
REPORT R-365 AUGUST1967

Ls COORDINATED SCIENCE LABORATORY

0 SIMPLIFIED SWITCHING
Go FUNCTIONS FOR

TIME-OPTIMAL
CONTROL SYSTEMS

j HARRY SCHMEICHEL

I
I

I

I

~SEp 19 1967

[ c
UNIVERSITY OF ILLINOIS -URBAN A, ILLINOIS



I

This work was supported by the Joint Services Electronics Program

(U.S. Army, V.S. Navy, U.S. Air Force) under Contract DA 28 043

I AMC 00073(E).

jI Reproduction in whole or in part is permitted for any pitrpose of the

United States Government.

I

i

Distribution of this report is unlimited. Qualified requesters may

obtain copies of this report from DDC.



I ii

I ACKNOWLEDGMiT

The author wishes to express his sincere gratitude to

his advinor Professor P. Kokotovic' for many helpful sug-

gestions and for his patient guidance during the preparation

of this tbesis. He also wants to thank Mrs. L. Duncan for

her xcellnt typing of the manuscript. Finally, the Author

fgratefully acknowledges the financial support of the
Coordinated Science Laboratory.

T

-4

I
I
I
I
I
£

i



Iiv

TABLE OF CONTENTS

Page

1. INTRODUCTION . . . . , . . . . . . . . . . . 1

2. ANALYSIS AND DESIGN PROCEDURE ... . . . . . . 3

2.1 "Formulation of Problem, . . . . . . 3
2.2 Sensitivity Equations . . . . . . . . . 4
2.3 General Form of Switching Function, . . 6

3. SPECIAL INITIAL CONDITIONS FOR SENSITIVITY
FUNCTIONS. . . a . . . . . . . . . . .* 9

3.1 Chang's Method. .. . . . . . .. . 9
3.2 Kokotovic'-Rutman Method. . .. . . . . 11
3.3 Discontinuity at Switching Time . . . 14

4, SWITCHING FUNCTION FOR A PARTICULAR SYSTEM . 20

4.1 J/unctional Form . . . . . . . . 20
4.2 Determination of Constants, . . . o . 23
4,3 Numerical Examples,, . . . . . . . . 27

5. SUMMARY AND CONCLUSIONS. . . . . o.. .. 34

LIST OF REFERENCES . . . . . ...... . . 36



I

1 1. INTRODUCTION

I The exact solution of a time-optimal problem for a

linear, normal, nth-order system involves an (n-l)-dimen-

I sional surface as a switching criterion for the control

variable. Even for a third-order system an engineering

realization of the time-optimal controller is very com-

plicated. An example of such a design is given by Athans

and Falb (1). For more practical engineering applications

I simpler designs for higher order systems were developed

T using suboptimal controllers. In most cases the great

simplification obtained for suboptimal systems well com-

pensated for the small deviation from optimality.

The basic idea used in most suboptimal designs is

that the higher order system can be approximated by a

second-ordpr system Among others, Kalman used this ap-

proach and derived a switching curve for a third-order

I system (4). His method essentially consists of isolating

the system modes by a coordinate transformation and then

I tetting the two dominant roots approximately characterize

the d, ,ic behavior of the system. Thus9 Kalman implicit.ly

a& %e higher order system has two roots which

I are mu., important than the rest of the roots in de-

termining the behavior of the system. This assumption is

1I the starting point for the method used in this thesis to

analyze higher order systems.

F
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I The system under analysis contains small parameters

f which will reduce the order of the system to two, when they

go to zero. For the degenerate second-order system sensi-

tivity functions with respect to these small parameters

can be written. Employing these sensitivity functions, a

nearly time-optimal solution is found by deriving a simpli-

fied switching function.

The object of this thesis is to find a method to

obtain a simplified switching function for a higher order,

time-optimal system which has the properties described in

the last paragraph. At the same time it will be shown how

sensitivity functions can be used to find the approximate

time response analytically.

A'
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2. ANALYSIS AND DESIGF PROCEDURE

2j_ Formulation of Problem

I Consider the following system of differential equa-

tions

i xl = X2

I 2 = klxl + k2x2 + x3

? l3= x3 + X 4

Ie

?mvn + x +u (2.)

where xi are state variables, k1 and k2 are constants,

TAj are small parameters and u is the control variable.

When X = 0 for J = 1.2,---,m the system (2-1) re-

duces to the second-order, degenerate system

*1 = x2

k2 = klXl + k2x 2 + u (2-2)

I Any linear, second-order system with constant coefficients

can be represented by equations (2-2).,1

Pr
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For the second-order system consider the following

problem. Given some initial conditions and the constraint

u <1, find the control, u(t), which will transfer the

state of the system to the origin of the phase plane in

minimum time. The well-known solution to this problem in-

volves a switching curve that divides the phase plane into

two halves. Let this switching curve be given by

fo(XX2) 0 (2-3)

The exact solution of the same problem for the nth-

order system (2-1) involves, as mentioned earlier, (n-l)-

dimensional switching surfaces in the n-dimensional phase

space. However, it is reasonable to think that for small

? p the solution of the nth-order system should be similar

to that of the second-order system. In other words for a

- nearly time-optimal solution for the nth-order system the

switching functions can be expressed in terms of a switching

* curve in the xlx2-plane. The problem is to find this

switching curve.

2.2 Sensitivity Functions

In general the values of j could be different as long

as they are all small enough to make the exponential tran-

4 sients negligible. However, there is not much loss in

generality by making the Ijs all equal since they are
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required to be small in the first place° What "small" means

quantitatively will become clear later.

The state variables, xi(t, ) for i 1,2, can be

approximated by

t, ?,

?x ) xi(t,O) + (2-4)

here the subscript of has been dropped because they are

now assumed to be all equal. Let us define the sensitivity

functions by

A 'xi (t9 )1
Wi =  

i "=0

The sensitivity functions are obtained from the following

system of equations

*2 = kLwL + k2w2 + _u (2-5)

There are two difficulties connected with the solution

J, of these equations. First of all the function wi(t) is not

defined at t = 0 in all cases but it is always defined for

I t > 0. For this reason special initial conditioais have to

, be found at t = 0+ where the "+" sign indicates that t > 0

by a small amount. This problem is dealt with in chapter 3.
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The second difficulty occurs at the switching time,

t., where the term u/7 is discontinuous. Consequently

there will be a "Jump" in w2 (t) at t = t s . Let us denote

this "Jump" by 4w2, It will also be shown in chapter 3

how

A w2 = w2(ts+ ) - w2 (t s) (2-6)

can be computed.

Now it is possible to write the sensitivity functions

for all t > 0 and t f ts. Using equation (2-4), approxi-

mate trajectories of the ntA-order system ca.n be found.

2.3 General Form of Switching Functi n

Assume that the switching curve for the nth-order

system is defined by

f(xl,x2, ) 0

This function is unknown and has to be found ir some way.

An approximate expression of f(x1,x2, i) in terms of the

switching function for the second-order system is given by

f(xlx 2 , ? ) f(XX2,0) + NX 2 , ) (2-7)

In order to simplify the potation, let us write
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f2 7 ~lX 10

i i fo- (x1,x2 'O)

Equation (2-7) can be written as

Swx w2  (2-8)

I Now if we make the following assumption

[x4= - -- i = 1,2

equation (2-8) becomes
' bfo b fo

f = fo + w1  + - 2  (2-9),-6x ---- ?2  2 9

Hence, the switching function for the nth-order system

A can be expressed in the form

f =f + f

where

fl .. - W1A + - w2 i (2-10)

Remember that fo is the switching function for the second-

order system and f, accounts for the shift of this switch-

I, ing function by going to the r.th-order system.

I
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For the systems considered in this thesis, it is

possible to express the sensitivity functions as a linear

function of the xi's of the second-order systema. In

general

wL = alxl + a2x 2 + a3

w2 = bix i + b2x2 + b3  (2-11)

where the a's and b's are constants. These constants de-

pend on initial conditions in most cases. Since a switching

curve should be independent of initial conditions, it is

not meaningful to use the constants of (2-11) in the

switching function. The usefulness of equations (2-11) lies

in the fact that they give the correct functional depen4-

ence on the state variables, x,, for the approximate

switching curve (2-9) regardless of the initial conditions.

From (2-9) and (2-11) the switching function for the

nth-order system is thus determined vi-hin some undefined

constants. These unknown constants will be computed by some

other means. But first let us consider the problem of

finding the special initial conditions for the sensitivity

functions.o
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3. SPECIAL INITIAL CONDITIONS FOR SENSITIVITY FUNCTIONSi1-
3.1 _ChanA°s Method

It was mentioned that a difficulty arises in finding

the initial conditions for the sensitivity equations (2-5),

A The function wi(t) may not be continuous at t = 0, To

illustrate this point consider, the simple system

* I = x2

-*2 = "x2 + u (3-1)

with zero initial conditions and u as a step function.

When 0.=0, the sensitivity equation is

=0 (3*2)

-The usual initial conditions for sensitivity functions with

respect to variable parameters are zero. But this will make

Iwi(t) = 0 which is obviously wrong. The trouble is that
(3-2) is not defined at t = 0. One way to avoid this diffi-

Iculty is to use wl(0*) as an initial condition for (3-2).
A direct solution of (3-1) gives

x, = ut + u?(et/h 1) (3-3)

Differentiating (3-3) with respect to A and then setting

A =0, we have

.L
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WL(t) = -u (3-4)

Therefore a co-rect initial condition for (3-2) is

wl(O*) = - Uo

Chang develope d a method to find the initial condi-

tions, wi(0 ), (2). For the system (2-1) this method applies

in the following way. First the Laplace transforms are

written for all equations in (2-1). All initial conditions

are equal to zero except for x1(O) and x2(0). But xl(0) and

x2(0) can also be set to zero because they do not affect

the end result. Solving the transform equations for i(sA )

and X2 (s, d) gives

X1(s, ) = u(O)
s(s2"k2s-kl) ( L s .) ---( mS~l)

(3-5a)

X2 (s , A) u(O)
(82_k 2s-k,) (Ai~)-( Sl

(3-5b)

Remember that 2 = for J = 192,---,mo Differentiating

(3-5a) with respect to A and then letting A = 0, we get

=W 1 (s) = muCO)

2A=o B2_~-
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The initial-value theorem gives

w1 (O ) = lrm sWl(s)

=0

Now differentiating (3-5b) with respect to ? and setting
I =0 gives

[X2 (s = W2 (s) - -mu(O)s

A - !=0 2 ksk

I' Again from the initial-value theorem

w2 (0+) lim W2(s)

-mu(0).

In summary the initial conditions for the sensitivity

functions defined by the equations (2-5) are

w1 (0+) = 0

1 w2(0+) = -mu(O) (3-6)

1 3.2 Kokotovic'-Rutman Structural Method

I An interesting alternative approach to determine the

initial conditions of the sensitivity functions Is given by

- Kokotovic' and Rutman (5). The method consists of drawing

Ij a block diagram of the original system and the sensitivity

system for > 0 and then manipulating the blocks until it

I is possible to let .= .

I
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To illustrate this method, let us find the initial

conditions of the sensit.vity functions for the following

system which will be used in an example later.

Xi = x 2 x1 (0) = rL

*2 = x3  x2 (0) = r2

*3 = "x3+u x3(O) = 0 (3-7)

The corresponding system of sensitivity equations is of

the form

I W w2

2 3

=3 -w k u (3-8)3 3 +W " -

In Figure la the original system diagram and the sensiti-

vity model are shown. Figure lb is obtained after two

transformat' ns. First the point of application for x3 is

moved to the other side of the integrator and a differential

operator is added in the connecting branch of the two

models. Now it is possible to let A = 0. The transfer

function from u to x3 as goes to zero is

lira 1 =1A-1-0 As+L
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The final diagram, Figure lc has the differential operator

removed by moving the point of application to the other side

of the integrator in the sensitivity model.

From Figure lc the initial conditions can be written

by inspection.

WI(O+) 0

w2(0+) - -u(0)

3.3 Discontinuity at Switching Time

The function w2 (t) is discontinuous at t=t, because

the control variable, u(t), is switching from one limiting

value to the other one instantaneously. As mentioned pre-

viously there will be a "Jump" in w2 (t) at t-t s and it

becomes necessary to find

w2(ts+ ) = w2 (ts+) + Aw 2  (3-9)

in order to solve the sensitivity equations.

If it is possible to find a transformation of the

system (2-1) suh that the transformed system is a func-

tion of t-ts but otherwise has the tqme form and initial

conditions as the original system, the condition (3-9)

can be determined from the initial conditions of the trans-

formed system. First let us show that such a transformation

exists for the system (2-1).
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The system (2-1) can be expressed in matrix form as

I shown below.

_(t) = A _(t) + Z (3-10)

fwhen x and z are n-vectors and A is an (nxn) matrix. The

matrix A is given by

01

Ik
1  k2  1 0

A= 0 - 1(3-11)

\\ \ \
4' o -!

* 0
L 0 -

The vector z has only one non-zero element in the nth row

which is u/7

Let us define the new time variable, T, as

T=- t- s  (-12)

The initial conditions for (3-10) are assumed to be zero.

I Suppose now that there exists the following matrix equa-

tion

*(T) = A v(T) + z (3-13)

I with the initial conditions y(O) = . The next step is to
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find the transformation of x which will give I in (3-13).

The general solutions of (3-10) and (3-13) are

(t)= J e z dp (3-14)

0T

(T) = J e A(TP) zdp (3-15)

0

In the above equations p is a dummy variable. Substituting

t = t s + T into (3-14) gives

2f T t s A(ts+T-p)zp

0

= e A (T) s e A(Tp)z dp (3-16)

T

Solving (3-16) for v(T), we haveT
-At r A(T-p)

X(T) = e -Ats(t) + J e z dp (3-17)

T+ts

Equation (3-17) gives the transformation from x(t) to

y(T), so that y(T) satisfies the equation (3-13). As long

as the state transition matrix exists, it is possible to

find this transformation.



• 1 7

For the system (3-13) the sensitivity functions and

their initial conditions can be determined in the same way

as it has been done for the system (3-10). Only different

symbols are used. Let us denote the new sensitivity func-

t i o n s b y y: T
ryi(T, )A

Vi(T) = 0 = 1,2

r The initial conditions are

v1 (T=o + 1 = 0

V2 (T=o + ) -mu(T=o+ ) (3-18)

The relation between Vi(T) and wi(t) can be found from

(3-16) in the following manner. For the second-order system

(2-2) the matrix A is given by

0 1

A k j (3-19)

and the vector z is

* = [: (3-20)

Substituting (3-19) and (3-20) into (3-16), a relation

between y(T) and x(t) is obtained. Differentiating this

ii
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relation with respect to , we get the equations retating

Vi(T) and wi(t).

Consider the particular case when ki = k2 = 0. The

solution of equation (3-16) for this case is
2

x1(t) = y(T) 
+ tsy 2(T) + ut--2

X2(t) = Y2(T) + uts  (3-21)

In equations (3-21) u is considered to be constant and

continuous, The fact that it is actually discontinuous at

the switching time is accounted for by the special initial

conditions of the transformed system (3-13). With this in

mind (3-21) can be differentiated with respect to ;N and

the result is

wl(t) = V1 (T) + tsv 2(T)

w2(t) = V2(T) (3-22)

Evaluating (3-22) at t = ts + or T = 0+ and substituting

(3-18) gives

w1 (ts+) - tsmu(ts+)

W2(ts) .MU(ts+)

Since u(t+) =-u(t=O) equations (3-23)become
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w1(ts+) = tsmu(t0)

w2(ts+ ) = mu(t=O) (3-24)

r For this particular system the "Jump" in w2 at the

switching time is

I w2  - 2mu(t=O) (3-25)

1In a similar way the "Jump" conditions can be derived for

other cases of the general system (2-1).

i

I

~I
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4. SWITCHING FUNCTION FOR A PARTICULAR SYSTEM

4I Functional Form

The genera]l form of the system under consideration is
given by (2-i). When ki  k 2  0, we have the following

system

1 =x 2

x2 =x3

*n =-x + u 
(4-i)

The corresponding second-order system for A = 0 is

*1 = x2

*2 =  u 
(4-2)

Let the initial conditions be denoted by

x l (0) = r.

x2(0) = r2  (4-3)

The solution of (4-2) is
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ut 2

i = 2 + r2 t + r,

x2 = ut + r2  (4-4)

The sensitivity equations for the system (4-2) are

*1 = w2

W2 = -u (4-5)

with the initial conditions (3-6). The solution of (4-5)

is for 0 < t < ts

Sw, = -mu(O)t

w2 = -mu(O) (4-6)

Comparing equations (4-4) and (4-5) one can see that

they are related in the following way

w 1= a2 2 + a3

w2 = b3  (4-7)

The constants in the above equations will vary with the

initial conditions. But the important point is that the

form of the equations (4-7) is uniquely determined for

. all initial conditions.

The optimal switching function for th) system (4-2)

is

P fo = x +  
2 1x21 (4-8)

0 2
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Differentiating (4-8) with respect to x, and x2 gives

fo
~XL

0 jx2l (4-9)
6712

If we substitute (4-7) and (4-9) into (2-10) we get

f, = (a2x2 + a3) ? + ix21 b3 A (4-10)

Defining new constants (4-10) can be written as

f, = b A x2 + c? (4-11)

where

Ix21
where b = a2  + b3 1 2

c = a3

Finally the total switching function from (4-8) and (4-11)

is

1
xf = 1 + x2 jx2 l + bx 2 + cA (4-12)

The next task is to determine the two constants b and

c uniquely and independent of the initial conditions. This

problem is solved in the next section.

The procedure outlined above can easily be applied to

two other cases of the general system (2-1): 1.) when
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Sk + 0 and k 4 0 2.) k, 0 0 andk 0 and the eigen-

-values of (2-2) are distinct and real. For the case of

complex eigenvalues difficulties arise because the optimal

switching curve cannot be expressed in a nice analytical

form. However, if the optimal switching curve is approxi-

mated by some analytical function of the state variables,

it is possible to treat this case in the same way.

4.2 Determination of Constants

In order to compute the constants b and c, it is

-- necessary to derive the equations for the approximate

* "trajectory of the nth-order system as given by (2-4). In

this derivation the following initial condition will be

used.

x1 (0) = ri

x2(o) = 0 (4-13)

The initial conditions (4-3) could also be used. Since the

final result is independent of the initial conditions, it

is more convenient to use (4-13). The mathematical analysis

is simpler with (4-13). However, the initial conditions

have to be general enough, so that every point on the

I. switching curve can be reached through them. This require-

ment is satisfied by (4-13).

Another simplification of the analysis is obtained by

L only considering one half of the switc4ng curve. The other
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half is determined by symmetry. By restricting r, topositive values, the trajectories will only reach the lower
half of the switching curve.

For this case the optimal control sequence for the
system (4-2) is u = (-1, +1). The solution is

For 0 < t < ts:

x -2 + r2 1

X2  -t 
(4-14)

For t s 5 t< f

t2  
2

x = -- 2tst 2 t s + ri

x = t - 2t s  (4-15)

The solution of the corresponding sensitivity equa-tions (4-5) with the initial conditions (3-6) and the
"Jump" condition (3-25) is

For 0 < t < t s :

wI = mt

w2  = m 
(4-16)

For t < t < tf:
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w = -mt + 2mt s

w2  = -(4-17)

- The approximate equations for the nth-order system

I' (4-1) are

J For 0 < t < ts:

xi = r- + mA t + r,

X2  = t + m v (4-18)

SFor ts < t < if:

t2  2

" 1 = - (2ts + m)t +t + 2m ts + rI

a
.. x2  + t - t Z(4-9

An expression for the switching time, ts, is obtained

Ifrom the intersection of the switching curve (4..12) and

the trajectory defined by equations (4-18). The final

result is

ts  2!l(b-2)mA + r l + 1(b2+2)m2 A 2+ cm

(4-20)

A condition that has to be satisfied by the trajec-

tory (4-19) is that it should reach the origin at the

:, I final time, tf. In other words, xl(tf) = x2 (tf) = 0. From

equations (4-19) this will only happen if

A

1
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tf =2t s + m (4-21)

and

- t 2 2 + 2mt s + r= 0 (4-22)

Substituting (4-21) into (4-22) and solving for ts gives

t s = [ 1  M2 2 ] (4-23)

The two expressions for ts, (4-20) and (4-23), are

equal if

b =2

c = -2mi (4-24)

It turns out that this is the only choice of the constants

b and c which is independent of rI and at the same time

makes equation (4-20) equal to (4-23).

Putting the constants (4-24) into the switching func-

tion (4-12) and correcting for the sign gives

xI  Ex2 x~ +2mAtx 2 + 2m 2x2 (4-25])

IX21
Remember that m = n-2. So for a third-order system m = 1.

The switching function for that case is almost in perfect

agreement with one derived by Kalman for the same system

by a completely different method (4). The only difference

is that in (4-25) the constant multiplier of 2 is 2 while

tn Kalman's equation it is 1/2.
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IFigure 2 shows two approximate switching curves for a

third-and-fourth-order system when ? = 1/2. The optimal

switching curve for the second-order system is also shown

for comparison. Note tht the two approximate switching

curves do not go exactly through the origin. The "miss"

1 at the origin is proportional to ? 2. If ;h it kept

' smaller than one, the curves will come quite close to the

origin.

4.3 Numerical Examples

In this section the time response of the third-order

system (3-7) will be computed for two different initial

conditions and A = 0.5 using the derived switching func-

tion (4-25).

First let us choose ri = 4.125 and r 2 = 0. Conse-

wuently the switching time, ts, is 2 and the final time,

tf, is 4.5. The equations describing the trajectory are

; given below.

For 0O< t < ts:

wl = t

w2 = 1

x = - 0.5t2 + 4.125

X2= - t
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xi + 0.5w, =- 0.5t 2 + 0.5t + 4.125

X2 + 0.5w 2 = - t + 0.5

For t s < t < tf:

w= - t 4

I
-2 1

xi 0.5t 2 - 4t + 8.125

X2 t - 4

x i + 0.5w1 = 0.5t 2 - 4.5t + 10.125

Sx2 + 0.5w2 = t - 4.5

Let the exact solution of the system of differential

equations with u switching form -1 to +1 at t = ts be

denoted by xi* for i = 1,2. Figure 3 shows the variou3

curves for this example. Note that there is an error of

about A 2 between the exact and approximate curve of x,

I at t = tf. Since the optional time for the second-order

system when A = 0 is 4.06, one can see that the time

I: response is very nearly time-optimal.

As a second example let us use the initial conditions

rl m 0 and r2 = 2. The constants for the switching curve

were derived with zero initial conditions for x2. This

11
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example will illusxrate the fact that the switching curve
nevetLheless is valid for non-zero initial conditions of

x2•

The formulas for ts and tf are easily derived in the

same way as before, The result is

ts = 1.707r2 + 0.707

tf = 2.414 (r2 + A )

For this example t8 = 3.768 and tf = 6.0350

The trajectory is described by the following equations.

For 0 < t < ts:

wl = t

w2 = 1

1 = - 0.5t2 + 2t

x2 =- t + 2

xi + 0.5w1 = - 0.5t 2 + 2.5t

x 2 + 0.5w2 = - t + 2.5

For ts < t < tf:

w = -t + 7.536

I' w2 ='
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x= 0.5t 2 - 5.535t + 14.20

x 2 = t - 5.535

x, + 0.5w1 = 0.5t 2 - 6.035t + 17.97

x2 + 0.5w2 = t - 6.035

Figure 4 shows the various curves for this example. Again

the time response is a good approximation of the time-

optimal solution.

p

p
4
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5, SUMMARY AND CONCLUSION.

A method has been presented to derive simplified

switching functions for the design of third or higher or-

der, time-optimal control systems. They type of system,

that has been considered, is characterized by small para-

meters which increase the order of the system. The sensi-

tivity functions with respect to these small parameters

have been the main tool of analysis. Two existing methods

have been used to determine special initial conditions for

the sensitivity equations because these equations are dis-

continuous at t = 0. It has been shown that the same

methods can be applied to deal with the discontinuity of

the sensitivity functions at the switching time by a trans-

formation of the original system.

A particular system has been analyzed in more detail.

The degenerate, second-order system for this case is the

well-known double integral plant. The complete switching

curve has been determined for this system. Using this

switching curve the approximate time response was computed

with the aid of sensitivity functions, The results show

that the response is nearly time-optimal.

For a system characterized by a second-order system,

which is more complicated than the double integral plant,

it might be difficult to analytically determine unique con-

stants in the switching function. E-n that case perhaps the)
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best constants can be found experimentally. As already in-

dicated, complex roots of the second-order system also pre-

sent special problems. All these cases need further study,

I for which there was no time in connection with this thesis

unfortunately.

This investigation above all demonstrates how sensi-

tivity functions with respect to small parameters, that

change the system order, can be used to greatly simplify

the analysis of higher order systems.

I
I

'I
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