POLYMERIZATION STUDIES L°ADING TO HIGH STRENGTH CHEMICAL RESISTANT ELASTOMERS SERVICEABLE AT T.:MPERATURE EXTREMES

Technics REPART 68-12 CM

(SEMIANNUAL REPORT NO. 5)

by

D. I. Relyea H. P. Smith A. N. Johnson

June 1967

Contract No. DA19-129-AMC-487(N)

U. S. ARMY NATICK LABORATORIES NATICK, MASSACHUSETTS

3

UNIROYAL UNITED STATES RUBBER COMPANY RESEARCH CENTER WAYNF, NEW JERSEY 07470

> Reproduced by the CLEARINGHOUSE for federal Scientific & Technical Information Springfield Val 22151

> >

......

POLYMERIZATION STUDIES LEADING TO HIGH STRENGTH CHEMICAL RESISTANT ELASTOMERS SERVICEABLE AT TEMPERATURE EXTREMES

by D. I. Relyea H. P. Smith A. N. Johnson

June 1967

SEMIANNUAL REPORT NO. 5

for the period

December 1, 1966 - May 31, 1967

Contract No. DA19-129-AMC-487(N) Project No. IE024401A113

U. S. ARMY NATICK LABORATORIES NATICK, MASSAGHUSETTS

UNIROYAL UNITED STATES RUBBER COMPANY RESEARCH CENTER WAYNE, NEW JERSEY 07470 To un the

FOREMORD

Í

This report describes work accomplished under Contract No. DA-19-129-AMC-487(N) between the United States Rubber Company (now UNINOYAL, Inc.) and the U. S. Army Natick Laboratories. Mr. C. B. Griffis is the Project Officer. This is the fifth Semiannual Report under this contract and covers the period December 1, 1966 through May 31, 1967.

During the six-month period covered by this report, the following manhours were expended on this project:

Total direct labor	2985 manhours
Technician (Sub-professional)	<u>1470</u>
Research Scientists	1177
Senior Research Scientist	77.8

The technical effort for the past six months exceeded that required by the contract and brought the manhours total to 11940. This figure is 5% over the prorated contract requirement. We plan a 2200 menhour effort during the next six months.

SUMMARY

1. Rhodium trichloride in aqueous emulsion initiates the homopolymerization of 1,1,2-trifluorobutadiene (1) and 1,1,2-trifluoro-3-chlorobutadiene (2). Monomers 1 and 2 are also readily copolymerized with each other or individually with butadiene (4) to give rubbery polymers. The 51:49 <u>1-4</u> copolymer has a Tg of -48°C. A sample has been furnished to U. S. Army Natick Laboratories for evaluation.

2. Preliminary experiments with iridium compounds indicate they are also active catalysts for polymerization of fluorinated dienes. Both rhodium and iridium are much less active with olefins and non-conjugated dienes.

3. Other new catalyst-monomer combinations have been explored. Among those which appear promising is a cobalt octoate-initiated copolymer of 2-(trifluoro-methyl)butadiene and butadiene.

4. Monomers synthesized for use during this report period include <u>1</u>, <u>2</u>, <u>3</u>,<u>3</u>, trifluoropropene, <u>2</u>,<u>3</u>-bis(trifluoromethyl)butadiene, <u>5</u>,<u>5</u>,<u>5</u>-trifluoro-4-trifluoromethyl-1,<u>3</u>-pentadiene, and <u>1</u>,<u>1</u>,<u>2</u>,<u>2</u>-tetrafluoro-3-vinylcyclobutane</u>.

5. Adducts of sulfenyl chlorides and <u>cis</u>-polybutadiene have been prepared with the following characteristics (sulfenyl chloride addend, % saturation in adduct, and Tg): CF_3SC1 , 15%, -84°; CF_3SC1 , 30%,-44°; C_6F_5SC1 , 20%,-66°; C_6F_5SC1 , 25%, -52°; and C_6C1_5SC1 , 15%, -50°. Samples of these adducts have been furnished to U. S. Army Natick Laboratories for evaluation.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official indorsement or approval of the use of such items.

Destroy this report when no longer needed. Do not return it to the originator.

and a second and a second a se

TABLE OF CONTENTS

.

Page
FOREWORD
SUDMARY
LIST OF TABLES
INTRODUCTION
DISCUSSION
1. Introduction
2. Rhodium Salt-initiated Polymerizations of
Fluorine-contining Dienes
3. Iridium-initiated Polymerizations of
Fluorine-containing Dienes 6
4. Ziegler Catalyst-initiated Polymerizations
of Fluorine-containing Dienes 6
5. Ziegler Catalyst-initiated Polymerizations
of Fluorine-containing Olefins
6. Chemical Modification of <u>cis</u> -Polybutadiene
EXPERIMENTAL
1. Monomer Synthesis
2. Polymerizations
3. Chemical Modification of <u>cis</u> -Polybutadiene
PROPOSED WORK
BIBLICGRAPHY
TABLES

v

:

LIST OF TABLES

.

٠

;

•

Table	Title	Page
I	Survey of Homopolymerizability of Various Fluorinated	
	Monomers in Emulsion by Rhodium Chloride	18
II	Copolymerizations of Fluorinated Dienes with Butadiene or	
	Fluorinated Dienes in Emulsion with Rhodium Catalysts	19
III	Homopolymerization of Various Types of Fluorinated Monomer	
	in Emulsion with Iridium Catalysts	20
IV	Polymerizations of 2-(Trifluoromethyl) butadiene with	
	Ziegler Catalysts	21
V	Polymerizations of 5,5,5-Trifluoro-4-trifluoromethyl-1,3-	
	pentadiene with Ziegler Catalysts	22
VI	Polymerizations of 2,3-Bis(trifluoromethyl)butadiene with	
	Ziegler Catalysts	23
VII	Polymerizations of 1,1,2-Trifluoro-3-chlorobutadiene with	
	Ziegler Catalysts	24
VIII	Attempted Copolymerization of Butadiene and 1,1,2-Trifluoro-	
	butadiene. Comparison of Benzene and Methylene Chloride	
	Jsing a Cobalt Catalyst	25
IX	Attempted Copolymerization of Butadiene and 1,1,2-Trifluoro-	
	butadiene with Some Cis-Polybutadiene Catalysts	26
X	Polymerization of Fluorinated Olefins with Ziegler Catalysts	27

vi

:

:

INTRODUCTION

This is the fifth semiannual report of research on the polymerization of fluoroinated monomers to form random or stereospecific high polymers. This work, sponsored by the U. S. Army Natick Laboratories, has the objective of preparing new elastomeric materials which will be both oil- and chemical-resistant and have useful rubbery propertie; over a wide range of temperatures such as -65° to +300°C.

During the period coveredby this report we have explosed the use of rhodiumcontaining catalysts as initiators of polymerization of fluorinated dienes and have continued to examine transition metal anionic coordination catalysts for both fluorinated olefins and fluorinated dienes. Additional samples of the adducts of sulfenyl chlorides to <u>cis</u>-polybutadiene have been prepared for continued evaluation at the U. S. Army Natick Laboratories.

DISCUSSION

1. Introduction

In our search for novel fluorine-containing polymers with extremetemperature utility and oil- or chemical-resistance we have continued to explore combinations of polymerization catalysts and fluorine-containing monomers. During the period covered by this report the following types of polymerization systems have been studied:

Monomar	Catalyst	Reaction Medium
Fluorinated olefin, acet	ylene	
or diene	Rhodium salts	Emulsion
Fluorinated olefin, acet	ylene	
or diene	Iridium salt or complex	Emulsion
Fluorinated diene and/or	olefin Ziegler catalyst, e.g.	Hydrocarbon
	$TiI_4 + Ali - Bu_3$	

The principal studies have been made with diene monomers because of their greater reactivity relative to nonconjugated dienes or monomers containing only one double bond. The use of the noble metal catalysts, e.g. rhodium chloride, has led to the preparation of high molecular weight diene copolymers in good yield. Monomer syntheses where required and results of polymerization experiments are discussed below for each of the polymerization systems.

In addition, some further result: are reported for the chemical modification of the readily available polymer <u>cis</u>-polybutadiene to provide elastomers having improved chemical and physical properties.

<u>Rhodium Salt-initiated Emulsion Polymerization of Fluorine-containing Dienes</u> <u>Polymerization</u>

The UNIROYAL Corporate Research Center discovered the unique ability of rhodium salts to cause the stereospecific <u>trans</u> polymerization of butadiene^{1,2}. We have now used rhodium chloride as catalyst to survey the reactivity of a range of fluorinated monomers in this type of controlled structure polymerization. Table I shows that the conjugated dienes i, 1, 2-tri-

- 2 -

fluorobutadiene (1), 1,1,2-trifluoro-3-chlorobutadiene (2) and 5,5,5-trifluoro-4-trifluoromethylpentadiene-1,3 (3) are readily polymerized by rhodium chloride

$$CF_2 = CF - CH = CH_2$$

$$CF_2 = CF - C = CH_2$$

$$CF_3 - C = CH - CH_2$$

$$CF_3 - C = CH - CH_2$$

$$CF_3 - C = CH - CH_2$$

$$\frac{1}{2}$$

$$\frac{2}{3}$$

in aqueous emulsion. The polymers obtained had the following properties: poly-<u>1</u>, resin, Tg -35°C.; poly-<u>2</u>, cubber, Tg -17°; and poly-<u>3</u>, resin, m. p. 112°.

Exploratory polymerizations of unsaturated fluorine compounds other than conjugated dienes showed them to be much less reactive with the rhodium initiator. The results of these latter experiments, which are presented in detail in Table I, are briefly summarized as follows:

Monomer	7 Conversion to Polymer
3-Chloro-3,4,4-trifluoro-2-isopropenyl-	
cyclobut:ene-1	18
α,β,β-Trifluorostyrene	3
2,2,2-Trifluoroethyl vinyl ether	0
2-Chloro-2,3,3-trifluorovinylcyclobutane	0
1,2-Bis(trifluoromethyl)-4-methylcyclohexadiene	e-1,4 0
1,1,2-Trifluoromethy1-1,4-pentadiene	0
1,1,2-Trifluoro-2-chloro-3-methy1-3-ethyrylcyc1	lobutane O

Monomer 5 is of interest because its free radical-initiated homopolymer has been reported to have good high-temperature stability³. It was prepared by pyrolysis of the precursor obtained as described in our last report⁴.

- 3 -

Copolymerizations of butadiene (4) or monomer 5 with monomers

<u>1</u>, <u>2</u> and <u>3</u> initiated by rhodium trichloride in aqueous emulsion were studied as possible means of obtaining rubbers with lowered Tg values. These polymerizations are described in detail in Table II. The most successful ones are summarized below.

Monomer Pair	Mole-7 of First Monomer in Polymer	<u>Tg</u> , [●] C.
<u>1-4</u>	51.4	-48
<u>2-4</u>	55.1	-35
<u>3-4</u>	9.8	-20
<u>5-4</u>	31.9	-27
<u>2-1</u>	51.4	-2

Since rhodium-initiated polybutadiene has the trans config-

uration, it might be expected that the butadiene units of the fluorodiene copolymers and the fluorodienes themselves also have the <u>trans</u> configuration. Preliminary studies of the microstructure of the copolymers have been made using infrared spectroscopy to determine <u>cis</u>, <u>trans</u> and vinyl contents of the butadiene portion¹⁴ and n. m. r. to establish the presence or absence of unsaturation on certain carbon atoms of the fluorinated monomers. The results are suggestive of <u>trans</u>-1,4 polymerization but further study on polymers and model compounds needs to be done before unequivocal structure assignments can be made. For instance, it is puzzling that the <u>3</u>-<u>4</u> copolymer has a Tg as high as -20° when it is known that <u>trans</u>-polybutadiene has Tg = -80°. It is possible that a significant amount of vinyl monomer unit is present, but again a further study of spectra-structure correlation must be made to establish the answer.

The monomer pair 5 and 4 was tested at a feed ratio of 1:2 and gave a polymer with nearly the same ratio of combined monomers. All the other monomer pairs were used at a 1:1 feed ratio and gave polymers of about a 1:1 monomer ratio except in the case of the monomer 3 and 4 combination. Monomer 3appears much less reactive than the others, perhaps because it is highly unsymmetrical both from electronic and steric viewpoints.

į

All the successful copolymerizations proceeded with conversion rates of at least 2-3% per hour in these preliminary experiments. In several cases it was evident that the reactions proceeded very rapidly, but they were allowed to continue for relatively long periods to insure good yields.

It has been reported that formic acid promotes the rhodiuminitiated polymerization of butadiene¹², but we have found it to be deleterious in the case of copolymerization of <u>1</u> and <u>4</u>. Methylene chloride in the organic phase of the emulsion has a slightly favorable effect. Other organic solvents will be examined as well.

From the viewpoint of low Tg, the most promising copolymer is that of <u>1</u> and <u>4</u>, with its observed value of -48° . This is an encouraging result in that it confirms that the butadiene-fluorinated diene approach may lead to good low temperature properties. Since it is known that rhodium in emulsion furnishes <u>trans</u>-polybutadiene² and that the Tg of <u>trans</u>-polybutadiene is higher than the Tg of <u>cis</u>-polybutadiene by about 30°, the discovery of a suitable catalyst for <u>cis</u> copolymerization of <u>1</u> and <u>4</u> may be expected to provide a rubber with Tg of -60 to -70° .

A small sample of the <u>1-4</u> copolymer was furnished to the U.S. Army Natick Laboratories for evaluation and larger quantities will be made for further testing.

b. <u>New Monomer Synthesis</u>

We are exploring the following cycloaddition route to the highly fluorinated monomer 1,1,2-trifluoro 3-(trifluoromethyl)butadiene which we consider to have potential in rhodium-initiated polymerization.

$$CF_{3}-CH=CH_{2} + CF_{2}=CF_{2} \longrightarrow CF_{3}-CH=CH_{2} \longrightarrow base$$

$$CF_{3}-CH=CH_{2} + CF_{2}=CF_{2} \longrightarrow CF_{2}-CF_{2} \longrightarrow cF_{2}=CF-C=CH_{2}$$

$$CF_{3}-CH=CH_{2} \longrightarrow CF_{2}-CF=CH_{2} \longrightarrow CF_{2}=CF-C=CH_{2}$$

- 5 -

The initial attempts at the first step were unsuccessful. The cycloaddition reaction was carried out in solvent at pressures of 100 psig or less. This will be repeated without solvent at higher pressures since the literature reports this reaction to proceed under such conditions⁷.

3. Iridium-initiated Polymerizations of Fluorine-containing Dienes

Other work in this Laboratory has shown the effectiveness of iridium catalysts in polymerizing norbornenes¹¹. The close relationship of iridium to rhodium suggested that the iridium catalysts might also be active in polymerization of the fluorinated dienes. A representative group of fluorinated monomers was tested for polymerizability with iridium catalysts in aqueous emulsion. These experiments are summarized in Table III. As was the case with rhodium catalysts, significant conversions were obtained only with dienes. One comparison was made of the efficacies of ammonium iridium chloride and bis(1,4-cyclohexadienechloroiridium) as catalyst for the polymerization of monomer 6. The salt gave about four times as much polymer

$$CF_2$$
-CFC1
CH=CH
CH=CH
CH_2-C-CH₃

<u>6</u>

as did the complex. The iridium salt is comparable in activity to rhodium chloride with monomer $\underline{6}$, but much slower than rhodium chloride with monomer $\underline{3}$.

4. Ziegler Catalyst-initiated Polymerizations of Fluorine-containing Dienes

As indicated in our previous report⁴ the monomers which appear most reactive with Ziegler-type catalysts (e.g. Ti- or V- based catalysts) are conjugated dienes. We have examined these monomers further in both homopolymerizations and copolymerizations using catalysts which are known to be effective in forming <u>cis</u>-polybutadiene.

a. <u>2-(Trifluoromethyl)butadiene</u>

	This monomer	was prepared as describ	ed previously and used in a
series of	copolymerizations	summarized below and de	scribed in detail in Table IV.
Comonomer	Catalyst Base	Conversion, Z	Type of Polymer
<u>4</u>	Co octoate	52	High <u>cis</u> 1,4 content rubber, about 10% F monomer
<u>4</u>	Ti(OBu) ₄	4	Fluid, viscous, mainly F monomer
<u>4</u>	TII4	<0.5	High <u>trans</u> resin, about 15% F monomer
Ethylene	voc1 ₃	38	resin

1.

The result with the cobalt-based catalyst is sufficiently interesting to warrant further study of this monomer when more is available.

In our version of the $\Sigma t_3 Al_2 Cl_3$ -cobalt octoate system (115-1, Table VII) we have encountered crosslinking, as well as low <u>cis</u> content and high vinyl. Reduction of the cobalt concentration toward the Al/Co mole ratio of 500/1 used by Gippin at 5°⁶, speeded up the polymerization and gave immediate improvement in <u>cis</u> content. The reaction mixture attained incipient gelation in five minutes. This type of recipe is supposed to be operable with benzene containing 5 weight % butadiene. We are confident that a more suitable balance for screening purposes can be found by adjusting the ratio of catalyst components, their total amount and the amount ci solvent.

b. <u>5,5,5-Trifluoro-4-trifluoromethyl-1,3-pentadiene</u> (3)

This monomer, which was prepared as described previously⁴, was found to be unreactive toward the Ziegler-type catalysts as shown in Table V. It was shown in the same series of experiments that the cobalt-based catalyst was highly active in polymerizing butadiene. Thus there is a consistent picture of unreactivity of <u>3</u> with both the rhodium and Ziegler catalysts.

c. 2,3-Bis(trifluoromethyl)butadiene (5)

This diene appeared surprisingly unreactive in copolymerizations with ethylene or butadiene initiated by Ziegler catalysts (Table VI) in view of its ready copolymerization with butadiere initiated by rhodium (Table II). However, it is not uncommon that olefins with branching on the olefinic carbons are sluggish to polymerize with Ziegler catalysts.

d. <u>1,1,2-Trifluoro-3-chlorobutadiene</u> (2)

This compound was prepared by a method analogous to that used for 1,1,2-trifluorobutadiene^{4,5}. Its reactivity in attempted homopolymerizations with Ziegler catalysts (Table VII) was also much less than that which might have been expected from its ready copolymerizations with either butadiene or 1,1,2-trifluorobutadiene by rhodium catalysis.

e. <u>1,1,2-Trifluorobutadiene</u> (1)

This diene was examined in a series of copolymerizations with butadiene listed in Tables VIII and IX. Use of the sesquiethyl aluminum sesquichloride and cobalt octoate catalyst gave copolymers of promising Tg (-82 to -84°) but with halogen content that ... lower than what is believed necessary for good oil resistance. The <u>cis</u>-polybutadiene catalysts (TiI_L or cobalt octoate) performed well in control experiments with butadiene but were much less active with the mixtures of <u>1</u> and butadiene. This result suggested the presence of an impurity in the sample of <u>1</u>. Although previously prepared samples of <u>1</u> were pure by v. p. c. criteria, examination of the present batch showed a trace of butanol. This contamination was apparently sufficient to prevent polymerization by all but the cobalt catalyst and further illustrates the advantage of the rhodiumbased catalyst in being insensitive to most polar impurities in the monomers.

5. Ziegler Catalyst-initiated Polymerizations of Fluorine-containing Olefins

A small number of experiments of this type was carried out. They are described in Table X and include copolymerizations of monomer $\underline{7}$ with butadiene and of monomer $\underline{8}$ with ethylene.

- 8 -

$$\frac{CH_2 - CH - CH = CH_2}{CF_2 - CF_2}$$

$$\frac{7}{2}$$

$$CF_3 - CH = CH_2$$

$$\frac{7}{8}$$

Monomer 7 did not homopolymerize with either the $Ti(OBu)_4$ or $TiCl_4$ -based catalysts. In a TiI_4 - or cobalt octoate-initiated copolymerizations with buladiene, high <u>cis</u> polymers containing only a little fluorine were obtained.

Monomer <u>8</u> was not commercially available at the time these polymerizations were carried out, therefore it was made by the following routes:

$$CC_{1_{3}}CH_{2}CH_{2}C1 \xrightarrow{SbF_{3}} CF_{3}CH_{2}CH_{2}C_{1} \xrightarrow{KOH} 8$$

$$CF_{3}I + CH_{2}-CH_{2} \xrightarrow{AIBN} CF_{3}CH_{2}CH_{2}I \xrightarrow{KOH} 8$$

Monomer <u>8</u> was only slightly reactive in a VOCl₃ + Et₃Al₂Cl₃-initiated copolymerization with ethylene. Analytical results for this copolymer are contradictory; microanalysis indicates 172 fluorine, whereas infrared spectroscopy suggests 1% or less. It is possible that the product is inhomogeneous and the polymerization will be rerun when more of monomer <u>8</u> is available.

6 Chemical Modification of <u>cis</u>-Polybutadiene

The very low glass transition temperature of <u>cis</u>-polybutadiene (Tg = -108°C.) suggested that a rubber meeting the goals of this contract might be prepared from it by adding to the carbon-carbon double bonds one or more reagents which would improve the oil resistance. Our previous reports^{4,9} have described the facile addition of several sulfenyl chlorides to <u>cis</u>-polybutadiene to form adducts according to the following equation:

- 9 -

The <u>threo</u> configuration of the adduct sites is assigned on the basis of the <u>trans</u> orientation of addition observed in sulfenyl chloride reactions with cyclic olefins¹³ and the <u>cis</u> configuration of the unreacted sites is based on the infrared spectrum of the adduct. Thus the adduct has stereospecificity in its microstructure but a random macrostructure derived from the random location of the sites of addition along the chain. The result is a disappearance in the adduct of the crystallization (-64°C.) and melting (-21°C.) phenomena characteristic of <u>cis</u>-polybutadiene. During the period covered by this report a new adduct containing 30% of the theoretical amount of trificoromethanesulfenyl chloride and additional quantities of other lesssaturated adducts have been prepared for evaluation at the U. S. Army Natick Laboratories. The Tg values for these adducts are summarized below:

		7, 5	Saturation	1	•
Addend	<u>10</u>	<u>15</u>	20	<u>25</u>	<u>30</u>
CF ₃ SC1	- 92	-84#	-75	-68	-44*
C ₆ F ₅ SC1	-90	-80**	-66*	-52*	-
ccijsci	-85	-50	+28	-	-
c_c1_sc1	-99	-50*	+18	-	-

Glass Transition Temperatures (*C.) for Adducts of <u>cis</u>-Polybutadiene and Sulfenyl Chlorides

Submitted to Natick Laboratories for evaluation May 19, 1967.

**

Previously evaluated at Natick Laboratories, see our previous report⁴.

- 10 -

Inspection of the data above shows that the fluorinated sulfenyl chlorides have a less deleterious effect on Tg than do the chlorinated sulfenyl chlorides. For the same reason the aliphatic sulfenyl chlorides are preferable to the aromatic analogs. Work in our laboratory and at Natick has shown these adduct rubbers can be successfully sulfur cured; their utility in meeting the goals of this contract would appear to depend on having adequate oil resistance.

EXPERIMENTAL

1. Monomer Synthesis

a. <u>Pyrolysis of 1,2-bis(Trifluoromethyl)cyclohexene to 2,3-bis(Trifluoro-</u> methyl)-1,3-butadiene

A Vycor reaction tube of 22 mm. I. D. was packed with quartz rods and heated to $815-830^{\circ}$ C. over a 12-in. length. A vacuum of 3 to 6 mm. was maintained during addition of 57.6 g. (.246 m.) 1,2-bis(trifluoromethyl)cyclohexene (93.2% purity by VPC) over a period of five hours. A condensate of 3.5 g. was obtained in the collection flask at room temperature, while the two dry-ice traps contained 12.7 g. and 1.6 g. for a total of 17.8 g. The traps were rinsed with cold trichlorobenzene to give 91.9 g. solution to which was added 0.2 g. <u>t</u>-butyl catechol. The mixture was stored in dry-ice and distilled three days later in a 12-inch packed column.

Fraction No.	Weight, grams	<u>B. P., [•]C.</u>	21	7 Diene (by VPC)	<u>Yield, %</u>
1	0.1		-	-	
2	2.4	52-58	1.3388	83.7	5.2
3	0.6	70-74	1.4040	31.7	
4	1.3	83-86	1.4058	-	
5	2.0	112-135	1.4010		
6	3.0	178-198	1.4972		
7	4.0	198-200	1.5557		
٤	9.5	213	1.5680		
		Residue	1.5692		

A second reaction run at 725° C. under 3-5 mm. gave 15.4 g. (54%) of product which was 96% pure.

b. <u>1,1,2-Trifluoro-3-chloro-1,3-butadiene</u>

In a one-liter 3-neck flask were placed 62.3 g. (0.865 m.) 90% zinc dust, 1.4 g. zinc chloride, and 118.7 g. n-butanol. The mixture was heated to 84°C. with agitation under 250-300 mm. vacuum. Addition of 48.3 g. (0.188 m.) 3,4,4-trifluoro-4-bromo-2,3-dichlorobutene-1 (Pierce Chemical, 96.7% purity) was carried out over 20 minutes and 63.6 g. of condensate was trapped with a dry-ice condenser (59A). Another 47.8 g. (0.185 m.) of the dichloro compound was added over 43 minutes to give 48.0 crude product. A second dry-ice trap used in both runs contained 11.4 g. (21.5%) of crude diene.

- 12 -

The three main fractions were combined and distilled at 40-60°C. pot temperature and 75-150 mm. There was obtained 34.3 g. (64%) of diene which was redistilled through a 12-inch long packed column at 184-188 mm. to give 17.2 g. (30%) of the diene of 92.8% purity. The major impurities were 4.8% of a low boiler and 0.5% of a high boiler believed to be <u>n</u>-butanol.

c. 3,3,3-Trifluoropropyl Chloride

In a 5-1 3-necked stainless steel flask were placed 500 g. (2.80 moles) of Peninsular ChemResearch antimony trifluoride and 112 g. of antimony pentachloride. There was an exotherm from 16° to 38°. The mixture was warmed to 49° and 252.3 g.(1.39 moles) of 1,1,1,3-tetrachloropropane was added over a period of three and one-third hours. During this time the flask temperature was 65-38° and gentle reflux occurred. Volatile products formed during the reaction were collected in a Dry-Ice condenser and were combined with the material distilled off when the flask temperature was raised to 110°. The crude product was washed with 7.5 N hydrochloric acid and redistilled to give 43.6 g. (27%) of 3,3,3-tri-fluoropropyl chloride, b. p. 44-47°, n^{20} 1.3280-1.3282.

V. p. c. analysis of the product showed it to be 98.2% pure with 1.4% of a more volatile component.

d. <u>3,3,3-Trifluoropropyl Iodide</u>

In a 750-ml. stainless steel bomb were placed 1.2 g. azobisisobutyronitrile and 250 g. of methanol. The bomb atmosphere was replaced with nitrogen by five times evacuating to 0.2 mm. and refilling with nitrogen to 20 psig at Dry Ice temperature. The bomb was reevacuated and charged with 133 g. (0.682 mole) of Peninsular ChemResearch trifluoromethyl iodide.

The bomb was stirred and heated at 66-67° with incremental addition of ethylene whenever the pressure dropped to 80 psig. The total ethylene uptake was 29 g. (152% of theory for a 1:1 adduct). The bomb was cooled and the methanol solution diluted with 1000 ml. of water to give 114.6 g. of heavy oil which was 86% 3,3,3-trifluoropropyl iodide by v. p. c. Distillation through a 12-in. packed column gave product, b. p. 88-89°, n_p^{25} 1.4170, 99.5% pure by v. p. c.

- 13 -

e. <u>3,3,3-Trifluoropropene</u>

(1) By dehydrochlorination of 3,3,3-trifluoropropyl chloride

A solution of 17.8 g. (0.134 mole) of 3,3,3-trifluoropropyl chloride in 69.2 g. of 95% ethanol was treated with 30 ml. of 1.7 \underline{N} ethanolic potassium hydroxide followed by another 90 ml. after twenty minutes. The solution was heated to 67° during ninety minutes to give 11.5 g. of volatile product collected in a Dry Ice condenser. Distillation of the crude product gave 10.9 g. (85%) of 3,3,3-trifluoropropene, b. p. -22°.

A second reaction gave 11.4 g. (89%) of product, b. p. -22*.

(2) By dehydroiodination of 3,3,3-trifluoropropyl iodide

The method described above gave 78% yield of the olefia, b. p. -22° , when applied to the corresponding iodo compound.

f. 1,1,2,2-Tetrafluoro-3-vinylcyclobutane

The cycloaddition of butadiene and tetrafluoroethylene was carried out under conditions similar to those reported⁸ except a solvent (240 g. <u>o</u>-dichlorobenzene) was used, reducing the pressure of 85 g. (1.57 moles) of butadiene and 38 g. (0.38 mole) of tetrafluoroethylene in a 750-ml. strinless steel bomb to less than 200 psig. The solution was heated eight hours at 130°, cooled and distilled to give 40 g. (68%) of adduct containing 3% of butadiene as determined by v. p. c.

2. Polymerizations

The rhodium- and iridium-initiated polymerizations were carried out by the aqueous emulsion technique described by Rinehart, Smith, Witt and Romeyn^{1,2}.

Polymerizations initiated by Ziegler-type catalysts were run by the vacuum line technique described in our earlier reports 4,9.

- 14 -

3. Chemical Modification of <u>cis-Polybutadiene</u>

a. <u>Materiais</u>

ł

3

 $\label{eq:trifluor} Trifluorcmethanesulfenyl chloride was obtained from Peniasular ChemResearch. Pentafluoro- and pentachloro-benzenesulfenyl chlorides were prepared by the method of Almasi and Gants <math display="inline">^{10}$.

b. Addition Reactions

These were carried out as described in an earlier report⁹.

PROPOSED WORK

a successive for some of the second

1. In the rhodium- and iridium-catalyzed emulsion polymerizations of fluorinated dienes, study the effect of feed ratio, temperature, solvent, etc. on microstructure and monomer combining ratio. Control of these two dependent variables will permit us t- design polymers meeting the Contract objectives.

2. Follow up the lead on cobalt-catalyzed copolymerizations by screening other monomer pairs and studying effect of feed ratio, solvent, temperature, etc.

3. Prepare additional fluorinated diene copolymers for further evaluation.

4. Continue synthetic work to prepare 1,1,2-trifluoro-3-(trifluoromethyl)butadiene and other monomers as needed.

5. Prepare low-temperature rubbers by other chemical modifications of <u>cis</u>-polybutadiene. Prepare additional amounts of adducts as may be required for evaluation.

BIBLIOGRAPHY

- R. E. Rinehart, H. P. Smith, H. S. Witt and H. Romeyn, Jr., J. Am. Chem. Soc., <u>83</u>, 4864 (1961).
- R. E. Rinehart, H. P. Smith, H. S. Witt and H. Romeyn, Jr., J. Am. Chem. Soc., <u>84</u>, 4145 (1962).
- 3. R. E. Putnam, R. J. Harder and J. E. Castle, J. Am. Chem. Soc., 83, 391 (1961).
- D. I. Relyea, H. P. Smith and A. N. Johnson, Contract DA 19-129-AMC-487(N) Semiannual Report No. 4, December 1966.
- 5. P. Tarrant and M. R. Lilyquist, J. Am. Chem. Soc., 77, 3640 (1955).
- 6. M. Gippin, Macromol. Syn., <u>2</u>, 42 (1966).
- 7. J. D. Roberts and C. M. Sharts, Org. Reactions, <u>12</u>, p. 39.
- D. D. Coffmann, P. L. Barrick, R. D. Cramer and M.S. Raasch, J. Am. Chem. Soc., <u>71</u>, 490 (1949).
- D. I. Relyea, H. P. Smith and A. N. Johnson, Contract DA 19-129-AMC-487(N) Semiannual Report No. 3, June 1966.
- 10. L. Almasi and A. Gants, Chem. Ber., <u>94</u>, 725 (1961).
- 11. R. E. Rinehart and H. P. Smith, J. Poly. Sci., <u>B3</u>, 1049 (1965).
- 12. T. M. Shryne, U. S. Patent 3,168,507 (to Sheli), Feb. 2, 1965.
- 13. D. I. Kelyea, J. Org. Chem., <u>31</u>, 3577 (1966), and references cited therein.
- 14. R. R. Hampton, Anal. Chem., 21, 923 (1949).

TABLE I

SURVEY OF HICHOPOLYMERIZABILITY OF VARIOUS FLUORINATED MONOMERS IN EMULSION BY RHODIUM CHLORIDE

•

Experiment No.	96-1	1-16	97-2	97-3	97-4	103-1	103-2	103-3	103-6	1-511
Rhodium Chioride trihydrate, g.	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020
Distilled Water, ml.	7	2	7	7	2	7	۲	7	7	7
20% Nacconol NRSF, ml.	1	-1	ч	1		٦	ч	٦	Ч	-
1,1,2-Trifluorobutadiene, mmoies	64.5	ì	•	٠	,	•	ł	•	ł	•
B,B,B"Trifluoroctiyl vinyl ether, mmoles	•	ŝŝ	:		1	ı	•	•	٠	·
α, β, β-Trifluorostyrene, mmoles	•	•	25		ı		ł	a	ł	ł
l,l,2-Trifluoro-2-chloro-3-vinyl cyclobutane, mmoles	1	ı	•	25	ı	•	•	ł	٠	•
4,5,5-Trifluoro-1,4-pentadiene, mmoles	•	ı		1	25	ł	9	ı	ł	·
1,1,2-Trifluoro-2-chloro-3-isopropenylcyclobut-3ene, mmoles	•	·	4		1	21.4	•	۱	•	t
1,1,2-Trifluoro-2-chloro-3-methy1-3-ethynylcyclobutane,mmol	1	ł	ı	ı	ł	٠	20	•	•	ı
👷 1,2-Bis(trifluoromethy1)-4-methy1-1,4-cyclohexadiene, mmoles	•	ı	8		•	ł	ł	25	1	ł
<pre>' 5,5,5-Trifluoro-4-trifluoromethyl-1,3-pentadiene, mmoles</pre>	•	ł	•	•	ı	ł	8	a	25	ŧ
l,l,2-Trifluoro-3-chlorobutadiene, mmoles	•	1	ı	•	ł	٩	۰	ł	ł	20.8
(added as a solution 31% by weight in benzene)										
Polymerization time at 50°C., hrs.	67]	162	42	42	162	65	65	65	65	65
Yield, g.	.915	0	134 t	race	0	.817	.051	0	4.00 3	059
Conversion, %	100	0	e	0	0	18	1+	0	84	100
X-ray crystallinity	ight	ŧ	ł	,	а 1	morph.4	slight	ਰ ।	norph.	•
Product Appearance	cs in	4	rcsin	1	ı	resin	resin	I	resin u	ubber
CPC: ₃ Solubility po	rtly	ł	ł	1	•	,	•	1	wells s	ioluble
Tg, •c.	-35	ı	ı	ł		1	ı	ł	ł	-17

1

112

ł

t

.

3

1

1

56 ,79

Tm, •c.

<u>Copolymerization</u> Experiment No.	<u>n of Fl</u> 99. l	<u>99-2</u>	ted D1en 99-3	es wit	n Butadi 104-3	ene or F 103-4	<u>1uor inate</u> 108-2	104-1	<u>108-1</u>	114-1	<u>119-2</u>	<u>atalysts</u> 103-5	104-2	119-3
Rhodium chloride trihydrate,g	020	.020	020	.020	i	.020	.020	ł	٠	.020	.020	.020	•	. 020
Bis(1,4-cyclohexadiene														
chlororhodium), g.	5	ı	ı	•	.05	t	۱	.05	.05	ı	1	1	.05	٠
Distilled water, ml	7	7	7	•	13	۲.	7	13	13	7	7	7	13	7
20% Nacconol NRSF, ml.	1	-4	1	r	2.5	1	1	2.5	2.5	-4	1	1	2.5	-1
Formic acid, ml.	t	.25	ı	ı	Ś	1	t	ŝ	S	t	ł	ł	Ś	•
Methylene chloride, ml.	ı	ı	ŝ	15	S	ł	ı	ŝ	ł	ŝ	ŧ	ı	ŝ	•
5,5,5-Trifluoro-4-trifluoro-														
methy1-1,3-pentadiene,mmoles	1	ł	t	ı	ı	25	18	25	18	•	ł	25	25	ŗ
2,3-Bis(trifluoromethyl)														
butadiene, mmoles	ı	ł	ł	I	ı	ı	ł	1	1	11.7	1	ſ	ł	ŧ
1,1,2-Trifluoro-3-chloro-														
butadiene, mmoles	t	I	ł	·	ı	ł	ı	ł	ı	ı	20.8	ł	1	20.8
1,1,2-Trifluorobutadiene,mmole	es 21.5	21.5	21.5	21.5	21.5	i	8	ı	ł	ı	ı	21.5	21.5	21.5
Butadiene, mmoles	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	ı	ı	ŧ
Polymerization time at														
50°C., hrs.	17	17	17	143	65	65	115	64	283	18	65	65	65	65
Xield, g.	1.498	.455	2.068	0	.628	.70+	1.695	1.343	1.5±	.490	2.548	6.44	2.508	5.126
Conversion, 7	43	13	59	0	18	ب	37	28	32+	14.5	60	16	42	97
Produc t	(bro	wn rubl	cers)	1	rubber	rubber	rubber	dark	resin	nervy	nervy	rubber	tough	tough
	tough	soft	tough		logey	2 kinds	leathery	resin +	leathery	/ rubber	rubber	white	rubber	rubber
	nervy		nervy			I.R.'s		syrup				tough		sl.
						alike								sticky
Solubility in CHCL.	swells		swells				swells					swells	swe118	
Z Fluorine 3	32.9	32.3	35.8		35.03		16.63	ł	ł	37.3	19.0ª	56.5 20.5	55.3	14.5 ⁸
Mole 7 F monomer	45.4	44.1	51.4		42.7		9.8			31.4	1.00	5.0%	7. 6	51.4
T8, C. T8, C.	-4/ +58		-48 +58		-48 +55		+55		1 69+			+103	108	67 I
a. % Chlorine														

Table II

19

:

÷

			Table	111		1	[- 4 - 0 7 F	IIA All	polymer12	ations run
Experiment No.	106-1	10 10 10 1	106-3	106-4	106-5	106-6	106-7	<u>106-8</u>	106-9	106-10
Ammonium iridium chloride, g.	.075		.075	.075	.075	.075	.075	.075	.075	·
B1s(1,4-cyclohexadiene										
chlorotridium), g.	£	•	ŧ	•	•	:	٠	ı	3	.055
Distilled water, ml.	8	œ	80	8	8	8	8	80	8	ß
20% Novulphor C, ml.	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
20% Aquarex ME, ml.	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
40% Formaldehyde, ml.	5.	ŗ.	.5	s.	S.	.5	.5	ŗ.	s.	5.
3-Chloro-3,3,4-trifluoro-2-isopropenyl										
cyclobutene-1, mmoles	25	ł	ı	ı	3	1	ı	3	ł	25
<pre>1,1,2-Trifluoro-2-chloro-3-methy1-</pre>										
3-ethynylcyclobutane, mmoles	·	25	9	ı	ı		ı		ł	ł
l,2-Bis(trifluoromethyl)-4-methyl-										
, 1,4-cyclohexadiene, mmoles	t	ł	25	ł	ı	ł	1	1	•	ł
<pre>% 1,1,2-Trifluoro-2-chloro-3-methy1-</pre>										
<pre>3-(3,3,4-trifluoro-4-chlorocyclobuten;</pre>	ıy 1) cyc lob	utene, muo	les							
	r	8	ı	25	1	ł	3	ł	ŝ	a
<pre>c, B.B-Trifluorostyrene, mmoles</pre>	ı	t	ı	ł	25	ı	8	ł	a	ł
l,l,2-Triffluoro-2-chloro-3-vinyl										
cyclobutane, mmoles	1	3	T	1	ı	25	1	t	ł	•
<pre>1,1,2-Trifluoro-2-chloro-3-methy1-3-</pre>										
vinylcyclobutane, mmoles	t	ŧ		8	•	ı	25	ı	•	ŧ
2,2,2-Trifluoroethyl vinyl ether, mmoles	1	ı	ı	ı	1	ı	ł	25	·	ı
5,5.Trifluoro-4-trifluoromethy1-										
1,3-pentadiene, mmoles	r	1	ı	ı	,	ı	ı	ı	25	٠
Yield, g.	2.83	.008	.007	•	3	ı	ı	ı	.560	.727
Conversion, %	77	1 V	۲	•	1	ı	ŧ	a	12	20
Product appearance	white	white	gray	•	ı	ı	ı	t	white	white
	resin	resin	resín	ı	ð	ŧ	ł	ı	resin	resin

•

Table III

Contraction of the second s

Polymerizations of 2-(Triflu	oromethyl	l)butadie	ne with Z	iegler Ca	talysts	
Experiment No.	<u> 91-3</u>	<u>91-4</u>	<u>91-5</u>	<u>91-6</u>	<u>91-7</u>	<u>91-9</u>
Dry benzene, ml.	12.2	12.2	16	10	-	-
Dry heptane, ml.	-	-	-	-	15	15
1.25 M Al(i-bu), in benzene, ml.	.4	.4	-	-	-	-
0.06 M Cobalt Octoate in benzene, ml.	-	-	1	-	-	-
0.55 M Al(i-bu), in benzene, ml.	-	-	-	.55	-	-
0.05 M VOC1, in heptane, ml.	-	-	-	-	10	10
Frezze in	<	dry i	ice	>	< liqui	d N ₂ >
Butadiene from vac. line, mmoles	43	43	21.5	-	-	-
2-Trifiuoromethyl butadiene, mmoles	-	9.7	9.7	7.3	9.7	-
Ethylene from vac. line, mmoles	-	-	-	-	10.8	21.8
Made homogeneous at °C.	25	25	25	25	78	no
0.017 M Dow TiI ₄ in $C_{6}H_{6}$, ml.	5.6	5.6	-	-	-	-
0.30 M Et ₃ Al ₂ Cl ₃ in heptane, ml.	-	-	1	-	4.2	4.2
0.25 M Ti(OBu) ₄ in benzene, ml.	-	-	-	.4	-	-
Shake & stir in air bath, min.	15	15	15	15	insta	int
Exotherm	+	-	-	-	polym	er
Color after assembly	dark	cherry	blue	clear	purple	purple
	brown	red	green	yellow		
Polymerization time at 25° ; hrs.	68	68	67	67	17	17
Yield, g.	2.27	.018	1.21	.04	. 56	.66
Conversion, %	98	<.5	52	4	38	100
Product	solid	flaky	solid	viscous	resin	resin
	rubber	soft	rubber	fluid		
		resin	(some gel)			
Composition	•		я			
% cis by infrared 7 trans by infrared	73° 23 ^a	- 84	70 ^{°°} 20 ^{°°}	-	-	-
% vinyl by infrared	_4 ^a	-	10 ^a	-	-	-
$\begin{array}{ccc} & & C_{5} & H_{5} & by infrared \\ & & & 5 & 5 \end{array}$	~	16	13	(100)	34	-
888 cm ⁻¹ possible -C(CF)=CH 840 cm ⁻¹ possible -CFC(CF)=	-	-	-	yes	-	-
7 C E H based on E	-	-	. •	-	yeð 6 4	-
5^{r} 5^{r} 5^{r} 5^{r} 5^{r}	-	-	4.0	-	0,4	-
X-TAV CTVSTALLINITY Z					~ ~	

Table IV

a. Normalized to 100%.

:

and the second second

- 21 -

1

Table V

) 7

.

Polymerizations of 5,5,5-Trifluoro-4-trifluoromethyl-1,3-pentadiene with Ziegler Catalysts

Experiment No.	<u>92-2</u>	<u>92-3</u>	<u>92-6</u>	92-7	<u>92-8</u>	<u>94-5</u>	<u>94-6</u>
Dry benzene, ml.	5	5	4	4	10	-	-
Dry heptane, ml.	-	-	-	-	-	15	23
1.25 M A1(i-Bu), ml.	.4	.4	-	-	-	-	2
0.06 M CoOctoate, ml.	-	-	1	1	1	-	-
0.05 M VOC1, ml.	-	-	-	-	-	10	-
CH ₂ =CH-CH-C(CF ₂) ₂ , mmoles	11.6	11.6	11.6	11.6	-	25	25
Seal							
Freeze in	-	-	-	-	co ₂	N ₂	N ₂
Butadiene, mmoles	-	-	-	-	21.5	-	-
Ethylene, mmoles	-	-	-	-	-	11.2	11.2
Condition to 25°C.	yes	yes	yes	yes	yes	-	-
Condition to 5°C.	-	-	-	-	-	yes	yes
0.25 M Ti (OBu) ₄ , ml.	.4	.4	-	-	-	-	-
0.30 M Et_A1_C1_, m1.	-	-	1	1	1	4.2	-
0.25 M VO(OBu), m1.	-	-	-	-	-	-	2
Stir 15' at 25°, run at			_		****		¥66
Chake 5 mm at 600	-	yes	-	yes	уев	yes	yes
Snake & run at bu	yes	-	yes	-	-	-	_
Exotherm	-	-	-	- hluich	araanieh	nurnle	vallow
Catalyst Color	< yerio	W DLOWICS	gray	010151	Rr centon	harbre	yerrow
Time hre	10	10	green 10	10	10	16	16
	(016 ~		010	0	1 10	25	26
rield, g.	combine	u. d)	.010	U		.23	.20
Conversion, %	<1	<1	<1	0	95	5	5
X-ray crystallinity	-	-	-	-	- C	like polye	ethylene)
% F	-	-	-	-	-	3.61	1.36
Mole-% C ₆ H ₄ F ₆ in polymer	-	-	-	-	-	6.02	2.27

Tab	le	VI
-----	----	----

-

0

•

.

Ì

Copolymerizations	of	2,3-Bis(trifluoromethyl)butadiene
	wi	th Ziegler Catalysts

Expt. No.	<u>94-1</u>	<u>94-2</u>	<u>94-3</u>	94-4
Dry benzene, ml.	12.2	16	-	*
Dry heptame, ml.	-	-	15	23
1.25 M Al(<u>i</u> -bu) ₃ , ml.	.4	-	-	-
.06 M Co octoate, ml.	-	1	-	-
.05 M VOC1, in heptane, ml.	-	-	10	-
$CH_2 = C(CF_3) - C(CF_3) = CH_2$, mmoles	20	20	20	20
Seal & freeze				
Butadiene, mmoles	21.8	21.8	-	-
Ethylene, mnoles	-	-	11.5	11.5
Condition to	25 °	25 *	5•	5 °
.018 M TiI ₄ , m1.	5.6	-	-	-
.30 M Et _a Al ₂ Cl ₃ , ml.	-	1	4.2	-
.25 M VO(OEu), n1.	-	-	-	2
Polymerize at 25°, hrs.	46	46	16	16
Yield, gms.	.004	.63	.293	.281
Conversion, %	<1	13	7	7
	brown oily scum	sticky rubber	brown-white resin	brown-white resin
X-ray crystallinity	-	-	(resemble poly	yethylene except
Infrared			4.50A line is (polyethylene 8 1130	weaker) & faint F at cm ⁻¹
% F Schwarzkopf	-	5.72	1.91	1.71
% $CH_2 = C(CF_3) - C(CF_3) = CH_2$	-	9.54	3.18	2.85
Butadiene portion				
% cis	-	79	-	-
% vinyl	-	13	~	-
% trans	-	8	-	-

Polymerizations of 1,1,2	-Trifluoro-3-chlorobu	tadiene with Ziegler Catalysts
Expt. No.	119-4	<u>119-5</u>
Apparatus		
250 ml. stainless steel bo	mb +	
100 ml. pyrex reaction tub	e	+
Reagents		
Dry heptane, ml.	13.3	8.3
Dry benzene, ml.	-	-
0.05 M VOC1, m1.	10	10
1,1,2-Trifluoro-3-chlorobutadie	ne,	
mmol	es ^a 4.1	10.5
0.30 M Et ₃ A1 ₂ C1 ₃ , m1.	4.2	4.2
Shake behind safety screen	yes	yes
Polymerization time at 25°C., h	rs. 66	66
Yield, g.	.069	.355
Conversion, %	12	24
Product 1t.	brown resin	lt brown resin
X-ray crystallinity	-	amorphous

Table VII

a. Added as a solution 31% by weight in benzene

مدتع سنطيحككما فشعيك

Į

4 mar 4 .

.

•

Attempted Copolymerizatio	n of Butad	iene and 1	,1,2- Tri f	luorobut	<u>idiene</u>	
Comparison of Benzene and	Methylene	Chloride	Using a C	obalt Ca	talyst	
Experiment No.	<u>102-1</u>	102-2	<u>102-3</u>	<u>102-4</u>	<u>102-6</u>	<u> 102-5</u>
Dry benzene, ml.	20	20	20	-	-	-
Dry methylene chloride, ml.	-	-	-	20	20	20
0.06 M CoOctoate, ml.	2	2	2	2	2	2
Seal, freeze in dry ice						
Butadiene, mmoles	22	33	11	22	33	11
1,1,2-Trifluorobutadiene, mmoles	22	11	33	22	11	33
Pressurize 4 psi N ₂						
Condition to 25°C.						
0.30 M Et_Al_Cl_ , ml.	2			······		\rightarrow
Shake and stir at 25°						
Polymerization time at 25°, hrs.	16 —					\rightarrow
Exotherm	+	+	+	0	0	0
Vixcosity of reaction mixture	medium	highest	low	low	lowest	low
		some gel	ŧ	some gel		
Yield, g.	1.16	1.720	.726	1.060	1.539	. 579
Intrinsic viscosity in CHCl ₃	.73	-	-	. 82	-	-
Properties	<	a 11 s	lightly a	sticky ru	bbers	>
		with	poor coba	lt clean	цр	
Conversion, %	33	59	18	30	53	14
Tg/Tm	-84 +57	-82 +50				
Composition from Infrared ^a						
% cis	45	42	24	9	13	7
% trans	11	12	20	20	22	25
% vinyl	44	46	56	71	65	70

Table VIII

1

a second a second a second and a second and a second a s

a. Sum of $\frac{7}{2}$ cis + $\frac{7}{2}$ trans + $\frac{7}{2}$ vinyl is normalized to 100%.

- 25 -

.

Table IX

فتعاويه والاربية مساولا سالكم وتكلم وتراكر ومرابع ومرابع

Attempted Copolymerization of Butadiene and 1,1,2-Trifluorobutadiene with Some Cis-Polybutadiene Catalysts

Experiment No.	<u>116-3</u>	116-4	116-7	116-8
Dry benzene, ml.	16.2	8.3	16.2	8.3
Dry heptane, ml.	-	8.3	-	8.3
0.55 M Al(<u>i</u> -bu) ₃ , ml.	.37	-	.37	-
0.06 M Cobalt octoate, ml.	-	.2	-	.2
Butadiene, mmoles	32.25	32.25	32.25	32.25
1,1,2-Trifluorobutadiene, mmoles	-	-	21.5	21.5
0.017 M Til,, ml.	2.25	•	2.25	-
0.30 M Et, Al ₂ Cl ₃ , ml.	~	1	-	1
Exotherm	+	+	-	_
	•	•	-	Ŧ
Appearance	thick	light	red	yellow
Appearance	thick dark	light blue	red	yellow
Appearance	thick dark brown	light blue	red	yellow
Appearance Color	thick dark brown normal	light blue normal	red	yellow
Appearance Color Yield, g.	thick dark brown normal 1.534	light blue normal 1.833	red no	yellow 1.723
Appearance Color Yield, g. Infrared analysis ^a	thick dark brown normal 1.534	light blue normal 1.833	red no -	yellow 1.723
Appearance Color Yield, g. Infrared analysis ^a Z cis	thick dark brown normal 1.554 80.9	light blue normal 1.833 73.3	red no -	yellow 1.723 87.3
Appearance Color Yield, g. Infrared analysis ^a 7 cis 7 trans	thick dark brown normal 1.554 80.9 15.3	light blue normal 1.833 73.3 18.9	red no -	yellow 1.723 87.3 8.2
Appearance Color Yield, g. Infrared analysis ^a 7 cis 7 cis 7 trans 7 vinyl	thick dark brown normal 1.534 80.9 15.3 3.8	light blue normal 1.833 73.3 18.9 7.9	red no - -	yellow 1.723 87.3 8.2 4.5

a. Sum of % cis + % trans \cdot % vinyl is normalized to 100%.

٠

e,

Polymerization	of Fluori	nated Non-	Dienes with	Ziegler Ca	talysts		
Experiment No.	112-5	<u>112-6</u>	112-7	112-4	<u>112-9</u>	<u>111-1</u>	<u>105-1</u>
Dry benzene, ml.	10	10	12.2	10	16	-	-
Dry heptane, ml.	-	-	-	-	-	15	15
0.125 M A1(<u>i</u> -bu) ₃ , m1.	.4	.4	.4	-	-	-	-
0.06 M Cobalt octoate, ml.	-	-	-	1	1	-	-
0.05 M VOC1, in heptane, ml.	-	-	-	-	-	10	10
1,1,2,2-Tetrafluoro-3-vinyl							
cyclobutane, mmoles	25	25	25	-	25	50	-
Seal, freeze in	-	-	CO2	C0,	C0,	N ₂	N ₂
Butadiene, mmoles	-	-	43	21.5	43	-	-
3,3,3-Trifluoropropene,mmole	s -	-	-	-	-	-	5.38
Ethylene, mmoles	-	-	-	-	-	11.25	11.25
Pressurize 4 psi dry N ₂							
Condition to [•] C.	25	25	25	25	25	5	5
0.25 M Ti(OBu), in $C_{c}H_{c}$, ml.	.4	-	-	-	-	-	-
0.5 M TiCl _{μ} in C ₂ H ₂ , ml.	-	.2	•	-	-	-	-
0.017 M Til, , ml.	-	-	5.6	-	-	-	-
0.30 M Et_A1_C1_, m1.	-	-	-	1	1	4.2	4.2
Catalyst color	yellow	black	dark	blue-	blue-	purple p	purple
	brown		brown	green	græen i	nitially	init-
Exotherm	0	0	+++	+	+	-	-
Polymerization time at 25°, hrs	. 64	64	43	65	43	18	64
Yield, g.	0	0	2.163	1.088	2.546	.330	. 162
Conversion, %	0	0	32	94	37	4	20
Product	-	-	soupy	soft	soft	brown	white
			rubber	rubber	rubber	white	resin
						resin	
X-ray crystallinity	-	-	-	-	-	(resemble	e P.E.)
7. F	-	-	0	-	0	-	16.92 ^a
% C ₃ H ₃ F ₃	-	-	-	-	-	-	10.5
Infrared ^a	-	-	-	-	-	887 P.E.	+
cis	-	_	75	67	60	minor a	unt.F
trans	•	-	22	7	18	- 1	-
vinyl	~	-	4	26	22	-	-
Solubility in CHCl ₃	-	-	v.minor	-	minor yes	-	-
Tg, •C.		-	~105		-97	-	-

Table X

a. Sum of % cis + % trans + % vinyl is normalized to 100%.

Security Classification		
Security Classification		
UULUME (Security cleeelfication of title, body of ebstrect au	NI CONTROL DATA - nd indexing ennotetion must b	RAD mentered when the overall report is classified)
ORIGINATING ACTIVITY (Corporate author)		20 REPORT SECURITY CLASSIFICATION
UniRoyal U. S. Rubber Company		Unclassified
Research Center		25 GROUP
1361 Alps Road, Wayne, New Jersey	07470	
REPORT TITLE		· · · · · · · · · · · · · · · · · · ·
Polymerization Studies Leadi	ing to High-Streng	th
Chemical-Resistant Elastomer	s Serviceable at	
Temperature Extremes		
DESCRIPTIVE NOYES (Type of report and inclusive de	letee)	
Semiannual Report December 1	, 1966 - May 31,	1967
AUTHOR(5) (Lest name, first name, initial)		
Relyea, Douglas I.		
Smith, Homer P.		
Johnson, Arnold N.		
REPORT DATE	74 TOTAL NO O	F PASES 75 NO OF REFS
June 1967	27	
A. CONTRACT OR GRANT NO.	Se ORIGINATOR'	REPORT NUMBER(S)
DA19-129-AMC-487(N)		
5. PROJECT NO.		
1K024401A113	 	
c	Sb. OTHER REPO	RT NO(3) (Any ether numbers that may be assigned
	60	13.00
	00	- 12-CM
Distribution of this document is Release to DDC and CFSTI is authority	unlimíted. orized.	
1. SUPPL EMENTARY NOTES	12 SPONSORING N	
	U.S. Arm	w Natick Laboratories
	Natick. M	assachusetts 01760
\		
Rhodium compounds were found to g polymers in aqueous emulsion syst of 1,1,2-trifluorobutadiene and b version in 17 hours at 50°C. Sev ratios approaching the feed ratio examined in a preliminary way by Other catalyst and fluorinated-mo in homopolymerization and copolym chloride-modified <u>cis</u> -polybutadie prepared on a scale large enough Natick Laboratories.	veral of the copoly means of infrared proversion of the copoly of the copoly means of infrared onomer combinations merization. A number enes and one rhoding for preliminary en	ons of fluorinated dienes to , a 51:49 copolymer (Tg -48°) ared in this way in 59% con- ymers are formed with monomer e of these polymers has been and n. m. r measuremen.s. s were screened for activity be: of fluorinated sulfenyl um initiated copolymer were valuation at the U. S. Army

UNCLASSIFTED

ş

TET RORDS		L11	INK A LINK B			L	LINKC	
an a		ROLE	*1	ROLE	**	HOLE	#T	
POLYMERIZATION								
FLUORO-OLEFINS								
COPOLYMERIZATION								
TRANSITION METALS								
NOBLE METALS								
CATALYSIS								
						1		
INST	RUCTION	s				لمسيحي		
ense activity or other organization (corporate author) issuing the report. a. REPORT SECURITY CLASSIFICATION: Enter the over- il security classification of the report. Indicate whether 'Restricted Data'' is included. Marking is to be in accord nce with appropriate security regulations. b. GROUP: Automatic downgrading is specified in DoD Di- tective 5200.10 and Armed Forces Industrial Manuel. Enter the group number. Also, when applicable, show that optional narkings have been used for Group 3 and Group 4 as author- zed. REPORT TITLE: Enter the complete report title in all apital letters. Titles in all cases should be unclassified. a meaningful title carbot be selected without classifica- on, show title classification in all capitals in parenthesis nmediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of ive the inclusive dates when a specific reporting period is overed. AUTHOR(S): Enter the name(s) of author(s) as shown on in the report. Enter last name, first name, middl initial. military, show rank and branch of service. The name of ie principal author is an absolute minimum requirement. REPORT DATE: Enter the date of the report as day, onth, year, or month, year. If more than one date appears in the report, use date of publication. b. TOTAL NUMBER OF PAGES: The total page count hould follow normal pagination procedures, i.e., enter the imber of pages containing information. b. NUMBER OF REFERENCES Enter the total number of ferences cited in the report. CONTRACT OR GRANT NUMBER: If appropriate, enter e applicable number of the contract or grant under which e report was written. broject number identification, such as project number, broject number, system numbers, task number, etc. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- al report number by which the document with be idenview.	(4) (3) (3) (4) (5) (5) (4) (5) (5) (4) (5) (4) (5) (5) (4) (5) (5) (4) (5) (5) (5) (5) (4) (5) (5) (5) (5) (1) (1) (2) (2) (2) (3) (3) (3) (4) (5) (5) (5) (1) (2) (2) (3) (3) (3) (4) (5) (5) (1) (2) (2) (3) (3) (4) (5) (5) (1) (2) (2) (2) (3) (3) (2) (3) (3) (4) (5) (5) (2) (2) (2) (3) (3) (4) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	"Qualified report from "Foreign i report for "U. S. Go this report users shall "U. S. mil report dire shall reque "All distri- ified DDC "All distri- ified DDC "All distri- ified DDC "RACT" En of the doct so appear e additional s attached. highly desi unclassifie an indicati- ormation in "). Is no limit auggested	s been fun inter the point of the para ment independent of the para itary age: ctly from est throug bution of users shi is been fun itary age: ctly from est throug bution of is been fun itary age: ctly from est throug bution of the is the para is throug is a shi is been fun itary age: ctly from est throug is been fun itary age: ctly from itary age: ctl	rished to ment and of authori: agencies from DDC through ncies may DDC. Of this repo all request rnished to merce, fo price, if k TES: Use Y ACTIV. ce or labored required. t the abst paragraph military agraph, re	in report. sing sten otain cop dissemin sed." may obtain c obtain c resolution resolution in continue of the officient in continue in continue in continue in continue c of the a security of presented h of the a in continue in continue	ourer than dard statu ies of thi ation of t in copies qualified opies of i fied user: trolled. C trolled. C trolled. C trolled. C the publi itional exp ter the na consoring e address of and fac ort, even t t technical ation she lassified bostract si classified i opies of the technical exp ter the na consoring caddress of the technical exp ter the na consoring caddress of the technical exp ter the na consoring caddress of the technical exp ter the na constraint of the technical exp technical exp te	in tride ments ments s of DDC 	
d controlled by the originating activity. This number must unique to this report. . OTHER REPORT NUMBER(S): If the report has been signed any other report numbers (either $\neg y$ the originator by the sponsor), also enter this number(s).	or short p index ent selected fiers, suc tary proje key words context	whrases tha ries for cal so that no thas equip oct code na s but will b The assig	t ch ract taloging i security ment mod me, geop ie followi nment of	erize a re the report classifica lel design raphic loc ed by an i links, rul	port and Key wo ation is re- ation, tra- ration, mandication es, and w	may be us ords must equired, ade name, ay be use o of techa weights is	d as ical	

UNCLASSIFIED

Security Classification