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ABSTRACT 

The finite temperature generalization of the Quinn, 

Adler theory for the decay rate of electronic excitations in 

a normal Fermion system is presented.    The theory is 

developed in terms of quasi-particle parameters and without 

restriction to a particular approximation,   such as RPA,  for 

the dielectric response of the system.     The relations derived 

are pertinent to the lifetime problem in real solids; in par- 

ticular,  local field effects are rigorously taken into account. 
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Finite Temperature Theory for the Attenuation of Quasi-Particle 

Excitations in Real Metals 

INTRODUCTION 

Several years ago Adler    presented a theory for the attenuation 

rate of hot electrons in metals.    The theory was developed along lines 
2 3 

similar to the earlier work of Quinn and Ferrell,     and Quinn    concerning 

the properties of an interacting electron gas.    All of the above calculations 

were carried out for the case of zero temperature.    As far as we know, 

the corresponding extension of the theory to finite temperature has not 

been given in a general context.    It is the purpose of this note to simply 

provide such a generalization,  in a form relevant for band electrons in 

solids.    Let us comment at once that,  for the case of truly hot electrons, 

finite temperature corrections cannot be very important.    It is only for 

the case of low-lying excitations that these effects need be taken into 

account.    Furthermore,  because we are concerned only with low energy 

excitations,  we may consistently formulate the theory in terms of quasi- 

particle energies. 

For the most part,   the results presented in this note are formal. 

For the case of free electrons at sufficiently low temperature,   it is 
4 

known    that the decay 

have exactly the form 

4 , 
known    that the decay rate for low-lying quasi-particle excitations must 

l£(c) = C^[(e-n)2 +Tr2(kBT)2]    . 

A brief discussion of this result,   within the framework of a simple RPA 

treatment is presented in Appendix A.    Qualitatively,   one expects to find 

a similar result for the case of normal simple metals.    In particular,   the 



results for low energy excitations obtained by Adler,   barring the more 

pathological cases,   e.g.,  a cylindrical Fermi surface,   which he has 

discussed,   may,   with suitable assumptions,  be shown to generalize at 

finite temperature in a manner analogous to that presented in Appendix A. 

Finally,   in real solids,   one expects the damping due to electron- 

phonon interaction to be comparable in magnitude to the effects we are 

considering here.    This problem may,  however,  be handled in a parallel 

manner.    A rather thorough discussion of the electron-phonon interaction 

at finite temperature,  based on a model of free electrons interacting with 

longitudinal acoustic phonons,   may be found in the book by Abrikosov,   et 

al.5 

GENERAL THEORY 

Our theoretical approach is based on the well-known finite temper 

ature perturbation theory as developed by Luttinger and Ward,     and 
7   8 

Luttinger. '        In this section we give a brief review of the relevant 

propagator formalism. 

We take the Hamiltonian to be of the standard form 

H = H    +H'     , (1) o 

with 
H    = V  e    a    a (2) 

o      L->    r    r     r 

TT' \ / I       I     '   '\ H     =—        / (rsvrs)aa    a  ,a  / 
2       LJ , , '    ' r     s    s     r 

)    v(q)      ) p(q)     /P(-q)     , a    a    a  ,a   ,   ,    (3) 
L> L, , , rr ss 2V   L, L, , , rr ss     r    s    s    r 

r s r s 
q 



where    v(q) = 4ire   /q      and   p(q)     / = (r|e |r') . 
rr 

Next we define the exact single particle propagator and polarization 

f     9'10 *•     i propagator respectively as 

g'rr,(p',B") = TrCe-^^-^TCa^O'^a^p'y}     , (4) 

P55'^^) = TTr{e"P(H^N'fi)TCPq'(p/)Hp-q{p/,)H]3     '        (5) 

where    3 ^ 3 ,   3   ^ 0 and all operators are in the Heisenberg representation, 

e.g., 

. /. 3 H - 3 H 
P3/(P)H = e       p?,e 

=  [pfq'Ka/i^V^     . (6) 
rr 

Making use of the cyclic invariance of the trace in these expressions, 

one obtains the Fourier representations 

3,(0-13") 
g    ,(P'.P")=   f )   S'   ,(»  )e * , (7) 
rr 3   Z-i    rr      L 
I ,r,>    „*» 1      V   o' , »• 4 

i - s,o'-e') 
P-zlP'.PV^n'IS.^e* , (8) 
qq 3  L-'        * q q 

where   z,  = iri(2t+l)/3    + |a,    §.  = ZTTU/3   and £  takes on all integer values. 

In perturbation theory,   S      / (z   ) is given by the sum of all electron 
rr       "V 

propagator diagrams in which a Fermion line labeled r    enters and a line 

labeled r emerges.     Likewise,  II   (§,)-•-•, is given by the  sum of all 
I qq 



—t, 

polarization diagrams in which an interaction line labeled q    enters and 

a line labeled q emerges (the external lines not being part of II   ).    Further- 

more,   S and n     satisfy their respective Dyson equations 

S'    ,(z,) = S(z.)6      , + S(Z.)7G (Z.)S'      ,(Z.)     , (9) 
rr      K, r-trr r    L   u     rr,       -l     r,r      K, 

rl 1 1 

Iqq -1 qq i-> ^ qq, 1 -C q. q 
qi 

where G is the proper self-energy function and II is the proper polarization 

function.    Now we may label the states   |r) as   |kYa) where a is a spin 
—» 

index,  Y is a band index,   and where the wavevector   k  is confined to the 

first zone.    In this reduced zone scheme,  S' and G will be diagonal in 

the wavevector index,  but will have off-diagonal elements in the band 

indices.    Likewise,   from quite general symmetry considerations,   II    and 

II have off-diagonal elements only for q1 s differing by a reciprocal lattice 

vector. 

Finally,  we may write down the very useful spectral represen- 

tations of the propagators S      /(z.) and II   (£)_,-,    which are 
rr       <, -(- qq 

A(E)     , 
'   ,(*,)= I    dE "        , (11) S 

- -I 

» B(E)--, 
n'«v?5'\[dE-^: • (12) 

These relations are obtained in the usual manner by evaluating (4) and 

(5) in the representation   |n) of exact eigenstates of H,  and then inverting 

(7) and (8) to obtain the corresponding Fourier coefficients.     The spectral 



density functions A(E)      , and B(E)--, are given in Appendix B,   alone 
rr q q b 

with their various general sum rules.    One important property of the 

spectral density functions is 

A(E)rr'*=   A(E>r'r     • (13) 

B(E)--.,* =   B(E)-.-.     , (14) 
qq q  q 

i.e. ,  the diagonal elements are real. 

ELECTRON SELF-ENERGY 

We. now proceed to calculate the electron self-energy in the 

approximation which retains only the lowest order vertex function.    In 

this approximation,  one obtains,   using the well-known graphical rules, 

G     ,(zj = G(U, +   G(2),(z.)     , (15) 
rr       -u rr rr       -C 

where G     / is a constant,  independent of z   ,  and is given by 
rr -C 

Gir' =  I, Cfr"|vU-'»')- (rs|v|s'r')] 

1 V *'  i   -i Zl'°+ 

JL  Ss's(V,e 

(16) 

P 
I' 

This term is clearly a generalization of the usual Hartree-Fock self- 

energy,  and is intimately connected with one of the sum rules satisfied 

by the.electron spectral .density function (see Appendix B).    The second 

term in Eq.   (15) is more interesting.    This term is usually associated 



with electron correlation,   and is given by 

,(2) G
rr'

(V = TY   V&V<S')£   Prs'
(^,psr/("5/) 

(17) 

qq' ss 

i y s.''.(sBi-5i'>n'^/)--/ • p    £->     s   s    -C      •{, -Cqq 

Now,  as Luttinger has discussed,  we should seek a similarity 

transformation which diagonalizes the matrix   G   6      ,  + G      ,(z„).     This 
r   rr rr      t 

is almost surely unfeasible to obtain in practice,  and perhaps even in 

principle,  i. e. ,   it is not known whether such a transformation even 

exists in general.    Therefore,  in order to obtain something tractable, 

we shall proceed by simply assuming that the off-diagonal elements of 

G (and hence also of S') may be neglected. 

Because G is real,   this term does not contribute directly to 
r 

the electronic attenuation rate,  i. e. ,  its effect is simply to modify the 

quasi-particle dispersion spectrum.    Turning to the consideration of 
(2) 

G       (z   ),  we may invoke the spectral representations of the propagators 

S' and II    and obtain 

qq s 

fdE dE/B(E')__, A(E)    i-J    ,    * TT'    5 1—T* J qq B   $   L    %   ,-E      §   ,-z   +E 

(18) 

The %   i sum in this expression is now trivially done using the 

standard prescription 



J_ V-p/e   \-    /    sum of residues of \ .  q. 
B   L    {h'~     L F(|)N(§) at poles of F(§)J        ' UV' 

8?       -1 
where N(§) = (c     -1)      is the Bose function,  and F(5) has only simple 

poles.     Using this prescription,   we have 

iy_j JL_ 
B  L   §,,-E'   S,,-z,+ 

(20) 

jr; 

f+(E) N'tE') +f"(E)N(E') 
z    - E - E' 

with N  (E   ) = N(E   ) + 1.    Having carried out the %   , sum we may now 
(2) 

continue G       (z   ) off the set of points z   .     The  (unique) continuation 

which has no essential singularity at infinity may then be written 

G(2)(z) =   ±   V    v(q)v(3')V  p      (q)p      (-q') 
r V   £-J Z-.     rs sr —* —» 

qq' 

f _,„,_,,         .,_.     f+(E)N,(E/) + f"(E)N(E/) 
J  dEdE   B(E   >SS'A«E>s  z -E -E;  
-CD 

(21) 

We note that the function defined by (21) is analytic except on the 
(2)      * (2)    * 

real z-axis.    Furthermore,  from (13) and (14),  we see G       (z)    = G       (z   ), 
r r 

i.e.,  there is a pure imaginary discontinuity across the real z-axis.    Thus, 

for z near the real axis,  we have 



G(2)(eTis) 
r 

=   ±1   v(q)v(q')^Prs(q)Psr(-q') 
qq 

fdEdE'B(E<^,A,E)    ^)N-(EVr(E)N(E') 
J qq s e  - E - E   Tis 

and hence 

qq 

(22) 

ImG(2)(eTis) 
r 

qq" s 

03 

f dEB(e-E)--., A(E) 
J q q s 

[f+(E)N'(e-E) + f~(E)N(e-E)] 

From the spectral representation of II  (§,)->-*/  ,   it is then easy to see 
* qq 

that this result may be written 

ImG(2'(eTis) 
r 

(23) 

= TImV   I     v(q)v(q')^  prs(q)pgr(-q') 

qq . 
CD 

'   dE n'(e-E-is)-.-,A(E)    [ff(E)Ny(e-E) +f'(E)N(e-E)]    . 
r« qq        s 

(24) 

The functions G   (eTis) correspond to the well-known advanced and 
r 

retarded self-energy. 



Now for £ near n,   the statistical factors in (24) constrain E to 

values near |i,  and for such values,  we assume that A(E)   =— ImS'(E-is) 

is   a sharply peaked function,  i.e. ,  we assume 
s     TT 

A(E)   *• 6[E-e   -A  (E)] 
s s     s 

Z   6(E-E   ) 
s s 

(25) 

oAs(E) 
where A is the real part of the self-energy,  Z    =    1 -—-—  

s     L oE 

-1 

E 

and E    is the  (we assume unique) quasi-partide energy given by the 
s 

solution of 

E    -e    -A(E) = 0     . (26) 
s        s        s     s 

As always,   the ultimate justification of Equation (25)  must be   the 

self-consistency of the final result. 

Using this approximation,   we obtain for the imaginary part of G 

ImGr(e T is) = =F Im ~ £    vtq')^ Z
s  Pr s^) P sr (-*') 

--/ s 
qq 

•  n'(e-E   -is)--, [f+(E   )N'(e-E   ) + f'(E   )N(e-E   )]      . (27) 
s        qq s s s s 

Now Im G   (e +is) and Im G   (c-is) are related to the damping rate for 
r r 

particle and hole propagation respectively.    In either case,  because 

these functions differ only in sign,   we shall simply assess the lifetime 

for the corresponding excitation through the relation 



1    2Z 

T        =  -~ r (E   )     , '   (28) 
r n       r     r 

with 

r   (E   ) = ImG   (E   -is) 
r     r r     r 

im^-Y  v<q) v(q')T z „p.Jq)p„(-q') V   ^     VV4/ VV4   '^     sMrsV4'Hsr 

qq ' s 

n'(E   -E   -is)—., [f+(E   )N'(E   -E   ) + f"(E   )N(E   -E   )] 
rsqq s rs srs 

(29) 

If one likes,   the above result may now be expressed in terms 

of the so-called dielectric response function.    Adler       has discussed 

this function in some detail within the R PA formalism.     Let us define 

K(e-is)^-.,   =6--..  +II(e-is)--,v(q")     , (30) 
qq        q.q qq 

and the dielectric response function K     (e -is)-»->, by the relation 
qq 

z 
—+ 

q 

v     -1 >    K     (e-is)--    K(e-is)-. -,  r 6- -,     . 
^ qqj q2q       q.q 

(31) 

Then from analytic continuation of (10),  we obtain 

II'(e-is)-.-.,v(q') = 6- -, - K_1(e-is)--/     . (32) 
qq q.q qq 

10 



Making use of this result in Eq.   (29),  we find 

r   (E   ) =Im~   Y      V      Z    p      (q) p      (-q')v(q) r     r V   i-i     L.       s   rs sr 
-*-*i   s 
qq 

K_1(E   -E   -is)-.-, [f+(E   )N'(E   -E   ) + f~(E   )N(E   -E   )] 
rsqq s rs s rs 

(33) 

This result is most simply written out explicitly in the extended 

.one scheme; one obtains 

rs(V 

= Im   V" I I      Zj_-v(q+K)M£, (k.k-q-)* M£(k*,E-q) 
q KK' 

A —« A K     (E--Er - -is)- k      k-q q + K, q + K 

[f+(E^)N'(En-E^)+f-(E^)N(ErE^)]      . (34) 

In this expression we have suppressed spin indices,  K and K    are 

reciprocal lattice vectors.    The matrix element M in (34) is given by 

M^.(k,k-5)=J d3relK'r u£(r) u£_-(r)     , (35) 
unit 
cell 

11 



where the u's are the usual periodic part of the Bloch functions, 

normalized to unity in a primitive cell. 

At zero temperature,   (34) reduces to give 

rk(V = Jm "V   I   I     Zk-q V(^ + ^ MK'(^' K_5>* MK^' ^-5) 
qKK' 

EC>EC-*>E, *   K_1(EC-ELr  — isK^    -j.tr'       ' k k-q f k      k-q q+K, q+K 

(36a) 

for the case E-. > E.  and 
k        f 

T-(E-) = - Im y£ I     Zj.^v(q+K)M£,$flUq)*M£(k,k-3) 
qKK' 

E   > Et -> E^ •   K_1(Er-E-. —is)-   *   -   *, 
f k-q k k      k-q q+K, q+K 

(36b) 

for the case E=-. < E„.    Remark that,  aside from the renormalization 
k        f 

factor Z and the appearance of quasi-particle energies in place of the 

unperturbed single-particle energies,  relation (36a) is exactly Adler's 

zero temperature result for the decay rate of a particle introduced above 

and Fermi surface.    The interpretation of (36b) is equally clear,  namely 

it represents the decay rate for a hole created below the Fermi surface. 

To conclude,  we should like to make several comments concerning 

the dielectric response function.    AsAdler has discussed,   the off- 

diagonal elements of the dielectric response function give rise to 

umklapp-local-field corrections.    Originally,  on the basis of a one-OPW 

band approximation for aluminum,  and using the RPA dielectric response, 

Adler estimated that umklapp and umklapp-local-field effects might lead 

12 



to a correction of 30% or smaller for the lifetime of low-lying excitations, 

while these effects might be quite important in the plasma production 

region.    Recently,    " however, he has retracted these estimates and now 

allows that these effects probably make a rather small correction in 

both regions.    Thus,   except perhaps for certain special cases,  it would 

seem that there is justification for ignoring corrections arising from the 

off-diagonal elements of the dielectric response function.    In this case, 

we may simply write 

K'^e-is'u-.,-   „r
q'q' , (37) qq K(q,e-is) 

where 

K(q,e-is) = 1 + v(q) n(e-is)--.      , (38) 

is the usual longitudinal dielectric constant.     Using this approximation, 

(34) reduces  to give 

rk(Ek) = vIIzk-qv^+]R)iMil(k,k-q
,)r -q 

q K 

i      + 
Im  _.,-    £   _ " —   [f   (E-.  -)N'(E-.-E-.  -)+f   (E-.  -)N(Er -E-  -)] 

K(q+K, Er> - Er*  ~* - is) k-q k        k-q k-q k       k-q 
k       k-q 

(39) 

13 
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APPENDIX A 

An Approximate Evaluation of Finite Temperature Corrections 

for a Simple Case 

We wish to give an approximate evaluation of (34) for the case of 

free interacting electrons.    We further restrict ourselves to the RPA 

dielectric response of the electron gas,  and shall simply assume that 

the quasi-particle spectrum may be approximated by the non-interacting 

dispersion law.    At zero temperature,   the result we obtain reduces to 

that quoted by Quinn. 

For the case of free electrons,   the result (34) becomes simply 

(ZTT) 

1 (A-1} 

•   v(q) Im  -rrp=> :—r v^' K(q, e-.-er  —is) 
k     k-q 

dS- de-*  - 
,3-» q       k-q Letting d q = rcr: z 1   q     k-q 

,  where dS-   is an element of surface area on 
q 

the surface   e^ -* = constant,  we obtain 
k-q 

k    k ,,   .3   J k-q k-q k      k-q 
(2TT)       O 

I 
dS-»v(q)       ImK(q, £_,-£?• -»-is) 

q          k      k-q  
(A.2) 

,       ^q'k-q'       |K(q, £-.-£-;-.-is)|2 

er* - = const.        M ' k      k-q ' 
k-q 

15 



Now for the case   £^~ M.   of low energy excitations,   the statistical 

factors in (A. 2) insure that the energy argument of the dielectric constant 

is small in the region where  the integrand is non-negligible.     Then 

using some properties of the well-known RPA dielectric constant,     wc 

have 

kk 
ImK (q,e-is)=-   (jr-T~) 3      ' (A. 3) 

|K(q,  £-is)|2-K(q,0)2-   Ql   +   -|-) , 
q 

(A. 4) 

for sufficiently small e   and q.    In the expressions above,  k    is the 
s 

inverse Thomas-Fermi screening length.    Making use of these results 

in (A. 2) we obtain 

rr(er) = 
kx  k 8TT£ 

2,   , 2 
e   kfk«,      p + 

k-q      k      k-q k-q k      k-q 

J 
£r< -< = const, 
k-q 

dS- 
q 

'   q   k-q 

1 

^ C-t) 

(A. 5) 

It may readily be seen that we are justified in using the zero temperature 

dielectric constant in this calculation. 

16 



Upon carrying out the surface integral,   we find 

e2k_       k.        k 

W -i-ur) Cir) br) 2 
Gf 

de-, _ (ec-e-j -)[f+(er -» +N(£r--eu ~)] J k-q      k      k-q k-q) k      k-q q      k     k-q k-q) k'     k-q (A. 6) 

i k    q      _k + P 

s        kg   + q        |k-P| 

I 

where    P = ( —r- £-*-*).    The remaining integration over   e~, _   is 
V  ,2      k-qy k-q 

clearly quite complicated.    On the other hand,  for   e^,~|a,   the principal 

contribution to the integral comes from the region   £-> -» ~ \i,  and for 
k-q 

such values,   the last factor in (A. 6) is slowly varying; hence we 

approximate (A. 6) as 

2 
e   k k k 2k 2k k 

with 

er s       k    + 4kr f s f 

«*£»•/d,t;«,E-,s.;>Cf+«,k.?+,«,k-c£-qn • (A-8) 

Then   I(s^) evaluates to give 

I(eg)= y [(e^-ia)2 + Tr2(kfiT)2 +...], (A. 9) 

where the terms which have been neglected vanish exponentially as T -* 0. 

17 



Our <"inal result for   e, ~ |i then becomes 

k ,  2k, 2k k 

W • 3a (?\X-T) [•»•' TT * TT^r] 
s s k    + 4k, 

s £ 

2 
In a similar manner,  by inserting a factor of — (£-• - e.-» -») into 1 ° n      k      k-q 

the integrand of (A. 1),  we may obtain an approximate expression for 
13 

the rate of energy loss      for an incident particle.    The calculation 

proceeds in complete analogy to the one above; we find 

de- ,        „   „ k,     _ , 2k, 2krk 
k ^ «-V'X^)[--V * Trfrr] dt .„ ..,-,- -g        fc- + 4k- 

s f 

•("1f)-
13   C(ern)3 +Tr2(kBT)2(ern)]     , (A. 11) 
ef 

so that again,   the lowest order finite temperature corrections are of 

order T   . 

18 



APPENDIX B 

Spectral Density Functions and Sum Rules 

Making use of relations (4) through (8),  and the definitions (11) and 

(12),   it is straightforward to obtain the spectral density functions for 

the exact one-electron,  and polarization propagators; they are,   respectively 

A(E)     , 
rr 

= CeP{E^) + l]ye-p(E^Nn-n)(n|at
/|m)<m|a   [n)6[E-(E   -E    )]      , 

L-> '   r    ' •   r' n     m 
nm 

(B. 1) 

B(E)^_, 
qq 

= [epE-  l]-ly   e"P(En^Nn-n><n|p-.f|m><m|p -|n>6[E-(E   -E    )]     . 
V Z-i q -q n     m 

(B.2) 

It may readily be verified that B(E)-»-»,   satisfies the following two sum 
qq 

rule: 

CO 

f dEB(E)—, = ±TT {e-
p(H^N-n)[p -., p-.,]} = 0     , (B. 3) 

j qq      v -q    q 

fdKEB,EU3/ = .iTr{e^<^N-n'[p,[p3,H]]} 

— (q.q   )yTr{e p^}      . 

(B.4) 

We note that the right-hand side of (B.4) vanishes unless q and q    differ 
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by a reciprocal lattice vector,  and for the case K = 0,  we obtain the 

well-known f-sum rule 

\ dEEB(E)^ =   -   q   "        . (B.5) 
J q q m 

Together  (B. 3) and (B. 5) imply the familiar result 

v{q)II'(§)---    y~   as  \% |  - -     . 
qq ^. 

In a similar manner,  one verifies the following sum rules for 

A(E)     , 
rr 

CD 

'  dEA(E)      , = 6      ,     , (B.6) 
J rr rr 

-CO 

JdEEA(E)pp,= Tr{e-B(H-'iN-n,[.r[H..i
t,]]   }     . (B.7) 

-CO • -f 

If the basis  |r) is that which diagonalizes H   ,   this last relation becomes 

CO 

dEEA(E)     , = e    6      , 
J rr r   rr 

+ >    L(rs v r s  } - (rs v s r  )] Trie K a    a   , j 
L-> i S       S 

20 



1 Z     /O 

= e6      , + Y    [(rS|v|r's')- (rs|v|s'r')]-4Ts\  (z,,)e  *     + 

r   rr        L>, '    ' •    ' 3 Z_.     s s    t 
ss i' 

= e    6     , + G(1),        , (B. 8) 
r   rr rr 

by virtue of Eq.   (16).    Combining (B. 6) and (B. 8),  we have for    | z | -• °° 

S'   ,(z)~ -6     . + 4" [e   6     , +G(1),]     . (B.9) rr z     rr 2        r   rr rr 
z 

Then because 

G     /(z)=(z-e   )6      ,- [S'(z)"1]      ,     , (B. 10) 
rr r    rr rr 

it is easy to see that 

G     / (z)   -   G     /   as  I zl    -*   <° 
rr rr •    • 
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