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ABSTRACT

Brillouin scattering measurements have been made on
tiiglycine sulfate near its Curie temperature. Temperature and
field dependent single relaxation time aconustic velocity dispersion
was found in confirmation of the predictions of a simple free
energy expansion theory of the dynamics of the strain and

polarization fluctuations near T This theory is developed in

c
detail following O'Brian and Litovitz who first combined the
Devonshire theory of ferroelectrics with the Landau-Khalatnikov
theory of the relaxation of the order parameter to treat sound

absorption near T , in triglycine sulfate, This new treatment of

the theory was abli to account for the anisotropy in the coupling
of the strain and polarization fluctuations, the field d=pendent
relaxation raie observed, and the anisotropy in the relaxation rate
for directions between the ferroelectric axis and the plane

perpendicular to it. We found our observations fit by

- 1 =
(AT, E= 0) 1, (3.4 £10%) x 10'0 (TC - T) sec 1 and

1 -1
P Ez/3 gec™" with AT in C0 and E
inkV/em. From v (AT, E = 0) we find the kinetic coefficient

for the polarization fluctuations to be y = (4.1%10%)x 1012 sec-l.

r (AT =0,E}" = (2.0 £ 10%) x 10

Additional experimental results obtained for triglycine sulfate include
measurement of the acoustic mode velocities for all three modes for
variaus directions in the (010) plane, measurement of the longitudinal
velocity along the ferroelectric axis, a measurement of a reference
absolute cross section for Brillouin scattering in triglycine sulfate,
and determination of some of the Pockels coefficients from the

Brillouin component intensity in various directions.
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INTRODUCTION

This theslis is a report of a set of light scattering
experiments on a ferroelectric crystal in the regicn of its
ferroelectrlc phase transition. The aim of the experiments
was to study the dynamics of a2 sccond-order nhase transi-
tion 1In a crystal by means of the spectrum of light scat-
tered from it near the phase transition temperature,

The crystal chosen for study was triglycine sulfate.

It turned out to be a rather classic case. The effects
observed were weak and therefore were easily separated
for interpretation. There were no interfering anomalies
in optical dielectric properties near the trensition
temperature. A1l *he observationeg could be understood
on the simple baaie of exyvanding the free energy about
equilibrium values of the thermodynamic variables,

The most important sections of this thesis are Sections
V and VI, They contain the new observation and interpretations
which are belleved to be important to the subject of phase
transitions.

The experimental data is presented in Section V. Our
neasurements show that two of the acoustic modes in the
plane perpendicular to the ferroelectric axis are coupled
to damped fluctuations and therefore show velocity dispersion
with a temperature dependent relaxation time. In addition
to observing this velocity dispersion from which we obtained

the relaxation rate we were able to observe the aseocinted
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acoustlic absorption by measurines the Brillouin component

linewidth as a function of temrmerature. BSuch measuremento
kave not becn made In crystals usine 1light scettering
prior to this. For the same modes thet showed velocity
dispersion and absorntion we found the new effect of a
fleld dependent dispersion and absorption with a single
relaxation time. From the velocity dispersion we deter-
mined the flield dependent relaxation rate. Also for these
modes we studied the anisotropy of the velocity dlspersion
in the plane perpendicular to the ferroelectric axis. We
found that the total dlspersion wass highly anisotropilc

but that the relaxation rate was the same for all directions
in the plane. We studled the third acoustic mode and found
it not to show relaxational dispersion with temperature

or fleld.

In Secivion VI we nresent the phenomonological theory
which accounts very well for our observstions. It was
previouly known that the Devonshire free enersy expansion
theory gave a good description of the static properties
of triglyocine sulfate. The present work showe that
together with the kinetic assumption of irreversible
thermodynamlcs the same free enerpy expansion accounts for
the dynamics of the strain =and polarization fluctuations,
Following the lead of O'Brian and Litcvitz we have gone
on to derlve 1n detall the consequences of the Landau-
Khalatnlkov theory of relaxation rates for second-order

transitions, In sdditlon to the previously derived
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velocity dispersion with a relaxation time provortional

to (Tg =~ T)'l our analysis shows how tr calculate the
coupling anisotropy, that the pure shear moce in the
plane perpendicular to the ferrcelectric axis should not
be coupled to the relaxing fluctuations, and that an
electric fleld applied along the ferroelectric axis

with the crystal at Tc produces a velocity dispersion
with a relaxction time prcportional to E'2/3. All of these
results are confirmed by our experiments., In addition we
derived the anisutropy in the relaxatiosn rate o: polar-
ization fluctuatione for directions out of the plane
perpendicular to the ferroelectric axis by taking account
of the electrnstatic energy associated with the polariza-
tlon fluctuatione., This accounted for the observation
that the longitudinal mode along the ferroelectric axis
showed no temperature dependent relaxational dispersion
even though these strains are known to bYe coupled to the
polarization. Additional consequences of this last
derivation remain to be tested.

The first four sections form an expcsition of the
method of Brillouin scattering applied to the study of the
accustic modes in crystalline solids. It ie these techniques
which allowed the rather comvlete study of the fluctuations
in triglycine sulfste near TC' The purpose of Section I
1s ic present the simplest and most universal case of
Brillouln scattering, namely scattering from densgity

waves. This scattering le common to all condensed phases
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and usually gives the most intense componer .8 in the

Brillouin spectrum. In this section we indlcate how
the approximate scattering cross section for scattering fron
longlt dinal modes in crystelliine solids can be computed
from the refractive index and the elastic properties
of the material. 1In Section II we discuss Brillouin
scattering in ~rystals. Using the classical theory
of elasticity to derive the strain fluctuation dynamics
and the Pockels elasto-optic coefficients to relate
the dielectric fluctuatinon tensor and the strain fluctuations
we derlve scattering selection rules and cross sections
for Brillouin scatterinz with polarized light in birefringent
crystals, Specific aprlication of these hitherto untested
selection rules and intensity predictions 1s made for
triglycine sulfate in the Brillouln scatterl:g observations
presented in Section IV. 1In that section we show that
Brillouln scattering with polarized incident and scattered
light can be used to sort out and study all three acoustic
modes in the plane perpendicular to the monoclinic axis.
From these spectra we were able tc determine the acoustic
velocitlies and scme of the Pockels coefficients.

In Section III we describe the anparatus for observing
Brillouin scatterins in crystals with narticular emphasis
on our high contrast Fabry-Perot interferometer and the

nhoton couuting detection system.
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SECTION 1

INTRODUCTION TO LIGHT SCATTERING FROM ACOUSTIC MODES
OF CONDENSED MEDIA -- BRILLOUIN SCATTERING

All forms of matter scatter light but this scattering is usually

masked by the much stronger first ordar processes of absorption

and emission. Scattering is the basic electromagnetic interaction

for frequencies to which a medium is transparent. It manifests
itself in two ways. The forward scattering which is coherent with
the incident light gives the medium its refractive index. The
scattering in directions other than the forward directions is in
general inelastic and can be detected directly. This non-forward

scattering is the phenomenon which we will be concerned with and

will refer to simply as light scatterin~.

We will be interested in those low energy states of condensed
media (collective modes) which are coupled to the optical
polarizability of the medium. They will scatter light either when
driven externally, as in the Debye -Sears effect,lor when thermally
populated. By examining the spectrum of the scattered light we
study the dynamica of the fluctuations in pclarizability and hence

the dynamics of the collective modes.

Acoustic modes are collective modes found in all condensed
media. They correspond to the modes of sound propagation when
driven externally and to the low energy states of the medium in
equilibrium which are used in the Debeye model of the specific heat.
These modes usually are effective in scattering light and so give
rise to the basic features of the low frequency portion of light
scattering spectra. The proceas of scattering light from acoustic
modes is called Brillouin scattering after L. Briliouin who predicted
in a fundamental paper in 1922(2) that light should be inelastically

scattered by the Debye modes of a transparent medium.
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First we define the problem operationaity in terms of alight
scattering experiment. We will not be perfectly general in this
but rather choose arrz: gements which are useful in experiments.
The basic arrangement is shown in Fig. I1. A narrow beam of
monochromatic light with wave vector Eo and frequency W is
passed through material of dielectric constant € The volume of
the imaterial illuminated by the beam becomes vigible due to
scattering. We arrange to collect light from a definite length L of
the beam in a small solid angle about a direction at an angle 8 to
the incident beam. 6 is called the scattering angle. We describe
the scattering direction by the wave vector of the scattered light,

-

ks The scattering volume is L times the cross-sectionzl area of

the incident beam.

The scattering plane is the plane containing l?o and l?s' It is
most useful in experiments to have the polarization of the incident
light either perpendicular or parallel to the scatiering plane. We
will denote this choice by V or H, respectively. Similarly, we
analyze the scattered light into "vertically' and "horizontally"
polarized components. Denoting the incident polarization first and
the scattered polarization second we can have the following four

possible scattered intensity measurements: VV, VH, HV, or HH.

The scattered light which we have selected is now detected to
give the total scattering intensity or is spectrally analyzed and then
detected to give spectral intensities. Comparison of the scattered
power with the incident power, taking account of the collection
geometry, gives cross sections for the various processes giving

rise to components of the scattering spectrum.
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Fig. 11 Schematic picture of a light scattering experiment.
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Though light scattering ie a universal effect it is not normally
a etrong effect. Typically 10'6 to 10.8 of the light incident on a
sample is scattered (per cm of the sample) by acoustic modes.
Thus the light scattered from a beam of light in a material does not
make a very bright source for spectroscopic study. Here lies much

of the experimental challenge in light scattering.

With the invention of the laser and in particular the perfection
of continuous gas lasers we now have an ideal tool for high resolution
light scattering experiments with high resolution in frequency,

scattering angle, and polarization.

In order to understand light scattering processes in enough
detail to allow predictions of effects and interpretation of experimental
results we will review the results of theoretical calculations of the

scattering intensity.

Many derivations of the scattering intensity or scattering cross
gsection for Rrillouin scattering in isotropic media exist in the
literature. R In particular the modern treatments by Pecora(e)
and Landau and Lifshitz( 2 are recommended. The basic ideas and
perturbation technique remain those of FEinstein and Brillouin. Rather
than repeat the derivation we will give the result in a form uscful for

experimental work and with which one may guess the result for new

situations.

In an isotropic medium with average optical dielectric constant
€ s the cross section for scattering V (perpendicular to the scattering
plane) polarized incident light of frequency W into V polarized

scattered light with wave vector ks at an ar.gle 6 to l-(; is
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Fn (] () clai e v
Q © \dr C
where Ae(T, t) = €(F, t) -
q-r

V = scattering volume

ircident light frequency

€
1

(g]
n

velocity of light in a vacuum .

This expression is appropriate for dcattering in simple
liquids where density fluctuations give scalar fluctuations in the
dielectric properties. For these fluctuations the scattered light is
all V polarized. We note that the light scattered at an angle 6 is
scattered by a definite spacial Fourier component of the dielectric
fluctuation. Since the frequency shifts (wo-wa) involved in the

scattering are small, we may take the magnitudes of the incident

and scattered wave vectors equal giving

-

q=|q]= 2k  ein (6/2)

and a parallel to the bisector of the angle between k andk . This
o s

geometry is shown in Fig. I 2. The scattering is proportional to
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Fig. 1 2 Geometry of the wavevectors in quasi-elastic scattering.
k0 is the incident light wavevector., ks is the scattered

light wave vector and q is the scattering wavevector.
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the volume illuminated and preportional to the reciprocal fourth
power of the vacuum light wavelength as is characteristic of

quasi-elastic scattering from small scattering elements. The

< > brackets indicate a time average or equivalently an ensemble
average. This average is itself independent of time and can easily
be computed using the methods of thermodynamic fluctuation
theory if we know which variable is fluctuating and the dependence
E of the dielectric constant on this variable. For simple liquids we

have the standard results(m)

d¢
(R
8-5 T

2 KT
<Jp@[> = T 1.8 (a)
3
P A%

and

where ﬁT is the igothermal compressibility. It is an empirical
fact that essentially all of the scattering is due to density fluctuations

at constant temperature. Hence to a good approximation

4%y 1N (9 ) 2
o - (%) (T) LR B

We note that this cross section is proportional to the scattering
volume V as expected. This is the standard result for gcattering

from density fiuctuations in isotropic media.
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So far we have given expressions for the total scattering.

The spectral distribution is what we would really like to know
about.

The spectrum of the scattered light can be most rigorously
defined using the Fourier transforin of the autocorrelation of the
scattered electric field, This implies that the spectral intensity
at the frequency Wy is proportional to the Fourier transform of

the autocorrelation function of Ae(q, t) evaluated at

w = (wo -ws). Explicitly the spectral crosa section is

O o o s

4
99y lug) o

2 2
_g) Ja@ | >

a3 C
o)
—w

o)

with

where we define

-]

’ ! - ¥ -
2% -Y dt' el <Ace(g, t +t)Ae (q,t) >

- 0

"

<! AC(E) 'z >

The correlation function and its Fcurier transform are assumed

independent of time t since thermal fluctuations are random

stationary process.
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Suppose the correlation function has a time dependence cos (w(q)t)
(This would correspond to a niodulation of ¢ by some kind of
propagating collective mode). Then we find that the spectrum

consists of delta functions at
w = 2wlq) .

More realistically the amplitude of the collective modes will have

a finite lifetime + = lf' . We then get a pair of Lorentzians
2 2 .
= -~ 1 I
< lAs(q)'w |ae(q, t)] o 3

N
5 (wxw(@) +T

whose full width at half maximum is 2I ( Z denotes sum over

+ and - terms). Thus the spectral intensity will be centered at the

frequencies
= %+
Us W U(q)

We summarize these relations for three common correlation functions

in Table1 1.

These results have a very simple interpretation. The scattering
spectra are Fourier transforms of the time dependence of the properties
of the "phase grating" (the qth spatial component of Ac(T,t)) which is
"diffracting'' a portion of the incident beam. If the amplitude of this
grating decays then the scattered beam acquires a correspondingly

shorter lifetime i.e., it is broadened, If the grating is8 moving with

N
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velocity v(q) either parallel or anti parallel toa then the scattered 5
light is frequency shifted by the Doppler effect either down or up by =

w{q) = qv(}) radians/sec., respectively.

With these results let us now consider Brillouin Scattering
in simple liquids and isotropic solids. In particular we consider
scattering from density waves in these media. (These density waves
can al‘ o be called compressional waves or longitudinal acoustic
modes of the material. They are common to all condensed media. )
For the wavelengths of interest these waves are best described as
adiabatic density waves in liquids. We then have from the theory of
thermodynamic fluctuations of Fourier components of inhomogeneous

ﬂttctuations(u)

- 2
<lap(q)sl > = p2 kTP (q)
v

8 1
e oL

8 plviq) ] 2

with v(q) the velocitv of sound.

Thus the cross section for scattering from density waves in a
simple liquid is
4

do 2 [ 2
\A% 1 o
(%) (‘;) (1) kTg @) v .

This scattered light will appear spectrally as a doublet with

frequencies

we =W * w(q)
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where wig) =q v(q)

is the assumed Jispersion relation for these density waves. The
spectral cross section can tnen be written completely in terms of

experimentally determined parameters as

2 4
vy () (”) 1) KTV
d 4x c )
pv(q)
I'(q) + o T (q)

2 2 2 2
W =w - w(g) "+ '(q) W -w°+(q) + I'(q)

where I'(q) = ;l(a is the relaxation rate of the waves.

This last result is cumbersome so in the remainder of the
paper we shall merely calculate the totr? intensity scattered by a
particular mode into some scattering polarization and then recall
that this intensity is spread over a doublet with Lorentzian peaks
of full width at half maximum of 2T'(q) centered at the frequencies

= % i
wy =@ w{q)

The cress section for scattering from longitudinal modes
of an isotropic solid is very much like that for liquids. As a first
approximation we suppose that we can estimate the varistion of
the dielectric constant with compression as being the same as the
variation of the diele :xtric constant with density so that for a

compresaion: * strain x
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de d¢
5‘;{“") 5'? ~ (E-l)l

then we can write the cross section for scattering (VV) from these

modes as
2 4
Py - ) Yo} ep? KTy
dQ 47 c h P

where vLis the velocity of the waves.

We then empirically generalize this last expression and state
that one can probably get a reasonable estimate of the scattering
intensity from the longitudinal modes of any condensed medium
including crystals from the expression given. We have found that
the scattering intensities of various media do seem to follow the

ratios of intensity one would predict from the quantity

(c-l)2

2
YL

calcuiated from tables of elastic propertiey and refractive indices.
Having an estimate of the scattering intensity for at least one mode

& crystal is very v ~eful in designing and setting up experiments. It
should also allow estimates of the scattering eross sections for other
modes of crystals by comparison of intensities in experimental
spectral traces. Of course the above estimate will not be correct
for crystals such as MgOwhich have a negative pressure coefficient

of the index of refraction. (12)

e
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SECTION 1I

THE THEORY OF BRILLOUIN SCATTERING IN CRYSTALS

In thie section we wigh to give a detailed discussion of Brillouin
scattering in crystala. We will begin with a description of the acoustic
modes of crystals. We then dis-uss scattering from these modes
including the effect of birefringence of the crystals and the tensor
property of the dielectric fluctuations. Our aim is to arrive at an
experimentally oriented formulation of the scattering cross sections
equivalent to specializations of the very general result given by Born

a3

and Huang, In particular we wish to give some ''rule of thumb"
selection rules for telling which phonon polarizations (displacement
directions) can cause scattering in the different light polarization

spectra,

Acoustic Modes

We take as our model of acoustic modes in crystals the results

4

of the classical theory of elasticity. Thus we consider small

(symmetrized) strains

8

X :1_(8_‘1_1.-}, u)
8

1j 2 Brj r
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The internal energy per vrit volume is written as
U(Sx)=-1-c x. x .+ U (S)
*Hi0 2 i, kUi kK o '’

giving internal stresses proportional to the strain

X —ELI_ = C X
ij = 9x,. T 4§, kKL
ij S

where u = u(Tr) is the displacement of the point at T in the body, S is

the entropy per unit volume of *he body xij is the stress due to isen-
tropic strains, and cij, K ere the elastic stiffness constants.

The great amount of symmetry in the fourth rank tensor com-
ponents Cij, Kl reduce the number of parameters in this description to
a manageable size, Due to the symmetries of xij and the product xijxkl'

we have

i,k " Sk Cig,1k S, g5

Thus there are only 21 independent constants in the most general case,

The equation of motion is

I
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with p the dengity of the medium. Using the symmetries given

the equation of motion can be written as

32u

" k
pu, = ¢ ————
i 13, k1 dr Or

1§
We look for plane wave snlutions of the form
*ei(q-r - wt) .

E(;) =y

Substituting into the equation of motion gives the equations

2 -
(cij,qulqj - pw 611{)\1k =0

The problem 1s then seen to be a 3 x 3 eigenvalue problem with secular

equation

2
AN W -
°y, k1N - P(Zf) 6ikl 0

where ak are the direction cosines of q. This secular equation is a

cubic equation in the quantity
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whose three real, positive roots Cj = pvjz(a) determine the phase
velocities v j(c'i) for the three, orthogonal displacement plane waves
propagating in the direction ?; Thus for each direction a we get

three dispersion relations of the form

2, 2. 2
wj(ﬁ)—vj(a)q .

c.(q)
With v;"(a) =J-p— i=1 2, 3

It is this form of dispersion relation with w(g) =0 as q —~ 0 that
marks an acoustic mode. This form of dispersion relation gives the
frequency shifts observed in Brillouin scattering their characteristic

8cattering angle dependence for fixed g direction

Ay = = v(Q)q(e) = v(a)2kosin g

. 0
or Av < 8in =,
o

This dependence is to be contrasted to that for scattering from the
optical modes of vibration of a crystal where Aw is usually independent
of the scattering angle.

As a consequence of the angular dependence of the Brillouin

Gl
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scattering frequency shifts, measurement of the scattering angle
becomes an essential part of an experiment for which the spectrum
i8 to be related to the elastic properties of the medium.

Before further discussion we change to the matrix notatiorxuﬁ)

in which pairs ci subscripts are replaced with a single subscript

running from 1 to 6 as follows:

11 22 33 23 K) | 12

32 135 21

goes to

If we apply this subscript transformation directly to the stresses and
the elastic stiffness constants and define the six component strain
vector by the above transformation and

X,. =X m=1, 2, or3

2x,. = X m=4, 5, or6

then

21 "
U= 3 cijxixj ' UO(S)

and




< is now a symmetric 6 x 6 matrix relating the six component strain

to the six component stress.

In crystals the symmetry nperations of the various point groups
greatly reduce the number of non-zero, independent components of the
stiffness tensor. These recuctions are nicely discussed and summa-
rized in Nye(ls) for fourth rank tensors such as the stiffness tensor as
well as for tensors of other ranks.

We will be discussing acoustic modes in monoclinic crystals of

classes 2 and 2/m. They have the following matrix of independent

fourth rank tensor components indicated by heavy dots

—
. ‘ . . . *
® @ o o .
o * o °

® ®
® o ® L J
. ® . o
- —

For the stiffnesses this matrix is symmetric giving then 13 independent
components.

For comparison a cubic crystal has the metrix
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or three independent stiffnesses: °y’ c1 9 and c 44 (Connected dots

R ot s somesscrs

represent equal constants.) We note that a cubic crystal will appear

1sot ropic elastically if
2cgy = log -y

The three component eigenvalue problem for the phase velocities
and mode polarizations is given in a convenient form with the stiffness
constants in matrix notation by Mason(m. Using these formulas and
known elastic constants, it is a straightforward calculation to find the
phase velocities and displacement vector direction cosines.

To quickly see the physical significance of the elastic constant
matrix elements we chose a coordinate system with the x' axis along q

and tensor components transformed to this conrdinate system and then

reduced to matrix elements. Then the secular equation for the phase

LR
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velocities becomes
(c... - pvz) c c
11! 16! 15!
2

‘16 (Cggr - Pv) “56" =0 .
2

©15 561 (Cper = PV

C 6! and Clg give the coupling between compressional strains along
x' and shear strains in the x'y' and x'z' planes. If this coupling is
negligible then we get a pure lengitudinal mode with polarizationu
along x' and sz = cn/p. eg! gives the coupling between shear
strains in the x'y' and x'z' planes. If this coupling is also negligible
then we get pure shear modes with polarizations and velocities:

/p. It is very often the case

1 - 1 =
ujly', v 066/p and ujfz', Virg = Cge

that these off-diagonal elements are small compared to the diagonal
elements so that the modes are reasonably described as longitudinal
and transverse, Moreover Cyp is in practice always larger than
g6 °F o5 This simplifies the interpretation of Brillouin spectra
because we can always take as a first guess that the spectral compo-
nent with the largest shift is the (quasi-) longitudinal mode component.

As an example and for later comparison with our experimental

results we have calculated the velocities and mode polarizetions for




26

a set of Edirections in the (010) plane of the crystal triglycine sulfate
using the room temperature (monoclinic class C2 phase) elastic
constants determined from ultrasonic velocity measurements. (The
elastic stiffness constants are listed in the Appendix.) The results are
presented in Table II 1. The only symmetry in these velocities,

v(g) = v(-q), shows that we need only calculate the velocities for half

the directions in the plane. The § direction is given in terms of the

M R A oo s scsasome

angle between q and the c axis. (The conventional axes and coordinate
systems of triglycine sulfate are given in the Appendix.) For this case

the dynamical matrix is

i ufiniiiitul)
>
>~

I

with

2
11 = S55 *+ (c11 - c55) sin“0 + clssinze

2 .
>\33 = Ceg + (c33 = c55) cos 0+ c3551n29
C +c
2 13 55
)‘13 = Cys + (035 - c15) cos 0 + —-—-2—-—~ sin20
N = i20+c c529+c 8in26
22 - ®5g%'7 44“° 46
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TABLE 1II 1

(010) PLANE ACOUSTIC MODE VELOCITIES IN TGS CALCULATED
FROM ULTRASONIC ELASTIC CONSTANTS®

(b) (c) {c) (d) -

© YL Y V2 G- U,
) iOscm/sec. loscm/sec. 105 cm/sec
-80 5.20 2.53 1.92 +.996
-80 5.30 2.58 1.94 +.098
-70 5.37 2.53 2.00 +.889
-60 5.39 2.39 2.07 1.000
-89 5.34 2.22 2.15 -.008
-40 5.22 2.05 2.23 -.0092
-30 5.02 1.97 2.30 -. 880
-20 4.74 2.00 2.34 -.066
-1u 4,41 2.16 2.37 -.054
0 4.06 2.38 2.37 -.958
10 3.78 2,56 2,35 - .085
20 3.75 2.51 2.30 1,084
30 3.86 2,27 2.24 + .0873
40 4.24 2.05 2.16 + .970
50 4.50 1. 96 2.08 L
60 4,73 2,03 2.01 + ,084
70 4,82 2.21 1.95 + .980
BO 5,08 2.40 1,92 + 994
80 5.20 2.53 1.92 + ,996

(a) Constants from V, P. Konstantinova, 1. M, Sil'Vestrova znd K. S.
Aleksandrov. Sov;(et Phys-Cryst. 4, 63 (1960).

(b) ©=8(q) in xyz =-a-bc coordinate system,

(c) L and Tl modes _polarized in (010) Plane.

(d) T2 polarized | b, .

(e) + sign indicates that U, is ahead oi q and vice versa for - sign.

L

.0819
.063
.044
.000
.063
.128
.109
.258
.300

.28
172
108
.231
.243
.213
178
141

.109
.089

i
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and @ the ang:e between Q and z (&).

We are aware that the present formalisin i3 not consistant with
atomic theories of elasticity and ¢hat the applicaticn of it to ferro-
electric crystals (polar crystal classes) as particularly questio ible.
This point is criticaily discussed by Hea:mon(w). No serious
discrepancies were found in comparisons of our velocity measure-
mernts for triglycine sulfate with calculated velocities using this
formalism. In this case of a monoclinic crystal a critical test is
not possible since the thirteen independent elastic constants of the

classical theory probably represent enough parameters tc fit any

set of experimental velocities.

We have so far been considering a simplified equation of state with

only strein and entropy as independent variables. Thermal diffusion of
heat being a very slow process over distances of the order of visible
light wavelengtha we expect the choice of adiabatic strain waves to be
an accurate description of the acoustic mcdes of crystals. We wiil
later consider the acoustic m- des in ferroelectric crystals. There
as in all piezoelectric class crystale we inust distinguish betwren
(adiabatic) fluctuations with electric field E held constant and
fluctuations with the electric polarization P (or displacement D)

constant.
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For those modes from which we can scatter light in crystals
we expect Brillouin scattering spectra to yield velocities which

accurately represent the limit

(2) —v(q) .
q q—0

That is to sey that with the available magnitudes of § in light scattering
we do not expect to see any curvature in the acoustic mode dispersion
relation. Thus the Brillouin scattering velocity measurements should
agree very closely with those from ultrasonic measurements,

The advantages of Brillouin scattering measurements cf
velocities compared to acouscic techniques are that they are now at
least as accurate as ultrasonic pulse techniques, they allow very easy
direction scans of the anisotropy of the velocities in crystais, and
they can be made in the presence of extreme damping of the modes,
The most important feature of the Brillouin scattering measurements
for the present work is that the larger q (compared to ultrasonics)
glve higher frequencies which allow fast relaxation processes to be
studied,

Brillouin scattering provides much less information ebout the

acoustic mode dispersion relation than the :cherent inelastic neutron
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3cattering experiments. Nevertheless because of the high spectral
resolution Brillouin scattering can show very simall changes in the
q—0 part of the dispersion relations, that is in the sound velocity,
due to externall; controlled changes of temperature, applied fields,
stresses, or the like, This is a great advantage in the study of

phase transitions.

Brillouin Scattering Cross Sections for Crystals

We turn now to an account of the photoelastic coupling for
Brillouin scattering in a crystal.(w) We describe the average
optical properties of our crystal by a syrametric second rank tensor.
(We agaume our crystal not to be optically active.) We chose an
orthogonal coordinate system which coincides with the principal axes

of this tensor. 1n this coordinate system the local dielectric tensor ig

= +
&(r, t)ij ci 6 Aeg(r, t)ij

i
In experiments we wish to have a single known scattering
vector q -- known in magnitude and direction, 1f we send the incident
light through the sample in an arbitrary direction with an arbitrary
polarization direction with respect to the pri.cipal axes then we wiil
iIn general get two incident beams each giving rise to two scattered
beams in the collection direction. Thig gives a total of up to four q.

Fach g can give up to three Brillouin doublets in a spectrum. The
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spectrum could show as many as twelve doublets.'(zo) Thus we will
usually want to choose somewhat specialized orientations of the
crystal in experiments,

The orientation which we used and will discuss here was that of
placing one of the principle axes of the average dielectric tensor
perperdicular to the scattering plane (the plane containing the
incident and scattered light wave vector directions). Call this the
z axis for the present discussion. In the notation of Section I with
directions parallel to z labeled V and perpendicular to z labeled H
we consider spectra obtained with incident and scattered light
polarization combinations VV, VH, HV, and HH. For each spectrum

there is a definite §,

q=ko-k8

where _1:0 and i:s directions are fixed externally and their magnitudes
are determined by the crystal refractive index for the corresponding
direction and polarization.

Consider first the crosa sections for the scattering of a V

polarized incident beam, The simplest is

4
Tvv {1\ (¥ 2. .2
. (G) ?°) <|Ac(q,t)33| >ve,

"
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We see that the scattering is due to a Fourier component of the

33 (zz) component of the dielectric fluctuation tenser. The VH cross
section is more complicated. We must project the source polariza-
tion, incuced in the dielectric fluctuation by the incident field, onto
the direction 68 of the electric field for plane electromagnetic waves
polarized in the scattering plane and traveling in the direction ﬁs' If
we denote the angle between the electric displacement in the scattered
wave and the electric field as & s and the refractive index for this

scattered wave as ns, then the cross gection is

4
dUVH (1)2<w0) nscos68

<|aea, ) ge,  + A, ) e,

. 23%g2
3

Similarly we find that the other cross sections

d“nv=(1)?‘(“’ )Z(J—‘?\ 2.2

0 \
| \ ncoss OlklA‘(q' V3180 + A(q, thyse o5V

do 2

HH =(L) 2
dQ \ 47

wo\ /D cosd \k
(—c)(n cosé lZ Aclq, )IJeO 601

i, j=1

yv?

with 8 and n defined for the incident wave polarized in the scattering
o) o
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plane as 6 s and n  were for the scattered wave. These last three

cross sections involve combinations of dielectric tensor fluctuation

components. In practice the situation is simplified because 6 s and § o

are approximately zero. By taking a scattering angle of 80° we can
then study (approximately} individual tensor component fluctuations:
VV scattering probes Ae VH probes Ac

HV probes Ae,,.,, and

33 31 32!

HH probes A‘l'2" where 1' is parallel to ko and 2' is parallel to ks.
To complete our description we must compute the coupling

between the acoustic mode strains and the changes in the dielectric

tensor and we must compute the mean square strain for each mode.
The standard treatment of the coupling is in terms of the

Pockels elasto-optical coefficients pij K1’ (21)

They relate strains
(second rank tensor) to changes in the dielectric impermeability

(second rank tensor) and so form a fourth rank tensor. Like the

elastic stiffness constants the Pockels coefficients have the symmetry

Pij, k1~ Pii, k1 T Pij, 1k

and can be reduced directly to matrix notation giving a 6 x 6 matrix.

In general Prn ¢ Prm 8° there are usually more independent Pockels

coefficients than elastic stiffness constants.

The Pockels coefficients are dimensionless and usually fall in

B

]
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the range 1to .01 , Prn withm,n = 1,2, or 3 is usuzily much larger
than pmm withm = 4, 5, or 6. This corresponds to the fact that
electrostriction is a stronger effect than shear strain induced bire-
fringence. These coefficients have not been measured for most

crystals. Most of the measured values are for cubic crystals.

Tables of measured P, c&n be found in Nye(zz)and Landolt-Bornstein. (23)

Crystal symmetry reduces the number of non-zero, independent
coefficients. For each crystal class the allowed coefficients and
relations between them are tabulated in references such as Nye.

For the monoclinic and cubic (m3m) classes the matrices look the same
as shown earlier for the elastic stiffness constants, the monoclinic
class matrix being nonsymmetric and the cubic matrix symmetric,

We want to compute atijlaxkl' In terms of Pockels coefficients

this is

8 " SmP

mn, kltnj )

If we take orthogonal coordinates coincident with the principal axes

of the dielectric tensor this derivative simplifies to

" 45P15, K1

A
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with £ the set of three principal values of the dielectric tensor. For
displacement wave

AT, 0 = el (AT - WY

the unsymmetrized strain is

i(@-T - wt)

X uqe

-4 A
|

Using these notations we calculate the appropriate dielectric
fluctuations due to this single acoustic mode which is assumed to be
a solution of the elastic wave problem discussed earlier. The basic

result is that the (real) amplitude of the dielectric fluctuations is
o a3 o N A
Aey(@) = - geilpyg gt d) au -
For example for VV scattering we want (IAcaalz). We find
2 2 A A 2 2
<’A€33| )= (Pgg gk <laul™>.

In this and the more complicated situations the result after projecting
squaring and taking the ensemble average is proportional to <|qu|2) .

This mean square Fourier strain comporent is eagily calculated from
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thermodynamic fluctuation theory('=4'once the secular equation for

the phase velocities is solved. We find for the jth mode

2 k
(’ QU! > o= —lﬂ_ = T 5
J Vp vj(a)

vC

where Cj 18 a root of the dynamical equation. This result may be
looked upon as an expression of the equipartition of energy or

(equivalently) a variance of a diagonalized 3 x 3 Gaussian
distribution.

Since the mean 8quare strain for each mode isg non-zero, the
basic selection rules for scattering from a particular mode in the
polarized spectra come from the symmetry requirements that

certain Pockels coefficients be zero or equal. The geometry of the

mode and light directions gives the detailed selection rules.

The selection rules are most useful for 90° scattering. The
basic features of selection rules for scattering from pure longjcudinal
and transverse modes are exhibited by cubic crystals and isctropic
solids. For these media the VV cross section is proportior.ai to
p122 and the scattering is from the longitudinal mode only -- (the
spectrum would show only a single doublet), the VH and HV cross
sections are equal and proportional to p442 and the scattering is
from the transverse mode with displacement vector perpendicular to
the scattering plane only, and finally the HH cross mection is

proportional to p442 and the scattering is from the longitudinal mode
only.
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In less symmetric crystals the polarized spectra do not

generally sort the modes so nicely. Nevertheless it is still quite
noie that the transverse mode polarized (more or less)

useful to
only in HV or VI spectra coupled through Py withi = 4,5, or 6.

perpendicular to the scattering plane will be expected to show up
It would be possible to see peaks due to this mode in VV spectra

coupled through P34 for exampgle but in practice such constants
wheil not forbidden are usually smaller than Pyq and the like.
When a doublet in addition to that due to the longitudinal mode shows

up in a VV spectrum and does not appear in the VH spectrum, we
can usually assume that it is due to the transverse mode polarized

in the scattering plane.
between strain and dielectric fluctuations for modes with g and the

As an example of selection rules we calculate the coupling
scattering slane parallel to the (010) plane of a monoclinic crystal.
The relevant Pockels

For VV scattering we want to know Aszz.
coefficients are Poyr Pyge and Pys- With notation for the direction
cosines: q = (f, 0, n) for the propagation direction, and u =(a,p,y)

for the displacement direction, we have

- .
Beyy ==ty [Pyy 0% Pyg 0 Y* Pyg (1y+ nal] qu.
We see tha* we couple only to modes polarized in the (010)
For pure longitudinal and transverse modes polarized in

plane.
this plane we find the separate couplings to be:
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2 2 2
L) = +
Aczz( ) :2 ( pmg + p23 n 2p25 £n) qu

2 2 2
Ae22(T) = -t [(pzs-p21 ) np + p25(l -n )J qu,

Thus we see that longitudinal modes couple in the usual way
through terms tg Poy and eg Py3 which are similar to the electrostriction
of isotropic materials. We gee that the transverse modes depend on

the difference in electrostrictive terms and the coefficient r Both of

25°
these contributione shouild be small

Without going as far we can learn that the modes which gave the
VV scattering above cannot give components in VH or HV spectra,
Fo. this coupling to exist we would need coefficients p4 and/or p
withm =1,3, or 5. These coefficients are rigorously zero so thele is

no coupling.

On the other hand the transverse waves polarized perpendicuiar
to the scattering plane, which were not coupled into VV 8cattering, do

give VH and HV scattering through the coefficients p44 and Pgg

We will return to the details of thesge calculations in Section 1V,
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SECTION IiI

THE APPARATUS USED TO OBSERVE BRILLOUIN
SCATTERING IN CRYSTZALS

In this section we will describe the I ght scattering apparatus
used to observe the Brillouin scattering spectra reported in this

thesis. It is essentially the same as that used by Chiao and Stoicheff, (25}

Our apparatus has been described in the literature in connection

2¢
with Brillouin scattering in liquids.( )

We first describe the layout of the apparatus. Then we will discuss
the components of the system with emphuasis on the Fabry-Perot inter-
ferometer. Next we describe the alignment of the system, Finally we

describe the raw data reductioi; from the spectral traces.

Layout of the System

The layout of the apparatus is shown in Figure 1I11. The
optical path is described as follows. Sixty mw of plane polarized, 6328 A
light from a Spectra Physics Model 125 He-Ne laser is focused by a
50 cm focal length lens into the sample. Light scattered at 90° to the
incident beam from a ghort length of the sample volume through which
the beam passes 18 collected by a 17 cm focal length lens and focused
at infinity, This light then passes through a variable stop ( the system
aperture stop ), which determines the collection solid angle and the
diameter of the Fabry-Perot etalon plates used, Next the selected

scattered light gces to the pressure scanned Fabry-Perot interfero:neter.

The normal to the plates of this interferometer ig aligned with the
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Fig. 111 °  Brillouin scattering apparatus. LF has a 50 cm FL.
Lens LC has a 17 cm FL. iens LI has a 36 cm FL.

Pinhole aperture A is 1,3 mm in diameter,
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ray from the selected scattering volume in the sample. The light from
this volume element which is in the pasa band of the Fabry -Perot is
transmitted. It is focused by a 38 cm f>cal length lens onto a pinhole
of 1. 3 mn diameter. Rehind the pinhol: :s a dry ice cooled EM1 9558
photomultiplier which detects the light coming through the pinhole.

The photocurrent from the photomultiplier can be processed
in one of two ways. For intense scatterers the photosignal across a
load resistor was recorded directly on a potentiometric recorder.
Alternately, for weak scatterers we use a photon counting system
which selects the pulses from the photomultiplier by height and gives
adc output proportional to the selected pulse rate which is record ed.

Running a spectrum is straightforward. With the apparatus
aligned and operating and with the box containing the Fabry-Perot
etalon evacuated, we allow a constant flow of nitrogen to enter the
evacuated box while recording the photosignal. A constant gas flow
rate gives a constant frequency scan rate of the Fabry-Perot pass bands
so that the time axis of the strip chart recording is directly pro-
portional to frequency.

The Fabry-Perot Interferometer

The hea:t of the spectrometer for Brillouin scattering is the
pressure scanned Fabry-Perot interferometer. It offers high transmission
with high resolution, smooth precise scanning of the pass bands, and
easy calibration.

In essence the interferometer consists of a Fabry-Perot etalon
mounted in a sealed box allowing the pressure (density) of the gas
surrounding the etalon and filling the cavity space between the etalon
plates tc be slowly changed at a controlled rate. The etalon consists

of a pair of flat, parallel, semi-reflecting mirrors which face each

w
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other at a fixed separation to form a cavity in which light can be
multipli-reflected.

The traditional theor; and practice of Fabry-Perot etalons
is well presented in Born and Wolf.( Modern application in
particular pressure scanned interferometers for use wit?“;;hoto-
electric recording of spectra are reviewed by Jacquinot.

We will not discuss Fabry-Perot interferometers in full
detail. We will simply give a quick review of the etalon character-
istics of scanned transmission fringes, maximum transmission,
finesse, and contrast. Then we will point out some design features
of our interferometer nd give the specific parameters of our
etalon.

The Fabry-Perot etalon has an mth order interference

transmission peak (pass band) when the condition
mi= 2nd cos 1

is eatisfied, where )\ is t he wavelength of the light, n is the re-
fractive ind ex of the medium in the cavity, d is the spacing between
the etalon plates, and i is the angle of incidence of the lignt on the
etalon, With monochromatic light incident this interfeience condition
yields a set of bri ght transmission fringes in the form of concentric
rings. For a given fringe labeled m the interference condition shows
that as nd is increased, cos i must decrease. Therefore the fringe

expands (i increases ).

In the pressure scanning system that we used d was constant
and h was varied linearly in time by changing the density of the gas in

the etalon cavity. Light incider+ on the etalon at i ¥ 0 was transmitted
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whenever m\ = 2nd and focused to pass through a pinhole before
being detected. Light at other angles formed ring fringes which
were blocked by the pinhole plate.

With this pinhole arrangement the etalon acts as a filter
for the light incident normal to the etalon plates. For a gas medium
between the plates [ (n-1) <<1]and A<< d the pass bands of this
filter are spaced Ao= (1/2d) cm'1 apart in frequency.
(1 cm-1 = 30 GHz.) This separation is called the free spectral
range., As the density of the gas changes the refractive index changes
in proportion causing the frequency of the pass bands to scan. The

simultaneous frequency changes of the pass bands is given by

6o
o

= -(1/\)é n

Therefore a linear refractive index change will give a linear freaquency
scan of the pass bands. For \ = 6328 R light and nitrogen gas having
(n - 1) = .0003 at one atmosphere pressure, we can scan the pass bands

over a frequency range of 4.7 cm-l/atm. A 3 mm etalon gives a free

1

spectral range of Ao =1.87 cm = 50 GHz so that we can scan through

2.8 orders with one atmosphere of nitregen.

As each pass band crosses the spectrum the intensity of the light
passing through the pinhole i8 proportional to the spectral intensity.
Detecting the light and recovrding the signal gives a series of spectral

traces spaced Ao apart. Ao is determined by measuring the etalon

spacer length. Thus the frequency scale on the trace of consecutive spectra

is known so that frequency shifts maybe deterniined by interpolation.
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The maximum transmission of the etalon is determined by the
losses at the cavity surfaces. For perfectly flat plates having
coatings with reflectivity R and transmission T the maximum
transmission is [ T/(1 - R) ]2. If there are no losses (scattering
or absorption in the mirror cbatings) then T =1 - R and the maximum
transmission is 1. In practice R is often greater than .95 so that
small amounts of absorption or scattering greatly reduce the maximum
transmission. Also, the lack of plate flatness causes different parts
of the cavity to tranamit at different times so that the peak transmission

of the whole working aperture of the plates appears reduced.

The finesse of the instrument is the ratio of the full width at
half maximum of a transmission peak to the free spectral range. For
perfectly aligned and perfectly flat plates it would be determined only
by the reflectivity R of the individual (identical) plates and giver by

Fp =aVR/(1 - R).
We see that for R close to one, FR is very large,

In practice the etalon fir :sse is limited by plate flatness, For
plates having rms deviations of \/m, the limiting finesse would be
about m/4. If the plates have a smooth deviation from perfect flatness
and/or parallel alignment then the effective finesse can be improved
by vsing a smaller diameter of the plates thereby limiting the maximum

difference in plate separation.

So far our discussion has indicated that trying to increase the

finesse of an etalon by increasing the plate reflectivity can be useless

A

o
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and even detrimental to overall performance through reduceud
transmission., With this in mind the present flatness limit for
available plates of X /200 would indicate that the plate reflectivity

should be kept <. 94 to approach a limiting finesse FF = 50,

This limitation on the plate reflectivity would be correct
were it not for the importance of the contrast of the etalon In

looking at Brillouin scattering from real (dirty) crystals.

If one is trying to detect a weak Brillouin component which
is next to a strong Rayleigh component then the instrumental contrast

{(discrimination) can be more important than the maxiin transmission.

The contrast is the ratio of the maximum to the minimum
transmiseion. If we take the transmission integra‘ed over a peak
between half maximum points and compare this to the transmission
integrated over the same band width centered at the minimum
transmission we find the effectivc contrast ratio. It is appraximately
the same as the contrast, 4(FR/1r)2, for an etalon with perfectly flat
plates, Thus we see that increasing the reflectivity R to increase the
finesse FR can strongly increase the effective contrast even when
the finesseis limited by the flatness finesse FF"

In our etalon we have used R = .98 (FR = 156) coatings on \/100
plates (FF = 25) giving a cont—ast of 104 in order to be able to suppress
the instrumental wings of strong Rayleigh components in the region of

the Brillouin components.

Successful exploitation of the choice of a high contrast etalon

requii 28 that the light detection system be very effective otherwise




47

signal-to-noise limitations will make weak components impossible

to detect even with no Rayleigh wing present.

As an example of the usefulness of a high contrast etalon,
the first successful thermal Brillouin scattering in glass other
than fused quartz was done with our interferometer. (29) Previous
attempts by other investigators were unsuccessful due to the very

strong Rayleigh component in the light scattering spectra of glass.

Our interferometer was of special design. The tuning
adjustments (plate alignment) were made with a gear and feedthrough
arrangement which allowed tuning while the box surrounding the
etalon was evacuated. These adjustments remained independernt of
the pressure at all times. The vacuum box had rotation and height
adjustment screws. With the cavity tuned to give sharp fringes we
could precisely locate the center of the fringe pattern (viewed in a

telescope) on the intended scattering volume.

The pressure scan was linearized with a constant differential
flow controller made by Moore Products (Spring House, Pa., Model
63 BU-L). The high pressure side of this valve was kept at 2 atm
pressure by the nitrogen cylinder regulator valve. With this back
pressure the flow rate was constant within 1%/order for a 3 mm

etalon Spacer.

Perkin-Elmer fused quartz, 2 inch diameter, A/100 interfer-
ometer flats were used in the etalon. They were coated for
R = .08 at 6328 K We used 1.7 to 2.5 cm diameter areas of the
center of the plates. The overall working finesse shown by the

recorder traces was 25 to 35 with the 3.005 mm spacer. Peak
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transmission for small areas of the plates was 10% as i asured
with a direct laser beam, but this includes the effect of the band
pass of a small area of the plates (F = FR) being less than the
laser linewidth (1 GHz).

The Photomultiplier

We used an EMI 9558 B (5-20) photomultiplier. The tube
was cooled to the temperature of dry ice by surrounding the tube
with a cylindrical metal chamber containing a dry ice-methanol
slurry. This chamber with the tube facing along the cylinder axis
was encased in plastic foam for insulation. The signal light coming
to the photomultiplier passed through an evacuated double window
which prevented condensation of water vapor on the tube face. The
voltage divider resistor chain was outside the cooling chamber. It
was covered by a sealed hox but was otherwise unpotted. Leakage
currents caused by cor.densation were never found to be a problem
because the resisiwors stayed cold enough to be frost covered rather

than wet.

The tube had a 112/“A/L cathode sensitivity, a gain of 106 at
1250 V and a room temperature dark current of approximately 4 nA
at this voltage. On cooling the dark dropped to less than 0.4 nA.
Later in the work the cathode dark current of the cooled tube was

measured with the counting equipment to be 85 +10 counta/sec.

Direct recording of weak photosignals (the voltage on a 1 meg
ohm load resistor developed by the photocurrent) was limited by

large spikes which occurred with our particular tube. The single

channel analyzer of the counting system to be described below took
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care of this nicely and allowed us to go to much longer integration

times,

For direct recording we used 1250 V on the tube and for

photon counting we used 1550 V.

Signal Processing

The . ta of Section V was taken by directly recording the
voltage dev. oped across al Meg ohm load resistance by the
photomultiplier anode current. Because of extraneous spikes in the
photomultiplier output this system was limited to integration times

of less than 1/2 sec. (set by the recorder).

Later work presented in Section IV was done with a photon
counting system. The signal is processed in the following sequence
of components. (1) An emitter follower matches the high impedance
of the photomultiplier to the pulse amplifier impedance. (2) A
Sturrup Model 101 linear pulge amplifier amplifies the pulses to a
convenient size for the analyzer. (3) A Sturrup Model 701 single
channel analyzer selects only those pulses which are of the height to
have been initiated from photoemission at the photomultiplier cathode.
The output of the analyzer was uniform pulses, one-for-one with the
selected input pulses. With the EMI 9558 photomultiplier that we
used the predominant noise consisted of large spikes which were much
larger than the pulses produced by photocathode events. These were
removed by the analyzer. The baseline was set low because there
was a distribution of cathode pulse heights. There wasg very little
noise consisting of short pulses. (4) A Sturrup Model 2201 count
ratemeter gives a dc signal proporiional to the average pulse rate

from the analyzer, The final signal filtering was chysen with

\Illlll'm"l
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1,5, or 10 sec time cnnstants. (5) The count ratemeter output is

recorded with a Honeywell Flectronik 19 recorder.

This system worked very well. It was limited to signale of
less than 100 k count/sec and required slow scanning rates in order
to prevent the ratemeter output from being distorted by the final
stage time constant. We used scan rates set so that it took 10 x

{time constant) seconds to cross the full width at half maximum of

the components in the spectrum.

In the work on TGS typical count rates were 3 x 103 counts/sec

at the maximum of a longitudinal mode Brillouin component.

The Fabry-Perot Aperture Stop

An iris diaphragm was placed between the collecting lens
(LC) and the Fabry-Perot. It had two important functions. First it
limited the diameter of the Fabry-Perot plates used. This was
important in achieving reasonably good finesse. Second it defined the
collection solid angle for the scattering. It was usually used with a
1.7 ¢cm diameter opening. With a 17 cm focal length lens this gave an

£/10 system.

The choice of collection solid angle has a special importance
in Brillouin scattering because of the angular dependence of the
frequency shifts. With an f/10 syatem the angular aperture is 0.1
radians 8o the range of frequencies collected at a scattering angle
of 90°is roughly (1/20) A-vgo.. Avgoowas < 18 GHz in TGS. Therelore
the broadening due to the collection solid angle is less than 0.9 GHz.
The linewidth data on TGS given in Section V was taken with a 1 cm
diameter aperture, In this case the broadening due to the collection

solid angle was less than 0.5 GHz,
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The Pinhole Aperture

The pinhole aperture (field stop) was mounted on a worm
gear, x-y adjustment microscope stage. This allowed very precise
centering of the pinhole on the image of the fringes formed by the
imaging lens (FI).

The choice of pinhole diameter is crucial to the actual
operation of the system, Clearly in order to trace out the central
fringe intensity profile as the Fabry-Perot is scanned the hole
diameter should be small compared to the diameter of the central
fringe. On the other hand, since the light intensity is low, signal-
to-noise considerations require that the pinhole diameter be as
large as possible.

We found the choice of an angular diameter of 3.6 x 10-3

radians to be a reasonable compromise for operation with a He-Ne

laser (1 GHz linewidth) and a 3 mm etalon (F £ 30).

The pinhole limits the length of the beam from which light is
detected. The 1,3 mm diameter pinhole selected a 0,6 mm length

( =L) of the laser beam in the sample.
The Gil Bath

The samples were placed in a 16 cm diameter cylindrical oil
bath, This bath provided index matching and temperature control,
The oil was light paraiffin oil which had been filtered through a 1
micron Millipore filter to remove dust. The temperature of the
stirred oil was regulated with a silicon control rectifier proportional
control using a thermistor sensor and driving a 100 W heating coil.
Further discussion of the temperature control and measurement can

be found in Section V.
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An additional mask was placed in the bath close to the sample
to keep extraneous light from being collected.

Polarzers

The incident beam polarization direction was controlied with
a Spectra-Physics Model 310 polarization rotator. The analyzing
polarizer in the scattered beam was a HN38 polaroid filter.

Initial Alignment Procedure

The initial alignment consisted of positioning the cylindrical
bath and setting the scattering angle. The angle et which IEO the
incident beam direction crossed the spectrometer axis (optical rail)
was set close to 90° by autocollimation with a 45° - 90° - 45° prism.
The angle was checked by running a Brillouin spectrum of water for
which the 90° scattering Brillouin shift is knowr,

Taen the bath was set on a flat bed optical ra!l rider. It was
centered so the the l'c\o and Qs directions were parallel to diameters of
the cylinder by autocollimation simultaneously with two laser beams.
One beam was the incident beam to be used in the experiment. The
gecond was a beam sent along the spectrometer axis. With the oil
bath positioned a water spectrum was taken to check the scattering

angle,

In the present work the initial angle was found to be 90.0° in the
oll bath, We had hoped to mon’tor the angle from time to time by
running water spectra and so keep track of the scattering angle. It
turned out that our water sample got dirty with time. The resulting

large extraneous central componcnt of the enectrum perturbed the

e i
4
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Brillouin component positions on the trace making accurate
measurement of the shift impossible, Nevertheless the TGS

measurements were consistent so that the angie remaind 6 = 90+ 1°.

The 6 = 135 scattering angle was set and checked in a similar
manner. The accu~acy of the angle was lower but because the shift
depends less on angle in the backward directions the uncertainty
in the velocities reduced from the data was not increased, This

angle was known to within + 20.

From the relation that the Brillouin shift is proportional to
sin (8/2) we can derive that the uncertainty in a velocity determined
from a Brillouin shift measurement due to an uncertainty in

scattering angle is given by

8 viv =cot(6/3) (606/2).

Therefore for 6 = 80£1° and for 0 =136+3°, 6v/v = £ 0.9% .

Running Alignment Procedure

At least daily during the Brillouin scattering data runs the
foli wing alignment was performed. With the sample out of the laser
beam and the beam crossing and scattering from the oil in the bath the
position of the image of the beam with respect to the Fabry-Perot
fringes was checked with a telescope placed between the Fabry-Perot
and the imaging lens. The Fabry-Perot leveling adjustment was
changed until the fringes were centered on the image of the scattering
from the oil, (The Brillouin components of the oil were visible in
the telescope during this adjustment.) Then the interferometer tuning
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was checked with laser light scattered from a paper card placed
between the collecting lens and the interferometer. With the

fringes sharp and brightly illuminated at all azimuthal angles, the
fringes formed by the imaging lens on the pinhole plate were
observed through a telescope and off axis lens. The fringes were
slowly scanned with the pressure scan and the pinhole was carefully
centered on the central fringe of the concentric circle fringe pattern.
This positioning was very important in achieving a narrow,

symmetrical, instrumental lineshape,

Checking the Fabry-Perot tuning and pinhole position could be
done at any t!me by illuminating the Fabry-Perot fringes with the
card scatterer. The sample position could be left untouched during
these checks. This was important when the tuning and pinhole
alignment had to be checked during a temperature run on a TGS

sample,

With the specirometer alignment complete the final step was to
select the volume element in the sample from which to collect
scattered light. This was done by placing the telescope after the
Fabry-Perot and noting the position of the center of the Fabry-Perot
fringe pattern on the telescope reticle. The telescope (with fixed
orientation with respect to the spectrometer axis) was then moved to
a position between the Fabry-Perot and the collecting lens. The
sample was placed in the laser beam. The beam traversing the
sample was examined through the telescope. The sainple was attached
by its mounting rod to a x-y adjustment microscope stage. This
allowed fi~e adjustment of the sample position along and across the

laser beam. The sample was searched until a "clean' (no inclusions or

J‘N\
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strains, et.) volume was found. This part of the crystal was then
moved to the position where its image feli on the reticle at the
position previously noted to correspond to the center of the fringe
pattern. In this way a clean portion of each sample was selected

as the scattering volume.

It was intercsting to note that during these visual examinations
the Brillcuin scattering from clean crystal samples was visible by

eye glving a uniform delineation of the laser beam traversing the

crystal.

Data Reduction

The Brillouin shift frequencies were measured from the
recorder charts in the following way. The center of the peaks was
determined by graphically dividing in half the width of the peaks near
the half pover level. The shift in orders (that is fraction of a free
spectral range A0’) was taken as the distance between the Stokes and
ant{-Stokes components (down-shifted and up-shifted components
respectively) of the mth order spectrum divided by the sum of the m-1
to m anti-Stokes component separation and the m to m+1 Stokes
component separation. Measuring in this way averages the compo: ent
displacements on the trace in such a way that errors due to a uniform

change of the scan rate are exactly cancelled. With the constant flow
regulator used the flow rate decreased only 1% /order with a 3 mm
etalon so that the averaging technique made the errors due to the

scan rate negligible compared to other measurcment uncertainties,
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SFCTION 1V

EXPERIMENTAL BRILLOUIN SCATTERING IN THE MONOCLINIC

CRYSTAL TGS

In this section we present the experimental observations of
Brillouin scatitering spectra for the moncclinic biaxial crystal
triglycine suliate (TC3). We will be concerned here with those
properties of the scattering spectra which are common to monoclinic
crystals and are not specifically related to the ferroelectric phase
transition which occurs in this crystal. Thus the purpose of this
part of the work ie to present evidence in support of the forml;lation
o? light scattering in crystals in Section II and to show how well
Brillouin scattering can be used to measure the elastic and photo-
elastic propoerties of a low symmetry crystal. The Brillouin
scattering cbservations concerned with the dynamics of the phase
transition in TGS will be given later in Section V. Those readers
who are mainly interested in the phase transition can omit this

section and proceed to Section V.

Outline

A series of measurements were made with the (010) plane as
the scattering plane. The spectra exhibit the frequencies of phonons
having ain the (010) plane. From these spectra through the use of
polarization selection rules we have been able to identify all three
acoustic modes and determine their velocities as a function of
direction in the (010) plane. These velocities are then compared with
velocities computed from elastic constants determined from ultrasonic

velocity measurements.
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From the variation of the intensity of the Brillouin ¢ .mponents
as the scattering direction is changed we obtained information about

Pockels coefficients (elasto-optic).

Spectra were taken for c-;‘ parallel to b bui these showed only

the component due to the longitudinal phonon.

Finally, the intensity of the scattering from the (quasi)
longitudinal mode for a particular- (? direction in the (010) plane was
compared with the scattered intensity due to the longitudinal modes
in fused quartz and water from which a reasonable estimate of the

absoiute scattering cross section was made.

Properties and Coordinates in TGS
(30)

Jona and Shirane have collected references to many
properties of TGS. From these references and later ones we have
collected a data summary of the measured properties of TGS which are
relevant to this work. They are collected in the Appendix along with

a coordinate system convention.

In this work the convenient set of axes Jor describing directions
was that of the reciprocal lattice. By convention the C2 axis of a
monoclinic crystal is taken as the b axis. The a and c axes are
perpendicular to ;, 80 that ;, and l;* and parallel. We follow Wood
and Holden G1) in the choice of a and ¢ and we approximate B =105°
for later comparison with altrasonic measurements. Our crystals had
large c faces which allowed us to determine the direction of ;: * in the
samples with respect to the incident direction {;o by autocollimation
of the incident laser beam. Our notation for directions in the (010)
plane will be to give the angle ¢ Letween the direction and the c* axis
with ¢ taken as positive when on the a* gide of c*. (See Fiyg. Alin the

Appendix)

g
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The optical parameters of TGS have been carefully meagured
Ly Dlon(u). As in all rronoclinic crystals the b axis is one of the
principle axes of the dielcctric ellipsoid. In TGS it is the acute
bisectrix having the lowest index of refraction n = 1.484. The two
principle axes lying in the (010) plane are roughly (within 3°)
parallel to the a* and c* directions and have the same index within
1%, nac = 1.57. Thus we make the convenient approximation: of
treating TGS as optically a uniaxial crystal. This greatly simplifies
the reduction of the observed frequency shifts to acoustic mode

velocities.

Paraffin oil was used as the medium for the oil bath surrounding
the crystal. The crystal is inert in this oil, the oil shows negligible
evaporation at the highest temperatures reached in this experiment
(SSOC) and it very nicely matches the index of refraction, . of the
crystal . The index match cut down the extraneous scattering at the
surface of the crystal and allowed light polarized parallel to b to pass

through the faces of the sample undeflected. This was very convenient

because the phonons of greatest interest give components in VV
scattering when the scattering plare is parallel to (010) and so involve

just those polaraziations of light which are index matched,

The slight mismatch in the oil index and n could give at most
1% changes in the Brillouin shifts. Worst cases occur at
¢(q) =0° and 20°,

Scattering Vectors

Table IV 1 gives the scattering vectors for (010) plane scattering
in TGS with 8 He-Ne laser. The expression there for 9yv is rigorously

true for all ¢(q). The expression for WH ig true in the approximation

" P o v g = > o
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TABLE 1V 1

SCATTERING VECTORS (010) PLANE IN TGS

8 4
POLARIZATION 27
. (1o4cm'13
90.0° vV 3.317
90.0° VH, HV 3.410
135.0° vV 4.335
Ty
qVV = Z‘NT 2 Sin 9/2

2 0
6% = =
qH\;@ ) 2n no + nb qu(go )
——
nb= 1.484
n =],67
o)

A

= 6.328 x 102 c

m
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of taking TGS as uniaxial about the b axis. With these scattering
vectors we can reduce 90° and 135° scattering angle Brillouin

frequency shifis to acoustic velocities since

Aw = vq rad. /sec.

L

with ¢ the velocity of light,

or

Av = v(i—) Hz

In this work we take ¢ = 3,000 x 1010 cm/sec,

The scattering angles as checked with scattering spectra of

water were (90*1)0 and (135 iZ)O.

The Experimental Spectra

Figure IV 1 shows a typical VV, (010) plane Brillouin scattering
spectrum of TGS for a scattering angle of 90° and ¢ (q) = -45%, Wwe
see that at this angle we couple to two acoustic modes. From the
selection rule given in Section II we know that A€22 is modulated only
by the modes polarized in the (010) plane. We expect the large, high
frequency peak to correspond to the (quasi-) longitudinal mode and the
other peak to correspond to a (quasi-) transverse mode.

The trace shown in Fig. IV 1 was made with direct recording of

the photosignal. It is typical of the spectra used to study the temperature
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Typical Brillouin scattering spectrum in TGS at
T = 34°C showing transverse (Av =10.22 em™!
and longitudinal (Av =t0.50 cm'l) Brillouin
components. inset shows orientation of scattering
vector q with respect to the reciprocal lattice

vectors in the (010) plane.

"
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dependence of the Brillouin shifts which i reported in Section V.
The final data taken for the velocity and intensity results to be
given in this section were obtained using a photon counting detection

system.

The calculation of the acoustic mode velocities and
polarizations from elastic constants in TGS as given in Section I
(Table T 1) shows that for each § in {010) plane there is a pure
shear mode with displacement vector perpendicular to the plane and
a pair of mixed modes polarized in the plane with the quasi-longitudinal
mode polarization direction within 18° of . From this calculation we
can predict the Brillouin shift for the quasi-transverse mode. The

shift approximately agrees with the observed shift,

If we change the scattering angle 8 but keep the q direction in
the cryntal fixed the cross section calculation for VV scattering shows
that the relative intensity of the components should remain the same.

From the expression for the Brillouin frequency shifts
Av = v 2kosin (8/2)

we know that increasing the gcattering angle snould increase the

frequency shift in proportion to 8in(6/2). These predictions are

verificd by the Vv scattering spectra shown in Fig. IV 2. ¢ (q) was

-45° for these spectra. The ratio of transverse to longitudinal component
peak beights is .23 for both spectra and the ratio of corresponding
Brillou'n shifts in the two spectra is 1.32 which agrees with the theoretical

ratio of 1.307 within the angular uncertainty in the experiment.

The spectra of Figs. IV 1 and iV 2 were taker at 34.40(2. The

temperature dependence of the spectra will be discussed in Section V.
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Fig. IV 2 Superimposed traces of Brillouin scattering spectra
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The third acoustic mode for the ¢ (q) direction which consists
of pure shear waves should only appear in VH and/or BV polarized
spectra according to the calculations at the end of Section II. Fig. 1v 3
shows a complete set of polarization spectra for (010) plane scattering
with ¢ (q) at -450. We see that for this g direction the pure shear mode
appears essentially only in HV scattering. The frequency shift of
this component agrees with the predicted shift from the velocity
calculation. Thus by taking polarized spectra we are able to very
nicely sort out the three acoustic modes for a particular § in agreement

with the cross section predictions.

It is interesting to contrast the results shown in Fig. IV 3 with

the spectra expected in an isotropic medium. There Krishnan's

reciprocity relation IVH = IHV should hold(”) and only the longitudinal

mode should give a component to the VV apectrum.

Acoustic Mode Velocities

We denote the acoustic modes for § in the (010) plane as follows:
L and T1 refer to the (mixed) quasi-longitudinal and quasi-transverse
modes respectively polarized in the plane and T2 refers to the pure
shear mode polarized perpendicular to the plane. In this notation we
have that L and TI gives components in VV spectra and T2 gives a
component in BV and/or VH spectra.

We took spectra at various § directions in the {010) plane in order
to explo-e the angular dependence of the intensity and frequency shifts.
This was easily done for VV scattering because the crystal was index
matched to the oil bath go that rotating the crystal was equivalent to

rotating the direction of g keeping its magnitude fixed.
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Fig. IV 3 Polarized Brillouin spectra in TGS, 6 = 90_ and
¢ (q) = -45°.
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The spectril data obtained from the direction scans has been
reduced to the plots of peak signal intensity, intensity ratio and

velocity for the L and Tl mod~s in Figs. IV 4.7,

The spectra were not actually VV spectra as they ehould have
been. Instead they made with vertically polarized incident light and
no analyzing polarizer in the scattered beam. Thus the intensities
represent the sum VV + VH = VT (T for Total). The spectra were
taken in this way under the naive impression from the spectra at
¢(q) = -45° that VH spectra had no components so that VT would be
equivalent to VV. This i8 not true so the transverse component
intensity and velocity data are somewhat distorted. This distortion
is most serious when the intensity of the Tl component gets small
and when the Tl and T2 modes are degenerate. The intensity of the
VV scattering from the Tl mode is quite low for ¢ (q) from -15° to
+5° and from 55° to 85° so the velocity curve for this mode isn't
completely measureable with our arrangement. In Fig. IV 7 we have
only given Vi V8- ¢ (q) for angles where the transverse compenent in

the gpectrum is believed to be due essentially to the Tl mode.
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