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ABSTRACT :

This paper proposes an analytical technique for modeling by the
analyst of a particular decision situation. Evidence supporting the
basic proposal, properties of the technique, discussions of its pos=
sible applications, and examples are also presented.

l
i
i
i
|

The basic problem is a compromise between the probability of
success in a single trial versus the total expected number of successes g
over many trials under the constraint of a limited and uncertain re~

-Iu, um

ya source. The analogous situation of chcosing an operating point for a
i system which is a compromise between tle effectiveness of the system i
and its efficiency (effectiveness divided by cost) is also discussed.
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"It takes two of us to discover the (ruth:
One to utter it and one to underetand +t."

2 'uummmwwnﬂllmﬂﬂmimmme }

- Adiebl Gibran

. INTRODUCTION

Our goal in this paper 1s to model a Jdecision point for use by
the analyst, both in the process of analvses and in his communication
with the decision maker., We are in no way attempting to derive an
analytical tool for the making of a de :ision by the decision maker.
Rather we wish to remove from the analyst the burden of making arbie
trary decisions in the process of modeling a system. By arbitrary
here we mean a choice that has no intrinsic meaning in the mutual com=-
munication between the analyst and the decision maker.,
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As will be seen, the decision point chosen is an artificial one
in the sense that there is little likelihood that a real-world system
would be oparated at the particular decision point. The actual point
is derived as a point of "equality" between two conflicting decision
N measures of value. Since a decision maker usually has a preference
4 : (probably indefinable analytically) for cne of the particular meas-

ures, this point serves the purpose for the cnwlyst of a boundary on
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the region of interest, if he is aware of the decision maker's pref-
erence; or as a reference point about which to examine the behavior
of the system, if he is 1">t aware of the decision maker's preference.
It further serves the purpose of establishing a common point of ref=-
evence for both the decision maker and the analyst,

Since the decision process is, by definition, one in which an
optimum choice does not exist in the classical analytical sense, the
technique proposed in this paper cannot be supported in a rigorous
manner. Therefore, the methodology of this paper is to support the
choice of a particular analytical definition based upon a number of
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interesting properties resulting as a consequence of the choice. In
other words, to present circumstantial evidence, but enough ot it to
cast "incudcive" credibility upon the basic premise,
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. THE PROBLEM

L dl

We assume the following situation:

(1) Tor a single occurrence of an event, we are given a proba-
bility of success (P) which is a knownh function of some
amount of resource (n) we choosSe to jnvest in the single
trial. Examples of this are the probability of killing a
target when we salvo n shots at it or the probability of

not losing ouy money in loaning n dollars to an insecure
businass.

R L

(2) P(n) is a monotonic increasing function to some finite
limit (1 or less) as n goes to infinity; or, P(n) increases
with n to some maximum value before it falls off,

“ (3) The total supply of our resource (N) is finite. Therefore,

the total number of separats independent trials of the

event that can take place is N/n. Since this is a binomial
7 process the total expected number of successes (E) out of 3
T the N/n trials will be

P—
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_ N
L= n P(n) (1)

(4) The exact value cf our total resources (N) is unknown,
Through uncertainties in our budget, the ultimate cost of
the resource or the number of trials we will require, N has
a significant uncertainty,

{5) Regardless of the uncertainty of N, it is a limited resource
in the following qualitative sense: If we demand a hagh
probability of success in each trial (P(n) «~ 1, n large) wa
expect N/n to be small resulting in a small return in terms X

R
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of the expected number of successes as in Eq. 1, If, how-
ever, we attampt to make n small in order to obtain a maxi-
mum axpected raturn, wa ara presented with & low ot unac-
rneptable probability of success in a single trial (P(n)
small compared to 1l).

The situation as described is depicted in Fig, 1, TIf we wish a
high probability of success in a single trial we are forced to largs
n. If we want a high number of expected successes we arc forced to
low valugs of n, It is these two opposing meesures with which we are
now faced--opposing in the sense that a preference for ¢ne tends to
dictate an cpposite choice of n. The crucial and perhaps non-real~
world assumption we now present 13!

(6) Our mythical decision maker wishes to choose a value of n
which represents a point of equality between these opposing
measures of value., To him there is an equality of impor-
tance or valua betwaeen the individual (single trial) proba=

ettt 4 ettt
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bility of success and the total expected number of successes,
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n dn Probabllity of success .
forn >0 for an expenditure =
. of i resourcas
on one trial v
y
: Bshavior of :
(n) :
= expected number :
of successful trials =

0 _
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FIGURE 1  Basic Problem
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The problem as now stated is to attampt to define an analytical
criterion for the concept of "equality' iw this situation,

The type of probability distrdibution illustrasted in Fig. 1 has
no point of maximun oxpected number of success except at the lowest
allowsble value of n, Mathematically this condition is characterdzod
by P/n > daP/dn, This type of fun:tion is our primary concern; how-
aver, we will consider distributions exhibiting an internal point of
maximum expected successes in a later section of this paper., If, in
this situation, the analyst makes an avbitrary choice of a confidence
limit to pick a point n, he has produced a point which has no intrinsic
meaning communicable between him and the decision maker, OQur goal,
theretfore, is to define a point wlich has a meaning in terms that are
understood by both parties,
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Hi. USEFULNESS

Before proceeding o Lthe actual treatment of the problem, some
clavification of the uses for such a teclmique may provide & proper
perapective for the reader,

A point of "aquaiity," "cowmpromise,” or "indifference” between
these two opposing measures of value would have unique value as a
boundary and/or reference poiat in the decision process. Ii n, is the
acttual point of equality, we have the f{ollowing results,

Total winnings

n s n upper un
more important - o pper bound cn n
Probability &f
succass more e n=n, lower lLound on n
important
Unknown relative

r o 28

importance » N s Ty raference point

Theraforva, with binary value judgment (which measurc haa greater
importance) the analyst can considerably raduce the range of consider-
ation for the variables in the problem, While the analyst usnally has
no exact knowledge of the relative weights a decision maker implies o
these two properties, he can usually gather from the situation which
measure is of greater importance, In other words, it is always easier
to make an accurate binary decision than a continuous one, This in no
way, however, vemoves the responsibility of the analyst to examine
sensitivity over the range of n once it is established by the point of
equality, As an example, ih some military sitvuaticns the individua:
probability of success is more important while, untortunately, in some
comnercial situetions the total return is more important than the
probability of successfully satisfving cach customer,
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Prequently, in military or commercial situations a requirement
to model a competitor's system is put upon the analyst and not the
decision maker. The purpose, of course, is to test the effect of
possible alternatives our decision naker may have upon the competi-

torts actions, In this light, let us imagine the following scenario:

(1) We wish to deter a competitor from making a decision to
begin a cartain action involving many trials of a certain
type.

(2) His probability of success in any trial is given by a func-
tion P'n, x,) where {x,} is a set of variables under our
contrel,

(3) We have the knowledge that his total supply of the resource
N is limited or expensive,

{4) We -also know that he values individual probability of suc=-
cess somewhat more than total expected number of successes.

Therefore, if we know the point of equality of importance between
these criteria (say ny), our goal is to set the values of x, such that
P(ny, %;) will be costly for him to obtain, In other words, we wish
to minimize the possibility of his being able to afford the point

where he would consider the decision to undertake the action.

We might contrast this approach with tls arbitrary choice of a
defense conservative limit: a choice of n such that P(n) is so low
that everyone has agreed that only an insane person would exercise
action at this point, The usual problem with this limit is that prac-
tically any choice of x, by our decision maker shows up as a very ex-
pensive proposition in order to negate the taking of the action. The

opposing limit, offense conservative, also imposes certain difficul-

ties for the decision maker. By establishing a very high value for

P(n), the total resource (N) ultimately required for exercising the
action becomes so costly that there is a large degree of insensitivity

in the various choices of x; that might be exercised by our own de-

cision maker. In other words, practically any inexpensive choice will
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negate the taking of the action. One way of thinking of this point
of equality is as a compromise between the offense-defense conserva-
tive boundaries,

Very often the analyst must set up a base design which is used
as a reference point., It would probably be helpful to the decision
maker 1f such a point were determined upon an analytical model rather
than some arbitrary choice of the analyst, Reproducibility of a ref=-
erence point among different analysts and decision makers should be
advantageous to both,

In some instaznces the analyst is faced with the question of having
to inform the decision maker quickly as to whether or not there is any
possibility that a particular system is within the realm of reasonable
cost. Under the constraint that the individual probability of success
is more important, the costing of the system at n, usually provides
the lower bound of the cost. Therefore, this approach provides a quick,
back-of-envelope~-type indication for deciding whether further study is
warranted.

In the computer simulation of very complex systems, more often
than not the analyst must provide & multitude of probability factors
to simulate hardware that is undeveloped. In many instances it is im~
passible from & time-and-effort standpoint to undertake a complete
sensitivity analysis of all these parameters; nor dces the decision
maker slways have the time to dig into the model to sufficient depth
to determine if the arbitrary choices by the analyst conformed to his
owvn intuition, While this is unfortunate from an academic viewpoint,
it appears to be the real-world situation. This approach provides a
common understandable ground rule for the analyst and the decision
maker to establish a base or reference case from which the excursions
can be conducted, Furthermore, applying the ground rule to two sep-
arate complex systems which are candidates for the same job provides
a ccmmon point of comparison.
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IV. TREATMENT

What follows is a set of arguments ~nd analogies of a rather di-
verse nature, all of which lead to a unique analytical definition for
establishing a specific point n, in the tradeoff between number of
successes (NP(n)/n) and the individual probability of success (P(n)).
Soma of these arguments may be more enlightening or satisfying to the
reader than others. In addition, some of the properties exhibited
could have been taken as assumptions to define n,. We have not chosen

--to do so in order to attempt to establish a more general meaning for
the results. It is the sum total of all the arguments which the author
would ask the reader to consider in his evaluation of the premise.
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A. CHOICE OF A VALUE OR UTILITY FUNCTION

Let us hypothesize that there exists a function H(f(x), g(x))
which takes on a maximum value at a point X, and expresses "equality"

’:_g
]

or "indifference" between the two measures of value represented by
Il the functions f(x) and g(x) at that peint., In the neighborhood of x,

the functions f and g are considered to be opposing functions of x:
R4
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o one increases while the other decreases for any small change in x
about x,., In our particular problem f and g represent the individual
E probability of success and the total number of expected success, The

concept of the existence of a value or utility function is not new to
either the fields of psychologyl’2 or economics.3

(a) This premise of the existence of such a value function is
assumed here to mean it should be analytic in f and g:
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H(f(X), 9(X)) = X a,,fle (2)

i,)
This ensures we are considering differentiable functions with a

unique measure for the value function at each point x.

(b) We further hypothesize that impartiality or indifference
leads us to the following assumption, If

g (f(x), g(x)) =0 (3)

defines a point x5, then
d
B (af(x), sg<x>) =0

defines the same point x, for any arbitrary constants (non-
zero) a and B, This condition expresses the requirement
that our results should be insensitive to any arbitrary
change ¢f scale or dimension in the functions f and g, In
cur particular case it implies that we seek a resuit insen-
sitive to the value of N and its inherent uncertainties.

{c) Bince the value function must exhibit impartiality, indif-
ference, or equality between f and ¢, in addition we have
the assumption that

H(f, g) = H(y, f) (5)

Equations 3 and 4 applied to Eq. 2 result, respectively, in:

Yay, §z (Fgd) =0 (6)
SalBla,, %; (fl'g'y = 0 (7)

Subtracting the twe equations we see that the only way they can both
be satisfied at an arbitrary point x, for any arbitrary values of a
and 8 is if

10
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a“ - 0
or (8)
%—x (f'g’) =0

%o
Therefore, our value function must be of the form

H(E, g) = Cflig? (9
;l Our assumption of indifference (Eq. 5) now implies
l Yo = Ya =Y (10)
i or that
_ , H(f, g) = H(fg) = G (£q) (11)
I’ or
- S| =o (12)
i X %o
i
as a further observation, the results will be insensitive to any func-
an
3 tional change of x to another variable ¢
3

x = x(c) (13)

since solving for the tradeoff value of ¢ will provide the same value
of x through the use of Eq. 13. Therefore, the same results are ob-

~tn

i tained whether we are talking about the number of shots or the cost of
each shot, or whether we are talking about man~hours or the cost of a

i man-hour.

R

(d) Finally, if we assume that under the condition of limited
g' resources we may consider applying two independent systems
+ to the same job, and because of the overall limit on re-
sources they do not overlap in effectiveness, we should
then recognize that the value function is additive

11
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H(f,95) + H(fp9) = H(f, 9, + f39,) {14)
which implies v = 1,

The result, in terms of our original problen, is that

Value Function = ﬁgiiﬂl

(15)
or that n, is defined by the equation
d P

E-5 (16)

Occasionally, in trading off two opposing functions, a mean of
some sort (average, geometric, harmonic) is taken as a value function
to maximize. This result, as expressed by Eq. 15, is equivalent to

using the geometric mean as the value function. In general, the geo-

metric mean occupies a middle-of-the~road position between the arith-
metic and harmonic means,

Avithnetic Mean 2 Geometric Mean 2 Harmonic Mean

The geometric mean is not as sensitive as the arithmetic mean to a
high value or as sensitive as the harmonic mean to a low value,

The conclusion reachlied here is that if a compromise point exists
between two functions which is insensitive to arbitrary or uncertain
weights applied to the functions then it can be found by maximizing
the product of the two functions.

It is of interest to note that assumptions of analyticity or

reqularity usually applied in constructing value functions for proba-

listic situations (see for example: Human Judgments and Optimality,

edited by M. Shelly and G. Bryan, pp. 189-191) disallow use of the
standard deviation as an explicit term in the value function except

perhaps as an approximation to a general but unknown value function®
in the reighborhood »f the solution.
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B, COMPROMISE BETWEEN EXPECTED VALUE AND VARIANCE

While the expected value in the binomial distribution is

£ =

==

P(n) (17)
the variance is expressed by

Vv =

3=

P(n) (1 - P(n)) (18)

In the type distribution diagramed in Fig. 1, the variance is also a
decreasing function of n for a constrained resource N; therefore, high
expected value alsc means high variance or low confidence in obtaining
the expected value.

One way of handling this is to use standard deviation W and to
set arbitrary confidence limits and maximize the prohability within
these limits., Quoting from A. C. Aitken in his book Statistical
Mathematics: '"Modern usage is tending more and more to treat variance
itself, rather than standard deviation, as a suitable messure of dis-
persion." Taking this statement as gospel and utilizing the concept
of marginal return, let us assume that a compromise between expected
value and the confidence in obtaining the expected value is that point
where the marginal retnrn in expected value is equal to the marginal
return in variance:

; dv
& "o (19)

Therefore, at the point n, defined by Eq, 19, we are receiving an
equal rate of return in both variance and expected value per unit ex-
penditure of the resource n, Since

N'PB

E-v =2 (20)
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maximizing Bq. 15 is equivalent to Eq. 19 and both result in the con=
dition

[o )

P_P.
n -~ 2n (21)

[=X

The real effect (f using Bq. 19 to detevinine an operating point
will probably be clearer to the reader when he examines its effact on
some of the probability functions illustrated in the example section
P of this paper, Sec. VI, As seen there, for n, less than the point de-
. fined by Eq. 19 the variance is decreasing at a faster rate than the

total expected number of successes., After this point the reverse is
true.

e R

A rather pleasant by-product of trading off expected value di~-
rectly with variance is the additive property of both.

Let us suppose we have two (applies to any number) systems (1 and
2) we wish to apply to the same task, Each utilizes a different re-

source (x and y) and we have already picked values for x and y based
upon our cviteria

o il !

ey o, dE o Vs (22)
dx dx dy dy

4
3
K
E.
3

vih‘.lw i

Er

#
£

- B,

(23)
Ve

vy +V,

Assuming there exists a resource common to both systems (cost)
% ‘ such that we may write

x = x(C) y = y(c) (2%)

then our new system satisfies

db, av

o 7 -.._I. ~

de de (75)
14
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This may also be interpreted as an additive property for the
value funhction E - V., By adding systems wa add value, and our criteria
of value should apply equally to a gingle or composite system. ‘This
is correct only as 1ong as we are in the limited resource situation
and the systems are not overlapping in their effectiveness,

C. EQUALITY OF CONFIDENCE TN THE MACRO AND MICRO VIEWS

Contrary to the nsual intuition, if one wishes to ascribe a di-
mensionality to N/n, then E and V (not the standard deviation ) are
of the same units. P(n) by definition is a ratio of two quantities
of the same units and therefore is dimensionless. There is no contra-
diction in using E =« V as a value function in opposition to the usual
use of B =~ MU () any constant). It is certainly a no less arbitravy
technique,

From the standpoint of units of expectation, however, there is

a clear meaning for the value function, The quantity®
1
S =P (26)

18 the expected number of trials needed to obtain a single success
when we expend an amount of resource equal to n on each of the s
trials, If we divide s into the expected number of successes (N/n)
P(n), we obtain a quantity

expected number of successes N (27)
expected number of trials for one success = by p?

Mg .
For a finite number of trials (%) , 8 is actually

N
s=l- (1 - pam))?
P(n)
L

however, in most instances (l - P(n))“ is essentially zero as coim=
pared to one unless the total resource (N) is so limited that ex~
pending all of this vresource N on only one trial produces a small
probability of success. In any case, 1/P(n) is always the upper
bound on the expected number of trials required for a single success,

15
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Therafore, maximizing the valua function is, in reality, a simultane-

ous attempt to maximize the total number of succasses while minimizing

the number of trials to obtain & ¢ cess. One may picture this value

funetion as providing an inverse cqualization between successes (sug=
cessful trials) and failuras (non-successful trials).

Purthermore, the quantity

C = 3n (28)

is now the expected cost in resource for one successful trial, while

the variance in obtaining successes at a cost C is (geometric distri=-
bution)

V, = n(s® - s) (29)

The maximization of our value function £ = V is equivalent to minimizing

C + V,
n of max (L = V) = n of min (C + V,) (30)

One may genharally show that (1) if it I8 requivred that a maximum
P

of some lower confidence limit on the numnber o

succesges 1s required,

L.
s 2 P
maximize: E - a,V (31)
where &, and a, are arbitrary constants, and (2) it is required that
some minimization on an upper confidence bound on the cost of a suce
cess is required,
b

minimize: C + bV, (32)

where b, and b, are avbitrary constanvs. Then the only choice of the
constants a,, a5, b,, b, which provide the same value of n as solu-
tions to both Egs., 31 and 32 is

a, T dg by = b, =1 (33)

16
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provided a; and b, &ve non-zero. Therefore an added interpreta’ion
is a compvomise between the macro (total number of successas) picture
and tha micro one (single succaess) in trying to arrive at an equal
partition of confidence in the two views,

To adopt any other form for a confldence limit means that opti-
mizing either one of the two critaeria, total successes or cost of a
single success, will result in the other being ofi optimuwn, While it
is certainly true that one cannot simultaneously maximize effective-
ness and minimize cost for a given system, we have shown that a pap-
ticular confidence limit exists which allows maximization of effective-
ness at that limit with minimization of coat at the analogous
confldence limit along with the result thet the gsolution is insensi-
tive to the total resource.

As a furthev nota, when N/n becomes larvge, the binomial distribu-
tion may be approximated by either the geometric or Poisson distribu-
vions depending upon whether P(n) vemains finite or goes to zero
respactively, Bquivalently it may be stated that as E approachss V
in value (B =~ V) the Poisson distribution is a good approximation
(being axact for E = V), By maximizing E - V we are attempting to stay
away from the Poisson distribution and establish an "equality" of con=
fidence between the macre view (binomial) and the micro view (geo=
metric) by maintvaining a reagonably high P(n). It might thepefore hae
cot cluded that we are attempting to arrive at a point where there is
indifference Lo vicwing the process at a macro or micro level, In
particular, under this circumstance, if we are able to evaluate the
success or failure of cach independent tyrial in turn, it makes no
difference in our votal return whether we choose a new event (nhew
target or investment) after a failure or continue with a new trial on
the same event until a success is obtained. In certain situations
this would tend to ensure a certain degree of flexibility in the actual

oparation of the system.
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D. A RESPONSE TO UNCERTALNTY

We may rewrite n as
no= g (34)

whoere N 18 a measure of cur total resource and T is the total number
of trials we would like to make with the resource by distributing n
on each trlal., The expected number of successes is now

E =1TP (%) (35)

Whenever N is an expensgive resource & common policy is to tyy to
maintain a constant valua of n, It may not be the best policy in all
gituations, but it is nonetheless frequently employed in many aitua-
tions. One difficulty in this policy is the inherent uncertainty in
N and T, which we will indicate by |6N| end |6T| where N and T may
1ie in the bounds

N - |8N| < N actual s N + |6N} (36)
T = |8T| < T actual < T + |&7) (37)

From alementary error theory the aexpected uncertainty in n may be
written as

- W

a (-' 2
mea ) - () 0

gince N is really our resource as compared with T which is prob-

v

assume that

lev|  loT]
T R

- + p——
K)

“This is true for uniform~ and Gaussian=type errov dirscributions. See
Introduction to the Theorv of Error, vardley Beers.
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The percent error in estimating T is greater or equal to our relative
error in N,

Now, 0 bhe conservative we ask what is the worst possible situa-
tion, This occurs when we have overestimated our resources by an
amount |8N| and underestimated the number of trials required by an
amount |6T] and when equality exists in Eq. 39. In other words, our
errors in our resource are just as great as those of our opponent and
when we decide to take the action (perform the trials), we find we
have less resource and more trials to perform than we expected, We
may write this condition as

S Ndoisd 1y,

6N _ _ 8T
N - T (40)

To see what happens to our expected return we take the variation of

Hhd E from Eq. 25,
i- [
- I\ 4 de
- 8E = 8T L? n dn] + &N an (41)
a
substituting for 6N from Eq. 40 we have
'}'ﬂ
1 :
= - daP :

6E = 6T [? 2n dn] (42) 4
!?2 -
3= Ik
= If we then require that under a finite uncertainty &T we wish :
o 8E = 0 or that our return or winnings stay constant under the worst
i uncertainty situation, we have
; dP _P_ |
i dn ~ 2n (43) '

which is, hopefully, familiar by this time. Therefore we have shown g
that for first order uncertainties in the system (5T/T << 1) our re-
turn E stays constant (8E = 0) under the worst possible situation

(6N/N = - §T/T), with the caveat that our uncertainty in our own re-

PR

_—

n.~..,........,....,......

source is no worse than our estimate of our opponent's resource.
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One may then interpret the planning point n, defined by Eq. 43
as a stability point for the expected winnings. ..s a result of this
the minimum total buy of resource one would like to have in this
deterrent-type situation is

N = n,T (44)

with, perhaps, the hope that maybe one can ultimately afford

n = |6N| + n, (T + |6T|) (43)

E. AN ANALOGY WITH PSYCHOLQOGICAL THEORY

Quite a bit of experimentation has been carried out in the area
of "subjective probabilities.' While tiis subject is not directly
analogous to our situation, there are some similarities, One ¢f the
current theories in this area is perhaps best summarized in the origis
nal statement of “he theory.4

The strength of motivation to perform some act
is assumed to be a multiplicative function of the
strength of the motive, the expestancy (subjective
probability) that the act will have as a conse-

quence the attainment of an incentive, and the
value of the incentive (winnings):

Motivation = f(Motive x Expectancy x Incentive)

In addition to this description of a value function for deciding
to perform an act, it is hypothesized that a similar term describes
the motivation for not taking the action which involves the expectancy
of failure and the loss associated with this.

In relation to our own problem, the one the psychologists have
studied involves an intuitive estimate of the expectancy on the part
of the subjects, in oppositicn to our situation where expectancy is
known exactly, Whereas the subjects knew the incentive exactly, our
winnings are uncertain due to unhcertainty in total resource or number
of trials to Le made. Even with these ¢ifferences it would appear
analogous to draw the correspcndences:
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probability of success (E(n)) corresponds to expectancy

expected success (g P(n)) corresponds to incentive

Since we are principally concerned with questions of designing
or evaluating the performance of a physical system as compared to
alternate systems, motive in our case is either zero or one., Further-
more, the question of motivation against taking the action is really
associated with the actual employment of the system. In commercial
situations under limited resources one often cannot do anything about
the negative motivation, since if it is present it is probably insen-
sitive to any variables under controi. In the military situation

~~there- is often no alternative to building a system for a specific job;

the only choice is whether to employ it, which often is in the hands
of the opponent,

With the realization that our approach concerns the evaluation
of possible alternative systems rather than questions of whether or
not one should have any system at all (which is really the direct
province of the decision maker rather than the analyst), it would
appear the value function described in this paper provides a measure
of a system in terxms of what some psychologists believe is a measure
of intuitive wvalue or usefulness by providing a theoretical operating
point which maximizes motivation when thrc system must be employed in
an uncertain environmente-=unknown actual resources or uncertain re-
quired use of the system,

Ultimately, as is the case in the physical scienhces, the final
verification of a theory should rest upon experimental evidence.
While the designing of scenarios t¢ test the hypothesis proposed here
should not be overly difficult, the problem of obtaining a sufficient
set of subjects at the analyst and decision maker levels may be a pro-

hibitive problem for any psychologist interested in examining this
question,
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As a reflection upon the examples provided in Sec., VI, one addi-
tional result from this field of psychology is a rough correspondence
between P(n) and intuition (for an average subject):

B intuition

0.7 =~ 1s certain to
0.6 a 1is likely to
0.55 &~ probably will

F. AN ANALOGY WITH ECONOMIC THEORY

In the theory of demand a measure often employed is the elas-
ticity between prica (p) and quantity (q).

[o N

elasticity = q = - 2 53 (46)
q dp

The use of elasticity as a measure is chiefly justified in that

it provides a percentage change rather than absolute change figures.

It literally allows the economist to make direct comparisons between
apples and oranges.

In this situation pq is a utility function to maximize if the
manufacturer has a monopoly and either there is no cost or price is

actually profit (relative price) and quantity is a function of this
profit or relative price,

Utility Function = pq (47)

The situation in which the elasticity equals one is the point of
least sensitivity for this utility function

pPq = constant (48)

If p and q are some function of a variable x such that a change
of x decreases one and increases the other, then an elasticity of one
is the point where there will be a minimal change in the produnt,
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In our situation we can make a direct comparison in the following
manneys

(3) Relative price or profit in our system is equivalent to
probability of success¥

P = P(n) (49)

(b) Quantity is just the expected number of successes and is
a function of the profit or relative price

= £~

q == P(n) (50)

]

Furthermore, since we are concerned with the evaluation of a
specific system for a specific task we are in the analogous situation
. of having a monopoly==essentially control of setting the operating
point of the system,

sy

In Pig., 2 we plot some "demand" curves (P(n) versus P(n)/n) for
a particular probability distribution. In opposition to the usual
demand curve we have a reversal of curvature with respect to the ori-
gin, From the plots it is obvious the point arrived at is essentially
& tradeoff between P(n) and P(n)/n in terms of sensitivity of change
g; with respect to each other. This particular type plot applied to a
' probability situation is quite infoxmative for any probability dis=~
tribution,

ihat

Puws

Wil

In the situation described here we have one advantage over the
economist in that we can often describe the functional dependence of
P on n analytically.

";: * k3 > (] L] L)

ig In the classical definition of probability as the limit ratio of
occurrences to total trials, it would seem to be a relative price

E rather than an absclute one,
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FIGURE 2 Demand Curve Version
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V. GENERAL OBSERVATIONS

Integrating Eq. 16 we may write down some relations for quickly

calculating the behavior about the point n, as defined by our criteria:

Macro View Micro View

E(n) _ o c(n) _ fn

5y " VR g =y (52)
n n

V(n) JI-T;' - P(no) Velm) %o _J: (53)

Vo) T-P(ne) chno5 So=

It is of interest to note that the probability of success and
the cost of obtaining a success behave in the same manner about the
point n,

P(n) ey

P 54
F(ho) ~ Clne) (59
or equivalently
E(n) s{n)
o~ 55
E(Ng) ~ s(Ng) (55)

while we have talked largely of probability of success, we may
generalize the result to any measure of effectiveness in the employ-
ment of a system. Assuming our effectiveness is a function of cost,
we define
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Effectiveness = €(c) (gﬂ: é(c) is finit:e) (56)
. €(c
Efficiency or avevrage return = . (57)
Elasticity = & 1 (58)
a N T I eSS
¢ &5

a

(7]

The point whera the elasticity between what we choose to ¢all
effectiveness and efficiency equals ohe may be rewritten in the fol-
lowing interesting manner:

ld €Y _
zaf*%a(z)*“ (59)

With respect to effectiveness the first term is the average re-
turn of the marginal return while the second is the mavginal return
of the average return.

In many systems the most efficient operating point is the one
which preseribes a very inexpensive design point (maximum possible
€/¢) while using overall effectiveness (&) as the criteria leads to
a very expensive system, The technique we have discussed would seem
to provide a meaningful compromise between overall effectivensss and
the efficiency of the system, For any system in which one is more
interested in the overall effectiveness, this technique would indi-
cate the minimum investment that should be made if the system is to
be built or employed.

We have, of course, now made an intuitive jump from probability
of success (P(n)) to generalized effectiveness (€(c¢)). When one con-
siders the inherent uncertainties in cost and its functional relation-
ship to both effectiveness and parameters outside the control of both
the decision maker and the analyst, it is usually safer o treat an

effectiveness measure with the same consideration one would give to a
probability,
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One must usually be careful in treating an effectivenass curve
with this criterion to ensure that each point on the curve has been
optimized for the particular investment represented by the value of c.
In some cases this may imply that different regions of ¢ represenc
completely different systems, However, it will usually be the case
that when applying the technique to different effectiveness curves,
representing different systems for the same job, the resulting point
for any system (c, and €(cy) for each systom) will fall in the region
representing the investment level for which that system is best suited,
provided that region exists at all for the given system as compared to
the others. The exceptions to this usually occur only when the region
(investment range) in which a given system is more effective is quite
small in comparison to that of the other systems,

In Fig. 3, a visual comparison is made between the proposed tech=
niques (a compromise between €/¢ and € as opposed to the criterion of
maximum expected value or efflciency (€/¢)). For those distributions

Maximum: E:g:ic:::yvoluo de P de e Compromise ] 9P a.f.o,ﬂ.ﬁ. e
Marginal utility} do n < ¢ techniquef dn  2n = d¢ 2

<
0 not ¢
"‘———-’T-"- Sy —
——— n, - L
FIGURE 3 Comparison with Marginai Utility or Maximum Expected Value
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i where it is possible to pass & tangent line from the effectiveness or
‘ probability curve through the origin, a maximum expected value exists

Lol Rad

at the point of tangency (sometimes referred to as the maximum mar-
ginal utilicy concept). Tt is obvious that this latter technique re~
sults in solutions (n,) which are a good deal more sensitive to un-
certainties in the resource than the technique under discussion, It
is the author's feeling that the msrginal utility criterion is only
valid when there is no concern with uncertainty or whan cost is of

e T e

overriding importance, Our proposed technique always providas &
higher value of n and effoctiveness than the maximum expected value
point, For the type of distribution illustrated in Fig, 3 it is prob=-
ably a corrected observation that people tend to, or would like to,
operate a system at a higher n than the maximum efficiency point (n,).

Ve

- As this type of distribution smooths out and goes over into the
: one originally illustrated in Fig. 1, the marginal utility concept
A falls apart and provides n = 0 88 the best operating point, whereas
, the proposed tgchnique still provides rveasonable solutions. There
are many real world situations where the degree of pessimism or opti-
imism used in ¢hoosing values for the system parameters raesults in
curves exhibiting this contrast in shape., In other wovds, if one is
sufficiently pessimistic, a curve which produces a maximum e¢fficiency
or expected value point for an n or ¢ greater than zero gan bg pro=
- duced. This is to say that vhe maximum marginal utility concept is
not one that is generally applicable to systems of this type. It is
only applicable if sufficient pessimism is used in treating the par-
ticular physical system., One must be st least ghilosophicslly con~
cerned about applying a criterion which breaks down over the vange of

Doy o Laaartt ks A R R DA A R

RIS T, T SR,
-

uncertainties governing the input parameters to the system. In con-
trast, the technique we have proposed does not appear tvo suffer from

-

this problem by providing reasonable answers regardless of how much
optimism or pessimism is usad in choosing the input parameters. Philo-

sophically, therefore, it would appear to sstisfy the meaning of a
general criterion or technique to a better degree than the maximum
marginal urility concept,
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In Fig, 4, we plot a demand curve version of this type of dis~
tribution using a Fermi=Dirac distribution as the example. The
rathar obvious sonsitivity of the maximum expectation point in com-
parison to the tradeoff point is of interest,

The following table is & suwwnary of the various arguments that

hava bsan

presanted,

Qur approach to modeling intuition is perhaps a simple one from
a mathematical point of view; however, it 1s doubtful that any reason-
able modal of intuition or judgment involves sophisticated mathemat-
ics, In this case the model lends itself to such a rather diverse
set of interpretations that one is led ko an intuitive suspicion that

it is in fact a valid model for the situation deseribed,

éubjacé Functions criterion Value Tunction
R _ ;
Probabilicy probability axpoctad oqual morginal maximise
(Macro) af succaess value roturn E-V
) mﬂ.’. db . av
) an - in
Pmbnbility nuhbor of trials cost of J9€ o . %\_fg minimize
{Micre) for & succass A succoss an i C+Ve
1l C e ns
H B oy
ryny
unzercainty | maintain {ixodt n | worat uncaercaingy retain constant . 1
peturn E s TP ’
B 8N T ctunt
ney e B =0
Paychology axpeccansy incentive naxinlzo waxingi e
P(n) M moeivation 1 .
) 7 PO P a F
W™
Econamics price quantivy q¢lasticity = 1 maximize
p(x) a(x) _q "‘l‘. - pQ
» dq
Ganaral of foctiveness af ficioncy average of marginal & maxinize
of the system €e) aarginal of average &
€403 Ea R LA &
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FIGURE 4 Demand Curve Comparison for Moximum Expected Value
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Vi. EXAMPLES

The examples taken are fairly simple in nature but provide a

rmeasonable idea of the behavior of this technique as applied to dif-
t=rent situations.

The first example is
P(n) = 1 - P§ (50)

which is, for example, the kill prebability for n independent shots
at a target or the probability of a success in n trials when P, is
the probability of no success in one trial,

2
Applying the criterion of maximizing 27§El , Wwe obtain

x (1 + 24n -)1?\ =1 (61)
where
x = P} (62)
This results in
P(ng) = 0,71533 (63)
"o
P, = 0.28467 (64)

Therefore, for this type of probability function our tradeoff point
is always a probability of 0.715 and this provides us with a unique
relation between P, and n, (tradeoff point). Usually P, can be a

function of a number of system variables and an examination can now
be made of these variables versus n,. In Fig. 5 we plot the inter-

esting functions for & particular P, and indicate the tradeoff point,
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Let us suppose an experimenter is conducting a set of experi=-
ments under the following conditions.

(1) His object in each experiment is to observe and make meas=
urements on a single event,

(2) The event will occur only once per experiment; however,
the experiment must be preset to run a fixed time, t,.

(3) There is a known lifetime in occurrence of the event, T,
such that the probability of occurrence is

P(t) =1-¢e (65)

I R
Aje

as a function of elapsed time, t.
2 (4) To get good statistics on his measurements he wants to make

€- . - . as many of these experiments as possible., However, he
- feels the total time he'll be able to operate the experi-
i mental setup is limited; he does not know the exact limit.

Eqration 65 is of the same functional form as 60 and, therefore,
applying the criteria, we find the experimenter should aim for a 0.715
probability of success. From Eq. 64 we may further deduce that the
time he should spend on one experimental setup is

" 7 —

ty = 1,267 (686)

There are also analogies one can draw in the quality control or
inspection process. RAnother example might be that if T were the aver-
age time it took a salesman to make a sale, we would expect t, to be
the amount of time he should reserve to devote to any one customer.

Another example is a probability function of the type

P(n) = 1 - e~ /™ (1 + WH) (67)

This is an approximate solution for the fraction of damage against an
area target with a Gaussian distributed value function and where
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weapons of small lethal area arve delivered randomly.* RApplication of

our criteria results in

e (Ll +x +x3) =1

where
x = ki
Therefore
khy = 1,7933
and

P(ne) = 0.535

As one would suspect, s.nce Eq. 67 increases slower than 60 as a

(68)

(69)

(70)

(71)

function of n, the tradeoff point produces a lower probability of

su¢ess., This example is illustrated in Fig. 6.

An example that particularly illustrates the behavior of this
technique is a probability of success that is governed by a Gaussian

density function of mean, m, and standard deviation, o

2
n e-é (x - mL
P(n) = f o dx

J2n o

-

Applying the criteria we find

@) J_ﬁ" =) [
o 21 !

in

—
Results due to Hugh Everett of Lambda Corporation.

34

e T ARSI T S e MR s RS ET LD :;_;:E!E::S_imﬁﬁm i ——

(72)

(73)

TN

%]

S
T

et
i

T uumfﬁ




0.8

R
0.6 pd

/ P(n) =1 -e-:"‘m(l + ka/n)
0.5

03 /

-

oo
P

e

FIGURE 4 Example 2

35

Ri.3.67-3

| gy

S e TR wasaawwvm-mﬂw’*ﬂff“-"-ﬁﬁ"-m'wi'i-‘&f*-ﬁl;-—&wm;mmmﬁﬁghﬂﬂwﬁaaa

RN



NP DY S0 IR AT LY ety

o AR LY

RIIR" A CL TR O]

WL YT T T I CH

TS

I
|
|
i
\

. fa— — i

- ——

[ ]

In Fig. 7 we plot the solution curve for n/¢ versus m/o and the
resulting probability P(n/o) as a function of m/o, $ince the orig-
inal preobability functicn has an inflection point, it is not surpris=
ing that there are two solutions for n/o as a function of m/o. What
is of particular interest is that if m/¢ < 0.5, there appears to be no
equilibrium point between the two functions, The exact value ~f the
cutoff point on the curve is

(74)

[P FE—
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..-T---n-n—vi__._1
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FIGURE 7 Example 3

Alsc plotted for contrast is the solution for maximum expected
value since this is the type of distribution which exhibits this
property. The cutoff point in this case is

m n n
S=155=2,P (3) = 0,6915 (75)

The solutions below these cutoff points are spurious in the sense
that they represent a relative minimum with respect to a boundary
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maximum existing at % = 0, Therefore, below the cutoff point the
solution is always the smallest allowable n, We see, for example,
that at % = 2 the difference in effectiveness for the two curves is
0.13 (P(n) = 0.93 as compared to P(n) = 0,8), The resulting differ-
ence in expected return is less than 10 percent,

In general, the numerical results of these examples do not appear
to ¢ontradict our initial premises. On an intuitive basis, Jat least
to the author, the resulting numerical values would seem to provide a
point of equality or indifference in relation to overall expected
value and individual probability of success.
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Vi, CONCLUDING REMARKS

It is certainly true that in the resl world we are unlikely to
encounter situations where an equality of importance exists between
v two opposing goals, Usually, in any given situation a strong bias

exists for one goal over the other., In the case of a very strong
j bias, I don't believe there is any disagreement that our teclhnique
provides & boundary point onh the region to ba considered. The de-
cision maker in his role has the cption to draw a narrower region of
consideration if it is his intuitive opinion that his bias is strong
enough to warrant this, However, the analyst is often forced to set
up his own boundaries in at least subsections of the general problem
Lo under consideration. Right now this is often an intuitive or arbi-
G- trary process on the part of the analyst., In some sense this seems
X to be a c¢ontradiction between the role of the decision maker and the
: analyst, Tdeally at least, it does not seem philosophically correct
: that the analyst should be called upon to make arbitrary decisions==-
decisions not reproducible between two separate analysts acting inde-
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pendently, The peint, of course, is that in the case of strong bias
an analytical tool exists for setting a boundary; therefors, it should
be employed by the analyst in such cases.

Fany

The point of question or disagreement arises when the bias is
weak. As the bias weakens, the region of interest becomes very hazy
. as to any sort of fixed limits., If it is granted that in a question

R O FEL Ay

- of the sort considered here strong bias one way drives one to a com-
pletely opposite conclusion from strong bias the other way, then it
follows that in the case of no bias there should exists a point of
compromise between the two goals. Furthermore, the fundamental con-
cepts in the fields of psychology and statistics would suggest that
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if a great many humans are presented with exactly the same compromise
situvation, then the number of humans choosing a particular point of
compromise versus the possible choices will take on a Gaussian shape
about some mean value, This would then imply that there exdsts a
mean that is unique to any particular compromise situation. It would
then seem self-evident that this point is the natural reforence about
which to examine the consequences of various alternatives when only a
weak bias exists for one goal over the other. RAlthough he would like
to, the auther cannot infer that such a mean found by experimentation
is indeed the analytically determined point derived in this paper; but
he would suggest that this is indeed possible., At least, there would
seem to be enough pleasant analytical properties of this point o ware
rant its consideration. It is true, however, that the mean and its
variance derived in this experimental manner would, in all likelihood,
" be a strong function of the characteristics of the human subjects in-
: g’ volved., The decision point derived would, hopefully, be somewhat dif-
ferent between the use of laymen or the use of decision makers as a
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[f subject class,
% In addition, an alternative limiting argument which should be
§ H? considered is the proposition that if, indeed, in the case of strong
£ bias for one of the two goals, the boundary or limit point derived
§ lr here is universally "acceptable" to all concerned, then the inference
% - can be made that a boundary point that is unique (one point}, regard-
% less of for which goal the strong bias exists, must be the mean com-
‘E promise point between the two goals,

ER Perhaps, in con-lusion, the author should explain his interpre-
‘ [ tation of the quote by Gibran that begins this report. The problem
the author has treated is open to arbitrary solution., One may choose
an arbitrary operating point based upon intuition, or one may arbi=-
trarily choose a criterion, such as a confidence limit or maximum

1' marginal utility, which produces & unique point but in no less an ar=
) bitrary manner, It is the author's problem that he does not see or
Munderstand™ any inherent "tyuth" in any technique or choice applied
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to this type of problem other than the ability of rational men to
make a reasonable judgment., The author's attempt has been to provide
another tool as a useful guide to this intuitive process and to offar
explanatior as to the nature and properties of thig tool,
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13 ABITRACT

This paper proposes an analytical technique for modeling
by the analyst of a particular decision situation, Evidence
supporting the bhasic proposal, properties of the tachnique,
discussions of its possible applicavions, and examples are also
presented,

The bhasic problem is a compromise between the pyobability
of success in a single trial versus the total expected numbar
of successes over many trials under the constreint of a limited
and uncertain yesource, The analogous situation of choosing an
operating point for a system which is a compromise between the
effecriveness ¢f the system and its efficiency (effectiveness
divided by cost) 15 also discussed.
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