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FOREWORD

This research paper has been written because of the need for
explicit characterization of smoothing and prediction techniques
for many applications. While the methods of curve~fitting by least-
squares have been known for many years, it is frequently difficult to

find formulas which describe the errors in estimation based on such
methods.

k; ”’, In certain applications, the central problem is to predict the
: . value of a measured quantity which exhibits a systematic trend which
can be described in terms of a low-order polynomial. In other appli-
cations, the problem is to provide concurrent estimates of the true
value of the measured quantity and its rate of change. In both
E situations, the analytical need exists for measures of the effects of
mé ;l random errors and their interdependency and the consequences of \
1 systematic errors stemming from an inadequate model of the underlying !
treni Th's paper represents an initial step toward fulfilling this
need. (it was motivated by problems of aiming anti-aircraft guns
against maneuvering targets and achieving precision weapon delivery

by tactical -aircraft. It is hoped that the results presented here
will find other applications as well.
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ABSTRACT

i el BN SER i

Explicit formulas are presented for estimating position, velocity,

- and acceleration in low-order polynomial trends, based on least-squares 1
- smoothing of sampled data accompanied by statistically uncorrelated 3
- measurement errors. Formulas are also given for interpolation and

prediction of position and velocity. Expressions for the variances
and covariances of consistent position, velocity, and acceleration

; estimates are given, and the systematic errors accruing from use of a
o trend estimation basis which is one order lower than the actual trend
are presented.
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One interesting result is that the normalized correlation between
i the errors in an estimate of current position and those in an estimate

of current velocity approaches ,/3/2 when the number of measurements in
the estimates becomes large.
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Finally, the problem of implementing real-time least-squares
estimation and prediction formulas in practical systems is discussed.
It is concluded that arithmetic execution time requirements can be
relaxed by generating certain sums recursively, and that data storage

i requirements can frequently be eased by collapsing the raw data into
short-term-average samples.
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I. INTRODUCTION

The purpose of this paper is to document some ostensibly well-~-

e ——

-~ known results of elementary statistics, in forms which will hopefully ,

-~ prove useful to persons interested in the smoothing of statistically

”«é stationary data sequences. In particular, the results presented de- %

- scribe the properties of estimators based on low~order polynomial :

X least-squares fits. }

,§ While such estimators are frequently not optimum for a given % f’
setting, they are realizable, so that the results presented here con- % 2

i stitute, in one sense, a lower bound on the quality of estimation g b

] that can be performed in a given situation. C(Conversely, if a least- ? f 3

.%é squares fit does happen to be the optimum procedure for a particular g jr~ 3

problem, the results provide upper bounds on the performance of more
"economical"™ procedures.

ia.

oy

In what follows, it is assumed that the data originate as sampled
values of a continuous well-defined process, x(t); this process is
assumed to be representable with sufficient precision as a Taylor's
series in the independent variable t:

i ity

Ry

prey—_

X(t) = x_ + v (tt ) + (l/2)ao(t-t°)2 + (1/6)b (=t )  + .o (D)

The symbol x will be taken to represent a position coordinate
and t will be taken to represent time, so that

Hreomedanch

) v(t) = dx/dt (2)

and

a(t) = d2x/dt? (3)
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represent the velonity and acceleration associated with the coordinate

x(t). In some problems, it will be desirable to estimate v and a as
well as x.

il The approach taken in this paper is to deal with the underlying
process in its original form, as given by Eq. 1, rather than to develop

]I the representation of Eq. 1 in the form of a series of orthogonal poly-
nomials. The latter approach is most appropriate when the desired re-

]l sult is simply the best fitting curve for estimation and prediction of
x(t), and it is used extensively in statistical literature, e.g., Ref.

. 1, pp. 186-191. The convenience of the orthogonal-polynomial approach
stems from the fact that the problem of solving the simultaneous equa-
tions for the coefficients used in the representation is trivial, by

l virtue of the orthogonality property. In many applications, however,
it is important to exhibit the consequences of the terms in Eq. 1 as

lE they stand. That is, position, velocity, and acceleration will fre-
quently be of considerably greater significance in a specific situation

E than the coefficients of the first, second, and third terms in the
orthogonal-polynomial representation. It is for this reason that the

IE more cumbersome direct approach has been adopted. In particular, the
direct approach facilitates the computation of variances and covari-
ances of position, velocity, and acceleration estimates and the deter-

£ mination of the consequences of systematic errors in the estimation
model. While it is true that such results could have been obtained

’E from the orthogonal-polynomial representation, the current approach
is more straightforward; in particular, some of the covariance results

!% are more easily generalized than if the orthogonal-polynomial approach
had been adopted.

lé

[
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The true sampled values are unperturbed values of x(t) at t =t
+ kT, where k is an integer running from 1 to N (N is therefore the
sample size) and T is the interval between adjacent samples. The total
period over which the data are observed is

o]

To = (N=1)T . (4)
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Denoting the true sampled values by % » EQ. 1 gives
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X, = X, + VKT + (1/2)a (k)2 + (l/6)b°(k'r)3 +oans (5) !

when the gk's constitute a sequence of zero-mean, uncorrelated, iden-
tically distributed random variables with variance oxz.

The problem at hand is to develop means for estimating the true
values of the position, or velocity, or acceleration (or linear func-
tions of these variables) at some time t, which will be expressed in
the form

i
%
For simplicity in writing, X will be written in the form i
2 3 -
X = Xy + kro + k q, + k P+ (6) §
with the correspondence “
X =X ;
o] o]
r =v7T 1
{ - P
q, = (1/2) a T &
. _ 3 4 !
] Py = (1/86) b6T %, '
4 3 ;
! and so forth. g e
3 ;
The observed data will be den.?ed by xk; it is assumed that the % :
i errors in the observed data manifest themselves as § e
= + k=1, .c., N (8) ;|
i X = %+ 8 IR § o
j
3
i

t = to + XT
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(note that K need not be an integer), which may cccur prior to, during,
or subsequent to, the period of observation. Such estimates will be
denoted by the symbols

2,004, .

for the estimated position, velocity, acceleration, etc. at the time
corresponding to the choice of X.

The method of obtaining formulas for these estimates will be
discussed in greater detail in Sec. II, which begins with an assump-
tion about the nature of x(t). This assumption deals with the point
at which the Taylor's series representation of Eq. 1 can be truncated
without sacrificing the usefulness of the estimation formula. If it
is assumed that the values of x(t) are substantially constant over
the time interval for which the estimation formula is to be used,
then it is appropriate to employ just the first term of Eq. 1; the
estimation formula then takes the form

QK = Qo (zero trend) . (9
If it is assumed that x(t) is satisfactorily represented over the
estimation interval by the first two terms of Eq. 1, then the estima-
mation formula reads

X = X + DK (linear trend) . (10)
If it is assumed that x(t) is satisfactorily represented over the es-
timation interval by the first three terms of Eq. 1, then the estima-
tion formula reads

2

A _ A A A
X = X+ roK + qu

o (quadratic trend) , (1)

and so forth. For reasons that will become apparent, the three forms
of Eqs. 9, 10, and 11 are the only ones that will be considered in
this paper.
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The least-squares fitting procedure involves choosing the param-
' eters of the selected estimation formula so that the mean-square dif-

ference between the observed Xk's and the corresponding Qk's is mini-
mized. Once these parameters have been computed, they can be used to
provide estimates of velocity, acceleration, and so forth. Specifi- 2
cally, it follows that o

b, =0,4 =0 (12) :

- A A A 5,;'
Vg = rO/T, a = 0 (13) N
i
.- for the linear-trend case; and R B
' i
A A A _ ah 2 i§ $h
vg = (L/T)(r +24 X), & = 29 /T (14) L

F | for the quadratic-trend case.

S el s

The remainder of the paper will be concerned with a presentation
of formulas for the estimation parameters (Sec. II'.; an assessment of

certain statistical characteristics of the random errors in estimation
'i (Sec. III); a discussion of the systematic errors which result from (
' an inadequate representation in the smoothing model; and finally, a )
review of some elementary points regarding implementation of the esti- ;

e adnrledlie ST G,

mation schemes (Sec. V). ; j

i Some clarification of the notation used to index the time variable
- may assist in interpreting the results of the following sections. Three Lk
- indices are employed:

(1) k, which is an integer, is used to index the times at which
the observed data were taken;

Yo

(2) K, which is a continuous variable, is used to index the
time for which an estimate is to be computed and was chosen
so that K = k when the estimation time coincides with the
time at which the kth observed datum was obtained;

5
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(3) M, which is also a continuous variable, is used to index the

time for which an estimate is to be computed, and was chosen s
so that M = 0 corresponds to the midpoint of the observation :
interval. Because the observation interval extends from 5
K=1toX=N, , :

M=K~ (1/2)(N+1) .

All three indices are related to real time via the intersample period
T; thus,

t
]

to+KT

EHT + (L/2)(ML)T

where to is the value of t at one intersample period prior to the
time of observation of the first datum.

In some applications (prediction), it is convenient to assume
that the time origin coincides with the time at which the last (Nthy
datum was obtained. Denoting this time by t’,

PRI
o~y B

y P TR " s PR R D oy
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yraren ”, _

t' = t"to"NT 9

. I whence

{ t? = (K-N)T
T

7 3: and

E t’ = MTJTO/2 .
g [
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II. ESTIMATION FORMILAS

A. METHOD OF DERIVATION

It is assumed that the underlying process x(t) can be represented
by a truncated Taylor's series, e.g., & quadratic. The corresponding
estimation formula is similarly truncated, as in Eqs. 9, 10, and 1l.
The mean-squared error is a uniformly weighted average of the squared
difference between the observed data and the value yielded by the
estimation formula at the corresponding point in time:

bt g ey GND B R e

Tikiishis i KRy Wi A R

N
E= MY R (15)

k=1

°

The expression for E that results when the explicit form of the esti-~ —%k
mator QK is substituted into Eq. 15 is then separately difffrentiated §I 3
with respect to each of the (as yet) unknown parameters in Xy Because Ei :
E is a positive quadratic function of the unknown parameters, equating 3 Cg
the derivatives to zero yields a set of simultaneous equations which g % E
must be fulfilled for ™ to take on its minimum value. These equations % ? %

are then solved for the unknown parameters. In solving these equa- :ij

tions, the following identities* are helpful: %}

2

N |

Z k = (N/2)(N+1) (16)

k=1 |

.%

¥See, for exampie, Ref. 2, pp. 7=-8.
7
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Z k2 = (N/6)(N+1)(2N41) (17)
k=1
N
Z K> = (N2/4)(N+1)2 (18)
k=1
; N
§ D1 = (/30N 2N (3N N-1) (19)
" k=1
‘ B. RESULTS
E 1. Zero Trend
t The single parameter is )“(0:
E N
= Y A
3 xo=(l/N)Zxk y (20)
E k=1
~' From Eq. 9, this is also the expression for )‘(K Finally, by
E assumptiot. ,
! v, = 0 21
5 % X = (21)
i =0 (22)
[ *
2. Linear Trend
1 The two parameters are >“<° and f'oz
i N
B A o— -
% = [2/N(N-1)] P [( 2N4+1) 3k] X, (23)
‘ k=1
| 0
. {
| g e ‘ B e k
N A 0 e Bk 7 e oo - —_—
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N ‘ 3
l L [G/N(Nz-l)] : [21< - (N+1)] X, (24)
) |
k=1 |
7
!
Substituting these results into the position estimation formula, ‘i
Eq. 10, yields
:l N i
% = [2/N(N2-l)] Z [(N+l)(2N+1-3K) + 3K( 2K-N-l)] X, (25) 3
I
I k=1 3
:
:I For the special case K = N (estimate of current position), Eq. 25 4
- simplifies to
| I N 1
- %, = [2/N(N+l)] ) [31< - (N+1)] X, - (26) :
: k=1  h
: ;
|\ The velocity estimate is simply §f
. :
A _ A
Vg = ro/T . (27)

Using Eq. 4, and the above expression for fo,

N

Yy = [6/N(N+1)T°] Z [2k - (N+l)] X s (28)

k=1

where To is the total period of observation.

- By assumption,

sx=o. (29)
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3. Quadratic Trend
The three parameters are

N

s 3 2 2

% = FOvTREETS kz-l: [lOk - 6(N+1)k + (3N‘+3N+2)] X, (30
. N

A 2

b = -30(N+1)K2 + 20 2N+1)(8N+11)k

©  N(NZ-1)(N°-4) é [

- 3(N+l)(N+2)(2N+1)] X, (31)

and
N

d 6k< = 6(N+1)K + (N+1)(N+2) (32)
%~ N(N2-l)(N 4)2[ ]x“

Substituting these results into the position estimation formula,
Eq. 11, yields

A 3
X T NNZ-1)(N2-4) et

3 10[(N+1)(N+2) - EK(N+1) + sxz] K2
-2 [3(N+l)(N+2)(2N+1) - ZK(2N+1)(BN+11) + 30K2(N+1)] X
+(N+1)(N+2) [( W24 INe2) - 6K(2N41) + 1ox2] *xk. (33)

For the special case X = N (estimate of current position), Eq. 33
simplifies to

N
914 = m:ﬁzmg [1°k2 = 2(4N+3)k + (N+1)(N+2)] X - (34)
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Substituting Eqs. 31 and 32 into the velocity estimation formula of i
BEq. 14 and invoking Eq. 4, there is obtained A

&
P N
3
R
%
3
P 4
-

N

4 = - !30 - () |2 k;
N(N+LY(N-4)T, 4=t

-2 [3ox(u+1) - (2N+1)(8N+11)] K
+ (N+1)(N+2) [101( - X 2N+l)] ‘xk (35)

For the special case K = N (estimate of current velocity), Eq. 35
simplifies to

N n
$, = s, Z [30(N-1)k2 - 2(14N%-11) k
N(N+LY(N-8)T ) &=t ¥

N L S e T L DO ol At Lo 2

% The acceleration estimate is simply é
£ 4

;K = 2q°/‘l'2 .

OS2
Bt

Using Eq. 4 in Eq. 32,

A 60(N-1)
% =

6k? - B(N+1)k + (N+1)(N+2) | X (37
N(N+1)(N°-8)T * :‘;{ [ ] "

2 ol 1

e I R L

4. Interpretation of Results

R

Each of the estimation formulas involves a weighted linear aver-
age of the xk's. For the special case K = N and N>»1, the relative
weights assigned to the observed data for current position estimation
are approximately:

A SRR

ISR e

&
1
!
I
i
1
1
I
!
| + (ML(ED(N-)] K. (36) |
1
I
I
|
1
I
|
i
i
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1l zero trend g‘
2I3(k/MN) - 1] linear trend
shiock/m)? - 8(k/N) + 1] quadratic trend

These functions are depicted graphically in Fig. 1. It can be seen
that as the order of the estimation formula increases, mcre weight

is placed on the most recent data (i.e., those points for k approach-
ing N).

For current velocity estimation (X = N), the relative weights
for N>>l are

6 [2(k/N) - l] linear ¢rend
12 [15(1</N)2 - 14(K/N) + 2] auadratic trend

These functions are depicted graphically in Fig. 2. It is seen that
in the quadratic case, the more recent data are weighted somewhat
more heavily than the oldest data, and that the extremes are weighted
more heavily than the intermediate points.

Finally, the asymptotic weighting for the acceleration estimate
for the quadratic case is shown in Fig. 3. The data are weighted
symmetrically, and the values are substantialiy greater than for the
current position and current velocity estimates.
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III. RANDOM ERRORS

A. GENERAL REMARKS

The estimation formulas presented in the previous section are all
of the form

§=Zwkxk ) (38)

It can be verified that these formulas have the following property:

if the model (zero trend, linear, or quadratic) for the underlying
process is correct, and if there are no errors in the observed data,
then the estimate itself is correct. In this section, the effect of
relaxing the second condition in the preceding sentence will be assessed.
That is, it will be presumed, as was mentioned in the Introduction,

that the xk's are in error. These errors are assumed to be additive,
statistically uncorrelated, identically distributed, and to have zero
means and (finite) variance cxz. Using the notation of Eq. 8, the
estimate 9 is given by

N N

A

y =Z WX +Z W Sy -
k=1 k=1

The ensemble average of 9 is
N N

EB’] =Z=1 Wk 2 WeE [gk]

k=

14
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Because the gk's are zero-mean random variables, the second sum van-
ishes. 1In view of the preceding remarks, the first sum is just the
true value of y, so that
A
E[y]=y’

which implies in turn that the errors in § have zero mean.

The next step is to compute the variance of the errors in §. It
follows from the foregoing results that the variance

&) - o] - (30 wa)

=1

N N
E :E: }E:' ¥ &k n
=1l n=1

N N

Z 2: wws[gkgn] (39)

k=1 n=1

Because the errors are assumed to be zero mean and uncorrelated,

[ z 0 k #n
E g1<§n] =1 2
Oy k=n

so that Eq. 39 becomes

N
2fa _ 2 2
c(y)-ax Ewk . (40)
k=1
The task of computing the variance of the estimation formulas is thus

reduced to one of identifying th= weights Wy in the formula, and com-
puting the sum indicated in Eq. 40.
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It is also of interest to compute the covariance of different
errors. Thus, if two estimates 9, given by Eq. 38, and 3, given by

™M=

%
)

’
We X
are considered, the covariance is given by
o 54 [ -]
VA N
= | 20 e | 2 e

L\k=1 k=1

Following the same procedure as for the variance calculation,

N
Cov [9, 2] = cxz Z W'

k=1

The normalized correlation coefficient of the errors in § and those
in % is given by

A A
p(&, 2): Mﬂ.—z] . (41)

a(9) od)

B. RESULTS
1. Zero Trend

The variance of the position estimate is

02()?1‘) = o ()?o) = °x2/N . (42)

By assumption, the variances of the velocity and acceleration estimates
are zero.

16

o i - 2] b, g, =i 3
Iy TG A O U &
o oM R A S Fn L
RRISSAECET. 7 3% <l S S -




TAEPRONTIR

» o D e W U

2. Linear Trend

The variances of the estimation parameters % and £_are

o o
A 20, 2 2
- (3)
2
02,%é> = 120, (48)
\ N(N2-1)

N A
The covariance of io and ro is

COV[QO, I“'O] = %;%Iy .

The variance of the position estimate QK can be computed directly, or
by noting that by virtue of Eq. 10, it follows that

52 ("K) _ 02(,'\(0) + 2K Cov[ﬂo, f-o] + }(202({50) .

In any event,

2({as \ _ 2°x 2
o (%] = > (N+1)(2N+1) - 6K(N+1) + 6K°] . (45)
N(N€-1)

For the special case K = N, the variance of the estimate of current
position reduces %c

Zv=l

2
2¢g
°2(’“‘N) = - ('m) (46)

The variance of the velocity estimate, Vg s is simply

SRR
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Using Eq. 4,

- 4«"%@.@%:%%&“% . 3’ i

ofs | _ 120" (yo1
v (VK) = ;T—-!— (m) . (47)
o

The normalized correlation coefficient for the errors in the current
position estimate and the velocity estimate is

o ) - VB

3. Quadratic Trend

The variances of the estimation parameters X ’ %o’ and 50 are

(o]
2f s 3°x2 INZ43N+2
- 49
o \* ¥ | (-D-2) (49)
2fn l2°x2 (2N4+1)( 8N+11)
o \fo) = ool (50)
N (N°-1)(N“-4)
2
180¢
(&) = —=—5 (51)
_ N(N“=1)(N2-4)
" '. I The covariances are
T o, 1800, 2( 24+1) )
% 1 = - 5
i Covifor %o N(N-1)(N-2) 52
- 2
£ % A A X
i - ‘ov = 53
Vo’ %]® MDD (>3
1 { T -180g,
L Covirys 4 | = ) (54)
BT 1 ne-nov-a
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The variance of the position estimate QK is given by
2
*(A)

T N(NZ-1)(N2-2)

3o

[( N+1)(N+2)( N2+ 3N4+2)

- 12(N+1)(N+2)(2N+1)K + 12( IN2+15N+7)K2
3 4
- 120(N+1)K> + 60K ] : (55)

Setting X = N in Eq. 55, the variance of the estimate of current
position reduces to

(e

The variance of the velocity estimate GK is

3a

_ X 2_ )
= DN N -2

(56)

2
12¢ 2
2fa \ _ X N-1l\ [(2N+1)(8N+11) - 60K(N+1l) + 60K
(o]

where To is the total period of observation. The variance of the
estimate of current vel~city (X = N) is

2
120
) 5x () [omem]. o
o

The normalized correlation coefficient for the errors in the
current position estimate and the current velocity estimate is

s A\ _ [SR-DR-2)(2N-1)
ol% 0. = (59)
(XN’ “) ‘, (8N-11)( 3N+ 3N-2)
19
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The variance of the acceleration estimate SK is

2
7200 3
2fr \ _ X (N-1)
2L = . (60)
(a“) Nt_* [(N+1>(N2-4)]

Q

The normalized correlation coefficient for the errors in the current
position estimate and the acceleration estimate is

A A (N-1)(N-2)
’ = 6
p(x“ a“) Jx IN2-3N+2) (61)

The normalized correlation coefficient for the errors in the current
velocity estimate and the acceleration estimate is

<
("u’ ‘) Jz‘:%igi%%-m (625

C. INTERPRETATION OF RESULTS: LARGE~SAMPLE LIMITS

For the linear~trend case, the variance of the position estimate
*K takes on a minimum value for

Ko === - (63)

For this value of K, the variance is

LARYE

which is the same as the variance of the zero-trend estimate of posi-
tion. This result implies the following:

(1) If the objective of the estimation procedure is to estimate
‘the true value of the position at the midpoint of the

20
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observation interval, then the variances yielded by the zero-
trend formula and the linear-trend formulas will be the same.*
(2) If the zero-trend hypothesis is true, then use of the linear-
trend formula for position estimation will yield a variance
that is everywhere greater than the variance that would be
obtained with the zero-trend formula with the exception of
the single point given by Eq. 63. This point is in conso-
nance with the general statistical principle that simply in-
creasing the complexity of the hypothesized trend beyond the
necessary level will only degrade the quality of the resulting
estimate.

bred bl e G T e

With regard to the quadratic-trend position estimate, the variance
takes on three extreme values at the points

o

= N+l "N§+l
Kﬂ =3 + —2—6— . (65)

The variance at the point given by Eq. 64 is a local maximum, and
has the value

- (o

and

' 2 3°x2 3N°.7
| ° (’&o) = (",;17) ' (66

‘{ The variances at the points given by Eq. 65 are minima and have the
! value

| 1) (2)
. (o} = .
L. SN N2-1

_ *Purthermore, it will be seen in the next section that the
B systematic error in the zero-trend formula vanishes for this
case when a strictly linear trend is present.
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The variance of the quadratic-trend position estimate is equal to the
variance of the linear-trend position estimate at the points

x=§§-’=¢

£ o

at which the variances are simply

°2<%K) = 20*3/N .

For the quadratic-trend case, the variance of the velocity-
estimation error takes on its minimum value for

(69)

_ N+l
Ko = =3

at which point the variance is

(70)

which is just the variance of the velocity-estimate error for the
linear-trend case.

For large values of N (i.e., N210Q), the expressions for the
variances and correlation coefficients can be replaced by considerably
simpler approximations. Of particular interest are the normalized
correlation coefficients. In the linear-trend case, p QN’ GN
approacheS\I;75 = 0.8660. In the quadratic-trend case, the following
limiting approximations hold

p(“ , 6N) + \3/2 = 0.8660
p(a“cn, ") s 573 = 0.7454 |
p(GN, &N) + |15/ = 0.9682 !
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The fact that the values for these coefficients are rather large indi-
cates that cross terms in error calculations involving (for example)
concurrent position and velocity errors cannot be - ignored.

Figure 4 presents graphs of the large-sample limit of the standard
deviation of the position-estimation error normalized so that the
standard deviation for the zero-trend case is unity.

Figure S presents graphs of the large-sample limit of the standard

deviation of the velocity-estimation error, normalized so that the

standard deviation for the linear-trend case is unity.

These graphs indicate that the errors for the quadraticstrend
case grow substantially faster than for the linear-trend case when
the objective is to predict position or velocity beyond the period of
observation (X/N > 1). In practical situations, however, it is fre-
quently possible to make the observation period substantially longer
in the quadratic-trend case, because systematic errors in the predic-
tion equation will be less for the quadratic case than they would be
for the linear case.

23
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IV. SYSTEMATIC ERRORS ! 1
x ! ;'
g - A. GENERAL REMARKS
In many practical situations, the form assumed for the estimation g
formula is only an approximation to the actual variations of the under-
i lying process. The significance of higher-order terms in the Taylor's
. series representation of the underlying process is determined by the
: time interval over which the estimation rule is to be applied, as well 5
v ‘ as the magnitude of the coefficients of these terms. For the purpose ;1k;
! of interpolation, i.e., estimation for times within the period of ob- E
servation, the significant time period is the period of observation E
itself. For purposes of extrapolation or prediction, the prediction
interval, i.e., the elapsed time between the period of observation
and the time at which the predicted estimate is to be determined, is
usually more important.

.
L tdat 4

In any event, the presence of higher-order terms in the represen- é
| tation of the process leads to errors in estimation which cannot be ;
removed simply by improving the quality of the observed data or by
taking a larger sample of data. To distinguish these errors from the
errors which accrue from imperfections in the observed data (i.e., the
random errors discussed in the previous section), they are referred
{ , to as systematic errors.
i
!

The results presented here are intended to facilitate a prelim-

} inary assessment of systematic errors. The approach taken has been to
assume that the trend of the true data contains a single term (of the
next-higher order) beyond what is accounted for in the particular
estimation formula. For example, a cubic trend is assumed for esti-
mation rules based on the quadratic model. As such, the results pro-
vide a basis for establishing necessary (but not sufficient) conditions

25
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for determining the validity or accuracy of a particular estimation
procedure, as long as the underlying data are characterized by a single,
well-behaved trend which is representable with reasonable accuracy via
Taylor's series. It should be noted that there are entirely credible
situations in which the underlying process is not characterizable in
this manner; for example, a linear trend can have an abrupt change in
slope, or can change to a quadratic, during the estimation interval.
The results presented here are not applicable to such situations, which
necessitate either a more detailed analytical model, or computer sim-
ulation, for assessment of estimation performance.

B. RESULTS
l. Zero Trend

The position estimate QK is a constant given by Eq. 20. It is

assumed that the underlying process exhibits a linear trend, so that
the true sample values are of the form

X = X+ kro .
The systematic error in the position estimate will be defined as
st = 2[4 - x
and (for this case) is given by
M = (VT/2)(N+1-2K) (71)

where Vo is the true velocity.

In what follows, it is of interest to reference the estimation

time index K to the midpoint of the period of observation. This is
accomplished by setting

M=K-‘L”;§. . (72)
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The quantity XT represents the time for which the estimate is to be
made, relative to the time t, mentioned in the Introduction. The
quantity MT, in turn, represents the time for which the estimate is to

be made, relative to the midpoint of the period of observation. With
this shift, Eq. 71 becomes

g “’A‘x = -Mv T . (73)

i 2. Linear Trend

The position estimate is given by Eq. 25; it is assumed that the
; true values of the sampled data exhibit a quadratic trend:

_ 2
z X = Xyt kro + k q, -

! The systematic error of the position estimate is given by
| M = ~(a1/12) [sx"’ - 6K(N+1) + (N+l)(N+2)] , (74)

where a, iz the true acceleration. In terms of the shifted index M,

2

A _ 2 2 _(N°-1
B = <(ar /2)[M S—n—l] (75)
The velocity estimate is given by Eq. 35. The systematic error is

Wy = (3 T/2)(N+1 = 2K) (76)

or
&Y, = Ma T 77
K— o . ( )

3. Quadratic Trend

ER S R TR P AR O T T3

The position estimate is given by Eq. 33; it is assumed that the
true values of the sampled data exhibit a cubic trend:

AN BB

- 2 3
X = Xg + kro +k qo + k po .

A
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The systematic error of the position estimate is given by

o, = (b°T3/120)[(N+l)(N+2)(N+3) - 2K(6N2+15N+11)

+ 30K3(N+1) - 2ox3] , (78)

§
g
4
¢
H
i}
b3

where bo is the true value of the third derivative of the underlying
process. Expressed in terms of the shifted index M,

M, = M(b_T>/120)( 3%-7-204%) (79)
The velocity estimate is given by Eq. 35; the systematic error is
A 2 2 2 H
A, = (b T /60)[30K - 30(N+1)X + (6N +15N+11)J (80)
or, in terms of the shifted index M,
ay = (de2/120)[60M2 - (3N2-7)] : (81)
28
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V. IMPLEMENTATION CONSIDERATIONS

L ]

’

b P I

In some situations (particularly those invoiving real-time esti-
mation), direct implementation of the formulas presented in Sec. II
can lead to substantial problems from the standpoint of data processe
ing. Specifically, the requirements for data storage and computational
speed (or parallel arithmetic hardware) can become burdensome, unless
certain simplifications and approximations are adopted.

:
PR

Consider, for example, the task of obtaining smoothed estimates
| of the current rangs, azimuth, anc elevation of a radar target from
raw data provided by a monopulse tracking radar. Suppose that the
radar operates at a pulse repetition frequency of 10,000 pulses per
second, and that smoothed estimates of the current values of each of
the three coordinates are to be provided at a rate of 100 per sescond,
with a smoothing interval of one second and a computational lag cf 10
milliseconds. Under these conditions, it will be necessary to perform
three computations of the form

e

e R SV e ke
TSI

S, )

10,000

3 Z W Xy td
=1

X>»
i

i one hundred times per second. In this expression, ﬁj is the jth esti-

mate of the value of the coordinate x (i.e., range, azimuth, or eleva-

u tion) 10 milliseconds ago; xk+j is the kth me:surement of that coor-

\ ] ; dinate in the sample to be used in computing xj; and wk is the weight
assigned to xk+j, in accordance with the appropriate estimation formula
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. from Sec. II. For example, if the quadratic-trend estimation is to be
g employed, Eq. 34 gives

2
W o= S0k - 6§4N+3;k + 3€N+125N+22
k N(N+ +

;g in which N = 10,000. )

. If the computations were to be carried out in the straightforward
I} manner, it would be necessary to perform 30,000 multiplications and
additions in 10 milliseconds, which would require the completion of

a single multiply-and-add cycle in one microsecond, assuming parallel
processing of the three sets of data. Moreover, such computations
would entail storage and shifting of 30,000 words of raw data. Wwhile
both the computational speed and data storage requirements are within

the state of the art, they would be considered burdensome for many
applications.

T PR Y ,
‘..“)m», um! jeg—

The first simplification to be noted stems from the fact that
the various estimation formulas can be reduced to simple linear com~
| binations of the following sums:

l ' N
g I Sp(3) =2 Xier
'(‘ l‘

A——
Lemesins §

k=1

N
Sl(j ) = Z kxk+j
’ k=1

-~ 2
(. FEIED DLW
k=1

LIS N 5y

Updating these forms can be accomplished without large-scale computa-
tions. For example, if estimates are to be provided at the original
" data rate, the following simplifications can be used:

L 50
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SplI+1) = 8g(3) + Xy 501 = X350
8,(3+1) = §,(3) = Sg(3) + Why gy
S,(3+1) = 8)(3) = 28,(3) + So(3) + Ny, sy

If these algorithms were to be employed in the most straightforward
manner for the computations of the aforementioned example, it would
be necessary to perform approximately 3000 operations in the
10-millisecond computation interval. Assuming parallel operation for

F T ks 4

* the three sets of data, 100 microseconds would be available for per-
. forming the ten updating operations (seven of which are additions or
. subtractions). From the standpoint of computational speed requirements,

this rate is much more reasonable than the previous requirement, but
the data storage requirement is, however, slightly greater.

To reduce both the computational burden and the data storage
requirement, it may be permissible to replace the original data with
: short-term averages. Thus, suppose that the X's are averaged over a
- short time interval, such as 10 milliseconds, and that the resulting
average is regarded as a new raw datum which was observed at the mid-
§ ) point of the averaging interval, then

o A Y AT BRG] 2T (IBATNAY 37

Np
X;* = ‘”“‘A’Z Xeas *

k=1

where NA is the number of observations used in computing the short~term
average (100 in the exampl: being disucssed). Equation 73 shows that
the systematic error in xj , due to a linear trend in the raw data,
vanishes, because of the interpretation of Xj* as having been taken

at the midpoint of the short-term averaging interval (i.e., M = 0).

The most significant systematic error will therefore arise from

31
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magnitude of the systematic error will be

: |' quadratic and higher (even) order trends; from Eq. 75, the order of
4 x* = a1 22
j oA
; Thué, if the systematic error is to be less than one foot, the accel~-
eration a, should not exceed 2.4x105 ft/secz, or approximately 7500 g.
g For most applications, a, will be considerably smaller than this k
figure, so that the systematic errors in Xj* will be negligible.

s l

The impact of this on the data processing requirements is quite
significant, because it is now only necessary to accumulate three
sums of the form of Xj*; the three additions per 100 microseconds can

be done serially instead of in parallel (assuming appropriate buffer
storage).
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