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ABSTRACT 

Within the framework of the "exact" linear theorv an important 

class of wave propagation problems in elastic waveguides,    involving non- 

mixed edge conditions (like stress or displacement),  have  remained 

unsolved.    Basically, this is because known separation methods (classical 

or integral transforms) do not "ask" in a natural way for the given edge 

information.    A means for solving some problems in this class, focused 

on the semi-infinite plate,  as an example,  is presented here.    In the 

method a Laplace transform is used on the propagation coordinate,   say x. 

Exploitation of the boundedness condition on the solution,  at x-oo, generates 

two coupled integral equations for the edge unknowns (displacements and 

strains), which depend,  parametrically,  on those complex wave number roots 

of the governing Rayleigh-Lamb frequency equation representing unbounded 

waves.    Solution of these equations determines the transformed solution of 

the problem, which can be inverted through known techniques.    Excitation 

of a plate with a built-in edge is treated as an example. 

§1.    INTRODUCTION 

Attempts at solving waveguide   problems based on the equations of 

motion from linear elasticity theory,  and involving non-mixed edge conditions, 

date back to Pochhammer's classical work [l]    in 1876 on the frequency equa- 

tion for the infinite circular cylindrical rod.    As Love [2] shows,  attempts to 

use this theory to treat the free vibration of the finite length,  homogeneous, 

1 Numbers in brackets designate references at the end of the report. 
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Isotropie rod, with a separation technique,  lead to a solution in which the 

normal stress on the rod ends vanishes,  but not the shear stress.    Only an 

approximate solution could be written based on the argument that if the rod 

was long and thin,  with the shear stress zero on the cylindrical surface,  it 

is also approximately zero on the ends. 

Similar difficulties are evidenced in the modern work done in 

elastic waveguides.    For example,  the integral transform technique given 

by Folk,   Fox,  Shook,  and Curtis [3] for solving semi-infinite elastic rod 

problems,  involving transient end load inputs,  are restricted to mixed-end 

conditions,  i. e.   they treat,  for instance,   a case of suddenly applied normal 

stress at the rod end under radial (displacement) constraint.    Simply put, 

those elastic waveguide problems, that have been solved by a direct integral 

transform method,   have been geared to the mixed-end (or edge) conditions, 

since these are what the transforms "asked"  for. 

In problems involving non-mixed end (or edge) conditions,   i. e.  the 

stresses or displacements,   very little information has been obtained, 

basically because direct separation methods fail to yield solutions.    A 

means for solving some problems in this class,  focused on the semi-infinite 

plate,  as an example,  is presented here.    In the method a Laplace transform, 

parameter s,   is used on the propagation coordinate x.    To insure that a 

solution be bounded at x-'oo,   residues of poles in the transform of the 

solution,   occurring in the right half s-plane and corresponding to complex 

wave number roots of the governing Rayleigh-Lamb frequency equation,  are 

set equal to zero.     This generates two coupled integral equations for the edge 

unknowns (displacements and strains) which depend,  parametrically,   on 

these complex wave number roots.    Solution of these equations determines 

T 
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the transformed solution of the problem, which can be inverted through 
2 

known techniques   .    Excitation of a plate with a built-in edge is treated as 

an example. 

f2.   GENERAL METHOD 

Formal Solution 

Consider the semi-infinite elastic plate of thickness 2h sketched in 

Fig. 1.    If we let u,  v, w be the displacements in the x,  y,  and z directions, 

respectively,  and assume plane strain such that w = ■*— = 0, the governing 

displacement equations of motion from linear elasticity theory,  for the 

homogeneous,  isotropic plate,  can be written as 

2 2      2 2 c
d
u

xx(x.y,t) + (cd -c8 )v     (x,y,t)+cg u     (x.y.t) = u^x.y.t) 

2 2       2 2 c    v     (x,y,t)+(cJ -c    )u     (x,y,t)+c, v     (x.y.t) = v_(x,y,t) s    xxx    '    '    *  d       s '  xyx    " '      d    vyx    7   '       ttv    7   ' 

(1) 

2 2 where c, =(X+2|i)/p,  and c    =|j/p are,   respectively, the dilatational and 

equivoluminal body wave speeds,  X and M being Lame's constants.    Corre- 

sponding stress-strain relations are 

-TW- = ux(x, y, t) + |—2-j vy(x. y, t) 

\ 

k2
=

Cd 

X + 2u     = TZ"1 u (x,y,t) +v (x,y,t) 

ovv(x.y,t) 
= v (x,y,t) + u  (x, y,t) , 

x y 
and   a    = v(a + a  ) 

z x     y' 

(2) 

' 

' The method developed here is an extension of one developed by M. Picone 
that the author learned of through private communications with Professors 
A. Ghizzetti and W. Cross of the Instituto Nazionale Per Le Applicazioni Del 
Calcolo,  Rome,  Italy.   Picone was interested in finite domain problems, 
hence used a finite Laplace transform and the entirety of this transform in 
the s-plane.    Evidently this work was not published, but Picone's related 
work on the finite Laplace transform [4] was published in 1939. 

. ^ -   ->■ ■     -»■■'•-t- 



11 ■    "     '~*^*^mmmm 

where V is Poisson's ratio.    Subscripts in this work, when associated with 

displacement, indicate differentiation, but when associated with stress 

identify the component in the usual way.    Initial conditions are taken as 

u(x, y, 0) = ut(x, y, 0) = v(x, y, 0) = vt(x, y. 0) ^ 0 (3) 

and conditions at x-»oo as 

lim 
u,   u   ,   etc, 

= 0 (4) 
x-co    v,   vx,   etc. 

Now introducing the one sided Laplace transforms on x and t, the 

transforms of (1), using (3),  are 

a. 2        =* 2 2       2 ^ Uvv<s'y'P)+(k  -Usv (s,y,p)+(k s  -k    )u(s,y,p) 
y y y B 

= k2[sü(0,y,p) + üx(0,y,p)] + (k2-l)7y(0.y,p) = f(y) 

2   .   2\ s   - k 
>     <5) 

'yy(8, y, p)+ (—^-)8try(8, y, p) +    j-^-l^s, y, p) 

= 4C8v<0'y'P)+vx(0'y'P)1 + (^-r-)uv(0,y'p) = g(y) 

MA » 

02"' 

it**\ 

2      2      2 2     2      2 where k ,   = p   /c .   and k    =p  /c     ,  and the bar and tilda over quantities 

indicate the time and space transforms,  respectively.    It is important to 

note that f(y) and g(y) are composed of the edge unknowns u,  u   ,  and v   , x y 

and v,  v  ,  and u ,   respectively,  these quantities being the time transformed x y 

displacements and strains.    Likewise, the transforms of (2) are 

^x(8.y.p)       ^ _ /k2-2V 
' i(8.y.p) -u(0,y,p) + ^—j-jv (s,y,p) 

k y TTTiT 8U( 

^   (s.y.P)      /k2.2Nr 
y
x + 2li      = \ Z~/^8^8,y,p) "u(0,y,P^ + Vy^8,y,p) 

\     (6) 
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gxy,g,y,p) 

= «y(6.y.P)+ 8v(8,y,p)-v(0,y,p) 

*z(8,y,p) = v[9f
x(8,y,p) + Oy(8,y.p)] 

(6) 

/ 

The solution of the fourth order system of homogeneous equations 

in (5) can be found, in the usual manner, by assuming the forms 

Sc(s.y,P)=An(s.p)e-n(8'P)y 

^(s.y.p) =B  (s.y.p)e-n(8'p)y 
(7) 

) 

c     '   *'        n / 

Substitution of (7) in (5) defines the four characteristic roots 

n(s,p)=±a,   ±p, where 

a =Vkd2'82     and    ß =Vk8 ^ 

The particular integrals for (5) can be found in a variety of ways.    Con- 

venient here was the use of a Laplace transform on y,  along with a 

convolution, which gave 

u (s.y.p) =—jj    iL^-sinhaiy-y'Hßsinhßly-y')]%') 

(7a) 

ks    0 

7 ^ 
'-k 8[co8ha(y-y') - co8hß(y-y/)]g(y  ) Jdy ' 

/rr .2 
,(8.7.?) = ^—yj    {[asinha(y-y/) + -|-8inhß(y-y/)Jg(y  ) 

+ -^ [cosha(y-y/) - co8hß(y-y ^Ifly ^jdy'       / 

/     (8) 

kd   o 

It follows from (7),  (7a), and (8) that the general transformed solutions for 

(5) are 

i      «»fcr--*--^----  ■■       •     -^ —_—      *i i       -~-       -   -    »- - _ 
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u(8.y.p) = Aa(8Ip)e'ay+A_a(8.p)cay+Aß(8.p)e"Py 

+ A_p(8lp)eHy + up(8,y.p) 

v(8, y. p, = cpa[Aa(8, p)e"ay - A_a(8. y)eay] + cp?[Ap(8. p)e"Py 

-A_p(8.p)ePy]+ vp(8,y,p) 

(9) 

where 
/ 

«      Ba(8'p)       a      ffl     V
8'P>    8 

^a " Aa(8,p) "'s'      'ß " Ap(8,p) - f (9a) 

stems from the fact that the two algebraic equations yielding (7a) must hold 

for all values of n. 

Although certainly not a restriction to, particular interest here will 

be in symmetric excitation of the plate (w. r. t.  the mid-plane, y=0).    On 

this basis it is only necessary to consider half of the plate, i. e. 0£y £h. 

Narrowing further to plate face-type loadings,  as a special case, the 

boundary conditions at y=h are, from the second and third equations of 

(2) and their transformation in (6), 

^ (s,h,p) 

k 

? (s,h.p)    /k2 ,V ^              _            n ^                  o0F(8)G(p) 
JY^j- = \—2-;Lsu(8,h,p)-u(0,h.p)]+vy(s,h.p) = X + 2U    =T(8,p) 

a    (8,h,p) 
(10) 

u (s, h, p) + 8v(8, h, p) - v{0, h, p) = 0 

where o0F(x)G{x) is the symmetric (w. r. t.  the plate mid-plane) normal 

stress input on the plate face y = h,  F(x) and G(t) being arbitrary, but 

transformable, functions, and o   an inherently negative magnitude constant 

of dimensions force/unit length.    At y=0 the conditions are 

*'$. 

t 

'—' 
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a    (s.O.p) 
= u (s, 0, p) + sv(s, 0, p) - v(0, 0, p) =0 

v(8,0,p) = 0 

Substitution of (9) in (10) and (11),  öetermines the coefficients A 

They are 

(H) 

±a,±ß 

Aß-A.ß = B(s.p)=^i:?r 

(12) 

where 

2AN(8,p) = -8[k2(282-k 2)8inhßh • I+Zsßcoshßh • Jj 

2BN(8,p) = -ß[2k28a8inhah • I-(282-k 2)co8hah • j] 

/    2      2\2 2 
R(s,p)  - !28  -k    ) co8hah8iahßh+48 aß sinhah coshßh 

and 

I = T(8,p)+-i2J 
(282-k2) 
 -—^—sinha(h-y/)+2ß8inhß(h-y/) f(y ) 

+ [(282-k 2)co8ha(h-y/)-282co8hß(h-y/)]g(y')>dy' 

+ (^-^)ü(0.h.p) 

J = -ijj    < r2s2co8ha(h-y/)-(282-k8
2)co8hß(h-y/)]f(y/) 

k8     0 

+ ^-[2aß8inha(h-y/)+(282-k8
2)8inhß(h-y/)]g(y/)>dy'-WO.h.p) 

1 

,' ■    .i 
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where it should be pointed out that A^. and BN contain the edge unknowns, 

through f(y) and g(y),  and the corner displacements \I(0,h,p) and v(0, h, p), 

in I and J.    Formally, however, the transformed solution on t can be 

written as 

?»? 

u(x.y. p) =^rJ    ["■c^8,y,p^ + ^8'y,p)je8Xd8 
\ 

and (13) 

v(x,y,p) = 2^iL   [vc(8'y'P) + Vp<8'y'P)Je8Xd8 

s 

where the complementary functions are given by 

u (s,y,p) = 2[A(s,p)co8hay + B(s. p)coshßyJ 

J 

and 

'c(s.y. P) = 2[|A(s,p)sinhay-4B(s,p)sinhpyJ 
P 

where Br   is the Bromwich contour in the right half s-plane. 

Exact Inversion Procedure for Steady Propagation Case 

Since the integrands in (13) are even functions of both a and ß, they 

are singled valued functions of s everywhere in the s-plane, for an arbitrary, 

but fixed, value of p.    This reflects the finiteness of the domain in y.    Setting 

p=iu), (13) represents the formal solution for the steady wave propagation 

case in the present problem.    Further if s=ix,  R becomes,  in this cane, 

R(8,p)|  =i[(H2-ß/2)  cosa'hsinß'h+^a'p'sina hcosß'h] (14) 

p=i(l) 
s=iH 

where 

\ 

I 
■-. 

*** - ~   —     - •    -- 
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a   =  /—j-K     ,       and   ß   =  /—j-K     , 

d s 

U) and K being frequency and wave number, respectively.    The bracket on 

the right hand side,  set equal to zero, may be recognized as the classical 

Rayleigh-Lamb frequency equation for symmetric straight-crested har- 

monic waves in an infinite elastic plate, where a   and p' are the thickness 

wave numbers in the plate for dilatational and equivoluminal waves, 

respectively. 

Clearly, then, the roots s, (tu) = iK  (uu) of R in (14), which are known 

to be simple zeros, infinite in number, are the modes,  or branches,  of 

wave propagation in the present problem, at least lor the steady case. 

Through the efforts of Holden,  Mmdlin, Onoe, and others, the nature of 

these modes are now well-known.    A recent study by Onoe,   McNiven,  and 

Mindlin [5] on the closely related Pochhammer frequency ec^uation    for 

axially symmetric waves in an infinite circular cylindrical rod gives a 

detailed account of the main features of these spectra.    As Fig. 6 of [6] 

(Fig. 2 here) exhibits,  it is known that for real frequency (dimensionless 

fJ in Fig. 2) there are an infinite number of branches (or roots),  each of which 

is a continuous one to one relation between frequency and wave number 

[dimensionless C=?+i'n in Fig. Z,  which is essentially Hh in (14)] over the 

frequency domain from oo to -oo.    Over this domain the wave number may 

be real or take on imaginary and complex values,  as Fig. 2 exhibits.    It is 

easily shown that C(n) and -£"(0) are conjugate roots of (14),  the latter being 

a reflection in the plane ?=0.    These roots are indicated in the Figure.    Now, 

since C occurs only as C ' in (14),   -C(n) and ^(n) are also roots, these being 

'Equations (la) and (lb) in [6] exhibit the closeness in form of the two 
equations. 

... ^ 
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reflections of the former two in the plane TI=0.    SO for n^O,  a complex 

segment of a branch has images in both the planes ? = 0 and TI=0,  an imagin- 

ary segment an image in the plane 11=0, and a real segment an image in the 

plane ?=0.    Fig. 2 offers a scheme for following a particular branch 

(numbered) continuously through its various segments as Q progresses 
4 

from oo to zero or vice versa  .    It follows from the foregoing discussion 

that once the edge unknowns are determined,   inversion of the comple- 

mentary functions in (13) can be accomplished with simple residue theor/. 

Assuming then, the inverse of u   and v   can be found,  this would complete 

the solution for the case of steady propagation in the present problem. 

Exact Inversion Procedure for Transient Case. 

Extension to the transient solution requires inverting the integrals 

in 

u(x,y,t) = ^l     u(x,y,p)ePdp 
rp 

'(x,y,t) = -^r-J     v(x,y,p)ePdp 

(15) 

where u and v are given by (13),  Br    being the Bromwich contour in the right 

half p-plane.   If now it is assumed the roots s,(uu)=iK (uu) are analytically 

continuable from ^ on the imaginary axi,,   i. e.   roots ni the right hand side 

of (14),  to the corresponding set s, (p)=iH   (p) on the Bromwich contour Br , 

(15) can be inverted by termwise contour integration of the terms in the 

series resulting from the inversion of (13).    This method of inverting the 

3 2  
Since Q occurs as Q    in (14),   -Q will also yield the spectra shown in Fig. 2, 
i   e.   the reflection in the plane 0=0.    Such modes usually play a part in 
deriving the solution for a problem (like the present one).    The reflection 
principle,  however,   reduces the solution to dependence on Q ^ 0 only. 

^\ 

■ i  mm ■ 
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double integral transform,   i. e.   inversion of spatial transform first, was 

discussed further and used by Lloyd and Miklowitz [7] in related work. 

It is based also on the assumption that there are no singularities in u and 

v in the right half p-plane.   Re p > 0.    Clearly such singularities would be 

inconsistent with the fact that bounded long time,  or static solutions,  for 

the present problems do exist.    It follows that the contour integration can 

be carried out along the imaginary axis in the p-plane,  yielding a transient 

solution in the form of a series of integrals,  each term of which represents 

a branch of the frequency equation depicted in Fig. 2. 

i 

LV. 

Boundedness Condition;  Integral Equations for Edge Unknowns. 

It follows from the discussion of the roots ^("J) of R in (14) and their 

continuation to ^^(p)!  and Fig. 2 depicting them, that there are two sets of 

complex branches,  i.e.   s.(p) = in .(p), and their conjugates s .(p) =lK.(p), 
J J J J 

that satisfy 

Resk(p)>0.     (k=j) (16) 

which in terms of Fig. 2 is 

Re[i(5 + iTi)]>0 

or 

Tl = ImC<0, (16a) 

i. e.   reflections of the complex branches in Fig. 2 in the plane r|=0.    It is 

clear that these roots of R,  which lie in the right half s-plane, would give, 

through the residue evaluation of (13),  exponentially unbounded waves at 

x-*oo,  hence violating the condition (4).    It follows that these unbounded 

waves can be eliminated by requiring the residues in (13),  associated with 

them,   be zero,  i. e. 

• 

  ■  ^      _.     ^ Ä. fc      - I'VJ" . 1^     ■ 
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AM(8.p) =BM(8,p) •N NT (17) 

8 = 8j(p) 8=8.(p) 

where s.(p) are the two sets of roots of R(s,p) in (12) satisfying (16). 

Substitution of A., and B^. from (12) into (17) gives two equations for I and 

(18) 

J, for each s.(p).    Compatibility of these equations requires that 

J. - P.I. = 0 
J        J J 

where J. and I. are J and I in (12) for s = 8.(p),  and 

k2(28.2-k 2)8inhp.h 

/,   2  , 2\       TTT ' 28.ß.co8hß.h 
\28j -k8 j

co8hajh rj      KJ 

2k   s.CX. sinha.h 
p   - .     _ J  J. I 

j 

a.=./k. -s.     , ß.=Jk    -s. 

Now arguing on the basis of Lerch's theorem^, that for the present p can 

be assumed to be real, and noting again the conjugate nature of the roots 

s.(p) satisfying (16),   the boundedness condition (18) can be expanded into 

r 
Re 

Im 
AI 2                        ,      *(2*2-0 

2s.   coshcMh-y')--J ^—-—P. sinha.fh-y' 
kra. 

ifh-y ) 

j 

2s.ß. 
-(28j

2-ks
2)coshß.(h-y,)-—^ip.8inhß.(h-y') 

2k   s.a.8inha.(h-y/)-(2s. - k    JP. cosha^h-y') 

■k2s.(282-k2) 
+ iVj *_}_ 8inhß.(h.y')+ 28     P. CO 

f{y ) 

pj 

-v(0.h.p)-P. 

)shß.(h-y') g(y') 

T(8..p) + 
JL      J 

k2-2l- —-7-^(0, h,p) 
k^ 

I 
= 0 

dy' 

(19) 

% 

■   ■ 

■ >• \i 

■■■^m w^ 
• ■•*''' 
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An inverse Laplace transform is unique provided the transform is known 
for all real values of p for P>Pn (see Widder [8l ). 
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(19) are two coupled integral equations for the edge unknowns for each set 

of parameters p and 8.(p).    For a particular problem the edge conditions 

would reduce the number of edge unknowns in (19),  and assuming a solution 

of these equations can be found for the remaining edge unknowns, this 

would complete the formal solutions given by (13) and (15) as will soon be 

demonstrated. 

i 
i 

V 

§3.    PROBLEM OF PLATE WITH BUILT-IN EDGE 

As a first example the case of a plate with a built-in edge was 

treated.    As illustrated in Fig. 3 the plate is excited symmetrically by two 

suddenly applied normal line loads on its faces,  a distance a from the edge. 

This particular loading is expressed in the first of (10) through 

o  (x,h,t) 

U2u T(x.t) 
a06(x-a)G(t) 

(20a) 
X+2u 

where 'i(x-a) is the symmetrical delta function,   so that T(s,p) in (10),   and 

later equations,  is 

T(s.p) 
a0G(p)e-sa 

(U2u) 

The edge conditions are given b/ 

u(0,y,t) = v(01y.t) = 0 

uy(0,y,t) = vy(0,y.t) = 0 

so that 

u(0,y.p) = v(0,y,p) = 0 

uy(0,y.p) = vy(0,y.p) = 0 

(20b) 

(21a) 

(21b) 

(21),   it may be noted,   reduces the unknowns in the two equations (19) to two, 

u   (0,y,p)andv  (0,y,p),   hence,  apparently,   a well-posed and simpler 

M^MialitiäLdHAylidHUbdMÜMäMtaMM 
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problem in the present analysis than the free edge (or edge loaded) prob- 

lem.    In the latter one would have to deal with tht four unknowns u(0,y,p), 

u^O.y.p).   v(0,y,p).  and vx(0. y, p). 

Determination of Edge Unkowns for Long-Time Solution. 

During the course of this work the author learned of a paper by 

Benthem [9]    who exploited a similar boundedne^s condition,   to that used 

here,  to solve related static problems in strips governed by the biharmonic 

equation on the Airy stress function for plane stress   .    Of particular interest 

in Benthem's technique is his use of eigenfunction expansions (Fourier series 

in his problems),   and singular terms (where needed),  to represent the edge 

unknowns.    This scheme reduces the boundedness condition (in his work) to 

a finite set of algebraic equations for the coefficients of the Fourier series 

and the singular terms.    With numerical evolutions,   Benthem shows that 

only a very limited number of the coefficients need be determined.    Benthem's 

comparisons of his results with those in the early work of Knein [ll] for 

the problem of the strip,  or plate,  with a built-in edge,  which the latter 

obtained by other means,  show very good agreement.    It was therefore of 

interest to see if Bentheii's technique could be extended to finding solutions 

of \19),  and in particular,  for the problem of the built-in edge being treated 

here. 

Sinc^ or." would expect the static solution as the long-time limit in 

the present problem,  it seemed reasonable to formulate representations for 

The author is indebted to his colleague Professor James Knowles for 
pointing out Benthem's work. 

•7 

Benthem points out that Doetsch [10],   in a strip problem governed by 
Laplace's equation,   employed a boundedness condition in a manner 
related to that in Benthem's,  and hence the present work. 

MMMH   ^Ml MMMMMM 
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the edge unknowns, with expansions similar in iorm to those used by Benthem 

for his problem involving a built-in edge,  and derive the long-time solution. 

On this basis,  it was assumed that 

f(y) ^^(o^p) -k I   an<P) cos 
2h 

n=l,3.5.. 

(22a) 

/ 1 v_ Ca0(p)        j I    xi\ .    , bn(P)    • +   )         j- sin I mry 
"Ih (22o) 

«=2,4,6,.. 

These are similar in form to Benthem's equations (6. 1) for the edge normal 

and shear stress.    In comparing the two it may be noted whereas he had 

constant coefficients,   here a«,  a   ,  and b     are functions of the parameter p. 0      n n r r 

The power q of the corner singularities in (22) is taken to be that found in 

the eigenfuncti^" problem for the clamped-free wedge.    This was treated by 

Knein [ll] for the right angle wedge or corner (case in [9] and here),   and 

by Williams [12] for more general angle corners.    As these works show q 

depends only on Poisson's ratio for a fixed corner angle.    Hence,   although 

Knein treated a case of the built-in edge (and plane strain) for a uniform 

edge compression,  whereas here lateral loads are involved,  a particular 

8 ^ il along q holds for both problems   .    Knein gives curves for q,   and 

x=0 (near the corner) which determines C in (22b),  as a function of 

Poisson's ratio v.     Following Knein,  v is taken to be 0. 2433 here,  which 

makes q very close to 1/4 ,  and C = 0. 740. 

Then by substituting (22) in (19),  and with the aid of the integrations 

• 8 The same q is also applicable in Benthem's problem,  which involves an 
applied uniform tension load over y at x-»oo.    Since Benthem's case is 
one of plane stress,   Poisson's ratio must \)e different. 

\i 1 im ^iaajmafcuKM^a—MI 
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I x' 

r 

cosh 

jsinh 
{a.^ccW-V = -^ 

n-1 

A. 
J 

(-)    Tr-+ a. slnha.h 

a. cosha.h 
J J 

>,   11=1.3.5...     (23a) 

v. 

and 

hr 
sinh 

cosh 

{a.,hV)}sini^:dy'.-L< 

yr-sinha.h 

^[-(-f^+coshah] 

) .   n=2.4.6.. .     (23b) 

and 

cosh 
(l-y'/h)       "     {a.(h.y')}dy' = ±{ '   ^ '      J 

sinh        J a. h      a.hcosha. 

a.hsinha.h - cosha.h + l 
J 

J     I    J .h - sinha .h 
J J 

(24a) 

and 

"^    {a(h-y')} 1^   = 
cosh       J h(l-y'/h)1/4 

jsinha.hCl    ^ 

»sha.hC 

a. 

Ä = LJ 
a. 

J 

(24b) 

where A.n=a. + n TT   /4h  ,  and the aid of the duplicate set of intcgrationf 
J       J 

to (23) and (24), where ß. and Bn=ß. +n TT   /4h    replace a. and A.n. 
J J J J J 

respectively,  (1^) can be reduced to the algebraic equations 

Re n-1 
7T.,n. ^      ^M.0(s..p)a0(P) -   7     (-r  Mj

n(s..p)an(p) 
Im 

n 
.7 

rv=2,4,6... 

= 0 (25) 

where 

> 

■M^M 
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o ( 2 2)( sinh~ .h ) 2 ( sinha..h ) 
M. s., = 2s. -k C - J S - 2s. C - J S 

J ( J p) J s ~· cosh~. h ~· J a.. cosha. .h a. . 
J J J J J J 

+ ~~a. (s _ sinh a.jh C ) + (2s t -ks
2
) (s _ sinh ~jh C ) 

--:-z-k j a.. cosh a. .h a.. ~ . ~ . cosh ~.h ~. 
J J J J J J J 

1 

f 
2 (2s.

2 
-k 

2
) 2 sinh a. .h (2s.

2 
-k 

2
) sinh~ .h} 

-......-...,....+ J s J s J 
-h cosha.h AZ hAh-a. .hcosha..h- A3h cosh~. h 

J t-'j cos t-'j J J t-' j J 

M n( ) _ n1r ___1_ _ J s 

[

2s .
2 

(2s .
2 

-k 
2)~ 

j sj'p - 2h A~ B .n 
J J 

n N . (s.,p) 
J J 

n1rs. [2a..sinha. .h (2s.
2

-k 
2 )sinh~.h] 

= ___.1.. J J + J s J =-=-:-z n n 
2hk A cosh a. .h ~. B. cosh~ .h 

J J J J J 

2o 
0

kd
2 

s . a.. sinh a. .h 
0 · < s · • P > = ( 2 J 2) J 

J J 1..1. 2s . -k cosha.h 
J s J 

-s .a 
• G(p)e J 

(25) c a n be solved for the unknowns a
0

(p). a (p), and b (p). That 
n n 

is, for a c ertain number of unknowns, a
0

(p), a
1 

(p), a
3

(p),···, b
2

(p), 

b4~p), · · ·, a matching number of s/p) (which are infinite in number; 

see Fig . 2) are available to give a sufficient number of equations from 

(25) to solve for these unknowns. Benthem shows in the static case by 

progressively taking more and more unknowns (constants like a's and 
n 

bn's here), he gets convergence, numerically, to an aN and bN value, 

where N is a r elatively small number. As he points out this woulc1 have 

to be the case since the series represt.ntations in (22), obviously, are 

not being called upon to represent the singular terms there, i . e. if they 

were, then one would expect the convergence to be quite slow. It follows 

that in the long-time solution for the present problem analogous behavior 

could be expected. 
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The long-time solution can be derived from (15) by making use of 

the underlying Tauberian theorem, i. e. 

u{v, y,t)i 
lim 
t-oo |v(x,y,t)l        p-0 

1 
=  lin}<2^ e^dp (26) 

Hence,  the solution of (25) must be obtained for p-*0 in order to determine 

u and v in (26).    The roots s.(p) of R(s,p) in (12) can be found by evaluating 

which gives 

lim <—«■> = lim<c 
p-olk/f    p-o [ 8 ap' 

lim^—j)   - - yi\     i(sin2sh+28h) 
p-«0]kg I (  ~v} 

(27) 

(28) 

Hence the s.(p) are selected from the zeros of 

r(s) = sin z + z ,     z = 28h = x + iy (29) 

satisfying (16),  i.e.   Res.>0.    The zeros of r(s) are an ordered infinite 

set,   corresponding to the piercing points of R in the plane 0=0 as Fig. 2 

indicates.    r(s) is a well known function in the analyses of elastostatic 

plate problems.    Hence its occurrence here,  and in Benthem's work is not 

surprising.    Robbins and Smith [13] give the first ten roots to 6 decimals, 

and the asymptotic behavior of large roots.    The behavior of the slopes of 

s.(p) can be found by noting that along these branches 

8R ,   L aR dR = :^dp+ ^ds 

and therefore 

lim 
p-0 [i^j (30) 

&i*\ m 

'F* 

l»\ ■ 
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which from (Z8) is 

lim {-!- ~s} = - ~r(,s) = 0 
p .... O P P p r (s) 

(3 1) 

I 
since r(s) = 0, and r (t) I= 0, the prime denoting differentiation w. r. t. s. 

It follows that ds/ dp in (31) must vanish in the limit, i.e. these branches 

are normal to the plane C'l=O. It follows that the zeros of r(s) are a good 

approximation to the s .(p) for a range of p, small but > 0. This is impor­
J 

tant to the validity of (26), hence the long-time solution being sought. It 

should also be pointed out that (Z8) directly proves the existence of the 

zeros of R(s, p), at least over the domain of small t:omplex p, that was 

argued earlier on the basis of the analytical continuation of these zeros, 

generally, from the domain of imaginary p [Re discussion after (15) ]. 

With the s . (p) determined from the zeros of r(s) it remains to 
J 

approximate the coefficients in (Z5) for p small, and then solve for the 

unknowns. Expanding a.., j3 . , and quantities dependent on these, for small 
J J 

p, there results 

[ z ~ . kd 4 
a..(s.,p)=ls. 1-~+0(p), 

J J J 2s . 
J 

j3 . (s . ,p)=is.[1-~+0(p4~ 
J J J 2s . J 

J 

!a. .hl . J . . ih 
s1nh = s1nh 1s jh- Zs . 

j3 .h J 
J 

la.hl J .h 
cosh = coshisjh- ~s. 

j3 .h J 
J 

which can be used to obtain 

k 2 
d 

k 2 
s 

k 2 
d 

kz 
s 

cosh is .h + O(p 4 ) 
J 

sinh is.h+ O(p 
4

) 
J 
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sa. . 
J ih 4 :S. - '2"8." Y. + O(p ) 

sl3. 
1S. 1S. 

J J J 
J 

!c~i k 2 
ih d 4 

= C. --zs.- 5. + O(p ) 
1S. 

k 2 
1S . 

lcl3j 
J J J 

s 

where S. and C . are given by the second integral in (24b), where 
lSj 1Sj 

a..=j3 . =is . , and 
J J J 

Jl 3/4 
Y. = C coshis .hCdC 

16 . J 
J 0 

1 
5. = J c314

sinh is .hC dC 
1S . J 

J 0 

Thes£· expansions lead to 

lim M .
0

(s . , p) 
p-0 J J 

: (kd2 -k 2){· s .h[5. -K . (y . + i~)] 
S J 15 . 18 . lS . 8.Jl 

J J J J 

(32) 
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I 

lim M. (8.,p) = 
p-*0      J     J 

nir 
r,   2 28. 

2hU 
n 

U 
H' ̂ -^)^.2 + 0(p4) 

IIMTK. 
IS. 

lim N. (8.,p) 
p^O    J     J 2hk2U.n 

J 

2s 

fk2-/)- + 0(p4) \ (32) 

and 

-a.a 

p-0 

where 

limQ (8 .p) =i(a  /n)e    J K     G(p)kd
2[l+0(p2)] 

/ 

sinhis.h 

IS.      coshis.h 
J J 

2  2       - 
and   U.    =  >T- - s. 

Since the real and imaginary parts of the leading terms in (32) 

behave as 

and 

lim/   e>{M.0.M.n.N.n} =0(p2) 
p-0 jlmj   L    J       J       J J 

lim/      )Q   =Orp2G(p)1  . 
p-01 Im)    J L J 

their substitution in (25),   shows that a solution of the latter,   say by 

Cramer's rule, will have the behavior 

limra0(p),a1(p),a3(p),. . . b2(p), b4(p), b^p),. . .J~G(p) (33) 
p-0 

(33) is an important result since it shows the long-time behavior of the 

unknown strains at the edge (x=0),  u  (0,y,t) and v  (0,y,t),   according to 

(22),  is the same as the input loads on the plate faces.    Further if G(t) is 

- ■' ■ ■ - -    -•  —— - --   -- - aHaaaMaMt 
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set equal to the step H(t),  it is clear these edge unknowns have the same 

form as in Benthem's work,   i. e.  the unknowns become constants.    (33), 

and (32),  show the numerical problem remaining to completely define the 

unknowns is simple.    One would evaluate forms such as 

a,(p)       |xn| 
—— = -L-JJ- (34) 
G(P)      IY*! 

where the R. H. S.   depends only on n and s.,  and not on p [s. are the roots 

of r(s) in (29)1,  and use Benthem's numerical convergence procedure for 

the unknowns,   i. e.   repetition of the solution,  with a larger number of 

unknowns,  until convergence to the final  value  of each   unknown is 

reached.    Benthem's example shows convergence is reached quickly. 

Except for carrying out this numerical work,  the analysis given here makes 

it possible to define the formal long-time solution (26).   In addition to the 

very long-time (static) solution,  (26) will yield the low frequency-long 

wave dynamic contribution from the lowest real mode (see Fig. 2) that 

occurs earlier.    Since p is also small for this contribution,   it can be 

derived from (26) because it is compatible with,  and hence can be based 

on,  the approximations contained in (32) and (33).    The numerical work 

required to define the unknowns,  and the study of the low-frequency and 

static contributions to the long-time solution (26),   are planned,  and will 

be reported in a sequel to this work. 

Formal Long-Time Solution. 

With the transformed edge unknowns u  (0, y, p) and v  (0, y, p) 

determined for small p,  through the analysis given in the previous section, 

the formal solution for long-time given by (26) can be determined,   i. e. 

'—>"* Ü     ■    -  -     - -- —        -■ — '-|| 
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u'vx,y,p) and v(x,y,p) in (26) can be determined.    Returning to (13), the 

integrands there,   corresponding to (22),  can be obtained by substituting 

the latter into (8) and (12) and performing the integrations indicated.    The 

resulting double integral transforms for u    and v    are given by 

4 4 N 

trc(s,y,p) = ^uci(s,y,p) = Y [v + uJJ] 
i=l i=l 

vc(s.y,p) = ^ ^.(s.y.p) 

i=l 

where 

^irlXWi 

(35) 

u cl 

2  ^      a  (p) — b (p) 
s     Y n s     \ rnr    nxr/ 

kd   n=l,3,5.. n        ks   n=2,4,6.. n 

coshtty 

,«   r-     a (p) — b  (p) ß     \        n'r'       s     \ mr     n,r 

kdn.l.3.5.;n 
r- + rTi    UTT 

^ t   A    L '   n 

s    «=2,4,6.. 

cosh ßy 

c2       R L u 2      u   2- 

R       Ca0(P)8 

c3 TV s 

ws 
.i [2s   cosh ay - 2ß   coshßy} + —r-cosh ay - ^r-coshßy 

1 2s2-k 2 2 
2  28 FT/iv28 "k    )8inhßhcoshay+2aß sinhah coshßy j 

■   ii -  tm   - —    - - - —^— «Mi 
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• 

lc3 

Ca0(p)8 

: 2 

IUT(8.P) 

coshay     coshßy 
2 2 TTz 

CLh ß   h      . 

lc4 

and 

cl 

c2 

c3 

Ca0(p) 

TV 
8 

2s2f282-k2) (28"^^ 2 
s   {asinhay+ß sinhßy} + ^sinhay + -^-J^-sinhpy 

h P h -pK 

282-k2 

+ / «—2\|(28-k   ) sinhph sinhay - 28   sinhah sinhßyj 
ah' 

IvT(8.p) 

c4 

and where 

I = 8(28 -k    ) sinhßh coshay + 28aß sinhah coshßy 

J = 28  ß coshßh cosn ^.   - ßUs -k   j coshah coshßy 

I = af2s -k   j sinhßh sinhay - 28 a sinhah sinhßy 

J = 280Lß coshßh sinhay + 3(28   -k    ) coshah sinhßy 

J, = z<- 
n-1      r 

nir 

vd   n=l,3.5... 
a n 

,2,2 
28   -k 

an(p) 

MMam^MManMaamMMa. 
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n 

I,  = 

S    1^:2,4,6,., 

nir 2s   -k T  2 
s 28 

ß. n 
bn(p) 

h" 

- ^[.^[Zs2^- (282-k8
2)cp]+ £i[2^Sa+(282-ks

2)sß]ja0(p) 

-^{-^[^'-^JV2^^] + C[(282-ks2)Ca-2s2c
ß]}

a0(P) 

/    2      2\2 2 
L = Us   -k    ) sinhah sinhßh + 4s  aß coshah coshßh 

2 /    2      2\2 

M = 48 aß sinhah sinhßh + (2s   -k    Icoshahcosh ßh 

,        2  2 2      n IT a    = a   + —«- 
4h 

, 2  2 

S    and C    being the integrals formed from {24b) by dropping the subj 

{SR and Cfl obtained from these by replacing a with ß). 

The double integral transforms for u    and v    are S P P 

\ 

u   (s, y, p) =    )   U   . 

Ul 

,(8'y'P) = I v 
Ul 

(36) 

where 

-■  -    - ■    '  T, ' - 
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lpl 
n=l,3,5,. 

s  (cos ^j^-cosh ay j     ß (cos-»r^--cosh ßyj 

n P n 
an(p) 

I 
11=2,4.6^ 

cos-=-r^--cosh ay    cos-yr*--cosh ßy 2h 

n 

2h_ 

ß. IEVP) 

an(P) rY r  u2 

u p2 '  TZ k        0 
s 

j     {--g-ts   8inha(y-y')+a^ sinhß (y-y')] 

+ Cs[-rosha'vy-y') - coshßly-y')] r  ^   IJJ 
J   hil-y'/h)1'4 

o'P'S/sinhay    sinhßy    fcoshay-l    coshßy-lll 

and 

Pi 

1 1    'T 

k   n=2,4.6,.L. 

rrr2        2 
—+1- a      ß 

,    .   .        mry 
bn(p)sm^ 

+ 8 1   [^r-f]San<p,binTh ? 
1^1,3,5,. n    "n 

a0{p) rV  i   c 

pi" 7^- 0      k"ß 
[aß sinhafy-y') + s    sinhß(y-y')] 

- s [co8ha(y-y/) - coshß(y-y')l) y     IIJ 
h(.l-y7hr4 

^      - . 5!0^ /cosh ay-1 + sWßy-1)   +   /  [! + 4l 

P3       T*)     h ß2h 7L      ß^J 

t 

-^^-      fc ^        - -^ -—■    - M   M  I - —A 
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where in getting u   . and v   . ,  use has again been made of (23),   replacing 

h with y and a. with a,   etc.    It should be noted that in (35) and (36) the 
J 

subscripts 1,  and 2,   correspond to the trigonometric and singular terms 

in (22),   respectively,   and the subscript 3 to the linear term in (22b). 

These subscripts help to identify related terms in (35) and (36),   i. e.   in 

u    and u    and v    and v  .    (36) shows that all u   . and v  . are zero at y = 0 in c p c p      ^     ' pi pi 7 

accord with (8) from which they stem.    It may be noted that the super zero 

a.  0 =^0 terms u   , and u   , are equivalent,   except for sign,  to the cosh ay and coshßy 

terms in u   . and u   ^,   respectively,  and hence their sum,  in each case, 

whichpertains to y>0, does not contribute to u.    Indeed the super zero 

means that these terms are in the solution for u only at y = 0.    In the case 

of u  ? no super zero term appears.    Its integral form precludes separating 
9 

such a term.    A term of this nature is involved,   however  .    The super R 

terms are so labled because of the  1/R in them,   and they contribute to the 

solution for all y.    In the case of v   . and v   . like cancellation is involved 1 ci pi 

for y>0,  but since v = 0 at y=0,  there are no super zero type terms,   and except 

for v  -, and v  -,,  all terms have been reduced (to the forms similar to u   . c2 p2 x ci 

and u   . for y > 0). pi y 

Important is the fact that (35) and (36) have resulted only from the 

absumed form of the unknowns given by (22),   i. e,   they are not directly 

dependent on the assumption of small p.    For use in the long-time solution, 

however,  they will have to be approximated,  for small p,  to be consistent 

with the approximations given by (32) and (33) for the unknown coefficients 

an(p),  a  (p),  and b  (p),   they contain.    The implication here is that (22) may 

Such a term is recovered in the near field solution derived later,   and shown 
to exist for 3 only at y=0. 

.     M.      .    -.—     — i 
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be valid for the propagation of other waves,  e. g.   harmonic waves for 

certain single frequencies,   calculated from (13).    This will be investigated 

in future work. 

Approximation for the Near Field. 

The near field solution (x<< a) can be written by applying the under- 

lying Tauberian theorem for this case to (13), with (35) and (36),  expanding 

terms in the latter for  |sh| >> 1,  with |k    /s   | < 1,  making 
s 

a 

ß 
-18 

It should be noted that since large  |s| here is necessarily on Br ,   (37) 

shows,  assuming again that p is real, that a and ß are real and large 

through the value of Im s.    Note that for very large  \s\ , a=ß=Im8 

In accord with (35) and (36) the near field solution for y=0,  and 

y>0 differ [see remarks after (36)].    Because of the singular terms in 

(Z2),  y=h must also be given special consideration.     Focusing first on the 

"interior"   solution,  0<y<hl  the contributions of u   . and v   . to the 

transformed long-time,  near field solution are 

Ucl = o[e's(h-V)/^] 
n-1 

_npl,3,5,.. 

n 

n=2,4,6,.. 

(38a) 

To Since Im s has a change in sign from lower to upper half of Br8 ,   so do a 
and ß.   However, since u and v are even in a and ß, it follows the large  Ishl 
approximation holds over all of Brs in the usual way.   In the work that fol- 
lows   s    is chosen on the upper half of Brs . 
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2 2 2 - 2 ish/ I I which is based on the fact that R""' (kd -ks )s e 2 for large sh . ·fhe 

corresponding terms upl and v pl give 

(38b) 

vpl = [7+ o( ~ )l ~ bn(p) sin~ J n=2,4,6, .. 

+ [o( 7 )1 I lian(p) sin~ 
Jn=l,3,5, . . 

Now since S and C may be written in the form 
a. a. 

{ 

sca.a. } = Ih[ea.(h-y') Te- a.(h-y'~ d ' 

0 2h(l-y' /h)l/4 J y • 
(3 9) 

for large a. these become 

{ 

s ) a.h I h - a.y' I 
a. = T e dy + 0( 1) 

ca. o h(l-y'/h)l/4 

( 40) 

Since a. is a real, pos itive, large parameter in (40), according to (37), this 

integral may be approximated by Watson's Lemma [14], with the result 

( 41) 

with an equivalent set for s
13 

and c
13

• (41) may now be used to approximate 

""' ""' uc 2 and v c 2 with the results 
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?• 

u c2 

a0(p)J  1/   1 
- 1 

8hkd
2s3 

o(^ 7^ 

c^-O/i 
4k \? Zhs 

o(4) L'iBy 

a0(p) 
fc2 

(^-^ 2) \ d s / 
k2-3k2N 

s2 8hk    s3 o(4) 
s 

2hs s     J 

(42a) 

A parts integration shows that the corresponding ^'-rrns u  _,  and v  _,  to pe. pc 

the same order of approximation,  are 

u 
a0{p) 

p2 (7^?+   s o&)4 -i z-T-+0V-?i [I1       Shk^s 

/   2      2\ 

4k Ls       2hs s 
s 

isy 

a0(p) 

P2 
1 

(l-y/h)     s 
-(^)4^ 't. (kd2-3k.2).^i{ 

T*' -■. z ? t0l7/ s 8hk    8 8 

^^+0(^)1 e"i,y' 8 2h8 8 I 

J 

Expanding u  , and v  - it is found that 

N 

>  (42b) 

y 

— 
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~ __ ca0(Pl [{· (k} -k8Z) 1 ( Z)} -isy 
uc3 - h 1 z z-+0~ e 

4k 8 8 
8 

(3k•z -ZkdZ) eis(h-yJ 

- zk2(kdz -k8~h 8 3 

Cao(P{ { 1 ( Z l} -is 
(43a) 

~ 

vc3 =- h ::-z-+0~ e Y 
28 s 

(lk Z -Zk Z) 0 is(h-y) } 
+ . s d 1 

z(k} -k
8

2) s
3

h 

~ ~ 

are given by up3 and vp3 

:::.. ca0(pl(kdz_k8z)~+ o(~+ { ~+ o(~l} .-isy} 
up3 = 

hk s h s 4s s 
s 

(43b) 

:::.. Ca0(p) {( ) I ( Z) { I ( Z l} } 
vp3 =- h 1-t 7 +0 ~ - ~+0 !:t e-1SY 

Since ~c4 and v c
4 

contain t he shift ope rator e- sa they contribute nothing to 

the solution in x <a, and hence nothing t o t he near field solution. 

From (38) it follows that 

(44) 

~1 = ~ L bn(p) sin nzl + o( ~) 
s s n=Z,4,6, .. 
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and from (42) 

11 
and from (43) 
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Cao(P) ( v) ~ 12 
---..-z- 1-11 +04 

hs s 

(45) 

(46) 

It follows from (44) to (46) that the time transformed long time-near field 

solution, valid for the plate interior, 0 < y < h, is given by 

[ 
a 0 (p) \ ~~ 

u(x, y, p) ::,. - 174 + L an(p) cos --zn X 

h( 1-y/h) n=l,3,5, .. 

(47) 

_ [Cao(P){ 1 ( )~ ,..., nw J v(x, y , p)o. h 174 - 1-f + L bn(p)sin~ x 
( l-y/h) ~2,4,6, .. 

The corresponding solution for y=O, is written by first noting that 

::.. ::.. ::.. · ::..R """0 
u , v , and v are a ll zero, and hence both u . and u . must be evaluated p p C Cl Cl 

in (35) to calculate u(s, 0, p) =u (s, 0, p). It is found by approximating~~ 
C Cl 

::>. 

in (35), and adding it to u . in (38a), evaluated at y=O, that 
Cl 

1 where cancellation of e -isy terms occurred to the order indicated. From 
the pattern found in these, it is reasonable to expect that the same pattern 
of cancellation would result to any arbitrary higher order. 

12 
When ~3 is used in connection with the y=h solution, this term is replaced 
by O(l/s3). · 
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'    - 

Ä 

u^s.O.p) =Ucl(8,Q.p) = --ij   V    an(p) + o(i5.) (48) 

n=l,3(5.., 

Recalling that u 2 has both super R and zero contributions in it, the first 

of (42a),  evaluated at y=0,  gives 

u2(8,0,p) = uc2(s, 0,p) = )<P)    1  I   .C(kd'-ks2)l 'o^'  i /, . ^VM  ~s /y, ^/1 N. o(V; (49) 
13 

And by approximating u  - in (35),  and adding it to u   , in (43a),  evaluated 

at y=0, there results 

Ca0(p) 
u3(8,0,p) =uc3(s,0.p) = ^ . tt-K*) •v d       8 . 

1 —• *• *— + 
0,   2  2 2k    s 

s 
°(-V) (50) 

Adding (48),   (49),  and (50),  and again noting that v = 0,  the time transformed, 

long time-near field solution for the plate mid-plane,   y = 0,   is 

u(x,y,p) 

v(x,y,p) = 0 

a0(p)       v 

irl,3.5...     _ 

\ 

(51) 

It may be noted that (51) can be obtained from (47) by letting y-'O.    One 

would expect this from continuity arguments.    However,  the process used 

here to derive (47) and (51) is instructive in showing that (47) is contributed 

by the particular integrals of u and v,  whereas the firs* of (51) comes from 

the complementary function. 

The near field solution is not singular when y = h.    This is clear from 

(35) and (36),   if it is noted that u  7 and v ? involve integrable singularities 

only.     Tbis means that the singular terms in (47) are not present in the 

"   The additional 1/2 in these terms stems from e    "in cosh ay which 
survives tor y = 0 only. 

'^    —   *-    - *■*■ —-     -   ■  f 



-34- 

solution for y=h.    Now since all other terms in (47) vanish at y=l-.   the 

14 
near field solution now comes from the order terms in (44) and (46)     , 

i. e. 

u(s,h,p) 

M4) (52) 

v(sfh,p) 

which after inversion yields the behavior 

u(x,h,p) 

I (53) )= 0(x2) 

v(x,h, p) 

The actaal terms corresponding to (52) [and (53)] are easily derived. 

Without the singular terms in (47) the remaining terms there behave as 

(l-y/h)x near y=h.    So if (1-y/h) gets small at the same rate as x does, this 

behavior is in agreement with that in (53).    The singular terms in (47), 

of course,  get large as y-»h which is not consistent with their absence at 

y=h.    This suggests that additional terms of the singular type in (47) might 

be involved,  all of which sum to give zero.    Indeed carrying the parts 

integration of u  ? on further,  for example (v  _ is similar),   shows that for 

small x it has the singular terms 

up2(x,y,p) 
a0(p) 

TK 

2 3 
5fk   -l)xj 

^ 9/4 
65(2k2-3)x5     L 

4,.    lM/4 + 
(1-y/h)'        96h  (l-y/h)7'        512h (1-y/h) 

+ C(k:-1) 
k6 

x     15x 

8h( 1-y/h )5/4     256h3( 1-y/h )13/4 
(54) 

After the first term in (54) there is sign alternation of the terms in each of 

the brackets,  and this pattern is true for the higher order terms also. 

TT The order term in (45) is not present in the y=h solution. 

— —    ~       -^ 
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Hence,   it is reasonable to expect,  that as y-h,  the sum of the terms in 

(54) will approach zero.    It also follows then,  for the leading singular 

term in (54) to represent u  2 in (47), as it does,  x must vanish at a faster 

1/4 rate than (1-y/h)      does,  i. e.  the near field solution (47) is limited to 

smaller and smaller x values as the corner at y=h is approached.    Other- 

wise the use of the additional terms in (54) will be needed, which obviously 

will still have limitations as y gets closer and closer to h.    One can,  of 

course,   evaluate at a station quite near y=h in this manner, then evaluate 

at y=h from the terms of which give (53). 

It is clear ihen,  that once the unknowns an(p),   a   (p),  and b  (p) 

are numerically evaluated,  a simple inversion of (47) [since it has already 

been shown the inverses of the unknowns behave as H(t)] will yield the 

long time-near field solution for the present problem. 

Verification of Long-Time Solution. 

Short of writing the inverse (26), which will be postponed until the 

numerical work for the coefficients of the edge unknowns is carried out 

(as discussed earlier),   some things can be done on verifying that (15), 

defined by (35) and (36),  will yield a solution satisfying the present boundary 

value problem,   i.e.   the differential equations (1),   the initial conditions (3), 

the boundary conditions at the edge x=0,   (21),  the plate face y=h,   and 

center y = 0, the inverses of (10) and (11),   and the conditions at x-oo,  (4). 

Verification that the long-time solution,   once it is written,   satisfies 

the differential equations (1) can be shown by direct substitution.    Since 

the problem is based on (1),  a system of hyperbolic equations,  one would 

expect the general solution (15),   defined by (12) and (8),   to have a singularity 

m -.-.—   - .  L 
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free half plane Rep^Y,  a positive constant.     Hence completion of Br    in 

this domain would give the corresponding solution as 

a{x, y, t) 

v(x,y,t) 
) = O  ,        for 0<t< Vx +y    /( (55) 

hence satisfying not only the initial conditions (3) on the displacements, 

but also on the velocities there. 

Direct verification of the edge boundary conditions (21) can be 

obtained by setting x=0 in (47) and (53).    A differentiation of these w. r. t. x, 

and then letting x-'O [noting the order terms in (44) to (46),  and the higher 

order x terms in (54)1,  recovers the assumed expressions for the strains 

u (O.y.p) and v  (0,y,p) in (22).    Note,  in the case of (54),  after this 

differentiation,  that setting x=0 away from y=h,  leaves only the leading 

term as it should be.     But when y-h,  it is now reasonable to expect that 

the terms only after the first (which in each of the brackets alternate) 

would sum to zero. 

Direct substitution of y = 0 in the second of (13),  with the second of 

(35) and (36) defining the integrand there,  gives v(x,0,p)=0,  hence from 

(15),  v(x,0,t)=0 (independent of time,  hence giving the same result from 

(26) for long time).     Thus the double inverse of the second of (11) is 

satisfied.    Now,  using (13), with (35) and (36),  to form Ö     (x,y,p)/^i,   in 
xy 

accord with the third of (2),  it is easily shown by direct substitution of 

y=0 that a     (x, 0, p) and therefore a     (x, 0, t) are zero     Thus thr double ' xy' r' xyx ' 

inverse of the first of (11) is also satisfied. 

Now substituting y=h directly into the Br    integral just formed for 

Ö    (X,Y,P)/\JL ,  and a similarly formed one for ö (x, y, p)/(X+2n) ,  in accord 

H 

—"- "■ ■   • mm* ■■^M ■HMiteakMMfeiifei ^^M ^M 
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with the second of (2),  it is easily shown that a     (x,h,p)/^i=0 ,  and xy 

ä (x, h,p)/(X+2u)=a06(x-a)G(p)/(X+2|j) ,  and hence ax (x,h,t)/[i=0 ,  and 

a  (x, h,t)=cT06{x-a)G(t).    Thus the double inverses of (10) [see also (20)a] 

are satisfied. 

It remains to show the conditions at x-'oo,  (4),  are satisfied.    In 

the case of the general solution (15), with (35) and (36), again (55) assures 

satisfaction of (4) in advance of the wave front,  i. e.  for /x^+y^ > c ,t. 

However, back of this wave front, and for the harmonic problem solution, 

(13), with (35) and (36),  it is necessary to show these solutions do not 

become unbounded.    The Tauberian theorem,  in which 8-*0,  can be used 

to show that this far field condition is satisfied.    There are two cases to 

be considered.    First,   s-'O and p small but not zero, and second,   s and 

p^O together.    Approximations of (35) and (36) corresponding to the first 

case show, at most,  contributions of 0(1) in s for O^y^h.    It follows that 

u(x, y, t) and v(x, y, t) behave, at most, as 6(x) for x-'oo,  and therefore 

vanish.    Since u  ,  v  ,  and higher order derivatives in x, involve higher 

order behaviors in s (as s-»0),  it follows their inverses are also zero for 

x-»oo.    u ,  v  ,  and higher order derivatives in y,  differ from u and v 

only through higher powers of a and ß,  and since for s-'O the latter behave 

as k . and k  ,  respectively,  the inverses of these derivatives behave like 

u and v, vanishing as X-»CD.    It follows that for the present case (4) is 

satisfied everywhere for large x. 

Now for the case of s and p-'O together,   R behaves as 

R- -b2hßks
2[82-k 2] (56) 

^.     -.       -^ ^.   .-.^ *-..->..-   -. ;-■.- ... 
^^ 
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2       2       2        2     2       2 / 5~1 

where b   =c    /c     ,  k    =p  /c     ,   c    being the "plate velocity" /E/pll-V*1)  . 

(56) is well known, the zeros of ( s     k     ) therein corresponding to the low 

frequency-long wave approximation to the lowest mode of R in (14),  i. e. , 

the plane stress approximation.    Approximating (35) and (36) for this case, 

shows that for ufs.y.p) 

R, 
ucl(s,y,p)--    2/ 2  .   2\    I    (-)    ^aJP) 

b  (s   -k   j ^ 

n-1 
r   , T_2 

ntr    n' 
(57) 

p / n=l,3,5,.. 

uc2(s,y,p) 
k Xa0(p) 

2/2.2 P^T) 
(58) 

hb     s   -k 

survive for O^y^h, where X-C^   =0^   .    Now since (33) shows the coef- 

ficients an(p) and a (p) [and b (p)] behave as 1/p,  for G(t)=H(t) the step 

input,   simple table inversions of (13) and (15), with u^u   • +u  ?  where 

the latter are given by (57) and (58),   yield the behavior of u(x, y, t) to be 

u(x,y,t)=- U(t - x/c   ) 

15 

\ D / p / n=l,3,5,.. 

(59) 

for the long time-far field solution     ,  where U is a constant. 
Cm 

Similarly,  for v(s,y,p) in 0<y^h,  approximation shows that 

2 n"1 

vcl(S>y.P)> ^-p^ Z c-r^p) (60) 

(2-k^)ysXa0(p) 

Vc2(8'y,P)^       bV-^) 
(61) 

survive, which leads to the double inverse 

v(x,y,n- VyH(t-x/cp) (62) 

TT 
An equal term,  but corresponding to a negative traveling wave,  is ruled 
out in the inversion of (15),   since it leads to an unbounded contribution. 

itn*! i 
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for the long time-far field solution, where V is a constant.    It should be 

noted that (59) and (62) are restricted to a small region just after t=x/c   . 

There,  however, they correspond to non-decaying, in space (x) and time, 

bounded disturbances.    Because of the latter these solutions satisfy the 

requirement of boundedness in/x+y    <c(jt ,   since cp<c,.    The non- 

decaying nature of this disturbance has been observed before,   in several 

related problems,   e. g.  the work of Curtis [15].    It is of interest to note 

that the time behaviors ofuandv in (59) and (62), at a plate station,  agree 

with the time behaviors of the corresponding radial and thickness dis- 

placements in the solution,  given by the au'.hor [16],   for the related 

problem of excitation of an elastic plate by symmetric normal point loads 

(see Figs. 4, 5 in [16]).    The latter displacements,  however,  decay 

spatially.    It is planned to include a more complete study of the lowest 

mode disturbance in the future work on the present problem. 

$ 

§4.    COMMENTS AND FUTURE WORK. 

Plans to evaluate further the solution treated here,  have already been 

discussed.    It is of,  at least,  equal importance to remind the reader that 

solution of the integral equations (19),  basic to this work,  has so far been 

limited to the eigenfunction technique employed by Benthem in his problems 

from elastostatics [see (22)].    Their applicability here has been argued on 

the basis of the long time-low frequency analog.    It is therefore desirable to 

look into other possible more general means of evaluating (19),   so that, per- 

haps short time-high frequency phenomena can be investigated in the problem 

treated here. 

i 

t 
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Further,  solution of (19) for problems of the other non-mixed 

edge type,   i. e.  free edge,   including sudden edge loads,  is also of strong 

interest.     Some work has been done on these problems and plans are to 

continue it. 
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Fig.   1.    Coordinates and Displacements for the 
Semi-Infinite Plate In Plane Strain. 
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Fig.   2.    Frequency Spectra for Axially Symmetric Waves in an Infinite 
Circular Cylindrical Rod (from Onoe,  McNiven,  and Mindlin [5]). 
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Fig,   3.    Plate with Built-in-Edge Excited by Face 
Symmetric Normal Line Loads. 
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