving a more accurate
descriptionr of the pressure felt at a point in the fluid as
the cavity produced by the sphere passes by.

2. PressLre in the Cavity. The maximum value of the
radius of a cross section of Cie half-body was found in the
preceding section to be, at 0 = r

4AX (c-la)

For the case of the half-body cavity produced by a
2-inch-diameter sphere, then the theoretical maximum radius
of the cavity is

YMKX - 2 inches (C-19)

Thus, if a pressure gage were placed between one and
two inches away from the trajectory of a 2-inch-diameter
sphere traveling unC'&rwater (as in our present case), the
pressure gage would be inside the cavity after the sphere
passed by.

C-5
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APPENDIX D

BUBBLE OSCILLATION THEORY

After the water-entry cavity closes, whether it JS a
point, line, or base closure, the area of closure starts to
move towards the model and forms a closed cavity of semi-
elliptical shape around the model. This bubble (the closed
cavity) seems to move with the model at a relatively constant
velocity, pulsating in volume as it does so.

The bubble may be approximated as a spherical mass of
air pulsating in an infinite fluid, the surrounding water
being the inert mass which is net into vibration while the
air in the bubbie is contributing to the elasticity of the
system.

The following derivation of the frequency of the pul-
sating bubble may be derived in an elementary way, due to
Minnaert in his article on "musical air-bubbles," ref. (3).

In the theory of the derivation, the maximum potential
energy accumulated during the compression of the bubble
is set equal to the kinetic energy of the water particles
when the bubble is at its equilibrium volume.

Let the radius of the bubble oscillate according to
the lawi r = ro + a sin 2nt

T

where r - the instantaneous radius of the bubble

ro = equilibrium radius of the bubble

a = the maximum deviation of the radius of
the bubble from its equilibrium value

T = period of oscillation of the bubble.

maximum volume
a

S/ ---- equilibrium volume

r0  minimum volume

D-1
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When the radius of the bubble has decreased by a dis-
tance x, the volume of the bubble has decreased in the
proportion

ro - x) 3,  (D-1)

If the compression of the air in the bubble is adia-
batic, for which Cp/CV = k, the pressure will now be given
by

P (V)k = r )3k (D-2)

This may be written as

- 3k

p ro-

By the binomial expansion theorem

2(i - y), ny + -- ,y < I (D-3)

the pressure ratio equation may be written as

p po - 3k Po (D-4)

which is the excess of the pressure inside the cavity over
the pressure outside the cavity, the valug always being a
small fraction of the normal, or equilibrium pressure.

The potential energy at minimum volume is

(V (p-po)dv j a3k x-U- 2 d = 6rrkpra 2

-JVo 0 o r o  0o

The kinetic energy of the water particles is determined
by the motion of the fluid around the bubble, which for
symmetry reasons is directed radially.

D-2
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The velocity of the wall of the bubble is

dr 2n a 2rMt-"Cos(D6
dt T T

while the velocity of a particle of water at a distance R
from the origin of the bubble is

2
Co 2 os 2rTt (D-7)Rr T To

At the tirp, t n 0, the particles cf water have their

-maximum velocities, 2T I and the total kinetic energy

of the system is then,
2dr 4na

1/2 (t)Xdm = 22

3 pro a

T2  
.D-8)

where p is the density of the water. Thn kinetic energy
of the air inside the bubble is neglected since this it
small compared to the total kinetic energy. The integration
is carried to the limit - since the bubble is assumed to be
surrounded by a very great volume of water.

Equating the expression for the maximum potential energy
of the compression of the bubble equal to the maximum kinetic
energy of the surrounding fluid, the period and frequency of
the bubble are found to be:

2 k 3p
T2  "po f M 1 (D-9)

The frequency of oscillation of the bubble is inversely
proportional to the equilibrium radius of the bubble for any
bubble at any given point in the fluid.

D-3
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