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FOREWORD

This research paper has been written because of the need for
explicit characterization of smoothing and prediction techniques
for many applications. While the methods of curve-fitting by least-
squares have been known for many years, it is frequently difficult to
find formulas which describe the errors in estimation based on such
methods.

In certain applications, the central problem is to predict the
value of a measured quantity which exhibits a systematic trend which
can be described in terms of a low-order polynomial. In other appli-
cations, the problem is to provide concurrent estimates of the true
value of the measured quantity and its rate of change. In both
situations, the analytical need exists for measures of the effects of
random errors and their interdependency and the consequences of
systematic errors stemming from an inadequate model of the underlying
trend ThJs paper represents an initial step toward fulfilling this
need. It was motivated by problems of aiming anti-aircraft guns
against maneuvering targets and achieving precision weapon delivery

by tactical aircraft. It is hoped that the results presented here
will find other applications as well.
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ABSfITRACT

I

Explicit formulas are presented for estimating position, velocity,
and acceleration in low-order polynomial trends, based on least-squares
smoothing of sampled data accompanied by statistically uncorrelated
measurement errors. Formulas are also given for interpolation and
prediction of position and velocity. Expressions for the variances
and covariances of consistent position, velocity, and acceleration
estimates are given, and the systematic errors accruing from use of a
trend estimation basis which is one order lower than the actual trend
are presented.

One interesting result is that the normalized correlation between
"the errors in an estimate of current position and those in an estimate
of current velocity approaches g/2 when the number of measurements in
the estimates becomes large.

Finally, the problem of implementing real-time least-squares
"estimation and prediction formulas in practical systems is discussed.
It is concluded that arithmetic execution time requirements can be
relaxed by generating certain sums recursively, and that data storage

j requirements can frequently be eased by collapsing the raw data into
short-term-average samples.
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I. INTRODUCTION

T
The purpose of this paper is to document some ostensibly well-

known results of elementary statistics, in forms which will hopefully

"prove useful to persons interested in the smoothing of statistically

stationary data sequences. In particular, the results presented de-

"scribe the properties of estimators based on low-order polynomial
least-squares fits.

While such estimators are frequently not optimum for a given
setting, they are realizable, so that the results presented here con-
stitute, in one sense, a lower bound on the quality of estimation

that can be performed in a given situation. Conversely, if a least-
squares fit does happen to be the optimum procedure for a particular
problem, the results provide upper bounds on the performance of more
"economical" procedures.

In what follows, it is assumed that the data originate as sampled

values of a continuous well-defined process, x(t); this process is
assumed to be representable with sufficient precision as a Taylor's

series in the independent variable t:

2 3x(t) =X + v(t-to) + (/2)ao(t-to) + (1/6)bo(t-to) + ... (1)

The symbol x will be taken to represent a position coordinate
and t will be taken to represent time, so that

v(t) = dx/dt (2)

and

a(t) = d2 x/dt 2  (3)
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represent the velonity and acceleration associated with the coordinate

x(t). In some problems, it will be desirable to estimate v and a as
well as x.

I The approach taken in this paper is to deal with the underlying
process in its original form, as given by Eq. 1, rather than to develop

I the representation of Eq. 1 in the form of a series of orthogonal poly-
nomials. The latter approach is most appropriate when the desired re-I sult is simply the best fitting curve for estimation and prediction of
x(t), and it is used extensively in statistical literature, e.g., Ref.

1, pp. 186-191. The convenience of the orthogonal-polynomial approach

stems from the fact that the problem of solving the simultaneous equa-
* tions for the coefficients used in the representation is trivial, by
5 Ivirtue of the orthogonality property. In many applications, however,

it is important to exhibit the consequences of the terms in Eq. 1 as[ ithey stand. That is, position, velocity, and acceleration will fre-
quently be of considerably greater significance in a specific situation

j i •than the coefficients of the first, second, and third terms in the

orthogonal-polynomial representation. It is for this reason that the
more cumbersome direct approach has been adopted. In particular, the

direct approach facilitates the computation of variances and covari-

ances of position, velocity, and acceleration estimates and the deter-

mination of the consequences of systematic errors in the estimation
model. While it is true that such results could have been obtained

from the orthogonal-polynomial representation, the current approach
is more straightforward; in particular, some of the covariance results
are more easily generalized than if the orthogonal-polynomial approach

had been adopted.

fi The true sampled values are unperturbed values of x(t) at t = to
S+ kT, where k is an integer running from 1 to N (N is therefore the

sample size) and T is the interval between adjacent samples. The total

period over which the data are observed is

i To = (N-1)T . (4)

1i 2
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Denoting the true sampled values by Xk, Eq. 1 gives

xk = x° + v0kT + (i/2)ao(kT) 2 + (1/6)bo(kT) 3 0 ... (5)

For simplicity in writing, xk will be written in the form

xk = x + kr 0 + k2qo + k3p +... (6)

with the correbponuience

o o'
r 0 = v OT(7

=O (1/2) ajT

p0 = (1/6) boT3

and so forth.

The observed data will be denied by Xk; it is assumed that the

errors in the observed data manifest themselves as

when the k'ts constitute a sequence of zero-mean, uncorrelated, iden-

tically distributed random variables with variance ax2..

The problem at hand is to develop means for estimating the true

values of the position, or velocity, or acceleration (or linear func-

tions of these variables) at some time t, which will be expressed in

the f orm

St =t 0 + XT

34i!!Ai
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"(note that K need not be an integer), which may occur prior to, during,

or subsequent to, the period of observation. Such estimates will be
denoted by the symbols

A A

S•,P vK, k) ...

for the estimated position, velocity, acceleration, etc. at the time

ij corresponding to the choice of K.

The method of obtaining formulas for these estimates will be

discussed in greater detail in Sec. II, which begins with an assump-

tion about the nature of x(t). This assumption deals with the point

at which the Taylor's series representation of Eq. 1 can be truncated

without sacrificing the usefulness of the estimation formula. If it

is assumed that the values of x(t) are substantially constant over

the time interval for which the estimation formula is to be used,

then it is appropriate to employ just the first term of Eq. 1; the

estimation formula then takes the form

A A

N = x (zero trend). (9)

If it is assumed that x(t) is satisfactorily represented over the
- ... estimation interval by the first two terms of Eq. 1, then the estima-

mation formula reads

A A AS= Xo + roK (linear trend). (10)

If it is assumed that x(t) is satisfactorily represented over the es-

timation interval by the first three terms of Eq. 1, then the estima-

tion formula reads

S= xo+ K + 0X (quadratic trend) , (11)

and so forth. For reasons that will become apparent, the three forms

of Eqs. 9, 10, and 11 are the only ones that will be considered in

this paper.
4
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The least-squares fitting procedure involves choosngh paam

eters of the selected estimation formula so that the mean-square dpf-

ference between the observed Is and the corresponding Is is mini-

Smized. Once these parameters have been computed, they can be used to

provide estimates of velocity, acceleration, and so forth. Speclfi-

cally, it follows that

A A0, a =0 (12)

for the zero-trend case;

K = ro/TaK= (13)

for the linear-trend case; and

A ,A A a

S(/T)(r +2q K), = 2qo/T (14).
vK = 0~ 0

for the quadratic-trend case.

The remainder of the paper will be concerned with a presentation

of formulas for the estimation parameters (Sec. II',; an assessment of

certain statistical characteristics of the random errors in estimation

(Sec. III); a discussion of the systematic errors which result from
an inadequate representation in the smoothing model; and finally, a

review of some elementary points regarding implementation of the esti-

"mation schemes (Sec. V).

Some clarification of the notation used to index the time variable

may assist in interpreting the results of the following sections. Three
indices are employed:

"(1) k, which is an integer, is used to index the times at which 4
"the observed data were taken;

- (2) K, which is a continuous variable, is used to index the

time for which an estimate is to be computed and was chosen

2L so that K = k when the estimation time coincides with the
time at which the kth observed datum was obtained;

5
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(3) M, which is also a continuous variable, is used to index the

time for which an estimate is to be computed, and was chosen

so that M = 0 corresponds to the midpoint of the observation

interval. Because the observation interval extends from

K = 1 to K = N,

M = K - (1/2)(N+l)

U All three indices are related to real time via the intersample period3 T; thus,

t = tO+KT

= to+MT + (l/2)(N+l)T

I where to is the value of t at one intersainpie period prior to the
time of observation of the first datum.

I In some applications (prediction), it is convenient to assume

that the time origin coincides with the time at which the last (Nth)

datum was obtained. Denoting this time by t',

t* = t-to-NT

[ whence

t = (K-N)T

and

E t ' = Mr.,To0/2 .

I 6
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II. ESTIMATION FORKILAS

I

A. METHOD OF DERIVATION

It is assumed that the underlying process x(t) can be represented
by a truncated Taylor's series, e.g., a quadratic. The corresponding

estimation formula is similarly truncated, as in Eqs. 9, 10, and .1.

The mean-squared error is a uniformly weighted average of the squared
difference between the observed data and the value yielded by the
estimation formula at the corresponding point in time:

N

E =(11N) E (X-k~I 2
*(

k=l

The expression for E that results when the explicit form of the esti-
.mator x. is substituted into Eq. 15 is then separately differentiated
with respect to each of the (as yet) unknown parameters in •. Because

E is a positive quadratic function of the unknown parameters, equating
the derivatives to zero yields a set of simultaneous equations which
must be fulfilled for 7 to take on its minimum value. These equations

are then solved for the unknown parameters. In solving these equa-
tions, the following identities* are helpful:

N

k = (N/2)(N+l) (16)

k=l 2.'

"See, for example, Ref. 2, pp. 7-8.

7 A
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N
a = (N/6)(N+1)(2N+l) (17)

k=l

N

a k (N2 /4)(N+l) 2  (18)

k=l

N
k4 = (N/30)(N+1)(2N+1)(3N 2+3N-1) (19)

k=l

B. RESULTS

1. Zero Trend

The single parameter is 0

3 A N
X0 = (1N) •Xk (20)

k=l

From Eq. 9, this is also the expression for P. Finally, by

3 assumptior.,

Av =0 (21)

a= 0 (22)

2. Linear TrendI; The two parameters are x0 and

o= [2/N(N•1•] a [(,2N+l) 3k] Xk (23)

3 k=l

3 8
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III
N

2_ [6/N(N2-1)] 1 [2k -(N+1)] Xk (24)

I Substituting these results into the position estimation formula,
Eq. 10, yields

N
1K = [2/N(N 1l [(N+l)(2N+l-3) + 3k(2-N-1)] Xk (25)

k=l

I For the special case K = N (estimate of current position), Eq. 25
simplifies to

N

N~ [2/N(N+1)] F,[3 - (N+1)] Xk .(26)

k=l

The velocity estimate is simply

A A (27)vK = ro/T

Using Eq. 4, and the above expression for VI o

N
A = [6/N(N+l)To] 1 [2k - (N+1).] ,, (28)

k=l

"- I where To is the total period of observation.

By assumption,

K 0 (29)

1 _ _.9
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I - 3. 92adratic Trend

The three parameters are

A 3 [1k 2 
-6( 2+l)k + (3N 2+3N+2)] XK (30)

fl k=l

6 30Nl= + 2(2N+1)(8N+l1)k
0 N(N 1l)(77-4) k=l

-3(N+1)(N+2)(2N+1)] Xk (31)

'I and

2 302 [k 2 
-6(N+l)k + (N+l)(N+2)] Xk (32)

2 k 6k
No (NI7l)(N -4) l

Substituting these results into the position estimation formula,1 Eq. 11, yields

N(N 2 _( 4 Fa 10[(N+l)(N+2) -6YK(N+l) 6 2 k2

3-2[3(N+l)(N+2)(2N+l) - 2K(2N+l)(8N+1l) + 3K2(+)

5+(N+l)(N+2) [(3N2+3N+2) _ 6K( 2N+i) + 10(2] (Xik. (33)

For the special case K =N (estimate of current position), Eq. 33

s!.rnplifies to

N

U '~ýN 3(~)N+)~ [10k2 -2(4N+3)k + (N+l)(N+2)] Xk (34)
k=1

104
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, tt
Substituting Eqs. 31 and 32 into the velocity estimation formula of

3 Eq. 14 and invoking Eq. 4, there is obtained

:X Ku (N+I(Z4)T0  Fa30 [2Y, N+l)]k

-2[30K,(N+l) - (2N+l)(8N+1,)] k

+ (N+.)(N+2) [1OK - 3(2N1..)] Xk. (35)

For the special case K = N (estimate of current velocity), Eq. 35

simplifies to!N71~~~ ____(2__ 214N2 l)
vN =N N 2 -4)T [30N- - 2( 1II ¢" (N",1)(N o k--,

+(N+l)(N+2)(4N-3)] k (36)

The acceleration estimate is simply

ay = 2no/

Using Eq. 4 in Eq. 32,

!N
60N1 [6k2Ia 1 •=, ,•N,1.ayo=3°"- 6(N+l)k + (N+1)(N+2)] X,.(37)

4. Interpretation of Results

Each of the estimation formulas involves a weighted linear aver-
l age of the Xk's. For the special case K = N and N>>I, the relative

weights assigned to the observed data for current position estimation
I are approximately:

soii



n 1 zero trend

2[3(k/N)- i] linear trend

3 10(k/N)2- 8(k/N)+ quadratic trend

These functions are depicted graphically in Fig. 1. It can be seen
that as the order of the estimation formula increases, mcr.ae weight

is placed on the most recent data (i.e., those points for k approacb'
ing N).

For current velocity estimation (K = N), the relative weights

for N>>1 are

6 6[2(k/N) - 1] linear trend

14[15(k/N) 2 - 14(k/N) +- 2] quadratic trendE "
These functions are depicted graphically in Fig. 2. It is seen that

in the quadratic case, the more recent data are weighted somewhat

more heavily than the oldest data, and that the extremes are weighted

S1 more heavily than the intermediate points.

Finally, the asymptotic weighting for the acceleration estimate

IIfor the quadratic case is shown in Fig. 3. The data are weighted

symmetrically, and the values are substantially greater than for the

current position and current velocity estimates.

:112
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I III. RANDOM ERRORS( A. GENERAL REMARKS

The estimation formulas presented in the previous section are all

l -of the formN
N

A = , WkXk .(38)

It can be verified that these formulas have the following property:

if the model (zero trend, linear, or quadratic) for the underlying
process is correct, and if there are no errors in the observed data,

then the estimate itself is correct. In this section, the effect of
relaxing the second condition in the preceding sentence will be assessed.
That is, it will be presumed, as was mentioned in the Introduction,
that the Xk's are in error. These errors are assumed to be additive,
statistically uncorrelated, identically distributed, and to have zero

means and (finite) variance ax . Using the notation of Eq. 8, the
estimate y is given by

N N

A = Wkxk + ,W3kk
k=1 k=l

The ensemble average of y is

ih[j]-N N

k~l k=l

~14
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Because the gk's are zero-mean random variables, the second sum van-
ishes. In view of the preceding remarks, the first sum is just the

true value of y, so that

E[y"] =y

which implies in turn that the errors in have zero mean.

The next step is to compute the variance of the errors in I. t

follows from the foregoing results that the variance

[= E[ Wkk)

-kl n=l k•~kn

N N

= ~ WkWnE [gkn] (9

k=l n=l

Because the errors are assumed to be zero mean and uncorrelated,

0X k ýn

so that Eq. 39 becomes

N2•,% Cx 1:W
= 2C k (40)

k=l

The task of computing the variance of the estimation formulas is thus
reduced to one of identifying ths .ights Wk in the formula, and com-

puting the sum indicated in Eq. 40.

-! 15
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It is also of interest to compute the covariance of different

errors. Thus, if two estimates y, given by Eq. 38, and Z, given by

.N
k Ak

Sk=3

are considered, the covariance is given by

N N

=E W( wk 9)( Wk"9k

KFollowing the same procedure as for the variance calculation,

N

ICoy [Y Z] = ax1 W~
k=l

The normalized correlation coefficient of the errors in y and those

. in Z is given by

IA Z\~~
P (k9' z) a=P) a (41)

B. RESULTS

1. Zero Trend

The variance of the position estimate is

a2 ~ ~2 (s) =r Ix2N *(42)

4!
U By assumption, the variances of the velocity and acceleration estimates

are zero.

5 16
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2. Linear Trend 
I

U Ao A

SThe variances of the estimation parameters 0 and 0 areaX2
2 ° x (,) 2N<-1a (43)

) = 12ax (44)0 (2_.)

The covariance 
of 0 and 

io is

r A = -6ax 2S Coyv•o roJ]:

The variance of the position estimate A can be computed directly, or

by noting that by virtue of Eq. 10, it follows that(x) (x,o) +, 2yo]
2 ()= o2() + 2K cov[o, 0] + [2 #) •

I In any event,

•2 2(ýk o ,NI)2+I 6K(N+I) + 6K 2] (45)
A N(N 2 -1)

"For the special case K = N, the variance of the estimate of current
position reduces tc

I 2 = 2 •2/ (46)

kN =2~ + (465)

I ~ The variance of the velocity estimate, vK, is simply

a 2(,,%K) = 02(r 0o)/T2i I•

17
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Using Eq. 4,
12-'3 (47)

The normalized correlation coefficient for the errors in the current

position estimate and the velocity estimate is

*P ' 0 4 N) (48)

3 3. Quadratic Trend

The variances of the estimation parameters x 0, ro, and o are

a 2 = 3x2 [3N.+.N2)J (49)

a24 r ) rS!+2L8N+11) (50)
N L(N 2-1)(N 2-4)J0

£_ a2  =N(N2-1)(N
2 -4)

-I The covariances are

~ Al 180ax (2(+l)
-0 - 1)(N-2) (52)

FA 30a2Coy 4] (53)
Cov 09 qo = N(N-1)(N-2) (53)

--- =, q (54)

-- ro qo N(N-1)(N2 -4)

£ 18
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The variance of the position estimate is given by

= , 3x2

a 2(-)(- [N+1)(N+2)(N2 +3N+2)

- 12(N+I)(N+2)(2N+I)K + 12(0N2+ISN+7)K 2

- 120(N+I)K 3 + 60K4]. (55)

Setting K = N in Eq. 55, the variance of the estimate of current

position reduces to

2 (( 3-x 2

a e ) = N(N+!)(N+2r) (3N'3N+2) (56)

"The variance of the velocity estimate " is

) N-1\ ) 2N+1)(8N+) - 60K(N+l) + 6 (57)K) NN 2-4

. where TO is the total period of observation. The variance of the

estimate of current velcity (K = N) is

A21t N = 120 x (=N-l) [N.-1)J (58)
"NT No -4 J

The nonmalized correlation coefficient for the errors in the
•Icurrent position estimate and the current veoiyestimate is

AN -I)(N-2)(2N-i
"P N$V = - ' 2 (59)

(8N-ll)(3N +33N-2)

19
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- The variance of the acceleration estimate is

| 2 2oo$ 2 , cl3
I. oa 2o L(N+•.-1) (60)

The normalized correlation coefficient for the errors in the current

¾ 5position estimate and the acceleration estimate is

3(3N2-3N+2) (61)

U The normalized correlation coefficient for the errors in the current

"j... velocity estimate and the acceleration estimate is

(vNi aN) (2N-(N- (62)

C. INTERPRETATION OF RESULTS: LARGE-SAMPLE LIMITS

For the linear-trend case. the variance of the position estimate

xK takes on a minimum value for

3Y = .~ (63)

3 For this value of K, the variance is

S2(k) = x2/N,

which is the same as the variance of the zero-trend estimate of posi-

tion. This result implies the following:

[ (1) If the objective of the estimation procedure is to estimate
'the true value of the position at the midpoint of the

1 20
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observation interval, then the vari3nces yielded by the zero-3 trend formula and the linear-trend formulas will be the same.*
(2) If the zero-trend hypothesis is true, then use of the linear-

trend formula for position estimation will yield a variance

that is everywhere greater than the variance that would be
obtained with the zero-trend formula with the exception of
the single point given by Eq. 63. This point is in conso-
nance with the general statistical principle that simply in-

I creasing the complexity of the hypothesized trend beyond the
necessary level will only degrade the quality of the resulting

I estimate.

With regard to the quadratic-trend position estimate, the variance
"takes on three extreme values at the points

Ko  +1 (64)

* and

44,:!+1 l = 1. (65)
I * 20

The variance at the point given by Eq. 64 is a local maximum, and
"has the value

2 3Trx (32- - ' (66)

ak)CKO, -- r4
The variances at the points given by Eq. 65 are minima and have the

-"-value

1) = - (67)

*Furhermore, it will be seen in the next section that the
systematic error in the zero-trend formula vanishes for this
case when a strictly linear trend is present.

"ii 21
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The variance of the quadratic-trend position estimate is equal to the

variance of the linear-trend position estimate at the points

j( N+1 JN -168

at which the variances are simply
2 2/N

CF .XI a (69)

For the quadratic-trend case, the variance of the velocity-

estimation error takes on its minimum value for
H N+I

Y-0 -

I' at which point the variance is

12ax 2
2( ) (v). (70)

which is just the variance of the velocity-estimate error for the

linear-trend case.

For large values of N (i.e., N2100), the expressions for the

variances and correlation coefficients can be replaced by considerably

simpler approximations. Of particular interest are the normalized

J correlation coefficients. In the linear-trend case, + ,)

approaches43// = 0.8660. In the quadratic-trend case, the following

a R limiting approximations hold

P 0) . = 0.8660

V ,rS-) /3 0. 7454

~ i~ 4- 0.9682

22-,(0,, -o.,o,,
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The fact that the values for these coefficients are rather large indi-

I cates that cross terms in error calculations involving (for example)

concurrent position and velocity errors cannot be -ignored.

Figure 4 presents graphs of the large-sample limit of the standard

deviation of the position-estimation error normalized so that the

Tstandard deviation for the zero-trend case is unity.

Figure 5 presents graphs of the large-sample limit of the standard

S-deviation of the velocity-estimation error, normalized so that the

standard deviation for the linear-trend case is unity.

These graphs indicate that the errors for the quadratic-trend

case grow substantially faster than for the linear-trend case when
- the objective is to predict position or velocity beyond the period of

t observation (K/N > i). In practical situations, however, it is fre-
quently possible to make the observation period substantially longer
in the quadratic-trend case, because systematic errors in the predic-

tion equation will be less for the quadratic case than they would be

I for the linear case.
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IV. SYSTEMATIC ERRORS

"A. GENERAL REMARKS

"In many practical situations, the form assumed for the estimation
formula is only an approximation to the actual variations of the under-
"lying process. The significance of higher-order terms in the Taylorts
series representation of the underlying process is determined by the
time interval over which the estimation rule is to be applied, as well
as the magnitude of the coefficients of these terms. For the purpose
of interpolation, i.e., estimation for times within the period of ob-
servation, the significant time period is the period of observation
itself. For purposes of extrapolation or prediction, the prediction
interval, i.e., the elapsed time between the period of observation
and the time at which the predicted estimate is to be determined, is
usually more important.

In any event, the presence of higher-order terms in the represen-
tation of the process leads to errors in estimation which cannot be
removed simply by improving the quality of the observed data or by
taking a larger sample of data. To distinguish these errors from the
errors which accrue from imperfections in the observed data (i.e., the
random errors discussed in the previous section), they are referred

to as systematic errors.

The results presented here are intended to facilitate a prelim-
inary assessment of systematic errors. The approach taken has been to

assume that the trend of the true data contains a single term (of the
next-higher order) beyond what is accounted for in the particular
estimation formula. For example, a cubic trend is assumed for esti-
mation rules based on the quadratic model. As such, the results pro-
vide a basis for establishing necessary (but not sufficient) conditions

25
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for determining the validity or accuracy of a particular estimation

procedure, as long as the underlying data are characterized by a single,
well-behaved trend which is representable with reasonable accuracy via3t Taylor's series. It should be noted that there are entirely credible

situations in which the underlying process is not characterizable in

5• this manner; for example, a linear trend can have an abrupt change in

slope, or can change to a quadratic, during the estimation interval.gi The results presented here are not applicable to such situations, which

necessitate either a more detailed analytical model, or computer sim-3 ulation, for assessment of estimation performance.

B. RESULTS

1. Zero Trend

The position estimate A is a constant given by Eq. 20. It is
i assumed that the underlying process exhibits a linear trend, so that
- Ithe true sample values are of the form

xk = xo + kro

The systematic error in the position estimate will be defined as

--- A=Ea -A

I and (for this case) is given by

A
Axy (v T/2)(N+l-2X) ,(71)

where v0 is the true velocity.

In what follows, it is of interest to reference the estimation
j time index K to the midpoint of the period of observation. This is

accomplished by setting

M K - N l (72)
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The quantity KT represents the time for which the estimate is to be

made, relative to the time to mentioned in the Introduction. The

quantity Mi, in turn, represents the time for which the estimate is to

be made, relative to the midpoint of the period of observation. With
"j this shift, Eq. 71 becomes

A= -Mv ,T .(73)

2. Linear Trend

The position estimate is given by Eq. 25; it is assumed that the
true values of the sampled data exhibit a quadratic trend:

xk = xO + krO + k2q .

The systematic error of the position estimate is given by

AA= -(a0T 2/12)[6K 2 _ 6K(N+l) + (N+l)(N4.2] (74)

where a. i3 the true acceleration. In terms of the shifted index M,

AA= -(aO~T 2 2 N-1 (75)

The velocity estimate is given by Eq. 35. The systematic error is

AK = (aoT/2)(N+l - 2K) (76)

or

A
"AV' = Ma (77)

3. Quadratic Trend

The position estimate is given by Eq. 33; it is assumed that the
true values of the sampled data exhibit a cubic trend:

xk = x0 + kr° + k2q° + k3Pq
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The sytmtcerro the position estimate is given by

I (bo /120)[(N+l)(N+2)(N+3) - 2K(6N +15+11)

+ 3012(N+1) - 20K3] (78)

- where bo is the true value of the third derivative of the underlying
process. Expressed in terms of the shifted index M,

A A = M(boT 3/120)(3N 2_7-2OM2) (79)

The velocity estimate is given by Eq. 35; the systematic error is

A2 I22-v ( (b, /60)[30K - 30(N+)K ++1o+) (80)

or, in terms of the shifted index M,

-p

* =V (b0T /120)[60M2 -3N2 7)] (1

.2

NI N



tt

-4I !

I V. IMPLEMENTATION CONSIDERATIONS

In some situations (particularly those involving real-time esti-

mation), direct implementatioTI of the formulas presented in Sec. I4

can lead to substantial problems from the standpoint of data process-

ing. Specifically, the requirements for data storage and computational

speed (or parallel arithmetic hardware) can become burdensome, unless

certain simplifications and approximations are adopted.

Consider, for example, the task of obtaining smoothed estimates

of the current range, azimuth, and elevation of a radar target from
raw data provided by a monopulse tracking radar. Suppose that the

radar operates at a pulse repetition frequency of 10,000 pulses per
second, and that smoothed estimates of the current values of each of

the three coordinates are to be provided at a rate of 100 per second,
with a smoothing interval of one second and a computational lag cf 10

milliseconds. Under these conditions, it will be necessary to perform

three computations of the form - -

A 10,000

x. j WkX+j
• k=l

one hundred times per second. In this expression, x. is the jth esti-

mate of the value of the coordinate x (i.e., range, azimuth, or eleva-Skth
tion) 10 milliseconds ago; Xk+j is the k measurement of that coor-

dinate in the sample to be used in computing xj; and Wk is the weight
assigned to Xk+., in accordance with the appropriate estimation formula
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from Sec. II. For example, if the quadratic-trend estimation is to be

employed, Eq. 34 gives

30k - 6(4N+3)k + 3 N+l)(+2)
Wk N(N+1)(N2

f in which N = 10,000.

If the computations were to be carried out in the straightforward

f manner, it would be necessary to perform 30,000 multiplications and
additions in 10 milliseconds, which would require the completion of
a single multiply-and-add cycle in one microsecond, assuming parallel

processing of the three sets of data. Moreover, such computations

would entail storage and shifting of 30,000 words of raw data. While

both the computational speed and data storage requirements are within
the state of the art, they would be considered burdensome for many

applications.

The first simplification to be noted stems from the fact that
the various estimation formulas can be reduced to simple linear com-

binations of the following sums:

N

; k=l

'-Ii Sl(J) =• k~~

N
S (j) = kXk~

k=l

N

i S2(j) = 2X.

Updating these forms can be accomplished without large-scale computa-

tions For example, if estimates are to be provided at the original

data rate, the following simplifications can be used:
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S0(j+l) = S0(j) + XN+j+ "

S 1 j) = +j) - 0 j) , +,N2

s 2(j+l) S2(j) 2Sl(j' + S(j) N+j+

If these algorithms were to be employed in the most straightforward
1 manner for the computations of the aforementioned example, it would

f rbe necessary to perform approximately 3000 operations in the

10-millisecond computation interval. Assuming parallel operation for

the three sets of data, 100 microseconds would be available for per-

forming the ten updating operations (seven of which are additions or

subtractions). From the standpoint of computational speed requirements,

this rate is much more reasonable than the previous requirement, but

the data storage requirement is, however, slightly greater.

To reduce both the computational burden and the data storage

requirement, it may be permissible to replace the original data with

short-term averages. Thus, suppose that the X's are averaged over a

short time interval, such as 10 milliseconds, and that the resulting

average is regarded as a new raw datum which was observed at the mid-

point of the averaging interval, then

N NA
x*= (llNA) F, Xk~j,

k=l

where NA is the number of observations used in computing the short-term
average (100 in the example being dihucssed). Equation 73 shows that*

the systematic error in X. , due to a linear trend in the raw data,

vanishes, because of the interpretation of Xj* as having been taken

at the midpoint of the short-term averaging interval (i.e., M = 0).

The most significant systematic error will therefore arise from
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i quadratic and higher (even) order trends; from Eq. 75, the order of
magnitude of the systematic error will be

A•X*= a oTA 2/24

SlThus, if the systematic error is to be less than one foot, the accel-
eration ao should not exceed 2.4xi05 ft/sec2 , or approximately 7500 g.

For most applications, ao will be considerably smaller than this
figure, so that the systematic errors in X * will be negligible.

The impact of this on the data processing requirements is quite
significant, because it is now only necessary to accumulate three
sums of the form of Xj*; the three additions per 100 microseconds can
be done serially instead of in parallel (assuming appropriate buffer

storage).
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