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ABSTRACT

This paper proposes an analytical technique for modeling by the I
analyst of a particular decision situation. Evidence supporting the
basic proposal, properties of the technique, discussions of its pos-
sible applications, and examples are also presented.

The basic problem is a compromise between the probability of
success in a single trial versus the total expected number of successes
over many trials under the constraint of a limited and uncertain re-
source. The analogous situation of chcosing an operating point for a
system which is a compromise between the effective:ness of the system
and its efficiency (effectiveness divided by cost) is also discussed.
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"It takeo two of uo to d.icover the tut1,:

One to ut ter it and one to understand it."

I. INTRODUCTION

IOur goal in this paper is to model a decision point for use by
tthe analyst, both in the process of analyses and in his communication

I with the decision maker. We are in no way attempting to derive an

analytical tool for the making of a dr ision by the decision maker.

Rather we wish to remove from the ana'yst the burden of making arbi-
trary decisions in the process of modeling a system. By arbitrary

here we mean a choice that has no intrinsic meaning in the mutual com-

munication between the analyst and the decision maker.

As will be seen, the decision point chosen is an artificial one

in the sense that there is little likelihood that a real-world system
iJ would be operated at the particular decision point. The actual point

is derived as a point of "equality" between two conflicting decision

measures of value. Since a decision maker usual.ly has a preferencc
(probably indefinable analytically) for one of the particular meas-

ures, this point sevyes the purpose for the viilysr of -i boundary on

the region of interest, if he is aware of the decision maker's pref-

erence; or as a reference point about which to examine the behavior

of the system, if he is r'•t aware of the decision makerts preference.

It further serves the purpose' of establishing a common point of ref-

erence for both the decision maker and the analyst.

Since the decision process is, by defindition, one in which on

optimum choice does not exist in the classical analytical sense, the

technique proposed in this paper cannot be supported in a rigorous

manner. Therefore, the methodology of this paper is to support the

choice of a particular analytical definition based upon a number of
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interesting pr'opert•ies r'esulting as a consequence of the choice. 1Ii.
other words, to present eircunmstanti&l evidence, but enough ot it to
cast "ih•ulive" credibility upon the basic premise. • •
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11. THE PROBLEM

We assume tile following situation-,

l) rr asingle occurrence- of an event, we are given a protia-I ~bility of- success (P) which is a known function of some
amount of resource (n) we choose to invest in the singleI trial. Examples of this are tile probability of killing a
targot when we salvo n shots at it or the probability of-

not losing our money in loaning n dollars to an insecure I
business.

~ f(2) P~n) is a monotonic increasing function to some finite
limit (1 or less) as n goes to infinity; or, P~n) increases
withi n ý:o some maximum value before it f'alls off.

+ 4-

(3) The total supply of our resource (N) is finite. Therefore,
the total number of separate independent trials of the
event that can take place is N/n. Since this is a binomial

*process the total expected number of successes (E) out of

T W sthe N/n trials will be

P(1)(

bThe exact value of oue total resources (N) is unknown.
Through uncertainti)s in our budgec, the ultimate cost of
the resource or the number of trials we will require, N has
a significant uncertainty.

.5) Regardless of the unchrtainty of N it- is a nimited resource
in the following qualitative sense: If we demand a b lygh
probability of sucress in each trial (P(n) 1, n large) we
expect- N/n to be small resulting in a small return in terms

6
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of the expected number of successes in n Eq. 1. If, how-

evor, we attempt to make 11 siall in orde- to obtain a moxi-

mum expected return, we are presented with a low or unac-

ceptable probabilit-y of success ini a single trial (1(n)

small compared to 1).

The *4.tuation as descibed is depicted in Fig. 1. If we wish a

h iTwoability of success in a sinale trial we are forced to largo

n. If we want a higb numb;r of expectednsuccqeq we arc forced to

low values of n. It is these two opposing |,eesures with which we are

now faced--opposing in the sense that a preference for one tends to

dictate an cpposite choice of n. The crucial awd perhaPs non-real- Ii
world assumption we now present is:

(6) Our mythical decision maker wishes to choose a value of n

which represents a point uf 2quality between these opposing U
measures of value. To Min, there is an equality of impor-

tance or value between the individual (single trial) proba-

bility of success and the total] expcted nuimber of successes.

Condition~

>df P(n)
n dn Probability of success
for n > 0 for an expenditure

of ni reso'ro
on one trial

SP(n1) Behavior of/P--) expected number

n of successful trials

0 C
n -

FIGURE 1 Basic Problem

!4
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The ptroblem as now atated is to attempt to doiine an analytical

criterion for the concept of "equality" i-i this situation,

The type of pr.obbility dist:ri.bution illustrated in liQg. I has

no point of maximual expected number of success except aV tho lowest
allowable value of n. Mathematically this condition Is charactorizod

by P/n > dP/dn. Tbis type of fun:cion is our primary concern; how-
ever• we will con•ider distribuxtions exhibiving an internal point of
maximum expected succosses in a later section of this p6pe,. If, in

this situation, the analyst makes an arbitrary choice of a confidence
limit to pick a point n, he has produced a point which has no intrinsic

Iiteaning communicable between him and the decision maker, Our goal,
thereforeo is to define a point whdch has a meaning in terms that are-
understood by both parties.

[I
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Ill. USEFULNESS

Before proceedipn9- to 01he _AcL-U1 tZreaLmerhL of t'A' problem)., s8e0
cIaCrificqt0on Of t use9 f-o'' such a taechuique mLy provide a p-oper

perspective foor the reader.

A point of "tlquaiijtyI" "¢1o1prCmise," or "indifference" between

these two opposing measures of value would have unique value as ac
boundary and/or reference point in thc. ducis.ion process. 1l no is the b

actual point of equalityý we have the following results.

Total winnings 1
more important • n • no upper bound on n
Probability ýfA
success moroe n >- no lower bound on n
imporeant

Unknown relAtive nce
importance . n • r.0  reference point

Tberefore, with bilnary vOlue judginOnt (which Ille•sUtL h }Vqr3 gjieater

importance) the analyst can considerably reduce the raneO of consider-

etuion for the variables in the probl.rm. While the analyst usitally has
no exact knowledge of the re2-t.Jve weights a decision maker implies io

these two properties, he can usually gather from t he situation wlichil
measure is of greater importance. In other words, it is always easier
to make an accurNate binary decision than a continuous one. This in no
way, however, removes the responsibility of the analyst to examine

sensitivity over the range or n one. Js establisheid by th_ point: of

-equality. As an example, in some military sil:untions the .1 div.icddnl
-opl).oability of success is more important while, untortunatiely, in some
Scoiiunetrcial siu•e.tions the total return is more important: than the
probabiliUty of successfully satisfy'ing each cu'toi,'er.4

=.;;



Prequently, in military or cormmercial situations a requirement

to model a competitorts system is put upon the analyst and not the

decision maker. The purpose, of course, is to test the effect of

possible alternatives our decision rzker may have upon the competi-If torts actions. In this light, let us imagine the following scenario:

(1) We wish to deter a competitor from making a decision to

begin a certain action involving many trials of a certain

type.
(2) His probability of success in any trial is given by a func-

tion P'n, x.) where rxt is a set of variables under our

control.

(3) We have the knowledge that his total supply of the resource
N is limited or expensive.

S(4) We also know that he values individual probability of suc-

SZ • cess somewhat more than total expected number of successes.

Therefore, if we know the point of equality of importance between
these criteria (say no), our goal is to set the values of x, such that

P(no, x1 ) will be costly for him to obtain. In other words, we wish

to minimize the possibility of his being able to afford the point

where he would consider the decision to undertake the act-ion.

We might contrast this approach with t} e arbitrary choice of a

defense conservative limit: a choice of n such that P(n) is so low

that everyone has agreed that only an insane person would exercise
action at this point. The usual problem with this limit is that prac-

tically any choice of x, by our decision maker shows up as a very ex-
pensive proposition in order to negate the taking of the action. The

opposing limit, offense conservative, also imposes certain difficul-

ties for the decision maker. By establishing a very high value for

P(n), the total resource (N) ultimately required for exercising the
+- action becomes so costly that there is a large degree of insensitivity

in the various choices of x, that might be exercised by our own de-

cision maker. In other words, practically any inexpensive choice will

7
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negate the taking of the action. One way of thinking of this point
of equality is as a compromise between the offense-defense conserva-
tive boundaries.

Very often the analyst must set up a base design which is used

as a reference point. It would probably be helpful to the decision
maker if such a point were determined upon an analytical model rather

than some arbitrary choice of the analyst. Reproducibility of a ref-
erence point among different analysts and decision makers should be

* advantageous to both.

In some instances the analyst is faced with the question of having
to inform the decision maker quickly as to whether or not there is any
possibility that a particular system is within the realm of reasonable

cost. Under the constraint that the individual probability of success
is more important, the costing of the system at no usually provides

the lower bound of the cost. Therefore, this approach provides a quick,
back-of-envelope-type indication for deciding whether further study is

warranted.

In the computer simulation of very complex systems, more often
than not the analyst must provide a multitude of probability factors
to simulate hardware that is undeveloped. In many instances it is im-
possible from a time-and-effort standpoint to undertake a complete
sensitivity analysis of all these parameters; nor does the decision
maker always have the time to dig into the model to sufficient depth
to determine if the arbitrary choices by the analyst conformed to his
own intuition. While this is unfortunate from an academic viewpoint,
it appears to be the real-world situation. This approach provides a

common understandable ground rule for the analyst and the decision
maker to establish a base or reference case from which the excursions
can be conducted. Furthermore, applying the ground rule to two sep-
arate complex systems which are candidates for the same job provides

a common point of comparison.

r
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IV. TREATMENT

What follows is a set of arguments Pnd analogies of a rather di-
i verse nature, all of which lead to a unique analytical definition for

establishing a specific point no in the tradeoff between number of

successes (NP(n)/n) and the individual probability of success (P(n)).
Some of these arguments may be more enlightening or satisfying to the
reader than others. In addition, some of the properties exhibited

! Icould have been taken as assumptions to define no. We have not chosen

-to do so in order to attempt to establish a more general meaning forI ~ the results. It is the sum total of all the arguments which the author

I would ask the reader to consider in his evaluation of the premise.

A. CHOICE OF A VALUE OR UTILITY FUNCTION

whichLet us hypothesize that there exists a function H(f(x), g(x))

which takes on a maximum value at a point x0 and expresses "equality"

"or "indifference" between the two measures of value represented by
the functions f(x) and g(x) at that: point. In the neighborhood of xo

the functions 1 f and g are considered to be opposing functions of x:
one increases while the other decreases for any small change in x

about xo. In our particular problem f and g represent the individual
probability of success and the total number of expected success. The

concept of the existence of a value or utility function is not new to
1,2 3either the fields of psychology or economics.

(a) This premise of the existence of such a value function is
assumed here to mean it should be analytic in f and g:

9
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H f(x), g(x = •ajfgj (2)

This ensures we are considering differentiable functions with a
unique measure for the value function at each point x.

(b) We further hypothesize that impartiality or indifference

F [leads us to the following assumption. If

S(x), g(x 0 (3)

defines a point xo, then

Sd' (f(x), e•(x)) 0

defines the same point x. for any arbitrary constants (non-

zero) a and P. This condition expresses the requirement
"that our results should be insensitive to any arbitrary

change of scale or dimension in the functions f and g. In
cur particular case it implies that we seek a result insen-

sitive to the value of N and its inherent uncertainties.

(c) Since the value function must exhibit impartiality, indif-

ference, or equality between f and g, in addition we have
the assumption that

H(f, g) = H(g, f) (5)

Equations 3 and 4 applied to Eq. 2 result, respectively, in;

_(fIg) 0 (6): dx

d g(f ) = 0 (7)

Subtracting the two equations we see that the only way they can both

be satisfied at an arbitrary point xo for any arbitrary values of a

e and 8 is if

10



a - 0

or (8)

xo

Therefore, our value function must be of the form

H(f, g) = CofY!gY2 (9)

3• Our assumption of indifference (Eq. 5) now implies

Y1 = ye = Y (10)

or that

H(f, g) = H(fg) = 00(fg)Y (11)

S(fg) =0 (12)
TXe

as a further observation, the results will be insensitive to any func-

t, tional change of x to another variable c

x = X(c) (13)

I since solving for the tradeoff value of c will provide the same value

of x0 through the use of Eq. 13. Therefore, the same results are ob-

tained whether we are talking about the number of shots or the cost of

each shot, or whether we are talking about man-hours or the cost of a

man-hour.

(d) Finally, if we assume that under the condition of limited

resources we may consider applying two independent systems

to the same job, and because of the overall li-atit on re-

sources they do not overlap in effectiveness, we should

then recognize that the value function is additive

N
1 11

11
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H(f 1 q) + H(fag)= H(f gI ± fg2) (14)

which implies y =1

The result, in terms of our original proble:n, is that

Value Function n--(5

or that n. is defined by the equation

dn ~( 16)•P

Occasionally, in trading off two opposing functions, a mean of
some sort (average, geometric, harmonic) is taken as a value function
to maximize. This result, as expressed by Eq. 15, is equivalent to
using the geometric mean as the value function. In general, the geo-
metric mean occupies a middle-of-the-road position between the irith-

metic and harmonic means.

S~~Arithmnetic Mean Z: Geometric Mean k Harmonic Mean I-

The geometric mean is not as sensitive as the arithmetic mean to a
high value or as sensitive as the harmonic mean to a low value. V

The conclusion reached here is that if a compromise point exists
between two functions which is insensitive to arbitrary or uncertain
weights applied to the functions then it can be found by maximizing
the product of the two functions.

It is of interest to note that assumptions of analyticity or A__

regularity usually applied in constructing value functions for proba-
listic situations (see for example: Human Judgments and Optimality, ,

edited by M. Shelly and G. Bryan, pp. 189-191) disallow use of the
stcandard deviation as an explicit term in the value function except

perhaps as an approximation to a general but unknown value function rrE
in the reighborhood if the solution.

12
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B. COMPROMISE BETWEEN EXPECTED VALUE AND VARIANCE

While the expected value in the binomial distribution is

E P(n) (7

the variance is expressed by

n P(n) (I- P(n) (18)

I In the type distribution diagramed in Fig. 1, the variance is also a

decreasing function of n for a constrained resource N; therefore, high

expected value also means high variance or low confidence in obtaining

the 9xpected value.

I 1One way of handling this is to use standard deviation .•and to

set arbitrary confidence limits and maximize the probability within

these limits. Quoting from A. C. Aitken in his book Statistical

Mathematics: "Modern usage is tending more and more to treat variance
Si{itself, rather than standard deviation, as a suitable meisure of dis-

"persion." Taking this statement as gospel and utilizing the concept

SI of marginal return, let us assume that a compromise between expected

value and the confidence in obtaining the expected value is that point
where the marginal return in expected value is equal to the marginal

.return in variance.

S....dE dV

d-n -n

Therefore, at the point n. defined by Eq. 19, we are receiving an
equal rate of return in both variance and expected value per unit ex-

penditure of the resource n. Since

- v n N (20)

13r!n
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1::
SI maximizing Eq. 15 is equivalent to Eq. 19 and both result in the con- £

P d-=dition (21)

The real effect -f using Eq. 19 to determine an operating point

will probably be clearer to the reader when he examines its effect on
some of the probability functioms illustrated in the example section
of this paper, See. VI. As seen there? for D, less than the point de-

fined by Eq. 19 the variance is decreasing at a faster rate than the

total expected number of successes. After this point the reverse is

true.

A rather pleasant by-product of trading off expected value di-
rectly with variance is the additive property of both.

Let us suppose we have two (applies to any number) systems (1 and

2) we wish to apply to the same task. Each utilizes a different re-

source (x and y) and we have already picked values for x and y based

upon our criteria

dEL dV1  dE2F~ dVa (22)
dx dx dy dy

We wvy express the overall expected value -.. " .a.iance as

V -- V1 + V2

Assuming there exista a resource common to both systems (cost)

such that we may write

x x(c) y = y(c) (24)

then our new system satisfies

d., _ , V1  (25)
dc dc

14I =a
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This may also be interpreted as an -dditive property for the
value function E - V. By adding systems we add value, and our criteria

of value should apply equally to a single or composite system. This

is correct only as long as we are in the limited resource situation

and the systems are not overlapping in their effectiveness.

C. EqUALITY OF CONFIDENCE TN THE MACRO AND MICRO VIEWS

Contrary to the usual intuition, if one wishes to ascribe a di-

mensionality to N/n, then E and V (not the standard deviation V) are

of the same units. P(n) by defi;nition is a ratio of two quantities

of the same units and therefore is dimensionless, There is no contra-

diction in using E - V as a value function in opposition to the usual

use of E - XvV (X any constant). It is certainly a no less arbitrary
technique.

From the standpoint of units of expectation, however, there is

a clear meaning for the value function. The quantity*

1.$ - pn-- (26)
p (n)

.Is the expected number of trials needed to obtain a single success

when we ext'end an amount of resource eaual to n on each of the s

trials. If we divide s into the expected number of successes (N/n)
P(n), we obtain a quantity

expected number of successes
expected number of trials for one success = p• (27)

For a finite number of trials n) , s is actually

P(n)

however, in most instances I- P(n))Y is essentially zero as com-
pared to one unless the total resource (N) is so limited that ex-
pending all of this resource N on only one trial produces a small
probability of success. In any case, 1/P(n) is always the upper
bound on the expected number of trials required for a single success.
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Therefore, maxImizing the value function is, in reality, a simultane-

jous attempt to maximize the total number of successes while minimizing

the number of trials to obtain a !ý" cess. One may picture this value

function as providing an inverse .quolizarion between Succeases (sue-

cessfuI trials) and failurGs (non-successful trials).

r Purthermore, the quantity
¢ -- n (28)-

is now the expected cost iii resource for one successful trial, while

the variance in obtaining successeu at a cost C is (geometric distri-

bution) = n(sa - s) (29)

The mnximizarion of our value function E - V is equivalent to minimizing

C + VO

1n of max (E - V) 1n of mrin (C + V") (30)

One may generally show that (1) if it is required that a maximum

of some lower confidence limit on th'e .nu.m.b'.. oft uccesses is required,

maximize: E C a1V (31)

where a, and ae are arbitrary constancs, and (2) it is required tha t

some minimization on an upper confidence bound on the cost of a suc-

cess is required,

:minimiz e: C + bjVý (32)

where b, and b2 are arbitrary constants. Then the only choicu of the

constants a1 , a, b3 , ba which provide the same value of n as solu-

tions to both Eqs. 31 and 32 is
,[,I = a • b 1  : i .• = 1 ( 3 3 ) i

16
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provided a, and b, are non-zero. Thieeforo an added interpreta'ion

is 8 cOmp11omise between the MroW (total number of successes) picture

and the micro one (single success) in trying to ai'rive at an equal

partition of confidence in the two views.

To adopt any other form for a confidence Limit means t~hat opt:-
mizing either one of the two criteria, total successes or cost of a
single success, will result in the other being off optimum. While it

is certainly true OUAt one cannot simultaneously maxindze effective-
ness and minimize cost for 6 given syste:;, we havo shown that a par-

ticular confidenee limit exists which allows maximization of of ective-

ness at that limit with minimization of cost at the analogous

confidence limit along with the result that the solution is insertdi-f tive to the total resource.

As a further note, when N/n becomes large, the binomial distribu-

tion may be approximated by either the geometric or Poisson distribu-

tions depending upon whether P(n) remains finite or goes to zero

respectively. Equivalently it may be stated that as E approaches V

in value (E P V) the Poisson distribution is a good approximation

(being exact for L = V). By maximizing C - V we ore attemipting to stay

away from the Poisaon distribution and establish an "equality" of con-
fidence between the macro view (binomial) and the micro view (geo-

mri)by mjzn!:wnaýn' ~tr mxyhg ~) I ight Hiber(Aloi' ;u

cor cluded that we are attempting to arrive at a point where there is

indifference to viewing the process at a macro or micro leve-. In

particular, under this circumstance, if we are able to evaluate the
success or failure of each independent trial in turn, it makes no
difference in our cotal return whether we choose a new event (new

taryet or investment) after a failure or continue with a new trial o,

•_the same event until a success is obtained. In certain situations

this would tend to ensure a certain degree of flexibility in the actual

17
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D. A RESPONSE TO UNCERTAINTY

We may rewrite n as

Tr• fl = (34.)

where N is a measure of our total resource and T is the total number

of trials we would like to make with the resource by distributing n

on each trial. The expected number of successes is now _on-

E TP (3) (5)

Whenever N is an expensive resource a common policy is to try to

maintain a constant value of n. It n.ay not be the best policy in all

situations, but it is nonetheless frequently employed in many situa-

tions. One difficulty in this policy is the inherent uucervelnty in

N and T, which we will indicate by 16NI and 16TI where N and T may

lie in the bounds

N -16NI c N actual N + 16141 3 r)

T - 16TI • T actual - T + 16TI (37)

From elementary error theory the expect-d uncertaiilty in it may be

written as

6n 6)

Since N is really our resource as compared with T which is op;ob-

ably an opponenrts resource, or at least not as well 1<nown, we nay

assume that

16NI 16TI

N T

T1-As is true for uniform- and Gaussian-type error dlscsib-ticon,,; See
Introduction to the Theory of Lfl:r, Yardley Beers.Sir l s

it



The percent error in estimating T is greater or equal to our relative

error in N.

Now, to be conservative we ask what is the worst possible situa-

tion. This occurs when we have overestimated our resources by an

amount 16NI and underestimated the number of trials required by an

amount 16TI and when equality exists in Eq. 39. In other words, our

errors in our resource are just as great as those of our opponent and

when we decide to take the action (perform the trials), we find we

have less resource and more trials to perform than we expected. We
may write this condition as

6N 6 8T (40)
N T

To see what happens to our expected return we take the variation of

E from Eq. 35.
6E :8T [ - n dd- + 6N OP (41)

L dn dn(41

substituting for 6N from Eq. 40 we have

6E = 6T [ 2n d (42)

If we then require that under a finite uncertainty 6T we wish

6E = 0 or that our return or winnings stay constant under the worst

uncertainty situation, we have

dP P P
d•n 2- (43)

which is, hopefully, familiar by this time. Therefore we have shown

that for first order uncertainties in the system (6T/T << 1) our re-

turn E stays constant (6E = 0) under the worst possible situation

(6N/N = - 6T/T), with the caveat that our uncertainty in our own re-

source is no worse than our estimate of our opponent's resource.

i9
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One may then interpret the planning point no defined by Eq. 43

I [ as a stability point for the expected winnings. -s a result of this

the minimum total buy of resource one would like to have in this
deterrent-type situation is

N noT (44)

with, perhaps, the hope that maybe one can ultimately afford V

n= 1NI + n. T + 16T) (45)

E. AN ANALOGY WITH PSYCHOLOGICAL THEORY

Quite a bit of experimentation has been carried out in the area

of "subjective probabilities." While this subject is not directly

analogous to our situation, there are some similarities. One of the

current theories in this area is perhaps best summarized in the origi-
nal statement of the theory. 4

The strength of motivation to perform some act
is assumed to be a multiplicative function of the
strength of the motive, the expectancy (subjective
probability) that the act will have as a conse-
quence the attainment of an incentive, and the
value of the incentive (winnings):

Motivation f(Motive x Expectancy x Incentive)

in addition to this description of a value function for deciding
to perform an act, it is hypothesized that a similar term describes
the motivation for not taking the action which involves the expectancy
of failure and the loss associated with this.

In relation to our own problem, the one the psychologists have

studied involves an intuitive estimate of the expectancy on the part
of the subjects, in opposition to our situation where expectancy is
known exactly. Whereas the subjects knew the incentive exactly, our 72
winnings are uncertain due to uncertainty in total resource or number
of trials to be made. Even with these 6ifferences it would appear

analogous to draw the correspondences:

20



probability of success (P (n) corresponds to expectancy

expected success P(n corresponds to incentive

Since we are principally concerned with questions of designing

-l or evaluating the performance of a physical system as compared to

alternate systems, motive in our case is either zero or one. Further-
more, the question of motivation against taking the action is really

I associated with the actual employment of the system. In commercial

situations under limited resources one often cannot do anything about

SI the negative motivation, since if it is present it is probably insen-
sitive to any variables under control. In the military situation

- there is often no alternative to building a systern for a specific job;
*• the only choice is whether to employ it, which often is in the hands

of the opponent.

V With the realization that our approach concerns the evaluation

of possible alternative systems rather than questions of whether or
not one should have any system at all (which is really the direct
province of the decision maker rather than the analyst), it would
appear the value function described in this paper provides a measure

of a system in terms of what some psychologists believe is a measure

of intuitive value or usefulness by providing a theoretical operating
point which maximizes motivation when thc system must be employed in

an uncertain environment--unknown actual resources or uncertain re-

quired use of the system.

Ultimately, as is the case in the physical sciences, the final
I verification of a theory should rest upon experimental evidence.

While the designing of scenarios to test the hypothesis proposed here

should not be overly difficult, the problem of obtaining a sufficient
set of subjects at the analyst and decision maker levels may be a pro-

t hibitive problem for any psychologist interested in examining this

question.
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As a reflection upon the examples provided in See, VI, one addi-

- - tional result from this field of psychology is a rough correspondence

between P(n) and intuition (for an average subject): 5

P intuition

0.7 • is certain to

0.6 • is likely to

0.55 • probably will

F. AN ANALOGY WITE ECONOMIC THEORY

In the theory of demand a measure often employed is the elas- . --

ticity between prica (p) and quantity (q).

p dq (6
elasticity = - - (46)q dp

The use of elasticity as a measure is chiefly justified in that

it provides a percentage change rather than absolute change figures.

It literally allows the economist to make direct comparisons between

apples and oranges.

In this situation pq is a utility function to maximize if the

manufacturer has a monopoly and either there is no cost or price is

actually profit (relative price) and quantity is a function of this

profit or relative price.

Utility Function = pq (47)

The situation in which the elasticity equals one is the point of

least sensitivity for this utility function

pq P constant (48)

If p and q are some function of a variable x such that a change

of x decreases one and increases the other, then an elasticity of one

is the point where there will be a minimal change in the product.

22

._I



In our situation we can make a direct comparison in the following
manner:

(a) Relative price or profit in our system is equivalent to
probability of success*

p = P(n) (49)

(b) Quantity is just the expected number of successes and is
a function of the profit or relative price

N
q = -P(n) (50)

Furthermore, since we are concerned with the evaluation of a
specific system for a specific task we are in the analogous situation

--of having a monopoly--essentially control of setting the operating
point of the system.

In Fig. 2 we plot some "demand" curves (P(n) versus P(n)/n) for
a particular probability distribution. In opposition to the usual
demand curve we have a reversal of curvature with respect to the ori-
gin. From the plots it is obvious the point arrived at is essentially
a tradeoff between P(n) and P(n)/n in terms of sensitivity of change

with respect to each other. This particular type plot applied to a
probability situation is quite informative for any probability dis-
tribution,

In the situation described here we have one advantage over the
economist in that we can often describe the functional dependence of
P on n analytically.

In the classical definition of probability as the limit ratio of
occurrences to total trials, it would seem to be a relative priceif rather than an abscl'.te one.
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:1V. GENERAL OBSERVATIONS

Integrating Eq. 16 we may write down some relations for quickly

calculating the behavior about the point no as defined by our criteria:

Macro View Micro View

I ...fPrn Ff s( ) _ ro (51)

it is of interest to note that the probability of success and
It the cost of obtaining a success behave in the same manner about the

poin no
En)P(n) C(n) (52)

-T -n 7n0 - N 70

T Vn P(no ) C(no)

t---n 0.

or equivalently

E(n--- s(no-----7 (5o

While e ofave talked largely of probability of succ we may

generalize the result to any measure of effectiveness in the employ-

I ment of a system. Assuming OUr effectiveness is a function of cost,
we define

-• -- -- --- •m• •-•-• '---------•-- ""- - -•---•.• -...

I I I I I I I I I



{ r Effectiveness = E(c) -lim (c) is finite) (56)

E(c) (57)Efficiency or average return c -
-C

Elast:icity - 1 (58)
(IC

The point where the elasticity between what we choose to call

effectiveness and efficiency equals one may be rewritten in the fol-
lowing interesting manner:

1 !a +. L ($9)
c do do (C)

With respect to effectiveness the first term is the average re-

turn of the marginal return while the second is the marginal return

of the average return.

In many systems the most effic.ient operating point is the one

which prescribes a very inexpensive design point (maximum possible
E/c) while using overall effectiveness (() as the criteria leads to

a very expensive system. The technique we have discussed would seem

to provide a meaningful compromise between overall effectiveness and

the efficiency of the system. Por any system in which one is more

interested in the overall effectiveness, this technique would indi-
cate the minimum investment that should be made if the system is to

be built or employed.

We have, of course, now made an intuitive jump from probability
of success (P(n)) to generalized effectiveness (E(c)). When one con-
siders the inherent uncertainties in cost and its functional relation-

ship to both effectiveness and parameters outside the control of both
the decision maker and the analyst, it is usually safer to treat an

effectiveness measure with the same considerAtion one would give to a

probability.

26

A-

! "" ••-1



One must usually be careful in treating an effectiveness curve

with this criterion to ensure that each point on the curve has been

optimized for the particular investment represented by the value of c.

In some cases this may imply that different regions of c represenic

completely different systems. However, it will usually be the case

that when applying the technique to different effectiveness curves,

representing different systems for the same jobý the resulting point
for any system (co and E(co) for each system) will fall in the region
representing the investment level for which that system is best suited,

provided that region exists at all for the given system as compared to

the others. The exceptions to this usually occur only when the region

(investment range) in which a given system is more effective is quite
small in comparison to that of the other systems.

In Fig. 3, a visual comparison is made between the proposed tech-

niques (a compromise between E/c and E as opposed to the criterion of

maximum expected value or efficiency (E/c)). For those distributions

ANXIMf: EXP601yd V dP P dE E CompdomPdE
Eff0 iefty At - or LE
Marginai tlit U n 77 dohiue O n -

at

"I'

FIGURE 3 Comparison with Marginal Utility or Maximunm Expected Value
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where it- is possiblo t~o pass a tanlgent uriM from the effectiveness oi'

probab:ili:ty curve through the origin, a max×mum expected value exists

at the point of tangency (aometimes referred to as the maximum mar-

ginal. utility concept). It is obvious that this latter technique re-
suits in solutions (n2 ) which are a good deal more sensitive to un-
certainties in the resource than the technique under discussion. It

is the authorte feeling tlou the marginal utility criterion is only
"valid when there i1 no concern with uncertainty or when cost is of

overriding importance. Our proposed technique always provides a
higrher value of n and effectiveness than the maximum expected value

point. For the type of distribution illustrated in Fig. 3 it is prob-
ably a corrected observation that people tend to, or would like to,

operate a system at a higher n than the maximum efficiency point (n0).
,. • :As this Cype of distribution smooths out and goes over into the

Si ~one originally illustrated in Fig. 1, the mrgqinal utility concept;;.

Sfalls apart end provides n = 0 as the best operating point, whereas
Sthe proposed technique still provides reasonable solutions. There

are many real world situations where the degree of pessimism or opti-

mism used in choosing values for the system parameters results in
curves exhibitina this contrast in shape. In other words, if one is
sufficiently pessi., istic, a curve which produces a maximum efficiency

or expected value point for an n or c greater then zero can be pro-

lduced. This is to say that rbhe ,i-U. , maarginal ,., lity_ concýept ..

rnot one that is generally applicable to systems of this type. It Is
only applicable if siufficient pessimism is used in treating the par-
ticular physical system. One must be at least rhilosophically con-

cerned about applying a criterion whic¢ Ibreaks down over the range of
uncertainties governing the input parameters to the system. In con-
trast, the technique we have proposed does not appear Uo suffer from

this problem by providing reasonable answers re ardless of flow much

optimism or pessimism is uscd in choosing the input parameters. Phi0lo-
sophically, t:herefore, it would appear to sýjtisfy the meaning of -a
general criterion or technique to a better degree than the maximum
marginal utility concept.
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In Pig. 4, we plot a demand curve version of this type of dis-
tribution using a Ferm.i.-Dirac distribution as the example, The

rather obvious sensitivity of tho maxirmxum expectation point in com-

parison to the tradeoff point is of interest.

The following table is a summary of tbe various arguments that
have been presented.

Our approach to modeling intuition is perhaps a simple one from

Sa mathematical point of view; however, it: is doubtful that any reason-
ablo- model of intuition or judgment involves sophisticated machemat-

ics. In this case the model lends itself to such a rather diverse

r set of interpretations that one is led to an intuitivo suspicion that
it is in fact a valid model for the situation desoribed.ra

--- I Into-- _ --USubject Functions Ct'itovion va1uo [uncýtion

Probability probability oxpoctoi equal mat&inal maximize
(Macro) of succoss value r'eturn C-V

n M*

P4babillty nfbor o*ttrals cost of jC V minimize

1C C-ns

Uncolonty maintain cxot n worst uncertainty ota~i constant E

1ie ui l E n

"" a I qir y Iro 1

Psychology Okpoctancy inc et.i~vQ a•,to al•

P~n •P(n) ap p•POO)'

V~~~ .- "---,p V1
rcolnomies prifc.J qu•antiry elasticity -- n iximize

p( )q(x) -• IPq

P q

(;Onnal oifuctiveness Offijcincy 4verago of M'arinal G mikxinfize
of tho system - )aa'ilIal of avorage
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Vt. EXAMPLES

The examples taken are fairly simple in nature but provide a

rýeasonable idea of the behavior of this technique as applied to dif-

rfrent situations.

The first example is

P(n) = I - Pr- (60)

"I which is, for example, the kill probability for n independent shots

at a target or the probability of a success in n trials when Po is

the probability of no success in one trial.

Applying the criterion of maximizing n we obtain

x( + 2n 1) (61)

where

x = P, (62)

This results in

f P(no) = 0.71533 (63)

~no
0P = 0.28467 (64)

Therefore, for this type of probability function our tradeoff point

is always a probability of 0.715 and this provides us with a unique
relation between P. and no (tradeoff point). Usually P. can be a

function of a number of system variables and an examination can now

be made of these variables versus n.. In Pig. 5 we plot the inter-

I esting functions for a particular Po and indicate the tradeoff point.
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Let us suppose an experimenter is conducting a set of experi-
• ments under the following conditions.

*: (1) His object in each experiment is to observe and make rneas-

urements on a single event.
(2) The event will occur only once per experiment; however,

the experiment must be preset to run a fixed time, t.

(3) There is a known lifetime in occurrence of the event, T,

such that the probability of occurrence is

P(t) = 1 - e (65)

as a function of elapsed time, t.S(4) To get good statistics on his measurements he wants to make
- - as many of these experiments as possible. However, he

feels the total time he'll be able to operate the experi-

mental setup is limited; he does not know the exact limit.

Eqyation 65 is of the same functional form as 60 and, therefore,

applying the criteria, we find the experimenter should aim for a 0.71S

probability of success. From Eq. 64 we may further deduce that the

time he should spend on one experimental setup is

to = 1.26i (66)

There are also analogies one can draw in the quality control or

inspection process. Another example might be that if T were the aver-
age time it took a salesman to make a saleo we would expect to to be

the amount of time he should reserve to devote to any one customer.

Another example is a probability function of the type

P(n) = 1 - e- kJ- (I + k,/n (67)

This is an approximate solution for the fraction of damage against an
area target with a Gaussian distributed value function and where
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weapons of small lethal area are delivered randomly.* Application of

our criteria results in

eX (1 x + x2) 1 (68)

where

x-k~4i (69)

K Therefore

k k4A• = 1.7933 (70)

and

r P(no) = 0.535 (71)

As one would suspect, s.nce Eq. 67 increases slower than 60 as a
function of n, the tradeoff point produces a lower probability of

Ssue.'ess. This example is illustrated in Fig. 6.

An example that particularly illustrates the behavior of this

technique is a probability of success that is governed by a Gaussian

density function of mean, m, and standard deviation, a

) jn e-j Xj M dx
-'P(n) = - (72)

Applying the criteria we find

nn-rn m
e e dx

0 e _d (73)

Results due to Hugh Everett of Lambda Corporation.

34

ACA

- -- _



0.8

0.6

I0 , o P ( n ) I -e +!ý -( Q ny; )

I0.

0.2.

I:_______ _______ _____ ______0_____1_

FIGURE 4 Example 2

I 35



In Fig. 7 we plot the solution curve for n/a versus m/a and the

resulting probability P(n/a) as a function of rn/a. Since the orig-

inal probability function has an inflection point, it is not surpris-

ing tbat there are two solutions for n/a as a function of m/a. WhatI is of particular interest is that if m/a < 0.5, there appears to be no

equilibrium point between the two functions. The exact value of the

cutoff point on the curve is

r 0.5 = i, p = 0.6915 (74)

12 1- 2 _ _ _

= " iO -- -- I0 ' -I

10 - 0 - Proposed tv en

I #/ ~ expeVtd value

0/ -. A

0 4-. I n P n

2i

" / -

0 2 1 4 6 a 10

FIGURE 7 Example 3

L Also plotted for contrast is the solution for maximum expected
value since this is the type of distribution which exhibits this

property. The cutoff point in this case is

1. 5, =2, P 0.6915 (75)

The solutions below these cutoff points are spurious in the sense

that they represent a relative minimum with respect to a boundary
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maximum existing at =0. Therefore, below the cutoff point the
solution is always the smallest allowable n. We seet for example,

that at = 2 the difference in effectiveness for the two curves is

0.13 (P(n) = 0.93 as compared to P(n) = 0.8). The resulting differ-

ence in expected return is less than 10 percent.

In general, the numerical results of these examples do not appear

to contradict our initial premises. On an intuitive basis, it least
to the author, the resulting numerical values would seem to provide a

point of equality or indifference in relation to overall expected
value and individual probability of success.

I
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VII. CONCLUDING REMARKS

It is certainly true tIhat in the real world we are unlikely to

encounter situations where an equality of importance exists between
two opposing goals. Usually, in any given situation a strong bias
exists for one goal over the other. In the case of a very strong

bias, I don't believe there is any disagreement that our technique

provides a boundary point on the region to be considered. The de-
cision maker in his role has the option to draw a narrower region of
consideration if it is his intuitive opinion that his bias is strong
enough to warrant this. However, the analyst is often forced to set

up his own boundaries in at least subsections of the general problem

iunder consideration. Right now this is often an intuitive or arbi-

trary process on the part of the analyst. In some sense this seems
to be a contradiction between the role of the decision maker and the

analyst. Ideally at least, it does not seem philosophically correct

that the analyst should be called upon to make arbitrary decisions--

decisions not reproducible between two separate analysts acting inde-

pendently. The point., of course, is that in the case of strong bias
an analytical tool exists for setting a boundary; therefore, it should

be employed by the analyst in such cases.

The point of question or disagreement arises when the bias is

weak. As the bias weakens, the region of interest becomes very hazy
as to any sort of fixed limits. If it is granted that in a question

Z •of the sort considered here strong bias one way drives one to a com-
pletely opposite conclusion from strong bias the other way, then it

e follows that in the case of no bias there should exists a point of

compron-ise between the two goals. Furthermore, the fundamental con-

SI cepts in the fields of psychology and statistics would suggest that

3-i



if ai great many humans are presented with exactly the same COMPromiSe
situation, thon the number of humans choosing a particular point of

compromise versus the possible choices will take on a GOaussicin shape

about some mean value. Tbis would then imply' thar-t there exists a

mean chat is unique to any particular compromise situation. It would
then seem self-evident that this point is the natural reforence about
which to examine the consequences of various alternatives when only a
weak bias exists for one goal over tho other,. Although he would like
to, the author cannot infer that- such a mean found by experimentation

is indeed the analytically determined point: derivead in this paper; butlii he would suggest that this is indeed possible. At lteast-, there, would
seem to be enough pleasant analytical properties of this point to war.-
rant its consideration. It is true, however, that the mean and itst

be a strong function of the characteristics of the human subjects in-

voled.Th decision point derived would, hopefully, be somewhat dif-
feetbetween the use of laymen or the use of decision makers as a[ subject class.

In addition, an alternative limiting argument which should be

~ jconsidered is the proposition that if, indeed, in the case of strong
bias for one of the two goals, the boundary or limit point derived

here is universally "acceptable" to all concerned, then the inferencej

can be made that a boundary pon htis unique (one point), regard-

less of for which goal the strong bias exists, must be the mean com-IF promise point between the two goals.

Perhaps, in con,-lusion, the author should explain his interpre-I- tation of the quote by Gibran that begins this report. The problem
the author has treated is open to arbitrary solution. One may choose1 an arbitrary operating point based upon intuition, or one may arbi-

trarily choose a criterion, Such as a confidence limit or maximum

marginal utility, which produces a unique point but in no less an ar-

bitrary manner. It is the author's problem that: he does not see or

"unesad anty inherent "truth" in any technmique or choice applied

I-V3
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to this type of problem other than the ability of rational men to

SI make a reasonable judgment. The author's attempt has been to provide

another tool as a useful guido to this intuitive proceus and to offer

explanatioi as to the nature and properties of this tool.
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