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FOREWORD

This report represents one phase of a general study of the
interaction of ions with fluid flow under Contract DA-31-124-
ARO-D-246, U, S. Army Research Office-Durham, with Dr. Henry R.
Velkoff serving as principal investigator.

The authors wish to thank E., Pejack for his assistance in
various phases of the work reported herein.
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ABSTRACT

Unusually high pressure drops and flow distortions were
observed in a previous experimental program involving laminar flow
of a gas in a channel under the action of a corona discharge in a
transverse electric field. A hypothesis postulated by Velkoff to
explain the phenomenon is extended to the case of laminar bound-
ary layer flow over a flat plate, The problem on hand is found to
be analogous to the laminar boundary layer flow in a transverse
magnetic field., Three other mechanisms proposed to interpret the
above experimental findings are also investigated. The increase
in viscosity of a gas because of the ions is not likely and,
because of the smallness of ion density, the effect of ion-
neutral particle interactions on the flow is believed to be small.
One possible mechanism which may explain the phenomenon is the
secondary flow resulting from electro-hydrodynamic instability.

It is found theoretically that Taylor vortices can be induced

in a quiescent fluid between two concentric cylinders under the
action of a corona discharge., The Taylor Number of the problem
is defined and shown to represent the ratio of the destabilizing
electrostatic force to the stabilizing viscous force. It is also
found that Goertler vortices can occur in laminar boundary layer
over a flat plate provided the applied electric field and the
charge density distribution satisfy the condition for instability.
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INTRODUCTION AND SUMMARY

In & previous exploratory investigation into the effects of ioniza-
tion on the gas flow in & channel, interesting results were observed.
Complete details of that investigation may be found by consulting refer-
ence 1, Here we shall only briefly describe these observations.

Air was passed through a l%-inch-dimmeter pipe in which a 0,004~
inch-diameter wire was located concentrically. A high voltage applied
to the wire gave rise to corona discharge which provided ions in the air
stream. Under the action of the field, pressure drops were observed to
be doubled, velocity profile distorted, and heat transfer doubled. Sim-
ilar phenomenon was also cbserved in a 5/8-inch X 5-inch x 12-foot-long
rectangular channel in which ten parallel thin wires were located longi-
tudinally on the center plane of the channel.

In an attempt to explain the nature of the phenomenon, a hypothesis
was put forth by Velkoff in Reference 2. According to this hypothesis,
an electric field component in the direction opposite to the flow is
induced, giving rise tc a retarding electrostatic body force. The induced
field was found to be

where u is the flow velocity and K is the ion mobility in the gas under
consideration. Application of this hypothesis to channel flows was
carried out in great detail in Reference 2. The close agreement of
theoretical values predicted by the hypothesis with test data aroused
our interest in extending the investigation to external flows.

The first part of this report describes an analysis extending the
above hypothesis to the case of laminar boundary layer over a flat plate.

An interesting analogy to magnetohydrodynamics was found for the case
where the charge density is constant.

In the remaining parts of this report, efforts are directed toward
the investigation of a few mechanisms propcsed to account for the phenom-
enon., The second part presents a brief study of the viscosity of a gas
mixtrue consisting of ions and neutral particles. Because of insuffi-
cient knowledge of an exact expression for the viscocity uf ion gas at
room temperature, the discussion was based on the data obtained for the
constituent gases at high temperature.

In Section III, the flow is considered as a two-fluid model. The
interaction between ions and neutral particles is taken into account.
For the case where the longitudinal velocity component of ions is
neglected, the analysis resulted in an equation of motion similar to the

J——




one obtained by Velkoff in Reference 2., For the case with non-vanishing
longitudinal velocity component of ions, the solution is rather compli-
cated and the effect of the ions on the flow remains to be determined.

The last part of this report is devoted to the study of electro-
hydrodynamic instability. It was found that under certain assumptions
the quiescent fluid between two concentric cylindrical electrodes under
the action of a transverse filed is governed by the same eigenvalue
equation as in the case of couette flow between two rotating cyiinders.
A similar relation exists between the case of fluid at rest between two
infinite parallel plates under the action of a transverse electric field
and that of classical thermal convection, It has also been shown that
Goertler vortices can occur in the boundary layer over a flat plate under
the action of a transverse electric field.




I. LAMINAR BOUNDARY LAYER OVER A FLAT PLATE IN A
TRANSVERSE ELECTRIC FIELD

1.1 Governing Equations

In this section we study the effect of a transverse electric field
on laminar boundary layer over a flat plate., The geometricai configura-
tion of the problem is shown in Fig. 1. Let the yz-plane be taken as
the plane of the boundary layer {low with z axis along the plate, and
the y axis perpendicular to the plane wall. If p denotes the density
and M the viscosity of the fluid, the boundary layer equation for incom-
pressible flow in the absence of an external electric field isS3

v%+w%=§?§ (1.1)

Now suppose the fluid is positively charged through the action of
corona discharge or the injection of positive ions from external sources,
The charge density in fluid under the action of a transverse electric
field (Ey), is pc (charge per unit volume). By the hypothesis postulated
by Velkoff, an electric field (E,) opposing the flow is induced and is
given by

E, =-¥ 1.2)
z A (

Thus the contribution of the transverse electric field to fluid flow is

in the form of a retarding electrostatic force. This force is found to
be

Fe = PcE, = = p, % (1.3)

Incorporating this force in the boundary layer equation (1.1), we obtain
a modified boundary layer equation for the case under consideration

Qo pPe ¥
v 5 +tw = 0%3;5 = (1.4)

This equation together with the continuity equation

o , M _
y x " °
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Fig. 1 - Sketch of boundary layer on & flat plate at zero incidence
under the action of a transverse electric field




describe the boundary layer flow over a flat plate under the action of
a transverse electric field.

1,2 Constant Charge Density

The charge density, pc, is related to the distribution of electric
field through the electrostatic equation

._’xpc
V-+E &

and is, in general, a function of position. This renders Eq. (1.4) dif-
ficult to solve., To obtain an idea of what effects the additional term,
-Po/P w/k, will have on the boundary layer, let us simplify the problem
by assuming that the charge density is constant.* Under this assumption,
Eq. (1.4) can be rewritten as

v%+w%:-+aw-v% (1.5)

where @ = po/pK is a constant and v = p/p is the kinematic viscosity of
the fluid,

l.2.1 Analogy to MHD

The form of Eq. (1.5) is similar to that obtained for the flow
of an electrically conducting fluid over a flat plate in the presence of
a transverse magnetic field fixed relative to the plate. The equation,
as was derived by Rossow* is

v%+w%+9';'—2-uoawav§"z (1.6)
where
6 = electrical conductivity of the fluid
M' = permeability of the fluid
and

Ho = externally applied constant magnetic field.

By comparison, we see that the constant, pc/K, corresponds to 6u'2 Ho?
in MHD

*Sec.(1.3) shows that this is a good approximation.

p)




l.2.2 Rossow's solution

Equation (1.6) was first solved by Rossow, He developed an
approximate solution. Following Rossow, Eq. (1.5) is solved as follows,

Let us introduce the transformation

—
[ =Y vz

andl define the stream function as
' V= \[wa, vz [fo + "mz £, +mz f2 + (m2)®/2 £3 + (mz)? £q + ---]

where weo is the upstream velocity,

=2 =2 and £, £1, 2, fa, f4 --- are functions of 1 only.
Wee PKwWy

From the definition of stream function, i.e., w = Oy/dy and v = o/dz,
v, w, Ow/dy, /% and w/dy? can all be expressed in terms of f's and

ne This enables Eq. (1.5) to be expressed in powers of mz, Equating
the coefficients of equal powers of mz on both sides of the equation, &
set of ordinary differential equations for the f's are obtained:
(a) 2f°|" e fo"fo
(b) 2fl|ll = folfl' = fofl" - 2flf0"
(c) 2f2" =2fg'fa' + £1'f1' - fofa" - £1f1" = 3fafp" + 2fp'
(a) 2fa" = 3fg'fa' + 3fa'f1' - fofa" = 2f1fa" - 3faf1" - Lfafo" + 2f)'
(e) 2f,"" =ULf 'f,' + 3f1'fa' +2f2'f2' + £3'f;" = £,f,"
4 o aly olt4
. :,‘flfa" - 3f2f2" - )'"fafl" = 5f4f0" + 2f5!

i The boundary conditions v =w =0at y =0 and v = &w/dy = 0
at y = », when written in terms of f's and n, assume the form

fo=fi=fa=fa=f4 =--~=0at =0
fo! =f1' =f2' =f3' =f' === =0atn =0

fo'=l, f2' = -1 at 1 = o

fl' f3'=f4'=f5'=---=0&tﬂ=oo

6




From the boundary conditions and Egs. (b) and (d), f1 and f3 can be taken
to be zero throughout the flow field. Equations (c) and (e) then become

(cv) f2"" = fo'fa' - % fofal = g_fofon + fo"

(e') f£4"" = 2f,'f4' + £2'f2' = % £ f4" - .3. faf2" - %f.fo': +£2'.

Equation (a) is the Blasius equation and Eq. (c') was solved numerically
using Runge-Kutta method. The solutions were tabulated in Reference L
and are reproduced in Appendix I,

1.2,3 Interpretation of mz

It should be noted that in the above analysis mz plays the role
of a controlling parameter in the flow. To investigate its physical
significance, let us non-cimensionalize Eq. (1.5) by introducing the
following dimensionless variables

z=%2 , Y= Re%,
V=Re %~ , W=-Xx,
Ww WQ

where L is a characteristic length and Re = wal,/v iz the Reynolds number.
In terms of these non-dimensional variables Eq. (1.5) becomes

el M _ Pw  pcl
vaY+wi_F-pKWaw . (1.7)

Since all other quantities in the above equation are non-dimensional, the
quantity ch/pKW must also be non-dimensional and can be considered as
the product of two non-dimensional parameters

pcl _ pcl? | u

PKW o MK pwol

We readily recognize that pwel/u is the Reynolds number. It is obvious
that pcL?/uK is & new non-dimensional parameter and is called the charge
number, Ny, (Ref. 2). Now,

oz
mz = & - PcZ__ Pcz” M
Weo PKw,  Ku W o
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If we let Rez = pw.z/k and Np,z = p,z%/uK, then mz is the product of
Rez and Np,z. Further analysis® indicates that the charge number is

Physically the ratio of the electrostatic force to the viscous force.
Meanwhile, tl.e Reynolds number, Re, is known to represent the ratio of
the inertia force to the viscous force. Thus, mz measures the ratio of
the electrostatic force to the inertia force.

1l.2.4 Velocity profile

To a first approximation, the velocity distribution is given
by

w=w, (fo' +mzfa') (1.8)

Divided through by wg, the free stream velocity, i.e., the velocity at

the edge of the boundary layer, on both sides of the equation, Eq. (1.8)
becomes

w w
o v—,g? (fo! + mzfa')

In Fig. 2, w/wo is plotted against 1 for several values of mz.
The figure indicates that increase in mz tends to retard the local flow.
From the results of the analysis it is predicted that further increase
in mz will decrease the velocity gradient at the wall, (ow/dn),_o -
When (aw/an)n=o reaches zero, corresponding to mz = 0.372, separation
will occur,

If the foregoing theory is applicable to this flow, it may be
concluded that increase in electric field will finally cause separation.

1.2.5 Variation of boundary layer thickness

If it is desired to define the boundary layer thickness as
that distance for which

= = 0.99,

then

where ng is the value of n evaluated at y =&. 1In Fig. 3, the ratio

8/z is plotted against Rez. For a given value of z, the boundary layer
thickness, &, increases with increase in m. In other words, the electric
field tends to thicken the boundary layer. This can also be seer. from
Fig. 2,
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Fig. 2 = Velocity distribution on a flat plate
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Fig. 3 - ‘oundary layer thickness on & flat plate at zero incldence
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1,2,6 Local coefficient of skin friction, Cg,

The local coefficient of skin friction is defined as

Ts

Cf =
%pwao2

where 1, = u(ow/dy); is the shear stress on the surface. Using Eq. (1.8)
we obtain for Cp the expression

1
Ce = 0644 - 1,788 mz + ---) .
e 00 m v )

This equation is plotted in Fig. 4 for several values of mz. In terms
of the charge number, Cs can be written as

0.,6k4k4 1,788
Cp = B T A
£ JRez (Rez)¥/< Pe?

The variation of Cr with the charge number is plotted in Fig. 5. It is
seen that for a given Rez, Csy decreases lirearly with increasing charge

number, Therefore, the application of an electric field reduces the skin
friction,.

l.3 Variable Charge Density

Consider that ions in the fluid are provided by a corona discharge.
For the simple electrode configuration of two parallel plates (a plane
of fine wires is necessary to actually get the corona) shown in Fig. 1,
the following expression for charge density distribution is obtained

from Stuetzer's solutions,assuming the grounded plate is far away from
the region of intense corona,

= ___EI__'/: = eI |% r x_'/a
e [2KA(h-y)] 2KAh] ( h) ’

where
I = current,
A = surface area of the plate,
E = permittivity,
h = distance between plates.
1]
- sttt sl e - ——
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Fig. 4 - Local coefficient of skin friction over a flat plate
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Assume that y/h < <1, i.e., h > > &, then

[l-%]hzl+%%+--.

Substituting this and p, into Eq. (1.4) and using Rossow's method, we
finally obtain

2f°'lll = - fO"fO )
f2"" = fo'fz' - %‘ fofan - %fgfo" + fo' ’
£ = 2fofs' + fofa' - _é_ f0f4" - % fofs" - % f4f0"
+ LI —L—
f2 mh Rez fo .

Comparing these equations with Eqs. (a), (c'), and (e"), it is found
that under the assumption y/h < <1, only f4 differs from the case of
constant charge density. This indicates that for this particular elec-
trode configuration the charge density in the boundary layer may be
assumed to be constant.

14




2 .M 2 .M E E 2
nof = + =% A) +noy(= +== A) + + + 2= - A
l2(3 Me 21(3 My ) 2], 2luely 2(3 )
[n]y= _ : s g (2.1)
naofS + 32 A n = + E LA
12(3 Mo ) 21(3 My A , .
(udy (uz2]1 2l lile2)y  3EMiM2
where
[n]y = first approximation to the viscosity of mixture,
[Mily = first approximation to the viscosity of neutral oxygen,
(u2]1 = first approximation to the viscosity of ions,
o = number density of neutral molecules,
n(i) = number density of ions,
15
L.__ —— e = N = - = =

II, THE EFFECT OF IONIZATION ON VISCOSITY

2.1 Assumptions

In an attempt to determine the effect of ions on the viscosity of
oxygen gas, we consider a gas mixture of two components, neutral oxygen
molecules and positive, singly ionized oxygen ions, To facilitate the
analys+ , the following assumptions are made:

(a) The mass of neutral oxygen molecules is approxi-
mately equal to that of oxygen ions.

(b) Collisions between neutral molecules as well as
those between neutral molecules and ions are of
elastic rigid sphere type.

(¢) Interactions between ions follow the inverse-
square law.

(d) The electric field intensity is small and can ?
be neglected.

2.2 The Viscosity for a Mixture of Neutral Molecules and Ions
The analysis is based on the general expression for the first

approximation tc the coefficient of viscosity for a mixture of two gases
given by Chapman and Cowling:®




n = nN :n(i)
12 ;('_{)‘ s N21 N ’

mN = mass of neutral molecules,

m(i) = mass of ions,

m
M = p
) = m reduced mass of neutral molecules,
Mo = mii) = reduced mass of ions
N m(i) ’
and A and E are constants determined by the law of interaction between
molecules. It follows from assumption (a), that r
MooM, =M. =1,
Vo = M 1l and M =Mz =35

Equation (2.1) then becomes

” 5 E E 2.
n12(3 i A) ' n21(3 ) A) i 2(u]a i 2[uels ) 2(3 A) (2.2)

[kl =
n12(-2- + A) nex_(-e- + A) E 16A
. 3 3
H [urdy ™SH 2luadilmel]y  3E
Under assumption (b), it is found that
2 1 {kmT\* 1
A=% and E =3=] =2 2.3)
where
k = Boltzmann constant,
dN = diameter of neutral molecules ,

I and

m = mass of the molecules and T is temperature .

Substitution for A from Eq. (2.3) into Eq. (2.2) gives




16 16 E E 8

—nmz2 +—nz *t + +
1 1 2[ 2{u2] 1
[l = 5 5 Hily [k2]y 5 (2.1)
éé ma . 16 nop E 32

— + +
15 [mdi 15 [e2)y  2lwalileely  1SE

2.3 Evaluation of [p1]y and [wa]y

On the basis of the elastic rigid sphere model, the first
approximation to the viscosity of neutral oxygen gas is found to be”

e = 2 (o) s e ()

It should be noted that all the above expressions are obtained by
taking into consideration binary collisions only. In the evaluation of
the viscosity of ions, difficulty arises because of the inverse-square
law of electrostatic forces. Since these forces decrease with distance
much more slowly than the ordinary forces of interaction, a molecule at
a large distance from a given molecule will also be under the electro-
static repulsion of many other molecules, Hence, the distant collision
is not binary but multiple. For the analysis based on the binary colili-
sion to be applicable, we can only consider the special case in which the
temperature is so high and the number density so low that it is suffi-
cient to consiaer binary collisions. This condition is satisfied at
6000°K. According to Chapman and Cowling6 the first approximation to the
coefficient of viscosity, in this case, is

kmT\* {2
[hely = § (%) (—‘;%)/Ae(z) , (2.6)
with A>(2) given by
) \% 2
A2(2) = 2 4In (14vg ") = —=RL—} > |
1+ vor
where
_ LakT
Vor = —=
e
d = mean distance between neighboring pairs or molecules,
and
e = electronic charge ,
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2.4 A Numerical Example

To compare the values for [u;]y and [Ha]l, let us evaluate them at
T = 6000°K. Assume the number density n» of ions is about 1015 em=2 so
that Eq. (2.6) applies. For this case,

d =n -1/5 10-° cm

dkT _ 10-> x 1.38 x 10-2° x 6000
e? 2.31 x 10-19

= 35.8 »

(4 x 35.8)2 = 2,05 x 10*,

<
O
b

1]

2.05 x 10* [+
1 +2,05 x 10*

A=(2) In (1 + 2,05 ¥ 10*) - 7 >

and

(k2] = 7.1 x 10=° gm/cm sec.

For rcutral oxygen molecules at T = 6000°K, Eq. (2.5) gives
[k11320.9 x 10-2 gm/cm sec.

(u1ly and [p2li thus obtalned ma¥ be substituted in Eq. (2.4) to
get [uly for given values of nN and n However, without going through
the calculation, we may draw the conclusion stated in the next section.,

2.5 Conclusion and Discussion

From the above calculation, we see that viscosity of ions is about
two orders of magnitude smaller than neutral molecules at T = 6000°K.
This indicates that the viscosity of the mixture is smaller than the
original oxygen gas of neutral molecules, This conclusion is justified
by the fact that in order for the mixture to have a maximum viscosity,
the viscosity of the two pure components must be nearly equal,

As was pointed out previously, Eq. (2.5) is valid only when the
condition is such that it is sufficient to consider only binary colli-
sions. The conclusion made above is, strictly speaking, only valid for
this specific case., However, unless the ion gas possesses such a peculiar
property that its viscosity becomes greater than that of its parent gas
at lower temperature, we may conclude from the investigation that the
presence of ions intends to make the viscosity of the mixture smaller

than the original gas.
18

S

Lo TN B )




A question now arises:
presence of a strong electric
. Physical reasoning to make the
related references in the literature. It ap
problem deserving further investigation,

Can we draw the same conclusion even in the :
field? So far we do not have sufficient
prediction, nor are we able to find

pears to be an interesting
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I1I, TWO-FLUID MODEL

This section describes an attempt to consider the flow as consisting
of two interacting streams, the neutral air and the ion gas. For channel
flow, the neutral gas has only longitudinal velocity, while the latter is
assumed to have longitudinal as well as transverse velocity components.
As we recall in section I, the electrostatic force was considered to act
on the fluid as a whole. It was assumed that there was no transverse
velocity component in the flow, However, under the action of an exter-
naily applied transverse electric field, ions do possess transverse
velocity. Thus, it appears logical to consider the flow as the inter-
action of two streams of fluid.

3.1 Governing Equations

Instead of including electrostatic force term on the right-hand
side of the equation of motion for the entire fluid, we have now to write
down a separate set of momentum equations for each species of the fluid,
taking into account the change of momentum due to collisions between
neutral particles and ions. Such equations can be derived from the
Boltzmann equation. The detailed derivation may be found in books on
plasma dynamics, Reference 8, for example. Here we give only the final
expression, If the external forces consist of an electric field aunc a
magnetic field, the momentum equation for the sth charged species is

found to be
(s) s S s
W@ w1 gyl 6 e vl )
J axj n(s)m(s) aXJ m(S) 1 1 J
(s)

= .N S vi S

= v lvi - vi( )] - = Saoll . (3.1)
where

viN = ith velocity component of neutral particles,

Vi(s) = ith velocity component f'or the sth species,

n(s) = number dencity ot the sth specles,

m(“) = mass of particles of the sth species,

Wij(u) = prceosure tensor for the ; th specien

= “(S)m(J)(/i(ﬂ)vj(F)) ,
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Vi(°) = jth peculiar velocity component of the sth species
relative to its own mean velocity,

q(s) = charge of the sth type particles,
Ejy = ith component of the electric field,
€jjk = the alternating unit vector,

By = kb component of the magnetic field,

<
n

snp = collision frequency for ion-neutral collisions,

Scoll = rate at which particles of type s are gained (or lost)
because of collisions,

and the { ) indicates mean value.

To apply Eq. (3.1) to the problem under consideration, we make use
of the following assumptions:

(a) No external magretic fields are applied and the induced
magnetic field is negligible because of the small
current involved in the problem

(b) The fluid consists of two species only, ions and neutral
particles. Collisions between ions and neutral particles
are elastic so that S

y venishes. Collision frequency
vyj is constant.

col

(c) The neutral gas flows between two infinite parallel
plates and the flow is fully developed.

(d) The flow is incompressible

(e) The partial pressure of ions is negligible

(f) The ion gas is inviscid.

(g) The positive electrode is the source of ion gas.

The geometrical configuration of the channel is shown in Fig. 6.
If we designate Yelocit components of the neutral gas in the z- and the
y-direction by W and ? respec%i ely, and the corresponding velocity

components of ions by w 1) and v , because of the assumptions, v =0
and, for neutral gas in the z-direction,
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Fig. 6 - Parallel plate flow channel
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while in the y-direction {
dij _ Op
axj dy

The momentum equations for the neutral gas are

u %Ng = %E— - o) <Yy, (3.2)
%yg =P Vni W), (3.3) .
and those for ions are
v(1) d‘;;i) =y - W), (3.4)
v(1) 93252-= ﬁ%;% E - viNv(i), (3.5) :

where p = mNnN is mass density of the neutral gas.

The nonlinearity of Eq. (3.5) renders it difficult to solve for

V(l). However, the fact that the transverse velocity of ions is the
drift velocity of ions in the presence of an electric field, enables us
to employ the concept of mobility. The drift velocity of ions is related
to the electric field, E, by the relation

v(i) =

= u Sy QEGPN G Gy e

where K is ion mobility.

Equations (3.4) and (3.5) will be solved for the following two
cases:

(a) Zero longitudinal velocity component of ions.

(b) Non-vanishing longitudinal velocity component of ions.

2l




3+2 Zero Longitudinal Velocity Component of Ions

In order to obtain an idea of how collisions between ions and neutral
particles will affect the flow, another simplifying assumption can be
made, namely negligible longitudinal velocity component of ions., With
this assumption Eq. (3.2) reduces to the simple form

daN _ dp N
W dy2 - dz * vaiw ' (306)

This equation is similar to the one obtained by Velkoff.2
The uncoupling of Eq. (3.2) from Eq. (3.4) greatly simplifies the

mathematics. It is readily found that the general solution to Eq., (3.6)
is

VN3 1 d
Wi =7y cosh".p_.lll y *+ C2 sinh PYNi y - @ (3.7)
M

H pvNi dz

Note that in obtaining this solution, dp/dz is considered constant. This
follows from the assumption that the flow is fully developed, i.e., Wl is
independent of z., The constants of integration C; and Cp are to be deter-
mined by the boundary conditions:

wW(o) =wli(n) =
The sclution satisfying these boundary conditions is found to be

[ppNi

l-cosh ¢ == I oV

W = L gB[cosh Siy+ pv“ sinh le-l] .

i )

sinh ‘}i h
V)

Integrating w over the channel height’, one obtains the mean velocity
h OVa «
ﬂ:%j Wy = 1 Q‘Rg" K sinh" Ny
o hoovy; dz LY ovyy W
pv X
( l-cosh Nl h)‘
- h

pY Mi
M

sinh h

Or, solving for the pressure gradient yields
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ap vniHRe
dz ’
PVNi
1-cosh\} —=h
sinh —h - = - h
oVNi u sinh ‘/" 2 n J
where
Re - M

M

3.3 Non=-Vanishing Longitudinal Velocity Component of Ions

Now let us examine the more complicated case where the longitudinal
velocity component of ions is not negligible. Equations (3.2) and (3.4)
must be solved simultaneously. If we let ’

= X _¢ e L ¢ = C
udz-o s m = vl ) v—("",'l".?’

where v(i) is considered constant for simplicity, then Egs. (3.2) and
(3.4) can be rewritten as

(g':—a - C]_)W‘N + C]_w(i) = Co »

~Cowl + (% + Cg)w(i) =0 .

The boundary conditions are
w=oaty=hn wil)aFcoaty=0.

This set of simultaneous equations can be solved by eliminating
one of the two variables, or by using Laplace transformation. The
detailed calculation is given in Appendix II. Here we give only the
final solution.

h . . . i dotduine T D Al ax dalia
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WM oo fCo B 4 S ) CCay v L » CaCo
C, Cf Gy C1 JCE + 4Cy C1

+_ig (_a”)] Cs(gg+c£29q+9a3>$ Oy

Cy C1 C% Cy
3 2

-351 ;[2-LQCC+-*—°~C"C + (2 + 18
C5 + LCy Ci Cf Ci

+ce(gﬂ+_3%9.+.3.B): eC6y,

where
Cs =~ Ca +1VC8 + Ly
C6=-%Ca-%VC2+EC1 ,
- and
N/C§+l+C _.Q.+ +.2_Q_
B = G

[Ca(eCSh - 0eh) + (Cse®sh - cseCGh) - %%m]
1

C1 Cl Ci1 Ct

- - —

2
[cg(eCSh - eleh) + (Cselsh - cgelel) - g—cha + hcl]

(2Cg o+ §gg)(ecsy oY) 4+ (QQ + gégﬂ)(csec5h - Celeh)

The mean velocity is

— 2
I N Eag-LN - g 8
c. 2c1 cE) <

3
R gcoe_Cz+%.+sé+lB+cocb-+ga
Cs_‘JCQ + LCy Cy Ct C1 Ci1 C]_

+92045‘ (eCeh - _a+_a)

C;CQ + 4Cy 3 (Cl Cl

2
+(§a +1)B+coce,i+93~ +-3—§Bf(e06h 1).
1 1 Cf
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1
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I

| 1 L

o (O _1) 4 (202_;c : 92%; + CCe 4 ﬁ%gﬁ)(ecsn ] 1)]
Ci C Ci (65

3.4 Determination of Vi

From the form of Eq. (3.8), no explicit relation between the pres-
sure gradient and the electric field exists. It is through the collision
frequency for ion-neutral particle collisions, vyi, that the electric
field manifests its influences on the flow.

Nothing has been said about vyy so far. The determination of vyi
requires a knowledge of the cross section for momentum transfer which
must, in general, be found experimentally.

It is shown in the kinetic theory of gases® that

(1)
V- = -11— f ’
Ni oN iN

where n(1) is determined by the electric field and fiy is independent of
the velocity and the number density of ions or neutral particles. 1In
fact, fiy is given by

foy = Lem* (m* )3/ 2 f i e-m*vyZ2/ 2kTop (vyp )vp>dv
sy D oo [ mom— r/'r ro
3kT \enkT ° -

where T is the temperature, k is Boltzmann constant,

* = S the reduced
m -X;'(mls € reaquced mass ,
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vy = magnitude of relative velocity between colliding
ions and neutral particles
and
op = transport cross section.

For rigid-elastic sphere model, fijy is found to be

fiy = g- (2m*TTKT)* dgy
where
dgy = $(a(t) + al)
and
d(i) = diameter of ions,

dN = diameter of neutral particles.

The relation between vyj and viy is given by m'nN VNi = m(i)n(i)viN.

3.5 Discussion

No numerical data were obtained for the analysis presented in this
part, for at this stage of our research, attention was called to the con-
sideration of stability problem., It is generally believed that, for the
momentum change due to collisions between ions and neutral molecules to
have significant effect on the flow, the number density of ions must be
comparable to that of neutral molecules. Unfortunately, under this condi-
tion the assumption that the partial pressure of ions is negligible is
no longer valid.
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IV, ELECTROHYDRODYNAMIC INSTABILITY

As we recall from classical hydrodynamic instability, flows between
two concentric rotating cylinders will become unstable because of cen-
trifugal forces. In the cases of flow between concentric cylindrical
electrodes with corona discharge, the electric force in the radial direc-
tion may have a similar effect on the flow. In fact, it can be shown¥
that if the components of electric field, E,, and the charge density
gradient, 9p./dr, in the radial direction are such that E, apc/ar < o
an unstable situation could result., On the other hand, Er dpe/Or
characterizes the stable equilibrium, The fact that positive corona
between coaxial cylinders does satisfy the condition for unstable equi-
1ibrium** has stimulated our interest in pursuing investigation along the
line of instability.

The question arises as to whether Taylor vortices can be created in
quiescent air under the action of corona discharge. Following the clas-
sical hydrodynamic instability problem, we propose to make use of the
method of small disturbances,

4,1 Governing Equations

As before we consider only incompressible flow. The general equa-
tions to be used are listed as follows:

The continuity equation

V.v=0 (4.1)
The equation of motion
5\? - - Po =
'—'+(V oV)v=--.Vp+VV2 +—E (’4.2)
ot 0 P
Equations from electrostatics
v-E=£ (4.3)
vV x ﬁ’ 0 (b.4)

* See Appendix III.

** See Appendix IV.
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Equation for current density

-

T = po(V + KE) - Di¥oe (4.5)

The conservation of charges

%—+v-?=o (4.6)

-—)
where v is velocity, Di diffusion coefficient, J current density and the
other notations have the same meanings as before.

4,2 Linearized Perturbation Equations

A disturbance of the stationary fluid will give rise to the small
velocity (v') and the pressure perturbation (p'). Question now arises
as to whether the disturbances will influence the distribution of the
electric field intensity.

Two approaches are possible, First, we may consider that the per-
turbation in the electric field (E) is not negligible. The total electric
field is then given by E +e. The perturbation in charge density is
related to & through Eqs. (4.3), (4.5), and (4.6). It can be imagined
that the electrostatic force term oa the right-hand side of Eq. (4.2)
will give rise to a rather complicated expression after being expressed
in terms of E and & The formidable mathematics thus introduced urges
us to seek an alternative approach.

The second approach to the problem is to consider the perturbation
in charge density (pc') and assume the disturbance does not influence the
distribution of the electric field. This assumption may be considered
to be valid since the perturbation in charge density is supposed to be
infinitesimally small and the distortion of the electric field caused by
it is thus assumed to be negligible.

With this assumption we obtain the following linearized equations
if v', p' and p,' are substituted in Egs. (L.1), (4.2), (4.5), and (4.6)
and all quadratic terms in them are neglected:

Vo ? =0 ’ (ho7)
v
Xo-lwp + P+ iR, (4.8)
ot P P
T = 5V + Ko'E - DyVo.' s (4.9)
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%tL'+v.3=o. (4.10)

Here only the case of quiescent fluid is considered. Detailed investi-
gations of these equations will be given in the following sections for
two specific cases

(a) Quiescent fluid between two concentric cylinders.

(b) Quiescent fluid between two infinite parallel piates.,

4.3 Instability of Quiescent Fluid between Two Concentric |
Cylinders under the Action of a Transverse Electric Field

4,3,1 Formulation of eigenvalue problem

Let us first consider the viscous fluid at rest between two
concentric cylinders of infinite length under the action of a transverse
electric field, E, (). Let ?, 9, z be cylindrical polar coordinates
and u', v', w' the corresponding components of the perturbation velocity.
Because of the geometrical configuration under consideration, we assume
that the perturbations are rotationary symmetric, i.e., u', v', wv', p',
and p.' are independent of 6., Equations (4.7) through (4,10) for this
particular case reduce to

%+‘;—'+%=o, (4.11)

0 % . % + u(vzu' - %é.) + po'Er (4.12)

ﬁ' o & - u(vav' ] :1(1) : (4.13)
p%=-%+w2w- , (4.14)

_5_p£'_+u, %"'I{Er%?—'*'grcpc' 'Divzpc' =0 (k.25)

where

Pg = mean charge density = €V - I‘_l)
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and

From the form of Eq., (4.13), we can conclude that v' will be
damped out if it is not initially everywhere zero, Elimination of p'
between Eqs, (4.12) and (4,13) yields

pgat-(%-%)w(vz-é,)(%-%)-nré% . (b.16)

We define non-dimensional variables

Z (14
r*-—!-.— " 2% =B . 1‘::_2_,
r1

ri ri
u'r w'r Pc'Kr
ukomesk , wem SOk, pofom=——ck
where
ry; = radius of inner cylinder
and

€ = permittivity ,

Then, on dropping the stars on r, 2, u, w, and pc, we can write
Eqs. (4.11), (4.15), and (4.16) us

%+%+%=0, (k.17)
de [ke?P N7 rikEp .  riK _ Dy y
5 (ev 7 & ke TVZDC =0, (5.18)
O fow ou 1)ow u) rjeEr dpc
— o - owws = ﬁ - oo — e o= e u a °
i > (ar bz) ( r?-)(ar az) T e

Following Taylor, we can make the following substitutions:
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ur(r) cos Az &7

(=4
]

w = wi(r) sin Az 77

’

| pe = per(r) cos Az %%

where A and ¢ are non-dimensional wave number for the z-direction and
amplification factor respectively. Equations (4.17), (4.18), and (4.19)
then become

r%+u1+)\rw1=0 , (4.20)

3 — 2
ke Bl (S5 +1 & mKEr 4 i g2 ¥
or r dr Dy dr  Dje Dy

- O A R @2 .4 1 .5 r) <Er
—? + - - - -—g i am o, -m 2
(dr & ? cr)(d'x ' dr r KJu = X ug Jer’ (k.22)

where Eq, (L4.21) is obtained by substituting for wi from Eq. (4.20).

)pcl s(k.21)

Four of the six boundary conditions are that u and w shall be
zero at each of the bounding cylinders. The other two should be on pg.
Since the perturbation in charge density is suppoused to be induced by
convection, it may be assumed to vanish at each boundary.

4L,3,2 Problem of small spacing

A general discussion of the boundary-value problem presented
by Eqs. (4.21) and (4.22) will clearly be a difficult matter. The
analysis, however, simplifies considerably when the conduction terms,
r1KEp/Dy (dpcl/drs and (r£Koc/Dj €)pey s can be disregarded (for a justifi-
cation of this approximation, see Appendix V) and the distance between
the cylinders is very small compared with the mean of their radii, i.e.

£=r2 -r1 <<% (r2=n)=ro . (4.23)

We shall, therefore, limit ourselves to this case. When Eq. (4.23) holds,
terms of order of £/rg can be neglected and the term 1/r can be disregarded
compared with d/dr. If it is further assumed that the principle of
exchange of stabilities is valid, i.e,, the situation in neutral stability
is given by o = 0, we have, for neutral stability, the equations
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(k.24)

(4,25)

With Er =€f1(r) and dpc/dr =4 g1(r), where & and £ are con-
stants having the dimensions of electric field intensity and charge density
gradient, respectively, and, f1 and g1 are dimensionless functions assuming
positive values when evaluated at a given value of their argument,

Egs. (4.24) and (4.25) can be written

2 2 3
("d_a' - )\2> up = M -I-'tiﬁfmu

§=—_Qr-r 0 a=.£_>\.
£ 1

Eqs. (4.26) can be rewritten as

2
(02 - a%)2u, = a2 £ £Lr(e)o,,
r1 MK

Ms(ﬁul

2 _ s
(D% - a%)ec, eDy

(4.26)

where f and g are obtained from f; and g by replacing r by (£/r1 ¢ + ro/ri).

It is convenient to make the transformation

2
Lr kg u1 — UL
€Dj
the equations then takes the more convenient forms
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(D2 - 8.2)2U]_ * Ta2f0c1

(4.27)

(D2 - a®)pg; = gUL

where

I .
MD4

The boundary conditions can be written

Uy =DUp =pey =0 at £ ==

oj—s

Note DUy = 0 at the boundaries follows from Eq. (4.20).

Further simplification is possible, if we consider the simple
case where Ep 1s constant. For this particular case, ' =1, £ =

= (1 + £/rg €)% and L= - €Ey/r”. Because of Eq. (L. 23), gma.y be
replaced by its value evaluated at ¢ = 0, i.e., g = 1., Eliminating U
we obtain

(D® - a®)%g¢; = - a®Toe, | (4.28)

The boundary conditions become

per = (D? - a%)oo; =D(D® - a®)p,, =0 at g =+ 1 ,  (L.29)

4.3,3 The variational principle

The characteristic value problem posed by Eq. (4.28) subject

to conditions Eg. éh .29) may also be formulated using variational prin-
ciple as follows.*

Let P = (D® - a%)pq1, and write Eq. (4.28) as

(D% - a2)3p = . aanCl . (4.30)

Now multiply both sides of Eq. (4.30) by P and integrate over the range
of £+ The left-hand side of the equation gives
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Y a %

4
f P(D% - a%)%pa & = J FD'Pd ¢ - 2a% f PD?P4 ¢ + a‘_/ P3d ¢ |
- = ~%A =

Since both P and DP vanish at & =+ ., it readily follows after two inte-
grations by parts that

V] VA
f/ P(D* - a®)3pd & =f [(D® - a®)P)34 &
-2 Y2

Turning next to the right-hand side of Eq. (4.30), we aeove

Vs Y2 %
_ 2 e ./ﬂ 2
.[/: Ppcld £ = _['./a pch Ocld £ a /v, pcl dg 0

Using the boundary condition p. =0 at ¢ =+ 1, we find

'/2 '/2 ./l
fPocldg=- f (Docl)zdg-aaf pe A E .
-2 -

=%

The result of multiplying Eq. (4.30) by P and integrating over ¢t is,
therefore,

a
f [D® - a%)P]34 ¢

-%
T = . (4.31)

V) V)
aa[_/ (Dpc,)%d & + 8-2_/ Dcl?dél
-2

-

4.,3.,4 Physical meaning of T

The non-dimensional parameter T corresponds to the Taylor
number in flows between two concentric rotating cylinders. It can be
shown as follows that the parameter T in the form

T=-M

HD3
represents the ratio of the destabilizing electrostatic force to the
stabilizing viscous force,

Consider a perturbation, of scale (-&£), in the charge density.
Associated with this perturbation is a destabilizing electrostatic force
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per unit volume of scale (1511). When convection takes place, convection
and diffusion of charge density have the same order of magnitude

(Eq. (4.25)), this implies hat the radial velocity component has a scale
of Di/Z. The viscous force opposing the convective motion is thus of
scale uDi/Z3 per unit volume; this is the stabilizing force. The ratio
of the destabilizing to the stabilizing force is

i 4

WD
which is T,
4,3,5 Interpretation of the stability problem

The problem of the solution to Eq. (4.28) subject to the

boundary conditions Egq. (4.29) is an eigenvalue problem leading to a
relation between a and T, namely F(a, T) = O, It can be foreseen that
instability will be possible if T is greater than some critical value,
for then the effect of the destabilizing electrostatic force will out-
weigh the effect of the stabilizing viscous force. The minimun critical
value of T called Te, is the minimum value of T, as a function of a,
given by F(a, T) = 0., For T > T., it can be inferred that a disturbance

within the band of unstable wavelength is an amplifying, non-oscillatory
flow.

The variational formulation of the problem, Eq. (4.31), fac-
ilitates the determination of an approximate value of Te. If, for given
values of a, T is minimized with respect to variation of pc,, the resulting
values of T are eigenvalues. In practice, a function of p., is assumed
which contains one arbitrary constant (4) and satisfies the boundary
conditions, for given a, the extremals of T, with respect to variation of

/ﬁ, are eigenvalues, The minimum of these eigenvalues for various values

of & is the desired critical value of T (Tc). The accepted value of T
is 1707.8 at a = 3,13,

4,3.6 Critical electric field intensity

From the definition of the non-dimensional parameter T, it is
clear that corresponding (o the critical value of T (Tc¢) there is a
critical value of the electric field intensity, E,, for a given fluid,
To give an estimation of the magnitude of E. for air, let us consider
again the simple case where E, is constant. For this case the charge
density is found to be

and
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If the gradient of the charge density is evaluated at r =

ro = % (r1 + r2),
we have

dp €Ep°
Ep —= =€4=- =X <o
dr ro

and the fluid is unstable., Now,

4 2
Tc=-—€£=+—z- E—E£=l708.
HD4 wp; r?

Therefore,

For air at standard condition

g
|

= 0.000018 Kg/m sec,

o
-
!

= 0,028 x 10~*m/sec for dry air,

_ -12 _coulomb o
€ = 1.006 x 8.85 x 10 volt meter

If ro = 2.5 cm and £ = 0.5 cm then ro/4° = 10 and E, = 988 volt/m. Thus,
for this particular case, instability will set in when the electric field
reaches the value of 988 volt/m.

4,4 Instability of a Layer of Fluid between Two Infinite, Parallel
Plates under the Action of a Transverse Electric Field

4,4,1 Derivation of the perturbation equations

As a second application of Egqs. (4.7) through (L4.10), let us
investigate the case where a layer of quiescent fluid between two infi-
nite parallel plates is under the action of & transverse electric field,
E(z). Iet x, y, z be rectangular coordinates with z-axis perpendicular
to the two plates. The plates are located at z =t h/2. To facilitate
the derivation of the perturbation equation, we shall use the notation
of Cartesian tensor with usual summation convention,®
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Let u; (§j =1, 2, 3, with 1, 2, 3 corresponding to x, y, z,
respectively) denote the components of the perturbation velocity. Equa-
tions (4.7) through (4.10) can then be written as

&11
—_— =0 4,32
ot (4.32)
a.li' 1 Q)' '
—_—— " = o —— —E>\ W2 Lh
% - * 5 I uy (4.33)
ap' .BDF ' aE &3' '
a:+uiaxi+xpc&_i)‘i+m>‘i&-§'nivzpc=O’ (4.34)

—’
where A = (0, 0, 1) is a unit vector in the z-direction and

P, P, P
xf xE x3

To eliminate the pressure term in Eq. (4.33), apply the operator

to the kth component of the equation. Letting

&10
wi = eijk —k.

J

denote the vorticity, we have the equation

dwi
-—atl- =E €1 3k gij At WP (4.35)

Taking the curl of this equation once again, we have

2 ik -E Fpe
S LK 5y T KA SIS T ¢ Wheik gxaﬂ‘- . (4.36)
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Making use of the identity

€1jk€kem = 814%jm = Bimdje>
we find

duwg N Fum _ O fu " ]
€1 jk &3’ = €ijk€kim &(j&(l = an_ (&(J = vzui == vaui *

Similarly,

aapc aapc
e = N — - V2

Thus, Eq. (4.36) becomes

0 ' E bzp' '
— V2ui = = [M¥%04 = A S} + Wi . b,
v p(i Pe J Segd 3) Wy (4.37)

Now multiply Egs. (4.35) and (4.37) by Aj, we get

L= w2 4.38
= § (.38)
and
d o _E[Poc  Poc ,
— VW = ;('_ac + 2c> + W', (4.39)

vhere { = )‘j“’j and w = 7\ju3 are the z-component of the vorticity and the
velocity.

If again we neglect the conduction terms, Eq. (4.34) becomes

.ia.g_‘: = - %’f w' + D3V3p, (4.b0)

and the required perturbation equations are

L2
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ot

d E [Poe  Poc .
é _St_vaw. = ;‘(’&ES + byac) + Wi (4.39)
\ % 2 - .%_6 w' + Divzpé . (u.!-l'O)

The fluid is considered to be confined between two conducting plates
located at z =* h/2, The boundary conditions cn these plates are, like
the previous case

¢ =pg = 29 Lgat zims B,

Xz 2

4.,4,2 Formulation of eigenvalue problem

Following the analysis in thermal convection, we now ascribe
to all quantities describing the perturbation a dependence on x, y, and
t of the form

expli(kx x + kyy) +7 t],

where k = vk + ko2 is the wave number and 7 is & constant (which can
be complex). Suppose pi, W', and { have the forms

¢ = Gy (z)expli(kex + kyy) +7 t] ,
w' o= w(z)expli(kxx + kyy) +7 t] ,
pL = pcl(z)exp[i(kxx +kyy) +7 t] .

For functions with this dependence on x, y, and t,

7t = V(L: - kz) £ivs (L.41)




2 2 ™
7(.93 ; ka)wl - - B + v(_dz - k~)2wl , (b2)

2
7901 £l % w1 + Di(_g_z'z- ka)pcl . (h.h3)

In terms of the non-dimensional variables

* = E. * = tv
S e
we obtain from Igqs. (4.42) and (4.43)
(D® - v2)(D? - b2 - o)w, = (—Ehz)bz Pe, (b.uk)

where D = 4/dz*, b =k h and ¢ = 7h2/v. The associated boundary conditions
are

g

Pe =0 , wp =Dwy =0 at z¥ =¢

With E = ££(z*) and dpg/dz =L g(z*) and meking the transformation

él- h3w, W,

we obtain
(D2 - b3)(D® - b2 - o)W, = - b2Rfoe,

(D2 - b2 - -]-;-'I c)pcl = gWy S22,

where R = - h‘qui is equivalent to the Rayleigh number in thermal con-

vection and has the same physical meaning as T in Section 4.3, For

marginal state o = O, and Eqs. (4.46) reduce to
(D% - b3)wy = - baprcl

- (4.47)
(D -b )pcl e Swl
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4.5 Instability of Laminar Boundary Layer over a Flat Plate under
the Action of & Transverse Electric Field

4,5,1 General remarks

It has been shown in Section 1.3 that for the parallel plate
electrodes (Fig. 1) the charge density distribution in the boundary layer

is approximately
el |

This indicates that de./dy > O. But Ey < O, therefore, Ey dpo/dy < O
and the flow is unstable. The situation here is analogous to the cases
of laminar boundary layers on concave walls and on heated walls, For
the last two cases, Goertler demonstrated that the instability occurs

in the form of standing, longitudinal cellular vortices which resemble
the pattern of Taylor vortices,'!s12 It is believed that this Goertler
type of vortices (Fig. 7) may also exist in the problem under considera-

tion. Using the assumptions made in the previous sections, we show below
that this is the case,

4,5.2 The equations of instability

Consider a flow past a flat plate at zero incidence; as shown
in Fig. 1, the main flow is directed along z, y is normal to the surface,
and x is along the surface and perpendicular to both y and z; & is the
boundary layer thickness, and w, v, u are the corresponding velocities,

If all quantities are assumed independent of z, the equations
of motion for three-dimensional flow are

%N%w%: ;§+v(ig %_‘;) (4.48)
%’-+u%§+v% %%”(ax +§§)+&pe};y, (4.49)
%’:+u§'-+v%=v<§c—a"z-+%> - (4.50)
%+§y£-o. (4.51)

And the electrodynamic equations are
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Fig. 7 - Expected Goertler vortices in laminar boundary
layer over a flat plate
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JY'pcV"'Kchy'Di%a

Jz = PV,
dpc e dpc E dp¢ Poe . Foc
R*H‘g*"‘g*mc'ﬁ*myw'l)i'&?*?'o . (b.52)

The undisturbed flow u = v = 0, w = w(y), p = b(y), Pc = Po(y) satisfies
the above equations. Assume, now, for the disturbed flow that

u=u(y) sin a x ePt,
v =vi(y) cos ax eBt,
w =w(y) +wi(y) cos ax eft |
P =Dply) +puly) cos ax Pt ,

Pe = Pcly) + poy(y) cos ax eBt,

Here B is real and denotes the amplification factor, whereas A' = 2/
represents the wavelength of the disturbance at right angles to the main
flow direction. w1, vy, wi are small quantities whose squares and prod-
ucts can be disregarded. The vortices have the shape shown in Fig. 7,
their axes being parallel to the main flow direction.

Assuming that perturbations in electric field intensity and in
electrical conductivity, 6 = Ko., can be disregarded, we find after
introducing Eq. (4.53) in Egs. ?h.hB) through (4,52)

s - 23, - (%“221 i a=u1) : (hu5h
Bwy + v1 §= v(% - Qan) ’ (4.56)
we=-zS (4457)
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e el et T ey

dfe a2p
ch + Vi -T‘-;- = Di (?c‘ - &Dcl) . (16.58)

Eliminating py between Eqs. (4.54) and (4.55) and substituting the value
of uy from Eq. (4.57), we obtain

v % - (B + 2veR) d:\; + ?(B + veP)vy = &P 9%1 Ey, (4.59)

’ Qd_z;za. - (B + vy =y i.yi (1.60)
. -
Dy gﬁ‘ - (B + DycP)oc, = v1 2, (4.61)

Transforming the variables, let

7]'%: W(fl) ':‘?’c'abs

2 2

Dy’

wl = w—ga- Wl,

where wo is free stream velocity. We obtain

(0 - )02 = 2 - ou)vy =SB (4.62)
(D2 = ¢ = oy )Wy = viDW 5 (4.63)
(02 - 2 - oo, =i (1.6)
Letting Ey =£f(n), dfz/dy =&g(n) and making the transformation
%{Vl——’\h
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we obtain, from Eqs. (4.62) and (4.6L)
(D2 - ¢2)(D? - ¢® - o1 )Va = - c®Pfpc, }

(D% - ¢ - 02)pc, = &V2

(4.65)

vhere T = - 6"&'0'va1 is the Taylor number for the problem, The boundury
conditions are

Vi =DV =p, =Oatn=Oandn=o (4.66)

Equations (4.65), subject to (4.66), define an eigenvalue
problem for T, c, and B. Neutral stability is defined by B = O,

4,6 Discussion

The theory of hydrodynamic stability discussed in Sections 4.3 and
4,4 are primarily linear and valid for quiescent fluid only. To relate
the stability problem to the experimental findings cited previously, it
is necessary to take into account the effects of basic flow and finite
amplitude disturbance (the non-linear theory). A complete theory about
the interaction between the basic flow and the finite amplitude disturb-
ance is as yet far from being completely developed. However, certain
general understanding has been reached. Some of these will be discussed
in this section.

According to the linear theory a small disturbance will grow expo-
nentially with time. As it amplifies it must eventually reach a size
such that the mean transport of momentum by the finite amplitude disturhb-
ances is appreciable and such that the associated mean stress (the
Reynolds stress®)has an appreciable effect on the basic flow. The
resulting distortion of the beasic flow could strengthen the conversion
of energy from the basic flow into the distrubances., Since this energy
conversion is the cause of the growth of the distwbance, the rate of
growth of the latter is altered. The disturbance is also modified by the
generation of harmonics of the fundamental component. Thus, there is a
mutual interactiorn between the basic and disturbance parts of the flow,
and & self-distortion of the disturbance.

When the rate of conversion of energy from the basic flow to the
disturbance balances the rate of viscous dissipation of kinetic energy
by the disturbance, an equilibrium state can be achieved in which the
disturbance has a definite finite amplitude and the basic flow exhibits
definite deviation from the original laminar flow. This suggests that,
in some cases, the effect of instability is to replace the original,
laminar motion by another laminar motion, consisting of a basic motion
and & superimposed finite disturbance. This may be referred to as the
equilibrium flow (or the secondary ilow), at & given Taylor number and
Reynolds number, appropriate to the given mode of disturbance. If we

k9
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impose the condition that the rate of discharge for the disturbed motion
shall be the same as the original, laminar motion, & larger pressure drop
is required becau:e of the work which must be done by the pressure gra-
dient to maintain the disturbance.

B
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CONCLUDING REMARKS

Despite the efforts devoted to the explanation of the phenomenon
observed in the exploratory investigetion mentioned in the introduction,
the problem remains not completely solved, It appears that new deter-
minable parameters must be introduced or that one must understand the
transport phenomens. of space charges more completely than it is known at
present. This was borne out by the fact that in Section 4, Taylor-
Goertler type vortices were shown to occur under the assumption of negli-
gible perturbation in electrical conductivity. The neglect of conduction
terms in the perturbation equations needs further justification.

Lack of experimental data renders it difficult to verify the analyses
presented in Sections 1 and 4., Although no numerical calculations are
presented for the analysis in Section 3, it is believed that because of
the smallness of the number density of ions, the contribution of ion-
neutral particle collisions to the increase in pressure gradient will
not be important. The analysis of Section 2 suggests that the pressure
gradient increase is not to be attributed to the increase in the viscosity
of the fluid because of the presence of ions,

The results of Section 4 are of particular interest. They indicate
that theoretically Taylor-Goertler type of instability is possible under
certain circumstances., It is recommended that extensive experiments be
conducted to verify the occurrence of Taylor-Goertler vortices., If this
proves to be successful, the next step will be to work out more rigorous
solutions for the eigenvalue problems with various charge density dis-
tribution and check the critical Taylor number thus obtained with the
experimentally measured values to verify the validity of our assumptions.

Because of the highly mathematical complexity and experimental difficulty,
this is a rather challenging taske.

Our analysis for flow between two concentric cylinders has been
restricted to the special case of quiescent fluid and small spacing.
Experimentally, space charges are most conveniently provided in a round
channel by a corona discharge from a thin wire located concentrically
serving as anode. To facilitate comparison of theoretical results with
experimental data, it appears that the problem of arbitrary spacings
should be also considered. Another problem which concerns us is the

modification of the analysis of Section 4,3 to the case when an exial
flow is present,

In conclusion, it should be pointed out that electric fields may
be used to stabilize laminar boundary layers on concave walls as well
as over flat plates, provided it is possible to obtain a charge density
distribution such that Ey dp./dy satisfies the condition for stable
state, i.e., Ey dee/dy > 0,
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APPENDIX I,

FUNCTION f2(n) -- (after Rossow)

TABULATED DATA

n f2 r3

0 0 ‘0.89&
0.2 -0,018 -0,888
Oou "'00071 -00%8
0.6 -0.,159 -0,835
008 "00281 'o. 789
l.O =0 .)433 -0.730
l .2 "00615 -o .660
1.4 -0,824 =0.579
1.6 -1,055 -0,489
108 -103% ‘00391‘
2,0 =1.573 -0.2%
2.2 "l.852 "0-197
2 .h -2 0138 -o 0103
2.6 -2 .l&29 '0.017
2.8 -2.720 "0.059
3.0 "3.010 0.121
3.2 =3.294 0,168
3.h =3.572 0.201
3.6 -3.841 0.218
3.8 4,102 0,222
hoo -l&.35l& 002.16
14.2 -l&.598 00200
'R -4,833 0.180
4.6 =5,062 0.156
4,8 -5.,284 0.131
5.0 =5,501 0,107
5'2 -5 ‘713 00085
5.k -5.923 0.065
546 6,129 0.049
5.8 6,334 0,036
6.0 6.537 0,026
6.2 6,739 0.018
6.4 6,941 0.012
6.6 7,141 0,008
6.8 =7.342 0,005
7.0 =7.542 0,003
7.2 =T.T43 0,002
Tl ~T.943 0.001
7.6 8,143 0.001
7.8 -8.343 0
8.0 -8052"3 0
8.2 -8.7h3 0
8.4 -8.943 o]
8.6 =9,143 0




B, VARIATION OF VELOCITY PROFILES

a) mz =0
n fomiz=i= 12
0 0 0
1.0 0.32979 -0.839
2,0 0.,62977 <1.367
3.0 0.84605 -1.435
4,0 0.95552 -1,239
5.0 099155 -1,073
6.0 0.99898 -1,013
7.0 0.99992 1,001
8.0 1,00000 1,0
b) mz = 0.1
0 0 0 0
1.0 -0,0839 0.24589 0.27320
2.0 =0,1%7 0.49307 0.54785
3.0 =0,1435 0.70245 0.78050
4,0 =0,1239 0.83162 0.92400
540 -0,1073 0.88425 0.98250
6.0 -0,1013 0.89768 0.997k40
7.0 -0,1001 0.89982 0.99980
8.0 0,1 0.9 1.0
56
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c) mz = 0,2

' W W
1 mzfp Ve "—O.
0 0] 0 0

1.0 =0,1678 0.16199 0.2025
2,0 -0,273k 0.35637 0.Lk55
3.0 -0,2870 0.55900 0.6990
4.0 -0,2478 0.70772 0.88u6
540 -0,21k46 0.77695 0.9712
6.0 -0,2026 0.7%38 0.9955
7.0 -0,2000  0,79972 0.99%

8.0 “002 0.8 O.l
‘ d) mz = 0,3
1 mzf2 . . A
Woo Yo
0 0 0o 0
1,0 =0,2517 0.07757 0.,01108

2.0 -0.4101 0.21967 0.31380
3.0 =0,4305 0.41555 0.593%0

5.0 =0,3219  0.66965 0.9566
6.0 -0.3039  0.69508 0.9927
7.0 -0,3003 0.69%2 0,999k
8.0 -0.3 0.7 1.0
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C. BOUNDARY LAYER THICKNESS

o g %
L
0 y 7-2’
HeSb Rez
0.1 505 5Rez
o TTU
92
0. «92
3 549 3—%2

D. IOCAL COEFFICIENT OF SKIN FRICTION

nz 0 0.1 0.2 0.3
c! 006M 0."‘652 0.2%“ O.IOE
f Rez Rez Rez Rez
E. C¢ VERSUS CHARGE NUMBER
Rez m
10* 0,64l - 1,788 x 10"Npcz
5 x 10* 0,64k - 0.3576 x 10~*Np.z
105 0.64k4 - 1,788 x 10-N,,
5 x 10° 0,644 - 0.3576 x 107N, ,
(-] -
10 0.644 = 1,788 x 10 %m

58




APPENDIX II. APPLICATION OF LAPLACE TRANSFORMATION

The simultaneous equations to be solved are

(Ed; - c,)wu + owll) = Co (11-1)

f
- oW + (% + Ca)w(i) -0 . (11-2)

The boundary conditions are

Weoaty=h ; wil)sy =o0atys=o0

The Laplace transforms of each term of Eqs. (II-1) and (II-2) are listed
as follows

3

dw = - - gw—N = - M-
Lz?i s2H(s) - swi(o) 3/ yeo S3H(s) & yeo

L(W} = H(S) ,
Liw(t)) = 1) (s) |

Lid—gg} = sg(1)(s) - w(t)(o) = suli)(s) .

After transformation Eqs. (II-1) and (II-2) become

(s2=C1)H(s) + el (5) = . %/y 0 (11-3)

- CoH(S) + (58 + c2)H(i)(s) =0 (1I-4)

Elimination ﬁf H(i)(S) gives, after some algebraic manipulation and

dw
denoting ——/ by B
dy y:o

29
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Cy cf Cy S c, Js3

H(s)--(Qn+9§99.+QaB).l.-(§a§a).1_

. +[§n§a+§39.n+gn§a+(92+1)B] 4

Cy ce C1 C1 S2 + C28 - Cy

]
+(c , CBco , C2 s
, (c CT C1 B)

N S2 + (oS - O
! where

82 +C28-C1=[s-(-4c2 +-21—Jc§ + 4C;) 1S - (- 4 c2 - 1 VCB + icy)]

Using the inverse transform formula

afl _afl
AL - A

- 1 1
. 1{(S-ex)(S-b)} s (el

y - P | i
Ll{(s-a.)(s.b)f R (aedt - pebt)

we find

C, C C1 C1 ct C1 C1

- : (eCsy - eCe¥) + Co , CBC
C1 C§+’-&C1 Ca Cf

+ & i CseCsY - CeeCey

wNn-(gﬁ-i-CC +9.2.B)-..2_Q.CC y+[(§29‘n+.a_n.°° + S2Cg

where

Cs'-%02+%VC§+l&C)_ 3

Ce = =3 Ca -2 VCE +1LC,
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Since wN = 0 at y = h, it is found that

ch+l+cl gQ.-{-gEgQ.-i-ng.Q.tl
B o G ¢

[(C2e®" - cae®e) + (cse®5 - coelel) - &2 VB +Tcy
1

3
£C2Cp , C2%0)(COsh _ (Ceh) + (Sa 4 EEQQ)(Csecsh - CeeCoh)
C1 cg cp %

[(C2¢Csh - CpeCoh) + (CseCsh - CeeCeh) - &2 Ve + 1ea)
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APPENDIX 1II, CRITERION FOR THE ELECTROHYDRODYNAMIC STABILITY

Since the fluid is considered at rest, the equation of motions
reduces to the simple form

d
PeEyp = E¥

for the case of concentric cylindrical electrodes. This equation shows
that for the fluid to be in equilibrium under the action of an electric
field, the electrostatic force must be balanced by the pressure gradient
dp/dr. Consider now & fluid element of charge density pci at radius r;
and suppose that the element is displaced to a radius ro which is greater
than ri. Since the charge density of the fluid element remains unchanged,
the new electrostatic force on it is pg1 Ez, where E> is the electric
field intensity at radius r>. The pressure gradient at radius rp supplies
an inward force of magnitude poz Ez2, pc2 being the original charge density
at ra. If poo E2 > poy E2, the fluid element will be forced back to its
original radius and the fluid is said to be in a stable state. On the
other hand, if p, Ez < p, E2, the fluid element will tend to move farther
away from its orgiinal position and the fluid is in unstable_equilibrium,

Now if we replace rp by r, r; by r-dr, E; by E, Peo by po, and Pe,

by pc-(dpc/dr)dr, where dr is taken as a positive quantity, the condi-
tion for. stable state can be written

pcE > (pc - 9—3—% d.r)E

or

~E®¥e ar <o
ar

Thus, for stable state E dpc/dr > O, Similarly, the condition for unstable
equilibrium becomes E dp;/dr < O,
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APPENDIX IV, ELECTRIC FIELD AND SPACE CHARGE DISTRIBUTIONS
FOR POSITIVE CORONA BETWEEN TWO CONCENTRIC
CYLINDERS

Let ry be the radius of the inner cylinder (or wire), r> the radius
of the outer cylinder (or tube) and J> the current density at r = ra.
The governing equations for the determination of electric field and
charge density distributions are

— (IV-l)

(Iv-2)

Combining Eqs. (IV-1l) and (IV-2), we obtain

4 = X2d2.
dr (rEy) €KrEy

Lo 3 | ol

or

SETCOR 3 o

The solution of Eq. (IV-3) satisfying the boundary condition E,. =0 at
r =1r is

214
En= Eaga l - El. . _h
r [ €K r? (I¥-h)

From Eq, (IV-2) pe is found to be

- |&arz 2 %
RE= [ K rz = 1'12] ’ (IV-S)
and
doc _ _ [edarz r %
dr K (r= - r7)%] °
Therefore,
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r
Er:d&ﬂ-Jaa

1
<0
dr K (2f - rf)
and the fluid is in unstable equilibrium,




APPENDIX V, THE NEGLECT OF CONDUCTION TERMS IN PERTURBATION EQUATIONS

The current density, as given in Section !,1, is

- - -
J = pev + KocE - DyVp (4.5)

By definition, electrical conductivity of a fluid is given by

-+ -

where
6 = electrical conducitivity
p: = positive charge density
p: = negative charge density
kK = positive ion mobility
K = negative ion mobility

For the problem at hand, p, = O, thus 6 = p: k* and Eq. (4.5) can be
written as

- - -
J = pov + 6E - DiVpc.

Now, if we assume that perturbations in electric field intensity as well
as in electrical conductivity are negligible, Eq. (4.9) assumes the form
- ) ;

Jd = pgV = DjVp,

and Eq. (4.15) becomes

ig%"'u'a’%}j‘-DiVeDé=O

Upon going through the same procedure as in Section 4.3, we finally
obtain Eq. (4.29).
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