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WHAT IS A SATISFACTORY QUADRATIC EQUATION SOLVER? 

George E. Forsythe 
1 

) 

This Symposium has dealt with provable algorithms for finding zeros 

of general polynomials, with the tacit assumption that the processes 

would be implemented on an ideal computer system capabl0 of exact arith- 

metic operations. In contrast, I should like to point out the near 

absence of algorithms to solve even a quadratic equaticn in a satisfactory 

way on actually use-i digital computer systems. The difficulties are 

partly caused by round-off error in floating-point arithmetic, but much 

more by the ever-present possibility of overflow or underflow (defined 

below). 

This note presents specifications for a satisfactory quadratic 

equation solver suggested by Professor W. Kahan of the University of 

Toronto in lectures at Stanford University in 1966. The general level 

of performance is Kahan's, but the details are mine. 

Consider the following set F = F(ß, t, m, M) of normalized floating- 

point numbers. This uses a number base ß (bases 2, 8, 10, and 16 

are in use) and a prescribed number t of significant digits. There 

nre two limiting integer exponents to and M . The set F contains 

precisely 
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TM^  is ri brief written contribution to Symposium on Constructive 
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(1) 1 + 2(ß - l)(M - m + l)ß t-1 

liumbers.    One of these is    0 .    Each other number in   F   has a unique 

representation 

(2) + N X  ßc, 

where the sign is    +    or    -,    where the integer exponent   e    satisfies 

the  inequality 

f 

(5) m < e < M, 

and where the integer significand N satisfies the normalization condition 

oo ß*'1 < N < ß1 - 1 . 

Frequently 0 is given the unique computer representation 

(5) + 0 x ß m 

See [l] for a discussion of this floating-point number system in a 

slightly different notation. 

We choose    F     to be a certain subset of    F   consisting of numbers 

not too close to overflow or underflow. 

Definition.    To be definite (and somewhat arbitrary), let 

F    = F (g, t, m, M)    be the set consisting of   C    and all numbers (2) 
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subject to (k) and also to 

(5*) m+l<e<M-l. 

Definitions.    A real number   x    is said to be in the range of   F 

if either   x = 0   or 

(6) .t-1 _m+l ß^L< |x|< (ß^-Dß M-l 

A complex number   z    is in the ran^e of   F      if both   Re(z)    and 

Im(z;    are real numbers in the range of   F    . 

One similarly defines the expression in the range of   F for real 

and complex numbers. 

The statement (in computer jargon) that a real number y suffers 

from over- or underflow is equivalent to saying that y is not in the 

range of   F . 

In terms of these concepts I now give specifications in the form 

of a commented heading in Algol 60 of what I consider to be a satisfactory 

quadratic-equation solver for use with a processor of floating-point num- 

bers  in    F(p,  t, m, M)   . 

procedure QUADRATIC    (a,  h,  c, xl, yl, x2, y2,    error); 

value    a, b, c;    real    a, b, c, xl, yl, x2, y2;    switch error; 

2 
comment    We are solving the equation   az   + bz + c = 0,    for arbitrary 

« 
input parameters    a,  b,  c    in    F    .    Where values of the output 

parameters are not specified, they are irrelevant. 
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If   a = b = c = 0,    exit to   error[l],    since all complex num- 

bers    z    satisfy the equation. 

If a = b = 0 and c / 0, exit to error[2], since no z 

satisfies the equation. 

Otherwise,  let    z     and    z      be the exact roots of the equation, 

niunbered so that    )z | < |z  |   .     (if    a = 0,    let    Z- = •  .) 

Whenever z, is in the range of F , set xl and yl to 

numbers in F close (defined below) to the real resp. imaginary 

part of    z.   . 

Whenever Zp is in the range of F , set x2 and y2 to 

numbers in   F   close to the real resp.  imaginary part of   z-  . 

Let    (L  = xl + i x (yl)   .    We require that   L  « 0    (if 

z,  = 0 ),  and otherwise (again being somewhat arbitrary) that 

U,  - Z-J < ß + 1   units in the least-significant digit of the 

significand of the floating-point representation (2) of   max (|xl|, 

|yl|)   .    To repeat this requirement in symbols,  if   entierfx] 

denotes the greatest integer     < x,    we demand that 

j^ - zj < (p + 1) x ße, 

where    e = entier[logflmax (|xl|,   |yl|) - t]  . 

We make a corresponding requirement of    5p = x2 + i x  (y2)   . 

If    z.     is not in the range of   F,    but    z^    is in the range 

of   F ,    set    x2,  y2    as above and exit to    error[3]   . 

If   z      is not In the range of    F    (including the case 

Zp = • ), but    z,     is in the range of    F ,    set   XJ., yl    as above 

and exit to    error[^]   . 
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If neither    z      nor    z      is in the range of   F,    exit to 

errorf 5]  . 

If a root    z      is in the r&nge of    F   but not in the range of 

F ,    we permit either an indication of over- or underflow via the 

appropriate exit to error, or a determination of    z.    with an 

accuracy satisfying  (?) above. 

The procedure    QUADRATIC   should make no unnecessary use of 

multiple-precision computation, but computation with   2t   significant 

digits is essential at one part of the procedure, to achieve the 

accuracy (7).    End of comment; 

The main source of practical difficulty in writing the procedure 

QUADRATIC    is the possibility of over- or underflow in many places.    What 

is actually programmed depends crucially on what the computing system 

does in case of over- or underflow.   An ideal system permits the user's 

program to regain control of the algorithm,   if the user wishes, with the 

ability to interrogate Boolean variables to learn whether there has been 

overflow, underflow,  or neither.    Though such systems are rare, they have 

been Implemented at Toronto [3] and at Stanford [2], and these systems 

S'ake programming such an algorithm as    QUADRATIC    far more satisfactory. 

Some systems merely dismiss a user's program in case of overflow. 

If a  result underflows, many systems merely set the result to   0    and 

return to the user's program without any indication.    Faced with systems 

like these, the programmer must take great pains to insure that over- or 

underflow can never occur.    These precautions make a satisfactory algorithm 

tedious to write,  lengthy to store,  and slow to execute.    One necessary 

subroutine must determine  the exponents of    a,  b,  c,    and other real 
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9999 x 10 5 = .9999 x icA9 = (l - 10   ) x IO*
9 

Here are some equations that may give trouble for this system: 

(a) ID"40*2 - 5 x lO-^z + 6 x 10-40 = 0: 

The roots are   2   and   3»    and the only danger Is thet undetected 

underflows will introduce an error. 

(b) z2 + 1010z -1=0: 

Use of the standard quadratic formula will yield   0    for the 

positive root,  instead of the correctly rounded value 

1.000 x io"10 . 

(c) lO-^z2 - 1040 + 1 = 0: 

70 -kO 
The roots are near   10       and    10      ;    use of the quadratic 

formula can easily cause overflow or underflow. 

• 

numbers local to the procedure.    This is probably most gracefully written 

in machine code. 

The ability to achieve the prescribed accuracy (7) of   ß + 1    units 

in the last place depends on the detailed properties of the floating-point 
J 

arithmetic processor.    If the prescribed accuracy is not achievable, > 

condition (7) must be relaxed as necessary.    If necessary,  one could 
# * 

also make the set    F     smaller by changing (5 ). 

As a simple illustration suppose that   ? = 10, t = U, m » -5^, M • 45 • 

Then the smallest and largest positive numbers in   F   are 

1000 x 10~5    = 10"51 

• 
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(d)    2.86^ z    - 2.864 z + 0.7160 = 0: 

Here    0.50O0    is a double root.    Evaluating the quadratic 

formula 

2.864 +V(2.86102 - (4 x 2.8A) x 0.7160 

2 x 2.864 

in single-precision rounded arithmetic yields    0.5000 + 0.05477 i# 

with an error of over    547    units in the last placr  of   0.5000 . 

It is not purely academic to make strict demands of the procedure 

QUADRATIC .    Quadratic equations arising in the course of solving deter- 

minantal equations by Muller's method [6] or Laguerre's method [5]> parti- 

cularly in connection with large matrices,  sometimes have one of the roots 

out of the range of   F ,    and yet make essential use of the root in the 

range of   F    .    The accuracy requirement (7)  is perhaps overstrict for 

equations with nearly double roots. 

I believe the specifications to be very reasonable for a basic 

process like solving a quadratic equation.    Nevertheless,  I venture to 

guess that not more than five quadratic solvers exist anywhere that meet 

the general level of the specifications.    Kahan [4] has prepared an 

algorithm (in Fortran TV for the 7094-11 under the Toronto version of 

the IBEYS operating system) which achieves the specifications for   6=2, 

t = 27, m = -155, M ^ 100  .    The error never exceeds    9/4  (= ß + l/4) 

units in tne  least-significant place of the root.    The only multiple- 

precision operations occur in the computation of   A = b,   - 4a.c., 

followed by storage of a single-precision value of   A .     (Here    a.., b., c. 

*•-/' 
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are proportional to    a,  b,  c   .)    The excess time for the double-precision 

computation is negligible in comparison with the time required to deal 

with over- and underflow. 

It is obviously relevant to ask to what extent the various computer 

algorithms presented at this Symposium for general polynomials make pro- 

vision for over- and underflow,   and also what accuracy they achieve. 

It is noteworthy that the programming of   QUADRATIC   depends crucially 

on the arithmetic properties of the computing system,  especially on its 

behavior with over- and underflow.    The practical numerical analyst with 

high standards is thus inextricably involved with the arithmetic behavior 

of his digital computer hardware and accompanying operating systems. 

Unfortunately, few numerical analysts have formulated their systems 

requirements explicitly, not to mention communicating them effectively 

to the persons who design hardware and software systems.    With existing 

computing systems a numerical analyst faces a most disagreeable dilemma— 

either 1«= writes less than satisfactory algorithms, or he undertakes the 

never-ending chore of writing basic software systems  (and perhaps even 

rebuilds the arithmetic unit).     Professor Kahan has generally taken the 

second alternative- 

I 
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