AD658029

RADC-TR-67-454

COMPILER GENERATION USING FORMAL SPECIFICATION

OF PROCEDURE-ORIENTED AND MACHINE LANGUAGES
Philip Gilbert

Measurement Analysis Corporation
Williom G. McLellan
Rome Air Development Center

TECHN!ICAL REPORT NO. RADC-TR-47-454
August 1967

This document has been approved
for public release and sale; its
distribution is unlimited.

§§“) SN P R
. o

y:;{ SEE 161 |
B 3Ry 1967
e T

Rome Air Developmei;f Center
Air Force Systems Command
Griffiss Air Force Base, New York

¥hen US Governmert drawings, specifications, or other data are used for any purpose other
than a defisitely related govornment procuremest operation, the zovernment thereby incurs
no respoasibility nor any oblization whatsoever; and the fact that the government mav have
formulated, fomished, or in any way supplied the ssid drawings, specifications, ot otner
daca is cot to be regarded, by iwplication or otherwise, as in sgy wanner licensing the
kolder or any cther person or corporation, or conveying any rights or permission to manu-
facturer, use, or s»il 2ny pateaced invention that may in &ny way be related thereto.

{ACLESSION bor B

WHITE eITion
o) PUF SECTION
{8 g

v

3

DiemeToR ALY aan: |

—

W T L g soie

/

i

|
.
|

Do not return this copy. Retsin or destroy.

b

COMPILER GENERATION USING FORMAL SPECIFICATION
OF PROCZDURE-ORIENTED AND MACHINE LANGUAGES

AFLC, GAFB, N.Y., 11 Gep 67-112

Philip Gilbert

Measurement Analysis Corporation

William G. McLellan
Rome Air Development Center

This document has been approved
for public release and sale; its
distribution is unlimited.

FOREWORD

This technical report describes research accomplished under Project
4594 and is a revision of a paper presented by the authors at the 1967
Spring Joint Computer Conference held April 19th in Atlamtic City.

The authors are indebted to Donald M. Gunn and Craig L. Schager,
both for their significant contributions to this work and for their
valuable suggestions regarding this paper.

This technical report has bean reviewed by the Foreign Disclosure
Policy Office (EMLI) and the Office of Information (EMLS) and is
releasable to the Clearinghouse for Federal Scientific and Technical
Information.

This technical report has been reviewed and is approved.

, . ,'.‘.f. ',;f
. Py .
P, 2 -
Approved: A/"Lé (5 -

WILLIAM B, MOOREL
Chief, Recon Intel Data Handling Br

A Vv d; ’/1 Pl, ua‘—
ppro @ . dw

J. DIMEL
Colonel, USAF
Chief, Intel & Infc Processing Div.

FOR THL COMMANDER

Chief ;”Advanced Studies Group

i1

e 3 T s it sy s

L 28

ABSTRACT

A compiler generation system is described which is rigorously
based and which allows formal specification both of the source
{procedure orientad) languages and of the object (machine oriented)
languages. An intermediate or "buffer'' language, BASE, is interposed,
reducing the required transformation techniques described. The system,
go far, includes those elements in BASE necessary to produce ALGOL,
FORTRAN, and JOVIAL compilers.

gt

v r—n, 7 ——— o — 1 T M i WA -+

vy o s v vee— e W—

At A O 5 R

TABLE OF CONTENTS

Section

Page

1, Introduction . ¢« . ¢ ¢ ¢ 4 ¢ 4 4 b b 6 s e e e s e e e 1
2. Theoretical Basis . . + ¢« o ¢ ¢ v 4 4 ¢ ¢ ¢ o o o o o o & 2
3. System Overview . « « + ¢« 4 ¢ o ¢ s o ¢« ¢ o s o o s o 2« 3
4, Compilation System Data Base . « . « « +. ¢ ¢ ¢« ¢« ¢« « « o 5
s, POL Specification and Compilaticn System Operatics . . . 7
6. Translation and Machine Specification 14
7.

CONCIUSIONS & v & ¢ v ¢ ¢ o ¢ o o ¢ o o o o o+ 0 e e s .17
References . . . » L > L] * . . L] L) L]] L] £] » » L L] L] L] Ll 19

LIST OF ILLUSTRATIONS

Figure Page
1. Overview of SysStem . . + ¢« ¢« &+ ¢ ¢ 2 s ¢ s 2 0 s 66 0. &

2. Compiler Model Organization and System Data Entitites . . 6
3. Specification of the LEMMA2 Language . + « « ¢ o o « o o 7
4. Compilation of a LEMMA2 Program . . . « + « « « ¢ « » o « 9
5. Preliminary Symbol Conversion + + ¢« ¢« ¢« «+ « » . + 10
6. Syntacti{c Analysis ¢ ¢« ¢ s s v e s e 00 11
7. Performance of Internal Functions « « . . 12
8. Output of a Code Sequence « + « « ¢ ¢« s o o o « « 13
9. Some Typical Macro Definitions . . . « « « ¢+ « ¢ ¢« « » « 16

v/vi

e koA A r——— A

i
:
:;

— e e

1. INTRODUCTION

This paper reports on a recently developed compiler generation system

which is rigorously based, and which allows formal specification both of

; source (procedure-oriented) languages (POLs) and of machine languages
(MLs). Concepts underlying the system are discussed, an example cor-
relating source language specification with system operation is given, and

the status and potentialities of the system are discussed.

o Y A—— U e =

The crucial problem of compiler generation is the characterization of
procedure-oriented languages; the process is of limited use unless such

characterization allows machine-.independent processing of programs in

threse languages (and hence allows invariance of the larigiiage itself from

machine to machine). Our solution interposes between POL and ML a

SRR

"butfer'" or "intermediate'' language, called BASE, thus reducing the

: required POL=* ML transformation to twe logically independent subtrans-

-

| formations:

(1) POL-—+BASE (called compilation)
(2) BASE—=ML (called translation).

This arrangement isolates questions of POL characterization within the

first transformation, and questions of ML characterization within the second

transformation. BASE itself is an expandable set of non;machine-spécific

LR Lo e 05

operatorsl, declarators. ctc., cxpressed in‘a unil'orm‘ "functional' or
"macro'' notation; tjhe meaning or intent of such operators is arbitrary insofar
as the compilation jtransformation is concerned. The POL— BASE trans-
formation may theﬁ be regarded as a machine-independent conversion, rom

a grammatically rich format to A simple linear format.

2. THEORETICAIL BASIS

Within our system, a POL is characterized principally by a grammar
(i. e., set of syntactic productions), and the consequent processing of programs
in the POL is syntax-driven. To assure adequacy with respect to completeness
ambiguity [b], and finiteness of analysis, our‘syntact;c method is rigorously

based. A grammatical model (the analytic grammar) was developed [8] .

which provides a rigorous descripticn of syntactic analysis via formalization
of the notion of a scan. Within this model, the selection process of a scanning
procedure can be precisely stated, and thus made amenable to theoretical
investigation. Some characteristics of this model are:

. all analytic lanpguages are recursive

] all recursive sets are analytic languages

1. Each BASE opcration, declarator, ctc., consists of a three-lectter
operation code followecd by n2 1 operand type specifier/operand pairs
Si/Xi; e.g.. FFF (Sl/xl' e 'sn/Xn)'

° all phrase structure grammars are analytic grammars
® there is o simple sufficient condition under which an analytic
. grammar provides unique analyses (or all strings.
. The granimar in a IPOL specification permits certain abbreviations

and orderings of productions (for convenicence, brevity, and efficiency), but
is nevertheless equivalent to a grammar using the simple scanJ4 of [8] .
(An cquivalent grammar using4 is obt‘ainable via a simple construction.)
Context- sensitive productions may be used. Our method guarantees unique-
ness of analysis - it is impossible to embed syntactic ambiguity in a
language specification. A simple test ensures finile analyses for all strings.
Such a grammar is at least as inclusive as the context-sensitive phrase
structure grarmmar, and there does not appear to be any grammatical
structure which cannot be accommodated (grarnmars of ALGOL, JOVIAL,

and FORTRAN were obtained without difficulty).

In fact, such grammars are sufficiently powerful to accommodate the
notions of "definition' and "counting'' (cf. [7] and the examples of [8]).
but to actually do so is neither efficient nor expedient. Therefore, a POL
characterization includes description of pertinent "internal operations "

(see the example in this paper).

3. SYSTEM OVERVIFEW

. An overview of the generation system is shown in Figure 1. Using

Best Avallable Copy

I. SPECIFICATION i1, GENERATION 11, RESULTS IV. PROCESSING

PROGRAM,

|
|
|
|
|
|
|
!
|
|

. h J 1
| I
GEERATION e)==d===q COMPLER | !
PROGRAM | ,
e COMPILER i
LANGUAGE L |
‘ (POL) N RS R,
SPECIFICATION ‘

r ————t—
' TRANSLATOR L
GENERATION S
PROGRAM |
MA(&I&NE L —TEAﬁslMTOR M
SPECIFICATION

!
|
i PROGRAM),
|

this system, the transformation from a source language L to a machine

Figure 1. Overview of System

language M is achieved as follows:

A specification of L - an abstract description of the syntactic structure,

"internal processing rules,' and "output code' for L. - is written. This

specification is processed by the compiler generation system to produce a

tape of L - a sct of data tables corresponding to the specification. The
compiler for L is then formed by conjunction of the tape of 1. with a compiler
model program, a table-directed processor which acts simply as a machine

for interpreting the tape of L.

Similarly, a specification of M is written designating macro-expansions

appropriate to M. This specification is processed by a translator generation

system to producc a tape of M - data tables containing the specified macro-
cxpansions. The translator for M then formed by conjunction of this tape

with a translator model program, which expands BASE operations to sequences

of instructions in M as directed by the tape of M.

4. COMPILATION SYSTEM DATA BASE

Processing of input strings (POL programs) by a generated compiler

is intended to occur in two parts:

(a) preliminary conversion of '""raw'' input symbols to yield a ""syntactic"
or "construct' string, which represents the raw input for all further processing,
and then

(b) step-by-step syntactic analysis, and (at each analysis step) per-
formance of prescribed sets of internal operations, prescribed output of
""code blocks, " output of diagnostic messages, and (if desired) performance
of additional auxiliary processes.

The internal operations in a POL specification assume a set of data
entities (the "data base'), which are later manipulated as prescribed by a

penerated compiler. Fach entry of the construct string (which represents

the raw input during processing) contains a construct (or syntactic type or

token) and an associated datum, which is originally derived from the raw

input, but may be internally altered. The use of appropriate string handling

routines allows cffectively a construct string of unbounded length. Other

data entities are:

PN PR

S

PEGRIRSRRIPS SN

Ly T

(2)

(b)

(c)

o set of function registers Fi' for storage and manipulation

of "temporary' numeric data

a set of symbol registers Si' for manipulation of symbol strings.

a property table of integer properties Pi(J), for storage and

manipulation of numeric data (e.g., nurnber of dimensions)
associated with "'variables' in the input string. 'Names'" (i.e.,
contents ol symbol registers) can be "defined" to the table to
reserve table entries for associated data. and the table can be

""searched.' Defined names are placed in a property table index.

th . . ,
The J table (‘ntry censists of four properties PO(J). PI(J).
PZ(J). 1)3(J). By convention, PO(J) i« the syntactic class of the

corresponding defined name,

See Figure 2 for further details.

GET MORE STRING

¢ A
'ﬁ% 'Np'ﬁ%{ﬁ;'\w o SYNTAX PROC:
REWRITING OF
DATA CONVERSION STRING cousnygcr N
STRING
ANALYSIS
STEP
PRT%E&TY PERFORMED
INTERNAL AUXILIARY
| S —
FUNCTIONS PROCESSOR:

» PROCESSOR:

>] MANIPULATION AUXILIARY
e A
PROPERTY ENTITIES AS DESIRED.
ABLE SYMBOL
REGISTER'S I
CODE

CODE PROCESSOR: | CONTINUE_ANALYSIS
STRING ,
OQUTPUT CODE

Figure 2. Compiler Model Organization and System Data Entities

6

B

5. POL SPECIFICATION AND COMPILATION SYSTEM OPERATION

The relation between a POL specification and the consequent cofn-
pilation system processing is best shown via an example. Figure 3 shows

2 B
a specification of the language LEMMAZ2 (first exhibited in Lemma 2 oL[Z]).

* TITLE(LEMMA2)

* SYMBOLS
(1)A (a) (1
(1)e te) (2}
(1) {ch 3}
(e {END) 101
(1 (NULL) (¢)

{LEOC)) (NULL S (0)
® ENO SYMBOLS

¢ SYNTAX :
001 (AMB)IK) ==(B)
002 (BICA)(A) ==(B)IK)(A)
003 (BY(A)(B) =={Q) !
004 (B)(BI(K) ==(B)IX)(K} !
00s (2)Q)(B) ==(Q) ;
006 (ENDJ{ANOQNCHCIICIIEND)==(2) :
007 (XH(B) =={K){B) :
008 (XHK) ==(X)(B)

& END SYNTAX
& INTERNAL FUNCTIONS
0cl RTV F3 =2
INC F3 1
ASQ -3 F3 :
003 SET F5 1 i
SET F6 2 .
PUT S1 vol-1) ’ : ;
SUF S1 voto)
DEF S1 . ((A)) .
ASO 0 FO
SET PLIFOI L
005 INC F§ 1
MPY Fb& 2
008 PRN 1 S1
& END INTERNAL FUNCTIONS
s CODE I
003 BEGIV/R{O)) . E %
PWREC/FD) .
005 PWR(C/Fé) o
006 AAA(C/R(=5)) ;
8BB(C/F5) {
* END CODE
o DIAGNOSTICS
000) seeness END OF SAMPLE ANALYSIS vecsssase ’
* END DIAGNOSTICS !
¢ END DATA

Figure 3. Specification of the LEMMA2
Language

2, The specification is shown in ''reference' format, which differs
trivially from the format used in machine processing of specifications.

7

" which consists of sentences having the form
- aTp"aMs"cce!
- where xk signifies a sequence of k X's. Some sentences of LEMMAZ2 are

'AABBBAABBBCC'
"AAAABBAAAABBCCC'
'WAAABBBBAAABBBBCCC

The specification contains five sections:
{1) Symbols - specifies the preliminary conversion of input symbols
and "reserved words' to construct string entries
(2) Syntax - a set of syntactic productions for use in syntactic analysis
(3) Ipternal Functions - the internal processing to be carried out at
each analysis step
(4) Code - the-v sequences of codes to be output at each analysis step
(5) Diagnostic Messages - a set of messages for output
The sections containing internal functions, code and diagnostic messages
are unnecesary in defining the language structure, but have been added to
illustrate these mechanisms. The codes BEG, PWR, AAA and BBB appearing
in the code section were invented expressly for this example; arbitrary
BASE operation codes may be designated at will, since these codes are
merely transmitted durinAg compilation. The following discussion can be
correlated with Figure 4, which shows the compilation analysis‘ trace for

a LEMMA2 program, together with resulting values of function registers

and code output at each analysis step.

e At < oo < A ottt oI ol

e

wea801d ZVISET * jO UOFINTFdmo) -y sanByy

. ‘614 Y3noayz 91,4 wnjep yjm aury uo ‘g6 g Y3noayl ¢g 3onijsucd
. Y¥ta surf uo :days sishyeue yoes je umoys a1e $1338189x uonduny gz 3sayy 943 jJo sanjep e
- *d uoylonpoad i1o; Sull 3d®vI) 3y} sapadraxd d uononpoad %05 indino Ipod ayjJ ¢

*3ndino apod pue ‘suoriduny [euIajuy yo sdurwiojaad ‘uorjonpoad a3 jo uonedydde
1933e ‘uorrsod uwds ay3 jo AurdtA ay3 ut Buirays 3Yy3 smoys soexy sisdjeue ay3 yo doys ydey o

_— . — YW __Ivm___

6 0 @& o ©6 © o6 © o o T 1 T o 1 T 1 i
~~—- .. 08__0_ 2 £ A 2 0 a 1 11 hai) XN ky W J;Ivhnﬁllul.!lll

2 3
saes s800ecsss SISATYNY ITMIVE 20 GN3I esesass
e 2 ung

0o 0 0 0 0 © o o6 o6 o € € 3 3 3 ?) 1
——f_ R 0 _®» 2 0 2 ©0 0 1 -2 3_ _.__8_ - L | y__ 99 ...oﬂlrwlmmlol

9 0 0 0 9 0 o 0 o o £ 2 2 1 2 2 -

© © © & ¥ © T o0 o0 1 5]] 0 (] T v [

S R dund

; 0 < . R - T A 338
- - L0 __0_ 0 - 2 (] X {
ll.“llu.) .n..l.u.l.nl 2 0 o0 o v 9) s v 03 ITwe Tww 1
—2. 0 0 0 0 0 0 0 0 o 1 1 2 4 z 1 1

3 0 0 9 0 o0 o0 o0 o0 o v) s »] v [-Lle.all..lpqoll..
—-a_.0__0 o 0 _0 0 0 0 0 2 1 2z z z 1 1

06 0 o 9 0 0 © o0 o0 o] v ® M X . v v 900
-—L0_0__0_0_0_0 0 _0 0 90 1) S z 2 z 1 1 P

9 0 0 9 0 0 o o © o v ® » X) v v od %00
—2._ 0.0 0 0 0 B 0 o g 7 1 1 " zZ 2z 1 1

6 0 0 0 ¢ 0 0 o o o] v . »] M v v 100
l!llb.ilb.l!.ﬁlab.ll.ovlbllb‘lb'lb-lllﬂ F 4 2 . § g 4 2 t 4 1

00 0 0 0 8 0 o0 0 90 o . d ;) . v . ® .] .) .) . 900
'u!.u“.alu!.-um.!o“. e o ;u..x..o o!l“ » v . v T ¥ . x . []] v v o0

© 0 0 0o o0 o0 o o ._cplha) N v] IwwllrLlnlhIJﬂl- v

+ 7IINVEVVEINVY o

z __ .._ L z _
zE<o|\n\ rY _v. _ ’ _.. BwnN 00
! ' 1

LONYLSNOD _ : | .

RPN

The conversion specified in the Symbols section, of raw input symbols
to i:onstruct string format, is performed specifically to eliminate dependency
éf processing on particular machine character sets and hollerith codes. A f
" construct string entry containing a construct and an associated datum
replaées each input symbol (or symbol sequence constituting a reserved -
word); Figure 5 illustrates this process. An arbitrary numeric or hollerith
datum may be specified. Data from the construct string may be used to .
Qopsﬁ:ruct_symbol strings (names), but this usage is not dependent on the

specific hollerith codes which are used.

SYMBOLS SECT
"RAW® INPUT STRING oF sncmcﬂ'ﬁ"

o TITLE(LEMMA2)
o SYNBOLS
(1A (11] 1

e (1 1] (P4

[§311 ({4] 3

) {END) (1 1]

(2} (NULL) (]3]

T

CONSTRUCTIEND] A] A « o o C | C |END
1 MM0112000330

| CONSTRUCT STRING -

Figure 5. Preliminary Symbol Conversion

e The number in parentheses on the left indicates the number of characters
comprising the reserved word. The symbols of the reserved word follow.

e A construct (e.g., (END)) is specified for each symbol or reserved word.
Use of the construct (NULL) specifies that no construct string entry is to
be made; thus ''blanks' are ignored above.

® A datum is specified for each symbol or reserved word. Either a numeric
datum (e.g., (3)) or a hollerith datum (e.g.. ((h), where h is the desired
hollerith datum) may be specified.

e The special notation ({(EOC)) denotes the '‘end of card symbol'', which in ’
many languages is regarded as a punctuation mark. A representation of o !
((EOC)) must be given in every Symbols section.

10

e e v ——

The syntactic productions in a specification's Syntax section are applied

(as determined by the compiler model's scan) to "'rewrite' the construct
string, in a step-by-step fashion (see Figure 6). The succession of these
rewritings constitutes the syntactic analysis of the construct string. In
selective productions from the set of Figure 6, the compiler model uses the
"leftmost" z-;caubdl of [8]. i.e., at each step the production chosen is the

one whose "'left side' occurs first (leftmost) in the construct string. Thus

at the first analysis step, the substring chosen is BAA: at the second, ABK;

and so on. To allow explicit reference to the data which accompany the

IND] A J A BJA]J A B oo o [END

0] 1| 1]2j1]1f2a]ees]on
SCAN POSITION SYNTAX. SECTION
- ~ SYNTACTIC R@IEQI&S“
EIND| A | A B IKTAIB] - END . svras
011 11 2|11 1]2]9 1AMEHRE oeiB) Ly
(01LAMIA) wotBItRIIA) i ;

00108 o0t ®)

one LONBIR) oelodadin)
SPOSITIN | id wennmioitiditimenids
—_— | 001 (REES) et)(8)
ENDf A] Bl AL B

L 0/ m (4]] 1E)EIR) eotnlte) .
e £ND SYntaR ;
0 ! 1 1 2] e 0 :

Figure 6. Syntactic Analysis , . .)

constructs of the substring chosen, a scan position is defined (at each ite-p)

to occur at the last (rightmost) construct of the selected substring (see

Figure 6).

At cach analysis step, internal operations associated with the nl_ected

production are performed: function registers or properties within the
1 ~

sraperty table may be set, used, or arithmetically manipulated: character
strings may be placed in, prefixed to, or suffixed to symbol registers, and
so on. The Internal Functions section (see Figure 7) consists of sequences
of internal functions operations. The first operation of each sequence has

the label of the production for which action is taken. Thus the sequence

RTV F3 -2, etc., is periormed each time production 001 is selected.

CONSTRUCT STRING
END| A B A B e e o @
0 1 1 11,2 e & o o

FUNCTION /
REGISTERS SCAN POSITION
0 n ~
; \ * JATERNAL FunCTIONS
nnt L34 -2
3 _ ING E3
a] PROPERTY TABLE St ey
z ke PP PI P2 P3 LTSS ’o...3
|_——SuF 31010
: o
. M/L— I St
[.__._, o - h:v fa 2
50[[l l l l [I i""l‘/H r1 : : . /://r ' ovr:nlrz:fwu FUNCTIONS
/ -*
S 0 T T T I A X I L e
_/ =N
2 J Ll [[0] [eeel TTT]
HEEERAEECONEEE

SYMBOL REG I STERS

Figure 7. Performance of Internal Functions

e SET F5 1 places the value 1 in the function register F5

° PUT S1 VO0(-1) places the datum (regarded as hollerith) from construct
string position (-1) - relative to the scan position - into the symbol
register S1. All previous contents of Sl are deleted.

e SUF S1 VO(0) suffixes to the string in S1 the datum from construct string
' position 0.

o DEF S! ((A)) '""defines'' the string in S1 to the property table: a property
table entry (say the nth) is reserved, the string in Sl is entered into the
property table irdex, together with the entry number n. The number
representing the construct (A) is placed in P0O(n), and n is placed in FO.

e ASO 0 FO "associates' the value in FFO with the construct in string
position 0: the value FO is placed in the datum of position 0.

° SET P1 (F0) 1 places the value 1 in P1(F0), i.e., in Pl(n).
) 12

Care has been taken in formulating the internal operations to achieve
economy of means - simple operations, a minimum of system data entities,
and a minimum of compiler model machinery. Such a formulation allows a
. simple compiler model program, while language complexities must be
expressed within the language specification. Some anomalies of notation
still remain from our earlier efforts, but it is planned to revise and clarify

notation.

Operation sequences pertaining to different productions are independent
of each other, since there is no "GOTO'" operation (a ''skip forward" is
sometimes permitted). Thus a finite sequence of operations is performed
at any analysis step.

Code may be output at any analysis step. Operation codes and

operand type specifiers given in the Code section (see Figure 8) are merely

CONSTRUCT STRING

see! B{ Bl Q[B| B oo

2 2 1 2| 2 . ~ » COOt \
FUNCTION REGISTERS™SCA POSITION __—H06¢—Jaatc ¥, , |
" = 801/ P8) L
2 R 5
: - : , . , . R
K o _ : i ‘
4 ; | PROPERTY TABLE | 1 S S
.—-——_—;-,4-_' | » w0 cODE - i

CODE OUTPUT FOR PROD 003 AT THIS TIME 1S BEG (Vi)
| PWR (012

A S

Pigure 8. Output of e Code Sequence

)

i

transferred to the output, while operands are inserted as specified.

The Diagnostic Message section contains a set of messages, which
are output by PRN internal operations. The operation PRN! S1, which is

executed for production 006, prints message 00! and the contents of S1.

6. TRANSLATION AND MACHINE SPECIFICATION

A translator for a given target machine (ML) produces. from an
input program of BASE operations, an equivalent program in the target
assembly language, in a format acceptable to the target assembler. The
production of assembly language guarantees compatibility of the object
program with the machine's monitor system, and allows the assumption in

translation of system subroutines and macros.

A BASE program contains generalized item declarators, array
declarators, etc., and generalized computation operators (e¢.g.. ADD, SUB).
Since data definition is explicit, the BASE computation operators do not take v
account o!bthe data types involved in the operations. Thus for each compu-

tation operation, there is an equivalent set of standard suboperations: c. .,

corfe;ponding to ADD are the standard suboperstions
“"add a floating item to a fixed item" \
"add a fixed item to a floating item"
and so on Determination of the specific suboperation required for a given i
BASE oéention. taking into account the data types involved. ix performed

witin the translator.

14

AR T T A 1

A i T W D 10 S A NN N R R B R VN

Translation thus cccurs in two parts:

(a) analysis of BASE operations by an analysis section, to

derive equivalent sequences of standard suboperations,

followed by

(b) expansion of the standard suboperations by a macro-processor

section, to produce assembly code.

A machine specification defines expansions of the standard suboperations.
In other words, it defines for each standard suboperation an equivalent
sequence of assembly language instructions. Embedded in these expansions
are format specifiers, which cause the appropriate format to be generated.
A machine specification is processed by the translator generation system to
produce corresponding data tables, which are combined with the translator
model program to form the desired translator. These data tables direét the

cxpansions performed by the translator's macro-processor.

Parameters required by the expansions are furnished by the translator's
analysis section via a communication table, from which they are retrieved
as necessary by the macro-processor section. Within a machine specification,

parameters are specified via position in this table.

Our present machine specification notation is processor-oriented, and
not casily rcadable; however, it is planned to formalize this notation. Some
typical macro definitions are shown in Figure 9, in a contemplat2d notation,

as an illustration of the featurcs provided in a machine specification.

13

I S o

LOADING ACC AND MQ WITH DOUBLE PRECISION OR COMPLEX NUMBER (FOR CDC 1604):

TAB TO START ouTPUT
OF NEXT FIELD

OF NEXT FlELD Tas / PARAETER END MACRO
0506, 0507 Hll:ﬁ 3"@' /P1,P3 {LJII[I!/PZ/PI.ZII + l.l’:h)
oyrruT END OF RECORD:

LITERAL OUTPUT CARD &
“'LDA* CLEAR IMAGE

LOAD ACCUMULATOR (FCR IBM 7094 FAP):

TEST PARAMETER 2 CONTINUE HERE
IF PAR 2 EMPTY END MACRO
Sty oF rotaTION NAGRO (/3ucumm'ﬂ F3m, m,_
[|
{ gﬂgmﬂ:&cm ATION CONTINUE HERE I END MACRO
7 TAB TO START OF NEXT FIELD PAR 2 NOT EMPTY

$ “END OF RECORD" MARK
Pn PARAMETER n
Cl»,K) CONDITIONAL EXPANSION:
SKIP K ' $°* |F PARAMETER n NOT EMPTY,
) END OF MACRO
aH LITERAL STRING OF n CHARACTERS
Min) CALL ON MACRO n

Té178

Figure 9. Some Typical Macro Definitions

The translator model program, except possibly for one output pro-
cedure, is machine-independent. The analysis of BASE operations is
dependent only on the operator, accumulator data type, and operand data
type involved, while macro expansion is table-driven. All dependency on
the target machine is isolated within the data tables used to direct expansions.

Assembly code is output in the form of 80 column card images, which are

almost universally acceptable by target assemblers. Unusual cases might

require simple modification of the output procedure.

7. CONCLUSIONS

Using the syntactic model of [8] , we have developed a system to

formally characterize languages which are rich in grammatical structure,

16

N L en e eyt e

RO A
v ‘v.t.',

e e

e e A e A B I et st

and to subsequently process strings in such languages. Suchpi‘océssing can

- produce linear code (BASE language}.- The BASE» language centains compu-

tation and data declaration operations sufticient to accommodate the functioris - .

of ALGOL, FORTRAN, and JOVIAL. BASE is expandable, so that more

convenient or efficient operations may be introduced when these are desirable.

We T.‘zvbe'\' shown the féhsibilitz of formally characterizing machine {assembly)

language, and of machine-independent translation (BASE =+ ML). In:sum,

> we have presented a rigorously based, maching-independent compiﬁl‘er

generation system.

e

Axonsequence of these results is that lar.guage mvarxance can-be mam-

w

tained from machine to machine. It is possible to ha?éja;atandard version

of each procedure-oriented language, rather than n‘aachine-dependent variaqts.

N The system is presently runmng on the <DC lf 14 computer. Spec- ‘
lfMtI\O"lF of AiGOL FORTRAN and JOVIAL harve been written, as has
\ mauhme gpecificati'gn for t?le CDC 1604. .The ALCOL and F O_R.TRAN
' spec‘if;cations have undeigone»tentatvi'vé checkout and m-odification.‘ a§ has
the CDC 1604 spec.-afication. Prehmminary comparisons uf operating
charactenstlcs have been made. For a sx;l:ll number of ahort program; .
our system produces obJect programs about the 3ame size as do the .
manufacturer- supplied compilefs. and requirea betwgen twice and three
timee the computer time. ,éince our system is a prototype, these resilts

indicate that it may be possible to genexate éompiler?tramlator systems

~ which have competitive efficiencies. We contemplate major cperational

17

B e mm o pen =7 4. k8 - e e Y PR

e g o

R

. et o o

. ‘changes, wiﬁwu_t‘the sacrifice of theoretical rigour, which should increase

+ . system speed by a factor of between 3 and 5.

L~ o) ; E ;"_I'he\‘compiler (POL-» BASE) portion of this system has other uses. v

' ::]T.he;gbility to formally characterize grammatically rich languages and to

~d§bieq§ently process strings in such languages is of importance wherever
N stxi:i_go structure-dependent processing is required.
[“
[
-
¢

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

REFERENCES

Chomsky, N., Syntactic Structures, Mouton and Company, The
Hague, 1957.

Chomsky, N., "On Certain Formal Properties of Grammars,"
Inform. Contr. 2 (1939), 137-167.

Ginsburg, S. and Rice, H.G., "Two Psmilies of Languages
Related to ALGOL," J.ACM 9 (July 1962), 350-371.

Naur, P. (BEd.), "Report on the Algorithmic Language ALGOL
60," Comm. ACM 4 (May 19%2), 299-314.

Irons, E.T., "A Syntax-Directed Compiler for ALGOL 60,"
COIIII. Am 5 (Jm. 1961)’ 51’55-

Cantor, D.G., '"On the Ambiguity Probiem of Backus Systems,"
J. ACM 9 (Oct. 1962), 477-479.

DiForino, A.C., "Some Remarks on the Syntax of Symbolic
Programming Languages,' Comm. ACM 6 (Aug. 1963), 456-460.

Gilbert, P., "On the Syntax of Algorithwic Languages,"
J, ACM 13 (Jan 1966), 90-107.

Gilbert, Hosler, and Schager, "Automatic Programming Techniques,"
RADC-TDR-62-632, AD 400 325L, American Systems, AF 30(602)-2400.

Gilbert, Gunn, and Schager, "Automstic Programming Techniques,"
RADC-TR-66-54, AD 488 8511, Teledyne Systems, AF 30(602)-3330.

Gilbert, Gunn, Schager, and Testerman, "Automatic Programming
Techniques,” RADC-TR-66-665, AD 811 144L (Vol. I), AD 811 145SL
(Vol. II), Teledyne Systems, AF 30(602)-3330.

19/20

CxvE

<ot .

UNCLASSIFIED

bcudtz Ctassification

DOCUMENT CONTROL DATA-R&D

{Security classification of title, body of abstract and indexing fon must be d when tha Il report |a classitied)
1. ORIGINATIMNG ACTtVITY (Corporate author) 8. REPORT SECURITY CLASSIFICA TION
Rops Air Development Center (EMIRD) UNCLASSIFIED
Griffiss Air Force Base, New Tork 13440 25. sRoUP
N/A

Y

3. AEPORT TITLT
COMPILER GENERATION USING FORMAL SPECIPICATION OF PROCEDURE-ORIENTETL AND
MACHINE LANGUAGES

4. ONSCRIFTIVE NOTES (Type of report and inciuaive dates)

IR-EOUSE

8- AUTHOR(E) (First neme, middle initiel, lset name)
. Philip Gilbert
Willism G. Mclellan

8. REFORT DATE “{ra. TOoTAL NO. OF PAGES 7b. NO. OF REFS

August 1967 20 11
88, CONTRACT OR GRANT NO. 92, ORIGINATOR'S REPORT NUMBER(S)

N/A
». proskcT No. 6594 RADC-TR-67-454
€. 95. OTHER REPORT NOI(S) (Any other numbsere that may bo sssigned
this report)
None

- DISTRIBUTION STATEMENT

This document has been approved for public release and sale;
its distribution 1is unlimited.

- SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Rome Air Development Center (EMIRD)
Griffiss Air Force Base, New York 13440

. ABSTAACT

A compiler generation system is described which is rigorously based and which

allows formal specification both of the source (procedure oriented) languages and
of the object (machine oriented) languages. An intermediate or "buffer" language,
BASE, is interposed, reducing the required transformatirn techniques described.
The system, so far, includes those elements in BASE necessary to produce ALGOL,
FORTRAN, and JOVIAL compilers.

This paper was presented at the 1967 Spring Joint Computer Conference.

DD f2..1473 UNCLASSIFIED

‘Security Classification

DL SHNELY 5 T f 4

e

UNCLASSIFIED

Security Classification

KEY WORDS

LINK A LINK B

LINK C

ROLE wT ROLE wT

ROLE

WT

Prograsmaing Languages
Compilers

FORTRAN

JOVIAL

ALGOL

UNCLASSIFIED

Security Classification

e vt BB NG

b

