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THEORETICAL ANALYSIS OF A COAXIAL HALL ACCELERATOR

by

K.Lackner

INSTITUTE FOR THEORETICAL PHYSICS

OF THE INNSBRUCK UNIVERSITY

1) Introduction

Performance of a magnetohydrodynamic accelerator is essen-

tially dependent on the value of the magnetic interaction parameter

SB2L L ... characteristic length
V ... characteristic velocity

Thus, to achieve efficient iateraction while keeping the length

of the device reasonably small, plasma accelerators should ope-

rate at high magnetic field strength and rather low densities.

In this regime, however, the Hall effect becomes important, thus

limiting the performance of devices based on the classical Faraday

effect.

To overcome these difficulties several configurations have

been suggested (see pg.458 in /l/ and /2/) in which the Hall com-

ponent of the plasma currents is used for the desired interaction.

Probably the most interesting one is the coaxial Hall accelera-

tor shown in fig.1, which uses an applied magnetic field in the

radial and an applied electric field in the axial direction. This
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device has been first suggested by Cann et al.

The applied magnetic field together with the axial electric

field gives rise to Hall currents in the azimuthal direction

which interact with the magnetic field to yield the desired acce-

leration in the axial direction. The current component parallel

to the elctric field will tend to cause rotation.
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Fig. 1

Theoretical performance studies for this device have been

carried out by other authors /4/, and especially by Cann

himself /5/. The present analysis differs from the other ones

in that the role of the magnetic interaction parameter is clearly

pointed out, and that a closed analytical solution for the varia-

tion in the plasma parameters with axial distance is given.

2) Geometry and basic equations

The geometry of the device is shown in fig.l. If the dia-

meter of the annular region is small or compared to the radius

of both the outer and the inner cylinder, the problems can be

analyzed in cartesian coordinates. From the rotational symmetry



If
aof the problem follows that = 0; by the same token also no

z - component of the electric field will arise. The assumption

ay = 0 is justified by the small ratio of diameter of the annulus
"NY rad iu s

Summarized these assumptions read:

.0a aS(u, o, W) 0 1 0,
y z-- (o-, o •= 'o,)

-- (0 , B y , 0 ) yz

= (E Y, o, o)

Ohm's law is used in the form:

= + V4 x - -• f x + W L6" f (1)
ee B B 2

(see pg.191 of /1/) where f N n mN (N = neutrals, I = ions,mini+mNnN

e = electrons).

In components equ.1 reads

ix= G ,1,f,2 [(Ex WB + e1e3zr1+ Ye ef2 "

JZu= 1 "eWeJx]

Current continuity then demands that

div J = 0: jx = const. = jo"

The equations describing the gasdynamic behaviour of the plasma

- equation of mass, momentum in the x and y direction and of

entropy then read:

u = = const (2)
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dvu L + x(3Udx dx z y(3

Udw = i B ()

dS 12+ 4) d iTI-f2#
SuT rx CI 5 '(a)

For a derivation of the right-hand side term in equ.(5a) giving

the Ohmic heating see pg.121 of ref. /l/. By making use of the

equadion of statc of an ideal gas (i.c. p =¶'RT and S n v Inp -

ii Cp, lnT + SO, where R, cv and c are referred to one kg.) equ.(5a)

can be converted into

u( I_ _ 7 f 2 ) -P2
V-i dx -y-1 " x) (1 + do e (5b)

3) Operating regimes (local analysis)

The total input of electrical energy into the plasma per

M3 and sec is given by

"Jx = j( + wBy o Ye-e ) (6a)

P = (1 + rle - e' f 2 )

Neglecting for the moment rotation, and defining a dimensionless

parameter E as

E- x (7a)

y

and call ing - •" (7b)4) T

we can write this relation as

*
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du 2

'E( 2 2)

Thus the device will operate as a generator - i.e. deliver energy

to the outer circuit - if the above expression becomes negative.

This is the case for

2.2
o<E( 2 (8a)

Likewise we may speak of a motor if energy is fed into "hb plasma,

i.e. if

2 2
E<O or E > O (8b)

1+W2

Note that motor is not necessarily equivalent to accelerator,

as the former definition includes also the case in which the power

input is exclusively used for enthalpy increase. This can be seen

in fig.2, where the criterium 8 is plotted in the E -(aT plane.

The definition of the dimensionless parameter E in equ.

(7a) is especially suitable, as it allows for a formal analogy

to the parameter E* used in the theory of Faraday accelerators,

which is given by

E
uB -. Y (7c)
z

Written in E, all equations for the coaxial Hall accelera-

tor become identical to those for the ideal (i.e.T 0 0) Faraday

accelerator, if &)T -* co and E is substituted by E .

This may be regarded as an analogy between the ideal Hall
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accelerator (ar --, c ) and the ideal Faraday accelerator

(UT -• 0). Of course however ion slip will put an upper limit

to the value of 4)T actually achievable (see definition equ.7b).

.2 Acceleration and deceleration

To determine the sign of the change of the flow parameters

with axial distance x it is necessary to bring equ.(3) and (5)

into canonic form, where use has to be made of the algebraic re-

lations (I) and (2). (Equ.(4) can be separated from (3) and (5)).

As a result one obtains

I du _ 2)2 E

"2 M2 (E-)- (-1)[(E-1) (9a)
u dx 2 2_ 2

22
1 [(E-l (Y_1)M2[ (E-1)2 + E
p d B2  d2_1 B 0 2 _

Thus to yield acceleration, the ,xprescion in braces at

the right side of (9a) has to be larger than zero in the supersor-

and smaller than zero in the subsonic case. Concentrating on thr

former (M2 >1) we obtain that for acceleration

22 2__ _, 22
22 (2=1 1 2 ) 1 -r

L'+1 V (2y-2 (Y-1)(-r W) (2 o+.

+ (22 - 2 2 (- (1)•2

has to be valid. For WA -. co we obtain

E-I



the corresponding relation for the Faraday accelerator. Further-

more we can 3ee from (10a) that for values of

</., 4Y•(-1) (lOb)

acceleration cannot be achieved by Any combination of the other

parameters (in the supersonic case). Equ.ga may also be used to

determine the value of E yielding maximum acceleration, if the

other parameters are kept constant. As a result we get

2 2
to EA (-z::2 (1 OC)'-MAX ~ 2 2"2y-2"

Both the boundaries of the accelerator regime, as well as -AAX

are shown in fig.2 for y = 1.67. Only for large values of4oT the

lower boundary of the accelerator regime coincides with the upper

one for generator action. This also follows from the formal ana-

logy to the ideal Faraday type device.

. Pressure variation

Equation(9b) may be used to delive relation similar to

(10a - o) for the variation in pressure. For supersonic flow,

pressure will decrease downstream, if

_____ 2(y-1)•2+1 . _ __ __ ___.... . __2 2 2

2 +1 "2(y1)M t 4(V.1)M4 "-2" (.1)M22 2

+1 t+1 2(y-1)M2 (y )2 (y-l)M2



Otherwise the pressure will increase. Contrary to the criterium

for velocity increase, the bounds for E given by relation (Ila)

depend explicitely on the Mach number. Maximum pressure decrz2s,-

is achieved, when E is chosen to satisfy

"22 2
E 2 2 (1 + 2 (11"I+(-T 2(y/_1)M2

t

3.4 Variation of Mach number

Making use of

M2 u 2 u um
a 2 yp yp

a

which differentiated yields

dM I dudP)

equations (9a) and (9b) can be combined to give2 2
1dM pM 2 _14_ 2 2(y-1)( EM2+1) 22.(-
MA dx: - 2~ 2 I 2_ .-1)(E-1) +1 (E-" 4)

2  2(c

In supersonic flow, increase in Mach. number thus occurs only, if

E satisfies

.2 T (2yM (y-1)+3±j-1 (7+1) 2  - (-1 )+2y

2 2 k 2 2 2Y212 2 2 2
O 22+1 2(Y-1)(,M2 +1) +4(,.112 (,A2+i) I2 (Y-1 ) (YM +i)

(12a)

E< 2i(3 .- 1 )+3ev-1 *+jl .1+1) - 2 (y-l)+2
2 22- 2 2"-2 " 2" 2 22(7- 12+2 ,,
.&c +1 2(y-1)(Yy +1) 4(Y-1)2(y.A2+1 •t (T-1)(VM +1)



In fig.3 the regimes in which increase in Mach number occurs are

shown for five values of M (full lines). The smallea+ vI;Ae used

is slightly above 1, as M = 1 for itself is a singular case (see

equ.9c).

From (12a) then follows that for each Mach number a mini-

mum value of the Hall parameter cjr exists, below which increase

in Mach number can never be achieved (see fig./%. This value of

e, is given by

,v_1)(NM2 i ((V)(_YM2
+1), (12b)

Finally one can find that for eacu value of the Mach number M,

maximum increase of M will be obtained for

22
E A 2 (1 + 1 - (12c)I1+WT 2(y-l)(yM +0)

For M slightly above 1 and for M = 2 the correspondiig curves are

also given in fig.3 (dashed line).

3.5 0ptimum power efficiency

The usual optimization criterium for propulsion applications

of the ratio power input via Lorentz force-s maximization ofterto totalpoe i-put In ourtalpower input .I u

parameter this ratio becomes E- 1

E(E(1+ 1 )i

It thus has a maximum for

Eopt ý 1 + • 13)

Also this relation is represented graphically in fig.2.
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4) Total performance

To study the overall behaviour of a coaxial Hall accelera-

tor, the governing equations (2) - (5) have to be integrated with

respec: to x over the whole accelerator length. For this purpose

we introduce the following dimensionless variables:2 •

u~u/u0 =W/w 0  p = p/p0 ,Ai=,M2 U o o= - (14a-e)
0 0 o a 2 PO

6 .B 2 0

dS =7--. dx (14f)

The introduction of the interaction parameter S as independent

variable makes the following analysis applicable also to the case

of variable electrical and cf varying magnetic field strength

without further modification (of course always under the condition

that the assumptions concerning the geometry remain valid). On

the basis of a kinetic argument given by Cann /5/ (his quantity

is the reciprocal of the parameter E used in our analysis), it

can be shown that E will remain constant over the accelerator

length; provided the degree of ionization is constant too. To

see this we insert the relations:
2

n e±_ re (see /i g19o) (15a)

Jx = const (since div.j = 0) (15b)

eB

1--le = ___Y(15c)

n - n (assuming quasineutrality) (15d)

n n
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i i

nmau = (ma being the atomic mass) (15e)

into equation (7a), obtaining:

O¶ j e~x me6Jeeenmaix jxma

CuB 2 - e-- = const
y ne e ,yý a

The governing equations then read

dS_ U(E - 1) (16a)

-p d 2 r 2 21 -
dS+ SP d) + (E-1)E (16b)

"" - (16c)

After some manipulations equation (16a) and (16b) can be combined

into the second order equation

u52u5 - au'3 + buu'2 = 0 (17)

where

v+1

(-i )1[(_) 2 +(E-1 )21 (E-i)

b(E - 1) -2b (-1)[ L_) + (E-1) 23 . (E-_)

By the transformation

u = x (18a)

equation (17) can be transformed into the first-order equation

a 2 b
dx 2- y x (19)

x
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which is of the Bernoulli type and can be tranforned into a

linear one by the subs'Litution

(20a)

yielding

-b a
z x - 2 (21)

x
with the solutionz 

xb + a( 
2

b+l x (22

After re-transformation and after carrying out the integration

of (18b) we obtain the implicite solution

-Ib+1 n = bý+j S
c'ub÷ + inu = -(Ssa0 ) (23)

The constants co and S0 have to be determined by the initial

conditions

S=: u= 1

One then obtains

b+I b+1
cI(u - 1) + Inu 1-- (24a)

a

and

p = M• ( + 1)(O'b+l + b+1 U) + U (24b)

where
1-M° 2

M2 0

Equation (16c) can now be integrated too, to give



I
S- -13

w a c,( b÷2 1)+a (u-I)w =•• c'(u~ - I) +.]-j(1) (24c)

where use has been made of ýf(u)dx = ýf(u)-, and the relation

(18b) was substituted for u'. Similarly we obtain the total power

input via Lorentz force as

EL = %O Sl(E_1)u2cýS = ?0u3 (E-1 )tac' u b+2 a 2) (24a)

These results are illustrated on fig.5-8. Fig.5 is a plot of

velocity versus interaction parameter for 6T = 6.0, y = 1,67

and for E = 2.0 (case _), 1.69 (case II), 1.16 (case III). The

last two values correspond to EAX and E0p (equ.10c and 13).

As pointed out already by Cann /5/ velocity is increasing without

limiting value. The dashed line gives the analogous curve for

E = 2.0 and (j' = 3.0 (case IV).

Fig.6 shows the corresponding results for the variation

in pressure, again for the above four cases.

Fig.7 illustrates the influence of the entrance Mach num-

ber on velocity (full line) and pressure variation (dashed line).

Shown are the cases M° = 1.2 (curve I) and MO = 3.0 (curve II);

E = 2.0 and (' = 6.0 in both cases.

Fig.8 is a plot of the interaction parameter S necessary

for a tenfold increase in velocity versus Hall parameter. Curve I

corresponds to E = 2.0, curve II to the case EMAX (i.e. for each

U)T the value E satisfying relation(104 is taken), curve III to

the case EO .
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