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FOREWORD

This paper contains the mathematical validation of a Lagran-
giantechnique for nonlinear programming that replaces the original
problem by an auxiliary problem that is solvable by standard
methods. The properties of the auxiliary problem are described
and validated under certain conditions, and a number of applica-
tions are described. Several examples are presented in orde: to
clarify various results.

Some parts of this paper have been extracted from the author’s
Ph.D. thesis in mathematics at the University of Michigan. The
writing of this thesis was supported by National Science Founda-
tion Grant GP-2215.

The author solicits criticisms, questions, and discussion of
any of the conclusions reached.

Nicholas M. Smith
Head, Advanced Research Department

iii




CONTENTS

Foreword

Abstract

1. Introduction

2. The General Case

Example 1-~Example 2—Theorem 1—Example 3—~Lemma 1—
Theorem 2—Theorem 3—Theorem 4—Example 4—Example 5—
Example 6—~Theorem 5—Theorem 6

3. The Strictly Convex Case

Theorem 7~Theorem 8—Corollary—Theorem 9—Theorem 10—
¥xample 7~Theorem 11—Theorem 12

4. Some Appiications

Duality~Theorem 13—Decomposable and Separable Programming—
Minimizing Quotients—Theorem 14--Theorem 15

Referencos

Figures

f.xample 1

A Linear Program with Its Auxiliary Problem
The Auxiliary Function

The Domain of vy

w0 BN e

iii

13

21

24

12
18




Theory of Lagrange Multipliers

for Constrained Optimizatioin Problems




ABSTRACT

This paper treats an extension of one version of the classical Lagrange
multiplier rule as applied to nonlinear proegramming problems. For a
given problem, an auxiliary problem is defined and its properties are
studied under various assumptivns. In purticular, when the given problem
has a strictly convex objective function and concave constraints it is shown
that the auxiliary problem is one of maximizing a concave differentiable
function over an cpen set subject only to nonnegativity conditions. Some
applications of this thecry are presented along with the connection be-
tween the auxiliary problem and a *dual” of the given problem.
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1. INTRODUCTION

Lagrange muitipliers, in one fcrm or another, have played an important
role in the recent development of nonlinear programming theories. Indeed,
perhaps the most important theoretical result in this field to date is the cele-
brated Kuhn-Tucker Theorem,' which is an extension of the classical Lagrange
multiplier rule in its most common form (see Courant and Hilbert,? p 165). In
the same paper, Kuhn and Tucker show the equivalence between convex pro-
grams and their associated “saddle value” problems.

Related to these concepts are the variations of the dual program formu-
lated by Wolfe,® Huard,' and several others. This duality theory for nonlinear
progruomming received impetus from its counterpart in linear programming,
where it enjoys a very pleasing and useful symmetry. Early formulations of
the dual of a nonlinear program dic not enjoy perfect symmetry (for exampie,
the dual of a convex program was not convex), and attempts to achieve it led
to a closer study of the properties of Lagrangian functions (see Rockafellar®
and Whinston® and their references).

A study of the Lagrangian function of a problem has proved useful from
a computational standpoint. For example, Everett’ has presented an interest-
ing result that applies to general problems involving separable objective func-
tions and constraints. The method essentially involves an iteration scheme in
the space of Lagrange multipliers together with comparatively simple minimi-
zation orerations at each iteration. Although it is clear how these minimization
operations are to be performed, it is not clear how the optimal set of Lagrange
multipliers are to be chosen.

Most of the work in this field has emphasized the best-known formulation
of the Lagrange multiplier rule. There is another formulation (Ref 2, pp 23:~-
32) based on the Legendre transformation that states the equivalence of a given
equality constrained problem with a related but unconstrained optimization prob-
lem. The main purpose of this paper is to generalize this version of the Lagrange
multiplier rule to handle inequality as well as equality constraints and to de-
scribe the structure of the related problem in some deiail. It will, in fact, be
shown that often a great deal of the structure of this related problem can be
exploited computationally.

Section 2 confains the definitions of the various constituents of the related
or auxiliary problem. These definitions can be made without reference to any
particular hypothesis on the elements of the given problem, and some results
may be obtained in this general setting.

In Sec 3 the discussion includes only convex programs with strictly con-
vex objective functions. No differentiability assumptions are necessary. Al-
though many of the results of this section hold for less restricted problems,
the assumption of strict convexity seems to be the most concise and common
hypothesis that can be made to ensure that the auxiliary problem is well behaved.
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With these restrictions it will be shown that the auxiliary problem becomes
one of maximizing a concave differentiable function over an open set subject
only to nonnegativity conditions. This would appear to be a simple and useful
procedure computationally, since any standard gradient-ascent technique could
theoretically be employed on the auxiliary problem to okbcain a solution of the
given problem. Unfortunately the calculation of the gradient of the objective
function oi the auxiliary problem involves the solution of a nonlinear program,
and, unless the given problem has a special structure, this solution may re-
quire an excessive amount of effort. On the other hand, many problems do
have this special structure (e.g., separable programs) and for these probleu:s
the solution of the aforementioned nonlinear probtem is easy. Lasdon,® Taka-
hashi,’ and Falk'® have investigated such decomposable problems.

Takahashi views the auxiliary problem as the conjugate of a second related
problem and uses known results of conjugate functions to verify his results.
Although the theorems are stated correctly the proofs are inccmplete since
questions concerning the convexity of the domains of the functions involved
are ignored.

In Sec 4 the auxiliary problem is related to the dual of the given problem
as defined by Wolfe,’ and it is shown that the two problems are essentially
equivalent. This is important since the auxiliary problem is a convex program
whereas the Woulfe dual generally is not.

Also in Sec 4 the theory is applied to decomposable and separable programs
and to the problem of minimizing a quotient of two functions.

2, THE GENERAL CASE

The mathematical program to be discussed has the form
minimize

Jox) s f(x) 20, x = Cl (1)

where C is a subset of E" and where ¢ : E" ~ E! andf : E® -~ E™. In general,
for a given problem there are many ways to partition the constraining inequali-
ties (or equalities), and hence the selection of a particular f and C inEq 1 is
somewhat arbitrary. Computational considerations discussed in Sec 4 indicate
which constraints should be represented by f and which should be represented
by C. It is assumed that m = 1,

Equality constraints have not been included explicitly in order to simplify
later notation. Their inclusion would cause no theoretical problems as all the
results that follow hold in their presence.

The definitions that follow can be made without any additional hypothesis
ong, f,or (.

The Lagrangian function of Eq 1 is defiaed on E" x E™ by the relation

Ax) o) = ) -, (2)

A function y is defined over its domain D{y] by means of the relations




Lly} = lu 2 0: y(-, u) attains its minimem over C| (3)
yW) =min [A(x,u) : xeCl (4) .

Thus u is in the domain of y if and only if the function A (-, u) attains a finite
(absolute) minimum at some finite point x. The totality of points in C that
minimize A (-, u) for a given » € b (y] is denoted by X(u) and will be termed

the *minimizing function.” In general, X(uj is a set function defined over D[7]
into C. The function y will be termed the “auxiliary function” of Eq 1, and the
problem

max {yu) : ueDIyl} (5)

will be termed the “auxiliary problem” of Eq 1. These definitions may be iiius-
trated by an example.

Example 1 (See Fig. 1)

y
X2
6
‘ -
4
24 2
0 ; 1] 0 + + A u
0 /2 4 6 b 2 4 6 8
o. Feasible Region b. The Auxiliory Function
Fig. 1—Example 1
Minimize
(1) =151% * 2r, +%z§—x2
subject to

[ xy -x, =22,

C 1 18y 2 0,

f1 2 ] Al
yu) - , mm.n‘l_;xl v 2ry «-2-12-x:-u(1| 7 ‘.3,
1+ X0
i1 {1, l
= min :-,;xr‘;cﬁx‘-uxl}‘ min '{5x§-lz~u12{0 2u.
yoetE Xq > e
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Since each of these one~dimensional minimizations can be carried out for all
values of ¥ =2 0 it follows that Tl
“Ja(EN*

Calculating the derivatives of the functions involved in this expression for y
and setting them equal to zero gives

‘ 0 0sSus?
xl(ll)=
1u-2 ux2
0 uxl
Xo(u) = {
| T O<sugl,

Substituting these expressions into A (x ) gives

—%u2+3u-% Ocugl
! y(u) = 2u 1<ug?
--;'u2+4u-2 w22

If the equality constraints g;(x) = 0(i =1,. . ., p) were added to problem
1 the auxiliary variables ui (i =1,. . . ,p) associated with these constraints
would not be restricted to be nonnegative in the definition of D [y].

It may be proved that if Eq 1 is the linear program

min ${c,x): Ax b, 20

with f(x) = Ax = b andC = {x : x 2 0}, then Eq 5 is precisely its dual (see Falk.'')
However, if some of the inequalities described by { are used to describe ¢, then
problem 5 becomes a *piece-wise linear” program.
Example 2 (See Fig. 2)

Minimize

Xy + 519

subject to
[l(x)=-2+ 2xy 419 :;0
fox) = =3+ 1) + 353 20
s' ~32x 43953
< X =14 22

[_ LI P =0




The Lagrangian functioa for this prablem is
Alz,u) =x) + Sxg =uy(=2+ 2x) + x5} ~uy (-'-34» 1y + 3x5)

-(l- 2!1 -I,) I! +(5-Il -3“:) .l’z + Zul + 3.2

and the corresponding auxiliary function becomes

yn) « min Kl-2) ~updxp +(5=u; = 3ug) xol + 24 + 3u,.
xeC

3
The simplex tableau can be used to investigate the three vertices of C and to 3
determine the corresponding sets of m1 and 2 for which these vertices are
attained. The results are given in Fig. 2 along with the corresponding value i
of y(u). : $
i o. The Eatire Constraint Region
u2
R y(u)-2Il|+3u2 y(u)=2-2“’+u2 i
! > “
P 1 2
f ¢. The Domein of y
i Fig. 2—A Linear Program with its Auxiliary Problem
i€
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If Eq 1 is the quadratic problem
minimize

15 (x.Dx) + (dx)

subject to
Ax> b

where f(x) = Ax - b and C = E® with D symmetric and positive definite then
problem 5 becomes

maximize
-%(AD"‘ ATunu) - (_AD'ld +bu) -% (p-'éd)

subject to

u> 0.
This is the dual problem that Lemke'? addresses in his method for quadratic
programming.

Related to the function y is the function 3 defined by replacing *minimum®
with “infimum” in definitions 3 and 4 and requiring that u € D[¥] whenever
A(-,u) has a finite infimum over C. Clearly D{y] c D[7] and 7(u) = ¥(u) for
each w€ D(y]. In many problems D{y] = D{¥] (e.g., D[y] = D{¥) = (Em* i C
is compact and if ¢ and f are continuous), although it is easy to find examples
where the strict inclusion holds. One such example is constructed by setting

&) = ¢ 2
flx) -x,
¢ -E°

Here

v = min  te™2 -uy, |
F1-¥e

and this does not attain a minimum for any value of ¥ so that D(y] = ¢. How-
ever, for u = O the term ¢ has an infimum of 0 so that D(¥] = {0}.

This paper is primarily concerned with the function y, although occasion-
ally 7 will be referred to in order to clarify certain results.

Theorem 1

The function y is concave over convex subsets of D[7].
Proof: Fix ul,u? ¢ D{7),a 20,820,a + 8 =1, and assume that
ud =aul + Bgu2 € D(y]. Then

() = min Teax,ud) « Al ud) : xeCl
> o min W) s xeCle B omin IMxud) s xeCl

vinh

and the proof is complete.

It is not true in general that N(y] is convex, even when Eq 1 is a convex
program.
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Example 3
Minimize
lmax §x,), e "2 x; =0}.

Each of the functions ¢! : (x;,55) = |x;]| and @2: (5, x2) = ¢~ 13 convex.
Since the maximum of two convex functions is convex, it follows that the function

2 (x),xq) » max Hxyf, ¢}

is convex.

Pick
f(!) =X 1

C=E?

Since the constraint is an equality, the value of u is unrestricted.
By definition

y(u) = min lmax l|x,), ¢™2} - ux,}

whenever this minimum exists. However, this minimum exists only when
u=1and u =-1 so that
Diyl ={-1,1}

and is not convex. It is interesting to note that
XD = i(xy,x9) : x) :c-'zl

and
X(=D=Hx),x9): 1y <= e

are both unbounded sets. For convex problems such an example could not be
constructed otherwise (see corollary to Theorem 8).

Note that D[y] = (Em)+ when ¢ and [ are continuous and when C is com-
pact. The convexity of D{y] will be established for a different class of problems
in Sec 3.

Since y is concave over convex subsets of D{y], it is differentiable almost
everywhere in int D{y]). In order to calculate Vy = (3y/3u;, ..., 3y/,)T
when it exists, it is necessary to establish a preliminary result.

Lemma 1

Lety* € int D[7y] and assume that the differential dy{u*; .) exists. Let
g € Em be such that

y*) =y > (gu* -u)

forall u€ D({y]. Thenvy(u*) =g.

T e it rangg
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Proof: Assume that 87 Vy(u*) and fix ¢ such that 0 < € < |lg =~ vfu®)]|.
Since y is differentiable at 4*, there is an open neighborhood of u* of radius §
(denoted by N(u*; 8)) contained in D(y) such that

ly*) = () - (Vyw*), u* -y Y| < e|lu-u*]|

forall ueN(u*; 6). Select v* ¢ N(u *; 6), v* # u*, on the ray emanating from
u* with direction vy(y *) - g, L.e., select 4 > 0 such that

U = ut v a(Upu) - 8) € N(u*; ).
With this selection of u* it follows that

Opus)~ g, v* - w*) = afVy(u®) - g||2
= |lv* - u}] |IVyu*) - gj|
> el|u* - u¥|

80 that

8 u* = v*) > (Vyfu¥), u* - v*) 4+ €f|v* - u|].

The hypothesis of the theorem, together with this inequality, implies
Y(u®) - %) 2 {q, u% - ps)
> (Vy(us), us - V) + €llu* - ue),

which violates Eq 5, and the proof is complete,

Theorem 2
Let u* € int D[y] and assume d y(u*; -) exists. Thzn
Vyu®*) = - f(x%)

where 1* is any point in X(u*).
Proof:
Y(u) = min ig(x*) - (u, f(x)):xeC}

T o(x%) - (u, f(x%))

= B(x*) - (u*, f(x*))-(u, [(x*) )+ Cus, f(x4))

- %)+ (u -, - f(xn)) |
for all u ¢ D(y]. Hence - f(x*) satisfies the condition of Lemma 1, and the
proof is complete.

If y attains its maximum at a point u* where dy(u*; .) exists, the next
result allows computation of the solution of problem 1,

Thecrem 3

Assume that u* maximizes y and that v is differentiable there. Then any
point x* € X(u*) is a solution of problem 2. Furthermore, P(x*) = y(ue),

10




Proof: Since y ;s maximized at u* and is differentiable there it is neces-
sary that
Vyw*) = ~f(x*) = 0

where x * is any point in X (xv*). But
' Hu*) = ¢(x*) - u*, [(x*))
$ S(x)-(u*, f(x))
for all x € C. For any feasible pointt, f(x) > 0 sothat (u*,f(x))>0. It

follows that
é(x*) S ¢(x)

for all feasible x, and the proof is complete.

Theorem 4

If x and u are feasible points of problem 1 and its auxiliary problem
respectively, then

ylu) < é(x).

Proof: Assume 1 and u are feasible. Then

y(u) = minlp(2z)- &, f(z)):z €C}
S $(x)-(u, f(x))
S ¢(x)

and the proof is complete.

The following examples indicate the need to assume more structure on
¢, f,and C in order to establish a close relation between problem 1 and its
auxiliary problem. The objective functions of these problems are not convex.

Example 4 (See Fig. 3)

Minimize
{-x2:1-2xr = 0,08xS 1.

Choosing f(x) =1- 2xand C={x : 0 < x < 1} it is found that D(y]} =E! and y
attains its maximum at u* = ;. However x* = 4 2 X(u*) = {0,1} and y(u*)

< @¢(x*). Hence both problems are feasible and have optimal solutions, but
these solutions are not directly related.

Example 5 (See Fig. 3)

Minimize
{-12:1-2r = 0,x=0or 1l.

11
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Choosing { as above and C = {0,1] it is easily seen that the auxiliary problem
is feasible and has an optimal solution whereas the stated problem is not feasible.

y(u)

Fig. 3—The Auxiliary Function

Example 6

Minimize
tx3:x - 0f,

Setting f(x) = x and C = E! it follows that D[] is empty so that the auxiliary
problem is not feasible, whereas the stated problem is feasible and has an
optimal solution.

The following principle has applications to decomposable and separable
programming which will be pointed out in more detail in Sec 4. The theorem
is stated here because no special hypotheses are needed on ¢, f, and C.

Suppose that problem 1 has the form

minimize
18(x) + ¥(y): f(x)+ aly) 20, x e C,y e DI, (6)

Let y denote the auxiliary function of this problem and (X, Y) its minimizing

function. Let ¥y’ and y” denote the auxiliary functions of the two problems
minimize

ldix) : f(x). 0, x = Cl and (7
minimize
1¥(y) :a(y) 20,y €D}, R (8)

Let X’ and Y’ denote the minimizing functions of Eqs 7 and 8 respectively.

Theorem 5

Problems 6, 7, and 8 are related in the following manner:

12
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(a) y = y'+y”
(b) plyl = Dly1 N Diy"]
() (X.Y) = (X"Y")
Proof: The theorem is a direct consequence of the relation

y(u) = minld(x) + ¥(y) - <&, f(x) + @(y)) :x € C, y € D}
= min ie(x) - {u,f(x)): x € C
+min 1¥(y) - {u,gy)):y € DI.

The next theorem states that any feasible point u of the auxiliary problem
yields, via X(u), a solution of another problem related to problem 1.

Theorem 8 (Everett)’

Ifu* ¢ D{y] then a point x* in X{(v *) is a solution of the problem
minimize

to(x) < f(x) 2 f(x*). 2 < C1.

Proof: By definition, x* ¢ C and
yu*) = S(x*) - (u*, f(x*)) S &(x) - {u*, | (x))
for all x € C. Since u* > 0 it follows that
S(x%) S B(x) - (u*, f(x) - [(x*))

S B(x)
forallx € Candf(x) > f(x*).

3. THE STRICTLY CONVEX CASE

Unless otherwise stated, throughout this section it is assumed that the
Lagrangian function A(-,x) defined in problem 2 is strictly convex for each
u € D[y]. Such would be the case, for example, if ¢ is strictly convex and
each f; is concave. No differentiability assumptions are required. The set C
is assumed to be closed and convex but not necessarily compact.

Theorem 7

If A(-,u) is strictly convex for eachu € D{y] and ( is closed and convex,
then D{y] is an open set relative to (F™)*.

Proof: Fixu®* ¢ D[yl andletx* =X (u*). [Since A(*,u*) is strictly convex
and has a minimum over C, it must have a unique minimum.] Let N(x*;¢) be
a neighborhood of x* of radius ¢ where ¢ > 0and C NN(r*;¢) # . If such an ¢

cannot be found, then C consists of the single point 1* and the theorem is trivial.

Let
"y y(x*, u*)

ke omindAv ) 12 C7 N )
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(The symbol 3 denotes the boundary operator.) -
Then u, >4, because A(, ¥*) is strictly convex as a function of x. Let

vy = [If(e*)i
vy = max{l}f(x)ll : x € C N IN(x*; )
and set

1 fv) = vy =0
le—lll)ﬂivl ifvy # 0,vy = 0
0<b< g -u)/3vy ity = 0,vy # 0
min Gy - p))/3v), ifvy) # 0,vy ¥ 0
(pg = py)/3v, k.
Then, if |ju - u*|| <&, u € D{y], it follows that

fta(x*) - Cu, f(x*)N - E(x*) - Cue, fx* i
= [u* ~ u, f(x*))|
$ s - wll {ifs |
= vy |lu - u*||
<(py-py)/3

so that A(-, u) evaluated at 1* differs irom g, by less than (45 - 4;)/3.
Furthermore, if ' €CNn 3 N(x*;¢) it follows that

Az, w®) - A(x, W)l = [u-we, (2]

£ Hu- el Hfx N
5 vy flu - usi|
< lpg ~ ))/3
8o that
AMx’, u%) < ug - u)/3 4 M, u).
Hence

o = (g = pp)/3 < Mx’, u).

Now A(-,u) must be minimized somewhere in C 0 N (x %) since this set is
compact. Its minimum cannot occur on C N3 N(x*;¢), since there is a point z*
in C n N(x*;¢) giving a lower value to A(*,u) than any point on Cn 3N (x *;¢).
Since ¢ is strictly convex, the minimum of A(-,u) is the unique global minimum
of A(*,u) over C, and the proof is complete.

The strict convexity is essential in this proof since, for example, a linear
program has a closed convex polyhedron for the domain of its auxiliary function.

The next theorem, together with Theorem 1, shows that the auxiliary prob-
lem is a convex program.

Theorem 8

If A(,u) is strictly convex for eachu ¢ D(y] and C is closed and convex.
then D{y] is convex.

14
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Proof: Fix u! and ¥2in D7) and let u3 = au! + pu? where a, 82 0,
a +p=1. Since

inf IA(x,u3) : xeCl 2 ainf IA(x,u') : xeCl+ B infIA(s,4?) : xeCl

it follows that A(-,u%) is bounded below on C. It must be shown that the greatest
lower bound of A( ,u3) over C is actually attained at some point of C.
Let

u; = infINru!) i xeCl G = 1,2,3)

and set
e > mulpl.pz. '13’.

Consider the sets
Liuy) = IxeC:Mruh) S pgh G = 1,2,

Since A(-,u 1) and A(-, ¥?) have unique minima in C, it follows that the sets
L! (u ) and L2 (;.:4) are bounded sets because all nonempty level sets of a
convex function are bounded in the same directions.'® But

L3y ¢ LM U L2y

so that L3(u,) is also bounded and hence compact. Thus A(, s3) attains its °
minimum in C, and the proof is complete.

Although the strict convexity of ¢ is a sufficient condition for the con-
vexity of D(y], it is not necessary since D{y] is convex in the linear pro-
gramming case. Example 3 following Theorem 1 illustrates the need for some
condition such as the strict convexity of A(,u) to ensure the convexity of D{y].
The corollary that follows relaxes the strict convexity assumption somewhat.

The “relative interior” of D[y] refers to the interior of D[y] with respect
to the smallest linear manifold containing D[y].

+

Coronarz

If A(-,u) is convex and C is closed aud convex (so that problem 1 is a con-
vex program), and if X(u! ) is bounded for some u! € D[y] then the relative
interior of D{y] is convex.

Proof: Let u3 be any point in the relative interior of D(y]. Then
Wl = c:m‘*Bu2 (0,8>0, a+8~1)

where u2 € D[y] is on the ray emanating from u! and passing through u3.
Using the notat!mn of the above theorem we obtain as before

32 aul+pul

Let y* € X(u2). Then A(x,u2) 2 A(y*,u?) for all x € C; hence

15
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Ly(u?) = IxeC: an(x,ul)+ Br(x,ud) SA(y*,u)l
= IxeC: oa (x.u?) S ar(y*, ul) + BIAy*,u2) - A(x,ud) 1}
ClreC : Mx,ul)s ar(y*,ul)l
= Ly(A(y*,u')) which is a bounded set.

It is not empty since y* € L, (A(y*,¥?)).

Heuce i(-,¥%) attains a minimum over C. Since u3 was an arbitrary point

in the relative interior of D[y], the proof is complete.

The next theorem categorizes the minimizing function X in the strictly

convex case. Note that X (x) consists of a single point for each u and hence
may be considered a function in the usual sense.

Theorem 9

If x(-,u) is strictly convex for each u € D[y) and C is closed and convex,

then X is a continuous function on D{vy].

Proof: Fix u* € D{y] and ¢ > 0. It must be shown that thereisa 6§ > 0

such that ||u - «*|] <8, v € D(y) implies that ||X{u) - X(u*)|| < €. Set
x* = X(u*) and

M > max H|f(x)=f(x*)|] : xeC NIN(x*; €)}.

(If CN3aN(x*;¢) is empty the proof is immediate.) Let 6 > 0 be any number
such that '

(/MM b (x) - (x*) = (ur, f(x) - f(x*)N > &

for all x € C N3 N(x*;¢).

I u e Dly] N N(u*;6) then
M > {If(x) = f(x* ) 1w - u*)|
2Hf(x) - f(x*), u—u*)
2(f(x)- f(x*), u-u*).

But
bd(x) = (u*, fx)b - 1S (x*) - (u*, f(x*))l > M8

for all x € C N3N{(x*;¢)

so that
S(x)- (u.f(x)) - Sx*) - (u,f(x*))

for all x € CN3N(x*;¢).

Since u € D{y], A(*, ¥) has a minimum over C, and this last inequality
shows that this minimum cannot occur on C N 3N(x*;¢). The strict convexity
of A(-,u) requires that it be minimized in C N N(x*;¢), and the proof is complete.
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Theorem 10+

If A(-,u) is strictly convex for each ¥ € D[y] and C is closed and ccnvex,
then the partial derivatives ay/au,. exist and are continuous throughout int D(y],
and hence y is differentiable there. Moreover, if u* € D{y] and ui‘ = 0 then the
right-hand partial 3y/au} exists at u*. ‘

Proof: Fix u* € D[y] and h > 0. By letting ¢! denote the ith unit vector

L‘l'—*-'-'-‘,?—'li'f-’- $ -,l'-lA(X(u‘), u* + he') = A(X(u*), u®)}

= = f; (X(u*)).

On the other hand

*

(w + hel) - y(u®) .;.lx(xm' + het), u* + hel) - A(X(u* + he’, ur))l

= = f, (X(u* + he')).
Since f; and X are continuous, it follows that

lim 1=f,(X(u® + he D) = - f,(X(w®)) = 2L |ue.
h-+0 a“i

T Y

For u; > 0 a similar proof shows that 3y/3u; |u* = - f; (X(x*)) and the proof is
complete.
This theorem, together with Theorems 7 and 8, allows one to find the
! solution of the auxiliary problem by employing any standard gradient-ascent
g technique that takes into account the nonnegativity condition on u (this last
restriction is unnecessary if only equality constraints are present on the
original problem).
. Although y is contimiously differentiable in int D[y] it is not, in general,
: twice continuously differentiable. For example, when the objective function
§ and the constraining functions are separable and when C = (E")*, the region
D(y] is partitioned into several subregions by n hyperplanes (see Ref 11, p 92),
The degree of differentiability of y inside these subregions depends primarily
on the degree of differentiability of ¢ and the f;. Typically y is not twice con~
timously differentiable on the common boundaries of these subregions.

Example 7 (See Fig. 4)

Minimize ] \
é(x) = Ex% $ 20+ €752 3y, +§x§- 1,
subject to
xl—xs =]
I+ X9 = 2
T X9, Xy < 0.

¥The author is indebted to G. P. McCormick for suggesting the proof presented
here for this theorem.
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The auxiliary function of this problem is defined by

~-X
xelx, e Bi5 &
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y(u) - min {
X1, Xg3,%320

—upfry-x3- D~ uy (x) + X9~ l)}.

Because of the separability of A (r,u) in the 1 variables, it may be written that

M1
y(u) - xm:nﬂﬁx‘,‘ © 20yt Uyl xl:-
1 ’
a T2
< min e % 3xg o w,x,d
Xy 0 - = -

J il 9 i
DI ITF TR S-SR § GNP T I ¢
R y
"._ i 1

|

Each of these minimizations is easily performed and it is found that
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Uy +Ug~2 wheas; +uy22
!;(v)-% 1+ Y2 12
0 otherwise
undefined when uy > 3
Igiu) 2 -!u(s-u,) 25uy<3

0 '252
>z4-ul whea u, S 4
Tafu) 2 0 otherwise.

The domain of ¥ is given by the inequalities involved on the definitions of the
x; (u)’s above. Figure 4 illustrates D[y] along with the subregions defined by
diese inequalities. Note that

Up(3.1) = b - Ax(3,1)
() ¢ )e)-(9)

so that the point x* = (3,1) maximizes y. This point could have been found ;
1 using a standard gradient-ascent technique that takes into consideration the
s possible bounds on D{y]. In many cases D[y] = E™ so that no special care
is necessary.
The following two theorems state that problem 1 and its auxiliary prob-

‘ lem are 2quivalent in the sense that the soiution of one provides a solution of
-3 the other and that their optimal values are equal. The proof of Theorem 11
follows directly from Theorems 7 and 10,

Theorem 11
If y is maximized over D{y]at u* then r* = X(x*) is the solution of prob-
- lem 1. Furthermore, y(u*) = ¢(x*).

Proof: Since y attains its maximum at u* it is necessary that
;Z—lu‘ =0 ifur>0
i

X jue <0 ur=0

o}

i.e.,
fi(x*) = 0 ifu* > 0
fix*) 2 0 ifur - 0

so that x* is feasible. Moreover
yu*) - S(x*) - (u%, f(x*)) = S(x*)

so that ¢ attains its minimum at x* by Theorem 4, and the proof is complete.
To prove the converse of Theorem 11 we may modify the proof of a

similar theorem found in Arrow et al.'* It is necessary to make the addi-

tional assumption that there is a point x° € C such that f(z°) > 0 (which im-
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plies that {z|f(x) 2 0} has a nonempty interior relative to C). This is a com-
mon assumption that is often employed when dealing with concave inequalities

(see Arrow et al., p 34).'"* The assumption of strict convexity may be dropped
for this proof.

Theorem 12

Leto,~f, . . . ,—fy be convex functions defined over C and assume that
there is a point % € C such that f (z%) > 0. If problem 1 has a solution 1*, then
its auxiliary problem is feasible and has a solution u*. Moreover ¢(x*) = y(u*).

Proof: Define two sets T and T’ in E**! by

T = {78): 72 ¢(x), f(x)2t for some x € C}
T = {7°0°):p(x*)> 7, t°201.

It is easily seen that TN T'=¢. Since T and T'are convex, there is 2 hyper-
plane that separates them; i.e., there is an n + 1 vector (v*, v*) # 0 such that
vhir 4+ (vt ) 2 p%r 4+ (v*,t°) forall (r,t) € Tand (r',t') € T

It will now be shown that

vt 20

vt ¥ 0.

Fix t,r.and ¢’ in the above inequality and let r -~ =. If p* < 0 the inequality
would become violated for sufficiently large r. A similar argument fixing

T, ¢, and 7’ and allowing t’to become arbitrarily large yields v* £ 0, More-~
over, v* # 0 because if y* = 0 then

w9y 20

since (?(xo),[(x")) € T,and (p(x*) - 1,0) € T'. Butv* =0, v* # 0 ((v*,v*) # 0),
and f(z) > 0 so that

w*, f(x9)) < o0,
which is a contradiction.

Set
u* - -(:!—;) r*.

Thus

T (Ut Uy T (e Y.
Since (¢(x),f(x)) € T for any feasible x, it follows that
S(x)-(ur f(x)y T T-(ur ).
Setting ¢ ‘= 0 and taking the supremum of the right-hand side gives
S(x) - (u*, [1x)) 2 Gx%),

which implies immediately the conclusion of the theorem.
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4. SOME APPLICATIONS

In this section some applications of the theory developed in Secs 2and 3
are briefly described. A paper describing applications in more detail is in
preparation. Lasdon® and Takahashi® contain additional applications to re-
source and muitistage allocation problems. !

Duality i
The importance of duality theory in linear programming has led to the '
concept of the dual of a nonlinear program. The formulation in this section
is from P. Wolfe.?
The problem that Wolfe considers has the form
minimize
é(x)

subject to
fix) 2 0 (9)

where ¢ and the m components of -f are convex and continuously differentiable
functions.

The Wolfe dual of Eq 9 has the form \
maximize

¥(x,u) = &(x)-(u, f(x})

subject to
V, ¥(x,u)

(10)

LAY

The feasible set of Eq 10 is denoted by D[¥]. Note that Eq 10 contains the
variable x as well as the dual variable u. In general Eq 10 does not describe
a convex set.

Theorem 13

The auxiliary problem of Eq 9 is equivalent to Eq 10 in the following sense:
(a) D{®] = f(x,u):ueDlyl, xe X(u)!
(b) ¥(x,u) = y(u) for each (x,u) € D{¥].

Proof: Since¢ and-f,;(i =1,...,m) are convex, a necessary and suf-
ficient condition that ¥(-,u) be minimized over E" is that

V. ¥xu) = 0.

Hence, if (x,u) € D[¥], then x minimizes ¥(-, u) over E" and conversely. This
proves statement a. Statement b is immediate from the definition of +.

While Eq 10 is not a convex program, the auxiliary problem of Eq 9 is,
at least when ¢ is strictly convex. Also the primal variable x does not occur
in the auxiliary problem since it has been replaced by X (u).
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Decomposable and Separable Programming

Suppose Eq 1 has the form
minimire

d(x) = '£1 @ (x))
i=

subject to
flx) = éli‘u,) 20

g;{x)20¢ti=1...,p)

where ¢ 18 strictly convex, each fi and g; are concave,x = (x),...,x,)7, and

1; 18 a vector having n; components. Such a prablem is said to be decomposable
andifu; =1(i =1,...,p) it is said to be separable (completely decomposable).
Letting C= {x: g;(x;) 2 0}, by Theorem 5, ylelds

y(u) = i%l mia | $. (x') - (u, [‘(xi)) 1g,(x;) 2 OL

Hence, if a gradient-ascent procedure is used to maximize y, the essential
quantities y(u) and Vy{u) can he obtained by solving p nonlinear programs for
each u. The ith program involves x; variables. Thus the solution of a decom-
posable program is obtained by solving p smaller subprograms for a sequence
of u’s tending to *. In the separable case the p subprograms involve a single
variable only and, in many cases, X;(u) can be expressed analytically. In the
important special case where f has a single component much more can be said
about the solution of Eq 1 (see Falk'').

Minimizing Quotients

Suppose one i8 seeking the solution of a problem having the form
minimize

é(x)/¥(x)
subject to
1€ (11)

where ¢ and - ¥are convex, S is closed and convex,and ¥(x) > O for all x € §.
It wili be assumed that ¢ is strictly convex.
The function § may be defined over its domain D[ §] by the relations

DIS) = tu20:4()-u¥() has a minimum over S|
5() = minld(x)-p¥(x): xeSi

By the theorems of Sec 3 it is known that D[ 6] is cpen with respect to (E! )+
and convex, and § is concave.

Theorem 14
§ is a monotone decreasing fvaction.
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Proof: Lety’s u’ where u’,u” €D(8]). Since ¥(x) > 0for x ¢S we have
é(x)-n¥(z) 2 P(x)- p"¥(x)
so that
5(u’) 2 (X () - X (k)
where X(u’) minimizes ¢(-) - u'¥(:) over S. Hence
S5(u’) 2 8(u”)
and the proof is complete.

Since & is continuous and monotone decreasing, the set of points u” for
which 6(4*) = 0 is connected and compact. The next theorem characterizes
the points of this set.

Theorem 15

There is a point u* such that 6(u*) = 0 if and oniy if u* is the optimum
value of the objective function of Eq 11. Moreover X(u*) is 2 solution of Eq 11.
Proof: If 8(u*) = 0 it follows that

G(x)-p*P(x) 2 5(u*) = Oforx €S,

Hence

S(x)/¥(x) 2 u* faeallx €S,
Moreover

S(X(p*) - p* ¥ (X(p*) = 0
so that

SXuN/ T X)) = .

The other half of the proof is similar.

Hence the problem of minimizing the quotient of two functions can be
viewed as a sequence of minimization problems not involving quotients. In
many cases, each problem in this sequence of problems may require a minimum
of computational effort compared to the original problem. The sequence of
problems to be solved is formed sequentially in 2 manner that will locaie
a zero of the concave decreasing function 6.
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