0D657/93

]'fé 7-632Poo

___j,
|

Carnegie Institute of Technolegy

Pittsburgh 13, Penasylvanio

dorument hos been mnroved ‘
tor wuhlis rel.ase and sale; e |
distribution is unlimited. :

GRADUATE SCHOOL of INDUSTRIAL ADMINISTRATION

Williom Larimer Melion, Founder

CLEARINGHOUSE
w Federal Scientf R Tock




Management Sciences Research No. 103

Yy
ON SOME SEQUENCING PROBLEMS

by

Wlodzimierz Szwarc.A

June, 1967

From Przeglad Statystyczny Vol. IX No. 4 (1962) pp.367-382

and Vol. X No. 1 (1963) pp. 139-154. Translated by the author vith
editorial assistance and suggestions from W. W. Cooper for the
Management Sciences Research Groug. Acknowledgment is srntefully made
to Professor Cooper for his many helpful suggestions and comments.
Technical University, Wroclaw, Poland and Internatior«l Center of
Operations Research and Econometrics (CORE) University of Louvain,
Belgium.

MANAGEMENT SCIENCES RESEARCH GROUP
GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

CARNEGIE INSTITUTE OF TECHNOLOGY

PITTSBURGH, PENNSYLVANIA 15213




1. Introduction:

Consider the following problem, which is one of the classical sequencing

problems: We are to produce on m machines one single aggregate consisting
of n different items each of which is to be operated on by some or by all
of the machines. The order of processing each item through the machines is
given. We are also given the operation time for each item on each machine.
It is assumed that at any moment:

1°. No machine is able to handle more than one item

2°. No item can be operated on by more than one machine.

Given the operating time for each item on each machine the problem 1is to
find a production program which will be called optimal program for producing
the aggregate in a minimal time.

This problem was considered by S. B. Akers and I. Friedman in [1] where
they presented a solution method for the mx2 case. For the general mxn
case (m-machines, n-items) these authors gave a criterion which enables
to check whether a program is feasible or non feasible. To solve the mxn
case one must first consider all programs. Then,applying the Akers-Friedman
rule, all uon feasible ones are removed and then finally the optimal solu-
tion is found by examining each of the remaining programs.

This method is laborious, even for moderate values of m and n, although
it should also be noted that its authors supply additional advice on how
to remove non optimal plans for the mx2 case. Even so the number of
remaining feasible programs to consider is still large. By means of a
graphical approach, presented in [2], Akers provides an approximate method
of solving the mx2 case. This was subsequently elaborated in [9] where,

using Akers' graphical approach,I was able to solve the mx2 problem and




in this same reference I also supplied an approximate method for solving the
mxn case.l/ R. Bellman [3] and S. M. Johnson [7] independently solved the
2xn case on the assumption that the same order of processing the items
through two machines, say A and B, is used. On thie assumption Johnson also
solved the 3xn problem for two special cases. L. G. Mitten [8] solved a
generalization of the Bellman =-Johnson 2xn problem while maintaining assump-
tion 10, as above, plus the condition in which there are upper limits on the
length of time for each item from the moment it starts on machine A until {t
is finished on machine B.

All of the methods mentioned above for solving the sequencing problem
are combinatorial in nature.

After 1958 when R. E. Gomory [6] first published a method for solving the
integer programming problem, papers appeared which treated this sequencing
problem as a special case of an integer programming problem. These cases,
however, involved introducing a considerable number of variables and con-
straints. For instance, E. H. Bowman in [4], solving a 4x3 problem by the
integer programming method, deals with at least 300 variables and even more
conatraints. Several authors (e.g., G. B. Dantzig [5], H. M. Wagner [10])
then tried to find an integer programming formulation of this problem which
would require a smallest possible amount of variables and constraints.

This paper presents solutions to the following problems.

1. A generalization of the 2xn Bellman-Johnson problem where the pro-
cessing order of the items is not the same.

2. The 3xn Bellman-Johnson problem for several new special cases.

3. The 2xn Bellman-Johnson case where each item already operated on by
machine A must wait until it starts on machine B.

l/This method may sometimes not work at all in the sense that it may
lead to a program which is unfeasible.
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In the first sections we present (without proof) the methods of solution to

the following problems.

l. 2xn and 3xn Bellman-Johnson case (Johnson's method)

2. The mx2 Akers-Friedman problem (solved by the author of this paper)
The final section of the paper then presents cases for which the method for
solving the mxn case as given in [9] is an exact method of solution.

Remark: The same symbols appearing in different sections of this
paper ma’ have different meanings.

2. Solution of the 2xn and 3xn _Bellman-Johnson Case.

We illustrate the solution method by an example: There are two machines,
A and B, and five items, which we denote by the numbers 1 through 5. Each of
the items 18 first operated on by machine A and then by machine B. The

operating times are given in table 1.

Table 1
Ai Bi Ei
1 3 4 -1
2 5 2 3

5 2 5 -3

Hence, for instance, B3=1 means that the operating time for item 3 on
machine B 1is equal to one unit of time. The numbers Ei in the last

column are equal to Ai-Bi.

»e
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Each working (and also each optimal) program is determined when we know
in which order the items pass each machine. Johnson showed that to find an
optimal program (also in the 3xn case) one may consider only programs
where the prccessing order for both machines is the same. However, there
exist optimal programs which do not possess this property.

The problem reduces to that of finding a processing sequence -- a
permutation of n numbers 1,...,n -- corresponding to the optimal program.

Divide the set (1,...,n) into two disjoint subsets s and s', where

°={(1)|E1<0} and s'-{(i)lﬂizo}

Let 8 and s' be sets of £ and n-{ elements respectively (0 < 4 < n).
The method of constructing the optimal sequence i8 as follows: Order the
elements 1,...,n so that in the sequence

a) the elements of s appear before the elements of s'

b) the corresponding numbers A1 form a nondecreasing sequence

for ies and a nonincreasing sequence for ies'.
In our example s = (1,5), s' = (2,3,4). Using the rules a and b which
were just given, it is easy to establish the optimal sequence, which is
(5,1,4,2,3). Figure 1 presents the optimal operation program corresponding
to the sequence (5,1,4,2,3).

Remark: The numbers shown in Figure 1 denote items

A | 5 1 1 [ 4 1 2 K 3 . | .
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The minimal operating time necessary to produce the aggregate is equal

5 5
to 21 units (I Ai + 1, or ¥ B, + 5), where the numerical values 1 and 5

i=1 a1 1
denote idle time for machines A and B respectively.
In [7] Johnson also solved the 3xn case where the processing order for

all the items is A, B, C, and where for all 1{i,j=1,2,...,n: or B, <A

1 ]
or Bi < Cj'
Consider a 3x7 example with the following table of operation times.
Table 2
A:l Bi C1 A1+B1 Bii-C1
1 6 2 3 8 5
2 7 2 4 9 6
3 9 6 7 15 13
4 8 6 2 14 8
5 6 4 3 10 7
6 10 2 5 12 7
7 9 1 2 10 3
As can be seen, here have the case B1 < Aj. One now finds the optimal

sequence by applying the method from the 2xn case for two fictitious machines,

M and N, with operating times obtained from the expression M -A1+Bi’ N.,=B +C,.

i 17171

In this example s 18 an empty set (all M -N, are positive),

i

so s8's= (1,2,...,7). Ordering the numbers N, in a nondecreasing sequence

i
we get two optimal sequences ~- viz., (3,4,5,6,2,1,7) and (3,4,6,5,2,1,7).
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3 Solution of the mx2 and mxn Akers=-Friedman Problem.

——

We again iliustrate the solution method by means of a 5x2 example.

The passing order as well as the operation times are as follows:

Item 1 -= ASBZCl‘DlE3

Item 2 =-- A"CZI‘JI'DZB2
Consider an x0Oy coordinate system where the x=-axis coresponds to Item 1
and the y=-axis to Item 2. Construct a rectangle PMON where
PN = A1+BI+C1+D1+FJ1 = 5+24+4+143 = 15

and
PM = A2+Bz+C2+D2+E2 = 442424241 = 11

Assign to machines the following '"vertical" areas in ABCDE order

0<x<5 to machine A
S<E<x<g7 to B
7 % € to C
11 < x< 12 to D
12 <x< 15 to E

Assign to machines the "horizontal" areas in a ACEDB order

0<y<é4 to machine A
4<y<6 to c
6<y<7? to E
7<y<9 to D
9<y< 1l to B

To each machine there corresponds a rectangle as determined by the intersec-
tion of the horizontal and vertical intervals that were associated with this
machine. E.g., to machine C there cuorresponds the rectangle: 7 < x <11,

4 <x <6
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One may now describe each program by a continuous line with the
following properties:

1. Points P and Q are on this line

2. The line does not cross any of the rectangles A,B,C,D,E.

3. The line consists of straight line segments which are either

parallel to one of the axes or else forming a 45° angle with

the x-~axis.
The total length of all vertical (horizontal) segments is the total waiting
time for Item 1 (2). The total length of the projections on either axis
of the 45° segments is the total time when both items are operated on
simultaneously (but on different machines).

The problem reduces to that of finding a line with minimal total length
for the vertical segments. Alternatively, however, one may look for a line
where the total length of the horizontal segments is minimal or, instead,
one may search for a line with maximal total length for the 45° segments.
All of these problems are equivalent.

Let us introduce the following definitions and notations. By a node we
mean a north-west and south-east corner of each rectangle and also points
P and Q. Consider two nodes w, = (xl,yl) and Wy = (xz,yz) such that
X; X%, and ¥, £Y, (so0 w, cannot be on the right of or above wz). We

say that node w, 1is neighboring to ) if one can link these nodeg by a

1
line with the properties 2 and 3 specified above.

Let w, be a neighboring node to Ve We define a distance, d(wlwz)

1

as follows.

d(wlwz) = max [0’ (Y2-yl) = (xz -xl)]

. St il e S b Mnetentiin aade - Aaing e
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Let n(w) be the set of nodes such that w 1is neighboring to each element of

ks i i il
s by~
NP

n(w). The nodes of mn(w) lie in a rectangle whose corners are points

w and Q.

Consider the set of all lines which have properties 2 and 3 linking

w and Q. By a length of each such line we mean the total length of all of
its vertical segments. In this set there exists a line of minimal leagth.

Let f(w) be the length of this line. Then the following is true

£(w) = min_ [d(w,w) + £(w)]. (2)
w oen(w)

We arrange the nodes so that their x coordinates form a nonincreasing
sequence. Nodes which have the same x=-coordinate we arrange in such a way
that their y-coordinates form a decreesing sequence. E.g., in the example
we are using we get the following sequence

(15,11), (15,6), (12,7), (11,9), (11,4), (7,9), 7,6), (5,11),
(5,0), (0,4), (0,9).

The arranged nodes are denoted by Wysees Wy (wl-Q, wk-P). Applying (2),
find the values of f(ws) for s=2,...,k (f(wl)-O) and draw the lines of
the length f(ws). Write the numbers for f(ws) above the corresponding
nodes L The line with length f(wk)-f(P) (in our example this is f(wu))
is the solution of the problem. This line is indicated on Figure 3 by arrows;
its length is equal to 3 units. This means that the total operation time
+B_+C,+D,.+E,+3 = 18 units. From the optimal line it is easy to read

1’11771 "1
the optimal program which is presented in Table 3.

equals A

From the optimal program one can also read the optimal operation sequences

for each machine, which may be written as follows: A(l 2),'8(1 2)° C(1 2)°
] 1 ’

D1,2)’ Ee2,1)°

EIEN FOPNR I ey —— ~ e s o e
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Symbol C

By a program we will mean also the set of operation sequences for all machines.

Figure 3

(1,2) means that machine C will operate first item 1 and then item 2.
]

Table 3
Item 1 Item 2
Rericd oper::ed on operiied on
by machine by machine
0=5 A =
57 B A
1=9 C A
Qe=11 c =
11~-12 D c
12=-=13 = C
13=—14 = E
14==16 E D
16~17 E B
1718 = B
et ueton. ki conndit ARSI ot 00t et e i O —
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Suppose the coordinate axes correspond to items i and j. If the line
(presenting an operation program) is running between some rectangle, say F,
and an axis corresponding to item { then the corresponding program will
contain a symbol F(i,j) == which means that machine F will operate first on
item i1 and then on item j§.

In [9] an approximate solution method is given (illustrated by a 3 x 10
example) of the mxn problem. With this method one must first gsolve all (;)
possible mx2 problems by the method shown in this section. Given the (;)
optimal programs, then, considering each machine separately, one constructs a
program for the mxn problem (this is not always possible) and then presents

it graphically in the manner shown in Figure 1.

Item 2

Item 1

Figure 4
was
Let us illustrate this procedure by a 4 x 3 example, which/mentioned

in Section 1 as given by Bowman in [4]. The processing order and operation

times are as follows:

Item 1 =-- ASBZCSD7

Item 2 == C8A4DSB3

Ttem 3 -- p0A’.

?.

R KA

AR
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Solving 3 problems ~- one for Items 1,2 and machines A,B,C,D, another
for Items 1,3 and machines A,D and a third for Items 2,3 and machines
' A,D == by the method described in this section we get 3 optimal lines to

which there correspond three programs A(l 2)’B(1 2),0(2 ].),D(2 1) (see
3 ’ ) b4

Figure 4); and A it

A D .
(1,3)%6,1) 2,3)°°3,2) F Acr,2)ha,3)42,3)
follows that the operating program for A is A(l 2,3)" The operating
3 ?
sequence for B and C as determined from the first of the three problems
Y
(3,2,1)" So we have found

for the 4x3 problem which is

is B(1,2) and C(2,1)' For machine D we get D

the program A ) B

(1,2,3)°8¢1,2)°(2,1)°(3,2,1)

presented on Figure 5.

Figure 5
In general for the mxn case (m > 2, n > 2) we are not able to say
whether a given program is optimal without examining all programs
((n! )m in number). For our example, however, the program we obtained is
optimal. This follows from the fact that: a) the total operation time of

no program for the 4x3 problem is smaller than the minimal operation time

yRemark: It is impossible to construct a program (such a program will be
called infeasible) if the solution of the second problem were A 1.3) D(1 3)°
Then we would deal with sequences D(2 ),D(1 ,D(3 2) from whch e’
1s impossible to derive a working plan’ for maégzne D.
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of either subproblem &x2 and 2x2. b) The total operation time for the

problem is equal to the minimal operation time (24 units) of the &4x2 problem.
In [1] Akers and Friedman gave the following necessary and sufficient

condition for a program of an mxn problem to be feasible: If for items

1,2,...,k (k < n) the processing sequences are

for Item 1l == ... Ml M2

for Item 2 == ... M2 M3

fOI‘ Itm k'l =y oo.Mk-l oooMk s

for Item k == ... Mk oY Ml
(the machines are then said to form a k-element cycle), then the feasible
program cannot be of the form

1 2 k=1 k

B o 2 el e D) e o Bmsens o ) s e BT

(. LN J 1. LN k. L )
This implies that for the Bellman=-Johnson case there exist no unfeasible
program. This result is due to the fact that there is no cycle since the

passing order is the same for all items.

4  Solution of the 2xn Case.

1. There are two machines A and B and n items where the passing
order for item 1,2,... ,nl is AB while for the remaining n, items ,
n1+1,... , N (n1+n2=n) the order is BA (for n1=0 or n2=0 we get the
2xn Bellman=-Johnson case).

The production program is determined given Aqu where p as well
as q are permutations of numbers 1,...,n. Let r=(1,2,... ,nl) and
r= (n1+1,... ,n). Then the Akers-Friedman feasibility theorem for the 2xn

problem becomes: Program Aqu is feasible if and only if for any ier and

jer it is impossible for p and q to be simultaneously of the form
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Let us denote by ()} the set of feasible programs Aqu where the first n,

numbers in p are elements of r while the first n, numbers of q belong

to r. The following theorem holds

Theorem 1: For each feasible program
Ap Bq there exists a program
A B
consumes no more time. (This will

q* that belongs to (] and

be called a '"no worse'" program.)
Proof: Let A B_ ¢
= P q

Then either
p= (...i,j...) where ie;, jer or

q= (...i,j...), where 1ier, jeT.
Consider the first case; here q must be of the form (...1i,...,3.0.)
but not of the form Kevnfwwm lag o)
otherwise program Aqu would be unfeasible. Figure 6 illustrates program

AB.
P d

Figure 6
Consider program Ap'Bq where p'= (...j,i...) = (p' was obtained from p
by transposing 1 and j). This program shown on Figure 7 is feasible accord-

ing to the Akers-Friedman theorem.

Figure 7
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As seen from this figure program Ap'Bq is not worse than Aqu. This can
be seen by observing that the time of finishing the operation of parts 1{
and j on machine A are the same in both programs but one may finish the
operations of these parts on machine B applying program Ap'Bq sooner than
in program A B .
prog P q
Let us turn to the second case: p must have the form (...i,...3...)
where ier, jc;. In a way similar to the first case one may show that pro-
gram Aqu. with q' = (...j,i,...) 1is feasible and not worse than program
AB .
P q
It is easy to define a procedure leading from any feasible program

A B to a feasible program A _B which belongs to () and is not worse
P q prog pH-q* 4

than Aqu. This procedure will be described in an example.

s ABe = 4(5,1,4,3,2) B(5,1,4,2,3)

where the dashed numbers indicate elements of r while the remaining numbers
are elements of r.

For convenience write Aqu in the form

®) - 5,1,4,3,2
" 5’1’z12)3
Below, for instance, we show sequence of intermediate and feasible pro-

grams (each program being not worse than the preceding one) leading from

(2) = ()

v u
—
&1 ™
N W
w N
vy U
L
S W
N M
\¢%£j9
A
vy
e
- -
&~ ‘U'
NN
- -
w N
A
A
Wy -~
- -
-
;W
NN
&

1, 9; 5,2, Z‘) 1. 3: 2, 5. 6y /1, 5: % 5, Z)’(p*) e
g’ 1’ 5’ 2’ 3 3' 1’ Z’ ’ 3/ ;D z' 1’ 2' 3 q*
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Applying theorem 1 we restrict ourselves only to programs belonging to ()
(there may exist, however, optimal programs not belonging to (). All these
programs are feasible.

2. Let (:) be an arbitrary element of (). There are three cases

Case 1: z A1 = I Bi'
ier ielF
Case 2: Z A,> £ B, =w.
i - 1
ier ier
Case 3: z Ai < E Bi'
ieT ief

Consider Case 1. Then (2) is an optimal program since the correspond-
ing operation time is

2/
max (T Ao z Bi)

ier+r 1¢r+;

and there exists no program with a smaller operation time (see Figure 8).

z Ai z Ai
A 1 igr 1 i-[f '
LB LB
B , dert far *
Figure 8

The number of optimal programs is equal to (nl.')2 (nz.')2 which is the
number of elements of the set (.

Consider Case 2. Program (p) is optimal if T A, > I B, (Case 2)
1 ier A ief .

for then the total operation time equals z A1 and no program has a less
ier+f

2
consuming operation time. Here, like in Case 1, we also have (nlf)z' (nzf)

optimal programs.

g/The symbol R+ r means a union of sets r and r.
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Suppose, however, that E__Ai < 5 B, (remember that T A/ >LB )

ier ier ier isl'
To find an optimal program one must first solve a Bellman=-Johnson

2xn1 case where the processing order is AB but with an additional assump=-
tion (assumption w) that machine B will start at least w units later than
machine A does.

Consider a 2xn, case under assumption w and let (:) , ugv, be an

1
arbitrary program for this problem. The following is true.

Theorem 2. Program (3) or (:) is not worse than (:).
Proof: It is obvious (see figure 9a and 9b)
...j’il"
that is not worse
.l.jl..i..'
R, 1, TR
than
-
(a) (b)
A
T I Y P . O
B I'L'I BJ'IjBljvl B |LLB llBil [ ]
Figure 9
It is easy to ' . .op a procedure leading from any program

"u u v
( ) to a not worse one( ) or ( )
v u v

The following example illustrates the procedure.
u 4352 1345 1,3,4,2,5 1,3,2,4,5
v 12345 12345 1,2,3,4,5 1,2,3,4,5 -
1,2,3,4,5 VS
= 16233 ,4,5 v

This completes the proof of the theorem.
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From now on we will consider only programs (g) which are elements of
{1 but such that the elements of r appear in the same order in p as well
as in q. Denote the set of all such programs Q where (Q C Q. Now we face
an 2xn, Bellman-Johnson case, but with assumption w. Figure 10 shows

1

one of the possible programs for this case.

A 1 A3 1 Al 1 A_Z_ 1
B 3 v 1 xll B3 1)2 B]- 1
Figure 10

We are to find a permutation u of numbers 1,... ny such that the
operation time for program (ﬁ) will be minimal. For such a program the total
idle time for either machine will also be minimal.

By Xy let us denote the idle time (in suitable time units) of
machine B after it completed item 1-1 but before it starts to operate
on the next item (the 1-1't-h' item need not be the same as item 1i-1,
see Figure 10).

Without loss of generality however we may assume (for convenience) that
u = (1,2,...,n1). Then the i-m item will be just item 1. Also

X, = max(Al-w,O),

X, = max(A1+A2 -Bl"xl"w A0D).§

2 1 1
X, +X, = max(A1+A -B,~w,x,) = max{ I Ai- ZB,-w, ij>

1 72 2 71 1 i=1 =1 i =1
Si ilar%{ n “1'1 n. -1
I x, = max( ZA- £ B,-w, I x ) =
pea 1 AT T

= max max (Kt-w,O) = max (max Kt-w,O),

1<t<n 1<t<n

1 1
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where
t t-1
K = £ A, - T B,.
O W

The problem is to find such a permutation of elements 1,2,..., n, for which
the corresponding zxi is minimal. Note that Kt < w implies that the
corresponding idle time equals zero and therefore this permutation is

optimal. 1If, however, max K > w then the total idle time for machine B
1<t<n,

is equal to max Kt - w.
1<t<n,

It is obvious (since w 1is a constant) that a permutatior. is optimal

if max K is minimal.
15;5@1

Thus the problem reduces to one of finding a permutation with minimal

max K and this is identical with the classical Bellman-Johnson case [7].
1<t<n)

To solve the problem one may apply Johnson's method as given in Section 2,

above. The optimal program (:) for Case 2 has the following properties.
D ®en
q

2) the first n, elements in p and the last n, elements

1

in q are arranged according to Johnson's method.

3) The order of the remaining elements in p and q may be

arbitrary.

Set ) therefore contains (nz.')2 optimal programs.

Remark: 1if max I x, < I _ A - P> Bi’
v iev ier+r igr+r

where v 1is an arbitrary permutation of n, elements

of r then the solution of the problem can be the

same as in Case 1.

t.
e N




— —

-19-

Consider Case 3.

If in addition LB, > I A

ier iler
corresponding total working time equals I B
ier+r

i then, (2) is an optimal program since the

i which is minimal. Then,

like in Case 2, there are (nl.')2 (nz.')2 optimal programs. Suppose that

]
B, < ZIAi = w. In a way similar to Case 2 we come to the following
ier ief

conclusion: The optimal program (g\ has the following properties.
p -—
0
(q) ¢
the first n, elements of q and the last Ry elements

of p are ordered according to Johnson's method (for

the 2xn2 case = with machines A, B, and parts iefF)
the order of the remaining elements in p and ¢
is arbitrary.

Remark:

if max Ix, < I B, * L Ai ’
iev ier+r iertt
then the optimal solution can be the same as in Case 1.

(v 1is a permutation of n, numbers from the set r)

1
Corollary: Any program (2) posessing properties 1, 2, 3 1is always
optimal.
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Example: Consider a 2x7 problem with r = (1, 2, 3, 4, 5) and

£ = (6, 7). Then assume the following table of operating

times obtains:

Table 4
A By
1 7 3
2 3 2
3 2 1
4 1 1
5 2 7
6 3 3
7 1 2

Consider an arbitrary program belonging to (), say program

(p)= 1’ 2’ 3’ 4, 5’ 6’ 7
q 6’ 7’ 1’ 2’ 3’ 4, 5

It is easy to check (by drawing a program like that in Figure 1) that {its
total operation time equals 22 units.

Here we have the second case because

z Ai=15>2 B, =4 and T A =5<ZB1-14.

ier ier 1 ier i ier

According to the solution procedure of Case 2 we solve the Bellman~Johnson
problem (machines A, B, items 1, 2, 3, 4, 5) and get two sequences 5,1,2,3,4

and 5,1,2,4,3. Therefore one can construct zzxnzf)z optimal programs

Sy 1, 2, 854, 7; 6
6. 7, 5. 1, 2, 3, & with the

total creration time equal to 19 units (see Figure 11) .

belonging to 5. One of those is program
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A 55, 1 @0 B8 6

B |g6 1 7 1 5 1 1 1 2 18141
Figure 11

5 Solution of Some New Special Cases of the Bellman-Johnson Problem

There are three machines A, B, C and n items 1,2,...,n, all te be

operated in order ABC. The operation times for the items are denoted, as

before, by Ai’Bi’Ci while xi,yi will mean, respectively, the idle times for

machines Bi and C1 after finishing the i-1§£ item and before operating

on the iEh item. Johnson proved that to find an optimal program one may

restrict one's self to programs of the type Ap Bp Cp where p 1is a per-

mutation of n numbers 1,2,...,n. Therefore, we have to find a p such

that the idle time of either machine, say machine C, will “e minimal.

Without loss of generality we may assume p = (1,2,...,1i,i+1,...,n)

B

B, "1 ,B1 %2, 2 %3, By

c

C. )’1 ' Cl uyzn_cz n )'3 a3,

Figure 12

Then (see Figure 12)

y1 = x1 + B1 = A1 + B1

= L e 0
2 max(x1 + X, + B1 + B2 Yy Cl’ )
and for any n

i

n n n-1 n-1
y =max{ Zx,+ZX B,~¥ y,~-X C,, »
E TR R [

i

=1 i=1 i=1 = i=1

Therefore,
j- >

n n n n n-1
izj,‘ly = max{ I x+ZBi-ZCi. z yi

we

L S S S AP~ ) SO ¢ e melemam e B R =

e e e s ————




= Ak

LR T o
3 iy

[ "

Find

Then (see Figure 12)

x, = Al,xz = max (A1 + A2 -x - Bl’ 0)
and
/n n-1 n-1
X smax{ £ A, - I x, - I B,, O
L (@-1 R
Therefore

n n n-1 n-1
¥ X, = max £ A, -~ £ B,, I Xy .
i=] i=1 i=1 i=]

By K denote
u

u u=-1 n
T A, - T B,,and let X = T x..
[ IR LA S
Then
xn = max (Kn, n_1).

This implies
X1 = Kl (bo xo = 0), X, = max (KZ’KI)’ x3 = max [K3,max(K2,K1)] =
= max [Ka’ K> xl].
In general

n u u=-1
X = ¥ x = max, K = max T AL~ £ B

" ogel Y olqun Y lcugn [i=1 T ge1 1
By H_ denote
v
v v=-1
L B,- X C, ;
o1 > qm), L
Then
n
z y -max(H +maxK’H_ +maxK,coa’H +K)-
f=1 i n l1u<h u n=1 hg&;ltl 1 1
= max (uv+1<u)- g (p) (4)
1ugven
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Remark: This problem may be solved in a different way by fixing the end
moment of the operation program (instead of fixing the starting moment) and
then looking for a program with a minimal operation time, with time running
in an opposite direction. The problem then reduces to one of minimizing the
total idle time for machine A. Permutation (1,2,...,n) will then, in fact,
mean permutation (n,n-1,...,1). The formula for the total idle time of

machine A becomes

max (ﬁv + ﬁu), (5)
where
= v v-l = u u-l
H =125 B - %A, K= ZLC - T B,
Voiger b g U ey 1 ogap 1

The graphical presentation of such a program differs from the one given in
Figure 12 in that on the first row we present the working plan of machine C
(which is working non stop) while the third row corresponds to machine A.
Formula (5) may be obtained in a straightforward manner from (4) by
replacing Ai ty Ci and vice versa.
Take a permutation p' = (1,2,...,j-1,j+1,j,j+2,...,n) which emerges

from p by transposing J and j+l. Consider

g(p) = max (H +K) ,g(p')= max (H' + K').
lsugven V¢ Igueven V"

It is easy to see that K = K& and ho= H; for each u and v different

from j and j+l. Examine the expressions

L +Ku,1gu5_j+1)

max(Hj + Ku, 1<u<ij; Hj+1
R=max(H3+Kl'l),lgqu; H3+1+K"1, 1<u<j+1).

It is clear that if I=R then g(p) = g(p') while the inequality L <R
implies g(p) < g(p') (the equality g(p) = g(p') holds only if H + K

attains its maximum for u and v which differ from j as well as

from j+1).

ve




We may therefore restrict ourselves to consider L and R only.
1 1 ] 1]
determine numbers Kj’ Kj+1’ Hj’ Hj+1' The following hold
j=1 j-1
K! = I A, +A - Z B, =K, ~A, +A .
j i=1 i j+1 je1 i j j j+1
j+1 j-1
] =3 A - = =
Ko = 2 Ay = 508y = Bep = g ¥ By B
i=1 i=1
i=-1 j=1
H! = Z B, +B - Z C,=H,-B,+B_.,
j =1 i i+l j=1 & j j j+1
j+1 j=1
H! ,= I B, - £ C,-C,..=H,.+C,=-¢C
j+l 1=1 i =1 i j+l j+1 j j+1
1 o 1 ) ] 1
Replace in R the thus determined values of Kj’ Kj+1’ Hj’ Hj+1'
Then
L= max(Hj+K1,...,Hj + Kj_l,Hj+Kj; Hj+1+K1""’Hj+1+Kj-1’
Hj+1+Kj ’Hj+1+Kj+1)
= - +K, yee0 ,H, =
R = max (Hj Bj+Bj+1 Kl’ ,Hj Bj+Bj+1+Kj-l’
H,=-B ,+B +K,+A -A >
BT R 2 S R B £ 3 |
Hj+1+cj-cj+1+xl""’Hj+1+Cj-Cj+1 +Kj-1’ Hj+1+cj-cj+1+
+Kj-Aj+Aj+1, Hj+1+cj-Cj+1+Kj+l+Bj-Bj+1)'
By substracting from L and R the sane value
j+1 j=1
I B,- I C, =H, +C,=H, + B
i=1 i =1 i j+l j j j+1
we get new expressions. Call these L' and R' where
'= -, L N -~ - :
L max(K1 Bj+1’ 5 Kj-l Bj+1’ Kj Bj+1’
K;=C,,..+,K, . =C,, K,=C, , K, ,~C
170y oK1y KGRy )

<24~

First

(6)
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R' = max(K,~B,,..., K, .=B,, K, =B +dA;
(k) =B, 1.1y KyB,
K1~Cj+1,...., Kj_l-Cj+1, Kj-Cj+l+dA, Kj+1-cj+1-dB),

where dA = Aj+1-A1’ dB = Bj+1-Bj.

The inequalities L' < R' and L <R are equivalent.
We will prove the following

Theorem 3. The optimal permutation p (the permutation p of the

optimal program ApoCp) is to be constructed according

to the following rule: Element j must appear before
element j+1 -=i.e., p= (.e.iyeesj+l...)""if for each
i=1,...,n, j=1,...,n-1 one of the following conditions
holds.

1:a) B, <B

j 417 b) Aj+B <A +C, > B

I j+1+Bj+1’ c) Bj I j+1+Cj+1'

2:a) B, >C,, b) C

L 3’ >cj+1, c)Bj+C > B d) A,-C, <A

j & Byt § Gy SR Crp

b) A, <A 1,c)A+B <A d) A~C, <A

Sea )RR R O 3 0 gy < Ay ) #1751

i i’
for j=1,2,..., n.

Proof: Transpose two elements j and j+1 in an arbitrary permutation
p of n numbers 1,...,n. Denote the new permutations
by p'. Without loss of generality we may assume p=(l,...,n).
Then p' = (L,...,j=1,j+1,j,j+2,...,n)

Ie If p satisfies condition 1, then L' < R', since for each
r=1,2,...,2j+1 the rth element of L' 1is less than the
rth element of R'. We will show this only for r =j,2j,2j+l.

since the proof for all remaining r 1is obvious (see
asgumption 1la, lc)

For r=j: K =B, , <K =B +dA=K =By +A, -A. Henceve get

Aj+Bj < Aj+1 + Bj+1 which holds because of 1b.

For r=2j: Kj-Cj < Kj = C_1+1 + dA = Kj S Cj+1 + Aj+1 = AJ which implies

the relation to be proved =-- viz.,

Aj + Cj+1 < Aj+1 + Cj
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From 1lc it follows that B, + C, + A B + C + A while 1b

gty B 2 Bag PG D By

1
implies AJ+1 + Bj+1 + Cj+1 > Aj + Bj + Cj+1' Applying the last two results

we get

Bj + Cj + Aj+1 > Aj + Bj + Cj+1’

and consequently

At Gy > A+ C Q. e. d.

For =23+ 1: Kj+1 - Cj < Kj+1 = Cj+1 = Bj+1 + Bj hence

Bj+1 + Cj+1 < Bj + Cj.
This inequality is true in view of lc. Thus we have proved that if p
satisfies condition 1 then L' < R' which in turn implies g(p) < g(p').
The relations given by condition 1 are transitive. Consider, say,
relation Aj + BJ < Aj+1 + Bj+1' It is easy to see that for any

i,j,k=1,...,n , 1 4 j # k, the inequalities Ai + Bi < Aj + Bj and

Aj + Bj < Ak + Bk imply

Ai + Bi < Ak + Bk.
The proof of transitivity for the other relations goes in a similar way. The
property of transitivity implies the existence of a procedure for constructing
a sequence of permutations starting from any given permutation and continuing
to the optimal one in such a way that the corresponding numbers g(p) form
a nonincreasing sequence.

Let us illustrate this procedure by an example. Suppose that from 1

we have the following relations (i -»j means that i precedes j)




i

[P
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1 -2,1-3,1-4,1-5,2~23,2+4,2~5,3~=4,3=5,4-=5.(7)

Consider a permutation (2,4,3,1,5) = q. The first '"disorder" in q
(looking from the left side) is 4,3 (according to (7)). Therefore permu-
tation p 1is at least as good as q since g(p) < g(q). Removing the next
"disorder" in 5 we get another pennutation not worse than 5, and so on.
Thus the following sequences cmerge

q = (254,3;1,5) (253,4,1,5), (2,3,1.56,5), 2,1,8,%8,5), (1,2,8,4,5) = p
Permutation p 1is optimal since for any permutation p° there exists a
sequence of permutations p',...,p, where g(p') > ... > g(p), which implies
g(p') > 8(p) Q.e.d.

The rule for finding the optimal permutation under condition 1 is the
following: Arrange numbers Bj..., in a nondecreasing sequence. The
sequence of the corresponding indices is the optimal permutation.

Since we don't know, a priori, whether condition 1 holds, the following
procedure is therefore proposed. Form sequences {Bj], {Aj + Bj} and
{Bj + Cj} , the first to be nondecreasing and the last to be nonincreasing.
If all three sequences which form the corresponding indices are identical,
call them p , then, condition 1 holds and p 1is the optimal permutation.

II. We shall prove the theorem in the case where condition 2 holds

(the proof of the theorem under condition 3 goes in a similar
way since condition 3 can be obtained from condition 2 by

replacing the symbols Ai by Ci and vice versa and by changing
the direction of inequalities. ).

We are to show that L' <R'.

ve
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Remark: the rsh term in L' for each 1 <r<}j 1is not greater

than the j + - term of L', the rgh term of R' for

for 1 <r < j-1 is less than the j + rsh' term of L'
while the j-th term of R' 1is less than the 2jth term
of R'.

To prove that L' < R' it is sufficient to show that the rEh term

of L' for j <r<2j+l is less than the rsh term of R'. The proof
will be shown only for r = 2j,241 since for the remaining r the proof
(see condition 2b) 1is trivial.

For r=2j: K, -C, <K, -C + dA,

] j i i+l
which leadis to

Aj = Cj < Aj+1 - Cj+l'

This inequality holds in view of condition 2d.
For r=2jl: Kj+1 = Cj < Kj+1 - Cj+1 = dB which implies
Bj+l + Cj+l <Bj * Cj
and this also holds in view 2c.

In a way similar to the earlier development, one can show that conditions
2b, 2c, 2d, are transitive which implies that p 1is an optimal permutation
provided it satisfies condition 2. To find the optimal permutation arrange
numbers 1,...,n 1in such a way as to satisfy conditions 2a, 2b, 2c¢, 2d. If
in each case we get the same sequence, say p, then p 1is the optimal per=-
mutation.

The following theorem holds:

+C.)=A, +#C, . If for each 1i,j=1,...,n

i j io jo

Theorem 4: Let min (A
1I<i, jn

Bi > max (Aj’cj) then any permutation of the form

(10,...,jo) 5 (jo,...,io) is optimal.



e

D9~

. = 3 LU= .
Proof: Denote p (io,...,JO) y P (Jo,..-,io)- Permutation p

as well as p' is optimal because the corresponding

operation time for program ApoCp as well as for

A ,B ,C is equal to
P' pl pl q

n
£ B, +min (A, +C,)
=1 1 iy b

and no other program has a smaller operation time.
Example. Consider a 3x5 Bellman-Johnson problem with the following

table of operation times A(TableBS):

C,
i i il
1 4 3 15
2 6 7 8
3 7 7 8
4 5 9 4
5 6 5 10
]
Table 5
To check whether condition 1 holds form the following table (Table 6)
1 7 3 18
2 13 7 15
3 14 7 15
4 14 9 13
5 11 5 15
Table 6

Arranging the items in a nondecreasing sequence of B we get two permu-

i
tations (1,5,2,3,4) and (1,5,3,2,4). Arranging the items in a nondecreas-

ing sequerce of A+B, we obtain two sequences (1,5,2,3,4) and (1,5,2,4,3),

while arranging Bi+ci in a nonincreasing sequence get six permutations ==

among them (1,5,2,3,4) which is the only one appearing in each case.
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Therefore (1,5,2,3,4) 1is the optimal sequence.

6 The Sequencing Problem With a Time Lag.

The problem considered in this section is a generalization of the 2xn
Bellman-Johnson case which is obtained by introducing a condition under which

there must be some waiting time of auv least D1 - Ai duration for item 1{

after it is finished on machine A and before it starts on machine B.

(The processing order is AB for all the items). The case when, for all

i, Di = Ai < 0, reduces to a classical Bellman-Johnson problem. The pro-

blem considered by Mitten in [8] is also a generalization of the Bellman-
Johnson case. The problem considered here, however, is not a special case
of Mitten's problem, or vice versa. Indeed Mitten introduced time lags

because he assumed that the same item can be handled by two machines

simultaneously.

Remark: The Johnson procedure (as well as the notations) are similar
to that in [8].

i’Bi’Di-Ai’ denote operation times and idle times for item {.

Let t; and t:1 be the corresponding instant when item 1 starts on

machines A and B, respectively. 1If item 1-1 18 operated on just before

By A

item 1i, then

v '
ti =t i-1 + Ai-l, (8)
= ' '
t, = max(e , + B, t; +A, t 4+ D). (9)
If by x, we denote the idle time fur machine B after it has finished

i
item 1i-1 but before it starts to operate on item 1i, then

X, =t, -t -B (10)

i i i-1 i-1°
I+ is easy to show (the proof is similar to that one of theorem 2) that one
may restrict attention to programs of the type Aqu since at least one

optimal program must be of this type. Therefore, we are to find a n




 —
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element permutation p of numbers 1,...,n which will minimize the total

operation time T(p) of program APBP where

T(p) = I Bi + T Xy

iep iep
Since
n
Z B, = L B
iep i i=1 :

is constant the problem reduces to one of finding a permutation p for which

the total idle time of machine B

L x = g(p)
iep

will be minimal.

Divide the set (l,...,n) into two disjoint subsets s and s' where

s = {(1) | A;-B, = E <0} and s'={(1) | E, 2 0}.

Suppose s consists of £ elements while s' consists of n-{ elements. The

following theorem holds.

Theorem 5. If the first { elements of the permutation
* =
P (11, 12""’1L’ib+1""’in) belong to s while
the remaining n-{ numbers are elements of s' and
l if the following relation holds

D, ) <max(A, ,b, ) < ... <max (A, ,D, )
1 11 12 12 iL iL

as well as

max(Ai

max (B ,D - E ) Z_max(B1 D - 5. P .

i i i- 1£*2

1L+1 4+1 41 L+2  TLH2

> max (B, D, - By )
n n n

then p* 1is the optimal permutation-
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Consider a permutation (1,2,...,n). One may assume

and t, = x,. Applying (8) and (10) we get

1 1
u-1 u u-l
t'= % A, t i= T %+ T B, far 1=1;2,.4.50
el T Dt
since: ti = xi + ti-l + Bi-l’ tl = x1 + 0.
2
t2 =X, + tl + B1 = I Xy + B1 and so on).
i=1
Therefore
u u~-1l
z xi = tu Ol 5y Bi
i=1 i=1
u=-1l
. I=
From (9) we find tu(t‘.u 2 Ai)
i=1
u~1 u=1
t = max(t + B " T A, +A, £ A, +D).
u u-1 u-l i=1 i u i=1 i u
u-1 u=2
t .= Z x + I B,
unl g 1 ogag &
therefore
(u-l u-1 u u=-1
t = max Y x,+ ¥ B,, r A, z +D ]
“ LR R T B ‘>
Applying this result in (1l1) we have
u u-1 u-1 u=1l u u=-1
¥ x, = max Ix,+Z B, - L B T A, = T B.,s
g gl T gml L gl Prgml e T

i

t 1 =11 =1

t=1 ' i=1 1

=1 1

u-1l u-1 u=-1 u-1 u-l
ZA-ZB+Du =xu=max Zx, , EE+Au, L E+D

! =
t 0

(11)

(12)

‘) .

Formula (12) implies X, = max (0,0+A1, 0+D1) = max(Al,Dl).

1

i e

b A

)

i




Similarly,

X2 = max[max(Al,Dl),

= max[(A;+D,), (E,+A,), (E

In general:
u-1

X = max Y E +A
u

1<u<n |i=1 1

Consider an arbitrary permutation p + p*. We will show
that g(p) > g(p*). Without loss of generality we may assume

that p = (1,2,...,n).

not satisfy the assumptions of theorem 5. Therefore, there
must exist in p two neighboring elements, say j and j+l,
such that one of the following cases holds

(a) j,i+l es'

(b) j,j+l e s’

(c) Jes', j+l e s

It will be shown that

satisfies condition g(p ) <g(p). Let

-33-

(E;+A,),(E\+D,)] =

u=~l u=-1 |
+D,)] = max TEA4+A , T E, 4D
1727 2 |1 b g b
u=1
, 1::1 4D [ = g(p). (13)

Since p * p* it follows that p does

and max(Aj,Dj) > max(A )

j+1 ’DJ+1

and max(Bj,D ~E, )< .1ax(B

375 #41°P 441 By

p' = (1,2,...,j=1, j+1,3, 3+2,...,n)

u-l u-1
P, F E-+A , and Q = Y E 4D .
S Yoge LY
Then
S(P) = max [P ’Q ]: and g(p ) = max [P :Q ]’
laudn 1<u<n '
where i
' ' = = d LI )
Pu = ngu Qu for u=1,2,...,§-1,j+2, ,n
j-1 i-1 j-1
! = = =
Pj E E +Aj+1’ Qj iZIE +Dj+1’ Pj 1 Z E1+Ej+1 j
j-1
Q!,, = I E+E
Mo 1 1Py
There are two cases: either g(p) = max(Pj, Qj’ Pj+1’ Qj+1) or
g(p) % maX(Pj,Qj ,Qj+1)




= 3w

In the first case g(p) = g(p') which implies g(p') < g(p).

Consider the second case. We are to show that

]
max (P ’Q ’PJ+1’Q +1)gmax(Pj, Q_]’ Pj+1) Qj+1))
i.e. that the following inequality holds
[§~1 j-1 j=1 j=1
max ZE +A , ZE, +D », LE+E, .+A., ZE +E <
i= j+1 =1 I j+1 i=1 1 7§+l 7] i=1 +1 j]
(-1 j=1 j J
< X YE+A,, LEA4+D,, X E, +E FA y E, +E +D
R Pt PR et MRt M 15 A s A e
j=1
Subtracting Ei from both sides of the last inequality we get
i=1
max(AJ+1 j+1,s W j,Ej+1 + D ) < max(A ,DJ,E +AJ+1,E +Dj+1),(1 )

Denote by L and R the left and right hand side of (14)
Consider case (a)

According to the assumption in the theorem E, < 0 and E,, .<0.

i j+l
Therefore
Aj+1 > Ej+Aj+1’Dj+1 > Ej+Dj+1’ Ej+1+Aj and Dj > EJ+1+Dj.
Inequality L <R will be true if
max (A D ) < max(A,,D,). (15)

j+177 341 373

But (15) holds in view of the assumption of the theorem. Therefore
L <R which implies g(p') < g(p).

Consider case (b).

It is assumed Ej >0 and Ej 1 2 > 0. This implies

’ ’ < E "
Ay SEp A Dy SDAE, ), Doy SEFDL, and A, ) SEqHAL

Relation L < R holds if

De

max (E + Dj) < max(Ej+A

1185 B #1°E*050

Subtracting Ej + Ej+1

max(Aj-E

from both sides we get

j,Dj-Ej) < max(Aj+1-Ej+1,Dj+1-Ej+1).
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This may be wriccen in the form

j,DJ-EJ) < max(Bj+1,Dj+1-Ej+1

Since (16) holds, by assumption, it follows that L<R and

max (B

g(p') < g(p).

Consider case (c).

By assumption Ej >0 and Ej+1 < 0 which leads to

Aj+1 S'Ej+Aj+l 0 Dj+1 < Ej+Dj+l 5 Aj+Ej+1 < Aj 5 Dj+Ej+1 < DJ.

This in turn implies I < R , g{p') < g(p). Thus we have
showed that if permutation p satisfies one of the conditions
(a), (b), (c) then there exists a permutation p' which emerges
from p by transposing two neighboring elements of p and where
g(p') < g(p). This implies that for any permutation p + p*

there exist at least a finite sequence of permutations

psp'sp" ... ,p* with g(p) > g(p') > gp") > ... > g(p*)where each permu-

tation of the sequence is constructed from the preceding one by
a transposition of two elements. Permutation g(p*) 1is optimal

since for any permutation p, g(p) > g(p*).

Consider a 2x5 problem with the following data (Table 7)

Ay Bj Dy E; Di-Ei max(Ai,Di) max(gvni-gi)
1 3 2 3 1 2 2
2 2 4 2 -2 4 2
3 1 5 4 =4 8 4
4 4 3 2 1 1 3
5 3 4 1 -1 2 3

Table 7

gy e aahba andin, prap

). (16)

*e
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Here s = (2,3,5) and s' = (1,4). According to theorem 5 in the optimal
sequence: 1) elements 2,3,5 appear before elements 1,4. 2) the numbers
2,3,5 are arranged so that values max(Ai,Di) form a nondecreasing sequence,
3) the numbers 1,4 are arranged in such a way that max(Bi,Di-Ei) form
a nonincreasing sequence.

Therefore, permutation q =(2,5,3,4,1) ‘s optimal. Figure 13 shows

the working schedule of program Aqu.

A2, 5 43, 4 1 ,

Figure 13

Remark: If Di < Ai for each 1i=1,...,n then as mentioned, the

problem reduces to a classical Bellman-Johnson case. Then

i
For this case the inequalities appearing in the statement

- 1
according to (9) t, becomes ti = max(ti-I+Bi-1’t1+Ai)'

of theorom 5 will be as follows

since
max(At,Dt) = At and max(Bt,Dc-Et) = max(Bt’Dt-At+Bt) = Bt'

This implies a rule of constructing an optimal sequence,

which rule was stated in Section 2.

7 Some Properties of the Approximate Solution Method of the mxn Case.

In Section 3 an approximate method of solving the mxn case was given.
We will show that this method is an exact method for the problems presented
in Section 2.

Consider the 2xn Bellman-Johnson Case. According to the method men-

tioned, one must first solve (;) different 2x2 problems for each
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i,j=1,...,n , { + j by the method given in Section 3. Consider one of the

2x2 cases (see Figure 14).

Item |
- A B q
B B
i
A
}N\
= L o i
Figure 14

It is easy to see that the optimal line can only be either one of the two
(indicated on Figure 14 by arrows) linking P and Q. The lower line corres-

ponds to the program A(i,j) B(i,j) while the upper line corresponds to the

PEOETam Ay v BRy.4)°

By z and z' let us denote the total length of all vertical segments

corresponding to the lower and upper line (this is the total waiting time for

item 1 in the 2x2 problem) Then (see Figure 14)

z=B, +max (0, A, - B,),
j Sl
z'= A, +max (0O, B - A, ).
3 ( j i
The sufficient condition for the lower line to be optimal is
B, + max(0, A, = B,) <A, + max(0, B, - A ).
g i makiBp 5y RoUR, OIS 0 T ime(i B S )

where an equality sign may also appear. This inequality may be rewritten as

max(B,, A, + B, - Bi) < max (Aj’ Aj + Bj - Ai)'

h R

Subtracting Aj + Bj from both sides we get

max(- A,, - Bi) < max(~- B,, =~ A,).

3 i !

]

which after simple transformations becomes the equivalent form

min(Aj, Bi) > min(Ai, Bj).
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Condition (17) 1is identical with that of Bellman-Johnson (see [7]). Since
(17) 1is transitive we will get from the (;) problems of the type 2x2 a
solution of the 2xn problem identical with the optimal solution obtained
by Johnson's method.
Remark: One may derive condition (17) directly by looking for
a line for which the total length of the 450 segments is

maximal. Let us denote such a length for the lower and
upper line by 2z and z' respectively. Then (see Fig. 14)

z = min(A , B,), z' = min(A,, B,).
j i i

j
The lower line represents an optimal program if

min(Aj, Bi) > min(Ai, Bj),

which is identical with condition (17).

Consider a 3xn Bellman-Johnson case while additionally assuming that

for each 1i,j = 1,2,...,n , at least one of the relations Bi < AJ 5
Bi < Cj holds.
Here we consider (g) different 3 x 2 problems. Take one of those

may
for items 1 and j, say, (see Figure 15). According to Johnson in [7] we/

look for an optimal program among programs of the type Ap BP Cp. This

implies that one can find the optimal line by examining only two lines as

presented on Figure 15.
item j

j{/ B
ards

Figure 15

N F
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Let us denote by w and w' the total length of the 45° segments of the

lower and upper line respectively. Then (see Figure 15)

w

min(Bi +C,, A, + Bj),

i)

£
]

min(Ai + B

sy Ba+ @)
i’ 7] J)

So if w >w'

min(Bi + Ci’ A, +B.,)> min(Ai + B

3 * By i

! + Cj). (18)

]

then the lower line is optimal and this means that program A B
. N R (1,5) °(1,3)

C(i 1) is optimal. Condition (18) is identical with that given by
]

Johnson in [7].

The transitivity of (18) implies that the mxn method always solves

the 3xn Bellman-Johnson case under the condition Bi < Aj or B1 < Cj'

One can easily show that this method solves the 3xn Bellman-Johnson case

when Bi z_max(AJ,Cj) for each i1 and j as well as the 2xn case

from Chapter 4.

b o s —
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