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ABSTRACT

This Technical Report supersedes TR No. 7 entitled: INVERSE

COMPUTATION FOR LONG LINES: A NON-ITERATIVE METHOD BASED ON THE

TRUE GEODESIC, which is out of print. It contains the material of

the original publication of 1950, and in addition, formulas per-

taining to long lines, derived through the years at AMS.

The solutions of the Direct and Inverse Geodetic Problem are

presented in forms which are adaptable to desk calculator and to

electronic computer.

The maximum errors in the solutions due to the omissior of

higher order terms have been determined and are presented in tables

in the Appendix. These tables will enable the user of the solutions

to decide whether the accuracy requirements can be obtained with or

without the higher order terms. These higher order terms have been

derived and are presented herein.

3



DIRECT AND INVERSE SOLUTIONS OF GEODESICS

SECTION I. GENERAL

1. Purpose and Scope. The purpose of this report is to present in

a single publication the various forms of the Direct and Inverse

Solutions of Geodesics which have been solved by the Army Map Service.

This report supersedes AMS Technical Report No. 7.

SECTION II. INTRODUCTION

In Section III of this report a procedure is given for a rigor-

ous and rapid non-iterative inverse solution of very long geodesics.

This procedure, which is in a convenient form for computation by means

of desk calculators, was presented by Mr. Emanuel M. Sodano at the

XIth General Assembly of the International Association of Geodesy and

Geophysics in Toronto, Canada in 1957. The results represent the

gradual extension and accumulated improvements of the original Army

Map Service Technical Report No. 7.

This modification contains a more stable formula for azimuths and

an alternative formula for very short lines. More general and accu-

rate formulae for both long and short lines are given herein than are

contained in Technical Report No. 7. The complete theoretical deriva-

tion starting with a rigorous modification of Helmert's(l) classical

formulas are given. The final non-iterative formulas have been ex-

tended through terms equivalent to the second, fourth and sixth powers

of the eccentricity of the spheroid, and therefore, may be shortened

according to the required accuracy.
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The solution, which requires no special purpose tables, is

accurate to At. 1-ast the tenth der-4-1 place of radians for f--

azimuths and the arc distance. If the final formulas are shortened

to the second and fourth powers of the eccentricity respectively,

the results are accurate to seven and nine decimal places of radi-

ans respectively, even for distances circumscribing the earth.

In Section IV the formulas for the solution of the Inverse

Geodetic Problem have been adapted to electronic computers. These

formulas were derived from the basic formulas of Section III. A

solution of the Direct Geodetic problem is given in Section V.

The formulas are adapted tu eloctronic computers.

SETION III.

A RIGOROUS NON-ITERATIVE PROCEDURE FOR RAPID INVERSE SOLUTION

OF VERY LONG GEODESICS 0

2. Preliminary Modification of Felmert's Iterative Solution

e - eccentricity of the spheroid -

et - second eccentricity = at• 0

bo a semi-minor axis

L - absolute difference of lonpitude on the spheroid,

between the given endnoints of the geodesic.

and 82 = parametric (or reduced) latitude of the westward
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The relationship between parametric latitude and geodetic

latitude is given by the equation tan,$ tan B(l-f) where f

is the spheroidal flatteninr.

A * difference of longitude (approximately L) on the

reduced sphere, for which a progressively better

value is found with each repetition of the follow-

ing iteration process:

Cos o" sin131 si,02. +oo.e dos,4 2 COS

si o - (sign of sin A) 4z- cos2 Jo

fo a positive radians

a in 21To - 2 sin fo Cos 1o

sin 3Jo U 3 si fo - 4 sin3 Jo

Gos,4o - (cos,81 cos 492 sin)%) f sinfo

sin2,6 .M I - cos2t6 o

Cos 2o-- (2 sinA4  sin4A I si 2 o - COs Y

cos 4o-= -1 + 2 cos 2 2a-

cos 6o- 4 cos 3 2cr - 3 cos 2c"
se . 3e2etI i,4~

A' u e 2 e' S2s e2  2/0 sin4n,0-e-r•+e "-w si / 26

B' = e '2 eSin2/• o" e2e ,_4 sin.4 &o

16 -32

C, , e 2 e'4 sin ,40

7 - AIJo - BI sin focos 20 + C sin 2fo cos 4-

Next approximation to A - C(L + T coso 0) radians. 3

After a suffiniently accurate A is found, and using the set
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o'f vlues from the last iteration, the geodetic distance (S) and

nt:.imliths (W) between the endnointrare obtained as follows:

o e ?  sin2/o 0 e,4 sinA-3 o 0+, 15e'6 7 si 6  i

e0 4 4 3e,16 sin6, °

Co " 72 s- si o 7 "

*e ,6 ,
.nr• = sin6 AJ0
r) . 16 i

[ - bo *,, + Po sin f cos 2. - Co sin 21o cos bo

+ Do sin 3f0 cos 6vr)

= a.2 COS.4 7 COS.A tjdsin A

* ... dt)•1  ! -;ir•/2 COSTA- COS, 6  tan

Coo X -I. -nd c.<?.I ranne from 00 to 180° Pnd 1800 to 360o.,

. et rely, clockvise from north.

- • -.. ... •., -r.

Lpt it te assumed tha.t the true value ofAis known (that is,

;r, wnlue that would result from an infinite number of Helmert ap-

• rnxarLations) and let this true value bo reoresented by the given

,11*).-'1,lite d-fference of lon-itude on the spheroid plus a quantity x

c3



which will be determined later.

Thus: A - (L + x)

It will be evident, later, that x is a very small positive quantity

of the order of e2 , and therefore well suited for setting up a

convergent nower ser-es in x for each expres'ion contained in the

Ifelmert procedure. For example, from the above assumed equation,

the following is derived:

cosA- cos (L + x)

* cos L cos x - sin L sin x
-(Cos ) I X2 +. .

- (sin L) (x- .. .)

Therefore: cos,. - (cos L) - (sin L) x - J(cos L) x 2 + . .

There is thus available, At the outset, a series for the true

cos A with which to beg.in the F-elmert solution and develop it in

noo:er series In x in its entirety. The process consists of sub-

stitutinr each new series into the succeeding -felmert exnressions

As renuired. 7oi convenience, the fcllowing idditional notation

will be used:

N e' e (e? + e)

a - sin8 1 sin/32

b - cos/3 1 cos/1 2

cost- - a + b cos L

c - b sin L csc
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m cot a esc

T-1 (tin(32 cos/41 - cos L sine'3 1 ) ~.sin L

(sin432 cos L - cost'3 2 tpnA1 ) sin L

"".t :,elow, in the swme sequence as the corresponding Felmert

S... "'•, is the complete set of series through Tcos/•e. The

cxtcnt cf: the on''ers of x iJ- sruch as to herrmit accuracies o. the

c ,r in ), for subsequent ar-nlication to the distance and azi-

nuth's tc* the samp de.ree of accuracy as the reference Helmert iter-

(co ) - (c sin f) x - ?.(c2 cosJ+ P sing) x2

-(f-in +)~ (C Cos I ?}c cnf P cos x),2

~~~~~ (/n~) i~re sin rsin (10o-

k - + arc sin (sin A'o cos " cos L sin

+ ÷ (c0 x + X2

?J = 2 sin f0coz Y.

)l = (sin L) (cos L) x - sin L) x 2

(n) + (o) x - 1(cl, + 3c P cot P X2

e = m - (2cP) x

ri [ + cn2 si + cm -r cos j
?(n cos 2- P s in, 'ci s2

4 cp sinl x



rI I

Cos (i 2 . ii sin~f 8m? sin cos + 81,2sin2f

A' e2  (12%N - Ph + 3h 2 ) e '2 cp) O
128

B' (2h - h 2 ) - e(e'2 cP) x
3T2

e2 (ha)

256
e2 2 e?

A,11 0  - (12PN #f- 8h + 3h 2 -) - (•6!c - he + 2e&Pf x
128 16

2

-B, s coo 2s n !: (- 8h sin cos oo.s 2 6eo, 2 P si 2 f
128

4h~a2 sinfo /- 86,2 hP sin 2 f

(hc) x
16

e2

ct sin 2f, ( h2 si [Cos f- 2h2 sn fos

- 8e' 2 hP sin2  cos 2 f+ Ee 142 sin 3  cos

= .o..=Le2(12Icf - Phc. - 8hc sin f cos +" 16 e' 2 cP sin2

128

+ f +hfc h c sill cos -2h c sin3 if Cos i

- ge'2hcP sin" e'- d 2 hcP sin2 0 cos 2 0

+ Pe i4cP? si. 3 ~Cos 19 + (16NIc 2 + 16NPf- 2he?"

- hPf + 2e' 2 c 2 Pr- hP sin Zcos + 2e' 2 p2 sin2) x

2
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D Lerivation cf the. Unknown QuantjtZ

Since the substitution iuto the felnert iteration bepan wit! an

alrebmic series representing7 the true A, the next approximat. ou tc

A must of necessity be it• equal; that is:

The neyt anrroxiimtion to A - the starting true A

or L + T Cos.90  L +1

and therefore T cos.Ao W x.

Ly replacing T coso with its corresnonding powver series, the above

equation takes the following quadratic form:

Q1 + Q2x + Q3X x

for which the reouired volution o f x to the proper order is

x - Ql(l + Q2 + Q3 + QIQ3)"

Finally, substituting for Qj, Q2 and Q3, produces the follorirp end

result:

e~c Fl2~~+ 12~ 2 N~c~f- ~h[~ h sin cos¶+lFeN I12 + 12e2

+ l•e' 2 P sir2 j+ l28ehN3cl _ ?4e 2 Nhc 2 
3

2 f

- i2 hc 2 -in ~ sf .COS sin f cos if - 61tehX 3c2up

-2h'sirA~cos ~'+(16e~e, 2 t.ý + 1djIVee',N3) c 2yj2

- 16e hII- 12 + 16e2 eh2mc 2 P sin2 f - 8e??hP rin/ 9

-lWN~hP ffSirff cos f - I~ebN3c?p P cotj

- 8e';ýusin2 fccs 2  + 128e"N3 p2j5

S3?e
2 e e2::.~fsin 2 f+ 8e'b2 sin3 fcos

12



The above rigorously developed expression is completely non-iter-

ative, since it requires only the given snhero:Ldal longitude. It

therefore nerzits a direct evaluntion of the ultimately true A (that

is, L + x), extended in this case throuph terms equivalent to the

e, and e6 order consecutively, in accordance to the accuracy

tYat may be desired. Thurtlermorer it represents the algebraic solu-

tion of the hitherto unkowm quantity x used in the power series

version of each of the intermediate Helmert expressions.

5. Determination of Geodietic Distance and Azimuths

The non-iterptive exuression that has been developed for x

suggests at once a numerical solution of distance -nd azimuths where-

in, usinjý the resulting true value of A, only a single evaluation of

FPemert's orivinal fcrmiulas is necessary. An illustrative example

b. such a prcoedure is given in pavb@gWA ¶.

On the other hand, instead of reverting to functions of the

true A, the di stance ancl azimuths themselves can be exoanded non-

iteri-ively into pover series of x with coefficients in terms of

the given srhernidal difference of longitude. This is accomplished

belcw,- hut linmited to the eL order of accuracy, since this manner

of obta:lnr~r the distance anr- azimuths through e6 would require

each coin-onent serieF to one h•rher rov.er of x thnr was necessary

for . Arain, the rprics are develo:Ted in the sario Eequence as

13



the corresponding Heirmart. expression.

A. ir (64 + 16h -3h
2) -j(e1 2ep,) x

o= 2 (Lh h') -(e' 2 cP) x

h2
o 1-28

A0 J, .1 (641 + 16hf - 31? + (Lc + hc -2.es
2cpj, x

614

P in~cs2LO- 1i (16h sin fcos f- *,?e 2p sin2  -h 2nfCOS

e'h? sin2  (he) x

("Af (1+ 16h( + 16h si J n F, 32,- 12 p ý4iny.

+ 1 F~hP sin2Y+ vŽe irfcc',f

- Cetlp si~n3ffc~ COS (2c + h c c-lo

+ bo (P) x2

in' L O 2n2 cs~r L cosA )

I.-02 (ý1 i COSL C
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I
cot 121'UCOB/q 2\ITU coq 1, CosA x4 2co C4? _ U2 s n oo.4 L co.s , ) .

~in L Csin L 2 sin2  og

The x and x2 for the above formulas of distance and azimuths

can be substituted either numerically or algebraically using, in this

case, only the first 6 term. of x for a'-uracies equivalent to the

e4 order. The algebraic substitution pives the followinf, final ex-

pressionss:

S [64f + 6he 2Nc 2j + 16h. + 16h sin f cos

- 320,2P sin2  + 64eý2c4f- 3h 2 f + (32e 2 N - 4e 2)hc 2f

- 4e2hc? sin fcos f - 5h 2 sin fcos f + 2h 2 sin3f Ccsf

+ (96e4N2 - 32e2e 2N)c 2 p f + 8e2 e',,.2 p sin2f

+ = eg2 hP sin 2  + os ,2 hp sin2 cos 2 f

- Be16P2 sin3 cos 1j

2Nc'p2 co. .Nce'2  io,/co

""- 2  U1  sin L cos .!)2  sin L cos/22

e2 hcffJ? cosA + e2 hcIJ2 siri~tcosff cos,4
+ 16 sin L co FA 16 sin L s:2

~N2cF~~o P e 2 2 cpU2 sin2 f cos/4

- sin L cTcT77 8 sin L c osJ2

f4NcfU 2 cos L cos4ý e4,2c2" I

2 sin2 L cos4 2 sin2 L

The corresnondinr coto' 2 . 1 is obtainable from the above by inter-

r.hapinFp T1 with IT 4nd A with 4.
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ThuF, pror',resfively, there have been develorcd three rigorous

methods for detervii.ning .eodetic distance and azimuths non-iter:. :lvely:

a P function of the true A, as a nower series in x, and culminated

by an exnlicit expression in essentially the riven sr.heroidal lati-

tude and longitude of the endpoints. For shorter lines, or for re-

duced accuracy on long lines, terms mpy be still further eliminated

according to the next higher nowers of e 2 , e' 2 , h and x, or equiva-

lent combinitions thereof.

6. Cther Non-Iterative Solutions

The distance and azimuths by the oripinal Helm-t method are

essentially functdons of elements in the followdrg, spherical triangle:

90'0

7' 2

wlere A- A2 .-

A 2 ''11

2 ( - -7 2 + ' 7 -

an6 A1, A2 , G'l and 0'2 are regarded as negative or n'ositive accord-

inc- to whether they are wes:t or east of the nerpendiculir arc 0(-A.

16



(Vor this specific confiruration, therefore, A annif actually rep-

resent the sum of the absnlute components and 20- the difference.)

Since Helmert's method of successive aprroximations can only

determine A first, the subsequent solution of the above spherical

trianj'le would always begin wI th A and the kncwn 4 and 4. The

present naper, however, hnc develoned not only - non-iterative ex-

rrecs~ion for A , but also indercndent roer serjes for the various

elements c.f th's srherical trianfle or functions thereof. Therefore

the combination of ways to commute quantities leedinp to the dis-

lance snd azimuths is increased considerably. In eddition, the x

for such series can be substituted either numerically or algebraic-

ally fn the mrnner shown fcr the di.stance and azimuth series in

Tl'e above notentialitY for increaning the nxirber cf non-itera-

tive solutions may be seen from the exprersions (1) below, where-in

the x and x2 of thejo series aro slgebraically eliminated.

1(i.e2jN-ee '2 '2P)~ 16C4112 *e2e 0.
16 16

22 2 02sineosy) - e2e,(csino) (1)

16 16

e ~ 2 0 2 ( a ~ i y (e ) ' d f ) - 3 e 4 ,, hl ~o?)
8 2 2

The computed value of0 is then combined with a 1 and 2

to obtain CO's, followed by%1, o, ?O', A0 , Bris C. and fir'.fl the

reodetic' distance. When adonting ,uch varied procedures fcr solving

17



I

the reference trinngle, care should b! take,. to nveiJ for.ul]tion.

v-hich lead to a veak determination of required qunut.ities. There

difficulties mpy most likely occur at extremes of latitude, 2o1 :i.

tude, or azimuth.

The non-iterative series, too, Pre functions of element,, of

a spherical triangle, but defined by I and and the

longitude L. This amounts simply to a substitution of L for A,

which results in a spherical tri.angle with l, rts corresronding as

follows:

Series Jl 1 12 L ] c U1  U2

!!elmert A6' 12 A j~cos/l. cot.~1...2  ct( 2. -1
St artin;- wi th the given ,l, •2) and L, the values of all quamtdi-

ties used in the non-iterative series may thus be solved trigono-

metrically in various orders.

At is also tro be noted that in the relrrtc'r A = (L ÷ x), if

Y••-• :snimed tue Ibe zero, L is cnsider-d to bu equl to A .

''Lc'reforo in the various nover scries in x. the eonr!-tnt term.

can rerresrmt t.he true value cf the series by simp;ly re: Inciljg

functiorns of L with . This is well illustrated by the A.

series in x in -. r',rmh and itc counternort in ' -

" The princille can well he incorprAted

ma . . . ýn on , .... ssuch a- th . one on the next --

ap-nlied to 11, 1, etc.

18



7. lNumerical 111wutration of a Sample Rolation (Intcm'ational Spheroid)

fL abcolute difference of lonritude 1060

Given B1 latitude of westwird point 20o N

B2- latitude of eastward point h5o N

tanA = 0.99663 2Q9('( tan B1 0.36274 M7b53

tan)2 W 0.29663 29966 tan R2 0.996(3 29966
o, 0 Go.9Zoo., 23275

- + + tan02A0.70F29 F1969

ai,8 - stn•X, CSAn, 0 .3401D 26(,95
sj/2= tan,&2 C ~ 16A2  0.7059, 335Th5

= 00r'2 , snCop$ 0.665(l. V3313

sir L C.9C12( 1ý,959

cos L ').27563 73558

cosj- a + 1, cos L C.0571.[ 67A3)3

-in sflr of s in L)syO.?983 3iý99

Vo j0Jv'- ra4ians 1.r,1357 63766

A = (b sin L) q ii 0.Ghil09 99269

t A2  C .LUX0 911(3

C [�Co•f. - (2o6 /) 0) ",. - .o6, .0 o 7o, h702E

D -a(O.i401lOt 12(3(') 7( ,o 715'2

-a(O.7?99 9366) ,O.iD?) 1.5307

F (3.,)6( 20 6 h9)C 0.026q2 '77622

C, sin f 2.29L,-7 4738P
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A (f(237-2388918 + ')+sin'(C3D)

cos -0.0026h7

L a * b cos 1 O.,'113" -' "'3:

oi n ~, (sign of sin rl-C)I1 0.91X&LF 09.r

T = rositive radjans 1.51567 3

.. 1-, (sin f. cos J1) .0.5 0 .1100 2 7 It6"S7

- (b sin A) & sin fo O.64019 07;I39

.= ]- cos24 0  0.589F,' ?1295

'a- (2 - q cos o) q C.?6iCV f:co 3 1

Vo- (.os2 20- - 0.5) 0.5 o.15"'1

6356911.946 + 10756-165q
- .6363251.5I0

S 107o56.1.,5q - 18.200q2 3 3-- 31

= 2.?75q'2  0.797

=- (t;;nJG2 cos~ia - COSAsirj 3 i) 1-0J74F 96397

Sln lA

- (~in~ 2 cost\ - cosf3
2*,`-i) -. !7L¶ )?9

s:.n A

-- Clokkvise from North, in qund 42K c '3-(..ciW3•
Tor $I for cot + or -, resp.

S., =Clockwire from North, in qiad

y i7T rr IV for cot + or -, resr. 29K17'18.59+Q,

1 1,!" 40+ = + I sino cos2 a - 9649L12.8V5bm.

* r• -a_ cos 4

20



8. Numerical Coefficients For Other Spheroids

The illustrative solution given in the precedinr section

contains fixed numerical coefficients which qre functions solely

of the size and shape of the International spheroid. The alrebraic

exnrespions of these coefficientr, together with their values, are

shoin below in the order of appearance in the samrle solution.

For anyr other snheroid, thesF e>xpressions can be quickly re-evalu-

ated once nnd for ll and substituted for the corresponding

Internation;,l viLues. (Note: e 2 N a flattening.)

, 1 0.99663 29966

(16e 2N2 + e' 2 ) h e' 2  = 4.9865 20649

2e' 2 " (16e 2 N2 ÷ e' 2 ) 0.40108 12630

6e2N2 "(16ei e' 2 ) * 0.799L5 93686
1602N2 " e' 2  =3.9865 20 6 h9

(16N- e' 2 ) M (16e22 + el 2 ) 237.238F 918

16 ÷ e 2 (16e 2 N2 + e02 ) . 7C519.51145

bo = 6356911.946

b £e12 = 10756.165

3bee'4 " 64 ' 13.650

b,ne'4 16 =18.200

boe4 .L 122 2.275

9. ! d -Utral •iotes on CC-,rutationil Procedures

Althoi-,. tre iiustrative solution given in

21



is primarily intended for acmcracy equivalent to the e4 order, it

easily lends itself to any required degree. This is accomrlished

simply by adding or subtracting approp:iate terms of x, H, 1, J,

and S. The extended terms are given in the latter part of Section

111, ,rra *5'l. ' nn(' 2 , respectively, For short lines or re-

duced accuracy on long lines, x on the International spheroid be-

comes merely (Af9 297) and all term, in q2 are omitted, with the

3onsequent elimination of many other supporting quantities. Simi-

Thr savings are realized for other forms of solutions presented

herein.

For short lines, the -resulting small f is computed more

accurately from sinj obtained as follows:

sin-2 +- s -
S2 2

calcrilator, 9 decioml places should be llotted to if, sin f and 3,

but only 7 decimals to their multipliers. However, when the value

22



of G is 10 or greater, decrease its decimal places accordingly and

increase those of F and E corresnondinglyý For a smaller calcula-

tor, reduce all decimals equally.

Use co-function of tan9 or cot Oc when their values are too

large.

Thus CotAn= cot Bn and tanoa - 1
+ -41-=-er cotVo

The accuracy of geodetic distances computed through the

02, e4 and e 6 order for very long geodesics is within a few meters,

centimeters and tenths of millimeters respectively. Azimuths are

good to tenths, thousandths, and hundred thousandths of a second.

Further imnrovement of results occurs for shorter lines.

SSome of the terms in the sample solution of rarr-riph 7

have been prouped for ease of computing by desk ualculator. For

electronic comuterr, hoviever, the terms are best left in series

form, thus being ideally suited to adding or removing them accord-

ing to accuracy requirements.

I0. Antipodal Points

In the various series that have been presented, I renresents a

snherical arc distance which Naries from 00 to 1800 and even to

3600 according to whether the meodetic line is very short, half

around the earth or completely around it. At these specific instan-

ces, quantities such as csc j, cot f, and P approach infinity. For

the case of the very short lines, this condition is equalized
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L , owoýver, th2 uo r.Cv. 7..*

.i., larger.

Clos r in-pection of the varin'', ir r i x stný-,dr, ne" vte

its~fla tht c~tt'1nof divm-pnen never -areveasi In the yonstr.IT

.w, A1 for Iu~e~iTae 2 . t f~35.?: ~

r~nthepo±r of the corresoondinr "et± otl

ta qnalize'i if x we-reeficett:-..

The first, eouation of .. ;i.e. ;ltos

A (L +)

true value of A could have been !eflreseni~e6, irnstead, by:

'rPe Lu an srhiJtrary ;,rwr-.'t m.: .* 1 aa> equa-l toA

.horcf~re z s cnrrer-oondmn-I' u)%::-r,:r Y. T~snei astun'-

ortcý a .rA rf V(lr .~u wm . '.1 t

Thie obvinnsýF vzJi'e t, uc~:~. ~ i h~v-

er r~ c o



where, as noted, the substitution of the Vcos o series given at

the end of F:rr.'ra'-h 3 will now be in terri)9 of Ln mid it instead

of L and x. Solving the above equation for Z (this time through

only the e4 order of accuracy) gives:

16 (,Ln) + (l6e2 Ncf - e2heff - e2hc sinj :.osf + 2e2e '2cp sin2JI)n

16(1 - e 2 Nc2 - e 2 NP)n

where the subscripts n to the parenthesis indicate that c, A h, P,

etc. are functions of Ln instead of L. This time, the denominator

of the expression cannot be algebraically divided into the numerator,

because the e 2 NPf term is relatively large for nearly antipodal lines.

With the above correction Z to an arbitrary but sufficiently

accurate value Ln, the true A of antinodal lines is essentially ob-

tained again non-iteratively, and therefore m, ore rapidly than by

nunerous individual successive approximations. Thus, also, a pre-

vious 41" longitade discrerancy noted by Mr. H. F. Rainsfo42)for a

line of aborut 1790 46'181" longitude would 1e resolved. In this con-

nection, appreciation is expressed to Mr. Rainsford for his interest

in the subject which resulted in profitable corresnondence.

SECTION IV

TAPUIAR A!TD ELECTRONIC COMPUTER ME1-1CD FOR NON-ITERATIVE

SOLUT•iON OF GEODETIC INVEHSE, RASM 0%, 20ANOtS PAPER

Due to their series-like nature, the formulas given in this seot,'.

9"t dist'rce andi azLmfth nre ;noe ar•ptnl~e to elcctrcriic coinutcr
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prorrarn'unr i a the correspondinf- coes~fornul-ls of Seadl, In.i.

0it i(unlike Lci W 12etdsisn aOI A nv

rosT-r.:ctaoni tha:t P 1 an-d Lj must be the latitude and lanoit,:nt, i.-

rootSAd yuý, of' th'!etvr point. Poere, '15 and Llare the gecr-.i h- c

latiltude -nrd longi-tude, respectively, of any point.

The di-staInce equiatilon of tldis section vas; deri-ved. by making the

r IIo-,ov-nJ n'7ibs!,t] i tti o ns i4nto the distance S equation on pg 15.

f = e2W

-2r h (There 0i2 was exn)ressed in terms of f) (1)

F = (I -c 2) cotff a on

noe e~xrersson (A - L) of thi~s metho~d -Is- equivialent to lX' on

-, : Th~-ýerscares far (A - L) vac dor.ivedi h:, ;-.ki n" te ihsubslitu-

t-jolc- (1) '- nto t'lo enuation for "x'" on ;%ave 1]1. -he coptt (

m'ir lb s oshad is as follows:

L,, L1 - eo-rar}.ic latitude raodlontco asctiv-

of ano acm!

D~,-]t)-(?hgat, ½=gorni lt id n long-t"e os'eelditudel~, res Weti olt

lati tao one vo- tnde con, ,oe ( I 
Int n at - o

CT S =aist' clucK-i 5 fromn n)rtAi nn'i J3sa~

betw,,eer. noi nts, respeetl vely.
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90 + a [ . )iff 2 Y csc

r ~2J
+ ( +f2V f+ f's tfcof+ 2 c2i[ .f~~ - T--- 7~fof tf]

"* a? L sins cos]J

2 Sf]ncs3i

+~~~ ~2[~)+~ ifo~ coty if o

"+ a m 2y CSC{ + f2 slnfco s2]

L) f~)af +.f I

27,



where: ao, b. - semi-major and semi-minor axes, respectively, of

srheroid

f - sphereidal flatteninp - (I - a.)
a0

P - number of sccond! in one radian - 206 ,26(.t0(.2'5

L - (L2-Ll) or (L2-LI) * [sign opposite of (L2-LI) ) 360O

mTF-e . L has an absolute value c or >lCO°; according to

vhetier the shorter or longer geodetic arc is required. olovevers

for vieridional arce (ILl 00 or 1P00 or 3600) use either L but

eonsiner Jt as (+) f'r the shorter and (-) f!r the lonrer Prc,

tAn tan 9 (1-f) vwhen)RIS L150 or cotA - cot B when

-sinl1 s-n$42

I- Vcos 14 coa42

COT T -= a * b !os L

sir, = - V(sin L cos9) 2 + (sinA coOl - sinA cos4 cos L)'s

The 'Jin ol sin i is (4) or (-) accordinFr to whether the shorter "

c the ] i~errc is rec.iired. 'he quantity under the radicsl andf

Jts rict krt be onmnu!ed by fi-atin.- d•cimal to obtain sin j to

L- for !Jhort. lines.

/ r,onitive ralian•z (obtain reference an-lo frrn sin

cr cos h• " . s smaller abvolute value.)

c (1) s i r L) F ir.



cotegl1 2  (tan,8 2 QQS~l - cosA sin/di) sinA Cyrdt for
%meridionnl

ct021- (CO5 A Vin4 2d - tanx, coco.d 2 ) ! sin.~ A arcs

If cot. a I > 1, divide result into 1 to ci tain tanoc instead.

Quadrant of (ýia(rant of

Sirfl ta 'r o (Cot) %~ o cot)

L 0( 1-? ~- _____

+ + Il

+ 1

1V
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2I

+ a [(f+r2+rf3)siflj + (-]f2-r3)j 2 c9C~f+ lf cot, C

+ ~ [f f~I~ -L (?f --f jf3)incosf

+ (i 2 f)cot~j - If 3 y3- ~i3Ict]

+ a2 [(_If 2-f 3)sifliOI cos' +10 3 csc2 l. +

M2 m~(+ I f2 +. 1 f 3)jr+ f 2 + lf 3) sinf COS;

+ (If 2 _ 7 f3) ~ct+~ 1 f2 - -1f3)sinfo 3f

* rjCos2f + 1313 + 3~ f3f Jcot2f]

4'am[ (If 2 
, Th 3)jf cscfT + (i-f2 + f3)sjnf'cos2fT

3~ f' 3fcopf - 2f 3p- csc cotf0

+ a2 m 2f3'- i~f3sinf cosy - ;f 3, 3 cac~f + f 3sin3.T cosf

+2 2~f csc .ot SfIi4

+ am3  - 3 f3j + 3 r3  cot,~- 1 3~ Oifcosl

2~ f 31 sif cotfl- Af 3 1co52 + r3ýO si If] o2'

M3 12 f3 +n3~ fo3 sin

77 a3 ti -3r fi~ f3 sn3

30oct21



ii

The maximum values for the 03 term of have been found for
bo

various lengths of arc and are recorded in Appendix I, Part A.

it:Jl., the Pc,ý.rrc:i of' thle sere . mny be extended by

aO Jinr' the f 3 term. The series t) en L-ecories:

-~ ~ a(+~3! a[(-Af?-f3)siP{f+ (_-2-4f3)fcscj

ý.r F tCYico tf + M[( 5 f2..3f 3){ + (I~f2+:ý3)sr /cop

C (f 2 af 3 •f coto - *_r3j 3  3 f£ 3cct
7

+M2 r31 f3 7f3 sil. +r 23rt 34 ~ f C

-+5fc~~ +~ if~j. (7.an)s co + 5 f3 cotn'. cs

+ [ffc~- 3f 4iýosl_7f- f 3 fC s cf 0 tI f 3inco2j

"+ f3siny] +~ ~Y+'fsfCosf + rJ3cs21
IfI

The f3 term of the above series has been maximized and this

value is shown in Appendix I, Part A. The error in the azimuth c(

which would result from the omission of the f3 term of hae

been recorded in Appendix I1 Part A.
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In the case of' short geodetic lineq (lines shorter than 16O

niiles) w~hen the values of IT, A-L, etc. of the serie'- above becorv

sm-all, it is necersary to use floating point notstion in ordier to

insure greater :1ecirril accuracy.

The altern, tive formul~as for sine, coto~1 ..2 and cot ?...l, which

are pi ven below are rccormnended for short. liines. (They may also be

used for long lines).

sinf= . 1JsiriL cos$ 2 )
2 - Lsin(A2-/l) I 200qsAJrlAlsifl? L j

cotCKI...p [sin(0 2 -41) - coqoý sir,61  - cos A,)
CS2sin A

cot a2- _____2 _ - co4A siry 4 (1 - c

where 42~ + ýnsn~l-sr2 -LB2 rLl-i4I2
.2 f . ( n 6 1 s 6 1 2 ) 2

~'nd n

(aansi P2 ls r~vr1 de fi nci ':ire -Ue....rhi p ht r,, Cf 1 4, 4 t

ELECT'RONIC CCXF2Y 7= .CQRS.JlN9

~ 2ui~i~'~ §.v:n T c U ~ r'~ i~rc.~it~

Ir C,, IT n2 C2' Cle'c

i t ir~ t r3~- 1 r c u; oW. ro r~ nc. c i .des cn



-1,(, uccm'uitaýo~i formn for UV..s method is as follovis-

f~vefl: Bl, L) =-~~rej latitude and lon~atude, respectav

of any point 1.

0( S - azimuth clockwise from north, and distance,

respectively, to any otheýr roint 2.

iceqt~ired: B2 , L2 and 0<2-1. (Latitudes and longcito,4s connrd'rý:

H+ north and east, (-) south and west).

+ 'al 012 Sinf.]

+ ~ ~ ' n.[ ~'+ ý 2 sinf, cosf1

+ al1  ,I sinfS cos~}

2 r).)elb; 1- I~'L i OS-ou
2 :

L 7)4 67

3 2 ~~

+ ;jm 3 rsinh, + Cofsf 5e sns -''

44

+ al 3f

T7-
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where: ao, bo - semi-major and semi-minor axes, respectively, of

sý)herol d

f = pheroidail flattening (I -

a.

e,2  second eccentricity squared (a2 - b2 ) a b
0 0 . 0

p naunber of seconds in one radians - 206,264.80625

- (S b.) radians

tans. -= (tan B) (1-f) whenj IR1 1,° or coot ot= B whenS( 1 •4f)

cos/ = cos0 l 0 si-n(_-2

g - cos4 1 cosa(1 _2

a,2 (1 + e2sin2,z) (sin2 1 1 cosfs+ g sin4 1 sin

= ( + (12 2,) .21240 )

sir 2 oind Cos s•o no

CO/2=+ Nrl\COS,61) +~ o;7.1 s-~ -g 0 ~

The quartity under the radical and its root must be z.',;-b'.

- 9= 2I|( -c;~ rv ~ -'

os,2 or c .o , whichever has the

smaller absolute value.

Obtain tan (or cot) of B 2 from its relation to tan (or cot) of62.

Obtain B2 , which ranges from -900 through +900 and takes the sign

of its tan (or cot).

cotc. 2 . 1 = (coso41_ 2 cos " tanAl sin fo) .sin-1-2
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When coto(_2 . 1>1, dlvide result into 1 to obtain tano(2.1 instead.

(: >it :i~e: -Ir.• t tc- ':n.c for i'er.cdona]. rcs)

Quadrant of GC2-I

S.... and cot (or tan) of (2_1 is (+) or (J)

If (0•.A.2  1800) "02-1 is in Quad. III or TV, respectively.

.... and cot (or tan) of 2 - 1 is (+) or (-)

If ( 10 i2 3 0 2-1 is in Quad. I or II, respectively.

or meridional P rcs, enter the above table with the sign of thJ

rumerator of cot 02-1, and reference angle o J
cot A (cot ITO cosA. - cosc<1 . 2 sinA) ý sino<1. 2

"lhen Icot A >1, divide result into 1 to ottain tan A instead.

, -" - ... . r uIeri~ii.'ni trc")

Quadrant and Sign ofA
When- isin Quqd.I When -0 is in Quad.III

or 2 ?1800 included) or 171 N1OO P-_ludad)

W0o(l.1-2 S1800) I.. then if cot (or ... then if cot (or

tan) ofAis (+) or f- tan) of A is (+) or (-
X is in Quad. - or I!; A is in Quad. III or 11,'

r__peetivej.-° rezec tive iy•.
and
an4 ~... then if cot (or ... then if cot (or

(800< '1-2 <3600 tan)ofAis (+) or (-) tan) ofAis (+) or

the assoc. an'le is the assoc. anile is
in Ouad. III or IV, in Quad. I or 1.1,
respectively, and A resn-ectiveLy, andA
is obtained by sub- is obtained by sub-
trating 360° tracting 3606n
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For meridional arcs, enter the above table with the sign

of1 the nuuerator of coth, and reference angle 00.

If L21) 1800, modify 12 by adding or subtracting 3600 1

according to whether it is initielly negative or positive.J

1?. F-tension &f 'erjes of' the Direct Om'erW-ptic Problem For Greater~cuu

The e' 6 term of the preceding Jo series has been derived and

numerically maximized in order to determine the error in the o

saries which would rsult from an omission of the e,6 term. This

maximum value is given in A--er-ix i, !".

Likewise, the (L -A series has been extended to include the

f3 term. A maximum numerical value is given in - ,

The errors which the omission of the e06 term of f. and the i3

term of (li-- ) could finally produce in B2, L2 and a2-1 are also
Pcos 440

shown in Apnrondi-H'T, Part A.

The e' 6 term of the A series is as follows:

[e15 term of f f al 3 [_. 2'6 sinfscos 2  + 5 2 16 sinrsJ

+ al2ml[-4' e' 6 fs - I e' 6 fg cos2V - 3,6 sinf, cosj,

L 36 s]
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'. ~ 39e6j~"cosf4  + 5e,6r1f 8 d +e
6 

' '

322
29e6j2 sincs COS e'6 sinf o 2 $

3 . 2e sisc S' - 16~

M in
3  L5. e 1'6f, + L5 ,l6f, nos'j? - f e '6f cosS256 1283 32

1 Ae 6f 2 sini `5 0 ~ 6 sinf cs
32 256

5 92 6 si co 3  2 6 3ins~ eos5J

"* a 1
2t ý[1 6 06 sinfs cosij

" ~ ~ 3 aet? !L6snsf

"+ ai+e'3e cs,, 36 sinffs cos;j

3+ 2 [ e t
128 + n e o f + '

s..Li IT- ~ siny, cosf

2tjý,6 L ~f37t



In the above equation t - sin2 Ai and all other quantities

are the sario as defined on page 33.

As is approaches 1800, each of the two terms vontaininr

cis i1n the series above Anproaches infinity. However, they may

be combined into a single finite term as follows:

81ni (~'!2cos ~ su ) +42 t1 le~- i 2 cotcq)

Sy4e'6 •2 cosfs) where Y- (sin2, 1 sinfs - g sinAl A.)S3 2 'o

The series for (-L.) extended through the f3 term is as

follows:

GL)~ + al[( 2I + 2f3) sinfs

+ 3f4 ~2 + f 3)j- + (_ 3 ~f2 3)sinf, o,

+ al 2 [ f sin./s cosfS]osl

+ aim1 [ f- f3 s 4 ~ i s.f 3 J 3SsC 0 ff

+I4f3sin. co2fr

382 [ - + co
ml' n co 3 1 + l~f3i1~c l
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