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Abstract 

The wave motion generated by the steady motion of a ship 

is formulated 'exactly' in Lagrangian coordinates. An 

approximation scheme is then developed based upon a method of 

iteration. The first iteration cart be chosen so as to yield 

the Michell thin-ship theory The second iteration produces 

more complicated formulas. However, if the smallness of 

draft/length is taken into account, the formula for the 

resistance simplifies to one similar to Michell's, but with 

the integral taker, over a modified region and with a modified 

hull function, plus a line integral over the profile which 

represents a distribution of dipoles with strength proportional 

to the waterline slopes. 



Since several derivations of Michell's integral, including 

Michell’s own, are available, it seems appropriate to try to 

explain how any new one throws further light on the subject. The 

aim of the present one is not to introduce new techniques for 

solving the associated boundary-value \ obiems, but instead to 

introduce both a new (in this problem) way of formulating the 

problem mathematically and a new approximation scheme. The first 

approximation recovers the classical results, so that any advantage 

here must be chiefly conceptual. The second approximation, however 

already shows advantages of the present procedure. In order to 

weigh advantages against disadvantages, we shall first discuss 

some disadvantages of the formulation of free-surface problems in 

Eulenan coordinates, next how these are avoided in Lagrangian 

coordinates, and finally, show how some part of the supposed 

advantage of Lagrangian coordinates disappears in dealing with 

boundary conditions on rigid bodies. The necessity of dealing 

with this last situation led to a different approach to finding 

approximate solutions. 

If one formulates without approximation the problem of flow 

with a free surface, the position of the free surface Itself Is 

generally one of the unknowns of the problem. Indeed, In most 

such problems, finding this position is the chief goal. If the 

problem has been formulated In Eulerian coordinates, this means 

that the domain of definition of the velocity and pressure field, 

i.e., the domain of validity of the equations of motion, Is 

unknown. In one of the usual approximation schemes, one attempts 

to circumvent this difficulty by replacing boundary conditions on 

the free surface by boundary conditions on a known mean position. 

Since the mean surface does not usually lie wholly within the 

region occupied by fluid, this requires being able to extend 

the domain of definition of the field variables outside their 

original domain of definition In such a way that the equations 

of motion remain valid. 
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In problems of two-dimensional steady flow, one can avoid this 

step by using the stream function as one of the independent variables. 

In this case one seeks the field variables as functions of x and Ÿ 
(or of (p and Ÿ' if there exists a velocity potential) and also 

as a function of x and Y' (or both x and ÿ. as functions of cp and 

Ÿ )• This effective device is unfortunatly not available in three- 

dimensional flows. However, another one is, namely, the use of 

Lagrangian variables in which each partie le is labelled by a triple 

of numbers. This labelling can be done in such a way that the 

domain of the labelling variables is both known and convenient. The 

trajectories of particles, their velocities and pressures are then 

sought as functions of the labelling variables. This procedure is, 

of course, well known; the appropriate form of the equations of 

motion can be found in Lamb's Hydrodynamics. and is used there in 

the discussion of Gerstner's waves. The use of Lagrangian variables 

in water-wave problems has been especially exploited in recent years 

by J. Kravtchenko and his students [for some references see 

pp. 581-592 of Wehausen (1965)]. 

As will be shown later on, the advantage of Lagrangian variables 

mentioned above carries with it a concomitant disadvantage. If there 

is flow about a solid body (here a ship), the domain over which a 

boundary condition expressing the presence of the body is to be 

applied is not known, but has to be found as part of the solution 

(this is not the case for Eulerian variables). This would appear to 

put us back into a situation similar to that described for the 

Eulerian formulation of water-wave problems, except for one thing. 

The domain of application of the body boundary condition can be 

included in any approximation scheme without the necessity of extending 

the domain of definition of the various functions beyond their natural 

ones . 

In this paper the 'exact' problem will first be formulated and 

subjected to certain manipulations. Thereafter an approximation 

scheme is proposed which is based upon iteration rather than a pertur¬ 

bation expansion. Because the starting point of the iteration is 
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taker, as a ship with zero beam, it is still appropriate to call 

the lirst two iterations 'thin-ship' approximations. The same 

method could be used with other starting points, but would not 

alter the matnematical difficulties inherent in these. 

The first approximation, in the modified form chosen here, 

yields exactly the same expressions for wave resistance, trim and 

sinkage as one obtains with Eulerian variables. The second approxi¬ 

mation will not in general agree with the second-order theories 

obtained from a perturbation expansion with Eulerian variables, 

although the differences should be of 'higher order'. This is 

partly because the second approximation here is not an irrotational 

flow, partly because the principle in treating certain product 

terms is different. Consequently, one cannot expect to be able to 

identify the second approximation here with results obtained in 

recent times by Eggers (1966), Maruo (1966), Sizov (1961) or the 

author (1963). However, a recent report of B. Yim (1966) is quite 

close in its approach. Yim uses as independent variables 

í X i fi » ^ / > 111 the notation introduced below. This choice yields 

one of the main advantages of the Lagrangian variables, namely, 

that the free surface is given by » 0. 

In a final section an attempt is made to simplify the 

formulas determining the sinkage and trim in the first approxima¬ 

tion and the wave resistance in the second by making use of the 

fact, that the draft/length ratio of normal ship forms is quite 

small. 

Coordinate systems and notation. 

We shall make use of two coordinate systems which coincide 

when the ship is at rest in its equilibrium position. The 

coordinate frame O'x'y'^ will be taken as attached to the ship 

with the ( yy ^ )-plane containing the midship section, the 

( ) plane the water plane section, and the ( *'t )-plane 

the centerpiane section. 0'yf is directed upwards, O'x* toward 

the stern, and O ^ toward port. The coordinate frame 

\ 

i 



4 

is caken so that the (^¿O-plane coincides with the mean water 

surface, and so that the two origins lie on a vertical line, the 

coordinates of O' being (o,U(0) in . The center of 

gravity of the ship is at the point G - 0). A positive 

thrust ~T~ acts in the negative x' direction along a line inter¬ 
secting the )-plane at (0,6^0 ); ordinarily e'<0. Figure 1 

shows schematically the two systems and defines the pitch angle cp . 
The two systems are related by the following equations: 

Xs X 1 t*j “* V , 

*' f'w y + *o« 

J = J,i ,. . a) 
X* — X COJ 4f 4 ‘fj 

5. -X fm 4 toi 

r - a- 

Whenever it seems notationally more convenient to do so, we 

shall replace X,by > M^urby u^u^Uj , etc. 

Derivatives will usually be indicated by subscripts, and furthermore, 

the summation convention for subscripts occurring twice will be 

followed. For example, 

y 2* Y SY 

X TF ^ ' T? * 2 
sz 
it- 

When it seems convenient to do so, we shall mix the two notations. 

For example, in (20) we shall write 

$-Y uvX. + t 

S-Xi ■V 

instead of 



Figure 1 

i 
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The aquílibrium equations. 

Let the equation of the ship's hull be given in the system 

o by 

(2) 

Then the unit normal vector into the ship is given in O'*'}'}' by 

jnix',y)= Tl) 

[1 

and in Ox^y by 

'j.J = ^'f*'*^*0*^ ~ ^St‘* Vi h Tl) 

~ ' ’ U+C+VJ”1 

(3) 

(4) 

where 

’ ' ÎX' ' 

and where in (4) one must use (1) to give X7 and <3/ in terms of 
X and ^. 

Let f> be the pressure at any point of the fluid and let S 

be the wetted surface of the ship. Then the force acting upon 

the ship because of the pressure is 

w 

£ = f( r s. «‘■S; 
Sw 

and the moment with respect to O is 

yr)n = Í5 p r X* ¿s, 

where ^ is the vector OP , P & point of 5v . 

(5) 

(6) 
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The force ;ind moment may be resolved Into components In either 

system. If ve suppose the force to be resolved In the system 0,>!r. 
the equations of static equilibrium are °° 

F. - r C.5 Y = Û , -Ts.Vy -M} *0 , -o. (7) 

For the moment we have 

Equations governing the fluid. 

Since we have assumed the motion to be steady, we may think of 

each streamline as a wire extending from *=-<» to + oo ancj 

identify it by its ^ and £ coordinates at Xr-co Let them be 

C> and f , respectively. The trajectory of a particle may then 
be described by 

O . '^>3. (9) 
We shall use t , , f as the Lagrangian coordinates That the 

time t can be used as one of the coordinates is, of course, a 

consequence of the assumed steadiness of the motion 

Since the motion must approach a uniform flow with velocity 

(Uy 0,0 x, as *-oo , the functions in (9) must satisfy 

f~ U , -3-.=0/ V. = O. (10) 

It will be convenient to express the functions */( t,/), J') in a 

somewhat different form. We shall take them as follows: 

(11) 
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The behavior as *-*-<*> is then specified by the conditions 

J'- X; (Ut ,/3, af) :=:0, (12) 
t-* -«O 

oiai ' * ' ’ ; 0( «0, = Oj 

- O, 

p ^ 5- Yît ^ 2«■+ u - 

(14) 

The equation for the conservation of mass takes the following 

form, with * s Ufc ; 

*i+Xv +Zr -t- + (13) 
r ô(/ri/ï') + 

this may be manipulated into the equation 

X « * ^ Z y' •+• Xai ^ ^ j 

-tí x^r^y^Yf +¿^2^+2/] 

-+1[ ( X--2^)% U«-XVŸ + (Xp-Y.PJ 
+ ’àÇKXl) _ 0 

* (+,(1. f) 

If we add to (11) the following form for |o , 

-f ^/3+F(ut,(15) 

then the momentum equations are 

f p« + ^Yw + + w'X.. 

f ^ 4 Y/i •+u y.w +01 a- 

r 

(16) 
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It is easy to eliminate f in each pair of equations and 

to obtain the following: 

These equations can each be integrated once with respect to ^ . 

Because of (12) the constants of integration will be zero. We 

then .iave 

X - V«. + V/v 

Y*,. - + =0' 
(18) 

It is not difficult to verify that the equations (18) are not 

independent, and that from any pair of them the third can be 

derived. 

By using equations (18) it is now possible to obtain an 

integral of the equations (16). It is 

(19) 

Here, without essential loss of generality, we have taken the 

atmospheric pressure as zero. 

The free surface is defined by 's. o . The boundary condi¬ 

tion then takes the form 

Xj* = o, (20) 
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The stream surface which includes the surface of the ship and 

plane of symmetry outside the ship is defined by . 

The functions X,Y, 2 must also satisfy the following boundary 

condition: 

f ([<* -t XK/Vo)]‘os -f £/l-ln + Yj Si'* 

Xj S'* sf •+[ A-^YJ ), 

where we have extended the definition of f to be zero everywhere 

outside the centerplane section of the ship. For later developments 

it is necessary to be more specific about the region in the (cx,/^ )- 

plane where Z . Let us denote this region by SL . it 

is evidently bounded above by /5 = O , and the rest of the boundary 

will be a distortion of the submerged portion of the boundary of the 

centerplane section. The mapping 

) p> +Y [K,p>,o) (22) 

takes SL onto the projection onto the centerplane section of the 

wetted hull, as described in the ( X,y.) coordinates; we denote this 

region by Sp . The mapping 

x' =. [ X 0)] Ci* cf -Y L/i-U^ V] s£* 
1 ' (23) 

X] yYJ 

takes onto the same region as described in the v coordi¬ 

nates. The function fL f«',pi) defined by (21) vanishes outside SL . 

Figure 2 shows schematically Sp and SL together with some arrows 

mapping points from $L to Sp . 



! 
xi 

Figure 2 

Next we introduce the Lagrangian notation into equations 

(7) and (8). In carrying out the integrations in the (#,/3) 

plane, one must, of course, use the Jacobian transformation 

The equations for FÄ , 

ülütl ¿«Ja 
(24) 

F> and Yr\0^ take the following form: 

2 i(<!«J/V[l + + X.Y/J-Y„ 

I f, + -f + Cfi~l\+YJcos<{ 

- ^ Siy\ cf I - T ¿*>s tf = Oy (25a) 

2 Í ^ (25b) 

I si* cf 4* -fv tos - Tsiv' s 

1 
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j (»<4 XU 4i s“’ ^ 'fi“'5 'f J-f/i+Ylíf, ^ • -f¡ S'» t) { 

-t T fe’+ Kfos cf) •“ f) = °* 

(25c) 

The variables have been written out in several cases in the first 

equation. These indicate what they should be in appropriate situa¬ 

tions elsewhere. Note that these equations are still 'exact' and 

that the integrals are taken over SL , a region which is known 

only after X » Y* » ^ an(* ^ are known. 

It will be convenient for future computations to make an inte¬ 

gration by parts in (25 a, b, c). For this purpose we note that 

from (21) 

.Í^ík = [ f, t*»«f - fvSi*«<p] (H Xa) + [f ti» <f + K Y* j 
d* 

(2 

= [ 4, si* Lf, tojcf - X/J. 

From these equations follow 

f, 60S 
f.« (i^YM - 4l/s Y« ^ 

( It XÄ)(KY/v) -X^Yo, 

■f, Sl cp + -fv ¿ 
Xft -t ( 1+ Xot) 

ii^^ri+Y^-x/iVc 

(27) 
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Substituto., into (25 a, b> c) ylelds che followlng 

2 {[^ {-W -f^Y. I - Tt.s^/ 

2 + +fL/if f+X« 11 = Mj. +Tti« 4Î, 

2 + L <2«) 

‘(A+vUi- y.]j 
- - T (e'+ toj 4 Coiy . S,M 

rr::r:£prvnd;akin8 use °f che ^ 
van,! r ndary Where ß<° and that p vanishes for ^r0 , one finds UP* ^ 

K^Í-K (t+Yp) 

2 ^io<¥ K Íp«^ -r-r# + p/1y/+x,j} = tí,« f +m^ 

2 (29) 

-(^Ylt-Po^Y^W-rj^iy.]/ 

= -T/e + kottf) +M^fAlS' s,V 4>J. 

If one now substitutes for P from no, „ u . 
r- it , ’ rrom (19) one obtains the 
following equations: 
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¿ fU'\\ J Ufiijc X«* + xh x„ J(H Y/v) 

f y -V X • y. i \ ( zi T > 'f j - I *o</3 Ai* *j*p I • i $ 

i U ¿».á/i fjfr^ +r7y/1 ■* i i,‘a, , m.j 

- [ (•->>', 4f ul/,v -- TU^r 

z « ixi,i fL ) [(f> -t r-jY/, +1 ^Lx,;, -M x.j 

-((1¾.Y„ ■tf'J1 Xv, ü 

-L if^Y« -*-f u'y^ •+fu'A>« Xi**)('*yp) 

- ( (-^ f 3- Yrv + fy +fu'xí^j X, JfY) I 

(30) 

Finally, we make one further change in the second and third equations 

in which the purely hydrostatic term in f> or is expressed 

in ( *', y ) coordinates. Since 

i* -V í^3‘) 
5p d \ 

^ = fLK/^)ll + (^i A)/3D 

Sp 

V .vvy„ XX J, 

\ 



15 

the second and third equations may be manipulated into the 

following form: 

■Sp \ 

= Tf'"? 

if'}, ffí^-y^"so 
Sp 

4 2 r uMi 1. ifi fL I [(X^4 xu )(i+x*) 
-i 

-(x^ 

-[(x^ +x^x,'..U^>) 

-(x«/s +x}>x;</>)rj^4xj] (32) 

= - T f ff' 4 ^ ¿oS<f) + ‘059 "Sá ‘f ) • 

Finally we need conditions at infinity. We have already 

assumed that X;’*0 as oi-^-oo . A stronger statement than 

this is necessary in order to guarantee that the ship's wav« 

pattern follows the ship. We assume the following: 

)\'v« (o(\^) X; ~ ° • 
•<«4-00 

For convenience we shall also assume an infinitely deep fluid, 

so that 

(33) 

X; 
A-*-oo 

= O. 

(34) 
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From the geometry of the problem it is evident that X ,Y , Z 
have the following symmetry properties: 

XK/WWX(V ^,Y(*,/VrOzr) - f). W) 

As a result, there will be no loss in generality if we imagine the 

( ^ )”Plane replaced by a wall along which half of the ship slides. 

The problem before us is then to find the functions X/v, V') 

satisfying the equations (14) and (18) and the various boundary 

conditions expressed by (7), (8), (20), (21), (30), (31), and (32). 

If the problem can be solved, one will have found the trim angle cp 
the sinkage , the necessary thrust T , and the form of the 

free surface, as well as the velocity and pressure field in the fluid. 

The complicated way in which unknown quantities are entangled with 

each other in the boundary conditions makes an explicit solution as 

unlikely here as in the Eulerian formulation of the problem. 

An approximation scheme. 

In view of the evident impossibility of obtaining an explicit 

solution to the exact problem, we shall attempt to develop a method 

for finding approximate solutions. Instead of introducing a pertur¬ 

bation parameter and assuming formal power-series expansions in it, 

as is customary in the Eulerian formulation of the problem, we shall 

use a method of iteration. Since the starting point will be a ship 

of zero beam-to-length ratio, the approximation solutions may also 

be considered "thin-ship" approximations. In fact, with some modifi¬ 

cation, the first iteration yields exactly the same results as one 

obtains from a perturbation expansion in Eulerian variables. 

Let us start the iteration by taking 

XM= Y'*^ 2 = « , ) 
(36) 
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Wf.‘ further define S© as the region 5p when the ship is at rest 

in its equilibrium position. 

. i —O') 
Let us now suppose that / , T , 4. , t » k » I 

have jeen found and write out the prescription for finding the 

functions with superscript . First we define 5* as the 

region in the plane where ^3<Oand 

4 Y‘"’J 

- [ä+ x' ]J S¡* + [ P “ y ] ^ o» 

» í-) 

(37) 

p _ © 
We define 4 “C? for ( o<, ^ ) outside of Wy, . The mapping 

X-- *+ x‘")(*l/l,o) , : rt + Y '"(«i/V o) 
(38) 

takes Sh onto SpM and the mapping 

-ï i •"i r i f 

^ + cf'“’ 

(39) 

takes onto 5p^ described in (X1/^) coordinates. In the 

(X1^1 )-plane the boundaries of Sp and Sprt will coincide where 

they are both submerged. However, the free boundaries will 

differ since that of is determined by (39) with ^-0, 

which is an approximation to the exact free boundary. Since 

the relation between the ( -Xi^ ) and (/'¡y' ) coordinates is 

determined by ^ and U and not and I-, ' , the under¬ 

water boundaries of Sp* and Sp will not necessarily ^ 

coincide, but will be congruent. If we may assume that X -*X» 

• * - , 1^-^, then also -fM -» fL , SL » and Sp. 
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The functions , Y* 

of the partial differential equations 
• Z. are to 

X<-.1 ^±£^2^1 , ¿(z'"', *'”) 
V +z^ H "SIÃTT + “Tf^Tp 

4 ^x'". Y+ 2^1 _ 
if«,/1,0 

«/1 ~ '*« 

y <»*í (H 

(*4|) Í Mtl) 
•(f = X 

y ,., 
} Äi X 

-X1" y,M 
-1 

- y!"’ v<^ 
A) Ä)p , 

. ( <rt41) 

our — 
y y"' y — v' 

Ay ““ a/d Xi 

They are also to satisfy the boundary conditions 

jY (a.o.O-^u A* - -ru /Vj, i 

From (41) and (43) we can derive boundary conditions to be 

by X and y on S„ : 

be solutions 

O; W) 

(41) 

(42) 

(43) 

satisfied 
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Vi il í ¿ I m 

= ^ ' «Iä ^l/i) + l*^,*0) + Y««(*frú)\fa,fi±o) 

V*' / , N?^'/ V V/^' ,ÍK) 

- (^ifi*0) C (3^,0) - 2«? (*1/1,0) Z* 
(43') 

X<r ^ií0)K^oiX'rUf.+ù +Yjp (y,c)Y^Mo) 

-7 1*) ^wvj /*) 
+ Z«fl(*,/l,*°)Zr ^i/1-0) -^r '’S/’,*0) fs/’'0) 

- X.7 KmoïY/^o)-Z^K/’.oíZ^Vsa«). 
íw) VJ 11) 

The X; themselves were required to satisfy boundary conditions 

on SM_( . However, since X^\ Y^’ , ? vanish outside 

Sy,., , the contribution from the product terms in (43') is 

-zero only in the intersection of SM and Sh_f . non 

The boundary conditions at 00 are 

/ivva ^o( ) — O j Jl i bw Xj ~ O , (44) 
o<-^-oo * 

The quantities T^+l) and cp'**1' and , which 

enter into the definition of S* , are determined from the 

equations 

T = zf^fçj-A/v r[C% ^rc’f+ 
v/U4,i ^ ^4») (»v-fii 

(45) 

-(V’ + ^;"x J" ^jo/i )y: , 
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'P, Ml 

4- 2f¿«iß r¡[x:;\xp¡:;]<»xr') (46) 

f y“'4'» 4. y,K+V^4,) 7 y'*4,) / - L Xu* + /jàH J Xp j / 

- T^*'1 (e'4 k'"i«i‘f'"’) 4 (•’e! “‘Sf’"'"1 -yi s'" f'"4’’] = 

= 2r3- U Jx'jj'f'"4'] 
^p, «■* I 

, rf , . f<») rrA/^0 f M4l). 

4 2fuMU^/î Í W,/^ Lpc*. /• ) 
n 

~(Ki« +X¿K ^j'«« ) ](t>t+X ) 
(47) 

fi' y'“41’^ v','4‘’>.''4"u, - L ( Xrfj< 4Xjk Xj )(|4 V^j J 

i XN4"4 y.^'V 'M"\ v'^'i/A vi»*'), --( X^ 4 Xj¥ Xj^ )/„, J ^4 Y ). 

(vn4i^ ^K4l) 

In équations (45) to (47) no effort has been made to 

arrange the iteration scheme so that all associated terms are 'of 

the same order', as is usual in perturbation expansions. It would 

oe possible to do this, but the equations would become even more 

unwieldy, for the domains of integration must be matched to any 

alteration of the superscripts in a given cluster of functions. On 

the other hand, there is no reason why we should not make some modi¬ 

fications for the first and second iterations, the only ones with 

which we shall be concerned in detail, and, in fact, we shall do 

this. It will not be necessary to correct explicitly for such 

modifications in later iterations; the result is simply that a some¬ 

what different set of functions is fed into the following iteration. 
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One should note especially that the domain of integration 

changes as one proceeds from one step to the next in the iteration 

process. This is different from the situation in the usual pertur¬ 

bation expansions, where at each step one solves a boundary-value 

problem with boundary values assigned on the same domain; in the 

present problem, for example, the boundary conditions (43) would 

be replaced by conditions to be satisfied on S0 , and all 

integrals in (45) to (47) would be taken over 5 . As was shown O 
some years ago by Lighthill (1958) for the relatively simple case 

of a thin symmetrical wing, the perturbation expansion diverges 

in the neighborhood of the leading and trailing edges. The pro¬ 

cedure used here seems to avoid this difficulty and to effect in 

a natural way the successive straining of the coordinate system 

proposed by Lighthill. 

Equation (45) determines T , Equations(46) and (47) 

together determine and . These quantities occur 

both explicitly and also implicitly through the first integrals 

over SPk1+1 on the right-hand sides Let us examine these 

integrals in more detail. 

First we note that the wave profile along the ship will be 

given parametrically in ( ) coordinates by the following 

equations : 

X1 - [ <* -f X K U/O)] toS Cf5 + £~ ^ M* cp , 
(48) 

H* 4 X KO,0)]Sl* Cf 4 [-lx 4 Y (*,0,0)] vp. 

denote the explicit dependence of ^ upon X1 by ^ = 7 We 

If we write 

0(-=. X1 Sec vf - X ~ t’i'i * Y^o/o)] tà* , 
z '-x'ttKip - |^ s»c cp 4 0/ 

(49) 



22 

it is not difficult to develop a method of successive approximations 

for determining A1) , assuming X >V > h anc* are small. 

We carry this out through the second order. Write 

<x sr x'SJc cf - ,°yû) 

_ +Y(x's#c4> ,0,0)] ta* (50) 

= x'seccjj - X(x'sec o) " + ' a*^ 

-t- * ‘ * 
# 

Then 

- - x' cf -k Set «f 

+ see f Í•[X+M'+VIU« yj* ■ " ] ■ <51> 

As part of a general scheme, we may define 

yl r ^U') -- X' l'- ^°5et 

Sec f'' y (x'sec if^o, ö) ., 

VAVy °/0 J 

(52) 

etc. 

Because we are going to modify the first two approximations anyway, 

we shall modify (52) also as follows: 

^ - -x' 4 yaVx',o,o) "X, . 
(53) 

For * ( *') it would be simpler to go back to the general scheme 

of (51) rather than contend with series expansions of the several 

trigonometric functions. 
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Let us now consider the first integral on the right-hand side 

of (46). If the stem and stern of the ship are vertical in a 

sufficiently large region near the waterline, this integral may 

be split as follows («+.) 

(54) 

v + if y fM, iy / 

where V is the volume displacement of the ship. The first 

integral in (47) may be split similarly to yield 

coi cf'**■'] 

if y f ¡J Jj' ffoy/f'1'“?'"- 
(55) 

where ( / 'J® y 3 ) is the center of buoyancy. The other 

integrals on the right-hand sides of (46) and (47) will not 

' or k involve either 

The first approximation. 

We now write out explicitly the equations for the first 

approximation, but with certain modifications in (61) to (63): 

x: + Y/1 + z _ 
— O 

(56) 

y(<l Vy/iM __ 7 (O __ y (fi y f/) 
V - r* - 1 r - Lp - - Af -o, 

^ û,rj-i» u -=0, 

(o<Y) , 

) (0^) ^ 

(h . 
2 («>f\,±o) 

(57) 

(58) 

(59) 
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1 vy 0iv~ (c?<v-vr ) X; 
W -^-30 

r Ò ^ 
^-^-oO , 

Ch 

y f" ^ rs 

rtM -1 f uvíÇic^ci^ +^,^) (V^,o), 

(60) 

(61) 

^ V + [ Jx'-+Y fix)o) 

4 2 fu'ÍU*¿/4 <62> 

-T^’e' + H| (^, ->« ‘f'”J ^ ^b' * 3»^' ) 

4 2f ^ Jx1 [-■><' Y'7x',o,oiJfy,^'^'")K/,o) (63) 

-t.2fUv<,( «U,^ f^,/i)[ ^^^.o)> -Xj* f\] , 

When the ship is at rest in its equilibrium position, it is evident 

that (62) and (63) yield 

ah = n v y X«' r XB ; 
(64) 

the usual hydrostatic equilibrium equations. 

Define 

A = î [ Jx‘ f(V,o) , X* = ■% iJ*' tty'o)* 

Hp = ( Jx' fAx1,o) X'v 4 !Jb' - 'Jr, , 

I 
J 

(65) 
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i-e., 4 is the waterplane area, ( XA‘ , 0 ) its center of area 

and Hp the metacentric height in pitching. (62) and (63) may 

then be rewritten as follows. 

K 4 r _2_ \ix' ffy'/o) 0; o) 

^ -r'V+ 

(66) 

, - v' lMJ 

A 

+ ^7 ÏÏ J 

It is not hard to see that the problem formulated above leads 

to the same solution as the first-order problem in Eulerian 

coordinates. From (56) and (57) one finds easily 

— O , 

From (57) and (59) one finds 

(67) 

'V (68) 

Equations (57) and (58) yield 

f) 4“ (69) 

Equations (67) to (69) and (60) are the same equations which are 

used to find the velocity potential in Eulerian coordinates. 
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As fardas (61) and (66) are concerned, It suffices to have found X'", 

for Y (X\oto)cau be determined from (57). 

Because we shall make use of the technique of solution for the 

second approximation, we briefly review it here. Let 

be a potential function with a singularity of the type t-’*4 which 

satisfies (60), (67), (68), and (69). Such a function may be 

written as follows: 

■'/v 

JifÇ Í1 '1 Ob 

secvô íéh 

i-n . (70) 

where - Q./ (j^. 

XI" ^ 
is now given by [see Kellogg (1929), p.164] 

¿T ff ” ITT y ^ ^ 
(71) 

We can immediately find Y1 and ZU from (57) and (12): 

Y("K/i,0 = fy 

(** 

5a 

z 
(72) 
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Substitution of X0’ into (61) yields 

rf ffJrf'J/*' (73) 

S0 

If one now notes that the terms in which are odd in 

do not contribute to the integral, one obtains 

T = r f J J/î îf í (*,yv)' 

i* f (7«) 

)e ¿6 ncr& e)if [■k, {/\1JI'JUí'ejsíli[tnlot*a')!rí 

the classical result of Michell. Unfortunately, the symmetry 

considerations which simplify (73) do not simplify (66), so that 

we shall not write out the equations with the expression for X‘" 
substituted into them. 

The second approximation. 

The equations for the second approximation will be taken as 

shown below, again a modification of the general iteration scheme 

in which certain higher-order terms are discarded. 

+ Y/\ Z“' = ... + zp zr]: 
aj; - y 

y«7 - z 

U) 

(i) _ 
0< o( ■*” 

«P = 

(l) 

m y y'" yC) O 

At«« Ajp> “ Xi« j 

t) 

xir x>‘ - *r' x¡"f. 

■7"'- y y,(,J y0) 
A«r “■ - Aj.cy,/ 

X/;, 

Z" ( «> f>,±o) = ± (ot'p) f (v<,p) t S, ; 

(75) 

(76) 

(77) 

(78) 
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o * y ív) 
A I wvs . — =- O 

ex-»»- a» 
-co 

o, -*'-1,3; 
(79) 

•/ (X)(*') 

T'V = ;¡^}•fJ*•f.JI, fwj') 

ai — 

s, ' ' r 
-Ta>(e'+ n + rs^ 

-il) 

Let us next differentiate (75) twice with respect to «* and 

substitute from equations (76). After some simplification one 

obtains the following equation which must be satisfied by Y ^ ; 
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x: 4 x;i + x;:r y, ( <> r Ar> 
4 Y ,h y"‘ 4.y'° y'" 4. y'" y<" 
^ Uo(a ' •< ^ J 1 fi ^ i««r i r 

7 «" 7 M> , -7 r'l 7'" 7 7 ? 
+ ^¿yj ^ /oi^r^r J* 

(83) 

/> T 

Similarly one can derive equations for YJ^ and . The 

three equations can be presented in unified form as follows: 

¿ c = 2 X 
a **1 

Each one of A,( , Yw , 

Laplace's equation. 

X¡''«n = (84) 

¿•ut satisfies Poisson's rather than 

V (2) 
In order to find the free-surface condition for ^ v , 

differentiate (77) twice with respect to <* and substitute for 

Y* a from (76). For ^ one differentiates twice with respect 

to »< and Y' and again uses (77). For Vj^one uses the equation 

just derived for X* ^ , and uses (77) again to replace A.^by 

\ . The three boundary conditions can be written together as 

follows : 

+x/^. - - 
Ò /x(,) X'" ( ** )+ 

-V 

(85) 

z 
for 

Equation (78) already gives a boundary condition on S, for 

and hence for by differentiating. Boundary conditions 

X^ and y* are given directly by (431). If one makes use 

of the conditions already satisfied by the A? 

following boundary conditions on 2, 

f) 
one finds the 



JO 

x;>Aio) 
I 

± j +í + x,r ^/» 

- [ x:"-z;']f.. - y;'+^ j = ± f, f«,/», 

Y«»- K/\.ia)= 4C--Z^rJ^ 

z^(^t±o) = ± O*,/*). 
(86) 

We recall that f is defined to be zero outside S0 , so that 

the contributions from the terms involving the vanish outside 

the intersection of Se and . It is a kind of aesthetic blemish 

on the approximation scheme that the right-hand sides of the first 

two equations in (86) do not consist of known functions defined 

naturally upon . Unfortunately, this seems unavoidable if at 

each step in the approximation one is to have a linear problem to 

solve. 

One may prove the following properties of the functions and 

TT. by using the symmetry properties of X , Y , ¿ given in (35): 

hlj 

TT. K-r) TTj («,-*■) - - TTj (<r). (87) 
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We are now ready to construct solutions to equations (84) with 

boundary conditions (79), (85), and (86). They will be represented 

as sums of three functions. Let £ be as in (70) and define 

<4* O 

Then [Kellogg (1929), p. 156] 

A Ax - H ; , 

+ AÁ0(al^ j (89) 

(«ifiito) = - As =o. 

Furthermore, (79) is satisfied. Next let 

(90) 

These functions satisfy (79) and [see Kellogg (1929), pp. 164, 167] 

a a -O 

ho 3;* (<xtoX) -*■ ** ~ 0 

in y r ± ^ ±ir < ' 

(91) 

Finally, let 

(92) 
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Then [see Weheusen and Laitone (I960), sect. 21 ) the C; satisfy 
(79) and ^ 

AC, = o, 

= (93) 

~ * i, l J C3 (o<=: O. 

It is now evident that 

^'ei — A; -Y 3; -*■ C; ; (94) 

is a solution to the problem. 

Effect of small draft/length ratio 

SÍnCe the iteration scheme used above started with the functions 

(36), stopping after one or two steps is tantamount to assuming that 

the beam/length ratio of the ship is small. For most practical ships 

this ratio is small compared with 1 . However, for most ships the 

draft/length ratio is also small, in fact, smaller than the beam/ 

length ratio. It should be possible to exploit this fact to simplify 

some of the formulas which have been deduced above. 

In order to estimate the effect of this ratio, 

= H /L, (95) 

it will be convenient to introduce dimensionless coordinates. This 

will be done by measuring lengths in terms of /_ , velocities in 

terms of /jX^and forces in terms of f^L3. Thus we may introduce 

the dimensionless coordinates 

$„• = «i/L , À; - Xi/L ,1*1/1. , 4 * V; 

f (5,/?)= , ö -L S , T - T/f . (96) 
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Only minor modifications are necessary to render dimensionless 

the various formulas which have been derived. We shall not 

rewrite them, but only describe the modifications. The combi¬ 

nation - >/ becomes haL ~ ci L ! V ^ \ in force equations, 

factors ( ^ disappear and factors f ij"1' become L. 

Henceforth, keeping these changes in mind, we shall write the 

dimensionless variables without the circumflex. 

Consider first the equations (71) and (72). The integrals 

extend over a length f in a7 and a length «T in fi1 . Both 

and f are independent of cl' . Hence we may conclude that 

X.'" - ¢(£). (”) 

Consider next (74). Again u1 enters only though the region of 

integration, and here evidently 

T"' = Of:") 
(98) 

Let us now turn to (66). On the right-hand sides the single 

integrals will be 0(c) because of the ^, but the doubl-e 

integrals will be O ( c?1 ) bee aus e of the domain of integration. 

Hence, if we retain only the terms of order a , we may replace 

(66) by the simpler equations 

l/’1 -- 2 W,0,0); 

(99) 

(') 

A A 

(l\ i in ^ / r\ \ 
Both cf1 and W are 0( - ) • Note that in this approximation 

both c^'and l/*' are determined hydrostatically. 

Let us turn now to the second approximation. First we note 

that the functions H; and TT; are all 0(^) from their 
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defimicions in terms of the . It is then evident from (89) 

and (92) that A; and Ci are also O(d') . The functions re¬ 
defined in (86) and f are all 0(1) . The domain of integration 

in (90) is 5« whose vertical dimension is still 0(¢) . Hence 

0; is 0(£) . Furthermore, in the expressions defining F and 

F1 the terms involving the X1" are all Q(&\ . Hence 

S< ( 100) 

3v = ^ + 0(^. 
«I 

Putting these various results together, we see that 

Xi" = yV ÍÍ -'Xo) C + 0 . 

«S» // 

(101) 

S? 

Consider now the thrust T . From (80) it is clear that 

the first term in the curly brackets is and the remaining 

ones ÛfeÎ J . Hence, it follows that , as one expects 

since T^'=0(cTv'); and that 

T(X) * lfUYW*i/i 4 0(cP1). (102) 

(In (102)-(104) the variables are again dimensional.) If we now 

substitute from (101), we find 

u'-f T'1'- f r«,/!) ó« ^,/î, o; \ o) 

+ OCcP1)- 
S, 

(103) 
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After integrating twice by parts and using the property 

we may also write this as follows: 

t,i')—^ if j-j/sf 
zte*r\ (104) 

-f T -Ç fy/vo}*7V,o) ^^d17) 
¿i S, ' ' 

The second integral is of exactly the same form as Michell's 

integral, but with S# and ■£((*,A) replaced by S, and 

The first integral results from a dipole distribution along the 

profile of S. with strength proportional to the waterline slope 

c K'> or -f- . 
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