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INFLUENCE OF STRAIN-HARDENING AND STRAIN-RATE SENSITIVITY ON THE

PERMANENT DEFORMATION OF IMPULSIVELY LOADED RIGID-PLASTIC BEAMS

by

Norman Jones

Abstract

A simple method is presented for estimating the combined influence of

strain-hardening and strain-rate sensitivity on the permanent deformation

of rigid-plastic structures loaded dynamically. A study is made of the

particular case of a beam supported at the ends by immovable frictionless

pins and loaded with a uniform impulse. The results of this work indicates

that considering strain-hardening alone when appropriate or strain-rate

sensitivity alone gives permanent deformations which are similar to those

predicted by an analysis retaining both effects simultaneously.



Notation

D strain-rate sensitivity coefficient defined in
equation (38)

E modulus of elasticity

H thickness of beam

%' Jk coefficients given by equations (64) and (65)

L semi-length of beam

M longitudinal bending moment per unit width of beam

Mo 00H2/4

N axial force per unit width of beam

N aHo 0

Q shear force per unit width of beam

R radius of curvature of mid-plane of beam

T, Tf time

V initial velocity of beam

b -k siný

cR, CH constants defined in equations (61), (76)

k uniform distributed pressure per unit area of
undeformed beam

m M/M0

n N/N

nA, nc, n F dimensionless membrane forces defined by equations

nH, n0 , nR (80, 84, 79, 74, 85, 59)

p strain-rate sensitivity coefficient defined in
equation (38)

q -k coso



Notation (continued)

r ratio of the slopes of the elastic and plastic
portions of the stress-strain curve

S distance measured along deformed mid-plane

t time

t duration of first stage of motion

t 0 t 1 /L2

t f time at which beam reaches its permanent position

U, w displacements defined in Fig. 1

w m maximum permanent transverse displacement

x distance defined in Fig. 1 (measured from beam center)

y distance measured from left-hand support of beam

z distance defined in Fig. 1

2V H 1/p

a 
0

DL2

k=1,3,5 0

y vH2/L2

V o t 1

C axial strain of mid-plane

C z axial strain at distance from mid-plane

C defined by equation (77)

1/2
{W,2 + (1 + U,)2)

K curvature



Notation (continued)

VIV2L2
0

M H
0

mass per unit length of beam

E
V

ro
0

p radius of a traveling hinge

a stress

a 0 yield stress in simple tension

pV oL2

T 6M
0

slope of the mid-plane of beam

k=1,3,5 k 3

61 /H

() -y( )
at

( )'
ax

[ ] difference between the values of the considered
quantity on either side of a traveling hinge



1. Introduction

Parkes [1] examined the permanent deformation of cantilever beams loaded

dynamically and observed that a simple rigid, perfectly plastic analysis over-

estimated considerably the final maximum deflections. The rather significant

discrepancies between experimental results and theoretical predictions were

accounted for by considering, in an approximate manner, the influence of

strain-rate sensitivity on the dynamic plastic bending moment. Ting [2] ana-

lyzed a rigid, perfectly plastic cantilever beam loaded dynamically at its tip

and indicated that geometry changes when treated rigorously were responsible

for part of the discrepancies between Parke's theory and experiments [E].

Bodner and Symonds [3,4] conducted more exhaustive tests on cantilever beams

loaded dynamically-and observed that strain-hardening was not very important

while strain-rate sensitivity must be considered throughout the entire defor-

mation history. Ting and Symonds [5] analyzed the plastic deformation of a

cantilever beam with an attached tip mass which was subjected to a rapid

transverse velocity change at the base and found that, if the strain-rate de-

pendence of yield stress and geometry changes were considered, then the predic-

tions showed good agreement with corresponding experimental results.

Parkes [6] developed the earlier theoretical work of Lee and Symonds [7]

in order to describe the behavior of a rigid, perfectly plastic encastre beam

struck transversely at any point on the span. The predictions were compared

with some experimental values recorded on steel, brass, and duralumin beams,

the supports of which were prevented from rotating but were free to move

axially. It was found subsequently that better agreement between experimental

results and theoretical predictions was obtained when the dynamic plastic
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bending moment was calculated using a yield stress given by Manjoine [8]

corresponding to a mean value of strain-rate. Symonds and Mentel [9] ex-

amined the influence of axial restraints on beams loaded impulsively and

predicted final deformations which were considerably smaller than those

expected from the corresponding simple beam solution when deflections of

the order of the beam depth, or larger, were permitted. Humphreys [10]

conducted some experimental tests and confirmed this prediction, indica-

ting that the simple theory is only useful for maximum deflections of mag-

nitudes up to the order of the beam thickness. In reference [11] Florence

and Firth report the results of some experiments in which pinned and

clamped beams without axial restraints were subjected to uniformly distri-

buted impulses large enough to cause considerable plastic deformation. It

was found that a rigid-plastic analysis, which disregarded strain-rate ef-

fects entirely, but included strain-hardening in an approximate manner dur-

ing the second stage of motion, gave somewhat better agreement with the ex-

perimental results than a simple rigid-plastic analysis.

Recently, Nonaka [12] studied the behavior of clamped beams, with re-

straints against axial displacements at the supports, when an attached mass

in the center was subjected to large transverse dynamic loads. It was ob-

served that, except when the attached mass was small, a major portion of the

deformation occurred under a one degree of freedom mode in which the two

halves of the beam rotate about the supports. Consequently, the mode ap-

proximation method of Martin and Symonds [13], which has been used by

Symonds [14] to study a cantilever beam loaded impulsively, was utilized in

order to estimate the effects of strain-rate sensitivity, elasticity, and

load duration on the final deformation.
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Apart from the numerical work of Witmer, Balmer, Leech and Pian [15]

the combined influence of strain-hardening and strain-rate sensitivity on

the permanent deformations of rigid-plastic beams with immovable supports

arising from uniform impulses has not been studied and is taken, therefore,

as the subject of interest in this article. In order to retain the attrac-

tive simplicity of rigid-plastic analyses, an attempt is made to develop a

method which is mathematically simple yet at the same time sufficiently

accurate to be worthwhile exploring the possibility of using it to analyze

the behavior of more complex structures.

2. General Equations

An expression for the axial strain at any position in a beam is derived

in this section in terms of the membrane or axial strain and curvature of

the mid-surface. The equilibrium equations for a uniform beam loaded dy-

namically are then derived and recast into a form convenient for later use.

2.1 Axial Strain

It may be shown that

ds ndx (1)

where

1 = {w' 2 + (1 + u,)2}1/ 2 , (2)

=--( ) ,
/ x

and the remaining quantities are defined in Fig. 1.

Thus,

E n ri- 1(3)
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is the axial strain of the mid-surface of the beam which becomes

w2S U= u' +-- +....,()

when n is expanded.

The radius of curvature "1R" of the mid-surface of the beam is, by

definition,

R =s

which, using the geometrical identity

tano = l+u'

from Fig. l(a) and equation (1) yields

1 -w"(l + u') + w'u"
R ns

If it is assumed that plane cross-sections remain plane during deforma-

tion and merely rotate about the mid-surface of the beam, then it may be

shown that the axial strain at distance "z" is

E= + zK (6)

where

K 1 + £ (7)R

and z is defined in Fig. l(b).

2.2 Equilibrium Equations

The equations of equilibrium for the element of the beam illustrated in

Fig. l(c) can be written in the form
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aN Qnb
Tx -- R Pncoso + Onsino + bn = 0 (8)

Ž2x R* I r 9am + +usin COS+n = 0 (9)

ax

provided any rotatory inertia effects are ignored and

() =) I ( ).

In order to simplify the theoretical analyses of beams and strings

loaded dynamically, the displacement u and acceleration u are usually

disregarded [9, etc.]. Thus, let

uu' = u 0 (11)

which allows equations (2) and (4) to be written

n = (1 + w,2) 1 / 2  (12)

and

C =12 (13)
2

respectively.

If attention is restricted henceforth to small strains, then

i 1 , sine = -w' , cosO = 1 ,

and equations (5) and (7) give

S= -w" (14)

Equations (8)-(10) may now be rewritten
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S+ Qw" - + kw' 0 (15)
ax

aQ-Nw" +p-.k =0 (16)

W-+ Q = 0 (17)

If equation (17) is used to eliminate Q from equations (15) and (16),

and the two remaining equations combined, then

d2M ddx- k + w--(wN) (18)
dx 2

when disregarding the w'w" Mterm.ax

Using n = N/N , and m = M/M , equation (18) becomes

dm x k dx +x _w dx 4w'n (19)
J oM f

o 0

The first term on the right hand side of equation (19) is due to an ex-

ternal load k , the second term Vii is an inertia force while the last term

containing w' introduces the membrane forces arising from axial restraints.

3. Yield Condition

It is indicated in Fig. 2 that an exact yield curve relating the dimen-

sionless bending moment m and membrane force n according to the Tresca

shear stress criterion lies everywhere inside a square having sides of mag-

nitude 2 , while a square with sides of length 1.236 lies everywhere in-

side the exact yield curve. In order to estimate the accuracy of this ap-

proximate linear yield condition, which can be selected to bound the exact



-7-

yield condition, as illustrated in Fig. 2, the particular case of a rigid,

perfectly plastic beam loaded impulsively will be studied and the results

compared with the final deformations predicted by Symonds and Mentel [9],

who used an exact yield curve.

4. Rigid, Perfectly Plastic Beam Subjected to a Uniformly Distributed
Impulse

4.1 Simple Bending Solution

The equilibrium equation (19) for this case becomes

d2 m 1 1 - a2w (20)

dx 2  Mo at 2

if the beam is unloaded (k = 0) and there are no axial restraints (wt = 0)

against deformation.

In accord with experimental evidence and previous analyses, it is as-

sumed that two traveling hinges, each of radius Ip(t)l , originate from the

supports at t = 0 and travel inwards towards the center of the beam during

a first phase, while throughout a second stage, they remain stationary at

x = 0 until all the initial kinetic energy is dissipated as plastic work.

First Stage

A velocity profile,

VV for 0 < x s p(t) (21)

and
SVo(L - x)

W- L -p for p(t) s x s L , (22)
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where V is the initial uniform velocity of the beam, is consistent with

the normality requirement associated with the yield condition m = 1 .

If the time derivative of (22) is substituted into (20) and the result-

ing expression integrated twice with respect to x , one obtains

-M-(L - p)6 + 1 = 0 , (23)

0

for a beam which is simply supported at its ends. Integrating (23) with re-

spect to time yields

t = L (L 2 - 2Lp + p 2 ) , (24)
L2

where
_ aVoL 2

T 6M (25)
0

and the requirement that p L when t = 0 has been satisfied.

The maximum displacement at the center of the beam at the end of the

first stage is Vo0 T

Second Stage

If a linear velocity profile of the form

4(t) (L - x) (26)L

is selected for the second stage, then it may be shown, using (20) and (26)

and matching the displacements and velocities at t = T with those at the

end of the first stage, that

w
m X (27)

where

pV 2L2

- M H (28)
0
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and wm is the permanent displacement at the center of the beam.

Equation (27) is the same result as equation (4) of reference [9].

4.2 Solution with Axial Restraints

The influence of membrane forces, which arise due to axial restraints,

must now be included in the equilibrium equations. Thus, equation (19) be-

comes

dm I
m= I -x . 2w dx -n aw (29)

dx 0 Mat2 H ax

First Stage

If the mechanism of deformation for this case is assumed to be similar

to that for the previous one, then the velocity profile is given by equations

(21) and (22), and when 0 $ x $ p

w = V t (30)

while

w = Vot(x) + f -dt if p $ x L (31)
0 1~t(x) T

Since one might expect bending moments to dominate over the action of

membrane forces during the first stage, then the form of the time function

t(p) for wt $ 0 should be somewhat similar to equation (24) which was ob-

tained by disregarding w? in (19). Therefore, it is assumed that,

t(p) = t 0 (L 2 - 2Lp + p2 ) , (32)

where t is a constant to be determined later.
0

It may be shown using equations (21, 22, 30, 31, 32) that
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w' = 0 , when 0 . x < P (33)

and

W1 = 2V t (p - x) , if p $ x s L (34)

Equation (29) can be rewritten with the aid of (22) and (34) in the form,

dm o Vo x0 -2 R 8Vt (p - x) (35)dx M L-)2(Lx -2 Lp + (35)
oHT- M 0(L-p)2  2 H (P-x

provided p s x s L , n = 1 and o s m s

Integrating (35) gives

PVo0__ Lx 2  x 3  p2x Lp2  p 3  8V t 2  p 2

m-(Lpx + -2+ ) Ho o (Ox ) + 1

M (L-p) 2  2 6 2 2 3 )H 2 1
0 (36)

where the constant of integration has been determined from the requirement

that m = 1 at x = P , which in turn can be obtained by solving equation

(29) using (21) and (33).

Now for a beam which is supported at pinned ends, m 0 at x = L

Thus (36) gives

_PV°0 L3  . p3 8Voto L2  020 -- L2 p+Lp2 - .-) - 0(pL - ) + 1 =0

2M t (L-p) 3  3- 3 H 2 2

which, when p = 0 , yields

61 1 81.1/2-1= 1 {_i + (1 + -8X }/ ,
H} 3

where 61 = V t is the maximum deflection (x = 0) at the end of the first

stage, and from (32), t = t L2 , when p = 0

S• • - • i i , , i1 io
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Second Stage

If a linear velocity profile of the form described by equation (26) is

selected for the second stage, then it is straightforward to show, when using

the yield condition illustrated in Fig. 2, that the final displacement of the

beam at x = 0 is

w a L{ + 2X +/(2 + -8) } - 1] (31)

The final deflections at the center of rigid, perfectly plastic beams

loaded with uniformly distributed impulses are given by equations (27) and

(37) and compared in Fig. 3 with the results of Symonds and Mentel [9]. It

is evident that the "upper" and "lower" bounds lie between the two predic-

tions of Symonds and Mentel [9] with and without a string phase, while the

deflections forecasted by the simple bending solution given by equation (27)

are considerably larger even for very small values of X . Strictly speak-

ing, the curves designated "upper" and "lower" bounds in Fig. 3 are not

upper and lower bounds in the accepted sense since they are based solely on

the fact that the deflections designated "upper" bound were calculated using

a yield surface which lay on or outside the exact one, while those termed

"lower" bound were evaluated using a yield surface which lay everywhere on

or inside the exact one.

5. Constitutive Equations

5.1 Strain-Rate Sensitivity

It is well known that the initial yield stress [8, 16, etc.] of many

materials increases with increase of strain-rate and that, furthermore, it

is important to take account of this effect when analyzing the dynamic
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behavior of cantilevers and beams [4,17]. Cowper and Symonds [18] observed

that a constitutive equation of the form

a- 1/p
S= i + (C) (38)

a0 D

could be fitted to the data of Manjoine [8] provided D = 40.4 sec.-I and

p=5

On account of its attractive simplicity, the constitutive equation (38)

has been used successfully by a number of authors to solve a variety of prob-

lems [5,19,20].

If an element of the beam illustrated in Fig. 1 is made from a rigid,

rate-sensitive material described by the constitutive equation (38), then

it may be shown that rn p+1 p+_ 2

m 1 !j k)( + k•) +D(• -) p

HD1/Pk (p+l)

p
4p 

+ H p H p k

H2k2Dl/P(2p+l) 
2 2

S~~P+--lP+-I
S1 H .~p H p (94pj (j + !! k) p- (H- k - (39)

H2k2Dl/p(p+l) 2 2

provided plane cross-sections remain plane and during deformation merely

rotate about the mid-surface of the beam, and that the directions of m and

n correspond to those of M and N in Fig. 1.
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When m 0 and k = 0 ,it may be shown that

JB

1/p
n 1 + (P) , with i > 0 (40)

while, for n = 0 and • = 0

2p HK ip
m 1 + p (r) , with k >, 0 (41)

In order to simplify the rather complicated constitutive equation (39),

let us proceed in a manner somewhat similar to that described previously in

section 3 for the rigid, perfectly plastic case. It is assumed that a lin-

earized yield curve will grow as illustrated in Fig. 4(a) such that the be-

havior suggested by (40) occurs along A'B' with 0 $ m $ 1 , while equa-

tion (41) describes the behavior of C'D' with 0 s n s 1 .

Perrone [20,21] has shown, for some simple structures loaded impulsively

and made from a strain-rate sensitive material, that excellent agreement with

exact solutions may be obtained when utilizing a strain-rate insensitive ma-

terial with a constant yield stress equal to the initial dynamic yield stress.

This observation permits considerable simplification of subsequent analyses

but is only valid for large values of p (4 or 5) when most of the kinetic

energy is dissipated before the stress-strain-rate point departs appreciably

from its initial position.

5.2 Strain Hardening

Cowper and Symonds [18] and others [11, etc.] have suggested a linear

strain-hardening relation of the form,

CF + EE_ (42)
Go a0 Or
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where "E" is the Elastic Modulus and "r" may be interpreted as the ratio

of the slopes of the elastic and plastic portions of the stress-strain curve.

If plane cross-sections are assumed to remain plane and merely rotate

about the mid-surface of the beam during deformation, then it may be shown,

using equation (42), that

v• (43)m =l-(n - vc)2 + YH (43
3

provided "Im" and "n" act in the directions of "M" and "N" indicated

in Fig. 1, and v = E .
0

When m = K = 0 ,it may be shown that

n = 1 + vc , provided C , 0 , (44)

while, if n = s = 0 ,and K , 0 ,

mHK (45)

A procedure similar to that outlined previously in sections 3 and 5.1 for the

rigid, perfectly plastic and rigid, strain-rate sensitive cases will be adop-

ted here in order to simplify the constitutive equation (43) for a rigid,

strain-hardening material. It is now assumed, therefore, that a linearized

yield curve illustrated in Fig. 4(b) will grow as indicated so that the side

A'B' is described by equation (44) with 0 s m s 1 , while (45), with

0 $ n $ 1 , defines the behavior of side C'D' .

5.3 Combined Strain-Rate Sensitivity and Strain Hardening

Symonds [14] and Perrone [22] suggested that

a = f() g(£) (46)
ao
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could be used to analyze structures loaded dynamically, where f(i) and

g(e) Are strain-rate sensitivity and strain-hardening relations, respec-

tively. It is well known that strain-hardening of some materials decreases

with increase in strain-rate, and strictly speaking a stress-strain-strain

rate law cannot, therefore, be written in the product form of equation (46)

with f(U) and g(e) uncoupled. However, in order to retain mathematical

simplicity, it is assumed that the combined effect of strain-hardening and

strain-rate sensitivity could be considered in the manner suggested by (46),

which using (38) and (42) may be rewritten,

r I l . 1 /p ,
- = .i + (C) i(I + Ve) (47)

a0D

Thus, from equations (40, 41, 44, 45, 47) it is evident that, when

S0, t>0 , K=0 , =0 and 0 .m.< ,then

n 1+ yC + 1/p 1 1/p (48)
( + vc ()

and when c 0 , = 0 , >' , K >, 0, and 0 s n 1 ,then

=+2p (H1/p vHK 2vHKp Hk 1/p
2 p+l 2D) + 3 +3(2p+!() (49)

6. Influence of Strain-Hardening and Strain-Rate Sensitivity on Impulsively
Loaded Beams

In order to examine the influence of strain-hardening, strain-rate sen-

sitivity, and the combined effect of both on the large final deformations of

beams, the constitutive equations developed in the previous section will be

used to analyze a rigid-plastic beam with axial restraints which is simply

supported at pinned ends and loaded with a uniformly distributed impulse.

TEO1TCAL LIBRAMt

BLDG 313

A3MFDMF1 PROVING GRO' D .

.TEAP-TL
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6.1 Strain-Rate Sensitivity

First Stage

Equations (13) and (14) give

i = w'*' and &=-i" (50)

Thus, it may be shown when employing the mechanism of deformation for

the rigid, perfectly plastic beam analyzed in section 4.2 that the velocity

profile described by equations (21) and (22) is consistent with the yield

condition (40), provided the implication of a discontinuity in curvature at

the traveling hinge is disregarded.*

Using the velocity profile described by (21), the strain-rate sensitive

relation (40), and equation (33) in order to solve the equilibrium equation

(29), yields

m=l , for 0 s x s p

When p s x s L , the corresponding equations give

If it is assumed that the discontinuity of curvature given by the differ-
ence of the appropriate derivatives of equations (21) and (22) can be re-
placed by a continuous change of curvature across an annulus of width 2H
then it may be shown that

p 3aA , approximately
A

where "P" is the ratio of energy dissipated at a traveling hinge during
the first stage to the corresponding loss of kinetic energy, and "a" in-
dicates the factor by which "Im" is increased according to the strain-rate
sensitivity relation given by equation (41).

In order to simplify the analysis, average values have been used for the
speed of the traveling hinge and the radius of curvature across the annulus.
P , as might be expected has rather large values when A is small but for a
mild steel beam with L/H = 12 (L = 12 in.) and A = 100 , P = 0.06
while for A = 800 , P = 0.01

L
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- IN0  Lx 2  x 3  -_x Lp 22 p 3

M = Lpx + 2 -2 -) +
2M t (L-p) 3  2 6 2 3

00

2N 0V 0t 0 rfx2 (2V 2t \P)+ *X + --2- +DLt-- P (x - P) +
+ OM 0 2 2p+l ( x (51)

where the condition m = 1 and the continuity requirement [Eff] + 0[m'] = 0

have been satisfied at x = p

If the beam is simply supported at pinned ends, then the requirement

that m = 0 at x = L allows equation (51) to be rewritten in the form

2p+l
8Pa . P + 4A2 + A - -- =0 (52)

2p+l 6 (

when p= , and where
•2VoHI/( 2 0H)l (53)

and
VotoL2  61

A V 0 t(54)
H H

Second Stage

Humphreys [10] and Florence and Firth [11] have conducted experiments

on beams loaded impulsively, from which it is evident that the deflections

occurring at the end of the first stage are comparable with the beam depth.

It is shown in references [9,23,24] that membrane forces dominate over bending

moments when deflections are of the order of the thickness of rigid-plastic

beams and plates loaded dynamically. Furthermore, the mechanism of deforma-

tion suggested by equations (21) and (22) implies that two-thirds of the

initial kinetic energy is dissipated during the first stage, leaving one-

third to be dissipated in the final stage.
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In view of the foregoing comments, it seems reasonable to consider that

the beam behaves as a membrane during the second stage, the equilibrium equa-

tion of which may be obtained from (16) with Q =0 ,

w"v = _N P , (55)w=Nn
0

where from (40).

1/p
n = 1 + (•) , and m = 0 . (56)

It is shown later, for the rigid, perfectly plastic case, that equation

(55) predicts final results almost identical to those of equation (37). In order to

simplify the solution of (55) use will be made of Perrone's [20] observations

noted previously in section 5.1. Thus, at the end of the first stage when

p = 0 , equations (22, 34, 50) give

2V 2 t x
0 L 0 0(57)

which, when substituted into (56), yields

(2V2tol"p (58)
n + 1 DL

the average value of which is

/2V 
2to

nR + - -- (59)
p p+l D

It is more convenient to use "y" measured from the left-hand support

so that y = 0 , 2L at the supports and y = L at the beam center; and in

order to remove the non-linearity arising in (55) due to (58), a solution

will be sought using nR instead of n
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The general solution of (55) may be expressed in the following form,

W kc cR t kwc R t

W = I Gnt Co sin sinrc(kw3y)sn((00
k=i,3,5 k2 L2

where 0 o y < 2L ,and

Nn
oR- (61)

At t = tI , equations (31,22) with p = 0 and a change of variable

noted previously become

w = V t (2Ly - y2 ) (62)

and

Voy
- 0 ' (63)

provided 0 s y s L

If an origin of time is chosen as T = 0 at t = t, , then it may be

.shown that equation (60) and its time derivative subject to the initial con-

ditions expressed by equations (62) and (63) yields

32V t L2

-k 0 , for k 1,3,5,7, (64)

and

16V L
J * o0 , (65)

k 3 w3cR

where

Jk > 0 , when k = 1,5,9,....

and

JR < 0 , when k = 3,7,11,....
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Now the beam finally comes to rest at t = Tf , where tf = t + Tf

Thus, equating the time derivative of (60) to zero and using (64) and (65)

gives

sin( 1f) 1 (66)2L (1 + 4c2 L2t 2) 1/2
R o

and

k•CRTf *2cRLt
cos 2L 2L 0 (67)

(1 + 4c L2 t 2)1/2

where + sign is to be used when k = 1$5,9 .. , and - sign when k = 3,7,11,...

Making use of equations (60, 64, 65, 66, 67) the deflection of the beam

at T = Tf and y = L can be expressed in the following form,

w 1/2-H -6(A +4 A2 ) 3 , (68)

where

1_ (69)
k=1,3,5 0

and from (59),

nR 1 + peIa i/p (0
R +l (70)

Equation (68) with a = 0 reduces to the rigid, perfectly plastic case

and predicts final deflections at the center of the beam which when plotted in Fig.

3 are almost coincident with the results of equation (37) for the "upper" bound

case. Thus waiving the requirement that m should be continuous with re-

spect to time between the two stages of deformation leads to considerable

simplification with no concomitant loss of accuracy provided that the L/H

ratio of the beam is not too small.
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6.2 Strain-Hardening

First Stage

It may be shown that following a procedure somewhat similar to the one

outlined in section 6.1 for the strain-rate sensitive case, but using (44)

instead of (40), gives

6yA4 + 4A2 + A 0 (71)

where

H 2

y = V(H (72)

and the implications of a curvature discontinuity at the traveling hinge

have been disregarded. In fact, an analysis similar to the one described

in the footnote of section 6.1 indicates that P is of the same order of

magnitude as in the rate-sensitive case.

Second Stage

It is assumed that the beam behaves like a string throughout the second

stage since this simplification for the rigid, perfectly plastic case has

been shown previously to lead to final deflections which are alrost the same as

those predicted by equation (37).

At the end of the first stage, t = tI , and from equations (34) and (44)

n = 1 + 2vV2 t 2 x 2  , (73)
00

the mean value of which is

2vV2t 2 L2

0 0
n H + 3 (74)
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If the equilibrium equation (55) was solved using n = nH , then any

strain-hardening occurring during the second stage would be disregarded.

Thus, in order to consider this additional strain-hardening in an approxi-

mate manner, the final strains corresponding to n = nH will be found by

solving equation (55). This then allows a more realistic estimate of n

to be made by using the average of the value of n corresponding to this

final strain and nH *

Matching the displacement and velocity of the beam at the end of the

first stage to those at the beginning of the second in the manner described

previously in section 6.1 gives

16V L 1/2 )sin( kity)
0 (1 + 4cs 2t2 )2 2L 2 L

it3cH H 0 k=l,5,9 k3  k=3,7,11

and

8V 1/2 skC -o k(7y
H 2t2s(-) cos( _P2

O~0(l1 +4c HLt2 oL k= 2L1(5
itcH L1,5,9 k2  k=3,7,11 k 2

when T = Tf ,

c2 - o , (76)
H

and T and y are defined in section 6.1.

The mean final value of strain according to equations (13) and (75) is

16V
2

C 0 (1 + 4L2 t 2 ) 8 (77)

W4 c 2 0

where

L. [(78)
k=1,3,5,7 k0
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It is evident from (44) that a membrane force

nF 1+ VE (79)

corresponds to the final strain c given by equation (77) which was derived

assuming no strain-hardening during the second stage.

Now, assuming that any strain-hardening during the second stage may be ac-

counted for by taking the average of membrane forces nH at T = 0 (t = t ) and

nF at T = Tf (t = t1  + Tf) , then

n H = n2H + 4 0 2 + 4L2 t 2 ) 8 (80)
o 1H

nA 2 2 W4 c o

which gives, finally

1/2
wm - 16 (-A + 4A2) 1 (81)

H .3 4n

6.3 Combined Strain-Rate Sensitivity and Strain-Hardening

First Stage

If procedures which were developed for the analyses of the first stages

in sections 6.1 and 6.2 are followed, but using equation (48) instead of (40)

or (44), then it may be shown that

4p+l 2p1-l
16pya A p + 8P' A P +4yA 1+4A 2 +A- 0 (82)

4p+l 2p+l 6

from which the rigid-plastic result and equations (52,71) can be obtained by

putting a = y = 0 , y = 0 and a 0 , respectively.
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Second Stage

If it is assumed that membrane forces alone are important during the

second phase of deformation and that strain-rate sensitivity and strain-

hardening may be accommodated in the manner described in section 5.3, then

w1/2
w 3 1 . + 4A2) (83)H 03 4nc

where

nc =(i p•I/p

n + )(1 + ya2 + + 32,yA2 ) (84)p+3 n 0 14

and

n U( + )(1 + 2yA2 ) (85)0 p+l3

Equation (83) reduces to the rigid, perfectly plastic case and equations

(68) and (81) when a = y = 0 , y = 0 and a = 0 , respectively.

Discussion

It is clearly evident from Fig. 5, which is plotted using values from

equation (68) for the strain-rate sensitive case, that it is important to in-

clude strain-rate effects when estimating the permanent deformations of beams

loaded impulsively. It is interesting to note for given values of the im-

pulse parameter X , L/H ratio, and material properties, that the maximum

deflection-to-thickness ratio is smaller for smaller beams. This "size effect,"

which has been noted previously by Symonds [14] and others and follows from the

form of equations (52) and (53), is indicated in the Appendix.
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Fig. 6, which illustrates the influence of strain-hardening given

by equation (81), shows that strain-hardening is particularly important

for beams having small L/H ratios.

The results for situations where strain-hardening and strain-rate

effects exist simultaneously are given by equation (83) and plotted in

Figs. 7-9. These curves indicate that including either strain-hardening

alone for beams with small L/H ratios, or strain-rate sensitivity alone

for physically small beams, or either for other beams, gives results

which compare quite favorably with the combined case. It also appears

from Figs. 8 and 9 which are plotted for steel and aluminum beams having

the material properties listed in Table I and other calculations that

strain-rate sensitivity and strain-hardening are not important for

physically large beams having large L/H ratios.

Conclusions

A simple method is herein suggested for estimating the combined influ-

ence of strain-hardening and strain-rate sensitivity on the permanent defor-

mation of structures loaded dynamically. In order to assess the predictions

of the linearized rigid, strain-rate sensitive, strain-hardening constitutive

equation (48), a study has been made of the behavior of a beam which is

loaded impulsively and supported at its ends by immovable frictionless

pins. It is evident from Figs. 5-9 that when considering strain-hardening

alone for beams with small L/H ratios, or strain-rate sensitivity alone
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for physically small beams, or either for medium ones, then permanent

deflections are predicted which compare rather favorably with those

given for the same value of A by an analysis retaining their combined

influence. Moreover, the results suggest that it is not necessary to

include either strain-hardening or strain-rate sensitivity for physically

large beams having large L/H ratios.

It is not possible to compare the theoretical predictions of this

article with experimental results since, to the author's knowledge, no

test data have been published for the particular case analyzed. However,

it is rather encouraging to note that Humphreys [10] in a study of

clamped mild steel beams loaded impulsively recorded permanent deflec-

tions which had the same proportion of the values predicted for a rigid,

perfectly plastic beam as forecasted here for the corresponding pinned

case.

It is thought that the method suggested herein could in principle,

at least, be used to analyze beams having other support and loading

conditions and extended in order to examine the behavior of plates and

shells, though it is felt that some supporting experimental results are

required in order to assess the validity, or otherwise, of the various

approximations made in the theory.
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Appendix

Size Effect

A = constant

Consider two beams each of unit width which have the same material

properties P , D , p , a0  and L/H ratio and X but different V ,

L ,and H . 4•Vo2L2 4PVo2L2

Now, from equation (28) A = 3 2 M

o o

Thus if A1 = X2 and L1/H1 = L2/H , then

Vol = Vo2 .(

VV o•/P

Also L2 /

hence, I• Jv°IL 2 l(iii)

which using (ii) becomes

L) H 2(iv)

i.e., if a2 > a, , then H2 < H, . It is evident from Figs. 5 and 7-9

that smaller deflection-to-thickness ratios are obtained as a increases

for a given value of A . Thus, physically smaller beams are more sensi-

tive to strain-rate sensitivity than larger ones.



Table I

Material ao, psi P/H lb sec 2 /in 4  v D, sec- p

Mild Steel 30 000 0.000732 6 40.4 5

Aluminum 6061-T6 40 000 0.000253 2.85 6500 4
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Figure 1 - (a) Deformed Shape of Mid-Plane.

(b) Curvature of Beam.

(c) Forces and Moments Acting on an Element of the Beam.

Figure 2 - Yield Conditions for a Rigid, Perfectly Plastic Material.

Figure 3 - Impulsive Loading of a Simply Supported Rigid-Plastic Beam
with Axial Restraints.

Figure 4 - (a) Rigid, Strain-Rate Sensitive Yield Condition.

(b) Rigid, Strain-Hardening Yield Condition.

Figure 5 - Size Effects for Constant X in Impulsively Loaded Beams
which are Made from a Strain-Rate Sensitive Material and
Restrained Axially.

Figure 6 - Influence of Strain-Hardening Alone.

Figure 7 - Combined Influence of Strain-Hardening and Strain-Rate
Sensitivity.

Figure 8 - Combined Influence of Strain-Hardening and Strain-Rate
Sensitivity for Mild Steel Beams with the Material Charac-
teristics Listed in Table I.

Figure 9 - Combined Influence of Strain-Hardening and Strain-Rate
Sensitivity for Aluminum 6061-T6 Beams with the Material
Characteristics Listed in Table I.
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