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ABSTRACT

A compiler generation system is described which is rigorously
based and which allows formal specification both of the source
(procedure oriented) languages and of the object (machine oriented)
languages. An intermediate or "buffer" language, BASE, is interposed,
reducing thm required transformation techniques described. The system,
so far, includes those elements in BASE necessary to produce ALGOL,
FORTRAN, and JOVIAL compilers.
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1. INTRODUCTION

This paper reports on a recently developed compiler generation system

which is rigorously based, and which allows formal specification both of

source (p-ocedure-oriented) languages (POLs) and of machine languages

(MLs). Concepts underlying the system are discussed, an example cor-

relating source language specification with system operation is given, and

the status and potentialities of the system are discussed.

The crucial problem of compiler generation is the characterization of

procedure-oriented languages; the process is of limited use unless such

characterization allows machine..independent processing of programs in

these languages (and hence allows invariance of the language itself from

machine to machine). Our solution interposes between POL and ML a

"bulfer" or "intermediate" language, called BASE, thus reducing the

required POL "- ML transformation to two logically independent subtrans-

formations:

(1) POL-0BASE (called compilation)

(2) BASE-=*ML (called translation).

This arrangement isolates questions of POL characterization within the

first tr.nsformation, and questions of ML characterization within the second

transformation. BASE itself is an expandable set of non-machine-specific

, Wl1



1
operators , declarators, etc., expressed in a uniform "functional" or

" "macro notation; the meaning or intent of such operators is arbitrary insofar

as the compilation transformation is concerned. The POL- BASE trans-

formation may then be regarded as a machine-independent conversion, from

a grammatically rich format to a simple linear format.

2. THEORETICAL BASIS

Within our system, a POL is characterized principally by a grammar

(i.e. , set of syntactic productions). and the consequent processing of progranis

in the POL is syntax-driven. To assure adequacy with respect to completeness

ambiguity b], and finiteness of analysis, our syntactic method is rigorously

* based. A grammatical model (the analytic grammar) was developed [8]

which provides a rigorous description of syntactic analysis via formalization

of the notion of a scan. Within this model, the selection process of a scanning

procedure can be precisely stated, and thus made amenable to theoretical

investigation. Some characteristics of this model are:

* all analytic languages are recursive

• all recuirsive sets are analytic languages

1. Each BASE operation, declarator, etc. , consists of a three-letter
operation code followed by n> I operand type specifier/operand pairs
S./X.; e.g.. FFF (S /X ..... S /X ).

S1 n
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all I ph ra se struciture g rannrars are analytic grammars

0 there is it sinmple sufficient condition under which an analytic

g ra ninar pro\vides lunique analyses for all strings.

Thi Itranirnar in a1 POL specification permits certain abbreviations

and orde rings of productions (for convenience, brevity, and efficiency), but

is neverthicless, equivalent to a grammar using the simple scantg o f [8]

(Anl equivalent grarrirnair usingA is obtainable via a simple construction.

Context- sensitive productions may be used. Our method guarantees unique-

ness of zinalysis - it is impossible to embed syntactic ambiguity in a

language specification. A simple test ensures fi1 'i~e analyses for all strings.

Such a grammar is at least as inclusive as the context- sensitive phrase

structure granimar. andi there does not appear to be any grammatical

structure which cannot be accomrriocate- (grammars W, ALCIOL, JOVIAL,

and FORTRAN xere obtained without clifficI.ty).

In fact, such gramm-rars are sufficiently powerful to accommodate the

notions of "'definition" and "counting' (c f. [7] and the examples of [8] ),

but to actually do so is neithier effic:ic-nt nor expedient. Therefore, a POL

cha racterxiziation includes description of pertinent "Inte rnal operations

(see thie examiple iii this paper).

3. SN STEM OV0VERvi I"W

£ Anl overview~ of the gene ration systemi is shown in Figure 1 . UIsing

Best vailable Copy3
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Figure I. Overview of System

this system, the transformation from a source language L to a machine

language M is achieved as follows:

A specification of L - an abstract description of the syntactic structure.

"internal processing rules," and "output code" for L - is written. This

specification is processed by the compiler generation system to product, a

tape of L - a set of data tables corresponding to the specification. The

compiler for L is then formed by conjunction of the tape of L with a compiler

model program, a table-directed processor which acts simply as a machine

for interpreting the tape of L.
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Similarly, a specification of M is written designating macro-expansions

appropriate to M. This specification is processed by a translator generation

system to produce a tape of M - data tables containing the specified macro-

expansions. The translator for M then formed by conjunction of this tape

with a translator model program, which expands BASE operations to sequences

of instructions in M as directed by the tape of M.

4. COMPILATION SYSTEM DATA BASE

Processing of input strings (POL programs) by a generated compiler

is intended to occur in two parts:

(a) preliminary conversion of "raw" input symbols to yield a "syntactic"

or "construct'' string, which represents the raw input for all further processing.

and then

(b) step-by-step syntactic analysis, and (at each analysis step) per-

formance of prescribed sets of internal operations, prescribed output of

"code blocks, " output of diagnostic messages, and (if desired) performance

of additional auxiliary processes.

The internal operations in a POL specification assume a set of data

entities (the "data base"), which are later manipulated as prescribed by a

generated compiler. Each entry of the construct string (which represents

the raw input during processing) contains a construct (or syntactic type or

token) and an associated datum, which is originally derived from the raw

input, but may be internally altered. The use of appropriate string handling

routines allows effectively a construct string of unbounded length. Other

data entities are:

5



(a) a set of function registers F., for storage and manipulation
I

of "temporary" numeric data

(b) a set of symbol registers S., for manipulation of symbol strings.I

(c) a property table of integer properties P.(J), for storage and' 1

manipulation of numeric data (e. g. , number of dimensions)

associated with "variables" in the input string. "Names" (i. e.

contents of symbol registers) can be "defined" to the table to

reserve table entries for a,sociated data. and tle table can be.

"searched. " Defined names are placed in a property table index.

The J th table entry consists of four properties P 0 (,I), P1(.1

P 2 (J), P 3 (J). By convention, P 0 (J) is the syntactic class of the

corresponding defined name.

See Figure 2 for further details.

GET MORE STRING

I SYNTAX PROC.RWINPUT ANDI/\ I " 'I
PRELIM CONSTRUCT __ REWRITING _OFI_,.,,, COVERSON I\ '' '"/ ICONSTRUCTI

, "' ._ J I STRING I
' IANALYSIS

, [......... J STEP

FUN I NPER FORMED
TBLE \ " INTERNALAUIAR

AUXILIARY
- FUNCTIONS PROCESSOR:
0,. PROCESSOR:

- "' MANIPULATION AUXILIARY
PR PE TYOF DATA PROCS

TENTTIES AS DESIRED.

INDEX REG ISTER S

CODE
CODE PROCESSOR: CONTINUE ANALYSIS

STRING
OUTPUT CODE

Figure 2. Compiler Model Organization and System Data Entities
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5. POL SPECIFICATION AND COMPILATION SYSTEM OPERATION

The relation between a POL specification and the consequent com-

pilation system processing is best shown via an example. Figure 3 shows

2
a specification of the language LEbA2 (first exhibited in Lemma Z o[2]).

" TIrLELCMMA2)
" SYMRGS
(MA IA (II
11)3 (a) (2)
I11C (C) (3)
(110 (END) '(01
(11 (NULL) (0)
(CEOCI) (NULL$ (0)

" END SYMBOLS ..

" SYNTAX
001 1A)(8)1K) 1-(5)
002 (8IAIIA I -(&IIK) (A)
003 (MIA)MI --19)

004 (e)(IB(K) -a(B)IX)IK
005 (81(01(5) -tQ)
006 I ENDOI AI(I))IC IIC )(END)u(Z)
007 IXS(B) a--IK(b)
00 (XIKI a(XI8B

# END SYNTAX
* INTERNAL FUNCTIONS

001 ATV F3 -2
INC F3 I
ASO -3 F3

003 SET F5 I
SEr F6 2
PUT Si VO(-I)
SUF SI VOtOI
DEF SI ((Al)
ASO 0 FO
SET PIFOI I

O05 INC FS I

MPY F6 2
006 PRN I Si

" END INTERNAL FUNCTIONS
" CODE

003 BEGIV/RIO))
PWRI C /F6

005 PWR(C/F61
006 AAA(C/R(-5)1

8801C/F)
" END CODE
" DIAGNOSTICS

0001 *..e..• END OF SAMPLE ANALYSIS *eo*..O.
e END DIAGNOSTICS
* END DATA

Figure 3. Specification of the LMH&2
Language

2. The specification is shown in "reference" format, which differs
trivially from the format used in machine processing of specifications.

7
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which consists of sentences having the form

m#A BnAmBnCCC'

where X k signifies a sequence of k X's. Some sentences of LEMMA2 are

'AABBBAABBBCC'

'AAAABBAAAABBCCC'

'AAABBBBAAABBBBCCC'

The specification contains five sections:

(1) Symbols - specifies the preliminary conversion of input symbols

and "reserved words" to construct string entries

(2) Syntax - a set of syntactic productions for use in syntactic analysis

(3) Internal Functions - the internal processing to be carried out at

each analysis step

(4) Code - the sequences of codes to be output at each analysis step

(5) Diagnostic Messages - a set of messages for output

The sections containing internal functions, code and diagnostic messages

are unnecesary in defining the language structure, but have been added to

illustrate these mechanisms. The codes BEG, PWR, AAA and BBB appearing

in the code section were invented expressly for this example; arbitrary

BASE operation codes may be designated at will, since these codes are

merely transmitted during compilation. The following discussion can be

correlated with Figure 4, which shows the compilation analysis trace for

a LEMMA2 program, together with resulting values of function registers

and code output at each analysis step.
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The conversion specified in the Symbols section, of raw input symbols

to construct string format, is performed specifically to eliminate dependency

of processing on particular machine character sets and hollerith codes. A

construct string entry containing a construct and an associated datum

replaces each input symbol (or symbol sequence constituting a reserved

word); Figure 5 illustrates this process. An arbitrary numeric or hollerith

datum may be specified. Data from the construct string may be used to

construct symbol strings (names), but this usage is not dependent on the

specific hollerith codes which are used.

SYMBOLS SECT
'RAW' INPUT STRING OF SPECIF KA-N

' IA IAlel IAIAI III IClCICl III I I
S TIVLIILENNA2I

NULL SYNOLS
IlITa Ii1 IID
IIIIR~DT I eII IlSRING 13€ e2ti
111$ 410101 IOI

Ill INIULL ) I0)O R1OC)R INILLI Ico~~smu _Im~mocl I ILL 1 ' cIcI l .1oo
0 file SYIl OLS

CONSTRUCT END A A S se C C END
DATUM 0 1 1 2 .** 3 3 0

CONSTRUCT STRING

Figure 5. Preliminary Symbol Conversion

* The number in parentheses on the left indicates the number of characters
comprising the reserved word. The symbols of the reserved word follow.

* A construct (e. g.. (END)) is specified for each symbol or reserved word.
Use of the construct (NULL) specifies that no construct string entry is to
be made; thus "blanks" are ignored above.

• A datum is specified for each symbol or reserved word. Either a numeric
datum (e.g., (3)) or a hollerith datum (e. g.. ((h), where h is the desired
hollerith datum) may be srecified.

* The special notation ((EOC)) denotes the "end of card symbol", which in
many languages is regarded as a punctuation mark. A representation of
((EOC)) must be given in every Symbols section.

2.0
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The syntactic productions in a specification'sa Syntax section are applied

(as determined by the compiler model's scan) to "rewrite" the construct

srnin a step-by-step fashion (see Figure 6). The succession of these

selective productions from the set of Figure 6, the compiler model uses the

I'lftmst"scan A of [8 , i. e. , at each step the production chosen isthe

one whose "left side" occurs first (leftmost) in the construct string. Thus

at the first analysis step, the substring' chosen is BAA; at the second, ABK;

and so on. To allow explicit reference to the data which accompany the

EN A ENDAA

'%<SCN POSTION
SYNTAX SECTION-ISO

L Z7SYNTACTIC PROOIATN
END A A KA ERU

0111 *5S5s

I161 *.Iiitu le

ENDI A IQ I . jowD

10 1 2 1 1 0

FPIgure 6. Syntactic Analysis

constructs of the substring chosen, a scan position is defined (at each step)-

to occur at the, last (rightmost) construct of the selected substring (see

* [Figure 6).

At each analysis step. internal operations associated with the selected

production are performed: function registers or properties within the



I
, iv,'.perty table may be set, used, or arithmetically manipulated: character

strings may be placed in, prefixed to, or suffixed to symbol registers, and

so on. The Internal Functions section (see Figure 7) consists of sequences

of internal functions operations. The first operation of each sequence has

the label of the production for which action is taken. Thus the sequence

RTV F3 -2, etc., is performed each time production 001 is selected.

CONSTRUCT STRING
END A-,A B 0 0

0 1 1 1 2 _ _ _

REGISTERS SCAN POSITION /

0 -

SYMBO REINAL fSTE4S

4 PROPERTY TABLE I'-

5 Fgr P7 P.a P2 P3

pS osio F n

so ASI0FO"aIoiae 
•te'ID v ithcfNor AL FUNCINS

SYMBOL REG ISTER S

Figure 7. Performance of Internal Functions

* SET F I places the value I in the function register F5

SPUT S1 VO(- 1) places the daturr1 (regarded as hollerith) from construct
string position (- 1) - relative to the scan position - into the symbol
register S1. All previous contents of S1 are deleted.

• SUF SI V0(0) suffixes to the string in S1 the datum from construct string
position 0.

0 DEF S1 ((A)) "defines" the string in S1 to the property table: a property
,i table entry (say the n t h ) is reserved, the string in S1 is entered into the

,: property table index, together with the entry number n. The number
! representing the construct (A) is placed in P0(n), and n is placed in FO.

• ASO 0 FO ''associates" the value in FO with the construct in string
position 0: the value FO is placed in the datum of position 0.

0 SET PI (FO) I places the value I in PI(F0), i. e., in Pl(n).

12



Care has been taken in formulating the internal operations to achieve

economy of means - simple operations, a minimum of system data entities,

and a minimum of compiler model machinery. Such a formulation allows a

simple compiler model program, while language complexities must be

expressed within the language specification. Some anomalies of notation

still remain from our earlier efforts, but it is planned to revise and clarify

notation.

Operation sequences pertaining to different productions are independent

of each other, since there is no '"GOTO" operation (a "skip forward" is

sometimes permitted). Thus a finite sequence of operations is performed

at any analysis step.

Code may be output at any analysis step. Operation codes and

operand type specifiers given in the Code section (see Figure 8) are merely

CONSTRUCT STRING

FUNCT ION REG I CA POSITI
I S. Oupu 1 1Cd Sq

3

s - '.ROPERTY TABLE

CODE OUTPUT FOR PRtOD003 AT THIS TIMIE IS am ME H/

13
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transferred to the output. while operands are inserted as specified.

The Diagnostic Message section contains a set of messages, which

are output by PRN internal operations. The operation PRNI SI, which is

executed for production 006, prints message 001 and the contents of SI.

6. TRANSLATION AND MACHINE SPECIFICATION

A translator for a given target machine (ML) produces, from an

input program of BASE operations, an equivalent program in the target

assembly language. in a format acceptable to the target assembler. The

production of assembly language guarantees compatibility of the object

program with the machine's monitor system, and allows the assumption in

translation of system subroutines and macros.

A BASE program contains generalized item declarators, array

declarators, etc.. and generalized computation operators (e.g.. ADD, SUB).

Since data definition is explicit, the BASE computation operators do not take

account of the data types involved in the operations. Thus for each compu-

tation operation. there is an equivalent set of standard suboperationx: e. g.

corresponding to ADD arv the standard suboperations

"add a floating item to a fixed item"

'add a fixed item to a floating item"

and so on. Determination of the specific suboperation required for a given

BASE operation. taking into account the data types involved, in performed

witin the translator.

14U



Translation thus occurs in two parts:

(a) analysis of BASE operations by an analysis section, to

derive equivalent sequences of standard suboperations,

followed by

(b) expansion of the standard suboperations by a macro-processor

section, to produce assembly code.

A machine specification defines expansions of the standard suboperations.

In other words, it defines for each standard suboperation an equivalent

sequence of assembly language instructions. Embedded in these expansions

are format specifiers, which cause the appropriate format to be generated.

A machine specification is processed by the translator generation system to

produce corresponding data tables, which are combined with the translator

model program to form the desired translator. These data tables direct the

expansions performed by the translator's macro-processor.

Parameters required by the expansions are furnished by the translator's

analysis section via a communication table, from which they are retrieved

as necessary by the macro-processor section. Within a machine specification.

parameters are specified via position in this table.

Our Fresent machine specification notation is processor-oriented, and

not easily readable: however, it is planned to formalize this notation. Some

typical macro definitions are shown in Figure 9. in a contemplated notation.

as an illustration of the features provided in a machine specification.

. ...................- -., 1.



LOADING ACC AND MO WITH DOUBLE PRECISION OR COMPLEX NUMBER (FOR CDC 1604):

TAB TO START OUTPUT
OF NEXT FIELD TAB ./PARAMETER END MACROMAON CRO , \ 2

6506,E050 MACRO 3H 2/IP3 $,..NL/P2/PI,211 + 1,P34
OUTPUT END OF RECORD.
LITERAL OUTPUT CARD &
"LDA" CLEAR IMAGE

LOAD ACCUMULATOR (FOR IBM 7094 FAP):

TEST PARAMETER 2 CONTINUE HERE
IF PAR 2 EMPTY 'END MACRO

SUMMARY OF NOTATION MACRO I/3HCLA/P1,P RI IjiP, ,P2$1,
BEGIN MACRO CONTINUE HERE IF END MACRO
OPTIONAL PUNCTUATION PAR 2 NOT EMPTY

/ TAB TO START OF NEXT FIELD
$ "END OF RECORD" MARK

Pn PARAMETER n
C(n,K) CONDITIONAL EXPANSION:

SKIP K - $"I IF PARAMETER n NOT EMPTY.
END OF MACRO

nH LITERAL STRING OF n CHARACTERS
Mho) CALL ON MACRO n T16178

Figure 9. Some Typical macro befinitions

The translator model program, except possibly for one output pro-

cedure, is machine-independent. The analysis of BASE operations is

dependent only on the operator, accumulator data type, and operand data

type involved, while macro expansion is table-driven. All dependency on

the target machine is isolated within the data tables used to direct expansions.

Assembly code is output in the form of 80 column card images, which are

almost universally acceptable by target assemblers. Unusual cases might

require simple modification of the output procedure.

7. CONCLUSIONS

Using the syntactic model of [8), we have developed a system to

formally characterize languages which are rich in grammatical structure,

16



and to Pubsequently process strings in such languages. Such processing can

produce linea.r code (BASE language). The BASE language contains compu-

tation and data declaration operations sufficient to accommodate the functions

S.of ALGOL, FORTRAN, and JOVIAL. BASE is expandable, so that more

convenient or efficient operations may be introduced when these are desirable.

We ;.ive shown the feasibility of formally characterizing machine 4assembly)

language, and of machine-independent translation (BASE-- ML). In sum,

we have presented a rigorously based, machine-independent compiler

generation system.

A-tonsequence of then' results is that ar.guage invariance canbe main-

tained from machine to machine. It is possible to have a standard version

of each procedure-oriented language, rather than nachine-dependent variants.

The system is presently running on the 'CDC If t4 computer. Spec-

ifktioss of ALGOL, FORTRAN, and JOVIAL have been written, -as has

machine specifiration for the CDC 1604. The ALQOL and FORTRAN

specifications have undergone tentative checkout and modification, as has

the CDC 1604 specification. Prelimininary comparisons of operating

characteristics have been made. For a small number of sh-ort programs,

our system produces object programs about thesame size as do the

manufacturer-supplied compilers, and requires between twice and three

times the computer time. Since our system is a prototype, these reaults

indicate that it may be possible to generate compiler/translator systems

which have competitive efficiencies. We contemplate major operational

17



Aharges, without the sacrifice of theoretical rigour, which should increase

system speed by a factor of between 3 and 5.

The, compiler (POL-... BASE) portion of this system has other uses.

The -ability to formally characterize grammatically. rich languages and to

subsequently process strings in such languages is of importance wherever

string, structure- dependent proc essing is~ required.

18
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