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FOREWORD 

This report represents one phase of a general study of the 
interaction of ions with fluid flow under Contract l>k-31-12k- 
AR0-I)-2U6,  U. S. Army Research Office-Durham, with Dr. Henry R. 
Velkoff serving as principal investigator. 

The authors wish to thank E. Pejack for his assistance in 
various phases of the work reported herein. 
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ABSTRACT 

Unusually high pressure drops and flow distortions were 
0 observed in a previous experimental program Involving laminar flow 

of a gas in a channel under the action of a corona discharge in a 
transverse electric field. A hypothesis postulated by Velkoff to 
«explain the phenomenon is extended to the case of laminar bound- 

ary layer flow over a flat plate. The problem on hand is f jund to 
be analogous to the laminar boundary layer flow in a transverse 
magnetic field. Three other mechanisms proposed to interpret the 

J above experimental findings are also investigated. The increase 
in viscosity of a gas because of the ions is not likely and, 
because of the smallness of ion density, the effect of ion- 

r neutral particle interactions on the flow is believed to be small. 
One possible mechanism which may explain the phenomenon is the 
secondary flow resulting from electro-hydrodynamic instability. 
Fit is found theoretically that Taylor vortices can be induced 

in a quiescent fluid between two concentric cylinders under the 
action of a corona discharge. The Taylor Number of the problem 
is defined and shown to represent the ratio of the destabilizing 

n electrostatic force to the stabilizing viscous force. It is also 
found that Goertler vortices can occur in laminar boundary layer 
over a flat plate provided the applied electric field and the 
charge density distribution satisfy the condition for instability. 
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INTRODUCTION AND SUMMARY 

In a previous exploratory investigation into the effects of ioniza- 
tion on the gas flow in a channel, interesting results were observed. 
Complete details of that invertigation may be found by consulting refer- 
ence 1, Here we shall only briefly describe these observations. 

Air was passed through a J^--inch-diameter pipe in which a O.OOU- 
inch-diameter wire was located concentrically. A high voltage applied 
to the wire gave rise to corona discharge which provided ions in the air 
stream. Under the action of the field, pressure drops were observed to 
be doubled, velocity profile distorted, and heat transfer doubled. Sim- 
ilar phenomenon was also observed in a 5/8-inch x 5-inch x 12-foot-long 
rectangular channel in which ten parallel thin wires were located longi- 
tudinally on the center plane of the channel. 

In an attempt to explain the nature of the phenomenon, a hypothesis 
was PU+-- forth by Velkoff in Reference 2. According to this hypothesis, 
an electric field component in the direction opposite to the flow is 
induced, giving rise to a retarding electrostatic body force. The induced 
field was found to be 

ind    K 

where u is the flow velocity and K is the ion mobility in the gas under 
consideration. Application of this hypothesis to channel flows was 
carried out in great detail in Reference 2. The close agreement of 
theoretical values predicted by the hypothesis with test data aroused 
our interest in extending the investigation to external flows. 

The first part of this report describes an analysis extending the 
above hypothesis to the case of laminar boundary layer over a flat plate. 
An interesting analogy to magnetohydrodynamics was found for the case 
where the charge density is constant. 

In the remaining parts of this report, efforts are directed toward 
the investigation of a few mechanisms proposed to account for the phenom- 
enon. The second part presents a brief study of the viscosity of a gas 
mixtrue consisting of ions and neutral particles. Because of insuffi- 
cient knowledge of an exact expression for the viscosity uf ion gas at 
room temperature, the discussion was based on the data obtained for the 
constituent gases at high temperature. 

In Section III, the flow is considered au a two-fluid model. The 
interaction between ions and neutral particles is taken into account. 
For the case where the longitudinal velocity component of ions is 
neglected, the analysis resulted in an equation of motion similar to the 

■• 
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one obtained by Velkoff in Reference 2, For the case with non-vanishing 
longitudinal velocity component of ions, the solution is rather compli- 
cated and the effect of the ions on the flow remains to be determined. 

The last part of this report is devoted to the study of electro- 
hydrodynamic instability. It was found that under certain assumptions 
the quiescent fluid between two concentric cylindrical electrodes under 
the action of a transverse filed is governed by the same eigenvalue 
equation as in the case of couette flow between two rotating cylinders, 
A similar relation exists between the case of fluid at rest between two 
infinite parallel plates under the action of a transverse electric field 
and that of classical thermal convection. It has also been shown that 
Groertler vortices can occur in the boundary layer over a flat plate under 
the action of a transverse electric field. 
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I, LAMINAR BOUNDARY LAYER OVER A FLAT PLATE IN A 
TRANSVERSE ELECTRIC FIELD 

1.1 Governing Equations 

In this section we study the effect of a transverse electric field 
on laminar boundary layer over a flat plate. The geometrical, configura- 
tion of the problem is shown in Fig. 1. Let the yz-plane be tauten as 
the plane of the boundary layer How with z axis along the plate, and 
the y axis perpendicular to the plane wall. If p denotes the density 
and u the viscosity of the fluid, the boundary layer equation for incom- 
pressible flow in the absence of an external, electric field is3 

dw    idw, s H c^w 

cV   cfe  p 3y2 
(l.l) 

Now suppose the fluid is positively charged through the action of 
corona discharge or the injection of positive ions from external sources. 
The charge density in fluid under the action of a transverse electric 
field (Ey), is pc (charge per unit volume). By the hypothesis postulated 
by Velkoff, an electric field (Ez) opposing the flow is induced and is 
given by 

Ez = - Ü Z    K 
(1.2) 

Thus the contribution of the transverse electric field to fluid flow is 
in the form of a retarding electrostatic force. This force is found to 
be 

o«E„ = - p„ iL Kc z    Mc j? (1.3) 

Incorporating this force in the boundary layer equation (l.l), we obtain 
a modified boundary layer equation for the case under consideration 

^L +     t^L - ^^w      pcw 

cV cfe      pcV2      pk (l.M 

This equation together with the continuity equation 

<V  öz 
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Positive electrode 

^ 

Negative electrode 

Fig. 1 - Sketch of boundary layer on a flat plate at zero incidence 
under the action of a transverse electric field 



describe the boundary layer flow over a flat plate under the action of 
a transverse electric field. 

- 

1,2   Constant Charge Denpity 

The charge density, pc, is related to the distribution of electric 
field through the electrostatic equation 

„     «     Pc 

and is, in general, a function of position. This renders Eq. (l.U) dif- 
ficult to solve. To obtain an  idea of what effects the additional term, 
-Pc/p w/k, will have on the boundary layer, let us simplify the problem 
by assuming that the charge density is constant.* Under this assumption, 
Eq, (l.U) can be rewritten as 

v| + w|ta..v0 (1.5) 

where oc = pc/pK is a constant and v = ^/p is the kinematic viscosity of 
tne fluid, 

1.2,1 Analogy to MHD 

The form of Eq, (1,5) is similar to that obtained for the flow 
of an electrically conducting fluid over a flat plate in the presence of 
a transverse magnetic field fixed relative to the plate. The equation, 
as was derived by Rossow4 is 

V^ + W¥+pHoWSSV"^ (l-6) 

9 = electrical conductivity of the fluid 

M* = permeability of the fluid 

where 

and 

Ho = externally applied constant magnetic field. 

By comparison, we see that the constant, Pc/K, corresponds to 0n'2 HQ2 

in MHD 

* Sec. (1,3) shows that this is a good approximation. 

5 
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1.2.2 Rossow's solution 

Equation (1.6) was first solved by Rossow, He developed an 
approximate solution. Following Rossow, Eq. (1.5) is solved as follows, 

Let us introduce the transformation 

11 ^v. 
and define the stream function as 

♦ ■ ^oo vz tfo + -Jmz fi + mz fa + (mz)3/^ fa + (mz)2 t*  + —] 

where w« is the upstream velocity, 

cc        Pc m = — ■ and fo, fi, fa, fa, f* are functions of T) only. 
Woo      PKw0 «00 H1*"« 

Frcxn the definition of stream function,  i.e., w ■ ^/öy and v ■ cty/dz, 
v, w,  dw/öy, bu/bz and ö^w/äy2 can all be expressed in terms of f's and 
T|,    This enables Eq.  (1.5) to be expressed in powers of mz.    Equating 
the coefficients of equal powers of mz on both sides of the equation, a 
set of ordinary differential equations for the f's are obtained: 

(a) 2fo,,, = - fo"fo 

(b) 2^'" -  fo'fi'  - fofi" - 2fxfoH 

(c) 2fa,M » 2^^'  + fi'fi*  - fofa" - fifi" - 3fafo" + 2^' 

(d) 2fa,M ■ Sfo'fa* + Sfa'fi' - fofa" - Zfifa" - 3fafi" - Ufsfo" + 2fx' 

(e) 2^"' = l+fQ1^'  + Sfi'f^' +2f^,f^,   + fs'^'  -^4" 

- r-fifa" - 3fafa" - ktjx*  - 5f4f0" + 2f2' 

The boundary conditions v=w =0at y = 0 and v = ^7/äy = 0 
at y ■ », when written in terms of f's and T), assume the form 

fo = f 1 ■ fa = f 3 = f 4 = — = 0 at T) = 0 

fo' ■ fi' ■ fa' ■ fa' ■ U1  — = 0 at T) = 0 

fo' = 1, fa' = - 1  at T) = 00 

fi' ■ fa' ■ fV = fs' = — = 0 at T) = * 

6 
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From the boundary conditions and Eqs,  (b) and (d), fi and fa can be taken 
to be zero throughout the flow field.    Equations (c) and (e) then become 

(C)    fa"" - fo'fs' - i Vt'  - | Vo" + 'o* > 

(e«)   f*"" ■ »o'f^ + fa'fa* - i V^' - i fgf«" - J f4f0" + fa'. 
1 2 2- 

Equation (a) Is the Blaslus equation and Eq. (c') was solved numerically 
using Runge-Kutta method. The solutions were tabulated In Reference k 
and are reproduced In Appendix I. 

1.2,3 Interpretation of mz 

1 

pKw,,,   UK  pwji 

We readily recognize that pw,Ji/n is the Reynolds number. It is obvious 
that pcli2/mc is a new non-dimensional parameter and is called the charge 
number, Npc (Ref. 2), Now, 

_ Cte _ Pcz _ Pcz2   M 

w,,,,  pKw^  KM   PW^ 

■< ■-. .. * 

It should be noted that in the above analysis mz plays the role 
of a controlling parameter in the flow. To investigate its physical 
significance, let us non-dlmensionaliztj Eq, (1.5) by introducing the 
following dimensionless variables 

z=r   •   Yss>/^^ > I 
V = Re —  ,  w = — , 

where L is a characteristic length and Re » wosL/v is the Reynolds number. 
In terms of these non-dimensional variables Eq.  (1.5) becomes 

v ^ + w ^ = lä * — w   • (1-7) 1 <fr äZ      dlf2      pKw» 

Since all other quantities in the above equation are non-dimensional, the 
quantity pcL/pKW must also be non-dimensional and can be considered as 
the product of two non-dimensional parameters 

PcL   PcL2 , n 



■^^ 

I 
If we let Rez = pw^/n and NpcZ - pcz

a/^K, then mz is the product of 

Rez and NpcZ. Further analysis2 indicates that the charge number is 
physically the ratio of the electrostatic force to the viscous force. 
Meanwhile, the Reynolds number, Re, is known to represent the ratio of 
the inertia force to the viscous force. Thus, mz measures the ratio of 
the electrostatic force to the inertia force. 

by 

1,2,k    Velocity profile 

To a first approximation, the velocity distribution is given 

w = w^ (f0' +nizf2') (1.8) 

Divided through by WQ, the free stream velocity, i.e., the velocity at 
the edge of the boundary layer, on both sides of the equation, Eq.  (1.8) 
becomes 

w0  w0 

In Fig. 2, W/WQ is plotted against TJ for several values of mz. 
The figure Indicates that increase in mz tends to retard the local flow. 
From the results of the analysis it is predicted that further increase 
in mz will decrease the velocity gradient at the wall, (^w/^l^-o • 
When (^w/^l^-o reaches zero, corresponding to mz = 0.372, separation 
will occur. 

If the foregoing theory is applicable to this flow, it may be 
concluded that increase in electric field will finally cause separation, 

1,2,5 Variation of boundary layer thickness 

If it is desired to define the boundary layer thickness as 
that distince for which 

~ = 0,99, w0 

then 

5  la 
z  Rez 

where T)g is the value of T) evaluated at y = 6, In Fig, 3> the ratio 
8/z is plotted against Rez, For a given value of z, the boundary layer 
thickness, 8, increases with increase in m. In other words, the electric 
field tends to thicken the boundary layer. This can also be seen from 
Fig, 2. 

b 
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Flg. 2 - Velocity distribution on a flat plate 
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Rez 

10* 

Fig. 3 - .undary layer thickness on a flat plate at zero incidence 
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1,2,6 Local coefficient of skin friction, Cf, 

The local coefficient of skin friction is defined as 

c Ts 
f   1   2 

2PWco 

where i,, ■ n(öw/3y)s is the shear stress on the surface. Using Eq, (l,8) 
wo obtain for Cf the expression 

Cf = T^- {0.6kk -  1.788 mz + —) 
vRez 

This equation is plotted in Fig. ^4 for several values of mz. In terms 
of the charge number, Cf can be written as 

m OM _ „i^ze^        + __. 
f  T^T  (Rez)3^  pc2 

The variation of Cf with the charge number is plotted in Fig. 5« It is 
seen that for a given Rez, Cf decreases lirearly with increasing charge 
number. Therefore, the application of an electric field reduces the skin 
friction,. 

1,3 Variable Charge Density 

Consider that ions in the fluid are provided by a corona discharge. 
For the simple electrode configuration of two parallel plates (a plane 
of fine wires is necessary to actually get the corona) shown in Fig, 1, 
the following expression for charge density distribution is obtained 
from Stuetzer's solution5,assuming the grounded plate is far away from 
the region of intense corona, 

Pn   = 
L2KA(h-y)J    [_2KAhJ \  h/ 

where 

I = current, 

A ■ surface area of the plate, 

E = permittivity, 

h = distance between plates. 

11 
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Assume  that y/h < < 1, i.e., h > > 6, then 

^l 
'/. 
«1 +i^--. 

Substituting this and pc into Eq. (l.U) and using Rossow's method, we 
finally obtain 

2fo"" = - fo"fo • 

fa"" ■ fo'^a' - ? fofa" - | fafo" + fo' ' 

Un*  = 2f0f4
, + faf«' - i fof*" - | fafa" - | frfo" 

+ fa' + mh Rez 0 f o . 

Comparing these equations with Eqs, (a), (c1), and (e"), it is found 
that under the assumption y/h < < 1, only f*  differs from the case of 
constant charge density. This indicates that for this particular elec- 
trode configuration the charge density in the boundary layer may be 
assumed to be constant. 

Lh 



II. THE EFFECT OF IONIZATION ON VISCOSITY 

2,1 Assumptions 

In an attempt to determine the effect of ions on the viscosity of 
oxygen gas, we consider a gas mixture of two components, neutral oxygen 
molecules and positive, singly ionized oxygen ions. To facilitate the 
analyst , the following assumptions are made: 

(a) The mass of neutral oxygen molecules is approxi- 
mately equal to that of oxygen ions. 

(b) Collisions between neutral molecules as well as 
those between neutral molecules and ions are of 
elastic rigid sphere type. 

(c) Interactions between ions follow the inverse- 
square law. 

(d) The electric field intensity is small and can 
be neglected. 

2,2 The Viscosity for a Mixture of Neutral Molecules and Ions 

The analysis is based on the general expression for the first 
approximation to the coefficient of viscosity for a mixture of two gases 
given by Chapman and Cowling:6 

Mi+ ^" 
*  +  *r :; '   f —: — -—  +   

[MI)I inali 2[ux]1[u2]i      3EMiMa 

where 

[n]i ■ first approximation to the viscosity of mixture, 

LkiJi ■ first approximation to the viscosity of neutral oxygen, 

L^aJi ■ first approximation to the viscosity of ions, 

N n = number density of neutral molecules, 

n(i) = number density of ions. 

15 
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nN n(i) ni2' ^ry ' n21 = — ' 
N 
m » mass of neutral molecules, 

B(i) mass of ions, 

mN 
Mi ■■ "r rrr = reduced mass of neutral molecules, 

mN + m(i) 

m(i) 
Ms ■ — r-r = reduced mass of ions , 

m^ m\i) 

and A and E are constants determined by the law of interaction between 
molecules. It follows from assumption (a), that 

H = | = 1  and  *. - Jfe - i . 

Equation (2.1) then becomes 

]i .    ^3      ;    x ^3 / ^    }^x    2[Mg]l      ^3      ' 
(|.A)    na^f^A) E *A 

[nk NJ   - /—,   V   , /—t ^J1        ^x ^ « (2.2) 
nial 

[^i]l       [Mali   ' 2[^i]1[Me]i ' 3E 

Under assumption (b), it is found that 

i/kmTY^    1 
2\ny   (dN 

where 

A. i   and   E. H«. ^_ 2 . (2.3, 

k = Boltzmann constant. 

N d ■ diameter of neutral molecules , 

and 

ra = mass of the molecules and T is temperature . 

Substitution for A from Eq. (2.3) into Eq. (2.2) gives 

1L 
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[MJI = 

16 16 E 
— ni2 + — n^i + -7—^— 
15 15 ShiJi 2[MB]I  15 

16 16 
(2JO 

2.3 Evaluation of [MIJI and [naJi 

I 
f 

On the basis or the elastic rigid spnere model, the hirst 
approximation to the viscosity of neutral oxygen gas is found to be 

LMIJJ (2.5) 

It should be noted that all the above expressions are obtained by 
taking into consideration binary collisions only. In the evaluation of 
the viscosity of ions, difficulty arises because of the inverse-cquare 
law of electrostatic forces. Since these forces decrease with distance 
much more slowly than the ordinary forces of interaction, a molecule at 
a large distance from a given molecule will also be under the electro- 
static repulsion of many other molecules. Hence, the distant collision 
is not binary but multiple. For the analysis based on the binary colli- 
sion to be applicable, we can only consider the special case in which the 
temperature is so high and the number density so low that it is suffi- 
cient to consider binary collisions. This condition is satisfied at 
600öoK. According to Chapman and Cowling6 the first approximation to the 
coefficient of viscosity, in this case, is 

tteJj ■f^^ (2) (2.6) 

with A3(2) given by 

A-(2) = 2 }ln (l+v01
2) ^GLL 

1 + v 01 
2   , 

where 

ifdkT 

and 

d = mean distance between neighboring pairs of molecules. 

e ■ electronic charge , 
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2,k   A Numerical Example 

To compare the values for [ni]i and [Malli let us evaluate them at 
T ■ 6000oK. Assume the number density na of ions is about 1015 cm"3 so 
that Eq. (2.6) applies. For this case, 

d = n -:L/3« 10-5 cm , 

dkT   IQ-5 x 1.38 x 10-1G x 6000 ^  0 
e2        2.31 x 10-19 

VO1
2
 - (U x 35.8)2 = 2.05 x 10* , 

^(2) = 2 ]ln (1 + 2.05 x 104) 2.05x10* L17 , 
1 + 2.05 x 104\ 

and 

Luaüi « 7.1 x 10- cm sec. 

For i-'-utral oxygen molecules at T = 6000<,K, Eq. (2.5) gives 

1 

I 

I 

i 
[ui]x»0.9 x 10-3 gm/cm sec. 

[ui]i arid [[JL2I1  thus obtained may be substituted in Eq. (2.U) to 
get [M]I for given values of n^ and nvi). However, without going through 
the calculation, we may draw the conclusion stated in the next section. 

2.5 Conclusion and Discussion 

From the above calculation, we see that viscosity of ions is about 
two orders of magnitude smaller than neutral molecules at T = 6000oK. 
This indicates that the viscosity of the mixture is smaller than the 
original oxygen gas of neutral molecules. This conclusion is justified 
by the fact that in order for the mixture to have a maximum viscosity, 
the viscosity of the two pure components must be nearly equal.7 

As was pointed out previously, Eq. (2.5) is valid only when the 
condition is such that it is sufficient to consider only binary colli- 
sions. The conclusion made above is, strictly speaking, only valid for 
this specific case. However, unless the ion gas possesses such a peculiar 
property that its viscosity becomes greater than that of its parent gas 
at lower temperature, we may conclude from the investigation that the 
presence of ions intends to make the viscosity of the mixture smaller 
than the original gas. 

18 
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A question now arises:    Can we draw the same conclusion even in the 
presence of a strong electric field?    So far we do not have sufficient 
phyctcal reasoning to make the prediction, nor are we able to find 
related references in the literature.    It appears to be an interesting 
problem deserving further investigation. 

t 
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III.  TWO-FLUID MODEL 

This section describes an attempt to consider the flow as consisting 
of two interacting streams, the neutral air and the ion gas. For channel 
flow, the neutral gas has only longitudinal velocity, while the latter is 
assumed to have longitudinal as well as transverse velocity components. 
As we recall in section I, the electrostatic force was considered to act 
on the fluid as a whole. It was assumed that there was no transverse 
velocity component in the flow. However, under the action of an exter- 
nally applied Iransverse electric field, ions do possess transverse 
velocity. Thus, it appears logical to consider the flow as the inter- 
action of two streams of fluid. 

r 

3.1 Governing Equations 

Instead of including electrostatic force term on the right-hand 
side of the equation of motion for the entire fluid, we have now to write 
down a separate set of momentum equations for each species of the fluid, 
taking into account the change of momentum due to collisions between 
neutral particles and ions. Such equations can be derived from the 
Boltzmann equation. The detailed derivation may be found in books on 
plasma dynamics. Reference 8, for example. Here we give only the final 
expression.  If the external forces consist of an electric field anrl a 
magnetic field, the momentum equation for the s^h charged species is 
found to be 

^(S) (s)  ^(S) i      a^OO   q(s) M 

dxi        n(s)m(s) dxi M        *        ljk    J        k 

.(s) 
- w   rvN - v (s)i      * Q      (s) 
" vsnLvl   - V 'J     -^TT   coll (3.1) 

where 

;; 

„00 = 

m (s) . 

'U 
,U) . 

i^h velocity component of neutral particles, 

i     velocity component  for the s^ species, 

number density of the s       species, 

macs of (»articlüs  of the ^'l species, 

pressure tensor  I'or Ui>'  r.      species 

- nC^m^kv^^v (=)>  , 
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V^\s)  = ith peculiar velocity component of the s^1  species 
relative to its own mean velocity, 

q^s/ ■ charge of the sth type particles, 

Ei = ith component of the electric field, 

eijk = ■the alternating unit vector, 

Bk =r kt'' component of the magnetic field, 

vsn = collision frequency for ion-neutral collisions , 

^coll = ra*e a^ which particles of type s are gained (or lost) 
because of collisions , 

and the < ^ indicates mean value . 

To apply Eq, (3»I) to the problem under consideration, we make use 
of the following assumptions: 

(a) No external magnetic I'ields are applied and the induced 
magnetic field is negligible because of the small 
current involved in the problem 

/, \ The fluid consists ol two species only, ions and neutral 
particles.  Collisions between ions and neutral particles 
are elastic so that SC02i vanishes.  Collision frequency 
VfM is constant. 

(c) The neutral gas flows between two infinite parallel 
plates and the flow is fully developed, 

(d) The flow is incompressible 

(e) The partial pressure of ions is negligible 

(f) The ion gas is inviscid. 

(g) The positive electrode is the source of ion gas. 

The geometrical configuration of the channel is shown in Fig, 6. 
If we designate velocity components of the neutral gas in the z- and the 
y-direction by w^' and v^, respectively, and the corresponding velocity 
components of ions by wC1) and vw, because of the assumptions, vN = 0 
and, for neutral gas in the z-direction, 

^ij    ^P   ^N 
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/""^ Negative electrode 

y / s   s   '   '   '   '   '''/'>'   /*//,/,   /   /   y   y 

Vr / / / / s r> > / / ; s / > / s /is / > ; / > s > s / -y 

•Positive electrode 

Fig, 6 - Parallel plate flow channel 
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while in the y-direction 

The momentum equations for the neutral gas are 

dV1  dp      / (i)   Mv 
dy   dz 

(3.2) 

P vNiv (i) 

and those for ions are 

P(i) ^w 
(i) 

dy 
■ v m (/ - w^)) , 

P(i) dv^ =a(i) 
. . . E - V.wrV^1) 

dy  m(i)    ^ 

.N_N 

(3.3) • 

1 
(3.^) 1 
(3.5) 1 

where p = m n is mass density of the neutral gas. 

The nonlinearity of Eq, (3.5) renders it difficult to solve for 

v^1'. However, the fact that the transverse velocity of ions is the 
drift velocity of ions in the presence of an electric field, enable? us 
to employ the concept of mobility. The drift velocity of ions is related 
to the electric field, E, by the relation 

,(i) = KE , 

where K is ion mobility. 

Equations (3.^) and (3.5) will be solved for the following two 
cases: 

(a) Zero longitudinal velocity component of ions. 

(b) Non-vanishii.^ longitudinal velocity component of ions. 

I 
f 
I 
i 
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3.2 Zero Longitudinal Velocity Component of Ions 

In order to obtain an idea of how collisions between ions and neutral 
particles will affect the flow, another simplifying assumption can be 
made, namely negligible longitudinal velocity component of ions. With 
this assumption Eq. (3«2) reduces to the simple form 

d2^  dp .    1  r - » + pvM,w 
IJ 

cT dz Nl' (3.6) 

This equation is similar to the one obtained by Velkoff.' 

The uncoupling of Eq, (3.2) from Eq, (3,1+) greatly simplifies the 
mathematics. It is readily found that the general solution to Eq, (3,6) 
is 

w" = C! coshJHM y + C2 sinhJHÜI y - -L. ££  •   (3.7) 
* U ' U      pvjji dz 

Note that in obtaining this solution, dp/dz is considered constant. This 
follows from the assumption that vhe flow is fully developed, i,e,, v^  is 
independent of z. The constants of integration Ci and Ca are to be deter- 
mined by the boundary conditions: 

wN(o) = ^(h) = 0. 

The solution satisfying these boundary conditions is found to be 

„N = _i_ *£ rcosh J^L l-cosh *i-*Ät h\ 

sinh 

;inh f-1] 
Integrating w^ over the channel height", one obtains the mean velocity 

wN = i / h vAiy = -L-   & | JZSZ sinh J^h 
ho h P^Ni    dz  If PvNi f     ^ 

sinh 

Or, solving for the pressure gradient yields 
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dz 

where 

p-f    mr   (i-cosh^^hY 
\    sinhl/ h   -J : ^- 
f " /pVwi" 

pvNi M sinh */——   h V1 - h 

Re = W^1 

3.3 Non-Vanishing Loneitudinal Velocity Component of Ions 

Now let us examine the more complicated case where the longitudinal 
velocity component of ions is not negligible. Equations (3.2) and (3.1+) 
must be solved simultaneously. If we let 

1 dp P^Ni a r 

U d? " Co  ' IT - Cl 
V
iN   . n 

where v^1' is considered constant for simplicity, then Eqs.   (3.2) and 
(3.^) can be rewritten as 

wN + Ciw^ = C0 , 6-) 
-C2wN + (± + c2)w (i)  =0   . 

The boundary conditions are 

v^ = 0 at y = h, w^1) = w1^ = 0 at y = 0 

This set of simultaneous equations can be solved by eliminating 
one of the two variables, or by using Laplace transformation. The 
detailed calculation is given in Appendix II. Here we give only the 
final solution. 
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■ l2lQ 

\Ci    cf       d /   Ci        v'cf + 40! j L    d 

+ c|ca + M + 1\B].i.C5/ca + c|ck + c£B\ 
c!     Vci     / J       \Ci      cf     Ci / 

Vci + UCi | L    Ci       cf     \Ci     / J 

.   c  { -J. ,   --^   :  _. i5|j   eC6y, 

where 

Cs = - i C2 + 5 vci + UCi   , 

Ce = - ? C2 - i vcg + kCi   , 

and 

>/ci + kCx 
B = 

/Sa + cfCfl, + CsCflhN 
\Ci     eg Ci J 

TcsCe0* - gCeh)  + (C5eC5h _ ^Cgh)  . ^>/cg + 1+cJ 

/SCgCa + C^V^sy . eC&) + /Ca + ^\(c   Csh _ c   Ceh) 
\ Cx cf I \Ci       eg )  

rc2(e
C5h - eC-h)  + iCseC& - CeeC*h) - §1 N/C2 + l+d] 

The mean velocity is 

^-CcA + ^ + ^V^ ^Ci      2Ci      Cf/      Ci 

-     , t1   ,     I Cof^ + £|\ t /2I + AB + CoOeA- + &) 
cgJci + kdl    \ Ci    c!/   Vci     y ^x    ci/ 

+ CÄB{    (e^h - 1)  -       , /        .    JC0^ . ^ 
Cj.     ) c^cf + Ud /   \ Ci    cf / 

+(£  + I)B + c0c6/i + S|\+ ^ B j (ec6h . 1)# 
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MCO = <£ = 
dx 

CsC^/cl + he STp^B^ CeCJ + CsCsCo 
Ci Ci 

+ 1 |B (e 
Csh 

1) 

c5c.^T^(^ + ^ + |).(^ + f. + ^ + ^)- 

1 
i 

/C|C + CSC^C6 + Aß^Ceh _ ^1 

(ec^ -1) + feggSa + Saga + S^6 + Si2aSfiVeC6h . i)l 
\ Cx      cf      Ci       c!  / J 

3.^ Determination of v^ 

From the form of Eq. (3»8)» no explicit relation between the pres- 
sure gradient and the electric field exists. It is through the collision 
frequency for ion-neutral particle collisions, vj^, that the electric 
field manifests its influences on the flow. 

Nothing has been said about v^  so far. The determination of vj^ 
requires a knowledge of the cross section for momentum transfer which 
must, in general, be found experimentally. 

It is shown in the kinetic theory of gases9 that 

n(i) 
^Ni " 

mN 
in 

where nW ±s determined by the electric field and fjjj is independent of 
the velocity and the number density of ions or neutral particles.    In 
fact, f jjj is given by 

. knm* / m*\3/a 

fjil ■ -rrrr It—^1 (i 3kT \2irkT/ 
e-m*vr

2/2kT0.D(Vr)Vr5dVr t 

where T is the temperature, k is Boltzmann constant, 

mC^nN 
ra '(i) +inN 
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r 

■ 

vr = magnitude of relative velocity between colliding 
ions and neutral particles 

and 

OT) ■ transport cross section. 

For rigid-elastic sphere model, fjjj is found to be 

% - | (2m*IIkT)* diN 

where 

and 

diN = i(<i(i) + dN) 

d^iJ ■ diameter of ions, 

N 
d    = diameter of neutral particles. 

The relation between VJJ^ and v^ is given by nW^ v«^ ■ m'*'n^  'v iN« 

3.5 Discussion 

No numerical data were obtained for the analysis presented in this 
part, for at this stage of our research, attention was called to the con- 
sideration of stability problem. It is generally believed that, for the 
momentum change due to collisions between ions and neutral molecules to 
have significant effect on the flow, the number density of ions must be 
comparable to that of neutral molecules. Unfortunately, under this condi- 
tion the assumption that the partial pressure of ions is negligible is 
no longer valid. 
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IV. ELECTROHYDRODYNAMIC INSTABILITY 

As we recall from classical hydrodynamic instability, flows between 
two concentric rotating cylinders will become unstable because of cen- 
trifugal forces. In the cases of flow between concentric cylindrical 
electrodes with corona discharge, the electric force in the radial direc- 
tion may have a similar effect on the flow. In fact, it can be shown* 
that if the components of electric field, Er, and the charge density 
gradient, dpc/dr, in the radial direction are such that Er ^pc/3r < 0, 
an unstable situation could result. On the other hand, Er 3pc/3r > 0 
characterizes the stable equilibrium. The fact that positive corona 
between coaxial cylinders does satisfy the condition for unstable equi- 
librium** has stimulated our interest in pursuing investigation along the 
line of instability. 

The question arises as to whether Taylor vortices can be created in 
quiescent air under the action of corona discharge. Following the clas- 
sical hydrodynamic instability problem, we propose to make use of the 
method of small disturbances. 

U.l Governing Equations 

As before we consider only incompressible flow. The general equa- 
tions to be used are listed as follows: 

The continuity equation 

V • v = 0 (U.l) 

The equation of motion 

|U (v • V)v = - 1 Vp + v^^+^-E* (4.2) 
ot p p 

Equations from electrostatics 

PC v-E=^ (4.3) e 

V x E = 0 (lull) 

* See Appendix III. 

** See Appendix IV. 
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Equation for current density 

J = Pc(v + KE^ - DiVpc (U.5) 

The conservation of charges 

-^ + V-j = o (U.6) 

where v is velocity, D^ diffusion coefficient, iT current density and the 
other notations have the same meanings as before. 

k,2    Linearized Perturbation Equations 

A disturbance of the stationary fluid will give rise to the small 
velocity (v1) and the pressure perturbation (p'). Question now arises 
as to whether the disturbances will influence the distribution of the 
electric field intensity. 

Two approaches are possible. First, we may consider that the per- 
turbation in the electric field (e^ is not negligible. The total electric 
field is then given by E + e. The perturbation in charge density is 
related to e*through Eqs. (U.3), (^.5)» and {*,6),    It can be imagined 
that the electrostatic force term 01 the right-hand side of Eq, (h,2) 
will give rise to a rather complicated expression after being expressed 
in terms of E and 5*. The formidable mathematics thus introduced urges 
us to seek an alternative approach. 

The second approach to the problem is to consider the perturbation 
in charge density (pc') and assume the disturbance does not influence the 
distribution of the electric field. This assumption may be considered 
to be valid since the perturbation in charge density is supposed to be 
infinitesimally small and the distortion of the electric field caused by 
it is thus assumed to be negligible. 

With this assumption we obtain the following linearized equations 
if v', p' and pc' are substituted in Eqs. (U.l), (U,2), (U.5), and (U.6) 
and all quadratic terms in them are neglected: 

V • v*  = 0   , (1+.7) 

&m.kVp'   + rf?   +ipc,E>   , (4.8) 
ot p p 

J'   = PcV*   + KPc'E - D^Pc'    . (M) 
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J« = 0 (U.10) 

Here only the case of quiescent fluid Is considered. Detailed investi- 
gations of these equations will he given in the following sections for 
two specific cases 

(a) Quiescent fluid between two concentric cylinders. 

(b) Quiescent fluid between two infinite parallel plates. 

U,3 Instability of Quiescent Fluid between Two Concentric 
Cylinders under the Action of a Transverse Electric Field 

4,3.1 Formulation of eigenvalue problem 

Let us first consider the viscous fluid at rest between two 
concentric cylinders of infinite length under the action of a transverse 
electric field, Er (?), Let 9,  0, z be cylindrical polar coordinates 
and u', v', w' the corresponding components of the perturbation velocity. 
Because of the geometrical configuration under consideration, we assume 
that the perturbations are rotationary symmetric, i.e,, u', v', w', p1, 
and pj,' are independent of 0. Equations (4,7) through (4,10) for this 
particular case reduce to 

df       r dz ^♦^^"O . ("♦.11) 

^ - - ^r-f8»1 - ^ pc*.      (*.*) 

%'{*•■$) (4.13) 

'^--^r*8-' ' (4.14) 

%l + u. M + KEr %1 + l^P 
dt ap » c^c - vMp'   = 0 'iT ^c (l*.15) 

where 

p~ = mean charge density = €V • E 

' 
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and 

rra        ^   ,  1     ^        a2 

From the form of Eq.  (U.13), we can conclude that v' will be 
damped out if it is not initially everywhere zero.    Elimination of p' 
between Eqs,  (4,12) and (U.IS) yields 

We define non-dimensional variables 

r »       z TV r*3 —     ,      z*» —     ,      T= — , 
ri n rr 

*     u/ri w'n „      Pc'Krg 

where 

and 

n = radius of inner cylinder 

e ■ permittivity . 

Then,  on dropping the stars on r,  z, u, w, and pc, we can write 
Eqs.   C+.ll),   {k,15), and (U,l5) tuj 

^^^'0   , (..17) 

^ + l^   ^h^—   ^ + ~ P-Pc - ~^Pc = 0   , (..18) 
(Krg    3p~\       riKEr    dpc      rfK   _        Dj 

j ev      c&J v br        V£    0 c       v 

^r   ^dr      az/     \ r2/\ör      dz/       uK dz ^      ^ 

Following Taylor, we can make the following substitutions: 
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u = ui(r) cos Az eCTT      , 

w = wi(r) sin Az e**"1      , 

Pc ■ Pci(r) cos Xz e0^    , 

where A and cr are non-dimensional wave number for the z-direction and 
amplification factor respectively.    Equations  (4.17),  (^.iS), and (4.19) 
then become 

r^ + ui+Arw1=0    , (I+.20) 

where Eq, (4,21) is obtained by substituting for wi from Eq, (4.20). 

Fcir of the six boundary conditions are that u and w shall be 
zero at each of the bounding cylinders. The other two should be on pc. 
Since the perturbation in charge density is supposed to be induced by 
convection, it may be assumed to vanish at each boundary. 

4,3,2 Problem of small spacing 

A general discussion of the boundary-value problem presented 
by Eqs. (4,21) and (4,22) will clearly be a difficult matter. The 
analysis, however, simplifies considerably when the conduction terms, 
riKEr/Di (dPci/dr) and(rfKpc"/Di€)pcl, can he disregarded (for a justifi- 
cation of this approximation, see Appendix V) and the distance between 
the cylinders is very small compared with the mean of their radii, i,e, 

i = ra - ri « ^ (ra = ri) = ro •        (4.23) 

We shall, therefore, limit ourselves to this case. When Eq, (4,23) holds , 
terms of order of i/ro  can be neglected and the term l/r can be disregarded 
compared with d/dr. If it is further assumed that the principle of 
exchange of stabilities is valid, i.e., the situation in neutral stability 
is given by a = 0, we have, for neutral stability, the equations 
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Pel 

Kr? dPc 
ci = —*■ —r ui 

ik,2k) 

(U.25) 

With Er =6>fx(r) and dpc/dr =/ci(r), where £ a.nd£ are con- 
stants having the dimensions of electric field intensity and charge density 
gradient, respectively, and, fi and gi are dimensionless functions assuming 
positive values when evaluated at a given value of their argument, 
Eqs. ik,2k)  and (^.25) can be written 

ui = A' 

\dr2   /     eDi 

fiPci 

(^.26) 

If we redefine non-dimensional parameters as 

I = r - rQ 5   I 
a ■ 

Eqs.  (U,26) can be rewritten as 

(D2 -a2)2ux =a2i!   ^(Dp 
rx    UK d 

(B* . .»)Pcl . Ügltf gU)« 

where f and g are obtained from fi and gi by replacing r by (i/ri § + ro/ri), 
It is convenient to make the transformation 

^riU 
eD,- 

Ul. ♦ Ui 

the equations then takes the more convenient forms 
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(D2 - a2)2Ui - - Ta2fpcl 

(D2 - a2)pcl = gUi  ( 

(k.27) 

where 

T = an 

The boundary conditions can be written 

Ui = DUi = Pci = 0 at  5 = = + 

Note DUi = 0 at the boundaries follows from Eq.  (k.20). 

Further simplification is possible, if we consider the simple 
case where Er is constant.     For this particular case,  1- 1, ^ = Er, 
g ■ (1 + i/ro i)~2 and A- - €Ej./r",    Because of Eq.  (U,23), g may be 
replaced by its value evaluated at I = 0,  i.e., g = 1.    Eliminating Ui 
we obtain 

(D2 - a2)3pCi ■ " a2Tpcl (U.28) 

The boundary conditions become 

Pcl ■ (D2 - a2)pcx = D(D
2 - a2)pci = 0 at 5 = ± ^ .  i^'W) 

h,3»S    The variational principle 

The characteristic value problem posed by Eq. (k,2d)  subject 
to conditions Eq, (4.29) may also be formulated using variational prin- 
ciple as follows. 

Let P = (D2 - a2)pcl, and write Eq, (4,28) as 

(D2 - a2)2P = - a2Tpcl . (4.30) 

Now multiply both sides  of Eq. (4,30) by P and integrate over the range 
of i.    The left-hand side of the equation gives 
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P(D2 - a2)2Pd I = / PD4Pd | - 2a2 / PD2Pd I + a4 /  P2d | , 
-'/i */-''4 -'-Vi •/-'/J 

Since both P and DP vanish at | = ± |, it readily follows after two inte- 
grations by parts that 

f '' P(D2 - a2)2Pd i = f  ' [{D2 - a2)p]2d g 

Turning next to the right-hand side of Eq.  (^.30), we have 

f,A 
pPcid ? =    X, PciI)2pcxd 6 ' ^    Iv, Pci2d6 • 

Using the boundary condition pc    = 0 at | = ± 5, we find 

J   PpCl d i = - J    (Dp^ )2d i - a.2 J    PC ^d I    . 

The result of multiplying Eq, (h.^o) by P and integrating over | is, 
therefore, 

f   [D2 - a2)P]2d I 

T = 

2 / (Dpci)^ i +B.
2
 f  pc 2dS 

(MD 

k,3,k    Physical meaning of T 

The non-dimensional pa^ajneter T corresponds to the Taylor 
number in flows between two concentric rotating cylinders. It can be 
shown as follows that the parameter T in the form 

T = - 
MDi 

represents the ratio of the destabilizing electrostatic force to the 
stabilizing viscous force. 

Consider a perturbation,  of scale (-«TO, in the charge density. 
Associated with this perturbation is a destabilizing electrostatic force 
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per unit volume of scale (-$•(*). When convection takes place, convection 
and diffusion of charge density have the same order of magnitude 
(Eq. ('+.25)), this implies .hat the radial velocity component has a scale 
of Dj/i. The viscous force opposing the convective motion is thus of 
scale uDi/^3 per unit volume; this is the stabilizing force. The ratio 
of the destabilizing to the stabilizing force is 

which is T. 

4.3.5 Interpretation of the stability problem 

The problem of the solution to Eq. (4,28) subject to the 
boundary conditions Eq. (4.29) is an eigenvalue problem leading to a 
relation between a and T, namely F(a, T) = 0. It can be foreseen that 
instability will be possible if T is greater than some critical value, 
for then the effect of the destabilizing electrostatic force will out- 
weigh the effect of the stabilizing viscous force. The minimun critica.'' 
value of T called Tc, is the minimum value of T, as a function of a, 
given by F(a, T) = 0. For T > Tc, it can be inferred that a disturbance 
within the band of unstable wavelength is an amplifying, non-oscillatory 
flow. 

The variational formulation of the problem, Eq. (U.31), fac- 
ilitates the determination of an approximate value of Tc. If, for given 
values of a, T is minimized with respect to variation of Pc^,  the resulting 
values of T are eigenvalues. In practice, a function of oc is assumed 
which contains one arbitrary constant (.4) and satisfies the boundary 
conditions, for given a, the extremals of T, with respect to variation of 

yj-,  are eigenvalues. The minimum of these eigenvalues for various values 
of a is the desired critical value of T (Tc). The accepted value of Tc 
is 1707.8 at a = 3.13. 

U.3,6 Critical electric field intensity 

From the definition of the non-dimensional parameter T, it is 
clear that corresponding .0 the critical value of T (Tc) there is a 
critical value of the electric field intensity, Ec, for a given fluid. 
To give an estimation of the magnitude of Ec for air, let us consider 
again the simple case where Er is constant. For this case the charge 
density is found to be 

Er 

and 
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dp" _ eE^ 

"d? ~ " r2 

If the gradient of the charge density is evaluated at r = ro = i (ri + ra); 
we have 

dr        r5 

and the fluid is unstable.    Now, 

Tr = JÜ&.+Jl   M = 17o8 
wDi HDi      r£ 

Therefore, 

. ^oe *±f la 

For air at standard condition 

M = 

Di = 

e = 

0.000018 Kg/ra aec, 

0.028 x lO'^m/sec  for dry air, 

1.006 x 8.85 x IQ"12   c^lomt 
volt meter 

If r0 =2.5 cm ana £ = 0.5 cm then ro/i2 = 10 and Ec = 988 volt/m. Thus, 
for this particular case, instability will set in when the electric field 
reaches the value of 988 volt/m. 

h,h    Instability of a Layer of Fluid between Two Infinite, Parallel 
Plates under the Action of a Transverse Electric Field 

h,k,l    Derivation of the perturbation equations 

As a second application of Eqs. (^»7) through (^4.10), let us 
investigate the case where a layer of quiescent fluid between two infi- 
nite parallel plates is under the action of a transverse electric field, 
E(z), Let x, y, z be rectangular coordinates with z-axis perpendicular 
to the two plates. The plates are located at z = ± h/2. To facilitate 
the derivation of the perturbation equation, we shall use the notation 
of Cartesian tensor with usual summation convention,10 
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Let Uj (j = 1, 2, 3, with 1, 2, 3 corresponding to x, y, z, 
respectively) denote the components of the perturbation velocity. Equa- 
tions (U.y) through (^.10) can then be written as 

3u.« 
T-1 - 0 (14.32) 
dxi 

^i*   1 <$?'   Pc  ,    _? i />   v 

dt    p dxi   P 

^Pc        ,   öpF f     dE öpc o  i 
-— + u- -— + Kpc -— Ai + KE Xi — - Di^p. = 0  >    ik.3k) 

at osci "^i ^i 

-» 
where A = (0, 0, 1) is a unit vector in the z-direction and 

a&cf    abd   abcf 

To eliminate the pressure term in Eq,  ('+.33)» apply the operator 

curlk = eiJk ■£- 
J 

to the k^h component of the equation. Letting 

ui ■ €ijk p 

denote the vorticity, we have the equation 

^.S^g^.^     . (,.35) 

Taking the curl of this equation once again, we have 

T- €ijk T7 = *" eijkekÄn T  £ ^n + v^e. ^ ^ .        /. ^ 
ot    oxj  P       QXiOXj        1Jk T~ (^.36) 
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Making use of the identity 

eijk€kÄn " 8ii8jm " 6im5ji» 

we find 

€ijk ^- - ^iJk^kÄn ^^ = ^ (ä^j " ^Ui = " ^Ul 
^k  ^un 

Similarly, 

Thus, Eq.  (U.36) becomes 

± ^ui -: £ (ä^P'  - Xj ^-\ + vv^ui    • (U.37) 
CJt p   \ ax.±QKjl 

Now multiply Eqs.  (U.35) and (U.37) by ^i, we get 

^ = v^C (^.38) 

and 

at PV^2     ay2/ ^-^ 

where 5 » ^^WJ and w ■ A-JUJ are the z-component of the vorticity and the 
velocity. 

If again we neglect the conduction terms, Eq. (^.3^) becomes 

at oz 

and the required perturbation equations are 
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at PW    ay2/ 

ot     oz 

+ vvV' 

(U.38) 

(M9) 

(if.Uo) 

The fluid is considered to be confined between two conducting plates 
located at z = ± h/2. The boundary conditions on these plates are, like 
the previous case 

C - p; . „• = %1 = 0 at z -. ± ^ . 
^       oz 2 

k,k,2   Formulation of eigenvalue problem 

Following the analysis in thermal convection, we now ascribe 
to all quantities describing the perturbation a dependence on x, y, and 
t of the form 

exp[i(kx x + kyy) + 7 t], 

where k =» vkx
2 + ky2 is the wave number and 7 is a constant (which can 

be complex). Suppose p^, w', and £ have the forms 

5 = ^(z)exp[i(kxx + kyy) + 7 t] , 

w1 » w1(z)exp[i(kxx + kyy) + 7 t] , 

pj, « pCl(z)exp[i(kxx + kyy) + 7 t] . 

For functions with this dependence on x, y, and t. 

and Eqs. (U,38), (1+,39) and (U.UO) become 

7 ^ = Vi t*-^ ^x oai) 
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WX - - S k^Pc  + V -Ü- - k-  W!  , 
P        Vdz? is ■')' ihM) 

In terms of the non-dimensional variables 

z*=£ tv 
,  t* = -«■ 

h h2 

we obtain from Eqs,  (U,U2) and (U.l+3) 

(D2 - b2){D2 - b2 - cr)»! - | A2 p0i     , (hM) 

where D = d/dz*, b = k h and a = 7h2/v.    The associated boundary conditions 
are 

pc    « 0    , wi = Dwi = 0 at z* = ± - h 
2  * 

With E »^fCz*) and dPc/dz =afg(z*) and oaking the transformation 

i-h^wx. •W- 1 > 

we obtain 

(D2 - b2)(D2 - b2 - a)W1 = - b
2RfpCl 

(U.I16) 

where R = - h^lfi^uDi is equivalent to the Rayleigh number in thermal con- 
vection and has the same physical meaning as T in Section U.3. For 
marginal state a = 0, and Eqs. {k,k6)  reduce to 

(D2 - b2)wi = - b2Rfpc 

(D2 - b2)pc = gWi 
(U.U7) 
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^,5    Instability of Laminar Boundary Layer over a Flat Plate under 
the Action of a Transverse Electric Field 

4.5.1   General remarks 

It has been shown in Section 1,3 that for the parallel plate 
electrodes (Fig. l) the charge density distribution in the boundary layer 
is approximately 

f 

Pc 

This indicates that dpc/dy > 0. But Ey < 0, therefore, Ey dpc/dy < 0 
and the flow is unstable. The situation here is analogous to the cases 
of laminar boundary layers on concave walls and on heated walls. For 
the last two cases, Goertler demonstrated that the instability occurs 
in the form of standing, longitudinal cellular vortices which resemble 
the pattern of Taylor vortices,11»12 It is believed that this Goertler 
type of vortices (Fig, 7) may also exist in the problem under considera- 
tion. Using the assumptions made in the previous sections, we show below 
that this is the case. 

U.5,2 The equations of instability 

Consider a flow past a flat plate at zero incidence; as shown 
in Fig. 1, the main flow is directed along z, y is normal to the surf ewe, 
and x is along the surface and perpendicular to both y and z; 5 is the 
boundary layer thickness, and w, v, u are the corresponding velocities. 

If all quantities are assumed independent of z, the equations 
of motion for three-dimensional flow are 

lü + u ^i + v ^i ^ + v/ku + <fu\ ( (kM) 
dt    cbc   3y   p^bc 

a,    ox   ^   U2  W (^O) 

^U& = 0 
cbc  cV (4.51) 

And the electrodynamic equations are 
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Fig. 7 - Expected Goertler vortices in laminar boundary- 
layer over a flat plate 
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Jx « pcu - Dj. -^ , 

Jy  » PCV   +  KpcEy  -  Dl ^   , 

Jz ■ Pcw, 

The undisturbed flow u = v = 0, w = w(y), p = p(y), Pc ■ Pc(y) satisfies 
the above equations.   Assume, now, for the disturbed flow that 

u » ux(y) sin a x eP*, 
- 

v ■ vi(y) cos a x e^, 

w ■ w(y) + wi(y) cos a x e&t  , 

p ■ p(y) + Pi(y) cos a x e^ , 

Pc " Pc(y) + Pci(y) cos ax eßt. 

Here ß is real and denotes the amplification factor, whereas V = 2Il/a 
represents the wavelength of the disturbance at right angles to the main 
flow direction,    ui, Vi, wi are small quantities whose squares and prod- 
ucts can be disregarded.    The vortices have the shape shown in Fig. 7> 
their axes being parallel to the main flow direction. 

Assuming that perturbations in electric field intensity and in 
electrical conductivity, 0 ■ Kp«, can be disregarded, we find after 
introducing Eq.  (^.53) in Eqs. Xk.hQ) through (fy.52) 

ßui - 2 p, = v/^t - c^uxj     , ik.*: 

ßw, +Vl ^vf^.c^i      , (4.56) dy       ydy2 J 

ux=-i^       , (U.57) a   dy 
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ßpc   ♦nfi-^Ä^-^J   . (U.58) 

Elljainatlng pi between Eqs.  (4.5U) and (U.55) and substituting the value 
of ui frca Eq. (^.57), we obtain 

v ^ - (ß + avtf2) ^ + Q?(ß + vc^vx - c^ ££J. Ey, (U.59) 
dy dy2 p     J 

v ^% - (ß + VQ2)WI - VI ^ (1|.60) 
dy2 dy 

Di ^ - (ß ♦ D1^)PC1 - n flÄ . (U.61) 
dyz dy 

Transforming the variables, let 

TJ -|L, W(TJ) -i, c - as, 

U1        v  »    2        Di* 

Wr.8    ~1 

where WQ is free stream velocity.    We obtain 

.atSt 
(D2 - c2)(D2 - c2 - Olhn - COt pCi   , (U.62) 

(D2 - c2 - a1)W1 = vxDW    , (U.63) 

(D2 - c2 - o-2)pCl ■ ^ n ^    . (h,6k) 

Letting Ey "^(T)), dpj/dy «»gCl) and making the transformation 

figfvx .V, 
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we obtain, from Eqs, (^.62) and (k,6k) 

(Da - c2)(D2 - c2 - ffi)Vi - - c2Tfpc1 

(D2 - c2 - 02)pCl  » gVx 
M5) 

where T ■ - 84(fijfpvDi is the Taylor number for the problem.    The bound  r/ 
conditions are 

Vi ■ DVi ■ pc    ■ 0 at TJ ■ 0 and T\ (U.66) 

Equations (4.65), subject to (U.66), define an eigenvalue 
problem for T, c, and ß. Neutral stability is defined by ß • 0. 

h,6   Discussion 

The theory of hydrodynamic stability discussed in Sections U.3 and 
k,k axe primarily linear and valid for quiescent fluid only. To relate 
the stability problem to the experimental findings cited previously, it 
is necessary to take into account the effects of basic flow and finite 
amplitude disturbance (the non-linear theory). A complete theory about 
the interaction between the basic flow and the finite amplitude disturb- 
ance is as yet far from being completely developed. However, certain 
general understanding has been reached. Some of these will be discussed 
in this section. 

According to the linear theory a small disturbance will grow expo- 
nentially with time. As it amplifies it must eventually reach a size 
such that the mean transport of momentum by the finite amplitude disturb- 
ances is appreciable and such that the associated mean stress (the 
Reynolds stress3)has an appreciable effect on the basic flow. The 
resulting distortion of the ba^ic flow could strengthen the conversion 
of energy from the basic flow into the distrubances. Since this energy 
conversion is the cause of the growth of the disturbance, the rate of 
growth of the latter is altered. The disturbance is also modified by the 
generation of harmonics of the fundamental component. Thus, there is a 
mutual interaction between the basic and disturbance parts of the flow, 
and a self-distortion of the disturbance. 

When the rate of conversion of energy from ;he basic flow to the 
disturbance balances the rate of viscous dissipation of kinetic energy 
by the disturbance, an equilibrium state can be achieved in which the 
disturbance has a definite finite amplitude and the basic flow exhibits 
definite deviation from the original laminar flow. This suggests that, 
in some cases, the effect of instability is to replace the original, 
laminar motion by another laminar motion, consisting of a basic motion 
and a superimposed finite disturbance. This may be referred to as the 
equilibrium flow (or the secondary ilow), at a given Taylor number and 
Reynolds number, appropriate to the given mode of disturbance. If we 
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In^ose the condition that the rate of discharge for the disturbed motion 
shall be the sane as the original, laminar motion, a larger pressure drop 
is required because of the work which must be done by the pressure gra- 
dient to maintain the disturbance. 
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CONCLUDING REMARKS 

Despite the efforts devoted to the explanation of the phenomenon 
observed In the exploratory investlgetion mentioned in the introduction, 
the problem remains not completely solved. It appears that new deter- 
minable parameters must be introduced or that one must understand the 
transport phenomena of space charges more completely than it is known at 
present. This was borne out by the fact that in Section U, Taylor- 
Goertler type vortices were shown to occur under the assumption of negli- 
gible perturbation in electrical, conductivity. The neglect of conduction 
terms in the perturbation equations needs further justification. 

Lack of experimental data renders it difficult to verify the analyses 
presented in Sections 1 and k.    Although no numerical calculations are 
presented for the analysis in Section 3, it is believed that because of 
the smallness of the number density of ions, the contribution of ion- 
neutral particle collisions to the increase in pressure gradient will 
not be important. The analysis of Section 2 suggests that the pressure 
gradient increase is not to be attributed to the increase in the viscosity 
of the fluid because of the presence of ions. 

The results of Section k  are of particular interest. They indicate 
that theoretically Taylor-Goertler type of instability is possible unde- 
certain circumstances. It is recommended that extensive experiments be 
conducted to verify the occurrence of Taylor-Goertler vortices. If this 
proves to be successful, the next step will be to work out more rigorous 
solutions for the eigenvalue problems with various charge density dis- 
tribution and check the critical Taylor number thus obtained with the 
experimentally measured values to verify the validity of our assumptions. 
Because of the highly mathematical complexity and experimental difficulty, 
this is a rather challenging task. 

Our analysis for flow between two concentric cylinders has been 
restricted to the special case of quiescent fluid and small spacing. 
Experimentally, space charges are most conveniently provided in a round 
channel by a corona discharge from a thin wire located concentrically 
serving as anode. To facilitate comparison of theoretical results with 
experimental data, it appears that the problem of arbitrary spacings 
should be also considered. Another problem which concerns us is the 
modification of the analysis of Section ^.3 to the case when an axial 
flow is present. 

In conclusion, it should be pointed out that electric fields may 
be used to stabilize laminar boundary layers on concave walls as well 
as over flat plates, provided it is possible to obtain a charge density 
distribution such that Ey dpc/dy satisfies the condition for stable 
state, i.e., Ey dpc/dy > 0. 
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APPENDIX I.    TABULATED DATA 

A.    FUNCTION fa(Ti) —  (after Rossow) 

n fa fi rj ■ 

0 0 0 -0.891+ 
0.2 -O.OI8 -0.178 -0.888 
o.U -O.07I -0.351+ -0.868 
0.6 -0.159 -0.525 -O.835 
0.8 •0.281 -0.687 -O.789 

1.0 -O.U33 -0.839 -0.730 
1.2 -O.615 -0.978 -0.660 
l.h -O.82I+ -1.102 -0.579 
1.6 -1.055 -1.209 -O.I+89 
1.8 -1.306 -1.296 -0.39^ 

2.0 -1.57J -1.367 -O.296 
2.2 -I.852 -1.1+16 -O.197 
2.k -2.138 -1.1+1+6 -0.103 
2.6 -2.429 -I.I+58 -0.017 
2.8 -2.720 -1.1+51+ ■♦0.059 

3.0 -3.010 -1.^35 0.121 
3.2 -3.29I+ -1.1+06 0.168 
3.h -3.572 -I.369 0.201 
3.6 -3.841 -I.327 0.218 
3.8 -1+.102 -I.283 0.222 

h,0 •4.35*1 -I.239 0.216 
1+.2 -1+.598 -I.I97 0.200 u.u -1+.833 -1.159 0.180 
k.6 -5.062 -1.125 0.156 
h,6 -5.281+ -I.097 0.131 

5.0 -5.501 -1.073 0.107 
5.2 -5.713 -I.05I+ O.O85 
5.U -5.923 -1.039 O.O65 
5.6 -6.129 -1.028 0.01+9 
5.8 -6.33^ -I.019 O.O36 

6.0 -6.537 -I.013 0.026 
6.2 -6.739 -I.009 0.018 
6.U -6.9I+I -1.006 0.012 
6.6 -7.1I+I -1.001+ 0.008 
6.8 -7.3^2 -1.002 0.005' 

7.0 -7.5I+2 -1.001 0.003 
7.2 -T.7*H -1.001 0.002 
7.* -7.9^3 -1.001 0.001 
7.6 -8.11+3 -1.0 0.001 
7.8 -8.3^3 -1.0 0 

8.0 -8.5U3 -1.0 0 
8.2 -8.71+3 -1.0 0 
8.U -8.91+3 -1.0 0 
8.6 -9.1^3 -1.0 0 
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B. VARIATION OF VELOCIIT PROFILES 

ft) rz  ■ 0 

n *       w       w 
fk 

0 0 0 

1.0 0.32979 -0.839 

2.0 0.62977 -1.367 

3.0 0.8^05 -IMS 

k.o 0.95552 -1.239 

5.0 0.99155 -1.073 

6.0 O.99898 -1.013 

7.0 0.99992 -1.001 

8.0 1.00000 -1.0 

b) mz « 0.1 

1 rozfs w w 
wo 

W          Wee 
" W» *   Wo 

0 0 0 0 

1.0 -O.O839 0.24589 0.27320 

2.0 -O.I367 0.1+9307 0.54785 

3.0 -O.1I+35 0.702^5 0.78050 

k.o -O.I239 0.83162 0.92U00 

5.0 -O.IO73 0.881+25 0.98250 

6.0 -0.1013 0.89768 0.99740 

7.0 -0.1001 0.89982 0.99980 

8.0 -0.1 0.9 1.0 
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c) mz - 0.2 

1 mzfa 
w V 

WQ 

0 0 0 0 

1.0 -0,1578 0.16199 0.2025 

2.0 -0.273^ 0.35637 O.Ul+55 

3.0 -O.2870 0.55900 0,6990 

u.o -O.2478 0.70772 0.881+6 

5.0 -0,21k6 0.77695 0.9712 

6.0 -0.2026 0,79638 0.9955 

7.0 -0.2000 0.79972 0.9996 

8.0 -0.2 C.8 0.1 

d) mz -0.3 

n mzfa w 
Woo 

w 
WQ 

0 0 0 0 

1,0 -O.2517 0.07757 0.01108 

2,0 -0.1+101 0.21967 0.31380 

3.0 -0,1+305 0.1+1555 0.59360 

1+.0 -O.3717 0.58382 O.83I+O 

5.0 -O.3219 0.66965 0,9566 

6.0 -0,3039 0.69508 0.9927 

7.0 -0,3003 0.69962 0.999^ 

8.0 -0,3 0.7 1.0 
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C.    BOUNDARY LAYER THICKNESS 

mz           T)6 
8 
z 

0        k.9S 
N^Rez 

0.1       5.5 ■s/Rez 

0.2       5.771+ 
5.771* 
vRez 

0.3       5.92 
5^2 
VRez 

D.    LOCAL COEFFICIIWT OF SKIN FRICTION 

mz 0 0.1 0.2 0.3 

4 0.644 
Rez 

O.J4652 
Rez 

0.2864 
Rez 

0.1076 
Rez 

E.    Cf VERSUS CHARGE NUMBER 

Rez >/Rez Cf 

10* 0.644 - 1.788 x lO-^z 

5 x 10* 0.644 - 0.3576 x lO-^pcz 

105 0.644 - 1,788 x 10-%^ 

5 x 105 0.644 - 0.3576 x 10-\CZ 

10ö 0.644 - 1.788 x lO-^o^ 
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APPENDIX II. APPLICATION OF LAPIACE TRANSFORMATION 

The simultaneous equations to be solved are 

U. . C\^  ♦ c.wCi) = C0 
i 

\-C^ +(k + C2)w(i)  ' 0    ' 
The boundary conditions are 

wN = 0 at y « h  ;  v^1) ■ n8 =Oaty=0 . 

(II-1) 

(II-2) 

1 

The Laplace transforms of each term of Eqs. (II-l) and (II-2) are listed 
as follows 

LC^J - H(S) , 

LM1)) -H^^S) , 

LJ^| = SH(i)(S).w(i)(o)-SH(i)(S)   . 

After transformation Eqs. (ll-l) and (II-2) become 

S^i)H(s)+C1H(i)(s) -% + ^/ s        ^/y-O 

- C2H(S)  + (S + C2)H(i)(S) = 0 

(II-3) 

Elimination of H(i)(S) gives, after some algebraic manipulation and 
dw / 

denoting 
dw / 
—/   by I 
dy/ y-0 
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H(s) - - /Sa + cfca + ca B\ i , (gscA i. 
^ci    cf    ci y s   y ci y s2 

+ [caCa + clca + CflCg, + /c| + Ag]  i  
L Ci Cf Ci        \Cx       / J  S2 + C2S - Cx 

+ /Sa + cfca + c* B\ 
C2S - Ci 

where 

S2 + C2S - Ci » [S - (- i C2 + i VC| + 4Cx)][S - (- i Ca - i Vcf + ucl)] 

Using the inverse transform formula 

^fe^febT}B Ä(eat"ebt) • 

l(S-a)(S-b)f  a-b v        ' ' 

we find 

^ = - /Sa + cfga + Cg. B\ CgCa  r/c|ca + 02^ + 0^ 
yci  cf  ci y ci   [yet      ci  ci 

Ci /JVC2 
^—Kec5y - ec6y) + /Sa + SlSa 
+ ^Ci/V \pi     cf 

where 

+ Sä 4/jo1       Vc5ec5y _ c6eC6y) 
Cx  / ^C| + i+Ci/ 

C5 - - ^ Cs + ^ ^3 + 551    , 
Ce - - i C2 - ^ Vci + UCi      . 
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Since wN = 0 at y = h, it is found that 

B = 
 \Ci        Cf Ci    / 

[(C2eC5h - C2eC6h) + (C5eC5h - C6eC6h)  - 2«. Vcl + 5351 

/2CsCa + C|Ctt\ (eCsh _ eC6h) (CseCsh - Cee0^11) 

[(GaeCsh - CaeCeh) + (c5eC5h _ Ceec&) - ^2. N/C! + 551] 

f 

I 
I 
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APPENDIX III. CRITERION FOR THE ELECTROHYDRODYNAMIC STABILITY 

Since the fluid is considered at rest, the equation of motions 
reduces to the simple form 

PcEr = & c-r  dr 

for the case of concentric cylindrical electrodes. This equation shows 
that for the fluid to be in equilibrium under the action of an electric 
field, the electrostatic force must be balanced by the pressure gradient 
dp/dr. Consider now a fluid element of charge density Pel at radius ri 
and suppose that the element is displaced to a radius rs  which is greater 
them ri. Since the charge density of the fluid element remains unchanged, 
the new electrostatic force on it is pci E2, where E2 is the electric 
field intensity at radius ra. The pressure gradient at radius ra supplies 
an inward force of magnitude pC2 E2, Pea being the original charge density 
at ra. If PC2 Ea > Pci E2, the fluid element will be forced back to its 
original radius and the fluid is said to be in a stable state. On the 
other hand, if p  E2 < pc E2, the fluid element will tend to move farther 
away from its orlfinal position and the fluid is in unstable, equilibrium. 

Now if we replace r2 by r, TX by r-dr, E2 by E, pc by pc, and pc 
by pc-(dpc/dr)dr, where dr is taken as a positive quantity, the condi- 
tion for.stable state can be written 

or 

PcE>(pc-^dr)E 

-E^£.dr<0 
dr 

Thus, for stable state E dpc/dr > 0, Similarly, the condition for unstable 
equilibrium becomes E dpc/dr < 0, 
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APPENDIX IV. ELECTRIC FIELD AND SPACE CHARGE DISTRIBUTIONS 
FOR POSITIVE CORONA BETWEEN TWO CONCENTRIC 
CYLINDERS 

Let ri be the radius of the inner cylinder (or wire), ra the radius 
of the outer cylinder (or tube) and J2  the current density at r = rg. 
The governing equations for the determination of electric field and 
charge density distributions are 

dEr . Er _ pc 

dr  r   e ' 
(IV-1) 

J = pcKEr = £2i£ # (IV-2) 
r 

Combining Eqs, (iV-l) and (IV-2), we obtain 

1 _d_ / „ \  rgJa 
r dr ^ r' = 6KrEr 

or 

The solution of Eq. (lV-3) satisfying the boundary condition Er = 0 at 
r = n is 

From Eq. (IV-2) pc is found to be 

PC " ff* P^FT - (iv-.) 
and 

dPc ,      ["eJara r2       > 
dr      "  [   K        (ra - r!)3J    * 

Therefore, 
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„   dPc Jara 1 

and the fluid is in unstable equilibrium. 
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APPENDIX V.    THE NEGLECT OF CONDUCTION TERMS IN PERTURBATION EQUATIONS 

The current density, as given in Section ' .1, is 

J = pcv + KpcE - DjVpc (4.5) 

By definition, electrical conductivity of a fluid is given by 

0 = p~K+ + PrK" 

where 

9 = electrical conducitivity 

p ■ positive charge density 

Pc - negative charge density 

K ■ positive ion mobility 

K = negative ion mobility 

For the problem at hand, pc = 0, thus 0 = pc K
+ and Eq, (1+.5) can be 

written as 

—»   —»  -» 
J = pcv + 0E - DiVpc. 

Now, if we assume that perturbations in electric field intensity as well 
as in electrical conductivity are negligible, Eq,  (U,9) assumes the form 

-»        -» . 
J = pcv - DjVpc 

and Eq,  (U,15) becomes 

M t u. M. Di^p.. o 
at or 

Upon going through the same procedure as in Section 'u3, we finally 
obtain Eq.  {h,29)t 
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