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S~~SAND'WICH PUTMS HAVMI
EWMRY DISSIPATIVE COIMS,

AS VIBRATION ENIWY ABSORBES

by

H. J. Plass, Jr.

I INTROM)CTION

The electronic equipment in a guided missile during flight is subjected

to vibrations carried from the propulsion unit through the frame to the deck

on which the eqx~pment is mounted. It is desirable to keep the amplitude of

these vibrations iv the sensitive electronic units as low as possible. To
accomplish this, vibration absorbers may be incorporated between the frame of

. the missile and the equipment deck, or the deck itself may be constructed so
that it acts as a continuous vibration absorber. Such a deck may be made in
the form of a sandwich plate, that is, a composite plate-like structure having

two thin metal faces separated by a thicker core of some material which has

dissipaxive properties. The cor.. can be made of a visco-elastic material,

such as polyethylene or rubber, or it can be made in such a way that upon

e aeg., various parts of the core structure rub on one another, dissipating

.. energy by means of Coulomb friction. In this report two types of sandwich

plates having visco-elastic cores and one typ.! of dry friction sandvich are
studied. Some -amparisons are made on the damping effectiveness of each kind

of sandwich plate studied. It should be pointed out that there are some
practical disadvantages of the visco-elastic core. As the interior of the

"missile is likely to experience wide temperature variations, the properties
of the visco-elastic core material may change in a detrimental manner. The

core may actually become too nearly fluid to be useful as a load carrying

member. This disadvantage is not present In the dry friction type of core;

however, the proportion of dissipated energy to total elastic energy is less

for the dry friction type core for the cases studied in this report. Perhaps
a modification of the dry friction core can be made to improve its energy

dissipating qualities.

I'



THE SA1NDWCH WITH A V=SC4LiAMrC COBE
An umalysis is Presented for the saudwvch plate having a visco-elastIccore. Tie equations describing the behavior of the core are ai follmv

(see PiU. 1). Ulane strain conditions are assumed.

Motion:

Continuity:

(2)

This is the only one of the sLx equations of coapatibility which is not
satisfied identically.
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Material:

-+ V i a E x + V ]-

V . 2 -V L x -VI

"oA 6---- J -E
2.i + BYý + vexI(4

In the above equations the symbols used have the following meanings:

x, y - coordinater (in.)

I t = tim (see.)

x , = stresses (lb./in. 2

ScE,%,y Y, strains (in./in.)

v, v- velocities (in./sec.)
2 Y

= density 1lb.sec. /in.4

EA, E - adiabatic and isothermal elastic moduli (lb./in. 2 )

GA, G - adiabatic and isothermal shear moduli (lb./in. )

EA -E

2r.

n viscoaity coefficient

In a previous report ELef. (l)j equations similar to these were converted

into equivalent equations in beam theory notation by performing certain

integrations with respect to the thickness variable y . In Eqs. (1),

the first equation is multiplied by ydy and integrated between y = -h

and y = +h . The second is multiplied by dy and similarly integrated.
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The operations on the other equations are cf the see general type.

The converted equations are shown below without the intermediate steps

being c•,wkn. It is assimed that cross sections remain plane but not

noraLl teo the deformed aid-linez, that v is independent of y , and

that C is zero.

Motion:

SpA ()

Continuity: 6 'm

Compatibillty: Satisfied identically because . the aswuption of
plane sections.

Materiel:

"EA' [K -M [ Encl
(7)

IGAAs - -A .ýI

In the above equations the symbols are defined as follovs:

h
M = xy d~y = moment (in. -1b.)

J -h

Q J-h Ix dy = shear force (lb.)

: !

.,
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K = -curvature (in.)
y

i 7 = (7) shear strain at mid-line

S= -2S= angular, velocity (rad./sec.)

v = (Vy) = t:snsverse velocity at mid-line (in./sec.)

SI =section moment of inertia (in. 4)

SA = setionae (i,,. 2

A s= equivalent shear area (in.2)

Two extreme cases are considered fcr the behavior of the core. In

one case the core is assumed to hpre deformatiots of the pure shear ty (8
(K - 0, w = 0), and in the other, It is assumed that pure bending occurs

S(7 -0). The first case is an approximation to what might occur for a

S ! sandwich having a low shear rigidity core and rather stiff faces. The

, • second case could be approximated ty inco.-parating spikes on the faces,

Teetwo extremes are shown ia Fig. 2.

Pure Shear Came (K = 0, a)-0)

.Frr the pure s~zear case the equations which are needed for analysis

are the second of each of Eqs. (5), (6), (7). Upon eliminating Q and y
from these equations, a single third-order equation in v results.

It is as follows:

3v 33v 32 32vGA As-~ -pA-Z3  1pA +O 0(8

aC

j[~
3

!'
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HJP:r~vkThe only solution of Eq. (8) stuided in this report is that for damped
sinusoidal oscillations. It is assumed that

v = v sin kxe C(t0 (9)
where

2A
k -, = wave length.

The quantity a is determined from the cubic equation:

P + OPACZ2 + GAAsO'a + 2 - O, (10)

obtained vhen 1,q. (9) is substituted into Eq. (8). Upon letting
GAAs=

(cA2 = -A- square of adiabatic shear wave velocity

2 GA

(C =2 A- = square of isothermal shear wave velocity

i. the above cubic, a simpler looking equation results:

a3 4 Oa 2 + (CA)2 k2 , + (c)2 k2= 
(ii)"A

Of the three roots of this cubic, one Is real and negative, the other
two are complex conjugates, with a negative real part. The latter pair
of complex roots are the only ones of interest, since they represent in
Eq. (9) damped oscillations var-ying sinusoidally with time.

AN
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Pure Bending Case (, -, 0)

For the pure bending case (with spikes) all six of Eq. (5),
(6), and (7) must be used with y = 0 in the second of Eqs. (6) and

(7). Upon elimination of all but one variable, say a , there results

a single fifth-order partial 4ifferential equation:

a5w -A '

,PEI - •E 0 (12)

The solution of this equation which is cLnsidered in this report is of

r the form:

Sw= C% sin kxea (13)

* Substitution of Eq. (13) into Eq. (12) yields a cubic equation for

Ce as fo,llows:
pI2 (I 2 2()

p(Th + A) +3 +A)C? + EA• 3EIk 0

Another form of Eq. (14) is:

C+ + M2 k4 cz + P(ci4Y -1k4--u (15)
A 0 + , o(

"where

E
(CM) = A = square of adiabatic bending wave velocityA

(c14 )2 = = square of isothermal bending wave velocity.

Numerical studies of the ab,'re cases are made in Section 4 of this report.
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SANDWICH WITH COULOMBFRICTION CORE

A third type of sandwich is discussed here. in this (see Fig. 3)

the "core" is made up of prongs fastened alternately to the upper and

lower faces. Each prong rubs on the face opposite from that to which

it is fastened. During any kind of vibratory motion, energy is dissi-

pated by frictlcn whenever there is any bending of t' .

Because of the non-linear nature of the Coulomb friction vibration

prcblem, this type of sandwich will be analyzed for a quasi-static

case. For concave upward bending the relation between wment and

curvature will be derived. The damping effectiveness of the structure

will be estimated by finding the prcportion of the energy wbich is lost

through friction during the slow non-reversing bending of tLe structure.

In Fig. 4 is shown one of the r-pesting patterns of the sandwich

of Fig 3. Assuming equilibrium of moments with respect to the center

of curvature, the following difference equation is ob'cained:

1T) 'R + h) - 2piPh

Since h < R in most practical cases, the above equation is approximately

given by:
=2piPh

R

The moment difference, for the complete sandwich plate, between stations

on opposite ends of one repeating element is therefore:

Ma2LT=4h2 (16 )1S~R

This can be converted to a differential equation by eltting:

P = pirdx

where p = pressure between faces per unit area
w = width of face

hf = face thickness

if
I

I . . .
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! •Then

lodM dx(17)

R
= Also,

(18)

where I 2 •.h.t

I Differentiation of Eq. (18) yields

dMzE dR (19)

1On eliminating dM between Eqs. (17) and (19), a relation between
S!and x is found:

E. - + 40dx = 0 (20)

"This can be integrated to the followizig:
SRe-(4ppw EI (21)

0

where R = radius of curvature at x - 0
0

S- The curvature K , which is the reciprocal of R , is approxi-

mately:

I K ' = KoP(l4s'wh /EI)x (22)

R dx

The energy lost by friction is given by

dM

0

'1
4
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• L

L-2 M dx [?sing Eq. (17)]

0

4g~pvh' 2 i~ ~ dx[sing Eq. (22) (23) 1

On integrating, the value )f HF is found to be:

WF~ "~ • (It"ph2L/•I) - 2(21)

W Mw20 ý4ph()

where

The elastic energy, assumed to be stored only in the two faces,

is given by

1 J I (25)

0

where e -" Z = slope of center line. Then,
dx

1 L d2

EW ~ d E- dx (26)
2dx

On using M " El 2- together with the expression for given by
dx dx

Eq. (22), the following result is obtained:

M [2(8 pwhL/EI) I

[ . (

IF
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The ratio of frictional energy dissipated to stored elastic energy ie:

2 - (28)

wb w,•r• p =4pwh 2L/EI. The quantity q is swall ccmpared to unity;P hence, the fraction on the right can be easily approximated.

I Expansions of eP and (!p are given here:

2

292

The fractione =1 + 2c+ 2TF

1 2

S=1-2 +

2(p + 29p2 + ...

I i + 2• for q)((1 i+p 2

.- Therefore,
- WF.2

= 9 4ippWtL/EI (-29)TIE-
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This is, roughly, the energy ratio per cycle in a vibrating plate. The

damping factor per cycle for amplitudes ir at'roximately equal to half

of this energy ratio. The form of p as given by Sq. (29) is changed

to a simpler one in the following. The value of I is given by

""w= fh2

Therefore, w

The damping factor, i.e., amplitude decay per unit time

L HEZ x frequency (33.)
Ehf

The damping is proportional to the coefficient of friction p , to

the ratio of pressure between faces to face modulus p/E , and to

the length-face thickness ratio L/hf

Mk4RICkL MCAW , OF ALL THW TYE OF SANICH PI.M

To make comparisons among the three types of sandwich plates

discussed in the foregoing articles some numerical values will be assumed

which are rough approximations to values found ir real materials. For

the sandwich with the visco-elastic core, the so:Lutions of the cubic

equations. Eq. (11) an Eq. (15), are compared for equal values of k and

material constants. For the dry/ friction type oA" sandwich, comparisons

are made for cerTain frequencies with corresponding results for the

visco-elastic sandwich.

£
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Visco-elastic Sandrich-Pure Shear Case

It is convenient at this point to rewrite Eq. (ii) in dimensionless

form by making the following substitutions. Barred quantities are

dimensionless.

c) > - " (32 )

b -
The cubic equation then becomes:

Ac 22

values of i and FoIots of the cubic consist of one negitive real

form -8 -im . Only the latter pair is physically significant in the
problem being discussed. The values of 5 are plotted in Fig. 5

(c
for a range of values of i and • with A

-1.10.

(cQ

Visco-elastic Sandwich-Pure Bending Case

As was done for Eq. (11), Eq. (15) is also modified by making it

dimensionless. The following substitutions are made. Starred quantities

are dimensionless.jL
>1

!
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0

a• h a¢

Iii
((34

k k jNote k mOf Eq. (32jj()

A = h2A

Sh

The cubic then becomes:

(c)2

(a)5 .3 + + j/\ • *)4 + t!/\(k*)= 0 (35)(M_ 2I

where

I"(k) + A

The quantity JV for wave lengthq 1-.-• c-%-mpared to h , reduces

approximately to

W 2
_= (r) = square of dimensionless (37)

A radius of gyration

As does Eq. (33), Eq. (35) hes three roots. One root is real and

negative; the other two are conjugate complex with a negative real part

of the form -5 + im. In Fig. 6 are plotted some values of 8 , the

damping factor per unit dimensionless time, for a small range of values

of k and 0*. In all these calculations, the approximate value of-/\-

given in Eq. (37) is used. For a rectangular sectionA.- (r*) 2 * 1/3.

tH

- - -,
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To comupare the damping effectiveness of the two kinds of visco-elastic

sandwich plates, use can be made of Figs. 5 and 6. To compare cores of

similar materials, a must be equal for each core. Since (CM)

is roughly twice cQ for many materials, it is seen from the definitions

of • and P that for the sawe value of p,, 1 is roughly one-half

of • . Also, since -8 is the real part of a , and -5 is theI "
real part of x , it can also• be concluded from the definitions of

and a that

Ix 1 aI for pare bending
-• 2 ci for pure shear

or

5 for pure, bending 1 2 (38)
8 for pure shear conet.

for k=2 , for instance, the curves in Fig. 6 for $ =0.01 and

3= 0.1 have the same heights as the curves in Fig. 5 for • = 0.01

and 0 = 0.1. Thus, the 8 values for pure bending and for pure

sahear are equal. For =1.0 in Fig. 5, 5 = 0.0A80; for =0.5,

5 0.0245. From Eq. (38),

b(pare bending) 0.0245
a( pure shear) 0. U 1.3

2 2n

That is, for k = 2 , or k 2 - .e., for X=h ,a 30 percent

improvement in damping can be expected when spikes are incorporated in

the faces of the sandwich. A slmi•r ccmpa-ison for k = 1 yields a

gain in damping effectiveness of about 75 percent. The spiked sandwich is

"more effective than the unspiked in the shorter wave length region, and the

effect is most pronounced for the larger values of • or , that is, for

materials for which the viscosity coefficient is low, or where EA - E is

large compared to 'Abat it is in a metal.

r!i
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The Friction-Type Sandwich

For the particular case studied in the previous paxs•raph, i.e..,
x- h , the value of 8 fromEq. (31) is

L (54) (c)o 0

fI
Thus, the quantity 1pL is equivalent to 5* for the visco-elasticEhfx 3
sandwich with spikes. Assuming p - 0. 6 , p 10 psi,E l17psi,

L/hf = 103, the above ratio is

- 0.0 19
Ehfi

"Although it is less, this result is roughly in the general neighborhood of

the result of damping produced by the visco-elastic type of sandwich. As

the dry friction core has advantages over the visco-elastic type insofar as

its behavior with changes in temperature is concerned, it seems that such

a device is certainly worth trying as an electronic equipment deck for

a guided missile.

This report has been distributed in accordance with the List for
Aerodynauics contained in APVJBU, T0 B - 11, dated November, 1953.

K:-
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