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ABSTRACT 

Brillouin scattering measurements.hsve been made   on 

triglycine sulfate near its Curie temperature.    Temperature and 

field dependent single relaxation time acoustic velocity dispersion 

was found in confirmation of the predictions of a simple free 

energy expansion theory of the dynamics of the strain and 

polarization fluctuations near Tr.    This theory is developed in 

detail following O'Brian and Litovitz who first combined the 

Devonshire theory of ferroelectrlcs with the Landau-Khalatnikov 

theory of the relaxation of the order parameter to treat sound 

absorption near T    in triglycine sulfate.    This new treatment of 

the theory was able to account for the anisotropy in the coupling 

of the strain and polarization fluctuations, the field dependent 

relaxation rale observed, and the anisotropy in the relaxation rate 

for directions between the ferroelectric axis and the plane 

perpendicular to it.    We found our observations fit by 

T(AT. E= 0)"1 = (3.4 * 107o) x 1010 (Tc - T) sec"1 and 

T (AT=0. E)"1 = (2.0 ± 10%) x 1010 E2/3 sec"1 with AT in C0 and E 

in kV/cm.    From T (A T, E = 0) we find the kinetic coefficient 
12        -1 

for the polarization fluctuations to be v = (4.1±10%)x 10     sec   . 

Additional experimental results obtained for triglycine sulfate include 

measurement of the acoustic mode velocities for all three modes for 

various directions in the (010) plane, measurement of the longitudinal 

\elocity along the ferroelectric axis, a measurement of a reference 

absolute cross section for Brillouin scattering in triglycine sulfate, 

and determination of some of the Pockels coefficients from the 

Brillouin component Intensity in various directions. 
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INTRODUCTION 

This theala le a report of a set of light scattering 

experiments on a ferroelectric crystal In the region of Its 

ferroelectric phase transition. The aim of the experiments 

was to study the dynamics of a stcond-order nhase transi- 

tion in a crystal by means of the spectrum of light scat- 

tered from it near the phase transition temperature. 

The crystal chosen for study was trlglycine eulfate. 

It turned out to be a rather classic case. The effects 

observed were weak and therefore were easily separated 

for Interpretation. There were no Interfering anomalies 

in optical dielectric properties near the transition 

temperature, AM  the observations could be understood 

on the simple basis of expanding the free energy about 

equilibrium values of the thermodynamic variables. 

The most important sections of this thesis are Sections 

V and VI, They contain the new observation and interpretations 

which are believed to be important to the subject of phase 

transitions. 

The experimental data is presented In Section V. Our 

measurements show that two of the acoustic modes In the 

plane perpendicular to the ferroelectric axis are coupled 

to damped fluctuations and therefore show velocity dispersion 

with a temperature dependent relaxation time.  In addition 

to observing this velocity dispersion from which we obtained 

the relaxatlnn rate we were able to observe the aBsoclated 

•. 
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acoustic absorption by meaeurlnp; the Brillouln component 

llnewidth as a function of temoerature.  Such meaBuremento 

have not been made In crystals uslnj* light scattering 

prior to this.  For the same modes thpt showed velocity 

dispersion and. absorption we found the new effect of a 

field dependent dispersion and absorption with a single 

relaxation time. From th© velocity dispersion we deter- 

mined the field dependent relaxation rate. Also for these 

modes we studied the anlsotropy of the velocity dlBpersion 

In the plane perpendicular to the ferroelectric axis. We 

found that the total dispersion was highly anlsotropic 

but that the relaxation rate was the same for all directions 

in the plane.  We studied the third acoustic mode and found 

It not to show relaxatlonal dispersion with temperature 

or field. 

In Section VI we nresent the phenomonologlcal theory 

which accounts very well for our observations.  It was 

prevlouly known that the Devonshire free energy expansion 

theory gave a good description of the static properties 

of triglyoine sulfate.  The present work shows that 

together with the kinetic assumption of Irreversible 

thermodynamics the same free energy expansion accounts for 

the dynamics of the strain and polarization fluctuations. 

Following the lead of 0'Brian and Litovitz we have gone 

on to derive in detail the consequences of the Landau- 

Khalatnlkov theory of relaxation rates for second-order 

transitions.  In addition to the previously derived 
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velocity dispersion with a relaxation time proportional 

to (Tc - T)  our analysis shows how to calculate the 

coupling anisotropy, that the pure shear mocie in the 

plane perpendicular to the ferroelectric axis should not 

be coupled to the relaxing fluctuations, and that an 

electric field applied along the ferroelectric axis 

with the crystal at Tc produces a velocity dispersion 

with a relaxction time proportional to E"*2'5, All of these 

results are confirmed by our experiments. In addition wc 

derived the anisotropy in the relaxation rate o: polar- 

ization fluotuatione for directions out of the plane 

perpendicular to the ferroelectric axis by taking account 

of the electrostatic energy associated with the polariza- 

tion fluctuations. This accounted for the observation 

that the longitudinal mode along the ferroelectric axis 

showed no temperature dependent relaxational dispersion 

even though these strains are known to be coupled to the 

polarization. Additional consequences of this last 

derivation remain to be tested. 

The first four sections form an exposition of the 

method of Brlllouln scattering applied to the study of the 

acoustic modes in crystalline solids. It is these techniques 

which allowed the rather comolete study of the fluctuations 

in triglycine sulfete near Tc.  The purpose of Section I 

is to present the simplest and most universal case of 

Brillouln scattoring, namely scatterinr from density 

waves. This scattering is common to all condensed phases 
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and usually gives the most Intense componer.s In the 

Brillouin sp^ctrunj. In this section we Indicate how 

the approximate scatterlnp: cross section for scattering from 

longlt dinal modeo In crystP.lllna solids can be computed 

from the refractive index and the elastic properties 

of the material.  In Section II we discuss Brillouin 

scattering in crystals. Using the classical theory 

of elasticity to derive the strain fluctuation dynamics 

and the Pockels elasto-optic coefficients to relate 

the dielectric fluctuation tensor and the strain fluctuations 

we derive scatterlncr selection rules and cross sections 

for Brillouin scattering with polarized light in birefringent 

crystals. Specific application of these hitherto untested 

selection rules and intensity predictions is made for 

triglyclne sulfate in the Brillouin scatterlüg observations 

presented in Section IV.  In that section we show that 

Brillouin scattering with polarized incident and scattered 

light can be used to sort out and study all three acoustic 

modes in the plane perpendicular to the monoclinic axis. 

From these spectra we were able to determine the acoustic 

velocities and some of the Pockels coefficients. 

In Section III we describe the apparatus for observing 

Brillouin scattering in crystals with narticular emphasis 

on our high contrast Fabry-Perot interferometer and the 

ohoton counting detection system. 



SECTION   I 

INTRODUCTION TO LIGHT SCATTERING FROM ACOUSTIC MODES 

OF CONDENSED MEDIA -- BRILLOUIN SCATTERING 

All forms of matter scatter light but this scattering is usually 

masked by the much stronger first order processes of absorption 

and emission.    Scattering is the basic electromagnetic interaction 

for frequencies to which a medium Is transparent.   It manifests 

itself in two ways.    The forward scattering which is coherent with 

the incident light gives the medium its refractive index.    The 

scattering in directions other than the forward directions is in 

general inelastic and can be detected directly.    This non-forward 

scattering Is the phenomenon which we will be concerned with and 

will refer to simply as light scatterin- 

We will be Interested in those low energy states of condensed 

media (collective modes) which are coupled to the optical 

polarlzability of the mediuTi.    They will scatter light either when 

driven externally, as in the   Debye-Sears effect, or when thermally 

populated.    By examining the spectrum of the scattered light we 

study the dynamics of the fluctuations in polarlzability and hence 

the dynamics of the collective modes. 

Acoustic modes are collective modes found in all condensed 

media.    They correspond to the modes of sound propagation when 

driven externally and to the low energy states of the medium In 

equilibrium which are used in the Debeye model of the specific heat. 

These modes usually are effective in scattering light and so give 

rise to the basic features of the low frequency portion of light 

scattering spectra.    The process of scattering light from acoustic 

modes is called Brillouin scattering after L    Briliouin who predicted 
(2) 

in a fundamental paper in 1922      that light should be inelastically 

scattered by the    Debye modes of a transparent medium. 



First we define the problem operationally in terms of alight 

scattering experiment.    We will not be perfectly general in this 

but rather choose arro gementa which are useful in experiments. 

The basic arrangement is shown in Fig. 11.    A narrow beam of 

monochromatic light with wave vector k   and frequency u   is 
o o 

passed through material of dielectric constant e .    The volume of 

the material illuminated by the beam becomes visible due to 

scattering.    We arrange to collect light from a definite length L of 

the beam in a small solid angle about a direction at an angle 6 to 

the incident beam.    6 is called the scattering angle.    We describe 

the scattering direction by the wave vector of the scattered light, 
Mh 

k       The scattering volume is L times the cross-sectional area of s 
the incident beam. 

The scattering plane is the plane containing k    and k  .    It is 

most useful in experiments to have the polarization of the incident 

light either perpendicular or parallel to the scattering plane.    We 

will denote this choice by V or H, respectively.    Similarly,  we 

analyze the scattered light into "vertically" and "horizontally" 

polarized components.    Denoting the incident polarization first and 

the scattered polarization second we can have the following four 

possible scattered intensity measurements: VV,  VH,  HV,  or HH. 

The scattered light which we have selected is now detected to 

give the total scattering intensity or is spectrally analyzed and then 

detected to give spectral intensities.    Comparison of the scattered 

power with the incident power, taking    account of the collection 

geometry,  gives cross sections for the various processes giving 

rise to components of the scattering spectrum. 



JiAAr* / / / / / 

Fig.  I I   Schematic picture of a light scattering experiment. 
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Though light scattering ie a universal effect it is not normally 
-6 8 

a strong effect.    Typically 10     to 10'   of the Tight incident on a 

sample is scattered (per cm of the sample) by acoustic modes. 

Thus the light scattered from a beam of light in a material does not 

make a  very bright source for spectroscopic study.    Here lies much 

of the experimental challenge in light scattering. 

With the invention of the laser and in particular the perfection 

of continuous gas lasers we now have an ideal tool for high resolution 

light scattering experiments with high resolution in frequency, 

scattering angle, and polarization. 

In order to understand light scattering processes in enough 

detail to allow predictions of effects and interpretation of experimental 

results we will review the results of theoretical calculations of the 

scattering intensity. 

Many derivations of the scattering intensity or scattering cross 

section for Brillouin scattering In isotropic media exist in the 

literature. In particular the modern treatments by Pecora 
{ 9) 

and Landau and Lifshitz        are recommended.    The basic ideas and 

perturbation technique remain those of Einstein and Brillouin.   Rather 

than repeat the derivation we will give t he result in a form useful for 

experimental work and with which one may guess the result for new 

situations, 

In an isotropic medium with average optical dielectric constant 

E , the cross section for scattering V (perpendicular to the scattering 

plane) polarized incident light of frequency w   into V polarized 

scattered light with wave vector k   at an angle 6 to k   is 
So 
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<|A£(q,  t  : j2 >   V2 

where AE(r, t) = t(t t)   -t 

AtfiA) ^ f  A£{f,t)e-iq,r    d: 

a = k    - k 
O 8 

V = scattering volume 

u   = iiiCldent light frequency 

c   = velocity of light in a vacuum   . 

This expression is appropriate for scattering in simple 

liquids where density fluctuations give scalar fluctuations in the 

dielectric properties.    For these fluctuations the scattered light is 

all V polarized.    We note that the light scattered at an angle 9 is 

scattered by a definite spacial Fourier component of the dielectric 

fluctuation.    Since the frequency shifts (u -u ) Involved in the 

scattering are small,  we may take the magnitudes of the incident 

and scattered wave vectors equal giving 

q = [q[-- 2k    sin (6/2) 

and q parallel to the bisector of the angle between k    and k  .    This 
o s 

geometry is shown in Fig. I   2,    The scattering is proportional to 
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Fig. I   2    Geometry of the wavevectors in quasi-elastic scattering. 

ko is the incident light wavevector.    k   is the scattered 
s 

light wave vector and q is the scattering wavevector. 
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the volume illuminated and proportional to the reciprocal fourth 

power of the vacuum light wavelength as is characteristic of 

quasi-elastic scattering from small scattering elements.    The 

< > brackets indicate a time average or equivalently an ensemble 

average.    This average is itself independent of time and can easily 

be computed using the methods of thermodynamic fluctuation 

theory if we know which variable is fluctuating and the dependence 

of the dielectric constant on this variable.    For simple liquids we 

have the standard results 

'&) 
= (e-1) 

T 

and , 2 kTß 
<l P(qj | t   =   I 1.8 (a) 

V^ V 

where ßT  is the isothermal compressibility.   It is an empirical 

fact that essentially all of the scattering is due to density fluctuations 

at constant temperature.    Hence to a good approximation 

^Mf,)2(^)4"-'2-T v . 

We note that this cross section is proportional to the scattering 

volume V as expected.    This is the standard result for scattering 

from density fluctuations in Isotropie media. 
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So far we have given expressions for the total scattering. 

The spectral distribution is what we would really like to know 
about. 

The spectrum of the scattered light can be most rigorously 

defined  using the Fourier transform of the autocorrelation of the 

scattered electric field.    This implies that the spectral intensity 

at the frequency U|j is proportional to the Fourier transform of 

the autocorrelation function of Ae(q,t) evaluated at 

w = (uo -u)a).   Explicitly the spectral cross section is 

d<JVV(ws) 

dn 
'k -*k 

o      s 

O B 

1 

"47 
u 
_o       <|AE(q){    >v' 

C   ' U) 

with 
q =k    -k 

o     s and   u = y    - u 
o       s 

1 

1 

where we define 

00 

i^'l^r, I *' iut     A  ,-*   '    .     * - 
e        ^^(q, t +t)A€ (q, t) > 

00 

The correlation function and its Fourier transform are assumed 

independent of time t since thermal fluctuations are random 

stationary process. 
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Suppose the correlation function has a time dependence   cos(w(q)t) 

(This would correspond to a modulation of e by some kind of 

propagating collective mode).    Then we find that the spectrum 

consists of delta functions at 

u   =   ± w (q)  . 

More realistically the amplitude of the collective modes will have 

a finite lifetime T  = -=r .    We then get a pair of Lorentzians 

<)A£(q)|    >   =   ^jiMq.Oj     > L        2 '^     (W±u;(^2+r2 

whose full width at half maximum is 2T, (2 denotes sum over 

+ and - terms). Thus the spectral intensity will be centered at the 

frequencies 

to    = (j   ± u;(q) 
so 

We summarize these relations for three common correlation functions 

in Table 1 1. 

These results have a very simple interpretation.    The scattering 

spectra are Fourier transforms of the time dependence of the propertiee 

of the "phase grating" (the qth spatial component of Aefr, t)) which is 

"diffracting" a portion of the incident beam. If the amplitude of this 

grating decays then the scattered beam acquires a correspondingly 

shorter lifetime i, e. , it is broadened.    If the grating is moving with 
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velocity v{q) either parallel or anti parallel to q then the scattered 

light is frequency shifted by the Doppler effect either down or up by 

u;(q) = qv(q) radians/sec, ,  respectively. 

With these results let us now consider Brillouin scattering 

in simple liquids and Isotropie solids.    In particular we consider 

scattering from density waves in these media.    (These density waves 

can al' o be called compressional waves or longitudinal acoustic 

modes of the material.    They are common to all condensed media.) 

For the wavelengths of interest these waves are best described as 

adiabatic density waves   in liquids.    We then have from the theory of 

thermodynamic fluctuations of Fourier components of inhomogeneous 

fluctuations (11) 

-    2 P 
<|^P(q)   |   >   =  P^kTß.^ (q) 

8 a 

where ß (q) -■ - -L      f4Pft)        a    J  psl4/ p       8 p (q) r    ,„, , 2 
3 p[V (q) ] 

with v(q) the velocity of sound. 

Thus the cross section for scattering from density waves 

simple liquid is 

Sv        /if /"of        * 
nr aUr) lT/(t-n kT/3s(q) v • 

in a 

d< 

This scattered light will appear spectrally as a doublet with 

frequencies 

u>s - Wo * y(q) 

I     i 
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where w<q) «q v(q) 

js the assumed dispersion relation for these density waves. The 

spectral cross section can tnen be written completely in terms of 

experimentally determined parameters as 

do. 
VV 

dU i-h) (-M4 - -S X 
pv(q) 

r(q) 
2 2 

W  -Uo-u(q)    +r(q) 

r(q) 

s 
w0-u>o

+{q) 2
+r(q)

2 

1 
where r(q) ■ —~-t   is the relaxation rate of the waves. 

This last result is cumbersome so in the remainder of the 

paper we shall merely calculate the totr1 intensity scattered by a 

particular mode into some scattering polarization and then recall 

that this Intensity is spread over a doublet with Lorentzian peaks 

of füll width at half maximum of  2r(q) centered at the frequencies 

u   = u;  * u)(q). so 

The cross section for scattering from longitudinal modes 

of an isotropic solid is very much like that for liquids.   AM a first 

approximation we suppose that we can estimate the variation of 

the dielectric constant with compression as being the sane as the 

variation of the diele :tric constant with density so that for a 

compreseiom' strain x 

—*- 

r 
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then we can write the cross section for scattering (VV) from these 

modes as 

dn \4nl   [—    {t-l)       T 

where v. is the velocity of the waves. 

We then empirically generalize this last expression and state 

that one can probably gpf a reasonable estimate of the scattering 

intensity from the longitudinal mode? of any condensed medium 

including crystals from the expression given.    We have found that 

the scattering intensities of various media do seem to follow the 

ratios of intensity one would predict from the quantity 

(e-D2 

2 

calculated from tables of elastic propertiea and refractive indices. 

Having an estimate of the scattering intensity for at least one mode 

a crystal is very eyeful in designing and setting up experiments.  It 

should also allow estimates of the scattering cross sections for other 

modes of crystals by comparison   of intensities in experimental 

spectral traces.    Of course the above estimate will not b? correct 

for crystals such as MgO which have a negative pressure coefficient 
(12) of the index of refraction. 
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SECTION  II 

THE THEORY OF BRILLOUIN SCATTERING IN CRYSTALS 

In this section we wish to give a detailed discussion of Brillouin 

scattering in crystals.   We will begin with a description of the acoustic 

modes of crystals.   We then discuss scattering from these modes 

including the effect of birefringence of the crystals and the tensor 

property of the dielectric fluctuations.   Our aim is to arrive at an 

experimentally oriented formulation of the scattering cross sections 

equivalent to specializations of the very general result given by Born 

(1$ 
and Huang, In particular we wish to give some "rule of thumb" 

selection rules for telling which phonon polarizations (displacement 

directions) can cause scattering in the different light polarization 

spectra. 

Acoustic Modes 

We take as our model of acoustic modes in crystals the results 

(14) 
of the classical theory of elasticity 

(symmetrized) strains 

Thus we consider small 

ij     2\8r,     8r  /   " 
j i 

—- --^-r —-n ■—j 



The internal energy per iv-it volume is written as 

ü(S'V^Ci3^Vkl + üo(S)' 

giving internal stresses proportional to the strain 

-     _    9U 

13    S 

= CIj,klXkl   ' 

where u = u(r) is the displacement of the point at f in the body, S is 

the entropy per unit volume of +he body X.. is the stress due to isen- 

tropic strains, and c . .. are the elastic stiffness constants. 

The great amount of symmetry in the fourth rank tensor com- 

Donents c     ., reduce the number of parameters in this description to 
F ij.kl 
a manageable size.    Due to the symmetries of x    and the product x^x^, 

we have 

c. c.   ,,  s c, 
ij.kl"   ji.kl    "ij.lk    "kl,ij  ' 

Thus there are only 21 independent constants in the most general case. 

The equation of motion is 

8X.. 

PUi =   TT 
j 
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with p the density of the medium.    Using the symmetries given 

the equation of motion can be written as 

8   u. 
pu. = c 

1      «'".r.i.r    ' 
J 

We look for plane wave sciutions of the form 

u(r) ■ ue 
i(q.r - ut) 

Substituting Into the equation of motion gives the equations 

(clj.kl%qj-pü  6lk)uk = 0 

The problem Is then seen to be a 3 x 3 eigenvalue problem with secular 

equation 

2 

ij.klqiVPlq)   6ik = 0 

where q.  are the direction cosines of q.   This secular equation is a 
K 

cubic equation in the quantity 

-pfe' 
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2 
whose three real, positive roots C. = pv. (q) determine the phase 

velocities v.(q) for the three, orthogonal displacement plane 

propagating in the direction q.    Thus for each direction q we get 

three dispersion relations of the form 

waves 

JiA) - v2^)q2 

J J 

2 .       ci(c') 

With vTq) = -J—    j   = 1,   2,   3. 
-' P 

It is this form of dispersion relation with uj(q) -*0 as q -—0 that 

marks an acoustic mode. This form of dispersion relation gives the 

frequency shifts observed in Brillouin scattering their characteristic 

scattering angle dependence for fixed q direction 

^w = ± v(q)q(e) = * v(q)2k sin p 

tocsin?. 
i 

This dependence is to be contrasted to that for scattering from the 

optical modes of vibration of a crystal where Aw is usually independent 

of the scattering angle. 

As a consequence of the angular dependence of the Brillouin 
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scattering frequency shifts, measurement of the scattering angle 

becomes an essential part of an experiment for which the spectrum 

is to be related to the elastic properties of the medium. 

Before further discussion we change to the matrix notation 

in which pairs ci subscripts are replaced with a single subscript 

running from 1 to 6 as follows: 

(15) 

goes to 

II        22 33 23 31        12 

32        13        21 

If we apply this subscript transformation directly to the stresses and 

the elastic stiffness constants and define the six component strain 

vector by the above transformation and 

x.. = x 
ij      m 

2x    = x 
1]      m 

m - 1,  2, or 3 

m = 4, 5, or 6 

then 

and 

U =^c..x.x. + U (S) 
2   i] i j        o 
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Xi = Cifl • 

c.. Is now a symmetric 6x6 matrix relating the six component strain 

to the six component stress. 

In crystals the symmetry operations of the various point groups 

greatly reduce the number of non-zero, independent components of the 

stiffness tensor.    These re actions are nicely discussed and summa- 

rized in Nye       for fourth rank tensors such as the stiffness tensor as 

well as for tensors of other ranks. 

We will be discussing acoustic modes in monoclinic crystals of 

classes 2 and 2/m.    They have the following matrix of independent 

fourth rank tensor components indicated by heavy dots 

•      •     •        •      •      • 

For the stiffnesses this matrix is symmetric giving then 13 independent 

components. 

For comparison a cubic crystal has the matrix 
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or three independent Btlffnessee: c , c. , and c , (Connected dots 

represent equal constants.) We note that a cubic crystal will appear 

isot ropic elastlcally if 

Zc 
44 (C11 " ^^ 

The three component eigenvalue problem for the phase velocities 

and mode polarizations is given in a convenient form with the stiffness 

constants in matrix notation by Mason     .   Using these formulas and 

known elastic constants, it is a straightforward calculation to find the 

phase velocities and displacement vector direction cosines. 

To quickly see the physical significance of the elastic constant 

matrix elements we chose a coordinate system with the x1 axis along q 

and tensor components transformed to this coordinate system and then 

reduced to matrix elements.    Then the secular equation for the phase 
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velocities becomes 

(C11'-PV) C16' 

'16' 

'15' 

(c
Rfi. -P

v > 66 

'15' 

'56' 

'56' (C55' " PV ) 

0     . 

Cj6, and c.5, give the coupling between compresslonal strains along 

x' and shear strains in the x'y' and x'z' planes.   If this coupling is 

negligible then we get a pure longitudinal mode with polarization 1u 

along x' and vL   = c^/p.    c^g, gives the coupling between shear 

strains in the x'y' and x'z' planes.   If this coupling is also negligible 

then we get pure shear modes with polarizations and velocities: 

-»»2 2 
'-»l/y1. vT1   = C

66/P 
and ui/z'. vT2   = C

55/P-   Jtis very often the case 

that these off-diagonal elements are small compared to the diagonal 

elements so that the modes are reasonably described as longitudinal 

and transverse.   Moreover c     is in practice always larger than 

Cgg, or c_g|.    This simplifies the interpretation of Brillouln spectra 

because we can always take as a first guess that the spectral compo- 

nent with the largest shift is the (quasi-) longitudinal mode component. 

As an example and for later comparison with our experimental 

results we have calculated the velocities and mode polarizations for 
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a set of q directions in the (010) plane of the crystal triglycine sulfate 

using the room temperature (monoclinic class C„ phase)   elastic 

constants determined from ultrasonic velocity measurements. (The 

elastic stiffness constants are listed in the Appendix. )   The results are 

presented in Table II 1.    The only symmetry in th"?se velocities, 

v(q) ■ v(-"q)) shows that we need only calculate the velocities for half 

the directions in the plane.    The q direction is given in terms of the 

angle between q and the c axis.    (The conventional axes and coordinate 

systems of triglycine sulfate are given in the Appendix.)   For this case 

the dynamical matrix is 

11 

22 

13 

13 

"33 

with 

Xll=:c55 + (cll-c55)sinAe + c15sln2e 

X33 = C55 + (C33 " C55) COS'e + c358in2e 

X13 = C15 + (C35 - V COs2e +   ~C-   sin20 

2 

X22 = C66Sin2e + C44COs29 + C46Sin2e 
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TABLE   II  1 

(010) PLANE ACOUSTIC MODE VELOCITIES IN TGS CALCULATED 

FROM ULTRASONIC EL/STIC CONSTANTS ■^ 

(a) Constants from V. P.  Konstantinova, 1. M.  Sil'Vestrova :;nd K. S, 
Alcksandrov. Sovjet Phys.-Cryst. 4,  63 (1960). 

(b) 0 = G(q) in xyz =-a-bc coordinate system. 
(c) L and Tl modes_j301arized in (010) Plane, 
(d) T2 polarized H b .       ^ 
(e) + sign indicates that U    is ahead of q and vice versa for - sign. 

1 J 

e(b) (c) 
VL 

(c) 
VT1 

v      (d) 

T2 

.     .(e) 
q.UL 

A              A 

q • UM 

(0 ) 10' cm/sec. 10 cm/sec. ,r5        / 10   cm/sec 

-90 5.20 2,53 1.92 +.996 .089 

-80 5.30 2.58 1.94 +.998 .063 

-70 5.37 2.53 2 00 +.999 .044 

-60 5.39 2.39 2.07 1.000 .000 

-50 5.34 2.22 2.15 -.998 .063 

-40 5.22 2.05 2.23 -.992 .126 

-30 5.02 1.97 2.30 - , 980 .199 

-20 4,74 2.00 2.34 -.966 .258 

-io 4.41 2.16 2.37 -.954 .300 

0 4.06 2.38 2.37 -.958 .287 

10 3.78 2.56 2.35 - .985 .172 

2Ü 3.75 2.51 2.30 i .994 .10 9 

30 3.96 2.27 2.24 + .97 3 .231 

40 4.24 2.05 2.16 + .970 .243 

50 4.50 1.96 2.08 ' .977 .213 

CO 4.73 2.03 2.01 4 .984 .178 

70 4.92 2.21 1.95 + .990 .141 

80 5.08 2.40 1.92 + .994 .109 

90 5.20 2.53 1.92 + .996 .089 
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and 0 the angle between qand z (c). 

We are aware that the present formalism is not consistant with 

atomic theories of elasticity and chat the application of it to ferro- 

electric crystals (polar crystal classes) as particularly questio able. 

This point is criücaily discussed by He&i-mon     ,    No serious 

discrepancies were found in comparisons of our velocity measure- 

ments for triglycine sulfate with calculated velocities using this 

formalism.    In this case of a monoclinic crystal a critical test is 

not possible since the thirteen independent elastic constants of the 

classical theory probably represent enough parameters to fit any 

set of experimental velocities. 

We have so far been considering a simplified equation of state with 

only strpin and entropy as independent variables.    Thermal diffusion of 

heat being a very slow process over distances of the order of visible 

light wavelengths we expect the choice of adiabatic strain waves to be 

an accurate description of the acoustic modes of crystals.    We will 

later consider the acoustic nr des in ferroelectric crystals.    There 

as in all piezoelectric class crystals we must distinguish betwren 

(adiabatic) fluctuations with electric field E held constant and 

fluctuations with the electric polarization P (or displacement D) 

constant. 
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For those modes from which we can scatter light In crystals 

we expect Brillouin scattering spectra to yield velocities which 

accurately represent the limit 

q-0 
—v(q) 

That is to say that with the available magnitudes of q in light scattering 

we do not expect to see any curvature in the acoustic mode dispersion 

relation.    Thus the Brillouin scattering velocity measurements should 

agree very closely with those from ultrasonic measurements. 

The advantages of Brillouin scattering measurements of 

velocities compared to acoubdc techniques are that they are now at 

least as accurate as ultrasonic pulse techniques, they allow very easy 

direction scans of the anlsotropy of the velocities in crystals, and 

they can be made in the presence of extreme damping of the modes. 

The most important feature of the Brillouin scattering measurements 

for the present work is that the larger q (compared to ultrasonics) 

give higher frequencies which allow fast relaxation processes to be 

studied. 

Brillouin scattering provides much less information about the 

acoustic mode dispersion relation than the ;oherent inelastic neutron 
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.scattering experiments.    Nevertheless because of the high spectral 

resolution Brillouin scattering can show very small changes in the 

q-*"0 part of the dispersion relations, that is in the sound velocity, 

due to externall/ controlled changes of temperature, applied fields, 

stresses, or the like.    This is a groat advantage in the study of 

phase transitions. 

Brillouin Scattering Cross Sections for Crystals 

We turn now to an account of the photoelastic coupling for 

(19) Brillouin scattering in a crystal. We describe the average 

optical properties of our crystal by a symmetric second rank tensor. 

(We assume our crystal not to be optically active.)   We chose an 

orthogonal coordinate system which coincides with the principal axes 

of this tensor.   In this coordinate system the local dielectric tensor is 

"r-V£iVA£(r-,,ij ■ 
In experiments we wish to have a single known scattering 

vector q -- known in magnitude and direction.   If we send the incident 

light through the sample in an arbitrary direction with an arbitrary 

polarization direction with respect to the pri icipal axes then we will 

in general get two incident beams each giving rise to two scattered 

beams in the collection direction.    This gives a total of up to four q. 

Each q'can give up to three Brillouin doublets in a spectrum.    The 



31 

.(20) 
spectrum could show as many as twelve doublets!        Thus we will 

usually want to choose somewhat specialized orientations of the 

crystal in experiments. 

The orientation which we used and will discuss here was that of 

placing one of the principle axes of the average dielectric tensor 

perpendicular to the scattering plane (the plane containing the 

incident and scattered light wave vector directions).    Call this the 

z axis for the present discussion.   In the notation of Section I with 

directions parallel to z labeled V and perpendicular to z labeled H 

we consider spectra obtained with incident and scattered light 

polarization combinations VV, VH, HV, and HH.    For each spectrum 

there is a definite q. 

q = k    - k 
^ O 8 

where k   and k   directions are fixed externally and their magnitudes os - o 

are determined by the crystal refractive index for the corresponding 

direction and polarization. 

Consider first the cross sections for the scattering of a V 

polarized incident beam.    The simplest is 

da 
VV 

dfi .(^)<Ktgv 
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We see that the scattering is due to a Fourier component of the 

33 (zz) component of the dielectric fluctuation tensor.    The VH cross 

section is more complicated.    We must project the source polariza- 

tion. induced in the dielectric fluctuation by the incident field, onto 

the direction es of the electric field for plane electromagnetic waves 

polarized in the scattering plane and traveling in the direction k       If 
s 

we denote the angle between the electric displacement in the scattered 

wave and the electric field as 6     and the refractive index for this 

scattered wave as n , then the cross section is 
8 

der 
VH 

dQ 'ihtil 
'n cos6 

_s s 

<h,<I>',)13V+Ac<-'-t>23es22>V 

Similarly we find that the other cross sections 

da 
HV 

dQ 
= (^) (T) (s^l^kN^^^oi4-^^^3 32eo2 V2 

dg
HH     fJ_\2r_o\(nBC08Ös 

dQ ' ~-ii) ff )(r^irVE AE(<1'Voieoj 
IJ=I 

2>v2 

with 6o and n^defined for the incident wave polarized in the scattering 
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plane as 5    and n   were for the scattered wave.    These last three s s 

cross sections Involve combinations of dielectric tensor fluctuation 

components.    In practice the situation is simplified because 6    and 6 

are approximately zero.    By taking a scattering angle of 90   we can 

then study (approximately) Individual tensor component fluctuations: 

VV scattering probes Ac        VH probes AEn.„ HV probes Ac„2),  and 

HH probes At      , where 1' is parallel to k   and 2' i8 parallel to k . 
16 O 8 

To complete our description we must compute the coupling 

between the acou8tic mode strains and the changes in the dielectric 

tensor and we must compute the mean square strain for each mode. 

The standard treatment of the coupling is in terms of the 

(21) Pockels elasto-optical coefficients p    .  . They relate strains 

(second rank tensor) to changes in the dielectric impermeability 

(second rank tonsor) and so form a fourth rank tensor.    Like the 

elastic stiffness constants the Pockels coefficients have the symmetry 

Pij, kl = Pji. kl = Pij. Ik 

and can be reduced directly to matrix notation giving a 6 x 6 matrix. 

In general p       )t p^     so there are usually more independent Pockels mn    rnm * r 

coefficients than elastic stiffness constants. 

The Pockels coefficients are dimensionless and usually fall in 
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the range 1 to . 01 .   p^ with m, n = 1, 2. or 3 is usuoily much larger 

than Pmra Wlth m = 4' 5' or 6-    Thl8 corresponds to the fact that 

electrostrictlon is a stronger effect than shear strain induced bire- 

fringence.    These coefficients have not been measured for most 

crystals.    Most of the measured values are for cubic crystals. 

Tables of measured pmn can be found in Nye(22)and Landolt-Bornstein. (23) 

Crystal symmetry reduces the number of non-zero, independent 

coefficients.    For each crystal class the allowed coefficients and 

relations between them are tabulated in references such as Nye. 

For the monoclinic and cubic (m3m) classes the matrices look the same 

as shown earlier for the elastic stiffness constants, the monoclinic 

class matrix being nonsymmetric and the cubic matrix symmetric. 

We want to compute ^^J^^y   In terms of Pockels coefficients 

this is 

inrrmn, kl n] 

If we take orthogonal coordinates coincident with the principal axes 

of the dielectric tensor this derivative simplifies to 

53^   -Vflj.kl 
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with Ei the set of three principal values of the dielectric tensor.    For 

displacement wave 

u(?,t) = uei(^-üt) 

the unsymmetrized strain is 

A   A i(q. r - ut) 
xki = Viuqe 

Using these notations we calculate the appropriate dielectric 

fluctuations due to this single acoustic mode which is assumed to be 

a solution of the elastic wave problem discussed earlier.    The basic 

result is that the (real) amplitude of the dielectric fluctuations is 

'Vq) = -Vj(pij_kIGkS1),)u. 

For example for VV scattering we wantdAt    |2>.   We find 

<lAc33|2> = t3(P33.klVl)2<>(iU|2>- 

In this and the more complicated situations the result after projecting 

squaring and taking the ensemble average is proportional to<|qu|2> 

This mean square Fourier strain comporent is easily calculated from 
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(24) 
thermodynamlc fluctuation theory       once the secular equation for 

the phase velocities  Is solved.    We find for the jth mode 

<fquf2>=     JEJ ,q !   j      vc 
kT 

j Vpv.^) 

where C. is a root of the dynamical equation.    This result may be 

looked upon as an expression of the equlpartition of energy or 

(equivalently) a variance of a diagonalized 3x3 Gaussian 
distribution 

Since the mean square strain fur each mode is non-zero, the 

basic selection rules for scattering from a particular mode in the 

polarized spectra come from the symmetry requirements that 

certain Pockels coefficients be zero or equal.    The geometry of the 

mode and light directions gives the detailed selection rules. 

The selection rules are most useful for 90   scattering.  The 

basic features of selection rules for scattering from pure longicudinal 

and transverse modes are exhibited by cubic crystals and isctropic 

solids.    For these media the W cross section is proportional to 
2 

p       and the scattering is from the longitudinal mode only -- (the 

spectrum would show only a single doublet), the VH and HV cross 

sections are equal and proportional to p       and the scattering is 

from the transverse mode with displacement vector  perpendicular to 

the scattering plane only, and finally the HH cross section is 
2 

proportional to p..    and the scattering is from the longitudinal mode 
only 
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In less symmetric crystals the polarized spectra do not 

generally sort the modes so nicely.    Nevertheless it is still quite 

useful to noit that the transverse mode polarized (more or loss) 

perpendicular to the scattering plane will be expected to show up 

only in HV or VH spectra coupled through p.. with i = 4, 5, or 6. 

It would be possible to see peaks due to this mode in VV spectra 

coupled through p     for example but in practice such constants 

when not forbidden are usually smaller than p     and the like. 

When a doublet in addition to that due to the longitudinal mode shows 

up in a VV spectrum and does not appear in the VH spectrum, we 

can usually assume that it is due to the transverse mode polarized 

in the scattering plane. 

As an example of selection rules we calculate the coupling 

between strain and dielectric fluctuations for modes with q and the 

scattering plane parallel to the (010) plane of a monoclinic crystal. 

For VV scattering we want to know At    .    The relevant Pockels 

coefficients are p   . p 3, and p -.    With notation for the direction 

cosines: q = (Jf, 0, n) for the propagation direction, and u =(a , ß , y) 

for the displacement direction,  we have 

Ae22 =-e2CP21 ^ P23 "^ P25 (IY+
 " Q)

^ 
qU- 

We see tha+ we couple only to modes polarized in the (010) 

plane. For pure longitudinal and transverse modes polarized in 

this plane we find the separate couplings to be: 
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^22(L) = e*(p     a2 + p      n
2 + 2p      Pn)qu 25 

^22(T) = .E2[(p23.p2i)n|+      V.^j qu. 

Thus we see that longitudinal modes couple in the usual way 
2 2 

through terms   t9P9-, and e   p _ which are similar to the electrostriction 

of Isotropie materials.    We see that the transverse modes depend on 

the difference in electrostrzetive terms and the coefficient p    .    Both of 

these contributions should be small 

Without going as far we can learn that the modes which gave the 

VV scattering above cannot give components in VH or HV öpectra. 

Fo/ this coupling to exist we would need coefficients p       and/or p 
4m 6m 

with m = 1, 3, or 5.    These coefficients are rigorously zero so there is 
no coupling. 

On the other hand the transverse waves polarized perpendicular 

to the scattering plane, which were not coupled into VV scattering, do 

give VH and HV scattering through the coefficients p^ and p    . 
44 bb 

We will return to the details of these calculations in Section IV. 
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SECTION   III 

THE APPARATUS USED TO OBSERVE BRILLOUIN 

SCATTERING IN CRYST/XS 

In this section we will describe the light scattering apparatus 

used to observe the BrilJouin scattering spectra reported  in this 

thesis.   It is essentially the same as that used by Chiao and Stoicheff. 

Our apparatus has been described in the literature in connection 
(26) with Brillouin scattering in liquids. 

We first describe the layout of ths apparatus.  Then we will discuss 

the components of the system with emphasis on the Fabry-Perot inter- 

ferometer.    Next we describe the alignment of the system.  Finally we 

describe the raw data reductioii from the spectral traces. 

Layout of the System 

The layout of the apparatus is shown  In Figure III 1.    The 

optical path is described as follows.     Sixty mw of plane polarized, 6328 A 

light from a Spectra Physics Model 125 He-Ne laser is focused by a 

50 cm focal length lens into the sample.    Light scattered at 90* to the 

incident beam from a short length of the sample volume through which 

the beam passes is collected by a 17 cm focal length lens and focused 

at infinity.   This light then passes through a variable stop ( the system 

aperture stop ), which determines the collection solid angle and the 

diameter of the Fabry-Perot  etalon plates used.     Next the selected 

scattered light gees to the pressure scanned Fabry-Perot interferometer. 

The normal to the plates of this interferometer is aligned with the 
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Fig. Ill -      Brillouin acattering apparatus.    L_ has a 50 cm FL. 
F 

Lens Lc has a 17 cm FL.    Lens L   has a 36 cm FL. 

Plnhole aperture A is 1.3 mm in diameter. 
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ray from the selected scattering volume in the sample.    The light from 

this volume element which is in the pass band of the Fabry -Perot is 

transmitted.    It is focused by a 36 cm fDcal length lens onto a pinhole 

of 1. 3 mn diameter.    Behind the pinholt is a dry ice cooled EMI   9558 

photomultiplier which detects the light coming through the pinhole. 

The photocurrent from the photomultiplier can be processed 

in one of two ways.    For intense scatterers the photosignal across a 

load resistor was recorded directly on a potentiometric recorder. 

Alternately, for weak scatterers we use a photon counting system 

which selects the pulses from the photomultiplier by height and gives 

adc output proportional to the selected pulse rate which is recorded. 

Running a spectrum is straightforward.    With the apparatus 

aligned and operating and with the box containing the Fabry-Perot 

etalon evacuated, we allow a constant flow of nitrogen to enter the 

evacuated box while recording the photosignal.   A constant gas flow 

rate gives a constant frequency scan rate of the Fabry-Perot pass bandb 

so that the time axis of the strip chart recording is directly pro- 

portional to frequency. 

The Fabry-Perot Interferometer 

The heart of the spectrometer for Brillouin scattering is the 

pressure scanned Fabry-Perot interferometer.  It offers high transmission 

with high resolution, smooth precise scanning of the pass bands, and 

easy calibration. 

In essence the interferometer consists of a Fabry-Perot etalon 

mounted in a sealed box allowing the pressure (density) of the gas 

surrounding the etalon and filling the cavity space between the etalon 

plates to be slowly changed at a controlled rate.    The etalon consists 

of a pair of flat,  parallel,  semi-reflecting mirrors which face each 
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other at a fixed separation to form a cavity in which light can be 

rrultipli-reflected. 

The traditional theor- and practice of Fabry-Perot etalons 
(2?) 

is well presented in Born and V/olt Modem application in 

particular pressure scanned interferometers for use with photo- 

electric recording of spectra are reviewed by Jacqulnot. 

We will not discuss Fabry-Perot interferometers in füll 

detail.    We will simply give a quick review of the etalon character- 

istics of scanned transmission fringes, maximum transmission, 

finesse, and contrast.    Then we will point out some design features 

of our interferometer   nd give the specific   parameters of our 

etalon. 

The Fabry-Perot etalon has an mth order interference 

transmission peak (pass band) when the condition 

m\= 2nd cos  i 

is catisfied, where X is the wavelength of the light» n is the re- 

fractive ind ex of t he medium in the cavity, d is the spacing between 

the etalon plates, and i is the angle of incidence of the light on the 

etalon.   With monochromatic light  incident this interference condition 

yields a set of bri ght transmission fringes in the form of concentric 

rings.    For a given fringe labeled m the interference condition shows 

that as nd is increased, cos i must decrease.    Therefore the fringe 

expands ( i increases ). 

In the pressure scanning system that we used d was constant 

and h was varied linearly in time by changing the density of the gas in 

the etalon cavity.    Light incider - on the etalon at i = 0 was transmitted 
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whenever m\ c 2nd and focused to pass through a pinhole before 

being detected.    Light at other angles formed ring fringes which 

were blocked by the pinhole plate. 

With this pinhole arrangement the etalon acts as a filter 

for the light Incident normal to the etalon plates.    For a gas medium 

between the plates [ (n-1) «1 ]and \« d the pass bands of this 

filter are spaced Aa» (l/2d) cm"   apart in frequency. 

( 1 cm     ■ 30 GHz.)    This separation is called the free spectral 

range.    As the density of the gas changes the refractive index changes 

in proportion causing the frequency of the pass bands to scan     The 

simultaneous frequency changes of the pass bands is given by 

6a 
■   -a/M6  n 

Therefore a linear refractive Index change will give a linear frequency 

scan of the pass bands.    For X = 6328 A  light and nitrogen gas having 

(n - 1) = , 0003 at one atmosphere pressure, we can scan the pass bands 

over a frequency range of 4.7 cm    /aim.    A 3 mm etalon gives a free 

spectral range of  ACT = 1.67 cm     = 50 GHz so that we can scan through 

2.8 orders with one atmosphere of nitrogen. 

As each pass band crosses the spectrum the intensity of the light 

passing through the pinhole is proportional to the spectral intensity. 

Detecting the light and recording the signal gives a series of spectral 

traces spaced Ac apart.  Aa is determined by measuring the etalon 

spacer length.    Thus the frequency scale on the trace of consecutive spectra 

is known so that frequency shifts maybe deterniined by interpolation. 
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The maximum transmission of the etalon is determined by the 

losses at the cavity surfaces.    For perfectly flat plates having 

coatings with reflectivity R and transmission T the maximum 
2 

transmission is [  T/(l - R) ]   .    If there are no losses (scattering 

or absorption in the mirror coatings) then T = 1 - R and the maximum 

transmission is 1.    In practice R is often greater than .95 so that 

small amounts of absorption or scattering greatly reduce the maximum 

transmission.    Also, the lack of plate flatness causes different parts 

of the cavity to transmit at different times so that the peak transmission 

of the whole working aperture of the plates appears reduced. 

The finesse of the instrument is the ratio of the full width at 

half maximum of a transmission peak to the free spectral range.    For 

perfectly aligned and perfectly flat plates it would be determined only 

by the reflectivity R of the individual (identical) plates and given by 

FR = jf/R/d - R) . 

We see that for R close to one,  F    is very large. 

In practice the etalon fir   sse is limited by plate flatness.    For 

plates having rms deviations of K/m, the limiting finesse would be 

about m/4.   If the plates have a smooth deviation from perfect flatness 

and/or parallel alignment then the effective finesse can be improved 

by using a smaller diameter of the plates thereby limiting the maximum 

difference in plate separation. 

So far our discussion has indicated that trying to increase the 

finesse of an etalon by increasing the plate reflectivity can be useless 
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and even detrimental to overall performance through ruducpJ 

transmisBion.    With this in mind the present flatness limit for 

available plates of X /200 would indicate that the plate reflectivity 

should be kept < . 94 to approach a limiting finesse F    ■ 50. 
— r 

This limitation on the plate reflectivity would be correct 

were It not for the importance of the contrast of the etalon in 

looking at Brlllouin scattering from real (dirty) crystals. 

If one is trying to detect a weak Brillouin component which 

is next to a strong Rayleigh component then the instrumental contrast 

(discrimination) can be more important than the maxim transmission. 

The contrast is the ratio of the maximum to the minimum 

transmission.    If we take the transmission integrated over a peak 

between half maximum points and compare this to the transmission 

integrated over the same band width centered at the minimum 

transmission we find the effective contrast ratio.    It is approximately 
2 

the same as the contrast, 4(F   /JT)  ,  for an etalon with perfectly flat 
K 

plates.    Thus    we see that increasing the reflectivity R to increase the 

finesse F    can strongly increase the effective contrast even when 
R 

the finesse is limited by the flatness finesse F   . 

In our etalon we have used R = .98 (F    = 156) coatings on \/100 
4       R 

plates (F    = 25) giving a contrast of 10   in order to be able to suppress 
F 

the instrumental wings of strong Rayleigh components in the region of 

the Brillouin components. 

Successftil exploitation of the choice of a high contrast etalon 

requii ".a that the light detection system be very effective otherwise 

I 
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signal-to-noise limitations will make weak components impossible 

to detect even with no Rayleigh wing present. 

As an example of the usefulness of a high contrast etalon, 

the first successful thermal Brlllouin scattering in glass other 
(29) 

than fused quartz was done with our interferometer. Previous 

attempts by other investigators were unsuccessful due to the very 

strong Rayleigh component in the light scattering spectra of glass. 

Our Interferometer was of special design.    The tuning 

adjustments (plate alignment) were made with a gear and feedthrough 

arrangement which allowed tuning while the box surrounding the 

etalon was evacuated.    These adjustments remained independent of 

the pressure at all times.    The vacuum box had rotation and height 

adjustment screws.    With the cavity tuned to give sharp fringes we 

could precisely locate the center of the fringe pattern (viewed in a 

telescope) on the intended scattering volume. 

The pressure scan was linearized with a constant differential 

flow controller made by Moore Products (Spring House,  Pa. ,  Model 

63 BU-L).    The high pressure side of this valve was kept at 2 atm 

pressure by the nitrogen cylinder regulator valve.    With this back 

pressure the flow rate was constant within 1%/order for a 3 mm 

etalon spacer. 

Perkin-Elmer fused quartz, 2 inch diameter, X/100 interfer- 

ometer flats were used in the etalon.    They were coated for 

R = .98 at 6328 K.   We used 1.7 to 2,5 cm diameter areas of the 

center of the plates.    The overall working finesse shown by the 

recorder traces was 25 to 35 with the 3.005 mm spacer.    Peak 
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transmission for small areas of the plates was 10% as i     asured 

with a direct laser beam, but this includes the effect of the band 

pass of a small area of the plates   (F = F0) being less than the 
n 

laser linewldth (1 GHz). 

The Photomultiplier 

We used an EMI 9558 B (S-20) photomultiplier.    The tube 

was cooled to the temperature of dry ice by surrounding the tube 

with a cylindrical metal chamber containing a dry ice-methanol 

slurry.    This chamber with the tube facing along the cylinder axis 

was encased in plastic foam for insulation.    The signal light coming 

to the photomultiplier passed through an evacuated double window 

which prevented condensation of water vapor on the tube face.    The 

voltage divider resistor chain was outside the cooling chamber.   It 

was covered by a sealed box but was otherwise unpotted.    Leakage 

currents caused by condensation were never found to be a problem 

because the resisiors stayed cold enough to be frost covered rather 

than wet. 

6 
The tube had a 112 u.A/L cathode sensitivity,  a gain of 10   at 

1250 V  and a room temperature dark current of approximately 4 nA 

at this voltage.    On cooling the dark dropped to less than 0,4 nA. 

Later in the work the cathode dark current of the cooled tube was 

measured with the counting equipment to be 95 ±10 counts/sec. 

Direct recording of weak photosignals (the voltage on a 1 meg 

ohm load resistor developed by the photocurrent) was limited by 

large spikes which occurred with our particular tube.    The single 

channel analyzer of the counting system to be described below took 
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care of this nicely and allowed us to go to much longer integration 

times. 

For direct recording we used 1250 V on the tube and for 

photon counting we used 1550 V. 

Signal Processing 

The i   ta of Section V was taken by directly recording the 

voltage dev    oped across a 1 Meg ohm load resistance by the 

photomultiplier anode current.    Because of extraneous spikes in the 

photomultiplier output this system was limited to integration times 

of less than 1/2 sec    (set by the recorder). 

Later work presented in Section IV was done with a photon 

counting system.    The signal is processed in the following sequence 

of components.   (1)   An emitter follower matches the high impedance 

of the photomultiplier to the pulse amplifier impedance.    (2)   A 

Sturrup Model 101 linear pulse amplifier amplifies the pulses to a 

convenient size for the analyzer.    (3)   A Sturrup Model 701 single 

channel analyzer selects only those pulses which are of the height to 

have been initiattd from photoernission at the photomultiplier cathode. 

The output of the analyzer was uniform pulses, one-for-one with the 

selected input pulses.    With the EMI 9558 photomultiplier that we 

used the predominant noise consisted of large spikes which were much 

larger than the pulses produced by photocathode events.    These were 

removed by the analyzer.    The baseline was set low because there 

was a distribution of cathode pulse heights.    There was very little 

noise consisting of short pulses.    (4)   A Sturrup Model 2201 count 

ratemeter gives a dc signal proportional to the average pulse rate 

from the analyzer.    The final signal filtering was chosen with 



50 

1, 5, or 10 sec time constants,    (5)   The count ratemeter output is 

recorded with a Honeywell Electronik 19 recorder. 

This system worked very well.    It was limited to signals of 

less than 100 k count/sec and required slow scanning rates in order 

to prevent the ratemeter output from being distorted by the final 

stage time constant.    We used scan rates set so that it took 10 x 

(time constant) seconds to cross the full width at half maximum of 

the components in the spectrum. 

3 
In the work on TGS typical count rates were 3 x 10    counts/sec 

at the maximum of a longitudinal mode Brillouin component. 

The Fabry-Perot Aperture Stop 

An iris diaphragm was placed between the collecting lens 

(Lr) and the Fabry-Perot.    It had two important functions.    First It 

limited the diameter of the Fabry-Perot plates used.    This was 

important in achieving reasonably good finesse.    Second it defined the 

collection solid angle for the scattering.    It was usually used with a 

1.7 cm diameter opening.    With a 17 cm focal length lens this gave an 

f/10 system. 

The choice of collection solid angle has a special importance 

in Brillouin scattering because of the angular depenaence of the 

frequency shifts.    With an f/10 system the angular aperture is 0.1 

radians so the range of frequencies collected at a scattering angle 

of 90ois roughly (1/20) ^QQ«.    Av      was < 18 GHz in TGS.    Therefore 

the broadening due to the collection solid angle is less than 0.9 GHz. 

The linewidth data on TGS given in Section V was taken with a 1 cm 

diameter aperture.    In this case the broadening due to the collection 

solid angle was less than 0.5 GHz. 
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The Pinhole Aperture 

The plnhole aperture (field stop) was mounted on a worm 

gear, x-y adjustment microscope stage. This allowed very precise 

centering of the pinhole on the image of the fringes formed by the 

imaging lens (F ), 

The choice of pinhole diameter is crucial to the actual 

operation of the system.    Clearly in order to trace out the central 

fringe intensity profile as the Fabry-Perot is scanned the hole 

diameter should be small compared to the diameter of the central 

fringe.    On the other hand, since the light intensity is low, signal- 

to-noise considerations require that the pinhole diameter be as 

large as possible. 

-3 
We found the choice of an angular diameter of 3.6 x 10 

radians to be a reasonable compromise for operation with a He-Ne 

laser (1 GHz linewidth) and a 3 mm etalon (F   =   30 ). 

The pinhole limits the length of the beam from which light is 

detected.    The 1.3 mm diameter pinhole selected a 0.6 mm length 

( =L) of the laser beam in the sample. 

The Oil Bath 

The samples were placed in a 16 cm diameter cylindrical oil 

bath.    This bath provided index matching and temperature control. 

The oil was light paraffin oil which had been filtered through a 1 

micron Millipore filter to remove dust.    The temperature of the 

stirred oil was regulated v/ith a silicon control rectifier proportional 

control using a thermistor sensor and driving a 1.00 W heating coil. 

Further discussion of the temperature control and measurement can 

be found in Section V. 
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An additional mask was placed in the bath close to the sample 

to keep extraneous light from being collected. 

Polar izers 

The incident beam polarization direction was controlled v/ith 

a Spectra-Physics Model 310 polarization rotator.    The analyzing 

polarizer In the scattered beam was a HN38 polaroid filter. 

Initial Alignment Procedure 

The initial alignment consisted of positioning the cylindrical 

bath and setting the scattering angle.    The angle et which k   the 
o 

incident beam direction crossed the spectrometer axis (optical rail) 

was set close to 90   by autocolllmation with a 45    - 90° - 45° prism. 

The angle v/as checked by running a Brillouin spectrum of water for 

which the 90   scattering Brillouin shift is known. 

Then the bath was set on a flat bed optical ra.*l rider.    It was 
A A 

centered so the the k   and k   directions were parallel to diameters of os 
the cylinder by autocolllmation simultaneously with two laser beams. 

One beam was the incident beam to be used in the experiment.    The 

second was a beam sen+ along the spectrometer axis.   With the oil 

bath positioned a water spectrum was taken to check the scattering 

angle. 

In the present work the initial angle was found to be 90.0° in the 

oil bath.   We had hoped to monitor the angle from time to time by 

running water spectra and so keep track of the scattering angle.   It 

turned out that our water sample got dirty with time.    The resulting 

large extraneous central component of the e^ectrum perturbed the 
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Brlllouln component positions on the trace making accurate 

measurement of the shift impossible.    Nevertheless the TOS 

measurements were consistent so that the angle remaind 8 ■ 90±1 . 

The 8 = 135 scattering angle was act and checked In a similar 

manner.    The accuracy of the angle was lower but because the shift 

depends less on angle in the  backward directions the uncertainty 

in the velocities reduced from the data was not increased.    This 

angle was known to within ± 2 . 

From the relation that the Brlllouln shift is proportional to 

sin (8/2) we can derive that the uncertainty in a velocity determined 

from a Brillouin shift measurement due to an uncertainty In 

scattering angle is given by 

6 v/v - cot(8/2) (6 8/2 ) . 

Therefore for 8 » 00*1° and for 8 =135*2°, 6 v/v » ± 0.9% . 

Running Alignment Procedure 

At least daily during the Brlllouln scattering data runs the 

foil wing alignment was performed.   With the sample out of the laser 

beam and the beam crossing and scattering from the oil in the bath the 

position of the image of the beam with respect to the Fabry-Perot 

fringes was checked with a telescope placed between the Fabry-Perot 

and the imaging lens.    The Fabry-Perot leveling adjustment was 

changed until the fringes were centered on the image of the scattering 

from the oil.   (The Brillouin components of the oil were visible in 

the telescope during this adjustment.)   Then the interferometer tuning 
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was checked with laser light scattered from a paper card placed 

between the collecting lens and the interferometer.    With the 

fringes sharp and brightly illuminated at all azimuthal angles, the 

fringes formed by the imaging lens on the pinhole plate were 

observed through a telescope and off axis lens.    The fringes were 

slowly scanned with the pressure scan and the pinhole was carefully 

centered on the central fringe of th^ concentric circle fringe pattern. 

This positioning was very important in achieving a narrow, 

symmetrical, instrumental llneshape. 

Checking the Fabry-Perot tuning and pinhole position could be 

done at any time by illuminating the Fabry-Perot fringes with the 

card scatterer.    The sample position could be left untouched during 

these checks.    This was important when the tuning and pinhole 

alignment had to be checked during a temperature run on a TGS 

sample. 

With the spectrometer alignment complete the final step was to 

select the volume element In the sample from which to collect 

scattered light.    This was done by placing the telescope after the 

Fabry-Perot and noting the position of the center of the Fabry-Perot 

fringe pattern on the telescope reticle.    The telescope (with fixed 

orientation with respect to the spectrometer axis) was then moved to 

a position  between the Fabry-Perot and the collecting lens.    The 

sample was placed in the laser beam.    The beam traversing the 

sample was examined through the telescope.    The sainple was attached 

by its mounting rod to a x-y adjustment microscope stage.    This 

allowed fl"e adjustment of the sample position along and across the 

laser beam.  The sample was searched until a "clean" (no Inclusions or 
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strains, et.) volume was found.    This part of the crystal was then 

moved to the position wheie its image fell on the reticle at the 

position prevlouply noted to correspond to the center of the fringe 

pattern.   In this way a olean portion of each sample was selected 

as the scattering volume. 

It was interesting to note that during these visual examinations 

the Rrillcuin scattering from clean crystal samples was visible by 

eye giving a uniform delineation of the laser beam traversing the 

crystal. 

Data Reduction 

The Brillouin shift frequencies were measured from the 

recorder charts in the following way.    The center of the peaks was 

determined by graphically dividing in half the vrtdth of the peaks near 

the half power level.    The shift In orders (that is fraction of a free 

spectral range ^0") was taken as the distance between the Stokes and 

anti-Stokes components (down-shifted and up-shifted components 

respectively) of the mth order spectrum divided by the sum of the m- 1 

to m anti-Stokes component separation and the m to m+1 Stokes 

component separation.   Measuring in this way averages the compo ant 

displacements on the trace in such a way that errors due to a uniform 

change of the scan rate are exactly cancelled.   With the constant flow 

regulator used the flow rate decreased only 1% /order with a 3 mm 

etalon so that the averaging technique made the errors due to the 

scan rate negligible compared to other measurement uncertainties. 
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5FCTION   IV 

EXPERIMENTAL BRILLOUIN SCATTERING IN THE MONOCLINIC 

CRYSTAL   TGS 

:   - 

In this section we present the experimental observations of 

Brillouin scattering spectra for the monoclinlc biaxial crystal 

triglycine suhate (TGS).    We v/ill be concerned here with those 

properties of the scattering spectra which are common to monoclinlc 

crystals and are not specifically related to the ferroelectric phase 

transition which occurs in this crystal.    Thus the purpose of this 

part of the work is to present evidence in support of the formulation 

oi light scattering in crystals in Section II and to show how well 

Brillouin scattering can be used to measure the elastic and photo- 

elastic propoerties of a low symmetry crystal.    The Brillouin 

scattering rbservations concerned with the dynamics of the phase 

transition in TGS will be given later in Section V,    Those readers 

who are mainly interested in the phase transition can omit this 

section and proceed to Section V. 

Outline 

A series of measurements were made with the (010) plane as 

the scattering plane.    The spectra exhibit the frequencies of phonons 

having q in the (010) plane.    From these spectra through the use of 

polarization selection rules we have been able to identify all three 

acoustic modes and determine their velocities as a function of 

direction in the (010) plane.    These velocities are then compared with 

velocities computed from elastic constants determined from ultrasonic 

velocity measurements. 
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From the variation of the intensity of the Brillouin c y/nponents 

as the scattering direction is changed we obtained information about 

Pockels coefficients (elasto-optic). 

Spectra were taken for q parallel to b but these showed only 

the component due to the longitudinal phonon. 

Finally, the intensity of the scattering from the (quasi) 

longitudinal mode for a particula" q direction in the (010) plane was 

compared with the scattered Intensity due to the longitudinal modes 

In fused quartz and water from which a reasonable estimate of the 

absolute scattering cross section was made. 

Properties and Coordinates in TGS 

Jona and Shirane       have collected references to many 

properties of TGS.    From these reference» and later ones we have 

collected a data summary of the measured properties of TGS which are 

relevant to this work.    They are collected in the Appendix along with 

a coordinate system convention. 

In this work the convenient set of axes for describing directions 

was thr.t of the reciprocal lattice.    By convention the C_ axis of a 
m 

monoclinic crystal is taken as the b axis.    The a and c axes are 

perpendicular to b so that b and b    and parallel.     We follow Wood 
(3') o and Holden in the choice of a and c and we approximate ß =105 

for later comparison with ultrasonic measurements. Our crystals had 

large c faces which allowed us to determine the direction of c    in the 

samples with respect to the incident direction k   by autocollimation 

of the incident laser beam.    Our notation for directions In the (010) 

plane will be to give the angle ^ between the direction   and the c   axis 

with ^ taken as positive when on the a   side of c . (See Fig. A 1 In the 

Appendix) 
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The optical parameters of TGS have been carefully meacured 

by Dion     .    As in all ivonoclinlc crystals the b axis is one of the 

principle axes of the dielectric ellipsoid.    In TGS it is the acute 

bisectrix having the lowest index of refraction n^ = 1.484.    The two 

principle axes lying in the (010) plane are roughly (within 3 ) 

parallel to the a   and c   directions and have the same index within 

1%, n     =1.57.    Thud we make the convenient approximation of 

treating TGS as optically a uniaxial crystal.    This greatly simplifies 

the reduction of the observed frequency shifts to acoustic mode 

velocities. 

Paraffin oil was used as the medium for the oil   bath surrounding 

the crystal.    The crystal is inert in  this oil. the oil shows negligible 

evaporation at the highest temperatures reached in this experiment 

(55 C) and it. very nicely matches the index of refraction, n, , of the 
(S3) b 

crystal The index match cut down the extraneous scattering at the 

surface of the crystal and allowed light polarized parallel to b to pass 

through the faces of the sample undeüected.    This was very convenient 

because the phonons of greatest interest give components in VV 

scattering when the scattering piare is parallel to (010) and so involve 

just those polaraziatlons of light which are index matched. 

The slight mismatch in the oil index and n   could give at most 

1% changes in the Brillouin shifts.    Worst cases occur at 

^ (q)   =0   and 90°. 

Scattering Vectors 

Table IV 1 gives the scattering vectors for (010) plane scattering 

in TGS with e He-Ne laser.    The expression there for q       is rigorously 

true for all ^(q).    The expression for q.r„ is true in the approximation 
V H 

mmmm^^—"-- 
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TABLE IV 1 

SCATTERING VECTORS (010) PLANE IN TGS 

90.0 

90,0C 

135.0C 

PfDLARIZATION 

vv 
VH.HV 

VV 

{104cm"1 ) 

3.317 

3.410 

4.335 

n. 
qvv = 2jr-y- 2 Sin B/2 

w»oo> *2^2 ^v1 - w9oo> 
a. = 1.484 

D 

n   » 1.57 o 

^   »6.338x10"   cm 
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of taking TGS as uniaxial about the b axis.    With these scattering 
o o 

vectors we can ream e 90    and 135    scattering angle Brillouin 

frequency shifts to acoustic velocities since 

Au =   vq rad,/sec. 

I 

or 

Mf)(-lr) cm 
-1 

with c the velocity of light, 

or 

Av 
■^) 

Hz     . 

10 
In this work we take c ■ 3.000 x 10     cm/sec. 

The scattering angles as checked with scattering spectra of 

water were (90±1)0 and (135*2)°. 

The Experimental Spectra 

Figure IV 1 shows a typical VV,  (010) plane Brillouin scattering 

spectrum of TGS for a scattering angle of 90   and <f) (q) = -45  .    We 

see that at this angle we couple to two acoustic modes.    From the 

selection rule given in Section II we know that Ac     is modulated only 

by the modes polarized in the (010) plane.    We expect the large,  high 

frequency peak to correspond to the (quasi-) longitudinal mode and the 

other peak to correspond to a (quasi-) transverse mode. 

The trace shown in Fig. IV 1 was made with direct recording of 

the photosignal. It is typical of the spectra used to study the temperature 

tmrrr-. 
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Fig. IV 1     Typical Brillouin scattering spectrum in TGS at 

T = 34 C showing transverse (Av =*0.22 cm" 

and longitudinal (Av =^0.50 cm    ) Brillouin 

components. Inset shows orientation of scattering 

vector q with respect to the reciprocal lattice 

vectors in the (010) plane. 
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dependence of the Brillouin shifts which i." reported in Section V. 

The final data taken for the velocity and intensity results to be 

given in this section were obtained using a photon counting detection 
system. 

The calculation cf the acoustic mode velocities and 

polarizations from elaatlc constnnts in TGS as given in Section n 

(Table H 1) shows that for each q in (010) plane there is a pure 

shear mode with displacement vector perpendicular to the plane and 

a pair of mixed modes polarized in the plane with the quasi-longitudinal 

mode polarization direction within 18   of q.    From this calculation we 

can predict the Brillouin shift for the quasi-transverse mode.    The 

shift approximately agrees with the observed shilt. 

If we change the scattering angle 9 but keep the q direction in 

the crystal fixed the cross section calculation for VV scattering shows 

that the relative intensity of the components should remain the same. 

From the expression for the Brillouin frequency shifts 

Aw = v 2k  sin(8/2) o 

we know that increasing the scattering angle snould increase the 

frequency shift in proportion to sin(6/2).    These predictions are 

verified by the VV scattering spectra shown in Fig.  IV 2.     0 (q) was 
o 

-45    for these spectra.    The raiio of transverse to longitudinal component 

peak heights is .23 for both spectra and the ratio of corresponding 

Brillouin shifts in the two spectra is 1.32 which agrees with the theoretical 

ratio of 1.307 within the angular uncertainty in the experiment. 

The spectra of Figs. IV 1 and IV 2 were taken at 34.40C.    The 

temperature dependence of the spectra will be discussed in Section V. 
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tra Fig. IV 2    Superimposed traces of BriUouin scattering specti 

for scattering angles of 90° and 135° and the direction 

q fixed at -45   to c . 



65 

o 
to 

CM 



68 

The third acoustic mode for the ^(q) direction which consists 

of pure shear waves should only appear in VH and/or HV polarized 

spectra according to the calculations at the end of Section II.    Fig.  IV 3 

shows a complete set of polarization spectra for (010) plane scattering 

with ^(q) at -45  .    We see that for this q direction the pure shear mode 

appears essentially only in HV scattering.    The frequency shift of 

this component agrees with the predicted shift from the velocity 

calculation.    Thus by taking polarized spectra we are able to very 

nicely sort out the three acoustic modes for a particular q in agreement 

with the cross section predictions. 

It is interesting to contrast the results shown in Fig. IV 3 with 

the spectra expected in an Isotropie medium.    There Krishnan's 

reciprocity relation I       = I        should hold      and only the longitudinal 
v Jrl       H V 

mode should give a component to the VV spectrum. 

Acoustic Mode Velocities 

V/e denote the acoustic modes for q in the (010) plane as follows: 

L and Tl refer to the (mixed; quasi-longitudinal and quasi-transverse 

modes respectively polarized in the plane and T2 refers to the pure 

shear mode polarized perpendicular to the plane.    In this notation we 

have that L and Tl gives components in VV spectra and T2 gives a 

component in HV and/or VH spectra. 

We took spectra at various q directions in the (010) plane in order 

to explore the angular dependence of the intensity and frequency shifts. 

This was easily done for VV scattering because the crystal was index 

matched to the oil bath so that rotating the crystal was equivalent to 

rotating the direction of q keeping its magnitude fixed. 
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Fig.  IV 3    Polarized Brillouin spectra in TGS.   6 = 90    and 

<Hq) = -45°. 
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The spectral data obtained from the direction scans has been 

reduced to the plots of peak signal intensity, intensity ratio and 

velocity for the L and Tl mod^s in Figs. IV   4-7. 

The spectra were not actually VV spectra as they should have 

been.   Instead they made with vertically polarized Incident light and 

no analyzing polarizer in the scattered beam.    Thus the intensities 

represent the sum VV + VH = VT (T for Total).    The spectra were 

taken in this way under the naive Impression from the spectra at 

<t>(q) = -45° that VH spectra had no components so that VT would be 

equivalent to VV.    This is not true so the transverse component 

intensity and velocity data are somewhat distorted. This distortion 

is most serious when the intensity of the Tl component gets small 

and when the Tl and T2 modes are degenerate.    The intensity of the 

VV scattering from the Tl mode is quite low for ^(q) from -15   to 

+3   and from 55   to 95   so the velocity curve for this mode isn't 

completely measureable with our arrangement.   In Fig. IV 7 we have 

only given v     vs.  ^(q) for angles where the transverse component in 

the spectrum is believed to be due essentially to the Tl mode. 

We will now compare the observed velocity pattern in the (010) 

plane with the calculated velocities of Table II I.    We have converted 

the angles giving the q direction to Q(q)t where e(q) = 15    -^(q), to 

correspond to the coordinates of the elastic constants.    8(q) gives the 

angle between q and the z axis. 

In Fig. IV 8 we have plotted the observed and calculated room 

temperature velocities for the L mode.    The agreement is poor except 

for the angles ß(q) ■ 0   and 90 .    Figure IV Ö shows the observed and 

calculated Tl mode velocities.   Here the agreement is even worse but 
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Flg.  IV 4   L(quasi-longitudinal) and TI (quasi-transverse) mode 

Brillouln component intensities versus q direction 

from VT spectra.    (Laser approximately 69 mW). 
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Fig. IV   5   Ratio of Brillou'n component (peak) intensities for the 

L and Tl modes from th   data of Fig. IV 4.    Points 

labeled VV were checks to show that no VH scattering 

from the T2 mode was present at the angles indicated. 

% 
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Pig,    IV 6       L mode (quasi-longitudinal) velocltlec in the (010) 

plane of TGS.   q direction is given by the hugie 

(j) (q)$ measured from the c   axis.    Uncertainty is 

about 11% In velocity and tl   In ^ (q).    For 

reference a 2% (t 1%) error bar is shown. 
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Flg. IV  7      Tl mode (quasi-transverse) velocities in the (010) 

plane of TGS.    q direction is given by the angle 

^(q), measured from the c   axis.  Uncertainty is 

about t 2% in velocity and 11° in 0 (q).    For refer- 

ence a 4% (± 2%) error bar is shown. 
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Fig,  IV 8 L mode velocities:   observed and calculated. 
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Fig, IV   9     Tl mode velocities: observed and calculated. 
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we seem to get crosBlngs of the curves at 0(q) = 0 , 90 ,  and ±45  . 

The differences in the observed and calculated velocities are well 

outside the uncertainties quoted for the elastic constants. 

The ultrasonic velocity measurements were made at 0 , 90 , 

and one other angle (*45   ?),    We find agreement at 0   and 90° as 

expected assuming that the light scattering and ultrasonic measure- 

ments were done correctly.    The disagreement at other angles 

indicates that some of the off-diagonal elastic constants c   , c   , 

and/or c     were incorrectly measured or reported in the literature. 

The L and Tl mode velocity data are tabulated in Table IV 2. 

We found the velocity data to be completely repeatable from sample 

to sample (five samples) and with different scattering angles within 

the uncertainty In setting the angles and extremely repeatable for a 

given sample when the temperature was cycled. There was no sign 

of sample dependence of the velocities as was reported in the ultra- 
sonic work. 

Several more comparisons of calculation with experiment to be 

presented in this paper ar*1 based on the ultrasonic elastic constants. 

We must here note that these calculations are probably in error and 

should be repeated with corrected elastic constants. 

Figure IV 10 shows the calculated T2 mode velocities superimposed 

on the few accurate T2 velocity observations from HV spectra.    The 

agreement at room temperature is fairly good (less than 4% difference 

at most}.    These measurements were made with crystals having faces 

cut normal to the Incident and scattering directions so that the Index 

mismatch between the oil In the bath and the Index of the crystal for 
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TABLE IV 2 

(010)   PLAN    OBSERVED VELOCITIES^ 

e(q) 
(b) 

VELOCITY (10    cm/sec. ) 

TM9.2  C 

L Tl 

T = 260C 

Tl 

90 5.18 

80 5.08 

70 4.99 

60 4.88 2.39 

50 4.80 2.29 

40 4.70 2.16 

30 4.57 2.06 

20 4.33 2.14 

10 4.26 2.27 

0 4.11 

10 4.12 

20 4.2G 2.53 

30 4.52 2.40 

40 4.747 2.19 

50 4.94 2.10 

60 5.13 

70 5.21 

80 5.22 

90 5.18 

5.02 

4.80 

4.52 

4.13 

3.97 

4.51 

5.03 

5.26 

5.17 

2.20 

1.9 5 

2.22 

2.26 

2.02 

(a) 6-90°,      a= 3.317 x 104 cm'1 

c, it 

(b) 6 = e(q) in xyz =-a~bc coordinate system. -e(q) = 1 504- Mq) 
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TABLE IV 2 (Continued) 

(010)   PT.ANE OBSERVED VELOCITIES (b) 

T=49 .3"C 

e(q) VELOCITY (10 cm/sec,) 

L Tl 

97.5 5.21 

82.5 5.10 

67.5 5.00 2.51 

30.0 4.57 2.08 

7.5 4.24 2.32 

- 12.5 4.14 2.57 

-32.5 4.60 2.32 

-52.5 4.95 2.12 

-67.5 5.21 

-82.5 5.24 

(b)    9 = 135 

Q 4       _1 
2  =4.335x10 cm 
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Fig.  IV 10        T2 mode (pure shear) velocities: observed and calculated. 
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light polarized in the(OlO) plane could not cause the beams 10 be 
o 

deflected.    To get data points with 8(q) near 90    required cutting 
o 

faces at 45   to the c face.    Autocolllmation off the c face became 

difficult ao the direction of q In the crystal is less certain 'n this 

data than in the VV scattering. 

Spectra were taken for q parallel to b with a scattering angle 

of 135 .    Theeo spectra showed only a longitudinal component . 

This mode is a pure longitudinal mode.    The observed Brlllouin 
5 o 

shift indicates that the velocity is 4.39 x 10   cm/sec.  at 49. 2 C 

and from the measured temperature coefficient of -1.7 x 10   cm/sec. C 
o 5 wc calculate an extrapolated velocity at 23 C of 4.43 x 10   cm/sec. 

Due to the refractive index mismatch for this crystal orientation we 

expect the scattering angle inside the crystal to be increased causing 

a 1% increase in q.    This correction 'vas applied to the above velocities. 

Again we are within 2% of the velocity calculated from the ultrasonic 
5 o 

elastic constants (4.36 x 10   cm/sec. at 23 C) but from the uncertainties 

given with the ultrasonic data we should be even closer, 

Pockels Coefficients 

The spectra giving the Intensity data for Figs, IV 4 and IV 5 

were taken with the crystal at 49.2 C.    Spectra taken at room temperature 

give essentially the same ratios. 

In order to reduce the Intensity data to relations among the 

Pockels coefficleniö one should reduce the velocity data to a set of 

elastic constants, then compute the phonon polarizations (eigenvector 

problem) and finally compute the strain (qu)   .    This is a second rank 

tensor or in matrix notation with reduced subscripts a six component 

vector 
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It was hoped that the observed velocities would agree well 

enough with the velocities computed from the ultrasonic elastic 

constants that one could use the phonon polarization vectors from 

that calculation to compute the strains produced by the mixed modes. 

As we have already seen there is substantial disagreement in the 

velocities so that to use the calculated phonon polarizations to derive 

consistent Pockels coefficients is questionable. 

We will carry the intensity calculation a little further to 

make some semi-quantitative statements.    We showed in Section II 

that ^£„„ which describes VV scattering for the (010) plane is given 

by 

A£22 = - C22 (P21ÄX   +P23   "^   P25(^+nÄ>)^ 

where     q   =( i,   0, n) and u   ={a,ß,y) 

This result is found by computing the strain 

(qu)     =   [ |Q,   0.  ny .  na. JY
+
 na, *ß  ] qu 

(in matrix notation) and multiplying it into the photoelastic matrix 

ds 

S3r 
iL 
kl 

^Vj    Pijkl) 

/pa 
pa 

^21   P23 and P25 are tlle only allowed coefficients in the present case. 
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We will discuss our Brillouin component intensity obsf.rvationa 

in the orthogonal coordinate system x'yz' = abc    but will omit the 

primes on the subscripts. 

The scattering intensity from the quasi-longitudinal mode 

does not depend strongly on the mixed character of the mode so we 

have attempted to fit the intensity data for this with the expression for 

a pure longitudinal mode 

Al22= -£ 2    {P21S      +p23n   +2p25nnqu 

Then we expect the ratio of scattering intensity for q at 0° and 90° to be 

IL(0, /pN2 vL(90)2 

IL(C?0) ^p 
23 vL{0) 

Performing this calculation on our data gives the result 

,2 

= 1.1 ± 10%    . 

Since the L intensity shows no zeroes or strong minima we expect 

p21 and p23 t0 have the same siffn and so we find that Poi and p     are 

approximately equal.    The mixed character of the L mode makes only 

a 4% effect on the ratio of the p's according to the calculation of 

Table jU.    Comparing the vplocities in Fig.  IV 6 to the L Intensities 

in Fig.  IV 4 shows that the intensity Is approximately proportional to 
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v " for all q In the plane.    From this we conclude that p    «p  „. 

If p,       ^ POT 
then we can write 

A€g(>(Tl) - -e/(p„q.urri   + p9f. cos2^(q))qu 
22' 2   ^23 ^"Tl       ^25 

Thus near ^ (q) -- ±45°',  where the second term is very small,  the 
2 

scattering is proportional to (q-u     ) .    This quantity is a measure 

of the mixed character of the Tl mode.    It would be zero for a pure 

transverse mode. 

Comparing the q-u      column of Table II 1 with the Tl intensity 

data of Fig. IV 4 shows poor agreement but since the calculated 

velocities do not agree with observation this is not surprising. 

We expect that the lowest values of the Tl mode velocity 

corresp    d to the q directions having the greatest mode mixing.    We 

see that these directions also correspond to maximum Tl intensity in 
2 

agreement with the prediction that   Ac is proportional   to 
2 " 

This particular comparison to the intensity data is not hindered 

by the VH scattering in the VT data of Figs. IV 4 and IV 5 as shown 

by the circled points? of Fig. IV 5 which represent intensity ratios 

taken from VV spectra. 

A systematic study of the HV scattering intensity in the (010) 

plane was not made hut we can say something about the Pockels 

coefficients.    The expression for the dielectric fluctuation probed in 
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HV or VH scattering Is much more complicated than that for VV 

scattering.    This Is because for a general q direction the scattering 

amplitude comes from a linear combination of At     and Ae    . 

For q = (|, 0, n) we have 

x=l0.0.0.n,0jjqu 

since u = {0,1, 0) for the T2 mode.    To treat the case of a 90° 

scattering angle we take 

Efl = -L-f (|+n), o.  {n-|)J Eo   = (0,1 0) 
v 2 

f or VH scattering and 

E    - (0,1. 0)      En - i-fd-n), 0,  (rrf|)] 

for HV scattering.   In this case the dielectric fluctuation amplitude 
is 

^VH--~r   [^21(f±n) + ^23(n^J^ 
HV V2 

" " ^   [(D44±P84) ^ + (P66?P46)«2 

[(P64+p46)±P66:fP44]n^u 

with + sign for VH and - sign for HV,   Table IV 3 gives Ac for HV 

and VH for special directions. 
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TABLE   IV 3 

HV, VH SCATTERING AMPLITUDES 

e POLARIZATION -AE 

90v 

VH 
HV 

VH 
HV 

Vb 
V 2 

o b 

(P44 ±p/,r)qu 

^T ^66 ^V^ 

+45 HV o b 

^2 
^66 + P64>qU 

+45 HV 
o b 

N/  2 
(p44-p46)qU 

-45 VH o b 

si  2 
(P44+P46)qU 

-45v HV o b 

\r~2~ 
(p66-p64)qU 
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We found the ratio of the HV intensity at 0(q) = -45° to the 

VH intensity at <t>{q) = +45    to be . 76 which is just equal to the inverse 

of the ratio of squared velocities at those angles.    Therefore we 

conclude that p     is much greater than p. ..    We found VH to be 3. 3 
bo D4 

stronger than HV at ^(q) = +45   while there was no detectable VH 

scattering at ^»(q) = -45  .    From this we conclude fiat p      = -p 
44 46 

and (2p44)/p66 = . 56 . 

Finally, from the ratio of an HV component to the VV 

longitudinal component at ^(q) =   -45    we have 

'66 

'23 
= .28 . 

The scattering Intensity from the longitudinal mode with q 

parallel to b was found to be the same as that for 8(q) ■ -45° 

scattering from the L mode (within 3%) both for yz and for xy 

plane scattering spectra.    Therefore p10 
s p,„ and 

'12 
J23 

.60 

In order to determine the Brillouin scattering cross sections 

and Pockels coefficients in TGS we ran consecutive VV spectra on 

samples of water, fused quartz, and TGS (0(q) at -45°).    By 

comparing the signal heights of the longitudinal components in 

these materials we can determine the cross section in TGS 

because the cross sections in water and fused quarts are known 

in the sense that they can be calculated.    The cross section per 

unit volume (denoted s) Is 



for HgO and 

94 

d8vv 
(T) kT (c-l)' 

pv 

ds 
VV 

dft 
2/ 1 \ n   T kT  ^- 

for fused quartz.    These cross sections give the total scattering 

intensity for scattering from the longitudinal modes in the doublet 

with components atAw ■ ±u(q).    The cross section for a single 

Brillouin component would be   half as  large. 

The data is given in Table IV 4 as the maximum signal for 

the longitudinal components, the signal ratios, and signal ratios 

corrected for differing collection angles.    From these ratios we 

computed the scattering cross sections from the calculated cross 

section for water at 23° C and \ = 6:'28 % 

ds 
VV 

dn 
• M3*10~G cm'1 (i.e.  cm2/cc) 

They also are listed in Table IV 4, 

For comparison we can calculate the cross section for fused quartz 

directly from measured values of p^.  VedanPglves p^ . ,285 and Prlmak 

and Posif   give .270.  Taking these values to represent the uncertainty 
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TABLE IV 4 

BRILLOUIN SCATTERING CROSS SECTIONS 

(a) ds 
vv Peak Ratio' 

Sample Signal to dQ 
(k count/eec, ) H-O (cm   ) 

H20 32. 1.00 .683x10' 

Fused 
Quartz 1.86 7.5xl0'2 5.3 xlO-8 

TGS 3.3 13.0xl0'2 0.2xl0"8 

a 
Corrected by ratio of squared refractive indices to account for 

different collection solid angles. 

dBvv   iB the dlfferential cross section per unit volume for   VV 

dft 
2 1 

scattering.    The units are   cm /       = cm" 
cc 
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in our knowledge of p „ we take a value of p     = . 278 ± 3%.    Then 

for the same temperature and wavelength we find 

for fused quartz 

ds 
~    = (5.0 ± 3%) xlO"8 cm'1 

dfi 

This is In reasonable agreement with the cross section for quartz 

calculated from the observed intensity ratios. 

Given the densities, longitudinal velocities, and refractive 

indices nf fused quartz and TGS we can extract the ratio p0„ of TGS 
to P12 of fused quartz.    The cross section formulas and the relations 

among Pockels coefficients found in TGS show that the intensity ratio 

satisfies 

TGS 

FQ 

c    2P 
b      23/ TGS 

'e2   P 

ft 2P  v 
V    b      23) 

^2 
12 j FQ 

{' o FQ 

(^ ^) TGS 

2 12 2 
Taking for fu^ed quartz pv    = . 78 x 10     dyne/cm   and n = 1.458 

2 jo 2  ' 
and for TGS 2v   = . 337   x 10    dyne/cm   and n - 1.484 we find 

P23 (TGS)/P12 (FQ) = .95. 

Taking P12(FQ)    = . 278 gives p23 (TGS) = . 2ß(4) .    We can now 

evaluate the remaining Pockels coefficients that were involved in the 



97 

experiments.    They are collected in matrix form in Table IV 5 

with their most probable signs.    In most OSes the signs are not 

determined by the intensity comparisons. 

Finally, with this data we can give two numerical examples 

which justify the comment made at the end of Section 1 whiwü said 

in effect that 

2 E   P 12 
1   . 

This Is a very useftjl relation for predicting approximate scattering 

intensities, 

2 
For fused quartz we find e - 1 = 1.27   and £ p     = \.26± 3%. 

For TGS (010) plane scattering we find t   - 1 = 1.20 =   Eb   p q ^ 1.28. 

One further observation about TGS as a light scattering sample 

should be mentioned.    In 6328 A  light the crystal produces a strong 

background of inelastically "scattered" light.    This background can 

be blocked with an 18 A width interference filter,  hence must come 

from >± 22 cm'   away from the center frequency.    It could be a 

strong Raman effect or more likely it is fluorcöcence.    When a TGS 

crystal was placed in an Argon laser beam (4880 A ) we saw a light 

path in the crystal illuminated by depolarized weak yellow fluorescence. 

Sample Preparation 

The fGS samples used in this work were grown from solution 

by slowly lowering the well regulated temperature of th^« dolution at 

a constant rate.    The apparatus and technique were essentially the same 
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TABLE IV 5 

TOS FOCKELS COEFFICIENTS (a) 

'U 

• 16. • • 

27. • 27. 0. 

• 16. • • 

• ■ • 2.1 • -2. 

• • • • 

• • • 0. • 7. 7.6 

x 10 -2 

^ Allowed but not measured 

.  Zero by symmetry 

(a)  x'y'z' = abc   coordinate eystem. 



99 

i 

07) 
as those used at the National Bureau of Standards in growing 

ammonium dihydrogen phosphate crystals.    The raw TGS was 

produced by Eastman Organic Chemicals.   We dissolved this in 

distilled water to form a saturated solution at 44  C.    This solution 

was then passed through a 1.0 micron pore diameter Millipore 

filter up to three times.    In this way we obtained a dust free solution 

which produced crystals substantially free from inclusione,  as shown 

by direct visual examination using laser illumination and by the low 

extraneous elastic scattering in the light scattering spectra. 

Reference (38) gives two articles on growing TGS . 

The samples of TGS used for light scattering were prepared 

from large (2x2x4 cm) crystals by cleaving the crystals 

perpendicular to b making roughly 6 mm thick (0)0) cut plates.    The 

large   natural c faces were left intact to serve as orientation refer- 

ences. 

Electrodes were painted on the (010) faces to allow the application 

of large dc electric fields parallel to the b axis.    For the work in 

this section the application of fields was only to assure that the crystal 

was single domain in the ferroelectric phase.    This will be discussed 

more fully in Section V 

The sample was mounted on Incite support rod.    This rod held 

the sample suspended in the oil bath used to control the sample 

temperature and provide the refractive index match.    The rod was 

mounted vertically in a device (a "twiddler") which allowed screw 

adjusted measured rotation of the rod and sample about the rod axis 

which was verticle and perpendicular to the scattering plane. 
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SECTION   V 

LIGHT SCATTERING IN TGS NEAR ITS FERROELECTRIC PHASE 

TRANSITION 

The goal In our light scattering experiments in TGS was to 

study the dynamics of thermodynamic fluctuations in the region of a 

second order phase transition in a crystal. 

After a short description of the relevant properties of TGS we 

will present the results of Brillouin scattering r.-xperiments in TGS 

near the Curie temperature.    These experiments basically consisted 

of measuring the Brillouin shift and linewldth ES a function of 

temperature and applied field for the various acoustic modes.    We 

found that certain of the modes showed a q dependent velocity dispersion 

with temperature and field.    The data was found to fit single relaxation 

time predictions of velocity dispersion.   The related damping of the 

modes was seen as a broadening of the Brillouin components in the 

dispersion region.   We were able to extract the temperature and field 

dependent relaxation rates from the data. 

We believe that the observed relaxational effects are due to the 

large and slow fluctuations near T    of the electric polarization parallel 

to the ferroelectric axis.    The data Is presented in this section without 

such an interpretation in order to separate the experimental facts from 

theory.    In Section VI we will give the phenomenological theory which 

ties together the observations of the present section and the ferro- 

electric phase transition.   The reader unfamiliar with ferroelectrics 

and second order phase transitions may wish to go directly to Section VI 

before studying the experimental results. 
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No critical opalescence was observed though it was searched 

for indicating that the fluctuations in the order parameter near T 

are not strongly coupled to the optical dielectric constant. 

Triglycine Sulfate 

Triglycine sulfate (TGS) is a colorless monoclinlc crystalline 

solid.    The molecular formula is (NH CH COOH) H SO   and there 

are two formula units per unit cell.    This crystal was found to be 

ferroelectric at room temperature and undergo a phase change to a 
o (39) 

non-polar phase at 47  C by Matthias et. al. X-ray studies by 
(40) 

Wood and Holden        showed that the polar phase had the point symmetry 
(4\ ) 

C .    Further x-ray studies by Hoshino et. al. showed that non-polar 

phase had an average symmetry C Im.    In the polar phase the 
Ct 

monoclinic (b) axis is the ferroelectric axis as is required by symmetry. 

The phase transition in TGS is marked by Curie law behavior 

of the dielectric constant, that is e.   is found to be proportional to 

| T-T   linear-    ^ .... T- The phaae transition  temperature and the 

Curie temperature are taken to be the same close to the transition. 

We describe a ferroelectric crystal for the present as a polar 

class crystal exhibiting a pyroelectric polarization (i. e.  a temperature 

dependent electric polarization occuring spontaneously without an 

external electric field) which can be reversed by an applied electric 

field.    In analogy to a ferromagnet, a ferroelectric crystal shows 

P vs.  E hysteresis loops for electric fields applied along the direction 

of spontaneous polarization.  (Pis the electric polarization). 
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The crystal TGS microscopically has a very complex structure 

and macroscopically it has low symmetry.    Nevertheless TGS is a 

reasonable choice for a first Brillouin scattering study because its 

macroscopic thermodynamic properties show simple behavior,  many 

of its properties have been measured,  it has a well established 

second order (order-disorder) phase transition at an experimentally 

very convenient temperature, and it is easily grown in large optical 

quality crystals. 

Previous investigations have shown that there are elastic 
(A4) (4-f) 

anomalies near T    in TGS.   Gilletta        and Ikeda, et al. 

studied the elastic compliances s.. by resonance techniques and found 

certain of them to show large changes just below T   .    The work of 

Ikeda,  et al.        established that there was no change in the elastic 

properties at constant electric polarization (P) at the phaae 

transition, but that electrostrictive coupling of polarization and 

elastic vibrations gave an anomoly in elastic properties when 

measured with constant electric field (E) boundary conditions. 
(46 ) 

O'Brian and Litovitz        found velocity dispersion and frequency 

dependent attenuation below Tr for pulsed ultrasonic waves traveling 

perpendicular to the ferroelectric axis.    They fit their observations 

to single relaxation time formulae and attributed the relaxation to the 

polarization along the ferroelectric axis.    Based on these studies we 

expected to see the Brillouin components for scattering from suitable 

modes show a 1% to 10% frequency increase as T approached T_ 

from below. 

(4:?) 

% 
1 
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Temperature MeaHurcment and Control 

The temperature of the crystal was controlled by regulating 

the temperature of the oil bath in which it was placed.    The bath was 

cylindrical, 16 cm in diameter and 15 cm high.    The oil was light 

paraffin oil which had been filtered through a Ip. Mllllpore filter.    The 

temperature controller was a commercial proportional controller 

(Fisher Scientific Proportional Temperature Controller Cat.  No. 

150177-50V2) using a thermistor probe, an ac bridge and phase 

sensitive triggering of silicon control rectifiers.    The heater was 

a 100 W copper enclosed coll.    With a well stirred bath and careful 

probe placement it was possible to control the temperature to within 

±. 01 C .    The temperature was measured with a Brooklyn mercury 

thermometer (#22236) with a (. 01 C )/div.  scale for temperatures in 

the range 41 C to 55 C around T „    This thermometer was calibrated 

for total immersion but was not used totally Immersed so the absolute 

temperatures are not known to better than ±. 03 C .    On the other 

hand temperature differences should be good to within the limit set 

by the control 0actuation of ±. 02 C . 

Determining T^ 

The review literature gives only the crude value of 49 C for the 

Curie temperature of TGS.    A literature search shows that T    has 

been found to occur over a range of 47  C to 50 C by different 

investigators studying different samples.   Even the recent highly 

precise dielectric measurements of Craig        and Gonzalo        give 

T    differing by 1 C0. 

We wanted to eliminate the necessity of knowing our absolute 

i 
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temperature while accurately knowing how far we were from  1    . 

This made it necessary to perform an independent experiment to 

find the temperature reading of our thermometer which corresponded 

to T- in our samples. 

Our test for Tr was to look for the temperature of the oil bath 

at which an immersed TGS sample stopped showing hysteresis in its 

P vs.  E characteristic.    Since P , the spontaneous polarization, 
s 

goes continuously to zero as T approaches Tr from below and then 

remains constant at zero for T greater than T   , the temperature 

at which the hysteresis loop first closes should be T   . 

The probes for this test were small capacitors made from the 

same batches of TGS to be used in the light scattering experiments. 

These capacitors were 1 mm thick cleaved b plates with b faces of 
2 

about . 5 cm   area.    The b faces were painted with silver conducting 

paint to form the capacitor electrodes. 

These capacitor probes were submerged In the oil bath and 
(+9) 

connected into a simple version of a Sawyer-Tower        circuit 

which allowed a 60 Hz ac voltage of 45 V rms to be applied to the 

crystal electrodes (E up to 640 V/cm) while a signal proportional 

to the charge on the electrodes was displayed vs.  the applied field 

on an oscilloscope.    No special phase compensation was used so 

it was not possible to get the display on the oscilloscope to show a 

closed loop at T greater than T    but by turning up the gain of the 

scope it was possible to magnify the temperature dependence of 

the tip of the loop.    (The tip is the point of maximum induced 

polarization and applied field.)   It was found that for thermometer 

readings greater than 49. 25 ± . 01 C the tip of the loop was independent 

of temperature.    We found this same temperature for samples given 
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to us by T.   A.   Litnvit?;,  for samples grown in our laboratory from 

purr baths and for a sample grown in our laboratory from an iron 

contaminated bath. 

We defined this temperature reading as our reference TGS 

Curie temperature.    All temperature differences to be given later 

in presenting the data were computed using this reference temperature 

reading of 49. 25  C. 

The absolute temperature of our Tr measurement was 49. 23 ± . 03 C 

taking the -. 07 C    zero correction supplied with the thermometer and 

an estimated stem correction of +. 05 C   into account. 

Table V 1 gives a list of Curie temperatures observed by other 

workers along with the present determination.    The most illuminating 

discussion of the variation of Curie temperatures due to holding the 

crystal at T greater than T   , applied electric fields and doping is 

found in Stankowska and Stankowski. They found T    to be 49. 2  C 

for multidomain pure crystals, 49.15  C for single domain pure 

crystals and depressed to 48. 2  C for CuSO   doped crystals.   Our 

temperature Is in agreement with their results since the ac fields 

required to see the hysteresis loop cause the formation of antiparallel 

needle domains. ^        It appears that crystal purity, defects, and 

mechanical and electrical clamping effects have caused different 

Curie temperatures in the various investigations, 

(JZ) 
Temperature Dependence of the Brillouiti Shifts 

Biillouin spectra were taken with the scattering plane parallel 

to the crystal (010) plane for q at -45° to c* (i. e. . (f>(q) = -45° = e(q) 

= +30 .    See Appendix Fig.   A 1, ) at temperatures between room 

temperature and 55 C.    A temperature dependent frequency dispersion 

h 
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TABLE   V1 

TGS   CURIE   TEMPERATURES 

c 
CO 

47 

48 

49.8 

49.2 - 49. 3 

49.15- 49. 2 

49.2 

49.1   - 49. 6 

48,3 

49.09 

48.478 

49.42 ±.05 

49.23±.03 

Reference 

a 

b 

c 

d 

e 

f 

g 

h 

i 

J 

k 

1 
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a (39) 
Matthias et al.  (1956) 

b „    ,J (83) 
HOBhlno,  Mitsui, Jona and Pepinsky  (1957) 

c (84) 
Triebwasser   (1958) 

Konsantinova, Sll'vestrova and Alekeandrov   (1960)(85, 

Stankowska and Stankowski   (1960) 

f,, (86) 
Shuvalov and Pluzhnlkov   (1962) 

a (87) e Sll'vestrova   (1862) 

h tIJ„      , (88) 
Hill and Ichiki   (1963) 

i (46) 
O'Brian and Litovltz   (1864) 

i (47) J Craig  (1966) 

k (48) 
Gonzales   (1966) 

1   The present work 
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for the quasi-londltudinal (L) and quasi-transverse (Tl) modes was 

found to occur for temperatures in the range 46  C to T   ,    This 

dispersion is shown for ßrlllouin scattering shifts from spectra 
o o 

taken at scattering angles of 90   and 135   in Fig. V 1. 

In order to interpret these data we must know the temperature 

dependence of the scattering vector magnitude q which can depend on 

T through the refractive index.    We measured the refractive indices 

of TGS, TL  and an index in the (010) plane, with a Bausch and Lomb 

Abbe1 refractometer at temperatures between room temperature and 

fi5 C.    We found the Indices to be constant within 100 ppm from 340C 

to 50 C.    We can then conclude that to within our precision of 

frequency measurement the scattering occurs at constant q as the 

temperature is varied. 

To assure that the direction of q couldn't change as T was 

varied the extra precaution was taken of cutting faces on the sample 

normal to the incident and scattered light directions, k   and k . 
j- os 

With q constant we can interpret the changes in the frequencies 

as changes in the acoustic mode velocities.    Thus we see that the L 

and Tl modes show a rapid increase in velocity as T approaches Tr 

from below, superimposed on a gradual decrease. 

The total velocity increase indicated by the data in Fig, V 1 

is 1% for the L mode and 9% for the Tl mode with the 90° and 135° 

scattering angle data s? ^ing the same total velocity dispersion. 

For a given mode the curves for the two scattering angles do not 

give the same v(T).   Instead the scattering with larger q (6 = 135°) 

shows the frequency starting to increase further from T    than that 

for the smaller q (8 = 90 ). 



109 

Fig.   V 1   L and Tl mode Brillouin shift dispersion with 

temperature.       G   = 90° and 135°.   ^ (q) = -45° 

i 
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In Fig.   V 2 we have plotted the difference from T- of the 

temperaturt  at which the frequency (velocity)   was half way through 

the dispersion versus the frequency at that point.    These points lie 

on a line given by u » 3. 4 x l010(sec.  C'V1 (T    - T),  with the 

phonon frequency in radians/see. 

These results are consistant with a single relaxation time 

velocity dispersion of the form 

^ = V2    - (V2    - V2)  /  [ 1  + (WT )2] 
00 00 

with the relaxation rate T      proportional to the temperature dif- 

ference (T- - 1) and u the temperature dependent phonon frequency 
2 2 

for fixed q.   v   is the low frequency velocity limit and v    the high 
2       2 2 

frequency limit.    Since (v     - v ) « v    it is a reasonable anproxiniation 
00 O 00 f 

to take the half way point of the velocity dispersion as representing 
2 

the half way point of the to   dispersion where WT  = 1.    We then expect 

the half way point in the velocity (Av) dispersion to occur at a (T    - T) 

proportional to the frequency at the half way point.    Fig.  V 2 supports 

this view so wc extract the relaxation rate T '    = (3. 4 ± 10%) x 10    (T_-T) 

sec. '   with AT in C  .    The data for Fig.  V 2 are given in Table V 2. 

We have been able to fit the observed velocity dispersion v(T) for 

each of the four cases studied to the single relaxation formula over- 

most of the dispersion.    This was done by reducing tht shifts Av for 

each mod^ and scattering angle to the quantity 

D = [{Av )2 - (Av)2j / (Av  )2 

oo oo 

with Av    the limiting shift at i > T   ,    Taking LJT = B/CA^) and a 
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Fig.   V 2      AT versus the mode frequency. 
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TABLE   V2 

RELAXATION TIMES IN TGS 

T
c-T w/2^ „, 

(C0) <GH^ (109 rad. / sec.) (lO^flec.) 

1.2±.3 6.64 41.7 

1.6±.3 8.70 54.6 

2.7±.5 15.20 95.4 

3.2*.5 19.80 124.3 

2.4 

1.8 

1.0 

.8 
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2 2 2 normalization D   = [ (Av   )    - (Av )  ]/(Av   )    we fit D/D   to the function o oo o oo o 
2 2 

1 - 1/(1 4 (UT) ) = UT /{I + (UT) ) with B and D   as adjustable 
2° parameters.    This function comes from the v    single relaxation 

2       2       2        2 dispersion formula by calculating (v    - v )/(v    - v ).    The Tl data 
O oo O 

is more complicated because of the background temperature dependence. 

For this data we subtracted a linear (with temperature) decrease in 

D/D   of 2. 5fc/C  ,    Fig.  V 3 shows the normalized data and curves 
o 

plotted against log AT.    (The 6 = 90 , L mode data which showed the 

largest scatter is omitted for clarity,)   Table V 3 gives the parameters 

of the curve fitting.    The parameters are consistant with the vtlue of T 

determined from the raw Av versus T data. 

As confirming evidence for the interpretation of the dispersion 

as due to a single relaxation time mechanism we have studied the 

linewidth of the 90   scattering Brillouin components in the region of 
(«) 

the dispersion.    The raw linewidths of the components in the spectra, 

made up of the convolution of the laser, phonon, collection, and 

instrumental linewidths, are shown in Fig. V 4 for the Tl mode at 

^(q) = _450 and the L mode at 0 (q) = -16°.    We see that the L and Tl 

modes go through a maximum approximately at the AT of the disper- 

sion half way point (equivalent to UT  = 1) and drop to a low value (in 

fact the instrumental value) as T reaches T        Figure V 5 shows, 

superimposed experimental traces cf the minimum and maximum 

linewidths for the Tl component. 

The frequency dependent velocity dispersion implies via a 

Kramers-Kronig analysis that there is an imaginary part of the phonon 

frequency u = u(q) which describes the damping of the modes. 

Introducing for the complex u u = u)(q) =(*)' + iu" we find that if 

I 
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2 
Fig.  V 3   No.iualized change in v   versus log AT (From same 

data as Flg. VI.)   Labeled by mode and scattering 

angle.    50% intercept AT corresponds to wr = 1. 

(The L,  6 = 90     data points are omitted for clarity.) 

Typical error bars for the L and Tl I lodes are 

Indicated. 



116 

■ 



117 

TABLE   V 3 

SUMMARY OF PARAMETERS FOR TEMPERATURE DISPERSION FIT 

OF (Av )2   TO SINGLE RELAXATION FORMULA a 

Mode U (w T )AT 
(b) 

( 10    cm •s (lO^ad. / aec.) (c0) 
o 

L 2.72 12.43 4.0*. 4 2.1 

L 2.07 9.54 2.5*. 6 2.1 

T.^' 2.72 5.46 1.8*.3 19.2 

TlM 2.07 4.1? 1.2*.3 19.2 

§   at ♦ (q)   ■ ■ -45° 

1 Q »J 

D   chosen for best fit.    D  £   [ v        - v     1  / v    . o o oo o oo 

c o 
Background slope of -2.5%/C    substracted before fitting. 

~ 
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Fig.  V 4   Brillouin component linewldths versus temperature. 

(Linewidths include the instrumental linewidth, ) 
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Fig,  V 5   Superimposed Tl Brillouln component traces. AT «• 0 

shows instrumental llnewldth.   AT ■ 1.24 C   shows 

maximum broadening. (In the superposition the peaks 

have been centered on the same line and made to 

coincide at the peak.) 
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u 2 2        ^ 
u    - (u    - w")/[ i + ILJT ] 

00 oo o 

then 

w 
00 

(u lü2)/[l + (u'T)2i 

and 

u i(w« -WO)T/[1 ' (U;,T)2] • 
2 2 2 

assuming that (u     - u ) « u)    so that u    « u'.    We see that in this 
oo o oo 

approximation v/e have the expression used previously to fit the 

velocity dispersion and we have the phonon relaxation rate u" due to 

the single relaxation mechanism,    w" is maximum at uS   = 1.  where 

it has the value 

^U)MA^sk^i -w!)/2w'ffi(w    -w ). MAA      J       OO O 2       OO O 

The Brillouin component linewidth is just 2w" so we have the 

prediction that the maximum broadening of the Brillouin component 

is just equal to (u    - u ), the total frequency dieperbion. 

The convolution which gives the linewidth of the experimental 

spectral trace is very complicated.    We   will make the gross 

simplification that we can take the maximum difference in observed 

lii>ewidth and instrumental linewidth (1. 2 GHz) as giving the maximum 

Brillouin component b.-oadening.    Doing üiia we find the maximum 

change in the Tl linewidth was . 63 GHz and the maximum change in 

the L linewidth was , 37 GHz.    For comparison the total dispersion 

was , 60 GHz for the Tl mode and , 45 GHz for the L mode for the 
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respective <j directi^nß.    The agreement is satisfactory, 

The detailed shape of the curves of excess linewidth versus AT 

does not fit the prediction but this is believed to be due to the con- 

volution problem.    The maximum occurs at the expected AT and the 

magnitude of the maximum linewidth increase agrees with the total 

dispersion.    Thus we feel quite confider' in our interpretation. 

From the temperature dependence of the Brlllouln shifts 

away from the regions of relaxatlonal dispersion we have extracted 

velocity temperature coefficients.   These are given in Table V 4 

for the L and Tl modes.   In some cases especially for the Tl mode 

the coefficients seem to change near Tp, so we have given values 

for the reglom above and below T_. 

The slopes and their difference above and below T-, are not 

explained by the theory to be given in this thesis.    The observed 

velocity changes are equivalent to change« in elastic constants of 

from < 200 to 2000 ppm/C0.    These values are typical of most 

crystalline solids. 

The crystals used in this study were conditioned in the polar 

phase by "poling" with a 5 kV/cm dc electric field applied along the 
A 

ferroelectric axis (b).    This was applied in the -b direction.    (We 

take the convention of calling +b the direction for which a, b and c 

form a right handed triad.)   Call this a left handed sample.   A right 

handed sample (an electrical twin) can be made by poling the crystal 

with the field parallel to b,   A left handed sample has opposite signs 

of its piezoelectric coefficients from a right handed sample but its 

elastic stiffness coefficients are the same.    We checked in a few 

cases and found the Briüouin shifts not to depend on the sample 
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TABLE V   4 

(010) PLANE VELOCITY TEMPERATURE COEFEICIENTS 

0(q) Temperaiure Coefficients (m/3ec, C ) 

L 

- 

T>T T <T, T>T, T<T 

-77 .4 .4 -- -- 

-30 .6 0. 3.0 5.1 

-20 0. 0. 2.3 2.7 

0 0. 0. 5.3 2.6 

15 Ü. 0. 0. 6.8 

55 3.8 3.8 2.4 6.5 

SO 2.9 2.9 3.2 3.2 

65 — 5.6 —  •m 3.0 
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handedness but for consistancy all work reported here was on left 

handed samples.    The poling was done at the Initial lowest temperature 

of each temperature run.    The crystal electrodes were then shorted 

aad remained so as long as the temperature was being increased.   The 

crystal was repoled after each temperature decrease. 

We went to this care in poling the samples to make sure that 

they were single domain during our measurements.   In some later 

work we found that the domain walls could sometimes be visible in 
Iff) 

the laser beam. This allowed us to check our poling procedure. 

We found that unless the sample had been cooled from T greater than 

T- with a field applied, poling at T less than Tr did not give a 

permanent single domain.   We then prepared a permanent single 

domain sample by cooling with field applied and ran spectra at 

^(q) a -45   versus T.   Complete agreement with earlier work was 

obtained. 

Field Dependence of the Brlllouln Shifts(<r< 

We studied the effect of dc electric fields applied parallel to 

the ferroelectric (b) axis of TGS, 

The crude test for an effect was to hold the sample at T- and 

run spectra with the electrodes shorted and then with 3 to 4 k\ applied. 

The samples were all about . 7 cm thick so this gave fields of about 

5 kV/cm.    We observed tnat Tor the directions in which temperature 

dependent Av had been observed, the L and Tl mode component 

shifts decreased with applied field.    Moreover the magnitude of the 

maximum change with field observed was the same as the total 

change observed when the temperature was varied.   The field gave no 

effect for directions in which there was no temperature effect and the 
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T2 mode {UV scattering) showed no field effect. 

Before we could interpret this as a field dependent relaxation 

effect we had to look for a field dependence of the refractive indices. 

This was done by looking for a change in deflection of a laser beam 

traversing a prism of TGS.    We found no detectable effect for fields 

up to 9 kV/c        We could have detected changes of . 05%.    Since 

the refractive indices are independent of field, q was independent of 

field and we may interpret the changes in Brillouin shifts as 

changes in the L and Tl mode velocities. 

We studied the field dependence in detail for ^(q) = -45°,    We 

limited the fields to 7. 5 kV/cm because of trouble with electrical 

breakdown at 9 kV/cm.    With theae fields we could change the Tl 

mode shift almost back to the minimum value that it has for T less 

than Tc and to reduce the L mode shift about half way to its low 

temperature value. 

The theory to be presented in Section VI predicts a field 

dependent relaxation ratt at T    proportional to E2^3.    Figure V 6 

shows the normalized change in (Av)2 for the Tl mode plotted 
2/3 

against log E      .    The data in this form is fit very well by the single 

relaxation time (predicted) function WT /(I + (UT )2) with 

(T)'   = 2. 0 x 1010 E2/3 sec. ~1, E in kV/cm. and (v2  - v2)/v2 = 15% 
oc o        CO 

Using this relaxation rate we predict that the UT  = 1 occurs for 

the L mode at E = 10 kV/cm well above the fields applied.    This is 

consistant with the small change in the L shift which began to appear 

for Eq/3 > 2(kV/cm)2/3. 

We also observed the Tl Brillouin component linewidth 

broadening near the field giving un  = I.    As in the case when 
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temperature was varied the maximum increase in linewidth of 

. 6 GHz was consistent with the total frequency di'   ersion.    Thus 

the single relaxation description of the fie'd effe .„ is firmly 

established. 

Other Observations 

We made a study of the temperature and field dependence of 

the Brlllouin shifts for various directions of q in the (010) plane In 

addition to <Hq) = -45 .    Using (v    - v ) as a measure of the 
00 c 

coupling we found the coupling to be very anisotropic but the 

temperature dependent, relaxation time was independent of q within 

our experimental uncertainty of ±10%,    This anitiotropy ia shown 

in Fig,  V 7      The range of directions over which the Tl mode could 

be studied was limited by the intensity variation for this component, 

A more careful study with polarized spectre to select just the Tl mode 

(VV) could extend the range of angles somewhat.    (Re Section IV) 

The curves drawn through the daia points are just guesses of the bhape. 

Calculations performed with the theory of Section VI have shown that 

the velocity difference versus cj has no simple closed expression and 

Is very sensitive to the values chosen for the electrostrlction 

coefficients.   We do find an interesting correspondence between the 

coupling anisotropy pattern for the L mode and the thermal expansion 
(J7) 

measured by izhkova et al. The thermal expansion pattern in 

(DIO) plane showed maxima near the ±c directions.    In Section VI we 

will see that this pattern of expansion and the coupling anisotropy 

are related through the same coefficients to the electric polarization. 

The decrease in velocity for the L and Tl modes for a 5 kV/cm 

field applied parallel to-b and the sample at T    was determined as a 



Fig.  V 7   Total temperature dispersion,  v   - v    ,  versus 0 (q) 
••       o 

<v   - v    is a measure of the coupling anisotropy. ) 00       o 
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function of the q direction in the (010) plane.    The results were 

consistent with the above temperature scan work in giving the relative 

coupling versus q but the magnitudes of the velocity changes were all 

smaller.    We believe this to be due to using too small a field to 

depress the velocity to the ur « 1 limit.    Using the field dependent 

relaxation time previously observed we can calculate that a field of 

68 kV/cm would be required to take the L mode 90   scattering angle 

frequency through at least 80% of its dispersion at any q in the (010) 

plane.   Similarly It would take 23 kV/cm for the Tl mode. 

We studied the temperature and field dependence of the T2 mode 

(q in (010) plane and displacement parallel to b--a pure shear mode) 

in HV spectra.   No relaxation clfectfa - ?ar T- were detectable.    The 

Brlllouln shifts and hence the velocities were essentially independent 

of T and field.    For example at ^ (q) « -45   we observed the velocity 

to show only a slow decrease with temperature (2 m/sec. /C )and a 

small increase with applied field at Tr.    Thus it appears that the 

T2 mode is not coupled to the relaxing entity which effects the L and 
Tl modes. 

Finally we studied the temperature  dependence of the 

longitudinal mode Brlllouln component with q parallel to b.    The 

Brillouin shift and hence longitudinal velocity was found to be 

essentially temperature Independent showing only a slow decrease 

with temperature of 1. 8 m/sec. /C .    This is surprising since the 

low frequency work    ' showed an anomoly in s    ,    This shows 

that the coupling is non-zero but our observation agrees with that of 

O'Brian and Lltovitz. We will show in Section VI that this 

discrepancy has an especially interesting explanation. 



130 

Critical Opalescnnce 

As T approaches T_ the observed pole in the dielectric constant 

t0 shows that the thermal fluctuations in the y component of the electric 

polarization P« occur easily and so get large.    Ju t as in liquid -vapor 

critical phenomena one might expect that if the optical polarizability 

of the crystal was modulated by AP   a large increase in light scat- 

terlng would occur ai5 the fluctuations in P   get large near 1'       A 

more detailed argument appropriate to TGS, which is non-piezoelectric 

in the non-polar phase, indicates that the total scattering intensity 

due to polarization fluctuations will be constant through T bui 

that its spectrum centered at the incident frequency will become very 

narrow near T   . 

We looked for critical opalescence of this latter type after most 

of our Brillouin scattering work was completed when very high 

quality samples became available.    Fig. V 8 shows the scattering 

spectrum of a good, freshly polished sample of TGS at T^.    The 

relatively low amount of elastic scattering shown in the central 

component showed no temperature dependence as T moved away from 

T    so is believed due co crystal imperfections.    We conclude that the 

optical dielectric constant gived an integrated VV scattering cross 

section small compared to that for Brillouin scattering in TGS. 

■ 
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Ay 

Fig.  V 8   VV spectrum,  #(q) = -45! showing Rayleigh component 

(R),  Tl component,  and L component at T   . 
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SECTION VI 

A THERMODYNAMIC POTENTIAL THEORY FOR THE STRAIN AND 

POLARIZATION FLUCTUATION DYNAMICS IN TGS NEAR 

ITS FERROELECTRIC PHASE TRANSITION 

In Section V we gave the experimental evidence that showed that 

the L and Tl acoustic modes of the (010) plane in TGS are coupled to 

a single relaxing quantity (i. e., are coupled to a quantity having a»i 

exponentially damped autocorrelation function).    The degree of 

coupling Indicated by the total dispersion is different for the two modes 

and for different q directions but the temperature-frequency dependence 

was always the same indicating that there is only a single temperature 

dependent relaxation rate for all q in the (O.'.O) plane. 

In th4" section we will give a phenomenological theory of the 

phase transition in TGS based on a model free energy expansion with 

electrostricti\    terms and a simple application of the ideas of 

irreversible thermodynamics.   With this theory we show that relaxing 

th-prmal fluctuations ol the spontaneous polarization of ferroelectric 

TGS can account for all of our velocity dispersion observations near 

T   .    This includes the selection rule that the T2 mode is not coupled 

to the polarization fluctuations, quantitatively relating the temperature 

and field dependent relaxation rates, and qualitative agreement on the 

aniaotropy of the total dispersion in the (010) plane. 

We begin with . discussion of the general behavior of ferro- 

electrics near the Curie temperature.    We show how the dielectric 

behavior can be given a unified description using an appropriate 

! 
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thermodynamic potential.    With this ae background we give a 

thermodynamic potential for TGS expanded in the variables strain and 

polarization along the ferroelectric axis.    From this potential we 

deduce the equilibrium polarization and strain ae functions of temper- 

ature.   We then derive equations relating the spatial Fourier components 

of the fluctuations from their equilibrium values of polarization and 

strain.   Assuming that fluctuations of polarization decay exponentially 

we derive the temperature dependent relaxation rate and the frequency 

dependent elastic stiffness constants which predict a single relaxation 

time dispersion In the acoustic mode frequencies for a given wave 

vector q.    From the measured relaxation rate we can extract the 

kinetic coefficient of the polarization fluctuations. 

Using dielectric and electrostriction parameters from the 

literature we evaluate our derived expressions and give the calculated 

coupling anisotropy for (010) plane acoustic modes in TGS. 

Next we derive the effect of an applied electric field on the 

fluctuation dynamics and find a field dependent relaxation of the 

polarization and an associated velocity dispersion. 

Finally we derive the liuc^iation dynamics for the case of q 

parallel to the ferroelectric axis.    Here we must add a term to the 

free energy to account for the electrostatic energy of the polarization 

fluctuations     Thi'S leads to a fast and essentially temperature 

independent relaxation rate so that no temperature dependent relaxation 

should occur in agreement with experiment. 

Ferroelectric Phase Transitions 

As was stated in Section 7 a ferroelectric crystal is a polar 

class crystal exhibiting a pyroelectric polarization which can be 
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reversed by an applied electric field. Our interest in ferroelectrics 

centers around the phase transitions that they exhibit. We shall see 

that the crucial property of these crystals near the ferroelectric phase 

transition (polar to non-polar) is their large, temperature dependent 
i i -1 dielectric constant which increases like | T - T- j      near Tr.   A 

crystal showing this behavior Is said to obey the Curie law, in 

analogy with ferromagnetic transitions which exhibit a like behavior 

in the susceptibility.   Ferroelectrics exhibiting simple second order 

transitions in which their thermodynamic variables are continuous 

have their spontaneous polarization P   go continuously to zero as T 
8   2 

approaches T   in the polar phase with P   proportional to AT.   Such 
C s        ' 

behavior is expected of the ordering of any system in which the long 

range forces predominate.   It is the analog of t! 3 behavior predicted 

at the critical point of a van der Waals gas with P   replacing the 

liquid-gas density difference and the dielectric constant replacing 

the isothermal compressibility. 

The recent dielectric measurements of Cralg        and Gonzalo 

on TGS were carried to great precision in order to look for any 

deviation from the behavior 

e"1 = const x (AT)V 

with y = 1.    Gonzalo found Y 
s, 1. 00 ± . 05 carrying the measurements 

rc 
q       n 

in to within 50 x 10~   C   of T   before being limited by the sample quality 

Gonzalo also found 

P2 = const x(T- - T)1,0*'1 

S L, 

near T-,   Thus TGS seems to be an outstanding example of a system 
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exhibiting classical behavior in the region of a second order phase 

transition.    This is perhaps not surprising since the predominant 

forces in ferroelectrlcs are believed to be electrostatic and therefore 

long range. 

The general features of ferroelectric crystal properties and 

their phase transitions have been very successfully described in a 

unified manner through the use of thermodynamic potentials.    We 

will review a simple illustration of this by showing how the & ■    ctric 

properties of a ferroelectric having a second order transi*       >an be 

deduced from a model thermodynamic potential. 

We use the Gibbs function G(TJ X^ Pfc a function of temperature, 

stress and the polarization component along the forroelectric axis.   We 

expand this as 

G(T. o.p)-|-xP2 + jep4 +  

and assume that this expansion holds with the same coefficients 

throughout the transition region.   We take only even powers of P to 

conform tc centrorymmetrlc symmetry.   We assume that £ is greater 

than zero and Independent of temperature and that x ■ (4)r/C)(T-T  ) 

with C > 0.   We assume the expansion converges rapidly enough to 

neglect the 6th and higher order terms.   We now find that the system 

will undergo a second order phase transition at T   .    First we compute 

the equilibrium polarization for the condition that the electric field 

(generalized force) conjugate to P is zero.    We calculate E in the 

standard way as a partial derivative of G giving 

E-Fp-'xP + ep3. 
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Setting E2 = 0 we find that G is minimum if 

P   = 0 for T > T, 

ana 

P2B-X/5lPs for T < T 
C   ' 

Thus we And that there is no spontaneous polarization above T- but 

that below T^,  P   has two (±) stable non-zero values and the square 

is proportional to AT. 

Next we derive the reciprocal dielectric susceptability 

1    a2G 
2        8P2 

8E 
7F 

equl. equi. 

With AP the deviation of P   from equillbrlun-.,    above   T- 

E = XAP+ |(AP)d 

so that the reciprocal susceptability is 

8E 
8P X . 

AP=0 

Below Ty 

E « X AP + 3gP AP ■ -2XA P 
s 

so that the reciprocal susceptability is 

« -2X . 
8E 

AP»0 
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Now 47^2 = e2 so that above Tc   c= in/X  = C/(T - Tc) and 

below Tc c2 - -47r/2x  = (C/2)/(Tc - T). 

Thus we have reproduced the behavior described earlier for 

ferroelectrics near Tc with P continuous throughout the transition 

which is therefore of second order. 

Further discussion of thermodynamic potentials (free energies) 

in ferroelect rics can be found in the review by Jona and Shirane. 

They have based their presentation on the work of Mueller, Cady and 

Devonsb^e.    They give a very useful bibliography of earlier reviews 

on ferroelectric crystals at the end of their first chapter. 

The idea of producing second order transition behavior from a 

free energy expansion goes back to L.  D. Landau who gave a theory 
(SA) 

of second order transitions In 1937. The basic idea is to Identify 

a variable r\ labeled the order parameter in terms of which the free 

energy expansion has the form 

F = ia{T - Tc)t,2 + ^ + .  .  .  . 

We know from the previous  liscussion that this model free energy 

will yield a thermodynamic second order transition if | > 0. 

In a ferroelectric we see that the spontaneous polarization 

corresponds to the order parameter.    In TGS the equilibrium P 

measures the average degree to which the unit cells of the 

microscopic structure have .he same handedness. 

We wish to emphasize that the phenomenological theories of 

ferroplectrics really represent particular cases of the general 

approach of free energy power series expansions.    This more 
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general viewpoint is well documented in the Russian literature.    A 

good introduction Is found in Statistical Physics by Landau and 

Lifshltz. 

Because the spontaneous and induced polarizations can be 

large in ferroelectrics the coupling of strain (or stress) with electric 

polarization (or field) is important in understanding the behavior 

near Tp.    TGS is centrosymmetric in the non-polar phase so the 

coupling between polarization and strain is expected to be electro- 
2 

strlctive, that is with the strain proportional to P .   I+ is crucial 

in developing a phenomenologlca! theory for TGS to Include 

electrostrictive terms in the thermodynamic potential to account 

for the (morphlc) piezoelectricity of polar TGS and the coupling 

of strain waves to polarization fluctuations. 

Having calculated tue temperature dependence of the 

equilibrium dielectric properties we could now go on to calculate 

the mean square fluctuations as well as the time dependence of 

the fluctuations of P.    These fluctuations become very large and 

slow as X gets small near T  .    They are an example of critical 

point fluctuations.   Actually since the fluctuations of interest are 

inhomogenous, we can not consider polarization fluctuations 

separately from the inhomogeneous strain fluctuations which can 

not be eliminated (clamped).   Therefore we will turn to the detailed 

analysis of the equilibrium properties and fluctuations derived from 

a model thermodynamic potential for TGS which includes elastic 

and electrostrictive terms.    The derivation is a general one for a 

ferroelecti c which is centrosymmetric in the non-polar phase and 

has a unique ferroelectric axis direction. 
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Thermodynamlc Potential Derivation of the Equilibrium Properties 

o£TGS. 

O1 Brian and Litovitz   '    were the first to combine the Landau- 

Khalatnikov derivation of the relaxation time for order parameter 

fluctuations        with the Devonshire theory of ferroelectrlclty 

In a detailed calculation of the elastic properties of TGS near T   , 

We will follow their In using the same model thermodynamlc 

potential expansion. 

Our analysis will lead to more detailed predictions of 

relaxation effects In the elastic constants but qualitatively they are 

the same as the results derived by O'Brian and Litovitz. 

We will use the Helmholtz free energy A(T, x , P ), a function 

of temperature T, strains x , and the y (b) component of polarization 

Pg.    (The ferroelectric axis is the C   axis as is required by sym- 

metry in a monocllnlc crystal.)   In the derivations using this free 

energy we will Ignore the difference between Isothermal and 

adiabatic fluctuations.    The fluctuatlona observed in light scattering 

are approximately adiabatic while the fluctuations calculated with 

the Helmholtz free energy are isothermal.    From the expression 

given by Cady for the difference between isothermal and adiabatic 

elastic compliance coefficients we have calculated the conservative 

estimate of 30 ppm for this difference.    This Is based on the back- 

ground thermal expansions observed by Ezhkova, et al. of 

10 ppm/C   and a heat capacity ? 2 x 10   ergs/cc C0 near T   . 

Our model for the free energy is 



140 

where A   is the free energy at temperature T and zero strain and 

polarization.    The coefficients are the elastic stiffness constants c . . 

the stress electrostriction constants g   , the inverse sueceptability 

X and a dielectric nonlinearity parameter g.    They are In general 

temperature dependent but we assume that they vary en   othly 

through the transition.   Specifically our model will be that 

X  = ~fT - T   ) 

with C > 0, | > 0, and that the coefficients other than X have 

negligible temperature dependence. 

The coupling between P   and strain is through an electrostriction 

constant rather than directly through a piezoelectric coefficient.    This 

avoids assuming temperature dependent piezoelectric coefficients 

which go to zero as (T« - T) > 0 goes to zero.    This is an essential 

element of Devonshire's approach to a theory of ferroelectricity.    The 

polar (piezoelectric) phase is to arise from the spontaneous polariza- 

tion and strain of an initially centrosymmetric crystal form,    (TGS 

goes from monoclinlc C_ to monoclinic C^/m as T increases 

through T   .) 

Below T   ,  P   will have a spontaneously non-zero value.    Due 

to the coupling between P   and strains there will also be spontaneous 

strain. 

We calculate these in the standard way by minimizing the free 

energy thereby requiring that the electric field E   and the stresses 

X. be zero for equilibrium at temperature '!_,. 

8 /v        P 2 
j      Bx ]k k     s2j   2 

- 
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3 A ^ 
P   = __lL= vp   + gp1 + 2ß   P x 

Setting X. and E   equal to zero and looking for minima in A we find 
3 2 

2 o 

and 

(r^TgügT 

2 
^k^ = -8jkg2jP8 

where we are denoting the spontaneous polarisation as P , s .  is the 
s       JK 

matrix of elastic compliance coefficients (inverse to the elastic 

stiffness matrix) and the scalar constant gsg is g9.s . g . .   By 

2 
assumption x is proportional to (T - T  ) so that P   and also (x.) 

must go to zero as (T    - T). 

Above T    only P0 = 0 and x,  = 0 give zero field and stress so 

the average polarization and strain are zero. 
2 

The temperature dependence of P   has been checked by 
(AM S 

Gronzalo. The spontaneous strain prediction has not been 

critically tested near Tr but the x-ray measurements of Ezhkova, 

Zhdanov and Umanskil        showed that the thermal expansion in 

various directions has a change in slope at T    in TGS, 

Thermodynamic Fluctuations in TGS 

We now consider fluctuations.    We wish to derive the equations 

giving the fluctuations in stress and field from their equilibrium 

values in terms of the fluctuations in strain and polarization from 

their equilibrium values.    We do this by linearizing the equations 

for stress and field to give 

* 

* 
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X. = c^Ax^ + 2g21P2(AP2) 

E2 = 2«2jP2(Axj) + ( X+ ^P2 + 2Vj)(AP2) 

where Ax.  and APn are the fluctuations about X  and P„ and X. = AX, 
k 2 k 2 j j 

and E   = AE   In the absence of applied stress or field. 

Above Tr substitution of the zero equilibrium values of strain 

and polarization Into the linearized equations gives 

xj= cfk(A\' 

Ea=X(AP2). 

This shows that the strain and polarization fluctuations are uncoupled 

above T-,.    For this case the dynamics of the fluctuations can be 

treated separately.   We will return to this below. 

Below Tc substitution of the spontaneous strains   and polariza- 

tion into the linearized equations gives 

Light scattering experiments probe particular Fourier components 

of inhomogeneous fluctuations in the scattering volume.   Hence it is 

convenient to treat the fluctuations in terms of spatial Fourier 

components.    As in Section I we define spatial components as 

y{q) = "Y J     y(r)e~ qrd r 
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for any variable y<r) with V the scattering volume.    We will simplify 

the notation by labeling the components with the letter q rather than 

q but we will need to remember that there is a directional dependence. 

In terms of spatial Fourier components we find for T below Tfi 

X.Cq) - cj^«,) + 2g2jP8P2(q) 

Polarization Fluctuation Dynamics 

The polarization fluctuations are assumed to be thermodynamic 

fluctuations which decay exponentially or more precisely the 

fluctuations show an exponential time correlation.   We follow the 

general treatment of the non-equilibrium thermodynamics of order 

fluctuations near a second order transition given by Landau and 
(Tl ) Khalatnikov in calculating relaxation rates. 

Treating the polarization fluc'wuations as being non-propagating 

damped modes represents a particular limit of the microscopic 

viewpoint of ferroelectrics put forth by Ginzberg        and Cochran. 

In this view the dielectric anomoly is due to the presence of a 

temperature dependent, low frequency, infrared active, optical 

lattice vibration.   First approximations have taken this mode to be 

harmonic and therefore lossless.    Experiments seeking to find this 

type of behavior have been unsuccessful except in SrTiO and 

even there the losses were large near T . In the other cases the 

damping is very large so that the mode appears to have a complex 

frequency with no real part.   In these cases the thermodynamic 
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treatment may come closer to the true behavior. 

We start with the kinetic assumption of non-equilibrium 

thermodj-namics that the rate of change of a fluctuating variable is 

proportional to the thermodynamic "force, " where this "force" is 

the partial derivative of the free energy with respect to the variable, 

evalvated at the instantaneous values of the fluctuating variables.    In 

our problem this is written as 

9P (q) 

~9T-  = -Y  BPÄfi    ' -VE2(q) . 
m 

Y is called the kinetic coefficient.   Note that we are applying the idea 

of relating variables and forces to the Fourier components of 

inhomogeneous fluctuations in P      We assume Y to be a constant 

but it is not inconceivable that there are cases where it depends on 

q.   One might expect shorter wavelength polarization fluctuations to 

decay more rapidly for a given E (q), 1. e. that Y Increases with q. 

We can apply the kinetic equation directly in deriving the 

dynamics above T  .    Here we find 

P2(q) = -YXP2(q) 

so that the relaxation rate is 

-1 
T>   =    YX  , 

which is proportional to (T - T  ) because of the assumed temperature 

dependence of X. 

Since the polarization and strain fluctuations are uncoupled 

above T    we do not expect the Brillouin components to be effected 

by the temperature dependent polarization dynamics.    The spectrum 
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of the polarization fluctuations is a Lorentzlan about Aui = 0 with 

full width at half maximum of 2/T   .    This spectrum could show up 

in light scattering spectra but as discussed at the end of Section V 

it did not appear for TGS, 

Dynamics of Coupled Fluctuations Below T- 

We now wish to determine the dynamics of individual Fourier 

components of the coupled strain and polarization fluctuation below 

T^.    Even in the phenomenological theory being presented here 

this is a difficult problem to solve exactly.    For a given q we must 

reduce the 7x7 matrix relating the six strains and the polarization 

to the six stresses and the field to a 4 x 4 eigenfrequency problem. 

The (complex) secular eqi itlon would have four complex roots. 

Rather than attack the problem directly in complete generality 

we will use the approximation of separating the coupled fluctuations 

by their dynarrics.   In general we expect to find one pure damped 

solution and three solutions with non-zero real parts of their 

frequencies.    We will separately look for pure damped solutions 

and damped oscillatory solutions. 

For example sufficiently near T the pure damped (coupled) 

fluctuation relaxation rate can be calculated very simply from the 

kinetic equation by assuming the polarization fluctuations to occur 

so slowly that the strain follows them easily giving fluctuations at 

constant (zero) stress.    For this case we find 

P2(q) = - YE2(q) = -Y2(| - 2g6g)p2po(q) 
s^' 

so that P   relaxes with the rate 
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T^ Y2(e -2g8g)P2
8 

2 
which is proportional to (T^, - T) due to the factor P .    gsg is the 

v. s 
scalar constant gn^k^k*   S>u,:)Stituting the derived expression for 

the spontaneous polarization into this relaxation rate gives 

r^ = 2yX . 

This shows that for a given  AT  the relaxation rate is twice as 

large for T less than T    than for T greater than T- which is 

similar to tnp results for the dielectric constant of a ferroelectric 

near Tp. 

The condition that these fluctuations occur at constant stress 

implies that 

xkW = -2V2JPsP2(q) ' 

Therefore associated with the (critical) fluctuations in polarization 

there is a strain fluctuation.    Even if the polarization fluctuations 

are not coupled to the optical dielectric tensor the strains are and 

they should give a central component to the light scattering spectrum 

whose width is proportional ^o the relaxation rate for the fluctuations. 

For later reference we calculate the mean square fluctuation in the 

strain due to these damped fluctuations.    Prom the constant stress 

condition we have, taking thermal averages 

<K(q)|V4(sk.g2.)V<|P2(qf>. 

The mean square fluctuation in polarization is easily calculated to 



147 

■ 

be 

< 
P2(q) 

2\ 111 
/ "   V 2(e - 2gsg)p' 

Therefore 

Nl     ' /  2(e-2g8g)   v 

Later we will compare this to the mean strain for an acoustic mode 

/I   l2\    kT   1 

Vx|/ = T— • 
pv 

For the strain fluctuations corresponding to the acoustic modes 

we seek oscillating solutions of the form exp(-iut) with w « (j(q) to be 

determined.   We are interested in that part of the polarization 

fluctuations which is oscillating at the same frequency as the strain 
« 

waves so that P2(q) = -iuP^q).    If we substitute this into the kinetic 

equation we find 

-i ^ PjW ■ ^pfcw * >«2, VjW 

so that 

9 P2(q) 

8x(q) 
J 

2hi*, 
2gP TT^SLI 

where u(q) is the frequency of the strain wave of interest. 

In on er to apply the equations of motion for the strain waves 

that we derived in Section II we must calculate the effective elastic 
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constant 

9X.{q) 

Vq) = Ä 
From the equation relating the Fourier components of stress, 

strain and polarization we have 

8X(q) p 8P2(q) 

ä^T   -  Cjk   + 2«2j Ps     i^r 

If we now substitute the expression that we derived for the derivative 

of P   with r 

is given by 

of P   with respect to strain we find that the effective elastic constant 

C
3k

(<l)   =C3Pk     -482j«2kPfl
2/   2ePs

2
+   iuLlq). 

V 

which we rewrite as 

2g    g 
c.k(q) =   c.P   - ^   2k   / [1+   MqH 

with 

{j(q) is still not determined.    To complete the calculation we 

must solve the acoustic mode eigenvalue problem with the (complex) 

effective elastic constants that we have derived.    This will yield an 
2 

equation for u(q)   in terms of the complex elastic constants.    Self 

consistent real and imaginary parts of U)(q) must be found which 

satisfy this equation , 

1 
I 
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The calculation as outlined is formidable.    Nevertheless 

practical solutions are possible for TGS because the coupling is 

weak, that is 

2g2jg2k P 
 *  <:< c 

This allows us to write for each mode a dispersion relation of the 

form 

Mq)]2 2.2 2 
— = vco   -(v« -% )/£i+^<q)Tj   . 00 00 O 

q 

Here the velocities are (real) roots of acoustic eigenvalue problem? 

and hence depend on the direction of q,    v    comes from the eigen- 

value problem using the elentic constants c,. and v   comes from the 
" F 0     P 

eigenvalue problem using the elastic constants cf; = c    - 2ff   a   It 
ij       ij       62iB2j ,s' 

By our previous assumption (^   - v )-r< vj so that the 

imaginary part of the complex frequency u(q) is much smaller than 

the real part w'Cq)   then we can write 

v 2—-^    -v„2.,v„2.vo
2,/[1 + ,UWj 

u> (q) = 1/2 (Woo
2 - tJ0

2 ) T  /[1+ («'(q) T)
2
J 

Equations of this form with T "   proportional to AT were predicted   by 

Landau and Khalatnikov in their treatment of the relaxation of the 

order parameter. 

The physics of the velocity dispersion Is as follows.    For 
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For sufficiently short wavelengths the strain fluctuations have very 

high frequencies.    If the fluctuations in P   are considered to decay 

exponentially then for sufficiently high frequencies (or low relaxation 

rates) they will not be able to follow the oscillating strain fluctuations. 

Thus these strains will take place at constant P0(q) and so will be 
P l 

described by c   .   On the other hand, for low frequencies (or fast 

relaxation rates) P (q) has no difficulty in following the strain 

oscillations.    P2(q) adjusts to keep E   small so that the strain 

fluctuations occur at constant (zero) field and are described by 
E        P 

the constants c ,  = c^.  - 2g .g    /^.    These intuitive ideas are given 

explicit expression in the equation of velocity dispersion. 

The relaxation rate in the derived expressions of velocity 

dispersion is 

-1 2 
T 

1 = Y2ePg. 

The derivation assumed that the polarization fluctuations were 

isothermal.   Actually they are adiabatlc.    This difference is more 

Important for the polarization fluctuation dynamics than for the 

strain fluctuation dynamics because temperature fluctuations are 
2 

strongly coupled to the polarization through 2^P .    Jona and 
s 

Shirane have worked out the difference between the adiabatlc and 

isothermal inverse susceptabllity in TGS. The correction 

applies equally well to the relaxation rate. Above Tc the correction 

is negligible while below T the inverse susceptabllity and therefore 

the relaxation rate for adiabatlc processes is increased by 20%. We 

have not applied this correction in comparing theory with our results. 

Comparison with Experiment 

We now have enough of the theory worked out to begin comparing 
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it to the observations in TGS.   The basic result from the velocity 

dispersion with temperatur? measurements reported in Section Y 

is that they fit a single relaxation equation of the form derived 

here.   Moreover the relaxation rate was proportional to (Tr - T) 

as the theory predicts and independent of q.    The magnitude of the 

relaxation rate can not be calculated from the phonomenological 

theory here since y is an unknown parameter.    Therefore we must 

turn to predictions about the coupling to find additional confirmation 

of the theory. 

From the monoclinlc macroscopic symmetry of TGS we know 

that the matrices for c    and g    have non-zero components as 
lj 

skl 
indicated in the following diagram: 07) 

• • • • • 

• • • • • 

• • • > • 

« ■ • 0 • 

• • • . • 

In particular g    has non-zero components only for j = 1,  2,  3, and 5, 

Therefore the matrix gg./| which gives the differences between 

the c    and c    stiffness constants has the following non-zero components: 

• •      • 

• •      • 

• •      • 

0 
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For q in the (010) plane of TGS we showed In Section 11 that the 

pure shear mode labeled T2 involves only the constants c„^, c,.^. and 
6b      44 

c,-.   We see that these constants are not coupled to the spontaneous 
4b 

polarization and therefore should show no relaxation.    In the experi- 

ment we found only a linear decrease with temperature in the T2 

velocities and no relaxation dispersion near T    in agreement with 

this prediction. 

The quasi-longitudinal and quasi-transverse modes labeled L 

and Tl for the (010) plane involve the six constants c,,, c0„, c__f 11       oa       55 
c^, c.,-, and c^,. all of which are coupled to the polarization.   It 

is for these modes that we observed single relaxation time velocity 

dispersion with temperature.   Using the velocity difference (v,,,,  - v ) 
P      E o a (v    - v   ) as a measure of the coupling of these modes to the 

polarization we see that the coupling can be very anisotropic since 

it comes from differences in velocities calculated from two sets of 

elastic constants each of which give an anisotropic velocity pattern 

having no symmetry except a center of inversion.   We believe that 

this is the explanation of the anlsotropy observed In the experiment 

and shown on Fig. V 7. 

We do find qualitative agreement for the relationship predicted 
(T. ) 

by the theory between the thermal expansion measurements        and 

the L mode coupling anlsotropy.    The calculation of the spontaneous 

strain with our model free energy showed that 

Thus If a particular component of g„. is large then the pattern of 

expansion might be expected to show a maximum in the j direction. 
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Light scatteri ig and ultrasonics agree that s is large (L Tiode 

velocity is minimum near c). The thermal expansion is observed 

to be large and positive near the c direction. Therefore It seems 

that g23 is large and negative. If this is true then we expect that 

c3g will show a large positive dispersion with temperature. This 

agrees with our observations of maximum total dispersion for the 

L mode near the c direction. 

We have made an attempt to make a quantitative comparison 

of the observed anisotropy and measured properties of TGS.    Schmidt 
(T 9 ) ( 80 ) 

and Pfannschmidt        and Ikeda at al, have reported measurements 

of the strain electrostriction constants Q        These measurements 

agree within their precision of ± 10% except for Q      for which 

Schmidt and Phannschmidt argue for their smaller value.    These 

measurements are reported in the x'y'z' = abc* axes.    We compute 

them for the rotated axes -a*-be.    We want the stress constants 

g  . which we can compute from the equation 

~ g2j = CjkQ2k ' 

Using the elastic stiffness constants of Konstantinova et al. listed 
E 

in the appendix which are the constants c . (subject to correction 

because they did not give agreement with the velocities that we 

observed) as approximately equal to the constants c    we found 

— g2.-f
2-7      1-7      -1.8      0      -2,0      0]±10%   (dimensionless) 

10 9 
Using these and ^ = (6. 8 ± 10%) x 10       cm /dyne we calculated that 

^ " ^ = 2g2ig2j/e wa8 
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21.        13.        -15. 

13. 8.4       -9.3 

•15.        -9,3       11. 

16.     -10. 11. 

■16 

■10 

11 

14 

i30% x 109 dynes/cm2 

p jr 
With this matrix we calculated c       from Konstantinova's c   .    Using 

lj lj 
these c    we calculated the velocities as a function of $ In the (010) 

plane.   The results are given in Fig. YI1 In the form of a plot of 
P      E A * 

(v   - v  ) versus e{q), the angle between q and c.   Comparing this 

plot with Fig. V 7 we see that the agreement in magnitude and 

pattern is poor. 

An improved calculation of the coupling anisotropy could be 
p 

done using c       determined from the light scattering velocity 

measurements.    These elastic constants should be better because 

they are determined from more detailed velocity measurements 

and bee 

theory. 

and because they are determined at Tr where we wish to test the 
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CALCULATED   COUPLING    ANISOTROPY 

Fig,  IV 1   Calculated coupling anisotropy, v 

for L and Tl modes,  (010) plane. 

P     E 
-V       = V       - V 
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Opalescence Below T_ 

Earlier we showed that part of the strain fluctuation followed 

the polarization fluctuations and were exponentially decaying.    With 

the electrostriction constants us^d above we can row evaluate the 

mean square strain due to this mode and compare it to the mean 

square strain in an acoustical mode.    The result of this calculation 

is that the damped strain fluctuations should scatter about 1% as 

much light as ^ typical longitudinal mode.    This amount of scattering 

in the central component is completely negligible compared to the 

extraneous elastic scattering i^ the crystal and so was not detectable. 

Kinetic Coefficient Evaluation 

Accepting the theory as confirmed by the comparisons with 

experiment presented so far we can relate the measured relaxation 

rate to the known epontaneous polarization and the unknown kinetic 

coefficient and thus extract a value fcr the kinetic coefficient. 

From the dielectric properties listed in the Appendix we 
2 -3 

have 2^P   = 8. 3 x 10      (T    - T) (dimensionless).    The measured 

10 -1 
relaxation rate was (T )     = (3. 4 ± 10%) x 10    (T^, - T) sec.      The theory 

-1 2 gives the relaxation rate below T    as (T )     = J^P .    Therefore 

1? -1 
0 = (4. 1 ± 10%) x 10  ' sec.    .    This is a reasonable value for the 
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kinetic coefficient because the maximum relaxation rate for very 

short wavelength components of the polarization fluctuations Is 
12 -1 

4ir y ■ 52. x 10     aar     .    This is comparable to typical lattice 

vibration frequencies In molecular crystals as it must be since 

the vibration frequencies ultimately determine how fast microscopic 

changes can take place in the structure. 

Field Dependent Relaxation Rates 

We return to the development of the theory no* to show how it 

yields predictions of a field dependent relaxation rate. 

We treat the case of an applied dc field parallel to the ferro- 

electric axis and zero stress at T  .    For this case our model 

thermodynamlc potential gives the equilibrium conditions 

Xj     Vk + «3jPl " 0 

E = ep2
3 + 2g2.xjP2 . 

We solve these for the induced strain and polarization.    We find 

^e ■ " V2JPe 

P3= E 

e    (4 - 2gsg)   ' 

Expressed in terms o' Fourier components the fluctuations about 

the equilibrium vs^ues of the thermodynamlc variables satisfy the 

linearized equations 

E2(q)   ■ 2g2kPe ^(q)  +   (3{ - 2g8g) P 2 p   (q) 
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We again assume that 

P2 (q) = -  Y ^   =     -   VF2 (q) 

and that the kinetic coefficient is the same as in the zero field case. 

To study the strain dynamics we look for solutions of the form 

exp{-iut) in all fluctuations.    This gives 

^ 2g2kPe 
d*JÜ fit    o«Q„\r.  2 

e 
k^' (H-2gsg)Pr+ iu(q) 

Y 

so that the effective elastic constant is given by 
9 X (q) 4g    g 

with 

r ^ = im - 2gsg)P^   . 

We rev/rite T ~   by substituting the value of induced field that we 

derived and find 

T'
1
   =   Y (3§ - 2gsg) 2/3 
 ;2/3     E 

(e    - 2gsg) 

The structure and solutions of these equations are quite similar 

to those for the temperature dependent relaxation.    Since the coupling 
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matrix is essentially the same and has exactly the same symmetry 

we expect to see the Brillouin components which showed temperature 

dependent relaxation to show a relaxational dispersion with field 
2/3 

with a relaxation time proportional to E 

In the experiments with TGS this is exactly what was observed. 

We were even able to get reasonable agreement between the 

observed relaxation rate and the calculated rate based on the dielectric 

parameters and the kinetic coefficient determined in the temperature 

expe rimer Ls. 

Using the g    components discussed earlier and e    calculated 
(8f) by Ballato        from the measurements of c,, by Konstantinova et al. 

ij 
-10       2 

we find that gsg ■ g0.s , g . = (2. 3 ± 20%) x 10       cm /dyne.   Taking 
^J jK 2k 
-10       2 

g = (6. 9 ± 10%) x 10       cm /dyne, and converting from stat volts/cm 
-1 10 2/3-1 

to kV/cm we predict T     = (4. 1 i 50%) x 10    (E kV/cm) '    sec.    . 
10    2/3 

We observed that the relaxation rate was (2. 0 ± 10%) x 10      E 
9/3 

( kV/cm)"    .    The agreement is satisfactory because the term 

(^ - 2gsg) which appears in the denominator in the calculated rate 

almost shows a cancellation whereaathe temperature dependence 

study shows that the g , are probably smaller than those used in the 

calculation.    This causes the     iculated rate to be high.    Also 

experimentally if the applied field across the sample electrodes does 

not all go into inducing polarization of the crystal then the measured 

rate would appear to be smaller for a given field. 

Using the theory we can also calculate that the matrix giving 

the total change in elastic constants for the field effect is 16% smaller 

than that for the temperature effect, since 4/(3^ - 2gsg) is calculated 
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to be 16% smaller than 2/^. In the   experiment we observed that the 

coupling in terms of elastic constants was 25% less than for the 

temperature effect. 

q Parallel to the Ferroelectric Axis 

So far the theory seems well confirmed.    But we notice that 

our calculation explicitly shows that c-. is coupled to the polarization. 

Therefore we would predict that the longitudinal mode with q parallel 
^ 2 to b should show a 3% change In v   as T approaches T-,.  The experiment 

does not agree.    We saw no temperature dependent relaxation for q 

parallel to b.    This observation shows that we have left something out 

of our treatment. 

The difficulty arises because we have ignored the electrostatic 

energy associated with a Fourier component of the polarization 

fluctuation.    We find that we must modify the model free energy in order 

to satisfy Maxwell's equations.    The problem is quite analogous to the 

lattice dynamics problem in Ionic lattices in which the electrostatic 

energy lifts the degeneracy of the longitudinal and transverse optical 
(81) modes by increasing the frequency of the longitudinal mode. 

TGS is an insulator so we must satisfy the equation 

V-D   = V- (E +4ir P)= q -(E (q) + 4TP (q)) » 0 

Moreover the mode frequencies are small compared with the frequencies 

of photons having the same q (IR radiation) hence B (q) is small. Therefore 

V x E (q)   -   0 
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The polarization is essentially along the ferroelectric (b) axis. 

The curl equation shows that E(q) is longitudinal, that is parallel 

to q .    All together this shows that the field component parallel to 

the b axis associated with P9(q) is 

E2   (q) -47r P2(q) m 

with m the cosine of the angle between q and the b axis.    This field 

Is a varuum field.    The thermodynamlc calculation gives the local 

field.    The total "force" on P2(2) is the difference between the local 

field and the vacuum field 

E2 ""   =    "A     -    E2 <■» 

The effect of this modification is the same as if new terms of 

the form 

(1/2)4^ m2 P2 (q)2 

were added to the fluctuation in the free energy .    Thn we must 

repeat our derivation of the strain fluctuation dynamics using the 

modified equation 

E2(q)   =   2 g2. Ps x. (q) + (4* m2 + 24P 2) P., (q)   . 

2 2 2 
Near T   4ffm   is greater than 2 C P0    since 2% P     approaches zero. 
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The kinetic   assumption now gives 

8P2(q) 2 ™   .   -2g2jPs/(4,m2
+2ep/+,^) 

J 

so that the effective elastic constants are 

i \       8X.(q) _ 4g   g     P 2 

c   W   ,       r ' .   C
P .       g2 jg2k rB_ 

jk            ox, (q) jk ^         2              2s/ 
k ^ J (4jrin    + a^P,/ {l+iw(q)T) 

with 

T '   » Y(47rm2 + 2gP2) 
s 

2 
If Y47rm   is   small compared with u(q) then we recover the 

dispersion previously derived without considering electrostatics.   In 

the present experiment   this limit would require m less than ±. 03 or 

the q direction within ±15° of the (010) plane.    This was satisfied 

during the (010) plane experiment. 

"* 2 
For q parallel to b we have m   = 1.    In this case we rewrite 

the expression for the elastic constant as follows: 

.(q   b )   »  c^ -   -^JÜL      _JLZ|_      1  
6 aHPa/2n)    (H-lu(q)T) 

with 
-1     4    n + ^ • T       = 47rv (1 +   — ) 
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Now we see that at low frequencies which includes all light scattering 
P 

frequencies in TGS,    { c.    - c   ) is temperature dependent going 

continuously to zero as T goes to Tr from below.    The relaxation 

rate is much faster and is essentially temperature independent 

near T   . 

We have written the equation in a form which allows easy 

comparison with the equations of the elastic constants for q in the 

(010) plane.    We see that the leading term of the amplitude of the 

dispersion is the same namely  2g   g ,/£ .    But in TGS the extra factor 

^P
s
2/7r) 2 

(l+fiP 2/2w) S 

is much less than 1 for all T between room temperature and T_ .   Thus 

the change in velocity for the longitudinal mode propagating down the 

b axis was too small to be seen in our experiment.    Notice that even if 

the change in velocity had been detectable in this case, it would not have 

involved  q   dependent relaxation and would not have given broadening of 

the Brlllouin component. 

The anisotropic relaxation rate that we have derived implies that 

there are directions of q between b and the (010) plane for which 

particular acoustic modes would show large, temperature independent 

acoustic single relaxation time absorption.  This would be interesting to 

actually observe as a check on the theory since in the case of q parallel 

to b v/e used the theory in a negative way by explaining why temperature 

dispersion was not seen. With Tat T , the relaxation times found in 

scanning the direction of q between E and the (010) plane could be used to 

determine a value of   Y independent of dielectric measurements. 
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Conclusions 

We conclude from the agreement between the theory presented 

in this section and the observations presented in Section V that 

combining the Landau-Khalatnikov picture of the polarization 

fluctuation dynamics with the Devonshire free energy expansion 

applied to inhomogenous fluctuations yields a good description of the 

beh avior of TGS  in the region of the phase transition. 
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APPENDIX 

I 
5 

Properties of TGS 

Chemical 

Formula 
(31) 

Formula weight 

r>       .    (3t) Density 

(NH2CH2COOH)3H2S04 

323 gm/mole 

1.69 gm/cc 

Crystallography 

Ml) Symmetry above T-     (average) 

space group    P2 /m 

(point group     2/m) 

(41) 
Symmetry below T 

apace group   P2 

(point group   2) 

1 

(31) Lattice constants 

ao = 9.15, b    = 12.69,  c = 5.73*0.03 1 

o     '        » 
p  - 105    40 ±20 
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Coordinate Systems 

Coordinate systems and reference directions used in this 

work are shown in Fig.   Al,    a    and c   refer to reciprocal 

lattice directions.    The choice of a and c is that of Wood and 

Holden.    The direction of b = b   taken to give right handed triads 

of directions in the direct t nd reciprocal lattices. 

The most convenient right handed, orthogonal coordinate 

system for this work is that of x' y' z' = abc  .    Another natural 

choice of right handed orthogonal coordinates would be 

x"y'V = a be.    This set of axes would be rotated by 15*40' about 
■KM 

b from the x'y'z' axes.   Instead of this choice the ultrasonic study 
/o r" \ tic 

of the elastic constants        was done in terms of thexyz a -a -be 

right handed, orthogonal coordinates obtained by a rotation about 

b   of Ififi . When comparing our results to the ultrasonic velocity 

measurements we will use the xyz coordinates. 

Directions are labeled In the   (010) plane by the angles between 

them and either the c or c   directions.    The pense of these angles 

is important and is indicated in the figure. 

Optical Parameters 

The b axis coincides with the acute bisectrix (lowest index of 

refraction).    The other two principle axes of the optical dielectric 

ellipsoid lie in the (010) plane.    The obtuse bisectrix (highest index) is 

3    from the c axis in the ''    J) plane.    The optic normal axis 

(intermediate index) is perpendicular to the first named axes. 

»1 
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Fig.   A 1 

TQS 
LATTICE   DIRECTIONS   AND    COORDINATE 

SYSTEMS 

ß** 74* 20* 

Q- 

X'YT u obc# 

XYZ--a#-bc 
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The refractive indices (room temperature and Na D light) are 

n 
P 

~ 1.484 

n 
m 

= 1  556 

n 
U 

= 1.584 

The optic angle ia 

(48) 
Dielectric 

(-)2V = 6T018018I^105' 

E    = C* / | T - T    | b c1 

T>Tr .    C+   = 3560 C0 

+ 
C 
—      =   2.42 

-10 4 9 9 
e =   ( 6.9 -•■ . 7) x 10       cm   /(stat.  coul)   or cm /dyne 

From    2|Ps     £ 4ff/e^ 2€Pg    = 8.3 x 10"3 (Tc - T) dimensionless 
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Elastic Constants 

Matrix notation,  xyz coordinates of Fig.  A 1 

ciJ     (Konstantlnova et al.,     reference  (85) 

4.55 1.72 1.98 -.30 

1.72 3.21 2.08 -.036 

1.98 2.08 2.63 -.5 

• • •                                                 f .95 • 

-.30 -.036 -.5 1.11 

■ « .            — • 026 • 

026 

62 

,11 xlO*-1 dynes/cm2 

s k, the inverse matrix to c .   computed by Ballato: (81) 

32.9 -2.9 -22,7 

-2.9 69.8 -57.7 

22.7 -37.7 108.5 

-1.5      -24.5        40.9 

L 

105 

-1.5 

-24,5 

40.9 

• 

107.3 

161 

,-13 
x 10 cni2/dyne 
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Elect rostriction 

Strain electrostriction constants in x'y'z' coordinates 
(79) measured by Schmidt and Pfannschmidt : 

Q0., =[1.8       2.7        -5.0 0.1       . ]±10% xlO"11 cm2/dyne 

Strain electrostriction in xyz coordinates of Fig.  A 1 : 

Q    = [1.3       2.7       -4.5       .        -3.4     . ] x 10'U   ein    dyne 

Using c , of Konstantinov et al. the electrostriction stress 

constants are cal ulated from~g . - c. Q      to be: 
2j JK   2K 

"&«.*[ 2'7       l«7       -1»9       •       -2-0      •    1        dimensionless 2j 



Thermal Expansion(57> 

At 50° C 

171 

a 100 = 38 ppm/C 

Q 001 =14.5 

a 101  = 1.4 " 

a 010 =   64 " 

Heat Capacity 

through Tc . 

(69) 

Cp = .35 to . 36 cal/g C   from room temperatu re 

CE8how8a   maximum below T.   Highest   measured 

value was .48 cal/g 0°. 
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