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1.0 SUMMARY

The two volumes of this report present calculated cooling and structural
protection system performance characteristics of the U.S. Army XV-5A
Lift Fan Research Aircraft in terms of its estimated and experimentally
determined induced environment; in terms of its structural, component,
and operational requirements; and in terms of ARDC standard and ANA
Bulletin 421 Hot Day conditions. This is Volume I.

The XV-5A, is a two-place V/STOL aircraft capable of flight at high
subsonic Mach numbers. The aircraft was designed and built by the
| Ryan Aeronautical Company under contract to the General Electric
Company for research flight testing of the G. E. Lift Fan Propulsion
System. Based on analysis and limited test data, the aircraft cooling
| and structural protection systems are believed to have sufficient per-
formance capability to permit orderly conduct of Installed System Func-
tional, NASA-Ames 40' x 80' Wind Tunnel, and Edwards Air Force
Base Flight Test Programs even though externally induced environ-
mental temperatures to 1040° F develop during fan mode operation,

Occasional local and minor overheating problems are expected within
the broad range of possible operating conditions; however, it is expected
they can be overcome with minor structural modifications, installation
of additional insulation, and/or minor modification of operational
procedures.

Lack of detailed knowledge of the externally induced environment made
cooling and structural systems designs and analysis difficult, leading
at times to results which may prove too conservative, and at other times,
too optimistic. In an attempt to gain further insight to this complex
problem, a procedure was developed whereby existing literature data
on downwash phenomena could be applied quantitatively to the XV-5A
induced environment. While more fundamental and experimental data
are needed before important aspects of the induced environment can be
investigated further, results obtained to date are encouraging. Results
show directional effects of aircraft control settings, and indicate the
strong possibility of hot gas ingestion by the engine and cooling system
air inlet. Perhaps most important of all, these results indicate means
whereby adverse effects may be minimized or eliminated.

QY. N
B W 64B017




L o

o

A comprehensive survey of the XV-5A induced environment is recom-
mended, including temperature and velocity measurements for the full
range of aircraft operating conditions, including altitude, power setting,
control settings and local ground wind velocities,
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2.0 INTRODUCTION

This report consisting of two volumes, presents calculated heat transfer
and cooling system performance for the U.S, Army XV-5A Lift Fan Research
Aircraft. The XV-5A aircraft, a two-place V/STOL aircraft capable of
high subsonic flight, was designed and fabricated by Ryan Aeronautical
Company to evaluate the General Electric lift fan system. The XV-5A
propulsion system consists of two G.E, X353-5B propulsion systems
including lift fans, diverter valves and modified J-85-5B gas generators,
two sets of lift fan inlet closure doors, one G.E. X356 pitch (nose
installation) fan, a set of two pitch fan thrust reverser doors and
pitch fan inlet louvers, two exhaust ducts and nozzles, two thrust
spollers, and associated power distribution ducting and controls. The
interrelation of these components and the aircraft are shown in Figure
2.1 and 2.2,

The XV-5A aircraft internal structure is fabricated principally of alumi-
num alloys, except for a few local areas subject to intensive heating
ranges. The fuselage skin is constructed of a number of metals includ-
ing aluminum, titanium, magnesium-thorium, and steel alloys as shown

in Figure 2.3. Local skin areas exposed to severe heating for extended
periods during aircraft testing have been protected by external insulation
and are also shown in Figure 2.3, Figure 2.4 shows the nose and two-
position main landing gear systems. Protection of main landing gear
components, although under study at the time of rollout, is not considered
in this report.

The XV-5A aircraft may be operated in either conventional (turbojet) mode
or lift fan mode by selecting diverter valve position. In the conventional
mode, the fan inlet and outlet doors and vanes are in the closed position
to give an aerodynamically clean configuration; in the lift fan mode, fan
inlets and outlets are open.

During V/STOL operations involving lift-off, hovering and forward flight,
the fan streams are modulated for trimmed flight with generally sym-
metrical flow fields; however, aircraft pitch, roll and yaw control applica-
tions cause transient, differential, fan-stream modulations which produce
transient asymmetrical external (induced) flow fields, particularly in




proximity to the ground. Forward thrust is obtained by vectoring the
wing fan streams aft by use of exit louvers.

In the fan mode, hot gases from the mcdified J85-5 gas generator (to
1250° F) are diverted to the fan tip :urbines and then exhausted downward T
from the inboard quadrants of the wing fans and the aft quadrants of the !
nose fan. As a result of these hot turbine exhaust gases (to 1040° F),
the aircraft becomes exposed to and enveloped, to varying degrees, in

locally induced environments which differ substantially from prevailing L
ambient conditions. Located within these induced environments, the
various aircraft and propulsion system components are affected by the
local flow fields, particularly their detailed temperature and velocity
distributions.

Testing and operation considered in design of the aircraft include static
ground tests, NASA-Ames 40' x 80' wind tunnel tests, flight tests at Ed-
wards Air Force Base, pillot training and familiarization, exploration and
extension of alrcraft operating envelope, handling qualities, etc., and
normal operations. Against this background, the calculated heat transfer
and cooling system performance of this report is developed. Results

are applicable to the aircraft configuration at the time of rollout, and do
not reflect changes or modifications resulting from ground and flight tests.
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3.0 AIRCRAFT COOLING SYSTEM DESCRIPTION

The XV-5A aircraft cooling system has been provided to maintain safe
operational temperatures for all aircraft structure and equipment during
ground, flight, and wind tunnel testing, and during normal operation for
both conventional and fan modes of operation. In the fan mode, the
influence of the induced environment and the possibility of hot gas
ingestion by the cooling system are matters of concern. They must be
considered, despite the fact that only fragmentary data exist regarding
the induced environment and its detailed nature. The gathering of
definitive induced environmental data falls within the scope of flight
research testing of the XV-5A aircraft and the lift fan concept.

The XV-5A cooling system consists of two generally parallel branches
separated by a vertical plane through the aircraft centerline (BL=0) with
occasional common ducting or plenums. Also, it is convenient to con-
sider the cooling system as being made up of upper and lower fuselage
sections separated by the cross hatched line shown in Figure 3. 1.
Referring to Figure 3.1, the primary motive power for each branch is
supplied by two cooling air blowers; one large and one small. The
blowers for each branch, housed in a common plenum (D), draw outside
air from two fuselage ports supplying the plenum and from a slot formed
by the rear cockpit canopy closure. This slot also acts as a second
boundary layer bleed duct, and provides for cockpit (A) ventilation as
well, Each smaller blower cools an electrical generator, a hydraulic
oil cooler and the common electronic compartment (B) before dumping
into the lower fuselage section (0). Each large blower supplies cooling
air to its respective engine compartment (G) and the cross-over duct
compartment (N) in proportionate amounts, dependent upon the mode of
operation (turbojet or lift mode). Cooling air pumping is augmented by
the tailpipe ejector action during turbojet mode operation, and by the
pitch and wing fan coolingair ejector action during lift mode operation
(Figure 3. 2).

In the conventional mode of operation, two other systems take part in the
cooling system (Figure 3.2). The boundary layer bieed duct opens to
supply cooling air to the engine compartment, and the gas power distri-
bution ducting acts as a branch of the cooling system with general
flow from the pitch fan cavity to the wing fan cavities. As flight speed




increases, the boundary layer bleed air overpowers the large blower air
flow, closes a flapper valve, and becomes the sole source of engine bay
cooling air. With the flapper valve closed, the total large blower output
is thus diverted to cross-over duct cooling, and to wing and pitch fan
compartment cooling,

The flow path through the power distribution ducting is developed by the
relatively high pressure at the pitch fun inlet closure system, and the
low pressures developed over the wing fan inlet and outlet closure
systems. Flow through the ducting system counteracts diverter valve
leakage by providing direct mixing of leakage gases and cooling air flow
before entering the wing fan cavities. Even with doors and louvers
closed, sufficient cooling air exit flow area is provided from the fan
cavity to maintain desired flow rates. The various components of the
XV-5A cooling system are discussed in greater detail in the following
subsections.

3.1 FORWARD UPPER FUSELAGE

3.1.1 Boundary Layer Bleed Duct

The boundary layer bleed duct, located betwecn the engine inlet and
fuselage as shown in Figure 3.3 is a raia inlet for the removal of the
boundary layer formed on the canopy and fuselage forward of the turbojet
engine inlet to improve the engine inlet performance. The ram air

taken in is directed to the engine bays for cooling. The forward flapper
at the inlet acts as a check valve to prevent engine suction applied at the
boundary layer bleed duct inlet from reversing the flow through the duct
during ground operations. A splitter aft of the forward flapper divides
the flow from the single duct inlet into each individual engine bay. The
duct branches, from the left and right hand large cooling fans, intersect
the individual boundary layer bleed ducts leading to the left and right hand
engine bays respectively. A flapper valve installed in each bleed duct at
the branch intersection divides the flow between the ram air and the large
cooling fan air in proportion to the static pressure and momentum forces
developed on the flapper by each branch (see Section 9.3.3). As the air-
craft increases speed, the ram air pressure from the bleed duct forces
the flapper down and eventually shuts off this portion of the large cooling
fan flow.




3.1,2 Cockpit Ventilation

Cockpit ventilation is provided by outside air drawn from the boundary
layer into the cockpit. The air inlet is a gap around the canopy edge as
presented in Figure 3.4. The canopy is sealed cnly on the forward top
cdge. The gap ranges from 0, 1 inch on the sides to 0.5 inch at the hinge
area. Air is withdrawn from the cockpit at the top of the aft canted bulk-
head through the interconnecting ducting by suction of the cooling fans.
Cockpit heat loads include contributions from the crew, cockpit equip-
ment. aerodynamic heating, external heating by downwash, solar energy,
forward and aft bulkheads and the floor over the pitch fan supply ducting.
During VTOL operation, external hot gases from the fans may affect the
temperature of the outside air entering the cockpit.

3.1.3 Cooling Fan Compartment

The cooling fan compartment is located aft of the hydraulic compartment

and under the engine inlet, as presented in Figure 3.5. The compart-
ment contains two large cocling fans, two small cooling fans, two
generators, and the ducting for distribution of the cooling fan air flow,
Cooling air enters the compartment from the cockpit and the two inlet |
ports, one on each side of the fuselage, and leaves the compartment i
through the various hranches of the ducting system. The flow from the
small cooling fans to the generators is recirculated in the compartment.

3.1.4 Cooling Fans

The major components of the cooling system are two centrifugal cooling

fan assemblies, Each assembly is mechanically driven by its turbojet

engine and consists of a gear box, one large centrifugal cooling fan, and

one small centrifugal cooling fan, (Figure 3.5). The left and right hand

cooling fan assemblies supply cooling air to the left and right hand side

of the aircraft, respectively, in the upper fuselage section, and dump |
into the center fuselage section at the forward and aft bulkheads,

respectively. The flow distribution of the four cooling fans is:

L. H. large cooling fan flow supplies cooling air to the left

engine bay and to the forward left side of the center fuselage

section, The cooling fan air flow to the engine bay diminishes !
as flight speed increases until its total flow is discharged

into the center fuselage section, (see Section 3. 1.1). 1
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R. H. large cooling fan flow supplies cooling air to the right
engine bay and to the aft center of the center fuselage section.
The flyw characteristics to engine bay are the same as for
the L. H. large fan,

L. H. small cooling fan flow supplies cocling air to the L. H.
generator which discharges the flow back into the cooling

] fan compartment, and to the L., H. hydraulic ol! cooler which
discharges the flow into the electronic compartment,

R. H. small cooling fan flow distribution is the same as the
L. H. small cooling fan, except that it supplies the R. H.
generator and the R. H, hydraulic oil cooler.

3.1,5 Hydraulic Oil Cooler

There are two cross-flow hydraulic oil coolers (Stewart-Warner 8426A),
one for each hydraulic system. Cooling air from the small cooling fans
flow through the coolers and absorb heat from the hydraulic oil as it is
returning to the reservoir, (For flow distribution, see Section 3.1.4.)
For schematic, see Figures 3.2 and 3. 5.

3.1.6 Electronic Compartment

The electronic compartment, located aft of the cockpit as presented in
Figure 3.5, contains the radio, stability augmentation system, and
various relays, switches, and other components of the electrical system.
Cooling air is supplied from the small cooling fans to remove the heat

of the electrical equipment. The cooling air leaves the compartment at
the bottom, and is discharged into the lower forward fuselage section.
The AN/ARC-51X radio has a built-in blower that draws cooling air
from, and discharges it back to the electronic compartment,

3.1.7 Engine Compressor Compartment

The engine compressor compartment as presented in Figures 2.2 and

3. 1 encloses the engine compressor, canular firewall surrounding the
combustion chambers, and various engine accessories. The combustion
chamber shroud extends into this compartment, however the shroud is
open to the engine bay. Cooling air enters the compartment through
holes in the ducting between the large cooling fans and the boundary layer
bleed duct, and discharges through gaps around the four engine inter-
stage bleed ducts.
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3.1,8 Engine Bax

An engine bay is formed around each engine enclosing the turbine casing
and diverter valve, as shown in Figuies 2,2 and 3.1. The engine hays
are separated from the center fuselage section, engine compressor
compartment, and each other by titanium firewalls. The aft end is en-
closed by an aluminum bulkhead and the outside surfaces are formed by

a removable aluminum honeycomb panel. Cooling air enters the bay
from the boundary layer bleed duct and the large cooling fans at the top
inboard corner of the forward firewall, and is free to circulate around
the complete surface of the turbine casing and diverter valve. A simple
impingement baffle plate has been designed for installation at the engine
bay inlet should subsequent tests indicate such redistribution to be
desirable, A polished aluminum shield is installed around the tailpipe

at the aft aluminum bulkhead to protect it from radiant heat. The cooling
air discharges from the bay through the annulus formed by the tailpipe and
shroud at the aft bulkhead, as shown in Figure 3. 2.

3.2 AFT FUSELAGE

3.2.1 Aft Fuselage Bay

The aft fuselage bay contains the tailpipes, tailpipe shrouds, fuel cells,
and control equipment. Because the quantity of heat given off by the tail-
pipe shrouds is low, and the heat sink formed by the fuel cells and skin
surface is iarge, there is no requirement for cooling air to the aft
fuselage bay.

3.2.2 Tailpipe and Shroud

The two tailpipes run diagonally through the aft fuselage, one from each
engine, as shown in Figures 2.2 and 3.2, The tailpipes are shrouded
the full length by individual titanium tubes forming an annular flow
passage with a 1.5 inch gap. The inside of the shroud is gold plated to
reduce the radiant heat transfer to the shroud. Cooling air from the
engine bay flows through the annulus and to the ejector, cooling both the
tailpipe and shroud, but primarily the latter.

3.2.3 Tallpipe Ejector

The tailpipe ejectors, located at the aft end of each tailpipe (Figures 3. 2
and 3. 6) consist of conical extensions of the shrouds past the tailpipe
nozzles. The ejectors operate effectively only in the conventional flight




mode to increase the cooling air flow through the engine bay and tailpipe

annulus. During operation with lift fan mode, only a small quantity of

diverter valve leakage air enters the tailpipe, and cooling air flow is -
provided only by the large cooling fan. }

3.2,4 Aft Equipment Compartment

The aft equipment compartment, (Figure 3. 1), contains the electrical
inverters and batteries. There is no cooling air requirement for this
compartment, since no jet wake attachment to the outside skin is -
expected. .

3.3 GAS POWER DISTRIBUTION SYSTEM

The gas power distribution system for the wing and nose fans is dis-
cussed here since it is the major source of heat to the center and forward
fuselage sections, and the fan compartments.

3.3.1 Lift Fan Mode Operation

The hot gas generator exhaust gases are diverted through the diverter
valve to the power distribution ducting in the center fuselage section,
where they are distributed to the fan scrolls via three branches, with
approximately 13% of the flow going to the pitch fan and 43. 5% to each
wing fan. The scrolls distribute the hot gas to the nozzle blocks, which
discharge the gas evenly over the fan turbine blades. The ducting to the
fan scrolls, and the scrolls, located in the wings and pitch fan cavity,
are insulated with foil-covered Refrasil insulation blankets. The
Marman-type clamps at the duct joints have a maximum leakage rate

of 0.01 SCFM per inch of duct diameter. Due to contraction and ex-~
pansion of the ducts, the leakage rate may be increased with operating
time. The scroll seals extending around the inboard side of the wing
fans and the aft side of the pitch fan have a General Electric guaranteed
maximum leakage of 0.2% of the total hot gas flow. The scroll seal
leakage may occur symmetrically around the seal or in localized areas. L

3.3.2 Turbojet Mode Static Operation

During static operation in the conventional mode, the diverter vaive is
positioned in the straight through or turbojet mode position. The General
Electric guaranteed maximum leakage of hot gases through the diverter
valve to the fan mode ducting is 0. 8% of the total gas flow, and it may or
may not occur symmetrically around the valve. Thus, the leakage may
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be distributed to each fan in the percentages given in Section 3.3. 1, or
if the leakage occurs on one side of the valve, the hot gases may attach
to the duct walls and be distributed unevenly to the fans.

3.3.3 Turbojet Mode Flight Operation

During flight in the conventional mode, the diverter valve leakage into i
the cross-over duct is the same as that occurring statically, (refer to
Section 3. 3. 2). During {light with the fan doors and louvers in the
closed position, nearly ambient pressures are developed arcund the ;
nose fan while negative pressures are developed over the wing fan 3
louvers. The differential pressure so developed induces air flow from |
the pitch fan to the wing fan by way of the gas rower distribution ducts.
Air from the pitch fan cavity will mix with the hot diverter valve leakage
gases in the cross-over duct before passing through the wing fan cavity
to the outside.

3.4 LOWER FUSELAGE SECTION

The lower fuselage section consists of three compartments: the center
fuselage compartment, flap actuator compartment, and the forward
lower fuselage compartment. The lower fuselage section is that portion 1
of fuselage under the engine bays, main fuel cell, electronic compartment,

and cockpit as shown in Figure 3.2, This section of fuselage contains

the cross~over and pitch fan ducting, electrical and hydraulic equipment,
engine controls, aircraft control systen: components, and fire extin-
guisher bottles. The heat sources to this section include: conduction,
radiation and convection from the shrouded ducting, recirculation of I
hcated cooling air, hot gas leakage from ducting joints, and external hot

gas leakage into the compartment caused by lift fan stream impingement
on the skin. ?

3.4.1 Center Fuselage Compartment

'The center fuselage compartment located under the engine bays as noted 1
in Figures 2,2, 3.1, 3.2 and 3.7 is supplied with cooling air from the
large cooling fans, (Section 3.1.4). The compartment skin is formed by

a scries of unsealed removable panels, which offer the possibility of
cooling air leakage from the compartment and hot gas leakage into the
compartment. The cooling air leaves the compartment through the flap
actuator compartment, and through the scroll cavities of the wing roots

to the wing fan ejectors. During conventional operation, the diverter valve
gas leakage does not cause a scrious heating problem in the center fuselage
compartment,
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3.4.2 Flap Actuator Compartment

The flap actuator compartment is located alt of the wing rear spar in
the fuselage as presented in Figure 3.7. There is no cooling require-
ment for this compartment during CTOL mode. During VTOL mode,
hot gases from the wing fan exhaust may have a tendency to enter the
compartment throvgh the slots provided for the flap actuator shafts. On
the other hand, opposing the hot gas inflow is the cooling air which
enters. the compartment from the center fuselage through the control
cable holes in the rear spar and which discharges to the outside through
the slots mentioned above.

3.4.3 Forward Lower Fuselage Compartment

The forward lower fuselage compartment is that portion cof the fuselage
under the main fuel cell, electronic compartment, and cochvit as shown
in Figures 2.2, 3.1 and 3.2. Cooling air is supplied to this compartmen:
from the small cooling fans discharging from the electronic bay, (refer
to Section 3.1.6). For the compartment equipment and heat sources,

see Section 3.4, In the portion of the compartment labeled ''Q" in

Figure 3.1, the flow will go aft towards the center fuselage. The leakage
rate around the panels is assumed to be such that all the flow will leak
outside before reaching the center fuselage, although there may be inter-
change of flow between the two compartments. The portion of the com-
partment labeled " P in Figure 3.1 is divided into two parallel sections
separated by the nose landing gear compartment, as presented in

Figure 2.2. The cooling air in this portion will flow forward to the nose
fan compartment along the nose fan ducts,

3.5 NOSE FAN COMPARTMENT AND CAVITY

3.5.1 Nose Fan Compartment

The nose fan compartment, located forward of the cockpit front bulkhead
as presented in Figures 2.2 and 3.1, contains the nose fan, fan ducts
and fan scroll. The heat sources in the compartment are: conduction,
convection, and radiation from the fan, ducts and scroll; fan scroll seal
leakage; duct joint leakage: and external hot gases impinging on the
compartment skin. Cooling air enters the compartment from the forward
lower fuselage compartment and discharges through the nose fan air
ejectors,
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3.5.2 Nose Fan Air Ejectors

The nose fan air ejectors consist of slots cut into the nose fan inlet
louver support struts running fore and aft across the bellmouth. During
operation in the lift fan mode, the high velocity air flowing over the
struts to the nose fan creates a low static pressure at the slots, thereby
developing a differential pressure across the nose fan compartment cool-
ing system. The ejector does not operate in the conventional mode.

3.5.3 Nose Fan Cavity

The nose fan cavity extends vertically through the aircraft nose from the
fan inlet lonvers to the fan exhaust doors (thrust reverser doors) as
presented in Figure 3.1. During operation in the lift fan mode, the hot
gases exhaust from the bottom aft quadrants of the fan and impinge on

the aft cavity wall where a partial mixing of the cold and hot gas takes
place. The aft wall is made of titanium to withstand the high temperature
gases. During static operation in the conventional mode, the air

ejector is nonoperative and the only cooling air is a relatively small
amount supplied from the fuselage, which is at a slightly higher pressure.
Because there is no method provided for purging the cavity of diverter
valve leakage, the inlet louvers and thrust reverser doors should be

left open during ground runs. During conventional flight, air entering
the cavity through gaps in the inlet louvers will mix with the cool air
from the fuselage and discharge through the nose fan supply ducts to the
wing fan cavities, (see Section 3.3.3). No serious heating problems are
expected in the nose fan cavity during flight operation in the conventional
mode.

3.6  WING FAN COMPARTMENT AND CAVITIES

3.6.1 Wing Fan Compartments

The wing fan compartments in each wing are bounded by the front and
rear wing spars, the wing root, and the rib at BL 100 as shown in Fig-
ure 3.8. The compartment contains the wing fan and scroll. The heating
sources are the same as the nose fan cavity, (refer to Section 3. 5. 1).
Cooling air is supplied from the center fuselage and discharged through
the wing fan air ejectors to the wing cavity.
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3.6.2 Wing Fan Air Ejectors

The two air ejectors on each wing fan are located on the fan strut running
fore and aft on the fan centerline and across the bellmouth as presented
in Figure 3.9. During operation in the lift fan mode, the high velocity
cold air entering the wing fan creates a low static pressure at the
ejectors, therefore developing a differeniial pressure across the wing
fan compartment cooling system. The air ejectors are non-operative
during conventional operation,

3.6.3 Wing Fan Cavities

The wing fan cavities extend vertically through each wing from the inlet
doors to the exhaust louvers as presented in Figures 2.2 and 3. 9.
During operation in the lift fan mode, some recirculation of wing-fan,
tip-turbine exhaust gases may occur at high angle of attack and in ground
effect. During conventional mode operation, the characteristics of the
flow are the same as and diverter valve leakage gaser are confined as in
the nose fan cavities (see Section 3.5.3). During conventional flight,

a low external pressure is developed over the fan doors and louvers.
These low pressures create a low pressure in the cavity to aid cooling
air flow from the fuselage and nose fan cavity, (see Section 3. 3, 3).
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Figure 3.1 General Arrangement - Fuselage Section and Compartments
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4.0 REQUIREMENTS

4.1 GENERAL OBJECTIVES

The general objectives of the XV-5A cooling and structural protection
systems are to maintain aircraft component and structural temperatures
within safe limits for the following operational conditions which are
listed in order of expected increasing severity.

a. Normal operation

b. Ground checkout tests

c. Wind tunnel test

d. Prolonged flight test in and out of ground effect.

Flight test is considered to include fan and turbojet mode operation,
conversion sequences, and ground runs, where extended test durations
are required.

4.2 DESIGN CRITERIA

Design load and off~design load temperature limits for structural materi-
als are summarized in Table 4.1. Under light loadings at off-design
conditions, the design load limits may be relaxed and temperature limits
increased to those values at which no appreciable permanent loss of
strength is experienced. A number of aircraft component temperature
limits are summarized in Table 4.2 and Figure 4.1.

4.3 OPERATIONAL CRITERIA

The XV-5A operational design criteria are summarized in Table 4. 3.
Their establishment considered extended ground, wind tunnel, and flight
test operations as well as piiot training and flight iamiliarization pro-
grams. From a heating and cooling viewpoint, the criteria of Table 4.3
are expected to be more severe than actual conditions when the XV-56A
becomes operational.
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TABLE 4.1

XV-5A Afrcraft, Structural Temperature Limits

Design

Aluminum Alloys 250°F
Titanium -89 T 0 550°F
6A14V 700°F
Magnesium AZ318H24 250°F
Steel - Marage 300°F
Fiberglas Laminate - Silicone 700°F
Rubber - Silicone 450°F

TABLE 4.2

l_g Load

325°F

1000° F
1100° F

400° F

700°F

700° F

450° F

XV-5A Aircraft, Component Temperature Limits

Power Plant Temperature Limits

EGT

EGT

01l Temp.

Fuel Inlet

Casing

Starting 1 second 950°C
4 geconds 860°C

11 seconds 760°C

Steady State 100% RPM 680°C
Steady State Idle 600°C
Fluctuation +5, -10°C
Tank 177°C
43°C

Fwd. Compressor
Aft Compressor and Main Frame
Combustor

1742°F
1662°F
1382°F

1256°F
1112°F
+9, -18°F

(360° F)

110°F

260°F
760° F
850°F
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TABLE 4.2 (Continued)

Turbine Case

Diverter Valve
Diverter Valve Actuator Oil-In

X353-5B Wing Fan
Bearing
Rotor (Turbojet Mode)
Front Frame (Outboard Side)

X376 Pitch Fan
Bearings

Front Frame

Engine Component Limit

Ignition Generator

T5 Harness Disconnect

Power Pack
Tachometer-Generator Alternates
Anti-Icing Valve

Junction Box

All other engine components are designed for continuous operation when

surrounded by air at an ambient temperature of 260° F.

Electronic Components

Environment

AN/ARC 51X Radio (See Figure 4.1)

1150°F
1300°F

200°F

350°F
250°F
300°F

350°F
260°F

350°F
350°F
300°F
285°F
276°F
300°F

160°F
131°F
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5.0 AIRCRAFT ENVIRONMENT

5.1 CLIMATIC EXTREMES

Provisions for climatic extremes are incorporated in the XV-5A air-
craft to the extent specified by Reference 1 which requires that the air-
craft operate satisfactorily in a temperature environment from -40°F to
135°F. A maximum ambient temperature of 54° F has been used to es-
tablish aircraft design requirements and performance.

5.2 INDUCED ENVIRONMENT, TURBOJET MODE

5.2.1 Normal Operation

During normal operation in the turbojet mode, the external environment
of the aircraft will be essentially ambient conditions as for conventional
aircraft.

5.2.2 Thrust Spoiler Operation

During thrust spoiler operation, the lower portions of the aft fuselage
section will be exposed to turbojet exhaust gases to 1250° F. Based on
data of Figure 5.1, estimated hot gas isotherms are presented in Fig-
ure 5.2.

5.3 INDUCED ENVIRONMENT, FAN MODE

5.3.1 Background

The induced environment surrounding the XV-5A aircraft during fan
mode operation affects many aspects of the aircraft design, performance
and operation because of (1) local heating, (2) hot gas and /or particle
ingestion by propulsion and cooling systems, and (3) force and moment
self-disturbance phenomena. These effects are most evident in ground
effect, however, some are present out of ground effect also.

In spite of rather extensive literature on downwash phenomena (see

table 5.1 for definition of terms), including theoretical and experimental
studies on small and large scale components, much is lacking for under-
standing, estimating and evaluating induced flow fields for a new
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aircraft. Data of Kuhn, Newsom, and Tosti (References 2-4) give useful
insights regarding the flow fields for particular aircraft configurations
tested, and may be combined with generalized correlations to develop
quantitative estimates of some flow field characteristics. The data of
Hess (Reference 5) are useful for far field effects. Because of its im-
portance, the remainder of Section 5.3 attempts to develop some of the
nature and character of the induced environment as it affects the XV-6A .
aircraft.

5.3.2 General Characteristics

Each fan can be idealized as an area source-sink combination such that

the fan slipstream ultimately returns to its inlet, forming a closed loop

flow field symmetrical about the fan plane. Adding the effects of multi- :
ple fan slipstreams, slipstream vectoring, unequal slipstream intensi-

ties, uniform wind velocities, surface impingement, and other factors,

complicates the problem of defining the resulting flow field details, but

does not alter its basic closed loop character. In a real gas, the closed :
loop flow field does not develop unless additional forces are present,

such as those developed from ground planes or other sources.

If the XV-5A aircraft is hovering far above the ground plane, its fan

streams at first maintain their separate identity, then gradually coalesce

to form one large "aircraft-slipstream' and finally dissipate before

striking the ground. As the aircraft approaches the ground plane, the

"aircraft-slipstream' begins to 'feel bottom'' and is turned to run radi-

ally outward from its impingement center. Details of the radial flow

field for this condition can be approximated using suitable assumptions

and the generalized data of Kuhn (reference 4) as presented in Figure 5. 3.

When the aircraft is very close to the ground, the individual fan slip-

streams "'feel bottom' before coalescence, and are turned to run radi- t
ally along the ground plane from their respective impingement centers.

The radially running ground streams from the inboard or facing fan

stream quadrants meet to form an interaction zone where the streams

are deflected forward, upward, or aft in a complex manner. o

In addition to the above, the engine air and cooling air system inlets act

as sinks to further distort and modify the local aircraft flow fields. -
Considering the effects of the modulatory turning of the nose fan slip-

stream for pitch control, differential main fan intensity and velocity vec-

toring for roll and yaw control, collective vectoring for translational

flight, and winds from any direction, the extreme complexity of the local

flow field near the aircraft is evident.
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5.3.3 Interaction of Multiple Fan Streams i

When two adjacent and identical fan slipstreams impinge normal to a i
ground plane, the radially flowing ground streams encounter each other
aiung a line midway between the slipstream impingement centers and
normal to the line connecting their centers such as shown in Figure 5. 4(a). 1
Along this line, the speed (and dynamic pressure) of the encountering
streams are assumed to be equal, therefore, there should be no net
flow across the line or zone of interaction.

From the characteristic velocity decay rates of Figure 5.3, it can be
seen if one of the streams is stronger than the other, the interaction
zone will be displaced toward the weaker stream. Such effects depend on
relative fan diameters, spacing, and slipstream intensities as shown in
Figures 5.4(b), (c) and (d). Likewise, differentially vectoring the fan
streams will move their impingement centers in the direction of vector-
ing, distort their outflow pattern from circular to elliptical, and will
"skew'' the interaction zone away from the more powerful side of the out-
flow pattern as indicated by Figure 5. 4(e).

If a third fan slipstream is added to form a triangular pattern, the flow
field is materially altered and new interaction zones are formed, again
depending upon the fan spacing, diameter, and fan stream intensity.
Figures 5.5(a), (b), and (c) show representative interaction zones for
equal diameter fans having identical fan stream intensities. The effects
of different intensities, diameters, and differential vectoring are shown
in Figures 5.5(d) through 5.5(h). Unfortunately no known data exist
which permit quantitative estimates of vectoring effects. Varjious meth-
ods of approximation are being considered, however, they are not de-
vcloped to the point so that inclusion in this report can be justified.

The above procedure may be used as a first approximation to estimate
the effect of ground winds as shown in Figure 5.6. The presence of such
an interaction zone suggests the possibility of potential reingestion and
the formation of at least a partially closed loop flow system.

64B017

- Flow field studies on 2 model of the twin-prop VZ-2 (Reference 2) sug-
'>-I gest the behavior of the ground flow at the interaction zones. I the
[14 angle of attack of the streams to the interaction zone is from about 70 to

90°, flow will be turned strongly upward at angles from 45 to 90°. If the
angle of attack is less than about 70°, the upturn angle drops to 10° or
less, and the encountering streams tend to join and run more or less
parallel to each other along ground at the interaction zone.
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5.3.4 Some Quantitative Estimates of XV-5A Downwash Phenomena

During hovering operation, the XV-5A is supported by lift developed by
two 62. 5" diameter wing fans, the centers of which are approximately
two fan diameters apart and located symmetrically with respect to the
aircraft centerline (BL 0), and the 36'" diameter nose fan. The nose fan
is located forward approximately three wing fan diameters on BL~0,

For sea level standard day and 100% power conditions at a nominal col-
lective control position, the XV-5A disk loadings for the wing and nose
fans are 268 and 274 lb/ft2, respectively. Fan stream dynamic pres-
sures in theory equal one-half the disk loading, since the fan installation
is equivalent to a shrouded propeller. Current ranges of control settings
permit differential wing fan disk loadings of +12.5% by differential stag-
ger, or from 302 to 234 1b/ft2 full-up to full-down collective stick posi-
tions, respectively. The wing fan streams may be collective vectored
from approximately -5° to 50° aft and differentially vectored by as much
as +16°,

Using these data and generalized correlations of Kuhn and others, realis-
tic estimates can be made of (1) ground erosion (one type of aircraft sig-
nature), (2) particle transport rates, (3) water and dust cloud heights
(another type of aircraft signature), (4) particle impingement or terminal
velocities, (5) integrated downwash wind velocities, (6) effects on parked
ajrcraft or adjacent field stores, and other practical aspects of down-
wash phenomena which would be encountered during XV-56A or similar
aircraft operational evaluations under simulated or actual field condi~
tions. To date, analysis of the XV-5A in this regard has been limited
only to evaluation of the flow field patterns along the ground plane and be-
neath the fuselage. Figures 5.7 through 5.12 show the estimated zones
of interaction between downwash from the wing and nose fans for the air-
craft control conditions shown on Table 5-2. Effects of fan stream vec-
toring are not considered for reasons already stated. The pitch control
effects are accounted for by assuming constant fan stream dynamic
pressure, and by converting the nonintercepted fan stream area to a
conventional hydraulic diameter which replaces the fan diameter for en-
tering the general correlations of Figure 5.3. The valid region of con-
sideration for these studies is estimated to be within a one-foot thick
layer in contact with the ground plane.

As a base for comparison, Figure 5.7 shows the fan stream interaction
zones with controls in the neutral position. Figures 6.7 and 5.8 show
that for the full pitch-up control position, the nose fan-wing fan interac-
tion zone is broadened and forced aft about 24 inches from Sta. 112 to
Sta. 136 (vectoring the main fan streams aft would permit movement of
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the interaction zone still further aft). For the full pitch-down control
position (not shown), none of the nose fan stream touches the ground;
thus there is no interaction zone for the nose and wing fan streams, and
the interaction zone between the main fans lies along BL=0.

Figures 5. 8-5.10 show collective lift has a small effect on the interac-
tion zone locations. Figures 5.11 and 5.12 show the characteristic dis-
placement and distortion effect of +5% and +12. 5% differential wing fan
lift, respectively. The interaction zone line of Figure 5.12 near the
wing fans is open to question, because radial ground flow from the
weaker fan (right hand wing fan) probably has not had time to develop.

As discussed previously the major effects of fan stream vectoring are
the displacement of the impingement center, a strengthening of radial
flow in the direction of vectoring, and a weakening of radial flow in the
direction opposite to vectoring. Thus, during collective louver vector-
ing from -10° to 45°, the stagnation zone, say of Figure 5.7, should
move aft toward the wing fans and may even move under the wing. Dif-
ferential vectoring on the other hand should skew the interaction zone as
suggested in Figure 5.4(e); thus, a right yaw would tend to skew and ro-
tate the interaction zone counterclockwise, and a left yaw clockwise.

Comparison in Figure 5.13 of the far field flow according to Hess (Ref-
erence 5) with the near field flow according to Kuhn (the method followed
here) shows the agreement to be relatively good.

With these interaction zone patterns in mind, the general ground flow
characteristics can be assessed qualitatively. Figure 5.14 shows a
number of zones of interest during static hovering in ground effect. At
the interaction zones represented by A and D, a strong upwash is ex-
pected which will strike the fuselage bottom. In zones B, C, and E, the
streams are expected to be running more or less parallel to the ground
plane and to the interaction zone. In zones G and H, the streams are ex-
pected to run parallel to the ground plane and more or less radial from
their respective sources. On the bottom of the fuselage above zone A,
the flow will split, a part moving forward and the remainder aft. The
same tendency is expected in zone D, except that only lateral flow is
permitted. There is a possibility of flow attachment to the fuselage
with resultant upward turning.

In view of the above, one can visualize a number of downwash effects on
the XV-5A aircraft and its operation. For example, the lower fuselage
will be exposed to warm gases from 220° F to perhaps 400° F., Hot gases
from zone D of Figure 5.14 may be ingested by the cockpit, engine and
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cooling fans. Likewise, hot gases from zone C, and zone D, may be re-
ingested by the wing and pitch fans. Although the severity of the problem
is unknown and may lend itself to correction, it does occur and the inges-
tion of warm gases will cause decreased gas generator performance, in-
creased fan speeds with reduction in lift, and increased temperature
levels for all aircraft items requiring cooling air. Since dust and debris
can be carried easily by these intensely acting streams, problems inher-
ent to particle ingestion may also become important - problems such as
foreign object damage, maintenance, visibility, aircraft signature, etc.

The purposes of Section 5.3 have been to provide some insight to the
varied and complex nature of the XV-5A environment during fan mode
operation; to demonstrate the importance of early consideration of down-
wash phenomena in subsequent aircraft design; and to demonstrate avail-
ability of an approximate method to obtain quantitative estimates of par-
ticular and practical downwash characteristics for the XV-5A aircraft.

It is recommended that the downwash evaluation be continued beyond that
presented here, that the preliminary results be checked against experi-
mental measurements on the XV-5A aircraft, that further general ex-
perimental data be gathered on the interaction of multiple streams on
triangular spacings, and that experimental data be obtained to permit
generalized correlations for vectored fan streams.

5.3.5 Environmental Temperatures

65.3.5.1 Data Sources

As discussed in the previous sections, the local aircraft environment is
extremely varied. Local temperatures vary from the 1040° F fan tip tur-
bine exhaust gases to ambient temperature. This section brings together
in one place those applicable data gathered from various sources, but
principally from high wing VTOL transport tests and full scale XV-6A
Model tests conducted in the NASA-Ames 40' x 80' wind tunnel.

6.3.5.2 Data Correlation

Steady state gas and structural temperatures are conveniently corre-
lated by the non-dimensional temperature difference ratio:

X, =t - tamp/ s~ tamp’ = & " tamp!/(EGT -ty yp)

where t;, is the measured gas or structural temperature, tg_ 1 is the
X353-6B gas generator exhaust gas temperature otherwise known or
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referred to as EGT, and tpop is the ambient temperature unaffected by
the aircraft. The general validity of this correlation is demonstrated by
Figure 5.15 which is based on the data of Table 5.3 and Figure 5.16. In
spite of its general validity, it has some inherent discrepancies, (e.g.
external gas temperatures controlled by fan turbine exhaust gases should
be based on fan turbine exhaust gas temperature rather than t5. 1, and the
ambient temperature should be the local environmental temperature as af- ﬂ
fected by downwash phenomena rather than ""Weather Bureau'' ambient
temperatures). Again, there is always the temptation to use this corre-
lating ratio for transient data. As long as events are the same and
changes are relatively slow, the ratio may be used as a reasonable ap-
proximation, however, where conditions change rapidly (e.g. EGT as a
function of a step change in gas generator RPM) changes in the value of
Xt can be misleading, and its use can produce erroneous conclusions.

5.3.5.3 l.ower Fuselage

external gas isotherms washing the fuselage sides below the wing from
Station 150 to 350 for typical conditions of power setting, wing fan
stream vector angle and aircraft speed. The region covered includes
most of the titanium center fuselage lower access section and the main
landing gear cavity. The isotherms are based on NASA-Ames Test 177
Run 16 data and correlated test results on the high wing transport model.
Not directly applicable to the XV-5A, these data were treated as follows:

The data presented in Figures 5.17 through 5.21, represent estimates of l

1. The high wing transport data were recorrelated in terms of ver-
tical distances from the lift fan rotational plane expressed as fan
diameters (Y/D).

2, It was assumed vectoring would deflect all data points through the
same angle from their point of origin in the fan plane.

3. It was assumed for forward flight that the resultant fan stream
vector would be equal to the vector sum of vectored fan stream
and flight (or frec stream) velocities.

4, Values of fan turbine exhaust gas temperatures were taken from
Figure 5. 16 at the selected gas generator speeds.

5. Based on flap effectiveness data, it was assumed hot gases would
be pulled through the wing trailing edge slot when the flap was set
at an angle of 45 degrees.
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Comparison of Figures 5.17 through 5.21 shows maximum severity of
exposure forward of the wing fan center occurs at maximum power (100%
J85 RPM), 0 to 10° fan stream vector, with the aircraft on the ground
(tie~down test, Figure 6.19); while maximum severity aft of the wing fan
center occurs at 100% J85 RPM, fan.stream vectoring to 50°, and a
flight speed of 100 knots, Figure 5.21. Although the latter data were
taken essentially out of ground effect (h/D > 3.0), they are considered
applicable to ground runs (h/D = 1. 0) as well.

In close proximity to the ground (h/D from 1.0 to 2. 0), powered fan
model data revealed positive pressure coefficients along the fuselage
bottom when operating in the fan mode. Combined with these data, cool-
ing systemn performance analysis shows pressure differences tending to
promote external hot gas leakage into the fuselage. A similar condition
appears to exist at the wing root near the fan louvers which is relatively
independent of ground proximity. Thus, in these regions, leakage
through unsealed skin joints or access panel closures can be expected.

6.3.5.4 Landing Gear

A need for detailed knowledge of the downwash phenomena, particularly
the fan stream flow field, both out of ground effect and in the ground
impingement region, was required for design of the XV-5A landing gear.
Data was required defining the hot gas sheath location under various
combinations of collective and differential vectoring and staggering. The
lattice array of thermocouples shown in Figures 5.22 and 5.23 (for ref-
erence see also Figure 2.4) was installed on the full scale XV-5A Model
in the NASA-Ames 40' x 80' wind tunnel for Runs 11, 18, and 21 of
NASA-Ames Test 177. Selected raw data from these runs are pres~ated
in Table 6-4 and plotted in Figures 5.24 through 5.28. (Note: The

data of Table 5-4 were prepared from original data according to the pro-
cedure of Reference 6, Note 2; except that the AT correction factor of
Note 1 was not used; because by its use many results would have been
substantially below tunnel ambient temperatures and unrealistic. )

Figure 5.29 provides a convenient method for converting temperatures
measured at any given ambient temperature and 86% J85 RPM to maxi-
mum estimated temperatures at 100% J85 RPM and 100° F ambient tem-
perature. As an aid to interpreting the wind tunnel test results, esti-
mates of the fan tip turbine exhaust gas location and temperature decay
rates were made based on information from References 4 and 6-9. Fig-
ure 5.30 shows a comparison of estimated and measured tip turbine ex-
haust gas temperature decay with distance from the louvers assuming the
turbine blade width as the characteristic dimension. By comparison it
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appears the tip turbine exhaust gases cool more rapidly at first, and then
more slowly than predicted. A partial explanation may be initial inter-
mixing as the two strecams join to form a stream of larger effective
chavacteristic dimension. Figures 5.31 and 5. 32 show estimated outer
boundaries of the main wing fan streams at vector settings from -12 to
45° for aircraft heights of h/D = 1.0 and h/D = 1.7, respectively, at the
fan centerline (BL = 61) for static conditions on a calm day (no wind).
These outer boundaries act as the interface between the '"sheath' of hot
turbine gases and the cold fan stream. In forward flight or in the pres-
ence of an equivalent head wind, these estimated boundaries may be ro-
tated still further aft some incremental amount as suggested in Fig-
ure 5.33.

When more or less out of ground effect, the apparent turning angle
(based on data of Tables 5-4 through 5-6) falls about midway between the
louver angle and the resultant velocity angle (Table 5-7) obtained by vec-
tor addition of the fan stream and wind or aircraft velocities. In ground
effect (h/D = 1. 0) the apparent turning angle is much greater as one
would expect due to fan stream turning. Data of Table 5-4 at h/D=1.17
also suggests a higher turning angle with increasing aircraft or tunnel
velocities, as indicated by the low temperatures of the entire thermo-
couple lattice array at 80 knots compared to 40 knots.

The action suggested is that the fan and turbine streams act as large
cylindrical fluid columns which offer considerable blockage to the free
stream flow; and are, therefore, under certain conditions turned signif-
icantly by the free stream flow. At zero vectoring in strong ground ef-
fect (h/D = 1.0), any free stream air flow between the two wing fan
streams is largely blocked by downwash phenomena previously discussed;
however, as vectoring aft is increased, the resistance to such flow is
decreased. The flow around the fan streams, particularly out of ground
effect, may account for some of the underwing temperature distributiocns
to be discussed in the next section.

Referring to the main landing gear and its diagonal supporting structure
(see Figure 2. 3), it is evident that some parts of it will be exposed to
hot tip turbine gases in nearly all conditions of fan mode operation in or
out of ground effect. The estimated maximum exposure temperature de-
termined from Table 5-4 and Figure 5.29 is 735° F obtained by the sum-
mation of 547° F from Run 18, Point 20 of Table 5-4 and Aty = 188 from
Figure 5.29. Based on the method of prediction in Figure 5. 30, the es-
timated maximum temperature would be approximately 900°F. The
higher value of 900° F has been used as a basis for design of landing gear
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protection systems. Similar conditions are expected for the main wheel
well and its doors at louver vector settings above 15° to 20°F,

5.3.5.5 Wing and Flap Surface

Much of the discussion in the previous sections has a direct or indirect
bearing on the wings and flaps. A general survey of wing and flap sur-
face temperatures was madu during NASA-Ames Test 177 Run 16 (see
Section 9. 6. 6) using Pyrodyne Template indicators. The results showed
considerable heating even with the aircraft at an h/D = 2.2 and at tunnel
speeds from 30 to 60 knots. The environments of the lower wing surface
at the rear spar, and the flap surfaces were investigated for several
runs by the series of thermocouples presented in Figure 5.34. As an
aid to interpreting and assessing applicability of the test results, recall
that during ground tie-down and wind tunnel tests almost any combination
of vectoring, aircraft velocity, and power setting can be established.

On the other hand, in fan mode flight the range of operating conditions is
relatively restricted as indicated by the trimmed flight corridor of Fig-
ure 5.35. However even in this corridor, by a combination of power
settings and angles of attack, a substantial range of vector angles is
permitted at a given trimmed flight velocity. During sustained fan mode
flight and generally during fan mode accelerations to conventional mode
transition, the aircraft controls must be within the typical corridor as
indicated. For the reverse operation (return to fan mode from conven-
tional mode flight), trimmed flight conditions are not required, and un-
trimmed flight conditions may be maintained, until actual VTOL landing
procedures are initiated. Of course, fan mode flight in the untrimmed
condition is inherently transitory and of relatively short duration.

There are a number of possible mechanisms which can take part in es-
tablishing high temperature environments over the wing and flap
surfaces:

(1) direct impingement due to lateral spillage from the louver tips
(this should increase with increasing stagger),

(2) direct impingement due to partial reverse vectoring of the tur-
bine exhaust gases when they strike the exit louvers as suggested
by sketches (A) and (B) of Figure 5. 36 (a form of downwash
phenomena),

(3) flap action, particularly at high louver angle settings,
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1) upwash from bencath the fuselage in ground effect at low louver
angles.
(5) shearing action and eddy formation due to relative wind veloci-

ties (aircraft or tunnel velocities) normal to and around the
cylindrical fan downwash,

(6) attachment of turbine exhaust gases to the fuselage walls followed
by subsequent detachment at high louver angles,

7) at high angles of attack there is some evidence of a stagnation
region developing in the fan stream (somewhat analagous to that
experienced when the fan stream strikes the ground plane) so that
some of the turbine exhaust gases are split off the main stream to
flow forward along the lower wing surface. around the leading
edge, and across the upper wing surface to be drawn into the wing
fan,

(8) development of general recirculation patterns during static fan
mode operation in ground effect. This effect can be affected
strongly by prevailing winds.

The first seven items are applicable to the lower wing and flap surfaces,
while items 3, 7, and 8 are applicable to the upper wing and flap sur-
faces. It is doubtful that any single mechanism accounts for the high
temperatures obscrved. More likely various and different combinations
of these and/or other mechanisms become cffective as the aircraft
moves through its wide range of possible operating conditions of power
setting, angle of attack, aircraft or tunnel velocity. altitude, pitch con-
trol fan modulations, and wing fan louver vector and/or stagger angles
including both collective and differential settings.

Upper Wing Surface Environment

Experimental data from NASA-Ames Test 177 Run 16 (see Section 9. 6. 6)
shows upper surface temperatures to 250°F. Adjustment to 100% power
and hot day conditions indicates a maximum environmental temperature
of 340°F.

Upper Flap Surface Environment

Data of Run 16 also shows upper flap surface environmental temperatures
at the hinge line to be at least 250°F, and adjusted as above, a maximum
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of 340°F. Assuming hot gas flow through the flap gap, the flap at the
wing root would be exposed to the environments of Figures 5.17 through
5.21.

Wing Leading Edge Environment

Same as the upper wing surface environment.

Lower Wing and Flap Surface Environment

Data for this region are more complete. Selected data from NASA-
Ames Test 177 (see Table 5.8 and Section 9. 6. 5), are presented in
Figures 5. 37 through 5. 82 which show the effects of aircraft height h/D,
fan vector angle setting By, aircraft velocity Vp, thrust reverser posi-
tion R, and aircraft angle of attack a on the lower wing and flap surface
environmental temperatures. Figure 5. 57 presents a time-temperature
profile of the lower surface environment during tie-down ramp tests at
power settings of 95% J85 RPM (See Run 56, section 9.6.6). Examina-
tion of Figure 5.57 suggests that 1.5 to 2.0 minutes are required to es-
tablish stable surface environmental temperatures after diverting from
conventional to fan mode. In comparison with Figures 5. 43 through
5.54, the data of Figure 5.57 indicates reduced environmental tempera-
tures at the higher power settings, although the marked reductions may
be due in part to relative velocity effects. Figures 5.61 through 5.72
show various cross-plots of data. Superimposed on these plots are esti-
mated operating lines for 86% and 100% power operation, based on the
trimmed flight conditions (8y vs Vp) of Figure 5.36. The operating lines
were used to develop the environmental isotherms of Figures 5. 83
through 5. 88 which are representative estimates for fan mode operation
out of ground effect.

For tie-down tests and for lift-off conditions, the data of Figure 5. 57
apply directly. For static hovering out of ground effect, it is estimated
the lower wing and flap surface environment will approximate 200° F
based on Figures 5.57, 5.59 and 5.60. Figures 5.59 and 5. 60 show a
general decrease of environmental temperature with increasing aircraft
height (h/D) as one might expect. The dashed operating line data of Fig-
ures 5.61 through 5.72 were cross-plotted in Figures 5.73 through 5. 82
to yield approximate distributions and trends. A linear interpretation
was applied to the data at a given station, (e.g. Figures 5.73, 5.74 and
5.75). The station distribution at a given butt line is open to interpreta-
tion and depends upon the action aseumed to be taking place at the flap.
Two opposing assumptions can be made: (1) hot gases are passing up-
ward through the flap gap, or (2) relatively cool gases are being drawn




downward through the gap. If the former assumption is made, the data

points can be connected as shown by the Vp = 40 knot line of Figure 5.76.

If the latter assumption is made, a low temperature trough exists be- 1

' - tween Stations 302 and 307 which represent the approximate flat slot

| width. In this case the data is interpreted as shown by Figure 5.76.

‘ Similar treatment is shown in Figures 5. 77, 5. 81 and 5.82. In Figures
5. 81 and 5. 82, gases are assumed to be passing upward through the gap

l at Vp = 100 knots and being drawn downward through the gap for aircraft
speeds V, = 80 or below. Which of these two flap actions occurs can be

i determined only by test. The assumption of an upward flow is more con-

servative and leads to underwing isotherms similar to those of Figures

5.86 and 5.87. The assumption of a downward flow leads to underwing

isotherms similar to those of Figures 5. 83 through 5.85. As mentioned

previously, the upward flow (natural flap action) concept was adopted and

used to determine insulation requirements. Its use required insulation

of the fuselage at the wing root (see Figure 6.4) and the aft fairing (see

| Figure 6.5). Also, it required replacement of the aluminum flap with

titanium inboard of BL 61.
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Term
Vector

Collective
Vector

Differential
Vector

Stagger

Collective
Stagger

Differential
Stagger

Thrust
Reverse

Thrust
Spoiler

TABLE 5-1
Definition of Terms

Definition
Deflection of fan stream by means of exit louvers

Both wing fan streams are vectored through the
same angle

The separate fan streams are vectored in opposite
directions from the collective vector position.

(Note: differential vectoring is superimposed on the
collective vector position. Generally individual fan
streams are vectored through the same angle except
where limited by stops. )

Odd numbered and even numbered louvers are
moved toward the other to '"pinch" the flow as a
form of area control to vary the fan lift.

Both wing fan streams are "pinched" the same
amount.

The separate fan streams are differentially "pinched"
from the collective stagger position.

This term is reserved for control of nose fan lift.
Curvelinear thrust reverser doors are designed to
intercept equal segments of the nose fan stream and
to deflect them outward. The amount of thrust re-
versal depends upon the degree of fan stream inter-
ception. Full, or maximum, thrust reversal oc-
curs with complete interception of the nose fan
stream.

This term is reserved for the turbojet mode exhaust
gases. The exhaust gases are deflected symmet-
rically outward by turning vanes which are inserted
into the turbojet exhaust.
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Term
Downwash

Phenomena

Downwash

Interaction
Zone

Ground Plane

Upwash

Ground Flow

TABLE 5-1 (Continued)
Definition

A general term relating to any action or result that
can be traced back to flow fields developed around
the aircraft when operating in the fan mode.

Refers to the fan stream flow path from the time it
leaves the fan. In ground effect it includes impinge-
ment on the ground, fan stream turning, and the
radial outflow along the ground from the effective
impingement center.

That region between fan streams where opposing
ground running streams encounter each other. It

is assumed no net flow crosses this region.

Refers to a relatively thin layer within one to one
and one-half feet of the ground surface.

Generally vertically upward flow.

Flow parallel to and along the ground plane.

TABLE 5-2

Aircraft Operating Conditions* Used For Estimating XV-5A Downwash

Interaction Zone Locations

Control Positions T
Stagnation

Pitch Collective Differential Lift Point
Figure Control Lift Left Fan Right Fan BL STA.
5.7 Neutral Neutral None 0 112
5.8 Full Up Neutral None 0 136
5.9 Full Up Full Down None 0 140
5.10 Full Up Full Up None 0 134
5.11 Full Up Neutral +5% -5% 6 136

5.12  Full Up

Neutral +12.5% -12.5% 16 135

*ARDC Standard Day, Sea Level 100% J85 RPM
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TABLE 5-3

Correlation of Measured Temperature Data ° F
Reference Data: NASA-Ames Run 61 Test 177

% J85 NFL

Rdg. RPM RPM (Meas.) (Fig. 5-4) 6 16 17 18 19 20 21 AMB

t

5.1

t5. 1

Thermocouples

o W e

78
86
94
94

1430
1700
2320
23560

968
968
1112
1112

850
950
1140
1140

228 246 214 294 56 108 216
248 268 224 328 62 120 236
262 296 250 358 60 130 258
248 266 218 374 100 142 258

46
46
46
46
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TABLE 5-4 A
Selected Data for Landing Gear Environ

Vp to Np NrL NfRr 6F R By
Run Point Knots °F RPM RPM RPM h/D Degrees Degrees Degrees 1 2
11 14 40 80 0 1700 1720 1.7 45 = -12 386 3¢ 4
13 40 78 0 1750 1750 1.7 45 - 0 262 3¢
12 40 77 0 1700 1700 1.7 45 - 15 332 2¢
F 11 40 76 0 1710 1710 1.7 45 - 30 210 21
2 40 66 0 1710 1700 1.7 45 - 35 66 1¢
9 40 74 0 1720 1690 1.7 45 - 40 90 ¢
#’ 10 40 75 0 1720 1740 1.7 45 - 50 76 1 ]
16 80 82 0 1720 1700 1.7 45 - 35 80 ¢ 1
23 0 1720 1700 1.7 45 - 40 80 ¢ ]
24 0 1750 1730 1.7 45 - 50 82 ¢
18 25 20 85 2350 1680 1730 1.0 45 0 20 130 4]
2 30 63 2400 1700 1710 1.0 45 0 20 103 3"
9 40 76 2400 1700 1690 1.0 45 0 20 132 4.
17 60 82 2400 1700 1680 1.0 45 0 20 132 -
1 30 61 2400 1710 1690 1.0 45 0 0 98 41
9 40 76 2400 1700 1690 1.0 45 0 20 132 4
10 40 78 2400 1700 1710 1.0 45 30 20 136 &
11 40 78 2375 1710 1700 1.0 45 45 20 133 3
13 40 79 2400 1690 1670 1.0 45 60 20 140 4
12 40 79 2400 1700 1680 1.0 45 70 20 162 4
17 60 82 2400 1700 1680 1.0 45 0 20 132 4
18 60 83 2400 1700 1670 1.0 45 30 20 138 4
19 60 84 2400 1710 1680 1.0 45 45 20 150 4
21 60 84 2400 1700 1690 1.0 45 60 20 178 4
20 60 84 2400 1700 1700 1.0 45 70 20 166 4
21 1 30 76 2400 1700 .1690 2.2 45 60 15 328 3
10 40 87 2400 1690 1680 2.2 45 60 22 138 1
17 60 91 0 1700 1700 2.2 45 60 0 88
*See Figure 5.22 for thermocouple locations and identification.




TABLE 5-4
ding Gear Environmental Temperature Study

Gas Temperature Thermocouples ° F*

L By (EGT);, (EGT)R

Degrees 1 2 3 4 5 6 7 8 9 10 11 12 13 °F °F
:ﬁ -12 386 394 294 302 352 272 134 282 242 142 242 230 - 1076 1094
0 262 384 358 178 258 534 118 110 252 100 102 198 - 968 1040

15 332 282 338 244 222 176 158 92 92 104 96 92 = 968 1004
30 210 272 330 140 178 228 258 170 86 140 188 184 - 968 1004
35 66 150 244 84 84 92 196 260 132 76 74 112 = 968 968
40 90 80 140 82 80 76 186 78 190 74 7 74 - 968 1004
50 76 14 80 74 72 72 178 74 80 72 72 T2 - 968 1004
35 80 80 82 80 80 80 80 80 8 80 80 8 - 1040 1040
40 80 80 80 8 80 8 8 80 8 8 8 8 - 932 1004
50 82 81 81 102 81 81 81 81 81 81 108 81 = 932 1004
20 130 412 542 221 150 210 118 100 376 141 126 113 140 950 932
20 103 376 474 200 141 200 90 89 330 96 90 84 98 932 932
20 132 418 500 173 160 232 122 100 364 92 90 91 92 932 932
20 132 436 540 343 174 306 185 102 344 100 100 100 104 932 932

0 98 400 302 90 2068 394 91 105 184 94 85 168 91 932 932

20 132 418 500 173 160 232 122 100 364 92 90 91 92 932 932
20 135 373 517 275 170 218 140 100 353 96 97 96 94 932 932
20 133 388 526 222 164 230 120 102 340 107 105 99 106 932 932
20 140 433 518 198 186 245 112 112 352 112 108 106 114 932 932
20 162 428 542 247 213 262 108 113 358 107 106 105 107 932 932
20 132 436 540 343 174 306 185 102 344 100 100 100 104 932 932
20 138 440 533 293 158 302 124 106 340 114 104 106 114 932 932
20 150 456 552 217 198 270 124 118 357 130 116 115 134 932 932
20 178 484 538 341 240 293 120 119 352 116 112 113 126 932 932
20 166 464 547 333 212 289 110 114 352 110 106 106 122 932 932
15 328 354 310 - S = - - - - - - - 932 932
22 138 152 234 = - = - - - - - - - 932 932

0 88 88 88 = = C - - - - - - - 932 932
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TABLE 5-5

Angle from Fan Turbine Exhaust Outlet to Thermocouples of Main
Landing Gear Lattice

Plane Through BL = 31

FORWARD TURBINE AFT TURBINE

h/D TC1 2 3 4 5 6 1 2 3 4 5 6
1.0 50 64 170 38 48 b6 -5 29 b1 -4 17 34
1.7 27 36 43 21 29 36 -2 11 23 -2 8 18
2.2 19 26 33 16 22 28 -1 7 16 -1 6 13

Plane Through BL = 51

S Pe— —— ~ ~' — ~ _

FORWARD TURBINE AFT TURBINE

h/D TCT? 8 9 10 11 12 ( 8 9 10 11 12
1.0 66 70 74 48 55 59 -38 -8 27 -23 -4 15
1.7 36 43 49 29 36 42 -15 -2 10 -12 -1 17
2.2 26 32 38 22 28 33 -11 -2 6 -9 -1 b6

M =l 64B017
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TABLE 5-7
Resultant Vector Angle Vs Aircraft Velocity* and Louver Angle (By)

By Vp=0 10 20 30 40 60 80 100 Knots

. -15 -15 -10.2 -5.3 -.3 4.7 14.4 23.3 31.2

s -10 -10 -5.2 -.3 4.6 9.5 18.7 27.¢ 34.3

- 0 0 4.8 9.6 14.2 18.7 26.9 34.0 40.2

3 10 10 14.7 19.2 23.4 27.5 34,6 40.8 45.9

E 20 20 24.4 28.5 32.4 35.9 42.1 417.3 51.6

i 30 30 34.0 37.6 41.0 44.1 49.3 53.6 57.2

: 40 40 43.5 46.7 49.5 52.0 56.3 59.9 62.7
45 45 48.2 51.1 53.6 55.9 59.8 62.9 65.5

-

e ¥

()

WN &
BN EE 64B017

—RY

4

T ———— T
Al

*Assumed Fan Stream Speed

200 ft/sec at an angle of By
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TABLE 5-8

Under Wing and Flap Environment: Temperature Data Sources
(See Ames Test Data Section 9.6.)

Figure
No. Run Vp W/D a By Np Nr tamB 6p R Time

5.37 11 30 1.7 0 ~ 0 1700 60 45 - -
5.38 40 0o -
5.39 40 ~ 35
5.40 60 0o ~
65.41 80 0o ~
5.42 80 ~ 35

5.43 18 30 1.0 0 20 2400 1700 60 45 ~

5.44 40 ~
5.45 60 =
5.46 ~ 0 0
5.47 30 ~ 60
5.48 40 ~ ‘ 60
5.49 60 ~

6,60 41 30 1.0 0 ~ 2400 1700 60 45 60

5.51 60 ~
5,62 19 30 ~ 20 1800 1400 60 45 45
5.53 40 ~ 32 1600 1200 60
5.54 50 ~ 45

5.66 16 30 2.2 0 0 2400 1700 60 45 ~

5. 56 ~ 0 45

5.57 66 0 1.0 0 5 4000 2400 0 &)

6,58 Iso-
therms
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Figure 5.24(a) Effect of Fan Stream Vector on Landing Gear Environmental
Temperature - TC's 1, 2, and 3
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Figure 5.24(b) Effect of Fan Stream Vector on Landing Gear Environmental
Temperature - TC's 4, 5, and 6
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Effect of Fan Stream Vector on Landing Gear Environmental
Temperature - TC's 10, 11, and 12
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Effect of Aircraft Velocity on Landing Gear Environmental

Temperatures
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Figure 5. 27

Effect of Pitch Control Thrust Reverser Door Position on Landing
Gear Environmental Temperatures
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Lower Wing Environment vs Louver Angle and Aircraft Velocity:
BL 32, Sta. 296, h/D = 1.7, 86% J85 RPM




Figure 5.62 Lower Wing Environment va Louver Angle and Aircraft Velocity:
BL 46, Sta. 296, h/D = 1.7, 86% J85 RPM
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Figure 5.63 Lower Flap Environment vs Louver Angle and Aircraft Velocity:
BL 32, Sta. 310, h/D = 1.7, 86% J85 RPM
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Figure 5.64 Lower Flap Environment vs Louver Angle and Aircraft Velocity:
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Lower Wing Environment vs Louver Angle and Aircraft Velocity:
BL 32, Sta. 296, h/D = 2.2, 86% RPM
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Lower Wing Environment vs Louver Angle and Aircraft Velocity:
BL 46, Sta. 296, h/D = 2.2, 86% J85 RPM
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Lower Flap Environment vs Louver Angle and Aircraft Velocity:
BL 46, Sta. 310, h/D = 2.2, 86% J85 RPM
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Figure 5.72

Lower Flap Environment va Louver Angle and Aircraft Velocity:
BL 46, Sta. 319, h/D = 2.2, 86% J85 RPM
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Spanwise Distribution of Estimated Trimmed Flight Lower Flap
Environment vs Aircraft Velocity: Sta. 310, 100% J85 RPM,
h/D= 1.7
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Figure 5.79

Spanwise Distribution of Estimated Trimmed Flight Lower Flap
Environment vs Aircraft Velocity: Sta. 310, 100% J85 RPM,
h/D= 2.2
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Figure 5. 80

Spanwise Distribution of Estimated Trimmed Flight Lower Flap
Environment vs Aircraft Velocity: Sta. 319, 100% J85 RPM,
h/D = 2.2
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6.0 STRUCTURAL PROTECTION SYSTEMS

6.1 BACKGROUND

In general, the forward and aft fuselage sections and the wings of the
XV-5A aircraft are of conventional construction consisting of aluminum
ribs, longerons and frames covered and in direct contact with lightweight
metal skins including magnesium, magensium~-thorium, aluminum, and
titanium alloys, as shown in Figure 2.3. The forward and aft fuselage
sections are tied together structurally by a tubular maraging steel
spaceframe, As discussed in Section 5.3.5, a number of localized
regions of the aircraft surfaces are exposed to relatively severe thermal
environments, induced during fan mode and thrust spoiler operation., As
suggested in Section 4. 1, the seriousness of heating problems arising
from such exposures depends upon the nature of aircraft operation,
duration of exposure, temperature level of the induced environment and
physical properties of the materials involved.

Effective use of the NASA-Ames 40' x 80' wind tunnel requires an aircraft
operational capability of at least thirty minutes. Estimated flight test
duration requirements of approximate twenty minutes in the fan mode

are shown in Table 4~2, It is expected pilot training and familiarization
will invoive aircraft operation approaching the conditions of Table 4-2.

No time requirements were established for the installed systems func-
tional testing (ground tiedown tests) because of the inherently greater
flexibility and control of test procedures. ''Normal operation" is taken

to mean aircraft operation during a typical missjon after the pilot is
thoroughly familiar with aircraft capabilities and handling qualities.

Material properties require consideration from two viewpoints; (1)
strength level vs temperature, and (2) permanent loss of strength due to
accumulated soak time. While skin materials selected for the aircraft
frequently could withstand the severe thermal environments for the
required duration of exposure, the aluminum supporting ribs, frames,
and longerons could not withstand the heating without undue loss of
strength unless they were protected by some form of insulation or were
replaced with higher temperature-strength materials. Overall con-
siderations favored protection by insulation.
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Aircraft construction precluded internal insulation of the aluminum ribs,
frames and longerons without major changes; therefore, external insula-
tion systems were investigated. Aerodynamic requirements dictated an
insulation system with minimum thickness and maxirnum thermal per-
formance - inherent characteristics of Johns-Manville Min K type
insulation.

Protection of the Min K insulation against intense scrubbing action of hot
gases was accomplished using epoxy-impregnated fiber glass, elastomeric
coatings such as the 3M Company EC1935, or by metal cover. The
feasibility of these protection systems has been demonstrated by data in
References 10 and 11 for application to aircraft designed for Mach 3.0

to 4.4 capabilities. Installation and production techniques favored
general use of fiber glass covers with the edges retained by metal edging.
For the small region at the upper-aft, pitch-fan, thrust-reverser door
closure, the insulation was enclosed in stainless steel foil.

Thickness requirements were estimated by the procedures of Section
9.5 accounting for the estimated thermal environments of Section 5. 0,
and the exposure times of Table 4-2, Performance of the selected
insulation system was checked for several representative aircraft
missions made up of segments from Table 4-2, Cool-down time must be
considered in establishing flight conditions if advantage has been taken
of the higher allowable temperature limits of Table 4-1 before applying
full design loads. The following sections consider local structural
protection systems in greater detail.,

6.2 UPPER CLOSURE LONGERON, NOSE FAN THRUST
REVERSER DOOR

During full nose control fan reverse thrust conditions (full pitch down)
experimental data indicated the longeron forming the upper closure of
the nose fan thrust reverser door will be exposed to 700° F gases. This
condition, while transitory during fan mode flight, may persist for
relatively long periods during ground and wind tunnel testing. Pre-
liminary evaluations led to selection of 0, 5" thick foil-enclosed, Johns-
Manville Min K insulation installed as shown in Figure 6.1. Steady
state calculations, without allowance for contact resistance between the
foil and longeron, shows the maximum longeron temperature to be 244° F
compared to the 2560° F allowable limit at design load conditions (see
Section 9. 6.1). Sealing of the insulation assembly to the airframe
structure was recommended to prevent hot gas blow-by.
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6.3 AFT FUSELAGE, THRUST SPOILER REGION

During thrust spoiler use, prior to conversion from turbojet to fan mode,
spillage and deflection of the turbojet exhaust gases are expected to
produce the estimated environment of Figure 5. 2 (see Section 5.2). The
maximum duration of operation expected in this condition is from 1,5 to
2. 0 minutes - with Table 4-2 calling out the latter. The critical member
is the aluminum longeron at approximately WL 110, The estimated gas
temperature along the longeron is 550° F from Figure 5.2. Based on

the calculation method of Section 9, 5.2, a series of time-temperature
profiles were prepared for the 0. 025" titanium skin protected by 1/8"
thick Johns-Manville Min K 518 insulation which was exposed to high
velocity gases at temperatures from 600° F to 1200° F for a period of 2
minutes. Maximum temperatures so calculated are presented in Figure
6. 2. Slight extrapolation shows a maximum titanium temperature of
280° F compared to the design limit of 250° F. Considerir.g contact
resistance between the skin and longeron, the high thermal conductivity
of the longeron, the silicone fiber glass insulation cover, and the plus
tolerance on operational time and insulation thickness, a nominal 1/8"
Min K insulation system is judged satisfactory. To prevent excessive
heat input by conduction to the longeron from the titanium skin and
frames, the insulation is extended approximately 3 inches below the
longeron. The area protected by the insulation pad, (see Figure 6. 3)
generally followed an estimated 250° F isotherm; however, it was not
extended beyond Sta, 463 in the belief that cold gas inflow would shorten
the 2560° F isotherm at the higher aircraft velocities during thrust spoiler
operation,

6.4 UNDERWING INSULATION, LOWER FUSELAGE AND
WING SURFACES

In fan mode operation, the underwing thermal environment is expected to
be quite severe and of rather long duration (see Sections 6. 3. 6.3 and
5.3.5.5 and Table 4-2). Two general areas are considered; the fuselage
at the wing root, and the inboard lower wing surfaces. The aluminum
wing spars are of primary concern for the wing insulation; and the
aluminum longerons at the wing root are of primary concern for the
fuselage insulation.

As stated in Section 5. 3. 5.5, the conservative assumption of hot gas flow
upward through the flap gap and the environmental isotherms of Figures
5. 21 and 5,87 were used to establish underwing insulation requirements.
The Figure 5. 21 environment established the fuselage insulation system
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of Figure 6. 4 and the aft fairing insulation system for Figure 6.5. The
Figure 5.87 environment established the aft lower inboard panel and spar
cap insulation system of Figure 6.5. Data from NASA-Ames Test 177
Run 56 at 8y,=0°; visual observation of scorrled paint on the wing leading
edge, and the possibility of forward hot gas flow at high angles of attack,
led to the insulation of the lower forward inboard wing panels, spar cap
and a portion of the lower wing leading edge.

In order to establish the required insulation for these areas, a series of
temperature-time profiles for both aluminum and titanium skins pro-
tected by varying thicknesses of insulation and exposed to gas tempera-~
tures for 400 to 1000° F were prepared using the method of Section
9,5,2. These data and cross plots are presented in Figures 9. 119
through 9.128. Based on these estimates, insulation system require-
ments were determined as shown in Figures 6.4 through 6.6. The
insulation system thermal performance was evaluated for representative
missions of Table 6-1 based on Table 4-2 segments with the results
shown in Figures 6.7 through 6. 10. These are based on iusulation
thickness only, with no allowance taken for the fiberglass cover, contact
resistance between aluminum ribs, frames or longerons and the skin,
over tolerance on insulation thickness, etc. Advantage is taken of the
Table 4-1 upper temperature limit of 325° F for aluminum because during
fan mode operations requiring extended duration, material properties
are adequate for the low actual loads involved. For missions where
maximum conventional flight loads are to be imposed following fan mode
flight, the fah mode portion must be limited at the time to reach 250° F
because the insulation prevents rapid cooling. As shown by the data of
Figures 6.7 through 6. 10, the operational criteria of Table 4-2 are met
except possibly for Mission 4 in which case wing ribs might overheat.
However, to fly 20 mir ites at 100% X353-5B RPM, approximately 1600
lbs. of fuel are required in addition to ground checkout and fuel reserves.
While such a mission is feasible, it is more likely such a mission would
consist of incremental velocities as represented by the case of Figure
6.9. For this condition heating problems would be less severe and the
insulation performance would be more than satisfactory.
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