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FOREWORD 

This paper contains the mathematical validation of a Lagran- 
gian technique for nonlinear programming that replaces the original 
problem by an auxiliary problem that is solvable by standard 
methods. The properties of the auxiliary problem are described 
and validated under certain conditions, and a number of applica- 
tions are described. Several examples are presented in order to 
clarify various results. 
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Ph.D. thesis in mathematics at the University of Michigan. The 
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ABSTRACT 

This paper treats an extension of one version of the classical Lagrange 
multiplier rule as applied to nonlinear programming problems. For a 
given problem, an auxiliary problem is defined and its properties are 
studied under various assumptions. In particular, when the given problem 
has a strictly convex objective function and concave constraints it is shown 
that the auxiliary problem is one of maximizing a concave differentiable 
function over an open set subject only to nonnegativity conditions. Some 
applications of this theory are presented along with the connection be- 
tween the auxiliary problem and a "dual*' of the given problem. 



1.  INTRODUCTION 

Lagrange multipliers, in one form or another, have played an important 
role in the recent development of nonlinear programming theories.  Indeed, 
perhaps the most important theoretical result in this field to date is the cele- 
brated Kuhn-Tucker Theorem,1 which is an extension of the classical Lagrange 
multiplier rule in its most common form (see Courant and Hubert,2 p 165). In 
the same paper, Kuhn and Tucker show the equivalence between convex pro- 
grams and their associated "saddle value" problems. 

Related to these concepts are the variations of the dual program formu- 
lated by Wolfe,3 Huard,4 and several others.   This duality theory for nonlinear 
programming received impetus from its counterpart in linear programming, 
where it enjoys a very pleasing and useful symmetry.  Early formulations of 
the dual ol a nonlinear program did not enjoy perfect symmetry  (for example, 
the dual of a convex program was not convex), and attempts to achieve it led 
to a closer study of the properties of Lagrangian functions (see Rockafellar5 

and Whinston6 and their references). 
A study of the Lagrangian function of a problem has proved useful from 

a computational standpoint.   For example, Everett7 has presented an interest- 
ing result that applies to general problems involving separable objective func- 
tions and constraints.  The method essentially involves an iteration scheme in 
the space of Lagrange multipliers together with comparatively simple minimi- 
zation operations at each iteration.  Although :t is clear how these minimization 
operations are to be performed, it is not clear how the optimal set of Lagrange 
multipliers are to be chosen. 

Most of the work in this field has emphasized the best-known formulation 
of the Lagrange multiplier rule.   There is another formulation (Ref   2, pp 231- 
32) based on the Legendre transformation that states the equivalence of a given 
equality constrained problem with a related but unconstrained optimization prob- 
lem.  The main purpose of this paper is to generalize this version of the Lagrange 
multiplier rule to handle inequality as well as equality constraints and to de- 
scribe the structure of the related problem in some deiail.  It will, in fact, be 
shown that often a great deal of the structure of this related problem ran be 
exploited computationally. 

Section 2 conlains the definitions of the various constituents of the related 
or auxiliary problem.  These definitions can be made without reference to any 
particular hypothesis on the elements of the given problem, and some results 
may be obtained in this general setting. 

In Sec 3 the discussion includes only convex programs with sti ictly con- 
vex objective functions.   No differentiability assumptions are necessary. Al- 
though many of the results of this section hold for less restricted problems, 
the assumption of strict convexity seems to be the most concise and common 
hypothesis that can be made to ensure that the auxiliary problem is well brhaved. 

* 



With these restrictions it will be shown that the auxiliary problem becomes 
one of maximizing a concave differentiable function over an open set subject 
only to nonnegativity conditions. This would appear to be a simple and useful 
procedure computationally, since any standard gradient-ascent technique could 
theoretically be employed on the auxiliary problem to obtain a solution of the 
given problem.  Unfortunately the calculation of the gradient of the objective 
function ot the auxiliary problem involves the solution of a nonlinear program, 
and, unless the given problem has a special structure, this solution may re- 
quire an excessive amount of effort.  On the other hand, many problems do 
have this special structure (e.g., separable programs) and for these problems 
the solution of the aforementioned nonlinear problem is easy.  Lasdon,8 Taka- 
hashi,9 and Falk10 have investigated such decomposable problems. 

Takahashi views the auxiliary problem as the conjugate of a second related 
problem and uses known results of conjugate functions to verify his results. 
Although the theorems are stated correctly the proofs are incomplete since 
questions concerning the convexity of the domains of the functions involved 
are ignored. 

In Sec 4 the auxiliary problem is related to the dual of the given problem 
as defined by Wolfe,3 and it is shown that the two problems are essentially 
equivalent.  This is important since the auxiliary problem is a convex program 
whereas the W jAfe dual generally is not. 

Also in Sec 4 the theory is applied to decomposable and separable programs 
and to the problem of minimizing a quotient of two functions. 

2.   THE GENERAL CASE 

The mathematical program to be discussed has the form 
minimize 

lcb(x): f(*U0. i a I (1) 

where C is a subset of En and where 0 : E" - E1 and f : EM - Ew.  In general, 
for a given problem there are many ways to partition the constraining inequali- 
ties (or equalities), and hence the selection of a particular f and C in Eq 1 is 
somewhat arbitrary.  Computational considerations discussed in Sec 4 indicate 
which constraints should be represented by f and which snould be represented 
by C. It is assumed that m * 1. 

Equality constraints have not been included explicitly in order to simplify 
later notation.  Their inclusion would cause no theoretical problems as all the 
results that follow hold in th?ir presence.11 

The definitions that follow can be made without any additional hypothesis 
on 0, f, or c. 

The Lagrangian function of Eq 1 is defined on E" x Em by the relation 

Ad.«)    <Mx) - • w./U) •. (2) 

A function y is defined over its domain D[y] by means of the relations 



b[y] - 111 > 0 : y{-, u) attains its minimum ovr C| (3) 

yiu) = min |A(x, «) : x eCl (4) 

Thus a is in the domain of y if and only if the function X (*, u) attains a finite 
(absolute) minimum at some finite point x.  The totality of points in C that 
minimize X (•, u) for a given K € B [y] is denoted by X(u) and will be termed 
the "minimizing function." In general, X(u) is a set function defined over D[>] 
into C.   The function y will be termed the "auxiliary function" of Eq 1, and the 
problem 

max |y(u) : ueDlyll (5) 

will be termed the "auxiliary problem" of Eq 1.  These definitions may be illus- 
trated by an example. 

Example 1 (See Fig. 1) 

o.   F*otibl* R«gion 

*-***? 

Fig. 1—Example 1 

4 6 8 

b-   Thu Auxiliary Function 

Minimize 

subject to 
fix)    x}-x2-2<2 o, 
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Since each of these one-dimensional minimizations can be carried out for all 
values of v 2 o it follows that 

DH -(£») + 

Calculating the derivatives of the functions involved in this expression for y 
and setting them equal to zero gives 

{ u-: 

X.(ii) {.:. 

0£u<2 

n> 2 

«>1 

0<u <1. 

Substituting these expressions into X (X,M) gives 

y(u>. 2M 

-Wir + 4u - 2 

0<u $ 1 

l^u £2 

u > 2. 

If the equality constraints gi (x) - 0 (i = 1,. . . , p) were added to problem 
1 the auxiliary variables ui (i = 1,. . . ,p) associated with these constraints 
would not be restricted to be nonnegative in the definition of D [>]. 

It may be proved that if Eq 1 is the linear program 

min \(c,x) : Ax £ b, X £ 0| 

with f (i) - Ax - b and C = {i : x * 0}, then Eq 5 is precisely its dual (see Falk.") 
However, if some of the inequalities described by f are used to describe C, then 
problem 5 becomes a "piece-wise linear" program. 

Example 2 (See Fig. 2) 

Minimize 
X| + 5x2 

subject to 

r:   < 

f1(x)--2+2ij +V::° 

f2U)--3+x, + 3*j>0 

/  -3'2x, 4 x2<3 

< x,-r2-2 

( M<2   °- 



The Lagrangian function for this problem 1« 

A(I,M)-X| +5rj-Uj<-2+ 2*j + I2)~M2 (-3+ i, + 3x2) 

-il-2ul-uJ)xl +(5-II, -3M2)XJ + 2«, + 3n2 

A 

and the corresponding auxiliary function becomes 

y(*) - sit  K1 - 2«, - M2> »! + (5 - M, - 3II2) x2J + 2*i ♦ 3*r 
X€C 

The simplex tableau can be used to investigate the three vertices of C and to 
determine the corresponding sets of m and «2 for which these vertices are 
attained. The results are given in Fig. 2 along with the corresponding value 
ofy(M). 

* 
i 

3       4 

0.  TV* Emir« Constraint Region 

Y(U)-2H} + %2 2-2«I +W2 

^ ► U; 

e.   Hi« DoMoin of y 

Fig. 2—A Linear Program with its Auxiliary Problem 
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r*., If Eq 1 is the quadratic problem 
minimize 

subject to 

!<x.Di>+ <<U> 

Ax>b 

where f fr) = Ai-bandC = E" with D symmetric and positive definite then 
problem 5 becomes 
maximize 

subject to 

- j<AD-1AfH,u)       (AD-'tf+M) -J <D~! *,<*> 

w >0. 

This is the dual problem that Lemke12 addresses in his method for quadratic 
programming. 

Related to the function y is the function 7defined by replacing 'minimum* 
with "infimum* in definitions 3 and 4 and requiring that u € D[y] whenever 
A(-,u) has a finite infimum over C. Clearly D[y]c D[y] and y(u) * y(u) for 
each u € D[y]. In many problems D[y] * D[y] (e.g., D[y] = D[y] = (E«) + if C 
is compact and if $ and f are continuous), although it is easy to find examples 
where the strict inclusion holds. One such example is constructed by setting 

Here 

6ix) » t"2 

f(x) ^x, 

C  -E- 

y(u) *•■ min     1<T *  -iiXj 
r! *2 

and this does not attain a minimum for any value of u so that D[y] ■ 0. How- 
ever, for u ■ 0 the term c*2 has an infimum of 0 so that D[y] - {0}. 

This paper is primarily concerned with the function y, although occasion* 
ally y will be referred to in order to clarify certain results. 

Theorem 1 

The function y is concave over convex subsets of D[>], 
Proof:  Fix u1, u2 f D[y], a * 0, $ a 0, or + fi * 1, and assume that 

u3 »owl  + £u2 e D[y].  Then 
y(wJ) - mir. JoAU.W1) t 0A<X.M2) : ftCI 

■• > win tA(<,u') : f€'CI ♦ /* '»in )A(x,w2) : xtCl 

viu'i . H »-(a2) 

and the proof is complete. 
It is not true in general that Ply] is convex, even when Eq 1 is a convex 

program. 

8 



Example 3 

Minimize 
|w* 111,}. *"***: It-01. 

Each of the functions 01: (xl ,x2) - Ui I and <p2 : (xr, *2) " e"f| is convex. 
Since the maximum of two convex functions is convex, it follows that the function 

is convex. 
Pick 

0: (li,x2) - max \\xx\, t~n\ 

C«E2 

Since the constraint is an equality, the value of u is unrestricted. 
By definition 

y(u) «rain Wax i|r,|, e""2l-lKj| 

whenever this minimum exists. However, this minimum exists only when 
«= 1 and y --1 so that 

D[yl-1-1.11 

and is not convex. It is interesting to note that 

XtD-Kx,,*«,):*!^2! 

and 
-»2, 

XC-D-K*!^*!^-«     I 

are both unbounded sets. For convex problems such an example could not be 
constructed otherwise (see corollary to Theorem 8). 

Note that D [y] ■ (EM)+ when 0 and f are continuous and when C is com- 
pact. The convexity of D[y] will be established for a different class of problems 
in Sec 3. 

Since y is concave over convex subsets of D[y], it is differentiate almost 
everywhere in int D[y], In order to calculate Vy = (dy/dn,,. • . , dy/aum)T 

when it exists, it is necessary to establish a preliminary result. 

Lemma 1 

Let u * € int D [>] and assume that the differential dy(u*; .) exists.  Let 
g € E« be such that 

y(il*) -y(n) >  (g,u* -u > 

for all u € D [rj.  Then vy(u *) « g. 

4 
4 

—Mdbä£ü, tn^tf 



.*. 

m$0 

(denoted by »ifflR^ 

With this selection of «* it follows that 

<Vy(U*) - g, v* - „* ) «   alfVyfu*) - g||2 

- llf*-«*ll!|Vy(M*)^g|| 

so that 
{%, u* - v*) > (Vy(u*), «* - v*) + 6||u* - B*|J. 

The hypothesis of the theorem, together with this inequality, implies 
y(u*) - yfr*) * (g, «* - v*) 

> (7y(u*h u* - v*) + e\\v* - u*\\, 

which violates Eq 5, and the proof is complete. 

Theorem 2 

Let M* € int D[y] and assume dy(u*; •) exists.  Then 

Vy(u*) - - f (x*) 

where x* is any point in X(M*). 
Proof: 

y(u) -  m\n\<f>(x*)-(u,f(x)):xeC\ 

k 4><x*)-(u,f(x*)) 
*(**) - <U*, f(X*) >- <M, f(x*) )< (U*, f(X*)) 

-   y(u*) 4  <« - M*. - f (X*)) _ 

for all u € D[y],  Hence -f (i*) satisfies the condition of Lemma 1, and the proof is complete. 

If y attains its maximum at a point u* where dy(u*; *) exists, the next 
result allows computation of the solution of problem 1. 

Theorem 3 

Assume that u* maximizes y and that y is differentiate there. Then any 
point x* € X(«*) is a solution of problem 2.  Furthermore, 0(x*) =* y(«*). 

10 



Proof: Since y is maximized at u* and is differentiable there it is neces- 
sary that 

?y(M*) * -f(*V - o 

where x * is any point in X (H *). But 

Y(U*)  -  *(!*)- <U*,f(l*)> 

for all x € C.  For any feasible point x , f (x) > 0 so that <« *tf (*)> > 0. It 
follows that 

for all feasible x, and the proof is complete. 

Theorem 4 

If x and u are feasible points of problem 1 and its auxiliary problem 
respectively, then 

Y(u) * <f>(x). 

Proof: Assume x and u are feasible. Then 

y{u) = min \<f>(z)-<»tf(z)): zeCi 

S <f>(x)-(u,f(x)) 

and the proof is complete. 
The following examples indicate the need to assume more structure on 

0, f, and C in order to establish a close relation between problem 1 and its 
auxiliary problem.  The objective functions of these problems are not convex. 

Example 4 (See Fig. 3) 

Minimize 
l-x2 .1-2* - O.OSxSll. 

Choosing f (x) = 1 - 2x and C = {x : 0 < x < 1) it is found that D[y] = E1 and y 
attains its maximum at u* ■ V»- However x* » Ü/Xlu*) * {0,1} and y(n*) 
< 0(x*).  Hence both problems are feasible and have optimal solutions, but 
these solutions are not directly related. 

Example 5 (See Fig. 3) 

Minimize 
i-x2: 1-2* » 0, x-Oor It. 

11 
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Choosing f as above and C = {0,1} it is easily seen that the auxiliary problem 
is feasible and has an optimal solution whereas the stated problem is not feasible. 

Y(») 

-r- 
-l 74 

H   + 

-1 

Fig. 3—Tht Auxiliary Function 

Example 6 

Minimize 
I*3: 01. 

Setting f(i) - i and C = E1 it follows that Dj>] is empty so that the auxiliary 
problem is not feasible, whereas the stated problem is feasible and has an 
optimal solution. 

The following principle has applications to decomposable and separable 
programming which will be pointed out in more detail in Sec 4. The theorem 
is stated here because no special hypotheses are needed on 0, f, and C. 

Suppose that problem 1 has the form 
minimize 

\tfx) ♦ *(>) : fix) > g(>) ä 0,11 C, y € Dl. ^ 

Let y denote the auxiliary function of this problem and (X, Y) its minimizing 
function.  Let y' and y' denote the auxiliary functions of the two problems 
minimize 

\6(x) :f(x). 0, x > C\ and (7) 

minimize 
lf(y):ijW£0,ycDl. a (8) 

Let X' and Y' denote the minimizing functions of Eqs 7 and 8 respectively. 

Theorem 5 

Problems 6, 7, and 8 are related in the following manner: 

12 



(a) y =  y'+y' 

(b) My) *  rtylOrty-] 

(C) (X,Y) = (X'.V) 

Proof: The theorem is a direct consequence of the relation 

y(u) - min !<#*) ♦ f(y) - (u,f(x) + g(y)> . jr f C. y « Dl 

=  min l<#i)- (u,f(x)):xeC\ 

+ minl*(y)~<M,g(y)>. y e Dl. 

The next theorem states that any feasible point u of the auxiliary problem 
yields, via X(u), a solution of another problem related to problem 1. 

Theorem 6 (Everett)7 

If H * € D[y] then a point x * in X (u *) is a solution of the problem 
minimize 

l#x): f(x) I f(x*l * * Cl. 

Proof: By definition, x * € C and 

y{H*) -   ö(X*)-(«*.f(**)H #*)-<"*./(*)> 

for all x € C  Since u * > 0 it follows that 

6(x*)%<Mx)    (u*,f(x)- f(x*)) 

S#x) 

for all x € Candf(x) >f(x*). 

3.  THE STRICTLY CONVEX CASE 

Unless otherwise stated, throughout this section it is assumed that the 
Lagrangian function X(-,M) defined in problem 2 is strictly convex for each 
« € D[y]. Such would be the case, for example, if 0 is strictly convex and 
each fi is concave.  No differentiability assumptions are required.  The set c 
is assumed to be closed and convex but not necessarily compact. 

Theorem 7 

If A(-,n) is strictly convex for each u t P[y] and ( is closed and convex, 
then D[y] is an open set relative to (Fm ) *. 

Proof:  FiXM* cD[y] and let* ♦ = X(u*).   [Since \(',u*) is strictly convex 
and has a minimum over C, it must have a unique minimum.]   Let N('*;c) be 
a neighborhood of x* of radius < where c > 0 and t n N(i•; e) i 0.   If such an c 
cannot be found, then C consists of the single point ** and the theorem is trivial. 
Let 

H)      >•<**. w*) 

/- .        min \kt\,U*)    x - L  r <*S(x*. > )\ 

13 



^4**#4 

(The symbol d denotes the boundary operator.) 
Then jig > MI because X(-, »*) is strictly convex as a function of x. Let 

and set 

\\f(**H\ 
■«HlfWll :xeC0dH(x*;€)\ 

1 if-, - 0 

0<5< / (i^-fi,)/^   ifpj  =  0, v2 / 0 

minl(#i2- fil)/'i^l,   ifp,   ^   0, i<2  4  0 

Then, if ||tt -u*|| < 6, u € D[y], it follows that 

||0(X*) - <M, f(X»)>l - !#X*) - <«♦, f(X*))\ \ 

= \(u*-u,f(x*))\ 
Sli«*-«II lltfi   ! 
-*l IN-1*11 

<Qi2-F|)/3 

so that X(*,«) evaluated at x* differs from ^ by less than (^2 - Mi )/3. 
Furthermore, if x' € Cfl d N(x♦; c) it follows that 

|A(x',u*)-Arx'piO!  -  KM-M* ffO)| 
S ||a-i*|| ||f(x')|! 

s ^l!»-«*ll 

so that 

Hence 

A(x',u*)< 0*2 - ,,,)/.!♦ A(x». 

H2-(ii2-i«1)/3< Afx', M). 

Now A(*,u) must be minimized somewhere in C n N (x V) since this set is 
compact. Its minimum cannot occur on C n a N(i *;e), since there is a point xw 

in C n N(x*;c) giving a lower value to X(-,u) than any point on C n öN(x *;c). 
Since 0is strictly convex, the minimum of X(*,u) is the unique global minimum 
of X(*,u) over C, and the proof is complete. 

The strict convexity is essential in this proof since, for example, a linear 
program has a closed convex polyhedron for the domain of its auxiliary function. 

The next theorem, together with Theorem 1, shows that the auxiliary prob- 
lem is a convex program. 

Theorem 8 

If A(',u) is strictly convex for each u  € D[y] and C is closed and convex, 
then 0[y] is convex. 

14 



.<-.«tT*<*¥e*«>- * mtg&afSm 

Proof: Fix u1 and u2 in D[y] and let M3 * au1 + ßu2 where a, 0 > 0, 
a ♦ ß =« 1. Since 

inf lA(i,w3) : xeC\ > a inf lAfx.u1): ieCi + /S inf \K(s,ä2) :xeC\ 

it follows that X(*,w3) is bounded below on C. It must be shown that the greatest 
lower bound of X(-,u3) over C is actually attained at some point of C. 

Let 

and set 

Consider the sets 

ltt = inflAdVj.'xcCl  (i » 1,2,3) 

L%4) « U eC :X(*,uh & p4\ (i = 1,2,3). 

Since X(*,«1) and X(-, u2) have unique minima in C, it follows that the sets 
L11*4) and L2G*4) are bounded sets because all nonempty level sets of a 
convex function are bounded in the same directions.13 But 

so that L30*4)'is also bounded and hence compact. Thus X(-, u3) attains its ' 
minimum in C, and the proof is complete. 

Although the strict convexity of 0 is a sufficient condition for the con- 
vexity of D[y], it is not necessary since D[y] is convex in the linear pro- 
gramming case. Example 3 following Theorem 1 illustrates the need for some 
condition such as the strict convexity of X(-,u) to ensure the convexity of D[y]. 
The corollary that follows relaxes the strict convexity assumption somewhat. 

The "relative interior* of D[y] refers to the interior of D[y] with respect 
to the smallest linear manifold containing D[y]. 

Corollary 

If A(',u) is convex and C it closed and convex (so that problem 1 is a con- 
vex program), and if Xfy1 ) is bounded for some u1 f D[y] then the relative 
interior of D[y] is convex. 

Proof: Let u3 be any point in the relative interior of D[y]. Then 

u3 -  an1 + ßu2   (o,/3>0, u + ß - I) 

where u2 € D[y] is on the ray emanating from ul and passing through u3. 
Using the notation of the above theorem we obtain as before 

/i3 l a/i1 + ßu2. 

Let y* € X(u2). Then X(x,u2) > X(y*,u2) for all x € C, hence 

15 
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fcT^vMJW^'-, .jiH^^'t   "•!' *m gaapwr t"1^ nf^ 
y 

r**f $*$**> 

v.vr 

L,(|i3) - iicC: aA(i,u1) + /3A(i,u2)$A(y»,M3)l 

« IxeC : aA(f.M!)SaA(y*,Ml) + ßlA(y*,ii2)-A(r,«2)]| 

ClxeC.AfxVjS aAfy*,«1)! 

-   l^fAfy*,!!1))  which it a bounded »ft 

It is not empty since y * € L3 (x(y*f M3)). 
Hence X(*,«3) attains a minimum over C. Since u3 was an arbitrary point 

in the relative interior of D[y], the proof is complete. 
The next theorem categorizes the minimizing function X in the strictly 

convex case. Note that X («) consists of a single point for each u and hence 
may be considered a function in the usual sense. 

Theorem 9 

If X(*,M) is strictly convex for each u € D[y] and C is closed and convex, 
then X is a continuous function on D[y]. 

Proof: Fix u* € D[y] and c > 0. It must be shown that there is a 6 > 0 
suchthat ||M-U*|| < 6, « € D[y] implies that ||X(u)~ X(u*)|| < c. Set 
x* = X(»*) and 

M>maxt||f(x)-f(x»)|| : *6C H «9 N(r*;e) I. 

(If C n b N(x*; c) is empty the proof is immediate.) Let 6 > 0 be any number 
such that 

(l/M)l0(x)-tf(x*)-<u*,f(x)-f(x*)>l>S 

for all i € CndN(iV). 
If M € D[y] n N(u*;6)then 

M5>||f(l)-f(X*)||||M-M*|| 

4(f(x)   ffx*),u-ii»). 

But 
|*fjj- (u*,f(x))\    )6(x*)- <M*,f(x*))l > M6 

for allx € CndN(x*;c) 

so that 
d(x)W«.f(i»   c'»(x*)- (u,f(x*)) 

for all x € cndN(x*;c). 
Since u € *>[>], A('t M) has a minimum over r, and this last inequality 

shows that this minimum cannot occur on C n a N (x*; c).  The strict convexity 
of X(*,u) requires that it be minimized in C n N(x*;c), and the proof is complete. 
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Theorem 10t 

If \(',u) is strictly convex for each u 6 D[y] and C is closed and convex., 
then the partial derivatives dy/du^ exist and are continuous throughout int P[y], 
and hence y is differentiate there. Moreover, if u* € D[y] and u* « 0 then the 
right-hand partial dy/duf exists at M*. ' 

Proof: Fix u* € D[y] and h > 0. By letting ei denote the tth unit vector 

T V 

On the other hand 
y(u* + H^-y(u*) > ^U(X(u» + he1), u* ♦ he')- A(X(II* ♦ he*, u*)jl 

Since ft and X are continuous, it follows that 

lim|-fJ(X(ti* + llc,))l -f,(X(u*)) it 

For u, > 0 a similar proof shows that dy/d H, [«* » - f, (X (M *)) and the proof is 
complete. 

This theorem, together with Theorems 7 and 8, allows one to find the 
solution of the auxiliary problem by employing any standard gradient-ascent 
technique that takes into account the nonnegatlvity condition on u (this last 
restriction is unnecessary if only equality constraints are present on the 
original problem). 

Although y is continuously different table in int D[y] it is not, in general, 
twice continuously differentiate.  For example, when the objective function 
and the constraining functions are separable and when C = (En)+, the region 
D[y] is partitioned into several subregions by n hyperplanes (see Ref 11, p 92). 
The degree of differentiability of y inside these subregions depends primarily 
on the degree of differentiability of 0 and the f, . Typically y is not twice con- 
tinuously differentiable on the common boundaries of these subregions. 

Example 7 (See Fig. 4) 

Minimize 

subject to 

*(*) - ?«l*2*!*'"*2*3** 4*3-4*3 

*l-*3       » 

*,**2  .  2 

*|,*2'*3  »  ° 

tTbe author is indebted to G. P. McCormick for suggesting the proof presented 
here for this theorem. 

%- 

ß»J 
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Fig. 4—-THe Domain of y 

The auxiliary function of this problem is defined by 

y(u)   - min 4x? + 2x' "• e *2< :U2 +Txi~ tjt3 

-M,(Xj - *3~  !)-M2fJt,   S X2- \)>. 

Because of the separability of X (x ,u) in the x variables, it may be written that 

y(u) min .-*~ . 2Xj_(u, > «2^*1 
X , ;" 0'*- ' 

min    lc    " • 'li'a     M., x.,1 
I2   0 

min  |-if-  it,., Mjt,J 

a | • !(,,. 

Each of these minimizations is easily performed and it is found that 

18 
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*i(*) ■ ]■■: 
■ «| - 2 whe« Mj + ii2 ä 2 

0 otWrwiae 

•adefiaed wfcea u2 > 3 

f^'gj >^-*i(3~M2) 2S«j<3 

0 «,S2 

'^ 
14-M. wtcn Uj < 4 

otherwise. 

The domain of y is given by the inequalities involved on the definitions of the 
i.- GO's above. Figure 4 illustrates D[yJ along with the sub regions defined by 
these inequalities. Note that 

Vy(3,l) = b - AJK3,1) 

ft)-c:D0-o 
so that the point x* = (3,1) maximizes y. This point could have been found 
using a standard gradient-ascent technique that takes into consideration the 
possible bounds on D[y]. In many cases D[y] = E* so that no special care 
is necessary. 

The following two theorems state that problem 1 and its auxiliary prob- 
lem are equivalent in the sense that the solution of one provides a solution of 
the other and that their optimal values are equal. The proof of Theorem 11 
follows directly from Theorems 7 and 10. 

Theorem 11 

If y is maximized over D [y] at «* then t * ■ x(u*> is the solution of prob- 
lem 1. Furthermore, ydi*) = 0(x*). 

Proof: Since y attains its maximum at u * it is necessary that 

£' 0 if uf > 0 

-£-|M* i 0 ifw* = 0 
du* 

i.e., 
fi(x*) = 0 ifu* > 0 
/,(**; £ o if«* = o 

so that x* is feasible.  Moreover 

J(M*)     6(X*)-(U*. f(x*)) = 4(x*) 

so that 0 attains its minimum at x* by Theorem 4, and the proof is complete. 
To prove the converse of Theorem 11 we may modify the proof of a 

similar theorem found in Arrow et al.11 It is necessary to make the addi- 
tional assumption that there is a point x° € C such that f (x°) > 0 (which im- 
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plies that {x |f(x) « 0} has a nonempty interior relative to C). This is a com- 
mon assumption that is often employed when dealing with concave inequalities 
(see Arrow et al.. p 34).M The assumption of strict convexity may be dropped 
for this proof. 

Theorem 12 

Let 0, - fj,. . . , -[„, be convex functions defined over C and assume that 
there is a point x° € C such that f (x°) > 0. If problem 1 has a solution **, then 
its auxiliary problem is feasible and has a solution u *. Moreover 0(x *) « y (u ♦). 

Proof: Define two sets T and T' in E"+1 by 

T - UZt): r> 4>(t), \(x) 11  for some x e CI 

V - l(T',|');0(x*)>T',r>O|. 

It is easily seen that T n 7" =* 0. Since T and T' are convex, there is a hyper- 
plane that separates them; i.e., there is an n + 1 vector (v*, v*) i 0 such that 
v*r ♦ <v*ft > * p*r' + <sV> for all (T,0 € T and (T',I') € r 

It will now be shown that 
v*  I 0 

t/* < 0. 

Fix t, r'and t' in the above inequality and let r - •. If v* < 0 the inequality 
would become violated for sufficiently large r. A similar argument fixing 
T, t, and r' and allowing I' to become arbitrarily large yields u* = 0. More- 
over, ** ^ 0 because if u* =» 0 then 

<i>',f(x0)> > 0 

since (0(x°),f(x0)) € T.and (0(x*) - 1,0) € T'. But v* i 0, t>* / 0 ((p*,ir*) * 0), 
andf(xb)> Osothat 

<fM(x°)> < o, 

which is a contradiction. 

Set 

-&)"■ 

Thus 

Since (0(x),f (x)) € T for any feasible x, it follows that 

Setting I' = 0 and taking the supremum of the right-hand side gives 

6(x)-<u*, fix)) t 6(x*)f 

which implies immediately the conclusion of the theorem. 
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4. SOME APPLICATIONS 

In this section some applications of the theory developed in Sees 2 and 3 
are briefly described. A paper describing applications in more detail is in 
preparation. Lasdon9 and Takahashi9 contain additional applications to re- 
source and multistage allocation problems. 

Duality 

The importance of duality theory in linear programming has led to the 
concept of the dual of a nonlinear program. The formulation in this section 
is from P. Wolfe.5 

The problem that Wolfe considers has the form 
minimise 

subject to 

4>(x) 

f(x) * o (9) 

where 0 and the a components of -f are convex and continuously differentiate 
functions. 

The Wolfe dual of Eq 9 has the form 
maximize 

?(*,«) = <j>(x) -<*.f(*)) 

subject to 

II >  0. 
(10) 

The feasible set of Eq 10 is denoted by D[*]. Note that Eq 10 contains the 
variable z as well as the dual variable u. In general Eq 10 does not describe 
a convex set. 

Theorem 13 

The auxiliary problem of Eq 9 is equivalent to Eq 10 in the following sense: 
(a) Dlf] = l(x,M):M€Dlyl,i€\(ii)! 

(b) V(i,u) = y(u) for each (i.ii)eDlfl. 

Proof: Since 0 and - ft (i ■ 1,. . . , m) are convex, a necessary and suf- 
ficient condition that *(*,«) be minimized over E" is that 

Vxf(x,u) =- 0. 

Hence, if (x ,u) € D[tf], then x minimizes *(•, u) over E" and conversely.  This 
proves statement a.   Statement b is immediate from the definition of % 

While Eq 10 is not a convex program, the auxiliary problem of Eq 9 is, 
at least when 0 is strictly convex. Also the primal variable x does not occur 
in the auxiliary problem since it has been replaced by X(u). 

21 



£>.4*i<---- 

# 
i 

Decomposable and Separable Programming 

Suppose Eq 1 has the form 
mlnlmfee 

*<*) 

subject to 

gj (i,) N(i«I,..,,p) 

where 0 is strictly convex, each f' and g, are concave, x ■ («j f... , *J* and 
*, is a vector having *< components. Such a problem is said to be decomposable 
and if Sj « 1 (i » 1,. . . ,p) it is said to be separable (completely decomposable). 
Letting C* ff : g, (r,) > 0}, by Theorem 5, yields 

Hence, if a gradient-ascent procedure is used to maximize y, the essential 
quantities y(u) and Vy{u) can be obtained by solving p nonlinear programs for 
each K. The ith program involves K, variables. Thus the solution of a decom- 
posable program is obtained by solving p smaller subprograms for a sequence 
of «'s tending to «*. In the separable case the p subprograms involve a single 
variable only and, in many cases, XJ(M) can be expressed analytically. In the 
important special case where f has a single component much more can be said 
about the solution of Eq 1 (see Falk"). 

Minimizing Quotients 

Suppose one is seeking the solution of a problem having the form 
minimize 

subject to 
«<s (11) 

where 0 and - ¥are convex, 5 is closed and convex,and *(*) > 0 for all % € 5. 
It will be assumed that 0 is strictly convex. 

The function 6 may be defined over its domain D[6] by the relations 

D[8] m \ ft > 0 : 0(0 - ft^f (•) has a minimum over Si 

Sift) = min\<t>(x)-iiV(x) : xt$\ 

By the theorems of Sec 3 it is known that D[6] is open with respect to (E1)* 
and convex, and 6 is concave. 

Theorem 14 

6 is a monotone decreasing fraction. 
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Proof: Let JI' » ß' where p\ p' €D[6]. Since *(x) > 0 for i t S we have 

so that 

where X(j*') minimizes 0(») - M'*(*) over S.  Hence 

and the proof is complete. 
Since 6 is continuous and monotone decreasing, the set of points u* for 

which 60**) ■ 0 is connected and compact. The next theorem characterizes 
the points of this set. 

Theorem 15 

There is a point p* such that 60**) * 0 if and only if p* is the optimum 
value of the objective function of Eq 11. Moreover Xfe*) is a solution of Eq 11. 

Proof: If 60**) « 0 it follows that 

Hence 

Moreover 

so that 

<f>(x)-ii*V(i) I Sip*) = OforxcS. 

*(x)/¥(jr) > u* f« allicS. 

0(X(M*))/¥(X(M*)) - M*. 

The other half of the proof is similar. 
Hence the problem of minimizing the quotient of two functions can be 

viewed as a sequence of minimization problems not involving quotients. In 
many cases, each problem in this sequence of problems may require a minimum 
of computational effort compared to the original problem. The sequence of 
problems to be solved is formed sequentially in a manner that will locate 
a zero of the concave decreasing function 6. 
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