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SUMMARY

The subject of wall interference spans nearly half a century and
remains a field of active research. The classical theories of lift and
blockage interference in two-dimensional and three-dimensional tunnels
are now highly developed for steady subsonic flows without separation in
fully closed or open tunnels. Oscillatory experiments, cases of
se~exated flow, and tunnels with slotted or perforated wa•Is can be
treated by more recent analysis, but results are relatively limited.

The theoretical background is reviewed and modern developments in the
formulation, calculation and application of interference corrections are
discussed in seven chapters. Chapter I gives a general review and lists
areas in uhic'h furt-her research is needed. Each of the more spocialized
chapters contains solected graphs of numerical data and a summary or
table of principal formulae.

RESUME

VL dtude de la question de 1' interference due i I& paroi remonte i
presque =• demi-si~cle et continue & faire l'objet de recherches
act-ves. L•es theories classiqucs concernant r interfirence due & la
portance oa au blocage dans lea souffleries bi- et tridimensionnelles

tint saint'nant 4td 41abories & un haut degr4 pour les dcoulements
subsoniques stationnaires sans s4paration dans des souffleries i
circuit entiirement ferm4 on ouvert. Les exp4riments oscillatoires.
lea 4coulements sdpards et les souffleries i parois i fentes ou
perfordes peuvent itre traitds par des mithodes d' analyse plus
r4centes. mais les risultats ainsi fourais ne sont que relativement

I isitis.

Les sept chapitres constituant la pr4sente Agardographle passeut
en revue I' historque des thdries i ce --ujet et exminent des
ddveloppements modernes dane la formulation. calcul et application
des corrections de parois. Le premier chapitre donne un apereu
general et indique les domaines dana lesquels de nouvelles
recherches sont nicessaires. Chacun des chapitres plus spicialisis
coeporte des grsphiques cbolsis de donnies nuagriques. ,insi qu',un
rds=4 ou tableau ricapitulatif dea princlpales formules utiliages. -j
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STATUS OF INTERFERENCE EFFECTS

S• H.C.Garner

1.1 INTRODUCTION

By its very natu-e the most perfect subsonic wind tunnel cannot reproduce an
unconstrained flow past a model. The problem of wall interferencelhas been of lasting
concern to experimenters and theoreticians while tunnel design, model shapes and
experimental techniques have been developing through tne years. The decision •o
prepare a monograph on subsonic wind-tunnel wall corrections was made during the
planning of an AGARD meeting on interference effects in aerodynamic test facilities,
held in Brussels in March 1959. Goethert' si- 1 monograph on transonic wind-tunnel
testing, then in course of preparation, concentrates more especially on flows at high
subsonic and lov supersonic Mach numbers. As regards wall interference, this and the
present AGARDograph are largely complementary. The slight overlap on the subject of
ventilated tLnnels is not inappropriate as there have been recent developments in this
important field. A review of progress and current p:oblems was presented by Rogers'" 2

in the introductory paper to the AGARD meeting. Further advances and new problems
have since emerged, and such facts confirm the continuing importance of a study that
has already occupied nearly half a century.

The foundation of research on tunnel-wall interference is attributed to Prandtl
(Ref.l.3; 1919). because his lifting-line theory led to many experimental investigations
with the object of verifying the theory. Moreover, the basic principles of the lifting-

line theory are essential to an understanding of the simplest calculations of wall

interference on finite lifting wings. The method of analysis for closed and open
tunnels is established in Reference 1.3. where Prandtl develops the concept of trailing

vortices so that the problem of wall interference at a lifting line involves two
dimensions only. Theoretical and empirical studies then followed in quick succession,
and after some ten years of research the elements of %all interference had been built

into a practical framework so as to influence model testing and the design of wind
tunnels. A comprehensive account of these early developments is given in Glauert's
classic monograph (Ref.l.4; 1933).

Interference effects in subsonic wind tunnels may arise from the influence of tunnel-
wall boundary layers, disturbances from measuring gea, and model supports within the

airstream, and irregularities of the airstream itself due to non-uniformity, unsteadiness

or msall-scale turbulence. In different ways these can all be important, but they are
mainly outside the scope of the present monograph. The nature of tunnel-wall constraint
can be deduced from physical principles of streamline flow. It is also associated
directly with the theoretical consideration that. although the differential equations
of the flow are the same in the tunnel as in free air. the outer boundary conditions
are different. A logical and precise evaluation of the interference flow near the
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model by linearized theory would involve firstly a solution for the velocity potential

in the presence of the tunnel boundaries, and secondly a solution for the velocity
field near the model when all the boundaries, including that of the model, are removed
and the velocity potential at the surface of the model from the first solution is
preserved. The resulting perturbations of velocity-potential gradient normal to the
surface of the model represent the interference-flow field which may be regarded as a
correction to the free stream. In practice this correction has significant vertical
and streamwise components. If the model is small enough, these can be interpreted
as respective corrections to the direction and speed of the s7.ream: if the model has
eppr.'-iable span. average values may suffice: if the model has appreciable length, the
respective components involve a streamline curvature and a longitudinal pressure
gradient with consequent corrections to pitching moment and drag. The correction to
stream direction and the streamline curvature are known as lift interference, since
they are usually associated with circulation or vorticity round the model; in most
applications they are considered to be independent of the changes in longitudinal
velocity, known as blockage interference and usually arising from the volume occupied
by the model and its waike. Although the basic problem is to determine the interference-
fl" field, this needs to be interpreted in the form of corrections to nearly all the
measured aerodynamic quantities.

P'rom Reference 1.4 it is clear that many of the early developments were associated
with lift interference, and that the concept of streamline curvature. though implicit

in tailplane interference, first arose as the essence of two-dimensional interference.
Glanert' s monograph is of more than historical importance; it continues to provide a
comparative back-ground for most of the subsequent developments. Above all it gives
a full and lucid account of the many principlas u.derlying lift and blockage interference.
Some more recent works of reference are '-iefly reviewed in Section 1.2 from the
standpoint of tunnel-wall interference in subsonic flow. Section 1.3 discusses the
contents of Chapters Ii to VII ef the AGA.RDograph, and conclusions regarding important
fields for further research are presented ii Seýton 1.4.

1.2 GENERAL REFERENCES

-* References 1.1 and 1.5 to 1. 12 comprise a representative collection of treatises
", concerning, among other important topics. the theory and applicaticn of subsonic
4 wind-tunnel wall corrections. These are considered below in chronological order.

The contribution in Reference 1.5 by von Kiimin and Burgers followed shortly after

Glauert' s- it monograph. They consider only lift interference and give the analysis

for two-dimensional flows with closed boundaries and for a lifting line in closed and
.. open rectangular and circular tunnels. By far the most important contribution is the

general solution, due to Burgers, for the three-dimensional flow field of a lifting
element in a closed or open circular tunnel. Under the editorship of Durand also,
there is the chapter in Reference 1.6 by Toussaint. this includes a discussion of
blockage interference fuller than that of Reference 1.4 without irproving its practical
=cntent. The treatment of two-dimensional lift interference in Reference 1.6 is

unreliable, but the uniformly loaded lifting line in rectangular tunnels is considered
in more detail than in Reference 1.5. In particular, the correct expression is given

•_- _- -



for the case of solid side-walls and open floor and roof. for which Clanert quoted
an erroneous resulte.

In an AVA monograph Riegels'- 2 gives s most comprehensive collection of graphs to
illustrate many aspects of lift interference in incompressible flow. These include
off-centre models, streamline curvature along the tunnel axis. and types of mixed
boundary to achieve zero interference. With brief discussion of some sixty references
of later date than Rcferences 1.4 to 1.6. the monograph represents a major advance,
especially with regard to circular and elliptical tunnels with closed, open or mixed
boundaries. Solid and wake blockage are also considered in some detail. Of the same
period there is a short informative article by Katzoff' s that deserves to be read by
all wind-tunnel users. These two references highlight the impact of research on wall
interference in the dozen years following the preparation of References 1.4 to 1.6.

Two valuable works on wind-tunnel practice by Pankhurst and Holder 1 - 9 and Pope- .1

appeared early in the following decade, both of which give full accounts of wall inter-
ference corrections. Three-dimensional lift interference is regarded primarily as a
function of tunnel shape and wing .sran, apart from the treatment of tailplane inter-
ference. Blockage interference effects, including the buoyancy correction to drag due
to longitudinal pressure gradient, are well discussed. In mavZ configurations of the
present day, however, the £nfluence of streamline curvature on lifting wings is usually
much more important than the buoyancy correction, and in this respect References 1.9
and 1. 10 have both been overtaken by developments. By way of contrast. Pankhurst and
Holder 1 9 give more inforiatinn on octagonal tunnels and alternative methods of applying
the two-dimensional lift interference corrections, with particular attention to the
neighbourhood of the stall. Pope'" " however, gives a fuller account of corrections
to downwash in the wake of a lifting wing and includes some numerical data on streamline
curvature; moreover, he gives more discussin of reflection-plane models and the case
of asymmetrical spanwise loading. Pope gives considerably more graphiLacl data, but
perhaps concentrates too much on lift interference for uniform spanwise loading in
conjunction with the equivalent span of the rolled-up trailing vortex; howe.-er. elliptic
spanwise loading is by no means neglected. Pankhurst and Holder include some particularly

useful tables and reinforce their more limited graphical data with tabulated values;
by contrast. Pope includes no tables but does give illustrative worked examples of

calculated interference corrections. Both works serve the wide needs of the wind-
tunnel operator most admirsbly and carnot be judged frsm the standpoint of wall
interference alone.

It is unfortunate that ventilated tunnels sere subject to security classification
when References 1.9 and 1.10 were prepared; their most serious limitation arises from
the intensive development and wide use of ventilated tunnels for transonic testing.
Goethert' s- • monograph deals comprehensively with this subject for the first tire.
Subsonic wall interference is reviewed in somme detail. There is a good physiral
discussion of solid blockage in open and closed tunnels preparatory te a chapter on
tunnels with longitudinal slots. The replacement of the singular boundary condittions
of discrete slots by a homogeneous one is discussed, and there follows the general
conclusion that with inviscid flow the open =rea ratio of slotted tunnels for zero
interference decreases exponentially as the nuobsr of slots increta*:s. The homogeueous
boundary condition is generalized to account for slot depth sud viscous effects such as
friction or local separation Inaide the slots. •oethert argues that the slots are -

This. the cnly error the author has detected in Reference 1.4. is C-i3scssed in C(eiter III W R
(S&tion 3.2.2).

- - - 1
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and the tunnel are two-dimensional: again the theoretical results are limited to two-
dimensional and circular tunnels. Finally Geethert points out a basic difference
betwendr ndtofo perforated tunnels (and iIdeel fos lotted tunnels wi' h icu fetsThe

Sbetuendr codiin o aprforated t unnels (and ideedafrl slotted tunnels withoticoseft.Th
viscous effeets) bebaves like that for a closed tunuLl In the distant wake of a

Ilifting wing. Hence the Trpfftz con-dition that the downizab at large distances behind
the wigis twice aslargpe axith downwarsh at the plane of the wing does niot hold true.

* The icportance of ventilated tunnels is emphasised in the account of subsonic wall
interference by Allen anti Splegel "' C~ losed and open boundaries are regarded
virtually as special cases of slotted or perforated walls. The theoýretical lift and

* I blockage interference in tunnels of circular section are used to illustrate the
fundamental characteristics of tne t-so types of ventilated tunnel and the manner~ in
which tbhey are intermedistv between closed a-ad open tunnels and can schieve zero
interference.

-The previous references give very little attention to wind-tunnel interfe-rence in
Junsteadly experiments. Uol!ýneux 1-12 has, recently vritten a -useful review of thre
I problem-s. For dyrnsr.ic investigatione there is a acre extensive range of interference

effects which include resenences vzsoc~ateil with transverse acoustic wives, the tunnel-
drive system and induced flo-,s externa! to in op-en jet. There is also the possibility
of random disturbaaces 3T. a ventilated xorki;*Z. set~tlon from t~urbulent mixing at. the
downstream end o~f slotted or perforated walls. Refe-rence 1.12 giies a brief discussion
of other aspects of wall constraint on oscillating w!,e.lz and pro'rides a practical
introduction to the subject.

* 1.3 PRESENT KNOWLEDGE
From iasny aspects of wall interference there have been coasiderable advanesz since

the preparation of the important works of reference discussed in Sectlon 1.2. Ohaptsi-2
II to VII of this AUhR~ograph incorporate such advances amd also include originall
contributions and unpublished numerical data. Some of these recent develozweents are
outlined below in relation to earlier achievements.

1.3. 1 Li ft Interference

For two-dimensional tests in closed tunnels 'the most well-known corrections apply
4to ~small. t%-in wings and neglect terms in asertifoil thickness to chord ratio t/c and

in (c/b) 4 where h is the tunnel height. But Goldstein's5 L 13 analysis includes
interactions of thickness and incidence in wall interference, such as the effect of

* -thi-,.ness oDn lift intorference a2d 'tbat, of incidence on solid blockage. In Chapter 11
his tbeor' is presented in a sisplified form for symmetrical aerofoils. so that the
ccrrections include terras in (c,/h) 2 and (c/~h) 4 with coefficients ligiearly dependent

-~ om tic. Tha formulae are easily generalized to incorporate first-order efiectze of
(.i ~ umpressibility sad wtme allowance for viscous effects. The cosplete correctiovs

are applied to the systew-itic experiments of Knecbtel 1ison the NACA 44!2 profille
witb oncoura~ing success.



There is a tepdencyt in theoretical work to express wall interfercuc v in terms of
correction factors to the weasur4.d forces. In practice the interference m a lifting
aerofoil1 is interpreted acre appropriately as iccresental corerections to the measured
quantities. Including the incidence. Ibis ie particularly true of aerofoils with
hinged flaps. The theory of Preston and Mansell 1 13 is developed to give the necessary
correctionrs to Incidence. lift. pitching mosent and hinge momrent. A later thecry by
de Jager and van do, Vooren' 1 4, also discussed in Cha~iter 11. considers the non-livear

charact;'ristics of flaps at large angles of deflection for vwhich thb interference
corrections are shown to change siga.

side-walls the interference corrections are large, cf order c/h, and of dubiuus accuracY

wihsolid side-walls, when the working section h=as pen floor #and roof between a closed
entrance nozle and a collector dcwnstre=-. The usual boundary conditioni ImPoses the
su~e constant pressure at the two free boundaries. atof'?inrdcsdifferential
pressurest3prvnsplaeath olto.adrersccodtoshewl

Chapter III draws more heav~ily than other chaptuers from classi~cal theary as compiled
bz' G .aaert 1

. By 1935 the basic theory for simple lifting-line w~ngs with a tail arx
was available for moat tunnel shapes~. Improved methods have been developed subseqzuently
for c-alculating the interference upwash in rectangu'ar and circular t~ninels, but the.
basic theory survive-;. New tunnel configu.-uricas have necc-4ssitated th6 theoreticsd
development for closed octagonal tusnnils by Batchelor. 1 8 *aad Kat~off ct- &L"" 1

iiave aasdthe probler; of open ci,-cdxar tunnela o~e finite jet length. The ieetirsg
cif half-models mounted so a raflection plane hiLs in effect. introdn-sed at~er £~c
of tunnel; the bipolar shapes correspor~ing to oircular tunnglv havz been treated wiflx'.
clos"' bnindariea lay Sivells end Sa2Iail 19 and with alien boundaries by Da71,son and

Ros-nhadl20, Other develop'rents fcr the lifting-line ;model of a wing wifth tall
include off-centre zodels consIdered by Silverstein and Uhilte 1 21 and interfureice
cor.-_tions on gzound effect by IBrowua 1*2 vhz~t the floor of the tmneiA Is usEd to
simul~ate the ground. The ultimate refiine~aet of the 1lifting-line treatment In that of
Sanders and Poumdsxrl 23 for closed rectangular tunne-le.

7he t.ain devaelomets of three-d-taensionall zift interference In the past tvc-nty
years have cansarned the sweptback. and later sleeder, wings designed for high-spcted
flfght- The lifting-line nodel na lonjer spplies, so that Lk different x~preseatction
of the lifting wing by diutr~kbutEd vortices is needed. 2,cgether with wore 631abcrate
methoda of inter~,reting tbe izterferec-ce upmyash. Difficulties of presentation in
Chapter 11. arise froa the wide variety Gf vort:! models. nctations anld proredurest for
obtaining the interfefe~tze -urrections. The models vary from distributions of li~ting
el-Amets !Along the 2ocus of -sectiona] stresawiso ceatres of Vressure uaW~ by Akcmi 2F

to the point concentrations of lift used by Ditzoff and Hinuamb" 2s. The fft.rw-lat!,)a
varies frza k-he admirable a~pqx-_xate expi-osolons 1-2 Reftfrence 1. 19 to tkat of
Reference 1.26 which ivquires the usc ef cae of the lifting-surface theories thct have
cam tn repplece b~e imadequats lift'tng-line tbeorrj.. Allowace for Mach nei~er. V Is
includ,=d. wherever possible. by using the Prandtl-GlaLuert analogy &ad firsortin; the
Vpropriate power of 06 = t/(! - N2 s& a factor in the gecsetric and aerodyuiaicj
ptrwmters of ýin equivaleirt incompret;itle flow. In this wty the results can usUVAily

- ---- --- V_



10

be Dresnuted for a general s'ibsonic Mach auaber and in a unified rotation. The special
ý,-ao of slEnder wings Involves a distributlo'* of lifting eltserts alcrg the axis ofI tbt-nmel. &ad Pi this s6use oan be regerded as an axtension of the t~beory for small
win&.-. Derrdt1 *2 h as giren an exact theory for slender wirgs, to which a useful
shopif~ying aporoxifttion can be made.

There are some aspects of lift-interfereate correction that are much less satisfactory.
jThose arise primarily through defý.rcenctes or complexities in the theoretical tretutmentii of fte nr~crespondizg problem ir, un-coowtrinssd flov. Three particular instances. when

the Ccrons-m are Quite larce, are cosrirol-sirface. hinge moments, vortex-induced
Yawing moment and aing-body cockinatione The hinge nowmets invol7e uncertainties
Sif large viscoue effecats. and tt~e correctiooZt of Bryant and ar-nier'* 28 allow for these

vna crude t~ae lineilow, basi. Wire sericnm *re thought to be the shortcomings of
j tOs 1vterfvrence% corrections týYawin 2oseant. pA~rently all existing formulae forf ~these *ar deriv'A from l1Stir&liae theory. Likewise the theory of wail interference

or. lifting wing-body combinations i ndqae n h uhrcnldsta h

It is obrervid experimentally by Knight and Harris 1. 29 on wings of moderately highIaspret ratio. that the l)xterterenc. paramettor for the drag coefficient C., is closer
to the lifting-line correction than Is the interference parameter for correcting the
Inctieence a;- that Is to; say, the str,3almlie curvature associated writh the stresswise
extent of the oodel bans a larger effect on Ma than on AC However, circtmstances
are dlff-Prent for sleader wings with leaiding-edge separation. With the loss of
le~aW!n--dge suction the effects of streamline curvature on Aa antt t3CD becom
equally iceiortant. but the evaluation poses An unsolved non-linear problem.

scatgenralforL wih prtlglarempasi anformulae that. are applicable to general
subaic achnumer.gewal anfrm nd x-sgeof tunnel shape. Simplified

aetiieds of eruaiateInterference corrections are developed where possible.
E~if,,.vinrisns -eteen he esuts f dffew-tmethods are quite encouraging
andsho vllchof b= re sefl Woxiiatonsandwhich give primarily a rapid

estiateof he ildr o m~tud ofthecorrections.

1.3.2 Blocki~ge Taterfereace

M2apter V ia based o assumtions that the lift is not large and that solid and wake
tlockage effects are Independent. It further assumes that only longitudinal flow is
subject to blockage interference, which is only true if the model is mounted in the
centre of the tunnel. For closed boundaries the condition of zero normal velocity Is

* reliable. The corresponding assumption for an open-jet boundary is one of constant
pressure: sixing fet r ignored and a linearized condition is applied at the
undisturbed boundary. Moreover, -it is frequently assumed that the jet is of infinite

t length. but in practice the nozzle and collector are relatively near the model and may
strongly influence the constraint corrections" '.It follows that th pe-e
corxections. thonzh usually smaller in magitude, are less somdly based than those for
a closed tunnel; furtharmore. there are few experimental data from vhich to assess

I axe validity of tbs. estimated corrections for open tunnels.
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With these limitations the range of available corrections is fairly complete. I
Two-dimensional solid and wake blockage are discussed by Thom in Reference 1.30, and
Goldstein 1 13 gives a more general treatment including terms in (c/h) 6. With
particular reference to the work of Herriot1 31, the solid and wake blocksge corrections
to the usual aerodynamic coefficients may be calculated with some confidence for
three-dimensional models in tunnels having a wide range of rectangular cross-sections.
The circular tunnel also presents no great problems, but for elliptical and octagodal
cross-sections certain simplifying assumptions need to be made to relate these to
corresponding simpler shapes. Allen and Vincentit 32 give a sound basis on which the
effect of compressibility at subcritical Mach numbers can be incorporated simply by
linear-perturbation techniques; even the presence of local regions of supersonic flow
about the model, with attendant shock waves. may be allowed for in an empirical manner.A

Thus the topic of blockage interference on small streamline models is in a reasonably 4
satisfactory state. though there are instances in Chapter V of differences of approach i
ihich can lead to somewhat different answers. These, however, are the exceptions in an

area which after nearly forty years Is. within its limitations, approaching finality.

The bulk of established interference theory is concerned with streamline flow. It
is implicit that the wake is thin and that it can be taken to originate from the
trailing edge of a wing or from the rearmost point of a body. However, there Is a
growing interest in flows which depart significantly from this classical pattern and
also some e'idence 133 to show that new, and sometimes surprising, interference effects
may arise.

It is perhaps worth emphasising that high lift does not, in itself, lly a departure
from the classical flow pattern. The principles of the classical interference theory
of Chapter V can, therefore, remain valid, although wind-tunnel models ma give rise
to larger corrections than are strictly within the scope of current theories. High-
order calculations of the interference field are straightforward in principle, but it
may well be impossible to interpret such calculations usefully in terms of modified
free-stream conditions. In any event, it is plainly dangerous to assume that large
corrections can be estimated satisfactorily. To do so implies that the entire flow
field could have been calculated with fair precision at the outset.

The extension of classical interference theory to a non-streamline flow is never
straightforward, even though the appropriate corrections may be small. The distinguishing
feature of a problem of this kind is that it requires, as a first step, the establishment
of a suitable mathematical model of the given flow. The dominant physical characteristics
of the flow must be described adequately by this model, but It must remain simple
enough to admit of further analysis. Some typical examples are considered in
Chapter VII. in particular Maskell' s1. 33 theory of blockage effects on two-dimensional

and three-dimensional bluff bodies and on stalled wings in a closed wind tunnel. --

1.3.3 Vestilated Tarnels

The development of the ventilated-wall tunnel arose from the desire to exploit the
opposing interference effects associated with closed and open boundaries; by combining
these in some Judicious manner zero wall Interference might be obtained. The subseqaeot
attainment of transonic test speeds seems to have been a most fortunte by-product, with

its own rapid exploitation. The development of general theories for the calculation of
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wall interference stems fram the concept of replacing the iafxed botriary conditions by'
a single homogeneous condition valid over the entire wall, as discussed in Section 1.2
(Refs. 1.1 *ad 1.11),. Baldwin eA al. 1*3" have constructed a coditicn for inviscid orIviscous flow at a ventilated boundary. The actual geometry of a slotted wall and the
degree of porosity of a slotted or perforated wall appear as two parameters In the
homogeneous condition. The validity of this simplification has been established by

- csomparison with earlier and wore exat calculations of Pistolesi 1. 35 and Natthews1 "'
for .i circular tunnel with disrrete slots. and by examination of experimental data for
the porosity parameter as in Reference 1. 37. Thus the way is open for tho calculation

:1 of the interference corrections dus4 to lift and blockage; the latter assumes great
importance as the Mach nusber approaches the region of high subsonic fl - ff.

During the preparation of Chapter VI some calculations of two-dixensional lift
interference have become available; Holder-1,3. using thie boundary condition of
Reference 1.34. evaluates the Influence of slot geometry and porosity for a smaill
two-dimensional model in a slotto.~d rectangular tunnel. Two-diazusional blockage
interference is covered fairly c~oapletely in References 1.129 sad 1.34. A similar
situation exists for small three-dimensional sodels in circular slotted tunnels
(Rats. 1,40 and 1.37), but the viore Important cases of rectangular tunnels with slotted
floor and roof are rather *ore difficult- to calculate. Dai~s and Moore 1. '0 give a few
restats for lift and blockage interferezoe when there is inviscid flow rnear the sl',ts,
but i-portant extensions to their anal~ysisa have appeared recently in References 1.41

and L 4.2. Hlolder haz given an*2ytical. expressions and represemtative calculations
of lift interferenc-e to satisfy the hcmogeneouz condition including the porosity
Parsimeter. Acum1 ,42 baa steplifed the expression for the solid-blockage factor- in

jReference 1.40 and gives results for a wide range of recetanguclar cros,)-sections. The
Influence of viscous slot-flow or! blockago Antererence does not seem to havro been

considered for this type of tunnnel.

j The theoretical approach to Interference corrections in a rectangular ttunnel, with
all four walls slotted Is less satisfactory-. Lift and blockage interference can be

testimated from Chapter VI on the basis of limiting ralues for elosed and om-pletely
open tunnels by allowing an analogy bettzees the effect of slot gconetry in circularI iand other tunnels, A similar bub.5 !:ught be used to ersticate streaml~me curratture,
but there is insuffirient reI'able infurmation for azzy type of slotted tunnel.
Solutions by electrical analogue should prove useful tere, and a proaising start has
been made by Ruxshton in Referesece 1.43 and the subsequent dcrialopeent of a three-
dimensionitl netwaork. Little exp~srzim.4ital information e7xists on the valre of the
Porosity parameter defining viscous effe-cts' near the slots. abd in the absezice of this
the theoretical result~n cannot be applied with mny precision. More c1pericrllmts wr2
essential, becauze e6-timatsas of both lift and blockage Initerferenceo =4-o for idea'. wall
condit-ioiis may bE greatly Un eror.

ate perforated wall has distinct cnaracteristics. mnntiorzed in Eection 1.2 andF1  diecussed more fully In relation to exverlmzent in Reference 1.1. The boundazy condition
is a limiting form of that iasod for a slotted wall n'th viscous flow as the 31ot
spacing terid5 to zero. Paraeetri:- analysi s suggests that the perforated tunnel behaves
more and more like an open jet at sonic flow is i.proached. Theoretic.0 calculatio-ns
of interference correct-ions in terms of the poroilty parameter are itvailable fer

Tlifting and aon-lifting tw-dimtnsioaxl models Pnd fairly small winza in circular
tunnels from the work of Gc~odwn In Ref'r~-inces 1.44 and 1.45 apd later develoluewts,

-give In Reference 1.46.
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Blockage effects, how-over, have not been considered in a rectangular tunnel havivs
two opposite or all four walls perforated. A lifting model may be treated as a special
case of Reference 1.41 when the floor and roof are perforated. If the side-walls are
perforated also, a graphical procedure in Chapter VI Ma be followed. but this Is
somewhat unsatisfactory as the swusre tunnel is considerfd by analogy with a circular

1.2. Ms:aud intf R oligwns fhg spc ai cnb ratdfi

Most of Chapter IV is concerned with oscillatory problems. but scme consideration

satsfatorly;formor slnde wigs nlya quasi-steady theory is available. but. the

There are rarely formulae or tables for corrections in oscillatory experiments. and
Chapter IV is much more concerned with methods. some of which involve heavy computation.I ~The subject is in a fairly satisfactory state ntnerica] ly as regads two-dineasional
closed tunnels. Time,% I gives the basic theory for incompressible flow.
coapressibility introduces the phenomenon of acoustic resonance which io imcluded in
the general setboil of Runyan et &L',.1 a For closed three-di~ensionei tunnels. also,
there is a. convenient theory. provided that. the proditct of Mach number and frequency
psametcr J& miall: the basic idea stems from the work of Goomal- ", by which the
unsteady interference upwath c-aa be derived from its distribution upstream of the

r ~model in steady flew. The respectlve applications to closed re?.,augular agd circular
tunnels by A,-*, in Referesees 1.50 and 1.51 suffice for incompressible flow.
Chapter IV includes a ceiieralization fcr subsonic Mach ntabers and small frequtency
parmeters. Act al 52~ gives sore e~liLcit results for slowly oscillatirst slender witngs,
but even for slender wings there is no method when thie Mach number atd thft frequency
paramaeter Ptre both fairly large. whatever the tunnel cross-sect ion my be. Fortunaitely
the frequency wasacter is usually small for -experiments* on rigid models in subsonic
compressible flow. but corrections to flatter tests pose a difficult problam.

Mhe pmtI4,l for veatllsted t~unnels are also dtfficult and perhaps ogrepsng
Wih-,3 h"s rtviewed expvtgental -t~st sbtained In slotted-wall tunnels with 51&,s

open and witfi slots sesled. *Whi rzare~u sons p±ticulArly large int~erfererice ef!i~ct*
cn damping -derivatives. Wnorttwately the steidy interference upwash i* ventilated

tunnels has An-t 7Pt beeu foauir.ted in suf21cient detaii to be ýused on tMe basis of
Reference 1. 49. Novertheless. a likely explanation of ihe obeerved differences in wall
Interference bstusen closed wid slotted tunnels is rerorttd in Caipter IV thr~ugh an

exeso fthe classaica~l tbft.ry or lion interference. ~~i em

likely to lead to increased arnalytical, alUebraic and comutational complexity. one
is tempted to wonder vt~etber it beter alternatkie would not be to use direct nmuerical
solutions of the (4 tfferential equations or' analogue experiments. such as those

envisaxed In Ref'erenceo 1. 17 or in coursu- of develcpaent as an extension to
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Acommon feature of the examples dealt wihin Chapter VII is that they are concerned

Iwith fosdfeigmtral ruteesnilystream-line flow. with small
Ilift. ftepeiu hpes h lwps jet flaps or slender wings with leading-

edge vortices can be regarded as an extension of the classical streamline flow. The
aprpitIahmtclmdli tl vortex sheet, but one which includes novel

I features that reqdire special attention when the effects of the interference field are
to bee interpreted. Maskeji' s* sr' treatment of a three-dimensional Jet-flap in a closed
tunnel Illustrates this group of problems. in others. for example bluff bodies and

j ~stalled wings (Ref. 1. 33), a thick wake of uncertain structure is the dominant
characteristic of the flow patterns. The main problem is to 4 dentify those Droperties
of the wake that are most significant, and 'then to devise a mathematical model that

4 reproduces them with sufficient accuracy.

A th-Ird group of problems is concerned with configurations for vertical or short
take-off and landing, in which lifting rctrrs, fans or jets may be coibined in various
ways with wirgs and bodies to form systems in which the interference between the various

q constitucnt flows is fundamental to the performance of the system as a whole. Heyson
has given linearized theories of tunnel-wall corrections for lifting rotors

* ~(Ref. 1.55) and- other high-lift nustems (Ref. 1.56). In the latter case there are serious
unresolved difficulties, both in the construction of a suitable mathematical model of
the flow and In the interpretation of the effects of wall constraint on the mutual

.interference between the different elements of t-he system. The subject is well re-

viewed by Teuplin in Reference 1.5W which is compleaentary to Chapter VITI.

1.4 OUTSTANDING9 PROSLEMS FOR RESEARCH

There remain unresolved difficulties In subsonic wind-tunnel wall interference, onlyIi a few of which are likely to be over~come by mathematical analysis alone. in sacme
instances the most promising method of solution may well be one of numerical analysis

I ~by a finite-difference techpique: expriments by electrical aualogue offer an alternative
approach. In others, the primary handiimp is the lwac of a nathematical model or
definitive boundary conditions, and Progress say necessarily have to stem frcon
experimental researcli. Arart from the thirteer. general problems grouped be-law., there
Is scope for wlnd-rtimnel investigations to chenk the applicability of existing
towrM.tcal methods of interference correction-. notable exemples are the non-linear

t~a-imes~cnultbeory of &Aerofoils 7,1*h trailing-edge flaps at 'large angles of
defleet'on l- ~ liftinug iE1eader ~rAnrS Inl closed t-uM' - 2 1.2, 'hinge 20Meus from
threc-diveensional control testing1 . 29, and blockage luter ference on bluff models for
non-aeronanticel purposes!-3

Clo.;ed and . en tunnels

1. Two-dimensional cambered Perofoils are oftens tested a. 4igh sub--critical Utch
niambers. In such cuses the odffects of t/c and elb ov wall iaterference are aiggravated
by compressibility. It is desirable to seek a b~etter solution to the zzon-lizear
matheitatical problem than tiie relatively simple extension to Reference 1.1X3 suggested
ic Ctupter II.
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2. The conventional correction to yawing moment is calculated on the basis of
lifting-line theory. In Chapter III this is shown to be problematical for wings of
moderately small aspect ratio, and a precise treatment of the interference correction
demands a reliable lifting-surface calculation of the spanwise distribution of
leading-edge suction. Such a development for subsonic flow would have many applications.

3. For slender wings with leading-edge separation the correction to drag needs
clarification; it is likely to be larger than in cases of attached flow. There is
scope for a non-linear theoretical treatment of constrained flow with leading-edge
vortices.

4. There exists no satisfactory method of applying residual interference corrections
to, say, the pitching moment on a lifting wing-body combination; the theories
discussed in Chapter III are thought to be of little help. As the corrections are
unlikely to be very large, there may be justification for an adaption of slender-wing
theory.

5. The uncertainties of blockage interference in open tunnels impose considerable
restrictions on model size (Chapter V). The problem becomes more acute when bluff
bodies have to be tested in open tunnels. It is important to establish whether the
corrections for non-streamline flow increase as dramatically in open tunnels as in
closed tunnelsl- 33

6. The discussion of Reference 1.56 in Chapter VII suggests that a convincing theory
of wall interference on high-lift systems may require an improved mathematical model
and further insight into the interpretation of corrections. This most novel aspect

of wall interference may require inspiration from experimental sources.

Ventilated tunnels

7. There are insufficient numerical data on the streamline curvature induced by
slotted walls. Even for rectangular tunnels there is no image system; the problem
may best be solved by means of a three-dimensional electrical analogue (Chapter VI).

8. It has been demonstrated theoretically, and is illustrated in Chapter VI. that
viscous effects near slots, represented by a constant porosity parameter, have large
influence on lift and blockage interference. More experimental work is needed to
establish an empirical formula for the porosity parameter appropriate to various Mach
numbors and types of slot geometry, and to verify that its variation along the tunnel
is snall enough for the theory to apply.

9. There appears to be no information on three-dimensional solid-blockage Interference
in perforated rectangular tunnels. Each arrangement of perforated walls poses a
distinct problem that should be amenable to mathematical analysis.

10. The problem of lift interference in rectangular tunnels with all four walls
perforated is considered by a crude graphical procedure in Chapter VI. The interference
upwash in the transverse plane of a lifting element is not expressible in terms of a
two-dimensional flow, and solution by electrical analogue is recomended.

Unsteady interference r

11. One mathematical definition of the linearized problem of an oscillting three-
dimensional wing in a _absonic clo__ rectangular tunnel is given in Chapter IV, but

4S
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numerical analysis may well be prohibitive when neither Mach number ror frequency
parameter is small. A new approach to this problem might be sought, say, for slender
models.

12. As discussed in Chapter IV, there have been mathematical formulations of the
interference on an oscillating model in a perforated tunnel, but the possibility of a

phase difference between the pressure drop and the normal flow through the perforations
has not been considered. This possibility is worth examination theoretically and
experimentally in two-dimensional flow.

13. More theoretical work is needed to establi__h a method of evaluating the large
interference effects on oscillating wings in slotted-wall tunnels', . It is desirable

S* to examine experimentally whether or not the effects are smaller in perforated tunnelsW and how they can be minimized in existing ventilated tunnels.
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NOTATION

a speed of sounn.

a1 lift slope = •/8m

a2 I
n .oefficient in chordwtse load-in frcn @quntion (2.12)

b breadth of tunnm%

b' twice the borizont,01 projection of a corn..r fil:0.t

hi It

b 2

bn coefficient in spanwise loading from Eqaation (2.61)

c chord of aerofoil.

C crosa-sectlonal area of tunnel

zD drag coefficient = (dr',g per unit span)./jpJ1 . 1"
CH (hinge mocent per unit a,,n)/ýpU'E

2c 2

CL lift coarficdi-nt = L//oj2c

Ca pitching-momant coefficient2C2

Cn i>•.zction af aerofcil 1)rotile i Esation (2.37) (n = 0.1,....)

d distance of serofoll from floor of tunnel (Pig. 2. 1)

fnctioa of aerofoil camber 1".ie in Rzatin (2.M34) ( = 01,2,....)

E ratio of flap ch.nd tC aerofoil chord

fur-tion &efined in Equation (2.1Z)

G1 finction defired ir. Equation (2.73) f
hei•h•t of turne!

twice the vertical projeettoz of a c-r4er fillet

be Juuivzlent helgbt of tunnel (Section 2-2.3)

vortex strength per unit. leugtb
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K strengta, of vortex

[ 1 non-dinevoional aerodynamic lcading in Fuation (2. 14)

1 length of opeg working section (Section 2.5)

L lift per unit span

U Mach number

Spitching moment per unit mpan about axis x = Ic

•c pitching moment per unit span about axis =- =

p pressure

fR rsdiub on :ircv' - tmnnzl

S ares of planform of model

thickness of acrofoil

u x-ccmponew of velocity

ut perturbation in horizontal velocity at upper boundary of Jet (Section 2.5.4

U velocity of uncdsturbed stream

w z-cowp3nent of velocity

w+• value of w in distant wake

x distance downstream of leading edge of aserofoil

centre of pressure of aprofoil in EQftation (2.8)

xo distance of model fzox entrance nozzle of open-jet tunnel

X x in transformed plane

y spanwisv disteoce from centre of tir.el

z distance upwarde from leading edge ot aerofoli

z transformed co-ordinate = fgz

a incidence of aerofoil (in radians unless othe*'wise stated)

ion



I-
=a

27
S = (-M2)i

r -oirculeaion around serofoil

A prefix denoting increneut due to wall correction

zomplex variable = X -& iZ

8B chordwise raraneter defined in Equation (2.1.)

X parameter 3b/.Ta•c used IW S-t-ion 2.5.2

I#a viscocs cjrrectior factor !n Equation (2.77)

,b vssceous currection factor in Eouati-n (2. 78)

angle of flep settinG (in radiancý

Sp density of undisturbed stream

velocity potential of tto-dimnnsional flow

Y stresa. function 3f tr'-dizns'onal flow

I Subscripts

i denotes quantity induced by tunwclI wtnlis.

o denotes free-streaw aerodynsuic coefficient.

T denotes theoretical value.

1I
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LIFT INTERFERENCE ON TWO-DIMENSIONAL WINGS

H. C. Garner

2.1 INTRODUCTION

In any two-dimensional, steady, isentropic and irrotational compressible flow the
velocity potential • satisfies the differential equation

/u2 ' ~2(p / r2 '2  ý 2uw B24a2)-5y •--+ -- z a xz 0,(2.1)

where u Z 4?/Zx , w = 3/az and a is the local speed of sound. The linearized
form of this equation

'a24, Z2ý

(1-M 2) -+'-- = 0 (2.2)

follows from the simplifying assumption that terms of second order in the component
perturbations of a uniform velocity U = Ma are negligible throughout the field of
flow.

The problem of wall interference arises because the differential equation is subject
to outer boundary conditions dependent on the working section of the tunnel. For
example, the flow must be tangential to the wall of a closed tunnel and of constant
speed at the boundary of an 3pen jet. More complicated boundary conditions are used
in cases of ventilated tunnels which are treated separately in Chapter VI.

There are two distinct mathematical approaches to the problem. One is to obtain
solutions for 4ý for a particular model both with and without the boundary conditions
imposed by the tunnel. Through neglect of viscous forces arid many other approximations
the potential solution that satisfies the extra boundary conditions cannot be identified
with the real flow in the tunnel; large differences between these would cause major
uncertainty in the interpretation of wall interference. The more realistic approach
is to assume distributed doublets and vortices within the model compatible with its
shape and the aerodynam.c forces measured on it. The interference is then :.dentified
with the potential flow which, when added to the field of the model, satisfies the
outer ucundary conditions.

The lift interference is that associated with the circulation round the model.
When the model is a thin aerofoil, its field can be represented by that of a distribution
of vorticity along the length of the chord. The resulting potential flow within a
closed tunnel thus corresponds to the infinite. array of vortices partly illustrated
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in Figure 2. 1. The interference will then depend on the height h of the tunnel, the
Mach number M * the chcrd c and lift distribution of the aerofoil. and its incidence
a and location d between the walls of the tunnel. When the aerofoil is thick, 4.ts
field involves a chordwise distribution of doublets as well. The lift interference
and blockage corrections (Chapter V) then interact.

When the linearized differential Equation (2.2) is used, the transformation

X = x,. Z = z(!-_M2)½L = •z(2.3)

Sis made, so that the potential in the new co-ordinate system satisfies LWlace's

equation for incompressible flow

- +2 = Z 0 (2.4)

It is convenient to regard the perturbation potential (1ý - Ux) as un':hsnged in the
transformation. Thus dhord and vortex strength are invariant, while the incidence of
the aerofoil and all lateral dimensions ace reduced by the factor ]B. The cospon.ent
perturbDtions of velocity in the (X.Z) plane are unchanged in the longitudinal
direction and increased by the factor A-' in the lateral direction. In accord with
the lintarized boundary condition the velocity ratio w./U on the aerofoil is reduced

--* to match the inclination of the transformed surface dZ/dX = /(dz/dx) , so that in the
(X, Z) plane the undisturb6d velocity and the local upward component are respectively
83- 2U and 6-'w . Thus the linearized solution is readily expressed in terms of that
of an equivalent incompressible flow. The problem involves the evaluation of j6-1wi
the vertical velocity induced by the image system of Figure 2.1 with F , h . d and
,c replaced by -2 U3 , 6 . 8d and Bcr respectively.

The tunnel-induced vertical velocity w, has to be interpreted as a number cf
corrections to measured quantities, such as incidence, lift and pitching moment. The
incremental correction to incidence is a somewhat arbitrary average value of 1gld
radians. After this correction has been applied, the residual upwash field is
converted into "residual" incremental corrections to the aerodynamic forces. The
evaluation o! these corrections. which are as important as the incidence correction.
is greatly simplified if the residual upwash field of the image system can be expressed
as a uniform streamline curvatare along the length of the model. 'hen this is too
approximate, a fuller mathematical treatment is necessary; further analysis is then
required to isolate the individual corrections and to relte them to the measured
qcrantities.

Provided that the incidence and aerofoil thickness are small enough and the whole
flow field is subsonic, then linearized theory is valid and the problem of wall
interference is relatively simple. When. however, the incidence of the aerofoil is
no longer small, it is necessary to use conformal transformation of the general
equations of inviscid flow, even though the aerofoil is thin (Section 2.2). Such
applications are restricted to incompressible flow. for which -Equation (2. 1) reduces
to Laplace's equation. Likewise the treateent of a thick aerofoil between parallel

" j• �walls involves conformal transformation (Section 2.3); some allnvwance for cGnpressibility
-Z, may still be incorporated by means of the equivalent incompressible flow. The Sore

difficrItt non-linear problem of compressible flow has received little attention.

* _ _ _ __-_ _ _ _ _
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Other instances of wall corrections on two-dimensional models arise with regard to

control surfaces (Section 2.4) and open-Jet tunnels (Section 2.5). Problems of
interference on aerofoils with hinged flaps are treated either by means of the
linearized equations or by a non-linear theory for incompressible flow. Mhe linear

treatment includes corrections to measured hinge moments, which may be subject to a
semi-empirical factor to take account of large viscous etfects. For very large frs-
deflections the non-linear theory shows a marked reduction. and even a reversal in
sign, in the corrections to lift and pitching moment. An aerofoil spanning an open
tunnel is strictly a three-dimensionrl configuration, since the lift falls to zero at
the boundary of the jet; nevertheless, work on this problem is reviewed in Section 2.5.
It is also necessary to consider the interference on an serofoil mounted on solid
side walls or large end plates for which it is usual to ignore any spanwise variation
in lift distribution. The analytical solution and its physical interpretaticn are
complicated by the finite length of cpen working section which is bounded by a closed
entanmce nozzle upstream and a collector downstream of the model.

The final Section 2.6 considers viscous effects and experimental aproaches to the
probleas of two-dimensional wall corrections and the conclusions that may be drawn.
It might be helpful to remark in advance that the boundary layers on the side walls do
not have extensive influence on the pressure distribution. From their investigation
Mendelsohn and Polhaus (Ref. 2.1; 1941) conclude that the loss of total load on an
aerofoil spanning a closed rectangular tunnel is unlikely to exceed 1% at incidences
below the stall. Figure 2.2, reproduced from Reference 2.1. shows that very close to
the wall (y = - fb) the local lift is less than 10% below that at the centre of the
tunnel (y = 0), while there is little effect on pitching moment. Large changes in
side-wall boundary-layer thickness are found to produce only small changes in the
loading. One may therefore have confidence in a purely two-dimensionr. theoretical
analysis.

A summary of the principal references, figures and equations and their fields Uf

application is contained in Table 2.1.

2.2 WINGS OF ZERO THICKNESS IN CLOSED TUNNELS

2.2.1 Corrections to Order (c/h) 2

The classical ujork of Glauert provides the basis on which tw)-dimensional wall
intexference is evaluated for thin aerofoils at small inzidence and having moderately
small chord. The lifting aerofoil can then be replaced by a single vortex of strength
K at the centre of pressure to obtain the flow field induced by the waIls. Batchelor HK
(Ref. 2.2; 1944) considers the inccmpressible flow past a vortex situated at an arbitrary
distance d frcr the floor of the tunnel. With allowance 1-cr compressibility j
(Section 2.1). the primary interference near the model then appecrs as a versical

velocity

S~x-
w i = _-.. ). -- ~ -~2 - + n'j (2.5

9 (A. 1)., 2+4 -- :j!.h d) (x 1)2 + 4.&52 "
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which, at mall streawlise distance '-x i) from the r-ortex. beooties

7TK(i -i 11 2 77d~
8gh (-3 h) + O(x - 3  . (2.6)

If the lift. and pitching :oment abont the warter-chord axis are

L =pUM = -.pU 2 C
CL} (2.1)

=

then the centre of pressure Is at a distance

(2.8)

dowatrem of the lending edge. Frosý Equations (2.6) to (2.8) the induced upwash angle
in radiw.s Is

Wi 17C2 2 71d, •= 16,-h2 + C S +cot2h (2.9)

, Batchelor 2 2 also sn•ws that there is an •nduced horizontal velocity

K 7rd Uc( 7d
U -- ct - c cot- (2.1)

at the wing. which vanishes mben the vortex Is placed centrally (d =

7he aerofoil is usually taken to be in the central plane c,. the tunnel. This
problem is considered by Allen and Vincenti (Ref. 2.3; 194-4. who represent the field
of the model IV continuuusly diatributed vortices and reglect texas in (cwh),. To
carY! out the saalysis, points on the aerofoil rre defined by tLe angular co-ordinate
6such that the distunce from the lead~ng edge

Xj= cCI - Cos ) (2.11)

7he vortez strength in ihe tunnel la exprersed as

0

per unit chord4ise distance. Prom Equat.on (2,6) the vertical velocity induced by the
sr••.em of x.weges Is

T.-

* :.
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"= 77k(x - xo)

7T2C 2 U- -jj: {(A0° + +A2) - (2Ao + A1) cos6}

+ 4c2U
M^2 + C) - -CosB} , (2.13)

which varies linearly and confizu5 the accuracy of Equation (2.9) to order (c/h)2 in
the special csre d = fZh .

she mon-dimensional aerodynmic loading is defined as

P1 -Pl-P (2.14)

2pU2

where DI and p, 2re the respective pressures on the lower and upper surfazes of
the aerofoll. To the approximation of linearized theory I = wfU. and the upwash In

Squatimn (2.13) is equivalent to a theoretical increment

vY ihich the loaeing if the tunnel would exceed that in the free stream. Al!an and
Vincenti argue '.,bt the data obtained in a wind twuel should be correct,-d in such a
wt- that tie pek loading near the lt-ading edge Is unaltered. Accordingly

"A ,7 Zh 6

are appited as corrections to t4e measured incidence a and loading . (rad) is
precisely the valup ef wi/U ;t mid-chord fe .. , since the rmetrical stregliue

curvature equivalent to the second tern of Equaion (2. 13) ltrodu-ces no Incrementel
singularity in the loading at the leading edge. nie loading Al leads to residual
corrections

ii vX -.1A

12 22h

With the respective incresents in Egu•tion (2, 17) the a•asured coefficients of 1•fi
and pitching moment relate to =nconstrained f•cw of valoeity U past the wotual

aerofoil at the corrected incidence ((x +I ....
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2.2.2 (errectloas tc Order (c/h)

In Reference 2.4 (1934) amd Reference 2.5 (1938), T~otiks uses a series of conformal
transformations to obtain the lift and pitching aeent on a flat-plate aerofoil Lnclined
at an arbitrary azzle a tog an lncmpressible streas btvaten parallel sells. The aid-
chord of the plate is w=-ow to lie on the centre line of the tunnel. His results an
evansions in Pvors of c/h are

*- f r,,+ 2
=LO 11 +71r17-)(0 + SiD20 -

,•- t\ 1-53 - in - 22 sin'"" + 0
\bI8 j:. 1

Aere L j c(2.- • (' sin c'• . and the pItchng soment about the mld-chard is

=:11 + ( l + 6Ein--
* L 4

4 (-.

-:• G[ 4(11 - 174 sln2C - 1 sin~o") + * (2.19)

where 4- =U) -prJc 2(iz-" sin a oDs (x) . h@e tutnel to free-air ratios 14,0 s and
| •/i~Cton Oare plotted against c/h for selected v•uaes of cc in Figure 2.3. The
broken c-rves for (x = 0 and a = 200 are obtained when terms in (c/h) 4 are omitted.I The diacrepancles e apparert when c = 0. 3h and eiceed j% *en c - h. S; It shouldtherefore be remognized that Equatipns (2.16) and (2. 17) are subject to significant
inaccuracy whe c > o. 4 .

Haveloci (Ptef.2.6; 1938) considers the sme problem by treating the flat plate as
the limiting czse of an ellipticeal clinder. He confirms Tomotika' s2- result in
fqtation (2. 18) mad derives Equaticn (2. 19) independently. Havelock neglects terms

of higher order than (c/h) ' and gives formalae for L/Lo wand ,/OTi.)o for a
plte whose miId-o4it is at an arbit"rary distance d from the floor of its tunnel
('i1 2.1). Hit reaidta can be written as

r
L = 1 I wt ÷ i + I'_ +

-I
I hhj

N "+~~~ (%Lo :1- f1 -•<>< ""= c +<
/2 77C /c\ 7C 2 I

(+ -+ 3 ot 2 _ sin 2 a + 0( . (2.21)

*3 ' --
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ot = 0 in kastions (2. 2D) and (2. 21). Havelok a valuas for e = 0. 2h and o- 0 and

I00 are comared below.

d/h 0.3 0.4 0.5 0.6 1 0.

SO.'

L/Lo for m =0 1.028 1.019 1, C-16 1,019 1. 028

i1i0

L/L0 for a = 10° 0.989I I.C02t 1.017 1.037 1.071

No/(Ntd o for a =0 1.014 1.010 L .008 1. 010 1.014

By contrast with Figure 2.3 thp effect of incidence on wral iterference cmn bi of

priar iporane benth ad-cor i off the centre line. Mloreover, a downward

displacement of an aerolfoil at Positive incidence ma chunle the slim of the interference.

It should also be noted that, even for c = 0. 2h , he terns in (c/h) 7' are beccuing -

significant in the above table _for :100 and d/hu = 0.3 &ad 0.7. ihan the ser'ses

converges comparatively slowly.

We have already ame that Equations (2. 16) and (2. 17). represent a practical form of

wall correction. but become inaccurate when c > 0. 4#h ;this condition is restrictive
at the high Mach nuabers. The theoretical ratios LAL and from)(
Equations and 9) w nd(2.19) l uato the en be used to obtain ter a iens 7e b i

p1tch00 mment coefficient about the Zuarter-chord axls os

N'c - IcLcos

dih 7723C 0.2. .

77 glsin fos ,- (1 0 si 1.1; +

+ f(22 1 15 s0.994 1.010 1 .0(2.22)

11hena is lsmall.

phremr ~rtnewe the laidredchordttl isofa*r t he c eentr line. rteove a.dmr

We ave alrea dys aooh that rEua tion(.) d (2.17) rsnt a r- tical f•orr( 1of

whllcorecthlionearbut beomeiaccrs tfactor whe boa 0. e ~ ;tinserted.to sretit

at themhinst aco nvert. The teresu tsina r~ations L/a2.23 ~ 0i(i) int frometl recin

to the io asured ( ncd8anced ( .1 ft and pitchinb moment. bti previous diAmc slon l4--

p m c nt t d
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no dubt that. to order (c/h)* , Eqwa~ion 12.16) is the 1týzt dp!inition of &a.

Altbaugti this could Wtil be Used, we psrefer the deibition

Am c 2 _ (1<Id ý 0ý6
92i0( + &I j ( *2.24)

a which conforms to that of Equation (2,36) In the folio-4ing t*wtion 2.3.2. Theni

AC = n (cL(+Acz)-CL

which by Equations (2.23) and f2. 24) beccoes

Since Cm i.% zero in unconstrained flow. it followi' from Eqations (2.23) that

Ac. C6 2L9Y +~( +0L( 1 . (.3
i-922~h 15350 I8h U~

An aLternative and mors practical form of Equati.)n (2. 24) is

?n2773CIC L fn 427)
96,i^% .. (CL +4Cn) -30720,6 3b*'

andethi 2.?: l be used heir ne~~~ie o. Lanifor.measpuried oaIng ton atmodensiona l u-soi
flowe Eqaisonsl (2.t25) to? (22)evetesllitereaent onn it a thins1el1 kiawioh it nyairs
posible tor ozthe centre intefrne of acloh tuneo asd~ (nc/h)nat torectinstreo the

corespnel dting forml iatie thu4 e derived from Reftertenc a- twoith mensonl ect anguO( lar

trett~e voia includes at he ef entrtsct itof a yuifr tr wise fow cethat ir indiated (2.y)
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Pbr tunnels of octtgonalL. section Batchelor~ assumes tha. th6 flow in ascii plane
nonvil W~ t!ao *pan is two-d~mensiunal, so that the interference hu- to be iverased

scroes the span- His sisple Proceduire leads to an equivalent height

= htib(h -h')

stere ;Y' and -1h' are the Prejections of each corner fillet an the borimatal and
vertie-A cails respectively. Equation (2.29) must seriously uimerestirate h., =Ils"
Via fillets are fairly wi~all. Pbr balanca measurements on a fall-span model it vay be
safer to iso, in plaze of Equations (2.28) and (2.29). an equival-ent height C/
P'ia~e Cis t!l-. "ross-section-Ll area of the tunnel. Then respectively

he=0,785 x (diwet,ýx of tunnel' Z

= ,b'h'fb

Z. WIG ForIIT THICKNESS IN CLOSED TUNNELS ~e

spresence of one wall. Tomotika et al. (Ref. 2.8: 2951) inventigate thearetic:sllY the

incospressible flov bounded by one plane wall' %bich cga be taken to repreeent the

-Infinit'e series and is evaluated ntuerically. It can bet said at once that corresonding
exact solutions fo loin a straight channel are exceeding.1r laisorloas itd that they
defy numerical anlssif the fluid is ompressible-

For p'ositive incidences L/L. , the ratio of lift with urcrnid to the unonn-st-rained
lif r. decreases at f irst from unity as c/d increases but later incrcases rapitdiy as
tL- chord greatlyv exceeds the 4istuace of the aerefoll froa t~he zround. Then, TvI ~Fizure 6 of Referenoc 2.8, both tbickres3s and positive csmber of the aerofoil can cause
largo reductions In L/LL0 . although these reductions do not app-ear to excead VA for
the values of cfd. that normally occur iu prowblem3 of -,11 interferen.ce correctiona.

2.3.2 Qolft~eul s Theory,

The general two-dimensional problem of a thick, cambered aerofoll. at Incidente in
a low-speed closed tunnel bas been solved by Goldtotein (Ref. 2.9: 1942) fig en ulsebraic
power series in c/h . R6 first derires the transforzation of the amrfoil. into a
circle vd then considers the velfocity-potent~al -field At large d'stances frea the
aerofoil in a nif',jru frec stresm. Superposition of corresponding potestial &*ield3
from the tutnfXnte syntem cf image3 gives a first. =vroxLwatieu to the non-uniform flow

- ~field generroted by the walls of the tunnel. 7hia flow is calculated ir. the neighbourhod
of the serofec-.l, said bence Goldstein evaluates a modified velocity distribution on the
"arofoil byv the theory deacribM in ,,ý first paper of Refcsrene 2. 9. Thia Vroiid-.E
a second anproximetion to the distant field of the aerofoil zand hence to the non-
uniform Interference flow field from uhicb the aerodinamic forces r-re obtained correct
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to the o•-der (c.,A)•. The tedlous algebra .As restricted to cases in ehich the ori/gin
of the trefornation close to the aid-,;hord point lies in the ai~ddle of the tunnel.
OoldattcIn points out thAt, #-lthough stimpler calculati~na. mch as those described in

S~Section 2. 2. are normally adequate for correcting lift. =•d noment, his method allows
:•*• ua to decitd *hether this remains true ir. exceptional circemstancos when c/ ,

thicksess/cho-id ratio of the terufoil, its cambe., or lift coeffizient is larger than
usal.

ften all secand-order terms in thicknens, camber and incidence ar-e neglected. theloft interference is in' ependent ofalerofoal thr .itess, Just as the blockage co-rettios

(Chapter 'V) are independent of an-rafoil ember and incidence. Goldstein defizes aScorreettion to incidence to he the interference upwash antle at mid-chord. In t he
present npai•ton Equations (t6)h (77) "arr 9) from the seconu paper of Reference 2.i9

' ~becone

(.1)2=2-- + D,) + • 2a 2+ 20DD - 21r,] 1 (2.31)
96 h h26

and

respectively. Here aa ta the two-dire csional lift slop e and

4 "rzc sin nO
SDn - " o f sic n e_- d• , (2.34)

here za is eode ordrnate of the camer line of the aed foil and is defined th
ftatier (2. U) a idstein ehows that

2 td -C +t-eCL -2t+r0 (2.l35)

Substitutton of D f faoEquats(7 n (2.35) and (9 27f t In Fsuaton (2.p31) gives

7- (c- + 2uCL + -t + ((3

96 h h

Stheresoee, to i r.er (ch)2 t Equations i2. to (2.27) for a flat platesderofol

~are not influenced by first-order ef•fecta of ember.

If the aerofol is unatmberedo i.e. Dc.e 0 o then with the aid of ie relationship

Eqotie (+1) (3slstei shows that. nL+ m
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Equations (2.31) to (2.33) reduces to

tim v 7C 2  4 41ir,3 
1)4

(h 37ii 9160 h/

-eeositn i t (2.6
48k! 21 h/

IThese expressions are consistent vith Equations (2.24) to 1*2.26).

For a Eyretrical seroloil it is straightforward to retain terns of second order
Sin c , CL and functions of the aerofoil profile

fj dO

'JO C de 9.(n j 1)

where z. is the ordinate of its upper surface. By Appendix S of the firet paper of
Meference 2.9 and Eqations (69), (72) and (74) of the second paper with the
agpropriate theoretical lift slope a, = 27(1 + * C) , we have

77,

92l63'" "2
I +9~~~~~2ra146 + -- 2) ± &C 2C 32+ CLCC)

Ar C(12 5 + '4 C 0 -2C 50'2 +4~-6C}(.9
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and

Ua, = - 4CL) ÷ s- {2/( *- 8CO + 4C2) + cL(- 3c• + 3C3 )} +

+ 'IT {277a(42 + 212Co + 84C 1 + 20C 2 + 36C4) +363640

+ CL(156C, - T7C3 - 35C5)} (2.40)

7b detemine the theoretical relationship between m and CL i it is necessary to
equate (CL + -AoL) with 2u,(1 + Co) (a + A(x) . Thus we substitute

IT = CL (i- C ) ( (4 + IOCo - 3C 2 ) (2.41)

K Ito give

IAM~ 7.T f 2  
73

S- =( (1-Co+C .C2) -7 (41+79C0 +11C1 IC2 31C3 +42C4) (2.42)
I'CL T6\h 012 ~i2 -k*

2 (2+14C-72C7-5C) + 4 /C (210+ 1004C° - I9oC -96C 2 + 1(16Cs-6C 4 )

S H h910(2.43)

and

(2 +-C C -2+33
-C, 34

S- -- -• h. (163 + 514Co - 430C1 + 44C2 + 185C3 - 105C4 + 35Cs) (2.44)
40 1 2 3-

it is interesting to note that Equation (2.42) again redces to

Aa= -I )(C)2  + 4Cý) +0
96 (h)"

Ie-

since. to first order in thickness, the theoretical centre of pressure occurs at a
distance ic(O 4 CO - CI - C') behind the leading edge (Ref.2. 10).

-fuations (2. 42). t (2.44) have been evaluated for a 10-per-cent-thick RAE 102
* . aerofoil (Ref. 2. 11). By -quatiotis (27) of Reference 2. 10a this serofoil may be

defined mpproxim.steLy by the coeZficients
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C0 = 0.07728

C1 = 0.05343

=C2 =-0.01512

C3 = 0.00089 
(2.45)

C4 = 0.00065

C - 0

which lead to the curves of 27,•a/CL , AC_/Cý and /•Cz/CL against (c/h) 2 in
Figure 2.4. The terms in (c/h)z; are seen to reduce the magnitude of each quantity
and cannot safely be ignored unless c < 0. Sh . The effect of thicknebs is especially
important in the case of AIC,/C, which is increased by 50% or more. Even for a
5-per-cent-thick serofoil, " ACL/C. would be seriously underestimated by
Equation (2.36) unless C 4 0.3h .

Goldstein derives to order (c/b) 4 the residual corrections to the distribution
of velocity on the aerofoil; his formulae in Equation (97) of Reference 2.9 can be of
importance in special investigations, when the crude alternative. 61 in in
Equation (2.16). is imlikely to suffice. M.e problem of a thick aerofoil placed
anywhere in the tunnel is solved to order (c/h) 2 in Reference 2. 9, and the results
are consistent with Equations (2.20) and (2. 21' of Section 2.2. Unfortunately their
usefulness is restricted by the rather slow convergence of the series in rowers of
c/h , when the aerofoil is far frce the middle of the tunnel.

A method of confornal mapping has been applied by Moses (Ref. 2. 12; 1949) to calculate
the velocity distributions on an arbitrary aerofoll at incidence in a closed wind
tunnel. The method provides a satisfactory numerical solution. If it were necessary
to include terms of higher order than (c/h)4 , then it would appear to be more
convenient co use Reference 2. 12 than to extend the analysis of Reference 2.9. As an
example Moses considers a '12-per-cent-thick aerofoli at a = 40 and a ratio
c/h = 0.5 , which provides a severe test of the formulae (2.42) and (2.43). From the
ordinates of the aerofoil in Table I of Reference 2. 12, we obtain, by Reference 2. 10,

CL% = 0.090.,

C1 = 0.05",_

C. - -0.0229 (2.46)

C 3  0,0066%

C1 = 0.0052s j

and a theoretical value (a1 ). = 6.848 which g•ves a free-strem

C= 6.848 x 0.06981 = 0.478 in agreeienz vith the result in Reference 2.12. The •
value calculated by Moses for the aerofoil in the tumnel is CL = 0. 53? , when
a = 0. 06981 radians. Then these values are corrected to free-stream con-ditions by
Equations (2.42). (2.43) and (2.46), we have

--. .3 S. -....-
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CL + £6CL = 0. 5022

a +6ac = 0.07340J

Hence a, = (CL + CL)/(OL+ 6a = 6.842

:1which is virtually a perfect check. If (c/h)'6 is neglected in Equation (2.42) and

other hand. aerof'oil thickness is ignored (Cý = 4)). then the corrected value a, = 71.01
is about 2Y too high.

2.3.3 Allowance for Compressibility

Solutions for the g1metric-al compressible flow past aerofoils have yielded formulae
for blocka~ge corrections (Chapter V), but. the difficult non-linear problem of a lifting
aerefoil in a channel. remaIns unsolved. F'ranke~ and Welzig (Ref-2. 13: 1939) uWe thip
transformed linearized differcm-tisl Equation (2.4) and represent the aerofoil by its
velocity-potential field at !arge distances

+ t?' = iX1 log 0,- + ix)3W 1 , (2.47)

1'reX 2 and X-, sre real and t=X + iZ . The accurar~i of the resulting
simple f-3rmulee is comparable with that of Reference 2.3.

Since there is no practicable alternative to the evaluation of the interference
upwash by linearized subsonic theory, thc recoemended corrections are those of
Equations (2. 421 to (2.44) modified in accard with the remarks in Section 2. 1. We
first construct the solutton for the equivalent incompressible flol of density p anld
velocity 13'2 with boundary conditions ;e't by the geometrical parameters listed

f below. The aerodynemic quantities so obtatined can then be equated as follows,

Geonetr-tcal Parameters Aerodynamic (keumtities

7'Dame! heisht .B Lift. Moment, 8 L.i-2

Aerofoxll ch-ord = C Force coefficients = 18
2CL . 2

Aorctoil incidence = & Upwash v~elocity = V3w

III ~Aerofoil thickness =/t Upwash angle

where h . t . C, Cý, Ami, etc. refer t9 the real coapressible flow.

~Taus

-i ;:- (1• 141 + 16(7T9C0 + 11Cl + C2 + 31C, c 42C,,))
9260;F

(2. 48)
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7)L~.~\2 -Cr (2.48)

c. .
"9 0210 + 6(1004CO - - 96C2  106C3 - 69C,)}9260 ",1

-C .. . i {2 + 6(6C0 - 5C1 - C2 + 3sc)} -

- 384\f)

38-' ..O•'J {13 + 4B(514C0 - 430C1 + 44C2 + 165C3 - £1

- 105C4 + 35Cs)} :. I

%here C. is given by Equations (2.37) or may be identified with An in Equations (27)
of Reference 2. 10. In Figure 2.4 with abscissa relabelled (c/23b) the appropriate
curves will give 27&•/CL/.CL) - ACYCL- A-C6/CL for a typical symetrical aerofoil of
thickness t = O. Ic/i. The iplicit assaption, that a, = 277(0 - Co), must be
recognized. In the absence of - core exact theory of tw-dimena•inal wall interference
there is some justification in that this lift slope will normally lie below the exact
theoretical value and above the e.perirental one.

Then Equations (2. 16) and (2. 17) will not suffice. the wall corrections for a thick
cambered aerofoil should be obtained in two parts. if the zeasured lift coefficient
is written as

CL.(@) = C%(0; + [CL,,') - CLf()0

then the contribution to interference from C,(O) is found by setting c = 0 In
Equations (2.31) to (2.33) as codified in accord with the above table. 7hus

= jk~) " 2 92160 8h b 2 *

=C ( C)2 O + 7774 )jsCL(O) ý 11+ (2.49)

SI Tefc
there D. is given by Equation (" 34). To Equations (2.49) are added contributions
"from Equativns *2.48) with the substitution CL = (CL(a) - CL(O)] . lt may be
necessary to reduce these corrections on account of the aerofeil boundary-laver. a p

simple semi-a•pirical procedure for this is discussed in Sgction 2.6. 1.

___ p
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2.4 AEOFOUILS WITH HINGED FLAPS

Sectionw 2.2 and 2.3 have been concerned with lifting aerofoils without fi:Sps; they
apply to aerofoils with undeflected flsps, but an additional formula is needed for the
residual correction U-C, to the hinge-moment coefficient. The interference on a thin
uimetrical aercfoil with deflected trailing-edge flap spanning a closed two-dimepsional
tunnel has been obtained to order (c/h) 4 by Preston and Mazwell (Ref. 2.14; 1941).
Theoretical values of the non-dizensional derivatives of lift. quarter-chord pitching
emoent and hinge wmaeut with respect to incidence a and flap setting

at ;6Z &2 =-

b = Bca'a and b2 = %cI/?I

are given in the respective Equations (38), (39). (43a), (44a). (50) and (5i) of
Reference 2.14. The theozy takes no account of finite thickf~ess, and it is verified
that the expressions for a. and ma are consistent with the iull curves in Figure 2.3
for a = 0 . Ratios of the other derivatives to their free-atnan values, b /(b )o
a&/(a 2) 0 , m2 /(2 2)0  and bi/(b2 ). are plotted in Figure 2.5 ts functions of c/l(/i)
and E= cf/c , where cf is the chord of the flap. Then c= 0.5Sih and -= 0.3_
the inverted ratios are as felloas.

anel derivativel I b , al 12 b2

Q~rrection factor 0.914 0.83' 0-939T 0.917 0.930

The correction factors to a2 -a. and b2 decrease as E increases and are of the
same order as that tc al . The interferance corrections to b. are comparatively

large and much less dependent on E.

In conformity nith Sections 2.2 ard 2.3, we exprezs the resul3a of Reference 2. 14
as theoretclcl incremental Corrections to incidence and the aerody-uac coefficients,
The corrected hinge moment on the undeflected flar- is -jOU2C(C• + AC.ý) with

bAM + A) - (2.50)Cý -- P-CH = br- t ,Z'Cý=, + .

where bi and (b,) 0  in gnaution (50) of Reference 2.14 require the usual modificatior
Ifor compressibiiiy. and 48a is defined in Equation (2.24) for a flat•-vlste Ferofzol.
Substitutfng

-k- + . (2.51)

from Eqiiat.kon (2. 23), p obtain

-i

3I"J
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- Are 772z÷2 t3z-5~n t+sv8}(.2

e (1.2 {2(1~7- 1C-0j3B 1 + 4in B1 + sifl36,)-
CL =288 ( 3h/ 1

3 /a

921600 {)-. 60(77 - 6.) + 600(ui - B)Cosa 1 -~ 520 sinG -

- 20 sir.2011 + 25 sin 301 - 5 sin 46, + Sir 56 1) *2. 2)

"w•e,e E =cf/e = -(1 + eos6,-) . In-Figurze 2.6(a) curves of AtCT/C, against c/Ai
are drGQA .'or several fixed values off E . There in no reason to suppose that the
effect of i-rofoil thickness an these curves is any greater than on A4V/CL in
Figure 2.4. Howevar, the terms in (c//3h) 6 nay become especially important in the
case of P-.,/CL ; it sppears lkely t!haZ fir c > 0. 41h these higher-order terms sae
core signrificet than thickness effect.

For tho compressible flow rast a thin aerofoil at raro .tcidenc; with deflected
flap, we write

DL+A = & +A = (IL;) C9+ (a,.) 16
+3 +LX = jaz~+L .cj = U 731 -, (W6)

CH fI- CE = bqf+ Aý = (b 2):4 - (b 1) OAL J
fhare (t,)o = 2r'S. (1))o = 0 . (b 1) 0 , (a2)o - (2)o Vd (b.). are f-1 times
their values it Reference 2.14 for V = 0 . The correotion J- to incidence Is
chosens from Hquatioý. (2.-27), 4bence

4M2• (2.2 )

~. 4-8 Wa'L 15360 ýn

By Equations (2.53) and (2.54)

tICL i 77A-% z (%2 0 - a<> --- I"

-ý a2  L255A j

Tlheae corrections are plotted a* t.r.?cti-ns of c/4 8h and 9 In Figures 2.6(b) and

2-.; Aa/C, falls sharply as E decrease%, and to order (c/h)2  It tends to zero
as E - 0. 7o this order ACJ!C, and Av/CL are independent of E and ACLJCc
is given by -Equtiom (2.52); for large enough clgh. haever, all these corrections
for a detlece4e flzp are numerically larger than the corresponndin values in
Figurvs 2.4 wrd 2.S(a) for the !Ift interferenac due to werofoil iuidsrce.

_ __._..._ - -- • ----
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In the case of a vgymetrical serofoil at incidence with deflected flap. Aa chould

"first be evaluated directly from Equation (2.27). Then the residual corrections Acý,
AC, and ACH should be estimated both from Figures 2.4 and 2.6(a) and fr*2
Figures 2.6(b) and 2.7. Whenever these differ appreciably, a zean value should be
weighted according to the contributions to Cý from aerofoll incidence and flap setting.

- terofoil cmber should be treated separately as in Equation (2.49). Semi-estirical
correction factors to AC5 will ormally be required to take Zccount of the boundary
layer (Section 2.6.1).

The results in Figures 2.6 and 2.7 only apply to unbalanced two-dimensional flaps.
To order (cA) 2 , Miss Lyon (Ref. 2. 15: 1942) has extended the analysis to flaps with
sealed shrouded balance on the supposition that the chordwise pressure distribution is
that of an unbalanced flap of increased chord. 7he hinge moments are further sodified,

-- Isince the Minge is now set back from the nose of the flap. If required, the results
for balanced flaps could be derived to order (c/h) " with the aid of Reference 2.14.

De Jager and van de Vouren (Pef. 2.16; 1961) have considered the non-linear problem
"of a hinged plate between parallel walls in incompressible flow. The forward portion

Sof the p.ate lies along the centre of the channel, but the rear portion or flap is
deflected through large angles ! so that the vorticity may no longer be asbized to
lie entirely in t.e central plane. Mrunerical solutions with six terms to represent
the vorticity are obtained for a wide range of I when E = 0.2. 0.25. 0.3 and
c/h = 0. 2, 0.3, 0.4 . Because of the non-linearity, the results cannot be presented
as in Equations (2.53) to (2.55) with a correction Am. nor can any reliable allowance
be vede for compressibility. The corrections [C/CL from Reference 2.16. reproduced
in Figure 2.8. are therefore not comparable with those in Figure 2.7. The most strikingII foature of the results is the rapid decrease in the corrections as • increases above

'I 300. there is indeed a revers&a in the sign of the correction near = 810, 700 andj 580 for E = 0.2. 0.25 and 0.3 respectively. With the aid of the graphical data in
Figures 2. 3. 5 and 8 of Reference 2.16 it is simple to calculate the ratio

AC2a- C Ž.CýJ + (CLve))
CL C, (So~ l + cAc/))

, ti obtain the curves in Fire 19 for E = 0.25 . In this case, since (a ) = 0,
the results for mall i are seen to be consistent with the corresponding
EquatIon (2.55) end the curve in Figure 2.7 that is practic,11y independent of E .
SFor eph value ef c/h the correction is halved near i = 400 ard vanishes near

=6-° -, It would be !nteresting to have experimental confirmation.

S- 2.5 OPEN-JET TUNNELS

2.5.1 [icuudary Conditions

At one time it was comon practice to test two-dimensional aerofolls spanning an
ope jet: such models could lie supported conveniently o.ts1de the strem. The problem
of jet-bound&-y inti.rference has to be considered frob several points of view. The
flow is far from two-dimensional, since the lift falls to zero *ere the aerofoil
crosses the boundary; the wing therefore experiences a large dow•wash due to lift
Interference and also soae lift-dependent drag which is absent In purely two-dismsional

SA. L
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flow. In a flow of finite cross-section with free upper and lower boundaries, a
finite lift on the aerofoil indnces a finite downwrah in the distant wake and a
consequent interference at the model. Both of these considerations lead to large
corrections Am proportional to the chord of the aerofoll. Purtheraore, the flow
is accompanied by some distortion as well as the deflection of the jet, and these
effects havr never been incorporated in the boundary conditions. Therefore the linter-
ference corrections are not only larger but less soundly based than those for closed
tunnels.

The boundary condition to be satisfied at the edge of a jet Is that the pressure
has a constant value equal tW that of the surrounding air. Although linear velocity
perturbations are hard to Justify where the aerofoil eaerges from the Jet, this
assumption is made; it then follows from Bernwuilli's e:Vation and the conditions of
constant pressure, that u = U over the entire bowdasry of the open jet. if it is
further assumed that the Jet is infinitely long and undistorted by the model, then on
the boundary the velocity potential is 4 = Ux and the perturbations in velocity have
zero tangential components.

2.9.2 Rally Ope Jets

We first consider a lifting aerofoll spanning an incompressible jet of breadth
b(- -b 4 y 4 fb) and Infinite height. Stiper (Ref. 2.17; 1932) has treated this
problem as an application of the classical lifting-line theory to a wing of infinite
span at incidence a(y) = (- 1)1 , where N is the Integer nearest to y/b . Tis
unit function of period-c•lly cban1ing s1gn Is eipanded as a Fburier series

4 7-TY '
Cos{- (2- + ) (2.56)

Hence, for jyJ 4 ib , the lift per unit span is pUr(y) with

r A
F(y) = I-aUc I -1 : sos - (2n 11 2.357)1 nT + I + f.

L

tohee a, is the two-dimonsional lift slope and

W = 3b/0aic) = ;b/,-.,, 20 chen a1  = 27i -

The toWal lift

f *fb ry)4
J.1b

O I -C

-_ -I--

-~~~ ~~ L 0 1  fJ 2+lA

I (58)
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- 'ibhis is easily ramoed then X• is a 1:•Iative Integer; in general

, L - 0.572-- - + (I ),(2.59)

where 0. 572.-- is Ealee' s constsat and values of the Dsi '%'action ?{x) will be

feand in Ra~ference 2. 1M The bo,-ndary i~ter!Nrence wtill depend an shet~er the

exp)erimental data we• taken fret meeasurements of total fo,,ce or from pressure plotting

at the centre section. In. the fc%.-&e- case I,/L. is givev by Equation (2. 59) and is
plaltted In frtgre 2. 20(a) &,:inat c/b = 4/(77 ) even for a 9%all wlng at chord

c = 0. lb the corr~ttion factor Lc/L is as hiah as 1. 37.

"•-!St~per. 17 do-ids with cpen rectaguar tunnels for which he obtains a

'1:s

,generalization of 9,vitiou (2.57).

•i: P(•) 4 J% ( )n c -,,I{(2D + l)7Ty/b)

I1
_7Z (2.63)

Ssupporti of the spanwise loings pralOcted by etti• %M60). Alt-bough there is legeea

l nterfeý.,ence on ihe lift at the centre s-cti(,a thar cý the -sotid lift, the curves of
-I I re(o)0 agai.nst- c/b in Fle s e 2. 1n(c) shal that the mrrec&mlo fectors f-( ) a wing

-Iof fcord i _ 1b are 218). = 1.e18 bn 1.r20 ed Ir - SS for d =eced , b end trtb

; atthrespectve ssy.

Another in Hgure tion 2i.t has received consider bl4 attentfor I ta rectwn gular wrd g

sw l g a circular eveope t .Into Reference 217 tte appear to be erro's oa ths1 •eft-
,hand side s o f the final eq etaions foua th coeffcients :-fo '%he srani.se loasJng.

Mkoreovet, Svr-'Ir (Ref. 2- 19; 1D39) po~its out thrt: Stil-erl s form of solution misrepresents

-- ithe math.;ZicgL singularity in dowur.ush at the wing tips. S•,%Ae gives K 4cre exs,ýt
-I! gtene t of the lifting-line ( rob2lm with a dist2.7l).on of Zift

[2 r I l- I

2n- • ÷ ( 2) '

-:Iee

F0. "a" •

--=f I.•'--_----- . ..
I- -__.--1) ,-h- ".-- -"7-/2"
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where R Is the radius of the jet. Eqation (2. 61) yields

T [W-2 "(262)
0o Ric • 2=0 •n+ 3

where b(n = 0 . I and 2) are obtained approximately by collocation. The numerical
remits are plotted i n Fo gure 2.11(a) and are not greatly different from the values of
(0)/r and L-/AO for a square jet. ,

As a consequence of the non-uniform spanwise loading across the Jet, the wing
experiences lift--dependent drag which is absent in purely two-dimensional flow. Quite i
small errors in the spansise loading are significant in the evaluation of this drag; I
it is not surprising, therefore. that StUpel' s values are appreciably greater than t
those from Reference 2.19 which are used in Figure 2.11(b). Here the corrections to
incidence and drag are given by

S_ 1 /Lo

a,,

snd by ACO/Cl , where -AC0 is equal zid of opposite sign to the theoretical drag
"coefficient of Reference 2. 19 with a, = 97 ; it is ezaily shown that the remilts are
not sensitive to the choice of al

7he treatment by lifting-line theory ignores the effects of induced curvature of
flow, which will be of the same order as the corrections for closed tunnlz in
Figure 2.4. By comparion with the positive values of Aa/CL for closed tunnels, the
quantity defined by Equation (2.63) in conjunction with either Figure 2. 10(a) or
Figure 2. 11(a) is negative and of such higher magnitude. rMe likely accuracy of the
interference corrections for open tunnels does not warrant allowance for induced
curvature. Similarly there is little Justification for aPplying lifting-surface
theory, although Reference 2.2.0 (Rethorst, 1958) could be adapted for the purtose.

2.5.3 Two- Dimensloal Tests

It is now supposed that the breadth of the tunnel is very lprge, o- that with the
aid of solId side-•rls or end Vlates a two-disensional floe is preserved. On the
sisple .rgumet, that tha interference downwash at the wing is half that in the
disttnt wake, we have jj-

i•:iw s I1'

- ECL,. (2.64)

siuce from considerations of momentum the lift force OU2SCL balances the rate of
gro•t•t of downward moettm - pUCw,. An exact solution of the incmpressibele

• problem, by Sasak! (Ref". 2.21; 1928). quoted in Glaert' s annograph, has given numerical
values of L/it for a flat plate placed midway between the boundaries of the jet gt
an incidence a = 100. These are plotted against c/h in Figure 2. 10(b), and for
c = 0. 2h the correction factor Lo/L has reached ..34. From consider-Ation of K
Eq,,tion (2.64) alone we would have

1I
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-- LA M 1+• I +- =1. 31 (2.65)
L CL 2C 2h

uhicii 'Is z fair avroxiai.'ic~a to the accurate theory.

We now suppose #hat the lifting aeroiol I s of 'sall chord and can be replaced by a
single vortex at an irbitrary position between the uger and lower boundaries of the
Jet. COrresponding to Equatlons (2.6P and (2,10) for a closed tunnel, the Induced

jupwird und stremwise velocities for a tunnel with open roof and floor are

w8 Xh2  + cot 2 1d (2.66)

and

I K id UcCL 77d
- cot-h= - o~t--h " (2c67)

h cot h17

Equations (2. 6) and (2.67) arise from an image system coxprising a column of vortices,
j each of the swe sense; these contribute a finite upwash w-,U = + *cCL/h upstream

of the model sad an equal and oupo~ite downwash w.•!U = - •eCL/ in the distant wake.
In order to eliminate the undesired upstream upiash, a uniform downwash can be added
to tho solutiot in Equation (2. 66) without violating the condition that the tangential
veloci.ty is unperturbed at the boundary of the jet. Hence, by Equations (2.7) and (2.8).
the induced upwa-h angle in the neighbourhood of the model is

Wi Ic tC /4 7Td
-C CL++ O (2.68)

j jGlanert has snown that th~s result with I~ a nd d =0 is in very good agreement
j Kih the exact solution of Reference 2.21.

Vandrey (Ref.2.22; 1942) has considered a semall modeal in a tWo-dimensional open
tunnel with a closed entrance nozzle, and he gives a physical discussion and mathematical
solution of this mixed-boundary problem. T-he model Is represented by a coobined vortex
and source, and the interference velocities are expressed in term of lift and drag.
The lift interference of Reference 2.22 can be regarded a6 a special case of the work

. of Gardner and i)iesendruck in the second part of Reference 2.23 (1950). Ho•ever far
dosnstrean the sodel may be, the closed entrance nozzle takes care of the upsaream
flow condition. One configzuration of tunnel in Reference 2.23 ha:; a closed entrance
nozzle and a single loser exit lip. i.e. a roofless collector; for a lifting eodel
aidwoy between the roof and floor, the induced velocities at the model are

u I

(2,69)

Wi X(- [el FlI - 2(1 +1: 4h J

iii

Af
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T51where

(ewV/Ah + e2t7Xo/.i)f + e'I/•

e - itA + e2vixo/7Ah

xo and I are the respective distances of the model and the exit lip downstream of
the entrance nozzle. As I - , ut .. - a and

- ( + e-'rx') (2.70)

*hich is =oislstent with Reference 2.22. 2

Of greater practical interest is the two-dimensional closed-open-elosed tunnel wit~h

an open woI• g@n section of lenc:h 2 a2d a closed entrsnce nozzlf and collector. In
Reference 2.23 the interference velocity is derived for aa arbitrarily place vortex

iin such a tunnel. 'Me strecam•ise cponent u, vanishes when the vortex is in the
:- horizontal plane of svimetry, and

SK 1(x - Z)
"1 -'i ~o a G1 + O(X-1)21

S(2.72)

(e c~e'v)r (2.73)%

0O + e~wol1Af)(e~vZlPo.,- e2.Xo/.ft) ,(,

. +1 +
, (1 - + e Qffi) 2(e•wUl• + e•wxO/ V)

I (I + "

and/6hi 1(I-i)A - oe Gi0(!2 (2.73) :[ and (x - () denotes the distance downstrej- of the vortex, la substitute

X - i = Ic + CcýCLi•

to obtain the upwash angle at aid-chord

m"CC 7T (I •\ + • ••

Ihen the residual crrecions to lift td moment are givsn by

CLl (27 .) 1
7Tc Zw1  'rG 'c 2•2

CL 8s W 32

%:---
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Iwhere G. i6 deflued in Equation (2.73). If x -. 00o G. -0 and G 1/6 and
We have the results for a clcsed tunnel in Equations (2. 16) amd (2.17). If 1 - cD and

Sthen %a - cO, Go - 1 and 61 - + 1/3 , so that for an open tunnel the residual
corrections in Equation (2.75) are of twice the magnitude and of the opposite signs.
The functions Go and C1 .are plotted in Figure 2. 12. In a typical case 1 = 1. 5,%
Xc = 0.5,.ýh, 0- 0.96 sad 01 = 0.33 ; such a closed-open-closed tunnel has
interZerence characterib.ics very similar to those of a completely free jet.

"- 2.5.4 Spillage Behind the Model

In the f.tst part of Reference 2.23, Katzoff remarks that considerable uncertainty
exists with relmd to conditions at the exit and the mathematical equivalent of these
conditions. Accordingly, certain compromises are justified when idealized downstream
conditions are used in a determination of boundary interference. In the example

I = 1.55 , x0 = C. 5fh quoted above, it is found from integration of the vertical
t. Icomponent of velocity at either free •urface. that the downward displacement of the
* jet at the collector is L. M)/U = 0. 60ACL . The physical implications of this have

I been ignored; we mac suppose, however, that the errors in the interference as given in
Equations (2.74) and (2.75) would wcome serious, were the downward dissplacment of the
jet to exceed 0. 1/-h. Thus tests on an aerofoil of chord c = 0. 2/n would need to
be restricted to incidences below 80.

I Katzaff also points out that the velocities at the two free boundaries need not be
j equal. If the space below the lower boundary is sealcd off, the pressure at this free

Ssurface will adjust itself\so that the jet attaches smoothly at the lower lip of the
collector. By modifying the boundary conditions so that there are horizontal
perturbation velocitiez + u' on the upper free boundary and - u' on the lower one.

I i increments to the interierence velocities are obtained in Reference 2.23. The downward
components of induced velocity along t!.e central axis and the free boundaries are given

i by simple functions of elliptic integrals. In the numerical example with 1 = 1.5A
S;and x. = 0.5A . the incremental upward displacement of the Jet is 30.89ju'h/11 ; thef original downward displacement 1.20/?K/U is exactly cancelled if u' = 0.31K/(,1h)

Now if the interference near the model is expressed in the form of Equation (2.71).
Sthe increment due tothe unequal velocities at the free boundaries is

1 wi = 1-44o3L' * !-98u'(x - xo)ih

S= {0.45 1 0.61(1 - xo)/ft}nK/h (2.76)

In other words, the increments to G. = 0.96 and G, = 0.33 are - 0.90 and - 0.39
respectively. This demonstrates theoretically that lift interference may be nearly
eliminated if spillage at the collector is prevented by enclosing the space into which
the spillage would normally occur.

On account of the large and unreliabie interference corrections the use of a
Wi - .1 completely open tunnel for accurate testing of two-dimensional models is not recomended.

The likely inaccu--aies in the corrections predicted by Figures 2.10 and 2.11 set too
low a limit on the chord of the model. If, however, two-dimensional flow is preserved
by means of solid side walls or large end plates, then the chief uncertainty is the

* condition at the collector downstreaz of the jet. The liaearized theoretical results
in quations (2.74) and (2.75) with Figure 2.12 igorre any effect of the jet' ueflection

I, IS i iZ:r1; 111fM
-I
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at the collector, though Reference 2.23 permits the evaluation of the vertical
displacement of the jet. A condition that this should not exceed O. lh , say, might
restrict the tests to low incidences. Finally, there is the theoretical merit of a
two-dimensional closed-open-closed tunnel with straight unflared collector and with K
self-adjusting unequal pressures at the free surfaces to prevent spillage. I -

2.6 EXPERIMENTAL CONSIDERATIONS

2.6.1 Viscous Effects

Unless there are extensive regions of separated flow, the theoretical interference
corrections to lift and pitching moment can easily he modified to take some account of I
viscous effects; the correction to incidence sould remain unchanged. From the semi- "
empirical reasoning in Section 4.2 of Reference 2.24 (Bryant and Garner, 1951). the
incremental lift and pitching moment due to streamline curvature are influenced by
boundary layers in roughly the sane ratio as the lift slope. Viscous effects on two-
dimensional wall interference can therefore be incorporated by applying to ACL/CL
and ACMWCL the approximate correction factor

1
a - {corrected experimental "CL/Ba}, (2.77) "K;(ad)T:

where (a)T = 2n(461 + Cd) with Cc = 0 unless aerofoil thickness has been taken
into accoun+ (Section 2.3). The author (Ref. 2.25; 1957) has shown that this factor
will become important at low Reynolds numbers. especially if the trailing-edge angleis large.

In the case of hinge moments, however, viscous effects will always be important and
cause considerable uncertainty in the residual corrections ACW/CL , as is discussed
in detail in Reference 2.26 (1950). There is limited evidence that the hinge moment
due to induced curvature of flow is influenced by boundary layers in the sae ratio as
the derivative b1 . It is advisable therefore to apply to ACW/CL the correction
factor

9 ({Corrected experimental- " 8yC/• , (2.78)(b 1) Th•'

where. with cos , = 2E- 1,

4gE2 (b,)T -20 - 01 )(1- 2cos01 ) -4 sine9 - sin 281

.This factor may well reduce ACH/cL to less than one half of its value in Figure 2.6.

As discussed in Section 2. 1. Mendelsohn and Polhamus 2 'I have shown experimentilly
that side-wall boundary layers can be ignored in problems of two-dimensional inter-
ference correction. Further evidence to this effect is given by Vincenti and Graham
in Figures 6 and 7 of Reference 2.7. However. Barbieux (Ref. 2.27: 1955) has suggested
that a reduced height of tunnel should be taken to allow for the displacement thickness
of boundary layers on the roof and floor; such a correction would only become important
if the ratio c/h were angsually large.

tI
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2.6.2 Closed Tunnels

Barbieux 2 2 has provided important experimental data on wall corrections :i
incompressible flow. An aerofoil (p. 137 of Reference 2.27) was pressure plotted in a
two-dimensional closed tunnel whose ht ight was varied systematically in the range
c '< h 4 3c . He applied an original theory of interference correction. .which is
described in Chapter I of the second paiL cf rafcrence 2. 27. This differs from
Goldstein's theory in that the model is represented more simply by the combination of

a streamwise doublet at its centroid, a finite vertex at its aerodynamic centre and a
tran-nverse doublet corresponding to the pitching mooent at zero lift, each of which is
assumed to lie midway between the walls of the tunnel. The resulting formulae, given
as power series up to (c/h) . are summaruzed in Tables IX to XII of Reference 2.27.

S The lift interference is expressed as an incremental correction to incidence which is
chosen such that there is a residual correction to pitching moment but not to lift.
By following the sequence of Figures 62. 70. 76 and 79 (legend in Figure 82). it can
be seen that Barbieux's results collapse on to a unique lift curve against incidence
within about ± 2% ; his fully corrected experimental pitching-moment curve in Figure 80
shows some small systematic residual effect of c/h . The results are remarkably good
in view of the extensive range of c/h

Nevertheless, the formulation of Gr-Idstein's theory in Section 2.3 is preferable,
since this involves a rigorous treatment of the first-order effects of aerofoli profile
and a rigorous representation of the interference flow field to the order (c/h)"
The resulting corrections in Equations (2-48) will now be considered in the light of
viscous effects (Section 2.6.1) and an experimental investigation of Knechtel
(Ref. 2.28; 1953) of two-dimensional wall interference in subsonic compressible flow on
an NACA 4412 aerofoil. By varying the effective height of a closed tunnel, four ratios
c/h in the range 0. 119 4 c/h < 0. ,95 were obtained --ithout change of Reynolds number.
The two highest values c/h = 0.357 and 0.595 were obtained by using respectively
two and four image aerofoils so as to simulate tunnels of 1/3 and 1/5 the true height.
Tests were alz-o carried out on the same model in a large two-dimensional open tunnel
with c/h = 0.026 and negligible wall interference. The main conclusion from
Figures 2(a) and 2(b) of Reference 2. 28 is that wall corrections by the method of Allen
and Vinccnti 2 '3 give satisfactory comparisons provided that c < 0. 15h ; for larger
values of c/h , wall interference becomes progressively greater and results corrected
by this method become increasingly questicuable. The evidence on lift coefficient at
S= 40 is reproduced in Figures 21-13(a) and 2. 13(b) for Mach numbers in the range
0,3 4 M 4 0.8

We now suppose that accurate blockage corrections and approximate lift interference

from Equations (2.16) and (2.17)

7TC2

S- 96,• (CL - 4C)

, ~(2. 79)

L T8 (h)CL•

have been applied in Figure 2.13(b). It will be seen that the curve for c/h = 0.595
"lies roughly 7$ below the others. Equations (2.48) with the viscous correction factor
/la from Equation (2.77) give more comprehensive corrections than Equation (2.79).

r "
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To estimate the effect of aerofoil thickness, we use the values of Cn from
Equation (2.45) with a generalizing factor lOt/c to obtain the numerical formulae

7Tic, 0. 3__97•AO = 96•2 -+.87 67. 33 j •
9 ,hC 92160)•33h• c j•

ACL =- Pac, L + 5.'13- + ÷91-- 210 689.4--

We have seen in Section 2.3 that to order (c/h) 2 Equations (2.79) and (2.80) for
Ao are identical, and we shall regard the term in (c/h) " in Equation (2.80) as an I
increment to the correction •a given in Equation (2.79). This increment must be
converted to an equivalent lift coefficient by means of the factor - a, . since we
wish to compare results at a fixed incidence a . 4° . Thus we apply as a further
correction to CL , as given in Figure 2.13(b). the increment

I a il3c 4C, '3t ~ 2 2

92160,B3VlO 48 t3h- 1 +67.33-+ (; -pza) -- ) L

CL c 77 ý\23 (2.81)• c-- • +5 f20 + 689.4 . (.1

where

a . - /3al 0.773 a
a-27L(j C) + Co) 27T c)

and al is estimated from experiment.

The four terms of Equation (2.81) may be described as

(i) the equivalent of the (c/h) " terv in ta 1
(ii) the viscous correction to ACL in Equation (2.79)

(iii) the thickness correction of order (c/h) 2

(iv) the (c/h)r term in AtCL in Equation (2.80)

For the thickness to chord ratio t/c = 0. 12 the correctior factor I + (ACr) /CL
has been evaluated with c/h = 0. 119 , 0.156. 0.357 , 0. S5 and M = 0. 30, 0.45 . 0.60. I
0.70 . 0.80 ; typical results are given in the following table. where the separate

contributions (i) to (iv) often tend to cancel.

-I
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SContributions to• c ~(ACW) /CL +••-- M '1a ____]~L' +

h I CL

0.156 0.60 0.827 0.000 0.001 - 0.003 0.000 0.998

0.357 0.30 0.840 0.002 0.005 - 0.015 0.005 0.997

0.357 0.60 0.827 0.004 j 0.007 - 0.017 0.010 1.00410.357 0 . 8 0  0 .413 0 . 0 05 0 . 0 43 - 0 .0 1 1  0 . 0 14 1. 0 5 1

0.595 0.30 0.840 0.014 0.013 - 0.040 0.039 1.026
0.595"j 0.60 J 0.827 0.027 0.020 - 0.047 0.074 1.074
-'0.595 I0.80 0.413 0.041 0.119 - 0.032 0.110 1.238

I The results so corrected are plotted in Figure 2.13(c). ihere, for the four values
of c/h and Mach n,-bers in the range 0.3 < U < 0.7 . the discrepancies appear to
be random and never exceed ± 2% . Although the results for the interference-free
case c/h = 0.026 are up to 4% higher, this discrepancy can be attributed to effects
of extraneous flow in the large open-Jet tunnel with side-walls installed2

.
28 .

* It may be inferred from Figure 2.13 that effects of shock-induced separation on the
NACA 4412 aerofoil at a = 4o are felt at Mach numbers above 0.6. The theory of wall
interference is based on the velocity-potential field at large distances from the
aerofoil ibere the linearized equations continue to give a good approximation to the
flow, and so to £Am. Although the residual corrections 6CL and AC, are less
certain, the evaluation of wall interference remains justified until M approaches

|i 0.8.

I There can be general confidence in methods of applying two-dimensional interference
- corrections for tests in srbsonic closed rectangular tunnels. The method of

Reference 2.3 will normally be adequate for correcting lift and pitching moment;
Equations (2.79) to (2.81) indicate some of the inaccuracies in such an approximation.
When these are too large, Goldstein's theory 2 9 , as formulated in Section 2.3. is
recommended.

2.6.3 Open-Jet Tmnels

An experimental investigation by Adauson (Ref. 2.29; 1941) includes tests of two

rectangular wings of different chord spanning an open-Jet circular tunnel. The
measurements of lift and drag have been cofrected according to Squire's theory 2

.
1 9 asf given here in Figure 2.11(b). These corrections are too mall in magnitude on account

of the approximate lifting-line theory. It is found that the corrected two-dimensional
- .•'•-* lift slopes a, from Figure 1 of Reference 2.29 are rather lower than would be

predicted by Equation (22) of Reference 2.25. The following table shows that the
inaccuracy in lifting-line theory is of the correct order of magnitude and sign to
account for the discrepancies in a,
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Mtt

IValue of Estimated I
Reynods inaccuracy

-bAerofoil R s
c number Ref. Ref. a, (Ref. T .

S2.25 2.29 2.29) theory

RAF 34 7. 0. 50 x 106 5. 05 I4.95 - 2% + 4%'
RAF 48 5.0 0.75 x 106 5.29 4.88 - 8% + 7%

Nevertheless it would be unwise to expect a result to better accuracy than 5 f;;o such
experiments. whatever care were taken.
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TABLE 2. I

Sunmary of Principal References, Figures and Formulae

I "
Velocity I . L or Correction Correction
ui or wi in tunnel Ac or ACL AC or l6CH

Subject Ref. Fig. Eqn. Fig. Eqn. Fig. Eqn. Fig. Eqn.

Thin 2.3 2.9 2.3 2.18 2.16 2.17
aerofoll 2.4 2.10 2.19 2.17 2.26
in closed 2.5 2 20 2. 24
tunnel 2.6 2.:21 2.25

1 2.27

=Thick 2.9 2.31 2. 33
aerofoil 2.12 2.32 2.4 2.48

in closed 2.27 2.4 2.48 2.49
tunnel 2.28 2.49

2.13 2.81

Aerofoil 2.14 2.5 2.7 2.54 2.6 2.52
with flap 2.15 2.55 2.7 2.55
in closed 2.16 2.8 2.9
tunnel 2. 24

Open-jet 2.17 2.67 2.10 2.60 2.74 2. 15
tunnel 2.21 2.68 I 2. 75

2.22 2.69
2.23 2.12 2.71

Non- 2.2 2.11 2.61 2.11
rectangular 2.7 2.62
tunnel 2.19

II
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Reproduced from Fig. 6 of Ref. 2.1
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---- Model inverted I

_ . . . . . A v e ra g e" - -- 0 -0 4 -

Cm

0

II

- -0 4

0.0

CL

0-2

11

-0-5 -0-4 -0-3 y b-0.2 -0-1 0

Flig. 2.2 S;anwlse distribution of lift and pitching moment on an aprofoil Spanning
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0.10
10o/ thick aerofoil

0~o -0- Neglecting thickness '040,__

Neglecting (C/h4
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0.0c _ _ _ __ _ _ _ _

-0 -02

-0-06

Equation (2-48) gives ALC

-0 ome allowance for___ _______ _____

compressible flow.
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Fig. 2.4 Wall corrections for an RAE 102 serofoil
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(a) Lift interference due to incidenceo Eqn.(2-S2) E
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I Pig.2.6 Wall corrections to flap hinge moments
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Based on Ref. 2.16 / /
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Calculated from Ref. 2.16
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(a) h-co. Equation (2-59) (b) b co. Ref. 2-21
1-0

0"8

I
S~0.8

0-5

S0 0.1 0-2 0-3 0"4 001 0-2 0-3 0"4 0-5

c/b c/h

Wc) Centre section. Equation (2-60)

10

0-8

1a 0.6

0-40 0.1 0 C/b 0-3 04 0"5

Fig. 2. 16 Lift interference in rectangular open-Jet tunnels

-4 -



72

(a) Ratios of central and total lift. Ref. 2"19
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NOTATION

a speed of sound

a length of corner fillet of octagonal tunnel

A aspect ratio of wing = 2s/c-

b breadth of tunnel

B, hinge moment parameter in Equation (3.77)

c chord of wing

geometric mean chord of wing = S/2s

-caerodynamic mean chord of wing in Equatiou (3.60)

cf chord of control surface

Cr root chord of wing

ct tip chord of wing

C cross-sectional area of tunnel

CD dra coefficient = D/+pUJ2 S

C H hinge moment coefficient

C1 rolling moment coefficient = Z"/•pS.

CL lift coefficient = A/PU
2S

CLL (lift per unit span)/lpU2c

pitching moment coefficient /pU2a

CaL (pitching moment per unit span)/PU2 c2

C yawing moment coefficient = r/pu 2Sg

Cp pressure coefficient

d distance of wing from floor of tunnel

D drag

El complete elliptic integral

,®r-
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f function defined in Equation (3.177) or (3.178)

fq functicns (Q = 1.2.3.4) defined in Equations (3.90)

F integral defined in Equation (3.177)

gn function defined above Equation (3.121)

G function defined in Equatioa (3.103)

h heigibt of tunnel

SI m iodified Bessel function of the first kind

SJ sign according to the appropriate Equation (3.14)

Jn Bessel function Cn = 1.2....

S ,I strength of vortex.

4e KX strength of equivalent horse-shoe vortex in Equations (3.41)

modified Bessel function of the second kind (n = 1.2)

I 1 length of open working section

I 1 non-dinensional wing loading =(p - 2

1 1 semi-focal distance of elliptical tunnel

L lift
&

L(x) lift ahead of position x

S~rolling moment

m integer defining colum of images y = ab (ftg. 3. 1)

I Mach number of undisturbed strem

I ]nose-up pitching moment

n outward normal distance from tunnel boundary

n Integer defining row of lmages z = nh (Fig.3. l)

yawing moment

p pressure om upper or lower surface of wing

L P strength of doublet

Ir 1'6
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r radial distance

R radius of circular tunnel

NR Reynolds number

S semi-span of wing

s(x) local semi-span of wing

Be semi-span of equivalent horse-shoe vortex in Equations (3.41)

iS area of planform of wing

Sq functions (q = 1.2,3) in Equations (3.18), (3.19), (3.26.

t thickness of wing

t semi-spon of elementary horse-shoe vortex

u x-compoent of velocity perturbation

U velocity of undisturbed stream

v y-coMponent of velocity

vD velocity component of image system in Pigrte 3.1(b) normal to fillet

IN z-coponent of velocity

Swi interference upwash velocity

V weight factor in Equation (3.55)

I upmASh fuuction relating to horse-shoe vortex in Equation (3.79)

uPlash function in Equations (3.96)

i Uptesh function In Equations (3.96)

T_ upwash function in Equation (3.9n.

x stremaise distance

X local centre of pressure

x0 distsace of model from entrance nozzle of oM-jet tuel ;

x• centre of lift defined below Equation (3.60)

XL ordinate of leading edge

-- g
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integral defined in Equation (3.60)

xt distance between three-quarter-chord points of wing and tail surfaces

X x in transformed plane

- y spanwise distance from centre of tunnel

11 inboard end of aileron

SY2 outboard end of aileron

Y transformed co-ordinate = Ay

z upward distance from centre of tunnel

z transformed co-ordinate = 8z

C ! incidence of wing (in radians unless otherwise stated)

jI incidence of tailplane

7 non-dimensional circulation = F/2sU

F circulation

i£ 8Ulift interference parmeter in Equation (3. 150)

j8' incremental upwash interference in Equation (3.176)

I II upwash interference at a lifting line

I ! 81 upwaah interference associated with stremline curvature

- -- ditional upwasb interference downstrem of wing

* D9 drag interfereace parater in Equation (M.215)

I 8w upwash interference parameter at wing

I incidence interference parameter in Equation (3.215)

non-divensional correction to stream velocity

t• ' o interference parameter in Equations (3.156)

interference parameter in Equations (3.156)I, elliptical co-ordinates in Equation (3.113)

S, °... •-•-•=_•-• _ ' • _•--•-.•=-•• .•.
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70 = tanh-1 (h/b) for elliptical tunnel (b > h) I
0 angular cylindrical polar co-ordinate
Ko antisymmetrical upwash interference at a lifting line

K1  effect of streamline curvature in Equation (3.49)

x planform parameter defined below Equation (3.60)

A angle of sweepback

AL sweepback of leading edge

A planform parameter in Equation (3.62)

angle defined in Figure 3.15

angular deflection of aileron

p density of undisturbed stream

a span ratio = 2s/b

equivalent span ratio 2Se/b

velocity potential

velocity potential in Figure 3.14(b) or 3.14(c)

(P 2 incremental velocity potential in Equation -(3. 119)

x function defined in Equation (3.104)

angle defiued In Fiigre 3.15

VY stream function in transverse plane

W coplex (y.z) plane

S.perscripts

(1) closed tunnel

(2) open tunnel

&9bscri. ts

0.25 quarter-chord

o. s mid-chord
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0.7 •s three-quarter-chord

wake (x = cc)

A antisysmetrical part

B elliptic spanwise loading

P free-stream

9 ground effect

1 induced by tunnel walls

I from antisyuetrical loading

L from symmetrical loading

Ss model

point concentration of lift

a rectangular tunnel

S symetrical part

t tailplene

T with tunnel constraint

i u uniform spanvise loading

vortex-induced

Prefixes

contribution due to wall interference

A *. increment due to wall correction

E r denotes that (m.n) takes all possible integral pairs except (0.0).

a Z '(prime' denotes dlfferecticitk ate-l.l othel4rwss stated.
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LIPT INTERFERENCE ON THREE-DIMxtNSIONAL WINGS

H. C. Garner

3. 1 INTRODUCTION

In Chapter II various aspects of lift interference on two-dimensional models have
been covered. The wall interference corrections on three-dimensional lifting models

are not only more numerous and greater in magnitude, but they invol:s considerably

more geometrical parameters to represent the wind tunnel and the model. There is a

corresponding diversity of mathematical techniques. and often the analysis demands

simplifying assumptions that are unnecessary in two-dimensional flow. Glauert's

classic monograph (Ref. 3.1; 1933) illustrates both these points and provides a

comparative background for most subsequent developments.

The governing linearized equation for the-velocity potential in three-dimensional

steady ideal compressible flow is

(I-M) += 0 (3.1)

in rectangular co-ordinates; alternatively, in cylindrical co-ordinates.

(I -M 2 ) V2" '5; + rr + - r2 = 0. (3.2)

It is assumed that squares and products of the component perturbations of a unifolm

velocity U = Ma are negligible throughout the field of flow. The differential

Equation (3.1) or (3.2) is subject to outer conditions

Zý!Bn = 0 at a closed boundary••I ; (3.31

ZP/B x= U at an open boundary 
(

the formor is exact, but the latter follows from the linearized approxination to

consLant pressure at an undistorted free boundary (.ef. 3.1. p.3). More complicated

boundary conditions are used iD cases of ventilated tunnels (Chapter 11). -1.ere are

in •ddltion the upstream snd downstream conditions tht the flow is un-isturbed at

x = -w and independent of x for large positive values of x .

The first-order effects of compressibility can be obtained from solutions of the

linearized differential Equation (3 !1 with the aid of the trau~formatior l

X X YPY Z PZ~ (3.4) .
4*

* .~ -. - -
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where _ = ( 2) In the new co-ordinate system the potential satisfies Laplace'sSi equation for incompressible flow

S • • + + = 0(3.5)

It is convenient to regard the perturbation potential (4-Ux) as unchanged in the
transformation. Then, by the argument in Section 2.1. the linearized solution in
compressible flow is readily expressed in terms of an equivalent incompiessible Ilow
witt the geometric aud aerodynamic parameters listed in Table 3.1. That is to say.
the equivalent incompressible flow gives an upwash velocity jP• or an upwash
angle j6w/U corresponding to a model of chord c , aspect ratio j3A and thickness
,et in a tunnel of breadth 13b and h-ight ^n at an incidence 13a to a streas of
density p and velocity fl-U . There are alter-native methods of allowing for
compressibility in Reference 3.2, where the free-stream velocity rather than the
perturbation velocity potential is kept invariant. As Goldstein and Young point out.
the liaear perturbation theory of compressible flow is not intended to be applied
when shock waves are present, and it must clearly fail in the neighbourhood of a
stagnation point. Nevertheless, the theory of wall interference only involves the
potential field 3t appreciable distarces from the model, and the linearized equations
can still be used to satisfy Equations (3.3) at fairly high subsonic Mach rumbers.
The effect of compressibility is obtained by substituting the generalized parameters
of Table 3.I into any formulae or numerical data for wall interference in low-speed
tunnels.

The classical approach due to Prandtl is to regard the model as a lifting line.
when the problem of wall interference reduces to a solution of the two-dimensional
Laplace equation in the transverse (y,z) plane containing the model (Ref.3. 1, pp.3 to 5).
The perturbation potential in this plane Is exactly half that in the distant wake.
For a given sP=a=ise lift distribution and tunnel geometry, the interference upwash

- velocity Wi(y) along the wing span can usually be obtained analytically; hence the
simple corrections

AL= 8OSCL/C1
1 (3.6)

AC D = S 0SCL2/C ,J
to the measured incias'nce and drag coefficient of the model are derived (Ref. 3. 1.

*; PP.8 to I1). The interference Parameter So is a non-dinensionalized mean value of
w, weighted proportionally to the spanwise lift distribution and given by

L =- -dy. 31
•.8

Since the drag coefficient is determined by the conditions in the distant wake. the
expression for ACo in Equation (3.6) is usually regarded as exact according to
linearized theory. The corresponding expression for Act is often too approximate
and underestimates the magnitude of the correction.

h
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Unless the wing chord is small, it is necessary to consider the streamwise
variation of vi , which is interpreted as a curvature of the free strt ' due to wall
constraint. For wings of fairly smai 1 span the results of Section 3.2 ,. often be

k used and the interference correction to incidence is approximately

I:C

-+ L (3.8)0 2 "8 -C

where " is the aerodynamic mean chord and 81 is independent of Mach number. Thus,
as GOthert remarked (Ref. 3.3; 1940). the streamline cur-ature correction is of growing
importance in compressible flow. A more general treatment is necessary for sweptback
wings of moderate spen, which must be considered as lifting surfaces. Many different
vortex representations of the model have been suggested (Section 3.3.1). For most
purposes it is sufficient to regard wi(x.y) in the plane of the model as a linear
functlcn of x (Section 3.3.2). Indeed, with the exception of interference effects
on long slender wings (Section 3.6.1) and tail planes (Section 3.6.2). a &ore detailed
representation of the model than appears practicable would be required to justify a
precise evaluation of the streamwise variation of the interference upwash.

There is a miscellany of literature concerning wall interference on lifting wings.
ranging from the excessively numerical to the excessively mathematical. Sore papers
deal exclusively with one particular tunnel section and rely on extensive tables cf
interference upwash and approximate computations: the numerical results are only
useful for the single tunnel shape, and it is often difficult to assess the ultimate
accuracy. At the other extreme, it is no' always expedient to carry the mathematical
analysis so far that the complexity of the resulting formulae prohibits their use.
An attempt is made in Section 3.3.2 to steer a middle course in presenting the basic
interference parameters.

Broadly the cases to be considered fall into four categories

(a) complete spanrise symmetry, e.g.. a wing at incidence,

(b) ymmetrical planform but asymmetrical spanwise loading. e.g., a wing with
deflected ailerons,

(c) asymetrical planform relative to the tunnel, e.g., a yawed wing.

(d) special configurations to be considered in Sectien 3.6.

Even with complete spanwise symmetry there is no unique pracedum for converting thet-mnel-onduced upuash distribution into corrections to the measured quantities. The

incremental correction to incidence, such as Equation (3.8). is a somewhat arbitrsry
average value of wi/U radians, and the subtraction of the residual upwash field is
made equivalent to incremental corrections to the aerodynaaic forces. The camp-licat~an
of asymmetry introduces residual corrections to the lateral nonents (Section 3.3.5).
The mathematical theories leading to the basic interference parameters for the various
types of tunnel section are discussed in Sections 3.4.1 to 3.4.4. and some available
s•urces of numerical data are listed in Table 3. IV. 7he final incremental corrections
are conaidered nucerically in Section 3.5, and in Section 3.5.3 an attenrpt Is Vjadef
to assess the accuracy of alternative methods where c4xparative calculations eiist.
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Experimental considerations of high lift and some practical confirmation of wall-
interference theory are given in Section 3.7. The former is largely empirical and

1 ~beyond the scope of linearized theoretical methods; the latter usually Involves tests
in different tunnels, on different modeis or at different or rather small Reynolds
numbers and lacks firs conclusions. Unfortunately it is no easy matter to amalgamate
the tunnel corrections for wall interference and Reynolds number. Sometimes Jarge
models or half models are tested to achieve the highest possible Reynolds number,since the uncertainties of scale effect exceed those of will interference. In ,Reference

_3.4, Bryant and the present author have suggested a scheme whereby the estimation of
•wall interference includes a correlation between experiment and an approximate wing-

S±loading theory incorporating sectional wing characteristics dependent on Reynolds

~ 1 1 umber. This Ideal philosophy envisages corrections to full-scale conditions after
wall interference has been taken into account.

SI There are many problems of lift interference, where a mathematical solution must

involve simplifying assumptions regarding tunnel cross-section, wing thickness or

location of model. In such cases the use of an elecatrical analov'y is worth
consideration. In particular, Reference 3.5 discusses the basic concepts of such
analogies and their technical difficulties in relation to open wind tunnels of finite
jet lengths.

Attention is drawn to the final Section 3.8 which serves as an index to the more
important equations, tables and figures. It is intended as a preliminary guide

firstly to the more approximate formulae and numerical data, and secondly to the more• i complicated and accurate formulase for the interference up-ash. A third table lists
the various expressions and results for the interference corrections themselves.

1 1 3.2 SNALL WINGS IN CLOSED AND OPEN TUNNELS

SUseful estimates of lift iL.erference can often be made when the model is assumed
to be small. The interference upwash at the wing and the streamline curvature are

given respectively by

so - Clz

L
. . .( 3 . 9 )

Both parameters are readily evaluated for closed or open rectangular tunnels
(Section 3.2.2). For more general cro-s-Aections a method of conformal transformation
will usually determine S. . When the analysis for 8, becomes Intractable, an
approximate formula may be used to relate 81/80 to its known value for a rectangular
tunnel (Section 3.2.3). Several types of semi-closed tunnel with mixed boundary

conditions are also discussed.

-he applications in Section 3.2.4 are restricted to wings of fairly small span; if
accuracy within ±10% Is necessary, then the wing span should not exceed half the
tunnel breadth or half the tunnel height. For a.wy purposes the formclae and graphs

I '
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will give the order of magnitude of the interference corrections with a minimum of lt
effort.

3.2.1 Netbod of Images

r�The small wing is represented as a semi-infinite vortex pair trailing from the
origin of co-ordinates. The doublet strength is

lm (M) = 2USC , (3.10)

and the corresponding velocity potential is

=Ux + (3.11)+-Ca = +8n(y 2  Z :2) (x 2 +.fflj2 + '2Z2)-.)

where x is in the horizontal direction of the undisturbed stresm. y spanwise and z
upwards. The boundary conditions (3.3) to be satisfied by the potential '~= +
are supposedly independent of x . Like • the interference potential is then of
the fore

= f(y.z) +y (x.y. Z7

where FPx.yz) is an odd function of x . From Prandtl's argument (!Ref.3.1, pp.3
to 5). the solution for 1, in the plane x = 0 is given by the tw-dimensional

• |Laplace equation

by Equations (3.3) with the upstream condition and Equation (3.11) the boundary
conditions on •t are

Z fS( +z )J at a closed boundary

/I, (3.12)USC,.
-1= 87r~y2  at an open boundary

where ?/i denotes differentiation along the outward normal to solid portions of
the tunnel boundary. 5

For special shApes and types of tunnel a convenient system of images can be
constructed to give the required potential ')t in the plane x = 0 , or a good A
approximation to it. Typical examples are illustrated in Figure 3.1. In the case of
a closed circular tunnel the image system is particularly simple, but it is necesasry
to consider the wing as a uniformly loaded lifting line of finite span 2s and then
•take the limit as s - 0 with the aid of Equation (3.10). The images for a closed
rectangular tunnel are doubly infinite in number and are evenly distributed over the
(yz) plane; as will be seen in Section 3.2.2. image systems of this type are not
always valid. When image systems fail or do not exist, special analytical treatment

tK2..
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is sought. The third illustration of Figure 3.1 represents an incremental image system
to the previous one, to give an approximate solution for an octagonal tunnel obtained
by the addition of isosceles corner fillets (Section 3.2.3).

In general, the method of images can only be applied to the interference parameter
in Eqwation (3.9). For the important class of rectangular tunnels, however, the

images can be regarded as semi-infinite vortex pairs trailing from the plane x = 0
which by symmetry provide a complete three-dimensional system from which ý% . and
hence S1  can be evaluated. This is not true of the circular and octagonal tunnels.

3.2.2 Rectangmlar Tommels

As early as 1931. Theodorsen" studied different types of rectangular tunnel from
the standpoint of minimizing lift interference. Four particular types of breadth b
and height h,

(1) completely closed tunnel

(2) completely open tunnel

1 ; (3) open sides, closed floor and roof

(4) closed sides, open floor and roof

will be considered. In each case there is a complete image system comprising semi-
infinite doublets of strength -LUSCL and the appropriate sign; for a central model
they are situated at (x.y.z) = (0.,abnh) where a and a are integers. Thus, by
Equation (3. 11). the interference potential for a small lifting wing is

!r

USCIL(z -nh) I 11.3.13)
'-4 j i 87T{(y-.b) 2 + (znh) 2 } 1 {x 2 + f2(ygb) 2 ÷ I(znb)2} (1 3

where EE' denotes that (un) takes all possible integral pairs except (0.0).

ii0 Following Glanert (Ref. 3.1. Figs. 7 and 8. pp. 21 to 24). we take
j = j(i) = _n

j = j(2) =
(33. 14)

j = j(3) = (_l)}+n

j j, ~J = J(u) =1

respectively for the four types of tunnel, the first of whi: is illustrated in
Figure 3.1(b). From the definitions in Equations /.3.9) the . At-interference
parameters st the origin are obtained as

Blh bb 2 2 b2 _n 2 h2

+0 2 2 (j) n 2h2 )2  (3.15)
USCL tZ 8 -C (br +

4ý
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and

.,t 2  i jh 2  
'- 'n- ( m 2b 2  _2 2 h 2

81 2 -+(J n2h2)s/2 (3.16)
USCe. 8V " (.2b2

Theodorsen.6 derived expressions for the interference-upwash parmeter S. for
the four types of rectangular tunnel. It was later remarked by Rosenhead (Bef.3.7;
1933) that the doubly Infinite series of Equation (3.15) Is not absolutely convergent.
He therefore re-exmined the problem rigorously and confirmed Theodorsen's result
for types (1). (2) and (3). but not for type (4) having closed sides and open floor
and roof. Van Schliestett (Ref. 3.8; 1934) attempted to verify Theodorsen' s values of
8o by experimental means and revealed serious discrepancies for a square tunnel of
type (4); he likewise re-examined Theodorsen's work and gave a third expression for
S0 ) that differs from those of References 3.6 and 3.7. but is consistent with his
experiment. A full theoretical discussion of this problem is given in Reference 3.9.
An analytical treatment in Fourier series and an independent calculation by :elaxation
show that the correct result for S(") is obtained when the suation (3.15) is
carried out col~m by colu (first with respect to n). However, Equations (3.13)
and (3.15) are strictly divergent in this case. "Ahe image system fails, since the
velocity gradient at the tunnel boundaries is satisfied, but not the upstream
condition for undisturbed flow at x = -wo. When this last condition is correctly
applied. Rosenhead s rigorous analysis is reconciled with the others. Some expressions
for 8o are given below.

For a comletely closed rectangular tunnel

SOO = -Th 7Th " n
80so =+ e 2mW b +1

For a completely open rectangular tunnel

8•" (2:) =-b 7r2-4 h •e~e'b/h + 1

= _-

For open sides, closed floor and roof

_ I= ((3)=h

8 = S3) + 7h 2n48b 2b te(2a0ws! +Iu

For closed sides, open floor and roof

1 7th 7Th n
80 - 24b b ewa/ 1
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A -hIn Refereuce 3.9, Rosenbead' s discrepancy in S•( was resolved by the siper-
0

position of a uniform upsaub velocity to restore undisturbed flow at x = without

violating the conditIons (3.3). The streelne-curvature parmaeter 8 in Zaation

S(3.16) is unaffected thereby; moreover, this doubly Infinite series is seen to be

absolutely convergent. To evaluate the series, we write

h2 w{C ai - 2(nh/bl 2

8}1 [2 (i ano( to + 2~ M islage

and consider the simatlons in curly brackets. It can be shown that
-- • tt2 -A2 •

2. 2
(n 2 

4 X2) s/+ tends asymptotically to - -h•n X is large.

We therefore put
CD • 2 _ Z2•

2 2:

16712 p2K'o(2•pA) -- pK 1(27,pD)L (3. 19)

which behaveb like -Sv20½ez• for larpe X. Next we consider

S2(M. = .- Ia 2

= - S(a) + •sz(iM. (3.19)

which is Idenriled with the derivative coefficient fV(X) of the function in
Equation (Af) of the Appendix to Reference 3.10. When the appropriate values of j

are substituted from fquations (3.14). 8 1 is obtained as follows.

ftr comvletely closed rectangular tunnels

1 24

IFor cosp-etely open rect~agular tunnels

12 CI CI

[ Ml"'= (3.2D)

The fmctlos K0 sad Kt we defined and tabulated In "A Treatise on the Theory of sseml

ftectloWa by G•.-atsca (Cmbrldse sIhversity Press).

t --
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For open sides, closed floor and roof

S( 3 2(3)

3 4) 2 + (-I) S
47 * = n=12( )

For closed sides, open floor and roof

0) 77 hC) 11=+ + S1

12 4ftr2- +' ..

Here

_ .2020• and - 901)
3=1 3=1

3 1 (nh/b) from Equation (..18) is evaluated in T_0b'e 3.11 and S,(nh/b) given by
Eqation (3.19), is identically f'(nh/b) .ron TablE Al of Reference 3.10.

Glauert (Ref.3.1. pp.23 and 24) records numero-s relationsh~ps between -o 1)

00•(2) .() and i o regarded as functios of h/b .the mo't important of which is

8S(l)(h(/b) + L%,Z)b/h) 0 (3,21)

owing to the correction to Rosenhead's work. Equation (9.06) of Reference 3.1

becomes in the present notation

0 (o) (h/b) + S8()(b/h) - -0.25 (3.22)

with the corollary that ( = -0.125 for a square tunnel. The following

relationships between 8(2) •(2) .(3) and b') an deduced from superposition

of the image systems:

S8 l)(jh/bp + 6 f9)(hb) 8(1)(kb

8-)h )t- & (3) ezx/b = +S¶1*(2h/b)( .3(3.23)
+ 82) (h/b) ()bb !8 ( 2)(2h/b)

St.2)(b/b) +- 8 WOab) S!= ~!(jIb)

S 1ecial interest attiches to rectangular tunnels of types (2) and (4) in Chapter VI. A

The completely open tunnel is a limiting cese of a tuanel with longitudinal slots
on all four wills (Section 6.5.4): similarly, type (4) Is a limiting case of
rectangular tunnels with slotted floor and roof (Section 6.5.3). Figure 3.2 gives
all the lift interference pa eers of Eqatious (3.17) and (3.20) for the r of"

tunnel shape 0. 5 b/h 4 2.0.

t~ 'I.a 
.

in e fe e c pa-e r of Eq a i n 3 1 )-n 3 2 ) f r h a g f
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If, however, a lifting model is displaced vertically from the centre of the tunnel.
there arise both stremwlse and upward interference velocities. For a completely

4 •closed tunnel with the model (and origin of co-ordinates) at a distance d from the
floor, the interference potential corresponding to Equation (3.13) is

MM USC,(z - D r I + x

2:2i . BirS(ymb) 2 + (z 2)} [ {X2 +/32(y -mb) 2 +/32(z-C)2}2!

where J = +1 with • = 2nh and all integral pairs (a,n) except (0.0)

j = -1 with • = 2(nh-d) and all integral ptIrs (m,n)

Then the upvash and strem-velocity interference at the model are respectively

•:! (3.24)

Ij I

i where In the let~ter" equation the terms involving J = +1 cancel. Since
XCD

we obtain

7r -,d = + cosech2 +
TO + 8b !M

2- o 2(nh +d' 2(nh -d) 22mh

coec + cosech2 2 cosecb2 ' (3.25)
8 b b b j

Similarly to Equation (3.18). we put

3 - X = 87W /3 2 ) 3/ (ab + (2)3.2

It then follows from the second of Equations (3.24) that

+ -- db

I 7I D( . 7

- cot •+ •(.7

H 7bih S3h (b0n2b b OS/k

I 0
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Equations (3.25) and (3.27) with (3.26) have been evaluated for b/h - 0.5, 1.0 and
2.0, and both interference parameters are plotted against d/h in Figure 3.3. For
example. if b/h = 2.0 and the model is displaced from the central position
d = 0.5h to d 0.625h , then the upwash interference is increased by 24%. The
corresponding contribution to the stream velocity at the model is given ty

- = E = 0.095 •

U

which could exceed the solid-blockage factor 63 (Section 5.2.3).

3.2.3 Non-Rectangular Tunnels

Many closed working sections are of basic rectangular shape, but have triangular
corner fillets. Batchelor (Ref.3.11; 1944) devised an image ayetes to obtain 80
when the fillets are isosceles. As illustrated in Figure 3.1(c), the fillets and
their images form a doubly infinite array of squares. To the image system for a
closed rectangular ttmnel in Figure 3.1(b) can be added an appropriate distribution
of vorticity round the perimeter of each square, so as to cancel the normal velocity
across the fillets and preserve the other boundaries as streamlines. Batchelor' s
method provides a good approximation to this, and his formulae for a particular
tunnel have been generalized in Reference 3.12. By a conformal transformation,
Gent (Ref.3.13; 1944) obtains So exactly for a closed tunnel of regular octagonal
section. These theories are outlined in more detail in Section 3.4.2. where wings
of finite span are considered. The interference upwash is increased by the presence
of the fillets, but the increment is only about half that which would arise if wi
were inversely proportional to the cross-sectional area C The parameter S.
of Equation (3.9) is therefore reduced by the fillets. An approximate formula,
suggested in Appendix II of Reference 3.4. tives

8; = 80() bb+C(3.28)
Sbb+÷C

0 = 2bh

where S(o) is the value for a closed rectangular tunnel in the first of
uations (3.17). The res0ults of References 3.11 to 3.13 Indicate the likely

accuracy of thin formula as follows.

C Theory

Tunnei T8(1) Equation (3.28)
SRef. B

9 x 7 (Melbourne) 0.9028 3.11 0.1138 0.1204 0.1145

9 x7 (RFL) 0.9048 3.12 0.1140 0.1204 0.1147 :1

13 x 9 (NL) 0.8932 3.12 0.1125 0.1191 0.1127

Regular octagon 0.8284 3.13 0.1262 0.1368 0.1251

I
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'he uncertainty in the decrement (5o(1) - So) is of the c"der ±10%. but So itself is

within 1%. When the corner fillets are scalene, the squares of Figure 3. 1(c) become
rhombuses and Batchelor' s approach 4.s found to be less zatisfactory. In such cases
Equation (3.28) may continue to be a useful guide.

Conformal transformations frow the (y,z) plane can simplify the boundary conditions
(3. 12) and in effect reduce the problem of evaluating 8 to one having a simple

heointeiorma f te r egularations cninto half planesplify the bipolarrc-or diateoserebyimage system. Examples are the Schwarz-Christoffel theorem whereby Gent 3 " 13 transforms
"the interior of the regular octagon into a half plane. the bipolar co-ordinates whereby

Kondo 3 . x investigates tunnels with boundaries of circular arcs. and the simple
transformation whereby Glauert (Ref.3.1. p.32) relates elliptical and rectangular
boundaries.

In this last instance S. for closed or open elliptical tunnels is reduced to
"double summations similar to Equation (3. 15). In the present notation Glauert gives
for a small wing in a closed elliptical tunnel

- 2p- I

""= ½sinh &cosht1. e20(p1)
=p=1

S= xesinh OcosheO + 1 6-• •e 2p° T/-l

-. 1i 12+ .

where b/h coth I •> ; numerical values of So due to Sanuki are published in the
Appendix to Reference 3.14. When the wing span lies along the minor axis of the ellipse.
there are corresponding expressions from Equations (10.09) of Reference 3.1;

-I
• •, • ~~~~~~~2p o=zsn ohe ee• :) - I

= t sinh 0 cosh 62 e l
S0 e28(2P-*) -

[- (22 3.30')

*22~ 81i 7 _ __

L

where b/h tanh 0 4 1 . lbe second of Equations (3.29) or (3.30) is rapidly

convergent, unless the ellipse approaches very closely to a circle. In the limit
as 6- , the first of Equations (3.29) or (3.30) tends to the result So = 0.125

F for a closed circular tunnel and is consistent with the image system cf Figure 3.1(a).
Results for open elliptical tunnels follow from Glanert's interference theorem; as
expressed in Equation (3.21). Eo has the same magnitude, but opposite sign, as that
in a closed elliptical tunnel of height b and breadth h

To the accuracy envisaged in Section 3.2.1 for fairly small models, it is
considered satisfactory to assume that the ratio of t/3 uvi/x to wi/IC is the same

as for a rectangular tunnel of the same breadth to height ratio, completely closed

Sor completely open as the case may be. Thus we approximate to 81 by the formula

Sth fon -
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= S c or - " (3.31)

0 04 0

where 8o(J) , 8(
2) 801) , 82) are given in Equations (3.17) and (3.20). TheI

ratios W)/6") and 8(2)/8(2) are plotted against b/h in Figure 3.4. 71be

values 5, = 0.248 and -0.209 so obtained for closed and open c. rcular tunnels are
acceptably close to the respective exact values 5, = 0.2497 and -0. 1992 computed
from Equations (3.136) and (3.137) of Section 3.4.3 and shown in Figure 3.5. The lift
interference parameters 8o and 8 for closed and open elliptical tunnels can thus
be calculated from Equations (3.29) to (3.31) and are given in Figure 3. 5 for the
range of shape 0.5 4 b/h < 2.0 . Equations (3.28) and (3.31) combine to provide a
rough formula

1= bh + C
1 2 Ad 80) (3.32)

for small wings in closed octagonal tunnels. •' being given by the full curve
against b/h in the lower panel of Figure 3.2.

Generally speaking, the problem of lift interference in wind tunnels having partly
closed and partly open boundaries is more complex. Tunnels with slotted walls
(Chapter VI) and open-jet tunnels of finite length are cases in point. The latter
problem is considered in Part III of Reference 3.5 by Eisenstadt, who gives a solution
for a circular tunnel involving expansions in Bessel functions. In this particular
problem the linearized condition in Equation (3.3) for constant pressure on the open
boundary must in general be replaced by

B/Vx = U+u (u :0),

to achieve continuity of velocity at the lip of the closed entrance nozzle. However
u = 0 in the special case of a small model situated on the axis of the tunnel, and
numerical results are obtained by satisfying the boundary condition at te- points
along the free surface. The distribution of interference upwash along ti .unnel axis
is reproduced in Figure 3.6 for a jet length 1 = 3R with the wing at various
distances x. downstream of the entrance nozzle, the broken portion of each curve
corresponding to the extent of the open boundary. Provided R r xo 4 (1 -R) . the
corrections at the model (x = 0) are essentially those for an infinitely long open
jet. but the streamllne-curvature parameter 3, may only apply over a restricted
axial distance. As x. decreases below R . the upwash-interferenqe parameter 80
changes rapidly towards the average (zero in this case) of that for an open tunnel
and that for a closed tunnel. The greatest 3treamline curvature occurs in the region
of the collector x = (i-x0)

For tunnels of infinite length, Kondo 3 " has obtained exact values oe S. in
two particular cases of mixed boundaries, namely semn-closed tunnels of circular and

arch-shaped sections. Kondo's examples serve to illustrate an interesting general
theorem proposed by Glauert 3 " 7:

"The interference on a very small aerofoil in a tunnel, whose boundaries re

are partly rigid m]als and partly free surfaces, is of the same magnitude. '1
'I .



jbut opposite in sign, as that on the same :erofoil rotated through a right

angle in a tunnel of the same shape as the previous one but where rigid walls

k replace free surfaces. and free surfaces replace rigid walls."

Glauert has proved a corresponding theorem for completely open tunnels, of which
Equation (3.21) is a special case. In the notation of Section 3.2.2, consequences ofj l as ineral theorem are thatS~~8(3) + /b (3t) (b/h)=0

8~(b/b)

S")(h/b) + 8(4)cb/h) 0

the former is true. but the latter conflicts with Equation (3.22) and is false. The

present author 3 . 15 has recently proved the theorem for a wing arbitrarily placed in

any tunnel having one closed portion and one open portion. a is true of Kondo's
examples; apart fros an additive constant, the interference velocity potential of the
first half of the theorem can be identified with the interference stream function of

the second half. With the exception of rectangular tunnels of type (3) having open
side-walls and closed floor and roof, the prcof cannot be extended to tunnels whose
boundaries consist of two closed and two open portions.

3.2.4 Alications

?be values of o and a, . discussed in Sections 3.2.2 and 3.2.3. will often
suffice foz the purprse of rapid estimates of tunnel wa]l interference. Equations (3.6)

give the corrections to the measured ivcidence and drag of a small model. Although
streamline cur'ature does not normally inflience the latter correction, it does introduce
a variation in the interference upwash

+ (3.33)

U

along the centre line of a wing. The first term of Equation (3.33) is equivalent to

a lift coefficient

se. B0  L acting at the centre of lif4  x 0

the second term contrimutes an increment in lift coefficient

(SC)X 1  - L D acting at some position x xi

where K and z, are to be deterr-ined.

• ,-, 4 The correction Arm is a somewhat arbitrary average value of wA/U over the

planform. We may simply take

i -



5 101

As= 1osC
0C

I;• SCL ZCL

- /•~CL - ,, c (3.34)

M.X1181 SL Z'Cl.
C

where C. Is referred to an axis through the uncorrected centre of lift. But it is
often more convenient to choose Aa such that there is no residual correction to lift.
If

\ Z.h(51 + (3.35)

then the residual Interference upwash (wi/M. -A,% gives rise to increments in lift
coefficient

(SCL)c -• -- = --(SCL)• acting Pt x = 0

(SCL) = -- - - acting at x = x2
2/3b C 'a

Together these give zero lift, but a pure couple or pitching momenit coefficient

a 
-c

which has to be subtracted from the measured C. to give a residual corraction

I X2 8SC Ze-Aca -LISC ) , II -LJ (3.36)

independent of pitching axis. As in the second of Equations (3.6) the correction to
the drag coefficient is

Sic (3.37)

Any residual correction to spanwise loading would involve a correcticn to drag, but
this is usually ignored.

It is sometimes suggested, by analogy with two-dimensional models, that X = I
and xi = (1/9)E . Then the wing is regarded as a three-dimensicmai lifting surface,
both X iad x. usually .ake larger %alues. Cn the approximate basis of strip
theoryr, in which each streswire section of e wing Is triated a3 Jf the fl'. were

tw•-dimensloaal,
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e+ I (f tan (2.t ) -

where A = 2s/f is the aspect ratio of the wing and A 0. is its midchord sweepback
(assmaed constant). Thus Xx, would vary from (1/8)U for rectangular wings and (1/3)E

for delta wings to largaar values for sose wings with sweptback trailing edges. -The
interference corrections resulting from Equations (3.35) to (3.38) are

+f)-+ftan A0 .theory.

where Is given in Equation (3.35); the terms involving rxe approximate. the
values of X. and x I from Equations (3.38) being poor substitutes for values from
lifting-surface theory.

ITypical theoretical values of X and Xx,/E are compared with the corresponding
Svalues from Equations (3.38) in Table 3.M11. Apart from rectangular wings and some
slender wings. 9/E lies within 16% of the appropriate theoretical value of X.
The accprscy of strip theory for various p)-informs is illustrated for a range of

leading-edge sweepback AL in Figure 3.7. which suggests that &/c is likely to

overestimate or imderestimate X according as A tan AL is greater or less than

about 3. Table 3.111 shows the unreliability of the Equation (3.38) for Xx,/C- ;
typically It is low by a factor of order 2 for wings without trailing-edge sweepback,

' whatever the taper parameter cr/c , but rather too large for wings of high trailing-

edge sweepback. Whilst the residual correction AC,-s is usually fairly small. It

seems difficult to estimate without recourse to lifting-surface theory. Nevertheless,
Table 3.II gives some guidance for uniformly tapered wings.

The interference upwash at the tail of a complete aircraft model may be estimated
from Equation (3.33). This early moplication was wade by Glanert and Hartshorn
(Ref. 3,16; 1924); after a correction Act 13 made to incidence, there remains a
residual correction to tailsetting

Aat - (.(3.40)
* c

where it is approximately the distance between the centroids of the wing and tail

surfaces. This will often bee quite large and rather inaccurate. For example. in af closed circular tunnel with t= R and 6 = 1 * Equation (3.40) gives

ME - -
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as compared with the correct value 0.099 from the full curve of Figure 3.6.

In practice the formulae (3.39) and (3.40) may be of more use in open than in

closed tunnels, since it is inadvisable to test large models in open tunnele. The
free boundaries of the jet will distort and spillage may occur at the collector
downstream of the model (Section 2.5.4); for such reasons the more accurate Inter-
ference corrections for large models become unreliable. In closed tunnels. however,
the more accurate interference corrections will often be reliable and yet differ
appreciably from those for small models on account of either large span or large chord.
Present formulae for S. will give accuracy within about 10%. provided that the wing
span does not exceed half the tunnel height or breadth. i.e.. a < 2h/b end o- < I.
These conditions will often be satisfied for slender models, when the chord length I
becomes k. diting factor. However. Equation (3.33%, is a useful approximation to the
more exact analysis considered in Section 3.6.1.

Half-models mounted on the side-wall of a tunnel are treated as complete wings in a
tunnel of twice the area with the side-wall as reflection plane (Section 3.4.4). In
view of the great difficulty in obtaining St for non-rectangular configurations,
it say be expedient to use the simple formula of Equation (3.31) in coijunction with a
mean value of So appropriate to the span of the model. The corrections to measured
quantities tp either Equations j3.34) or Equations (3.35) to (3.39) W then suffice.

3.3 GENERAL THEORY OF L.FT INTERFERENCE

In general the formulatJans of Section 3.2 will be too approximate. Then the wing
is large, there are many different approaches to the evaluation of interference upwah
depending mainly on the representation of the model (Section 3.3.1). The choice of
vortex model will be J.,fluenced by aspect ratio. sweepback and yaw of the wing, the
symmetry or asyraetrj of its spanwise lift distril~ition and by the availability of
tabulated interference parameters for any particular tunnel (Section 3.4).

In Sectior 3.3.2, the interference parameters are defined for different basic types
'of model. irrespective of tunnel cross-section. General expressions for the distribution

of interference upwash are then derived. The procedures for converting such distri-1A
butions into corrections to measured quantities are far from standardized. Section
3.3.3 susarizes the general approach to this problem. The various cases are then
classified according to the degree of symmetry about the centre line. Sections 3.3.4
to 3.3.6 summarize approximate formulae for the ftnsi lift Interference corrections
relating to complete and balf-wing models.

3.3.1 Representezion of Model

In problers of two-dimensiona, lift interference it nay occasionally be desirable to
represent the model precisely as a thin aerofoil is represented in classical theory.
Ile smae only remains true in three dimensions in the case of unswept wings of high
aspect ratio to which the classical lifting-line theory applies. As illustrated In

--.- ._FR I
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Figure 3.8(a), an elementary strip of the wing (8y) having circulation r is
represented by a trailing vortex element of strength -(dr/dy)Sy. At the other
extreme. a slender wing can be divided into elementary strips (Sx) supporting a lift
SL = (dL/dx)Sx. The lift interference (Section 3.6. 1) is regarded as that due to a
distribution of trailing vortex pairs of doublet strength SL//4 along the centre
line: Figure 3.8(b) is the generalization of the representation of a small wing in
Section 3.2.1. Thus even a slender wing is replaced by a simpler vortex model than
that used in the corresponding free-strem theory.

This is still more evident for a general planform. as a complete vortex sheet is
needlessly complicated. It is desirable to let the vortex model depend upon as sany of

the aerodynamic characteristics as are measured or can be estimated easily. Figure 3.8
includes three typical representations. but there is no universal opinion as to which

is best. In Reference 3.17. Acum use" in effect a lifting line through the local
chordwise centres of pressure with the appropriate trailing vorticity. The same model
is used in Reference 3.18 for *Ings with asymmetrical spanwise loading. but it is then
desirable to split the loading into its symetrical and antisymmetrical parts, as
indicated In Figures 3.8(c) and (d). Eisenstadt (Ref.3.19; 1947) uses discrete vortices
In the form of swept uniformly loaded lifting 'ines, while Katzoff and Hannah (Ref.3.20;
1948) use point concentrations of lift, each representing a portion of the wing. These
two vortex models, illustrated in Figures 3.8(e) and (f). are more adaptable, being

readily applied to yawed wings.

It is sometimes sufficient to replace a trailing vortex sheet by a single vortex
pair. By expanding the velocity field of the trailing vortex sheet in inverse powers

of the lateral distance. Loos (Bef.3.21; 195!) derives the equivalent semi-span ae
I and vortex strength Ke- such that

1~~~ 151 f•dy =fr dy
f

3 (3.41)

KS3 . y 3 dy = 3f -Y 2.iy

To a useful approximation a horse-shoe vortex of strength Ke and semi-span se
gives the same interference upwash distribution as the unswept lifting line of
Figure 3.8(a). For elliptic spanwise loading seis = -6/3. Since the interference

pwabsh has to be averaged over the complete span. it way be expedient to replace the
* wing by a uniformly loaded one of semi-span slightly greater than se . In this

respect Swanson and Toll (Ref.3.22; 1943) have suggested th.at for their particular

application the effective span ratios se/s = 0.93. 0.88 and 0.83 mW be used for
wings of taper ratios ct/cr = 1. 0.5 and 0.25 respectively.

- - Certain types of model may require more complicated representation. Consideration
of tail-plane interference and wing-body combinationso will be deferred until
Section 3.6.2. Wings with deflected control surfaces may be treated by the procedure
suggested in Section 4.5 of Reference 3.4. Basically this mounts to the super-
position of discrete elements of the type in Figure 3.8(e). The introduction of

9.4-
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control surfaces affects the loci of the lifting lines in Figures 3.8(e) and (d), but
othe.-wise leaves models (a) to (d) unchanged. Model (f) might well call for greater
subdivision of the wing. but would serve for symmetrical and asymetrical loading

alike.

3.3.2 Basic Interferesce Parameters

In the first place the wing and Its load distribution are supposed to bc
symetrical about the vertical plane through the axis of the tunnel. The vortex
models of the wing in Figures 3.8(a) and (c) can be constructed by superposition of
symmetrically placed horse-shoe vortices of strength K and semi-span t . The
interference upwash angle In tLh plane of the wing is then expressed as.

-_ .t - 8(Y.t5 + S(y.t) + 0t, (3.42)
U 

TC

where, zs in Acr's-17 theory. 8,(Y.t) and -(y.t) are functions to be determined
for a particular tunnel (Section 3.4) and terms involving the third and higher powers
of x//3h are neglected. Eqution.W.42) is a generslization of Equation (3.33) for
a small wing; both So and rmw be regarded as also dependent on any vertical
displacement of the wing from the tunnel axis.

The well known theorem of Prandtl shows that, in the limit as x - - , Equation

(3.421 becomes

4Kt 128 (y.t)}
U TIC 0

which m•a be calculated on a two-dimensional basis. Thus. if the chordwise extent
of the model is small, as envisaged in Figure 3.8(a). 8, may be neglected and for
certain tunnels the expressions for w1/U are quite simple. Sanders and
Poimder 3'2 =" 3w exploit this for closed rectangular tunnels on the basis of igfting-
line theory. For an untwisted, uncambered wing at incidence, lifting-line theory
yields the simple result In Equaticos (3.6) and (3.7) with the mean interference
parameter

yr s(.43)

where d-t/dy denotes the lift per unit span in free air. For a uniformly loaded

wing it is pWrticularly easy to obtain !
1 = o(s y's) d . (3.44

Alternatively (S.). Is given directly by the two-dimensional solution in the
transverse plane for the interference stream function C corresponding to 4)
since

I
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= -
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in Practice a would be replaced by a reduced effective semi-span, aa discussed in
Section 3.3.1. A better awprozx!ution is to &ssae that the spanwise loading is
elliptic over the full apm, wheu Equation (3.43) becomes

(1) = I- I-ý-C 1 d ,) 13..6)

whre 0fod

This has beeo calculated for a wide rsnge of tunnels (Section 3.4)-

For ueptback wings of moderate aspect ratio the interference upwash due to the

vortex model of Figure 3.8(c) is readily expressed in teras of 8o(y.t) and
Si(y,t) . Following Reference 3.17. we replace the elementary vortices by a horse-

aboe vortex of strength r and semi-span (t + 8t) together with one of strength -P
and semi-span t . Hence

S- !i-_ ts (Y.t+ x- {tSj(y.t)} St.
U {t•°(Y" 0 1 1]

where x = 1(t) is the curve through the local centres of pressure. Integration over
the span of the wing -s 4 t 4s gives

-1 -j, -' s- "• 
-t0y 

) {ts (y.t) d : (3.47)
U VC'h W

fqr elliptic spanwise loading Equation (3.47) becoces

wi - SC [~~Ira ')--x-~)a ~ * .Jtl~~~~ 8 (Y o t3 ( t) i + l h • t z Y t } 1d (3 .48 )

J as obtained in Equatica (20) of Reference 3.4.

If the model remains symetrical•y situated but its spanwise loading is
asymmetrical, then the load distribution can be split into symetrical and
antisymetrical portions represented by the vortex *odels (c) and (d) of Figure 3.8.
In Reference 3.18 (Garner and Acum; 1953). the symetrical part uf the interference
Is obtained in the form of Equation (3.47). In addition to Equation (3.42) we now define

a



- -4 o(y.t) + X-(Y.t) + 0 (3.49)

as the Interference upwash angle due to a pair of asymmetrically placed borse-shoe
vortices, one of strength -K and span -t < y < 0 and the other of strength X ai
span 0 1 y < t . It then fGllows that. corresponding to Figure 3.8(d),

SWi W1 4rs x- 1(t) B ANly~) (.

I f O (Y. 0 +Z(

an antisymetrical function of y in which r and i(t) refer to the intltymetrical
portion of the wing loading. Tis approach to wall interference demands the taulatlin
of the basic parameters

~{t~( I. ) . -~its 1 y.t.) (ti ~{ (Y.t). Zt 1 yt;
t ady t -A Ytx 'at t)

which can be evaluated fairly easily for rectangular tunnels (&ect!im 3.4.1). There
is no eoivalent procedure for asymmetrically situated lings.

7he more flexible method of Katzff and Hannah iv Reference 3.29 uses point
sources of lift, which are considered to Ile in the horizontal plane throuh tku
centre line of the tunn6l. As Widicated In wigure 3.8(f.. It is necessary to segMnt
the wing and to sstiaate the lift LN and Ats cetr-oid (xx,ym) on each segment. .he
total interference uvmsh is obtained as

"i~~~( -L /x-x Y b-

N ' b (35)

where b is the breadth or some typical length of the tunnel cros-section. InS~general. charts of

must be constructed for a series of spanwie locations of the doublet L,/pU. For
rectangular tunnels, however, the function T, can be defined by two charts
independent of y/b .

Both the foregoing procedures for sweptback wings are economical as regards the
basic computations for any particular tunnel cross-section. Both imply some
knowledge of Cie lift distribution; F and 1 In Equation .3.47) or (3.50) are
normally obtained by lifting-surface theory, while .and (x,.y•) in Equation (3.51)
must be estimated likewise. 7he former procedure of Reference 3.18 neglects terms
of order _(X--)/l8h11 and is restricted to unyawed wings. These limitations do not
apply to that of Reference 3.20. which suffers from the inaccuracies of a graphical
method and the poorer representation of the model. Between these two extremes are the
intermediate schemes of References 3.19 and 3.25. which apply to closed circular and

-.
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"recitaugular tumels respectively. For each half of te vortex model of Figure 3.8(e)
Sssenstadt tabulates. in the vresent nrti.tion,

as a afun(ttinoa z 2z,2 - - 2t and cot-'(fBcot A).li the I-at Pez-a•etr being the 6ivaleat sne-pbeck angla of the bound vortex lnfie

A(7.ble 3. .). SwaneW a sw~roach in Reference 3.25 is for a particular model, but it
Sodd in enemsl igY'lvo the non-diseusional Interference upwash in terms of the sane
If- Wamr/ terr. ltue scbewes are aore cuabersome than the three-parazeter system of

2quation (3.51) or the two-pareter system of Rtuation (3.47). On the other hand
Katzoff and Rtmah have pointed on; in Figure 9 of Reference 3.20, that a series of
cala-rIatiom for one smt; sxxg, may suffice for computing the wall interference on
2ing of differsL-t s~aee.

3.3.3 Corectiems tV Measured Qwmtities

;J , We. first -spose that z suitable vortex mcdel of the wing msay be identif-ed with
so-e theoretical approxisation to the nwn-disensional wing loading L,(x,y) in the

_ 1 free strese. The basic interference parameter. then determine an upwash angle
Saa(x,) from which an equivalent Incremental loading 31(x,y) may be computed
thecret.•cally; this introduces additions to be superpos-ed on the vortex model. The

j procedure may then be repeated to obtai;i the corresponding Sa and 821 .*id So

on until the final theoretical picture gives distributions of load and Interference

upwash
i Iw 1

11 = So+S•L+8 3 c+...I
w I IU S( + +2C + ""C

in the tunnel. For many rea.ons IT will not be identics] to the measured distribution
SI .;and there will be Inevitable discrepancies between the theoretical coefficients of

I lift and rolling moment CL? an Cs? correspoxding to 3 nd the eusured CL

and Cl . It become! nece"sary_ to subdivide IT into IS + !A the sum of
symetrical and antieymietrizal functions of y . and tf apply res%-ective corretien
f•ctora CL/Co an- C1/C,. to Wo an I 'A and the appronriate parts of w1/U

The ragnttude of the disrrpancles. so remo.ed. would be expected to be a& great as
that, of SOL or &C, c o aesponding to 81 . This would Justify the minor

simplifying assumption that 51 is directly pro•rortional to L • i.e.,

i(xy) - kl?(X,y)

It then follows that

IT= p(l + k +k 2  .) = '/!-k

w /U = Sa(l + k + 2  ... ) = +0%(l -k)

The original vortex model, based on the aerodynaalcs of the free stream, will suffice.
provided that It is separ.ted into its symmetrical and asntisymetrical parts with

- .. ,o'
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adjustable factors to ensure consistency with the measured lift and rolling momenet
respectively. We therefore express

[ CwL]C+[(Wi)z]C1I

iL

For symetrically placed wings [(wi)L,/UC ) will be a symmetrical function of y and

iL

[(wp 1/UC1]$ antisyinetrical. but in general they will both be asymmetrical. The
associated factors ore the measured lift and rolling moment coefficients: the subscript T
can now be emitted without ambiguity.

The distribution of incidence wi/U has to be converted into corrections to
measured quantities, both geometric and aerodynamic. In principle there is no difficulty
in using lifting-surface theory to compute the aerodynamic coefficients SCL . BCe and
SCe corresponding to wi/U and also the increments SCDv and SCnv in the vortex-
induced drag and yawing moment coefficients. Wall corrections could simply amount to
the subtraction of these interference quantities from those measured; for example, in
the notation of Equation (3.52) we could take

A. = -8c. = - C -, [CsL- -] C1  (3.53)

where the second term would vanish Vf the wing were symmetrically placed. An
arbitrary correction may be applied to any measured geometric quantity, in particular
a correction Am to the incidence of the model. It is then necessary to calculate
the appropriate free-strew derivatives cCL/Za., BCl/Ba and ýCD/V , and, for
examle. to add the quantity Aa(ZC,/'a~) to the right hand side of Equation (3.53).
It is often convenient to choose Am such that ACL = 0 . Then Equation (3.53) would
become 

r

r<I Z C , >,SCL)L r<..,,L ... I<[Wa..>,iCS[ i . ,C ] C L , .l + - k- -/ - !. - -, (3.541)LC_ LI C'L[L C, J [ Cl I
7be expressions in curly brackets are theoretical quantities dependent on the vortex
model, the tunnel cross-section and the wing planform. Thus. like wi/U . each
interference correction becomes the product or sum of products of theoretically and
experimentally determined quantities.

"Difficulties arise when greater precision or. as is more often the case, rvpid
calculation is required. Reference 3.23 is, an eminent exaiple of the former: in
effect Sanders and Pounder shun the use of Equation (3.52). for their treatment
implies that the load distribution cannot be regarded as independent of wall inter-
ference apart from factors proportional to the measured CL and C1 . Even within
the framework of lifting-line theory their analysis becomes exceedingly complicated.
The wire comon difficulty Is that, because corrections are fairly small and
therefore not required to great accuracy, the use of lifting-surfacr. theory is
considered to be an unwarranted computation. Section 3.2.4 has already illustrated
the trouble. For a sma!l syaetrica! wing Equation (3.54) reduces to Equation (3.36).
but the theoretical quantities X and x, must be estimated. Figure 3.7 in
conjunction with strip theory can perhaps give X within ±10% and so Ac in

I'



Equation (3.35) to a fair accuracy. However, Table 3,I1 suggests tnat in the
; • absence of lifting-surface theory the residual correction A .proportional to

X-1•x is liable to be excessively inaccurate. In the following Sections 3.3.4 to

3.3.6 suitable approximations are considered for different types of problem when the
wing is not small.

i 3.3.4 Complete Spznwlse S•yetry

For large wings having eomplete spanwise symmetry there are approximate methods

by which rapid interference corrections may be estimated. It is usual to take 'a

as a weighted mean of wiiU along the three-quarter-chord line, such that the
[ ~~~residual correction -C• is neg.gbe.Tu

where* from

SReference 3.26, Equation (29). = CCLL/CCL

jr
Reference 3.17. Equation (11). =+ 0.4-

I elliptic loading W = I

strip theory W = c/t

The first weighting is the spanwise loading factor for the wing at uniform incidence;
charts of cCLL/CCL are given in Figure 6 of Reference 3.26 for various sweep

f angles, aspect ratios and taper ratios. The second, equivalent to 0.6 times the

elliptic weighting added to 0.4 ties the chord weighting, can be evaluated when the

factor CCLL/CCL is uncertain. In many cases the elliptic weighting is accurate
enough, and the basic interference parameter (S) E in Equation (3.46) is useful.
The chord weighting from strip theory has little to commend it.

" By application of the reverse-flow theorem C.R.Taylor . 7C of the Aerodynamics Department of
the Royal Aircraft EstablisIaent has pointed out the precise result that

=
S SUCL

where ? is the non-dimensional wing loading on the reversed planform at uniform incidence;
-. the corresponding spanwise loading factor c would therefore seem to be an

appropriate choice of W In Equation (3.55).
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l iI ~I,

The drag correction is usually taken to no consistent with liftlng-line theory and
Equations (3.6) and (3.7). If (wizUCO)• denotes the value of wY/UCL in the distant
wake. then

C - j(356)

CL2 2J0 U cQ0a oa)

where CCLL/C-CL now represents the actual spanwise loading that would be measured on
the wing. As in Equation (3.37). a small term from a residual correction to zpanwise
loading is neglected.

Since ACL = 0 . AC will be a pure couple independent of pitching axis. In both
References 3.26 and 3.17 the residual correction may be written as

Ac3 = (Ac,)l + Ac) (3.!7)

where (AC ). results from the shift. in spansise centre of lift associated with the J
spanwise variation of (wi/UCL) .. s - and (ACM) 2 arises from the streamline
curvature. Alternative formulae for (AC.) , are given in References 3.26 and 3.17;
the former is preferred as it avoids a calculation by lifting-line theory and in
the present notation, gives directly

(AC)I - iZ7A2(CL/?3C) tanA°" i r (3.58)

CL -A + 2ZCLICG _o iK . "a "

where A is the aspect ratio and A is the sweepback of the quarter-chord line.
(AC3 )2 is incorrectly derived in Reference 3.17: with allowance for compressibility
Equation (.35) of Reference 3.26 becomes

rI
(Ac 3) 2  _- 7Tcos A
wher is2I:[ .- (0)15i ) d(~ (3.59)

where Ao is the half-chord sweepback.

"Equations (3.58) and (3.59) are not applicable to planforms with curved or cranked
edges. In place of Equation (3.57) strip theory would give the less accurate
Aexpression

So-f <, , ,, _ • _) (WlLUCIj, (/•] .•dic (3.60, i

_) (XtL)o, - =L+ ic- -.F) ' ,

whereI1 f; C2
SXL = XL(- d(
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It may socetimes be convenient to use Equation (3.60) with a correction factor based
on ifln-surfbce theory. In the light of Equation (3.36) for a snail model, it mayI be simple to evaluate the quantity Xx,fE by both strip theory and lifting-surface

theory. In general XZCL/Zct is the lift coefficient and x =~ istecete1
lift corresponding to an incidence WU/ .where x is measured from the theoretical
aerodynamic centre. Thbus a lift~irg-surface solution for the wing iD steady pitching
motion will suffice to deteraine an accurate value of .z/- By strip theory

2 L~C1 d 3- 2(. (3.61)

which reduces to the second of Equations (3.38) for straight tapered wiags. The ratio
Xx./a to (XX1/~)t may be inserted as a correction factor on the right hand side of
Equation (3.60); typical values may be obtained from Table 3.111. The relative
accuracy of this method and of Equations (3.57) to (3.59) is discussed in Z:ction 3. 5.3.

Other measured quantities may requira interference corrections. Although control
surtaces are considered under asymmetrical1 configurations in Section 3.3.6. the
approximate residual correction to hinge moment in Equation (3.77) also, applies when
there is spanwise symmetry. To apply a residual correction to surface pressure, it
is necessary to use lifting-surface theory and to replace C. by CPin Equation
(3.54). Reference 3.26 includes npressions for the interference corrections to
dovnwash angle and wake displacement. Swrason annd Schuldenfrei32 consider these
corrections in the presence of a slipstream behind a powered model.

3.3.5 Nn-Symetrical Spanwise Loading

We =ext consider symetrically Placad wings with anitisyimetrical spanwise loading.
The case of deflected ailerons is treated approxn:ately in Refeiences 3.26 and 3.28.
Since Reference 3.28 is restricted to uns-ept wiisjsE the eipression from Equation f4l)
of Reference 3,26 is of greater generality. Hence'

AC. 2@rApi-aC~l/BC /wj V~c Yks,/ (3.62)

where

2 + /A--cW 2 + tan2 AO 25) + 4

-2 +IA-2W - tpn2 A..25) + 16

ndWis the weighting factor in Eiriation (3.55) giveni b,% charts in Figure 6 of
Reference 3.26. -there will be a cerresponding correctif-l to the drag given by

AC i (-'iý - _ (3.63)

*~jIt is now inappropriate to apply a correction to any measured georeatric quantity such
as aileron angle. In the case of a slowly rolling wing, however. ZV! i;'-:gative
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corr6ction AC, can be replaced by a positive correction to the rate of roll3" 2 9.

Eltilar considerations could apply to wings having smooth antisymmetrical modes ofdeformation.

Interference corrections for symmetrically p~rced, asumetrically loaded wings

are derived in 1Reference 3.18. In place of Equation (3.52) we may then write

4. ViCL+ C1•T , (3.64)
U7

-+ -UC ti'-) FI)
likewise the spanwise distribution of circulation may be written as

r = 2nUy = 2sU(ts + A) . (3.65)

where

CL 2A JO-y So s/ t

(3.66)
Cl = Affa-Q d

By the application of lifting-surface theory the symetrical interference upwash
angle (wi) Vu gives increments SCL and SC2 to lift and pitching moment. and the
antisymetrlcal part (wl)A/U gives an increment SC1 to the rolling moment
coefficient. Hence ,r

SCL 1
iCL CL (ZC/ax) 2A flsd(y/s)

+ - =---- (3.67)

A c, SOc1

L 2-A f s d (y/s)

0

m• i ~ACz C

A s VA(y/s) d(y/s)

i The second of Equations (3.67) is equivalent to Equaticn (3.54). since

--:• ~(SCL) z = (&Cý)j = 0 >•

S I Cfor symmetrically placed winzs. Equations (3.55). (3.57) and (3.62) are working

approximations to E-atilons (3.67) and are recomended whenever it is inexpedient to
calculate the incrmento SCL , SC, and SC 1  t.y lifting-sm-face theory.

11"I+
.i
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"The evaluation of the usual interference corrections to drag and yawing moment do
_ not require calculations by lifting-surface theory, provided that the distributions of

7s and YA can be estimated. These corrections are calculated on the principle* that
the local lift per unit span acts at right angles to a local effective stream direction,
and that wall interference causes this to deflect upwards through the angle f(sa). .
Under linear conditions this deflecticon does not influence the lift itself, but reduces
the drag per unit span by sn amount

_'u~c) = IPU2 Sj(!-) (scz),.

Thus there are increments

2 1

(3.68)

Sc- A Y (S00•y dn7 4 J
to the vortex-Induced drag and yawing moment coefficients. Ihen Y and (8a)D are
separated into their symmetrical and antisy etrical parts. Equatlc-1 s (3.68) become

i !SC °A) -s ,-d
11C 1L LL-

- •. (3.69)

Sc' AA )A L a\I-- v 210

1When " is replaced by cCLL/4s . it is seen that -SC., is equivalent to the sun
of Equations (3.56) and (3.63). Only in the case of yawing moment do the symetrical
and anTisymmetrical parts interact; the second of Equations (3.69) becomes

Sc ~ ~ ~ ~ I - dw~ CCLA+ (iA cCLs (3.70)c-c, : jL). .. o

where the right hand side is determined theoretically. It can easily be shown that
a1 DV snd SCnv are unaffected by the application of the interference correcticn Au,
since the reductions in magnitude due to the substitution [1(So) - AaJ for 2(86),

in Equations (3.68) exactly cancel the increases due to the change of wind axes. But
the result of residual corrections to the load distribution needs to be considered.

As 8 = 0 . any correction to -s will have a negligible effect on vortex-induced
drag and yawing --oment. The correction AC, implies a correction to ' A . which PAy
be regarded crudely as a factor {I + (-C1/Cj)}; this will increase (C,)., . the

IV coosideration of the tota-' energy of flow in the wake this principle can be Justified Z.a
the case of dra. FPr yaring moent. bowever, the principle is not rigorous and nmerical
values of the Interference correctboo sre In sae e.m. (Seaet.-* 3.5 3).

;A
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vortex drag corresponding to the sntisyietrical part of tie spanwise loading, by the
factor {1 + (AC•/Cl)) 2 and the total Cnv by the factor {I + (ACl/Cl)} . The final
corrections are therefore

- cn = _ SCnv~+ 2A-C (3.7'.) z I

-n i c, cUT

Swhere ,CT and SCn, are given by Equations (3.69) and (3.70). The last terms in
Equations (3.71) are approxiaate and relatively small and can usually be neglected. as

* in Equation (3.63). A full derivation of Equations (3.71) is found in Refezenze 3,18.
but the latter is given incorrectly in Equation (8. 13) of Reference 3. 18. The magni-

tude of the corrections is discussed in Section 3.5.1. A

!S

References 3.23, 3.26 and 3.28 also consider the interference corrections for
symmetrically placed. asymetrlcally loaded wings. The rigorous treatment by lifting-
line theory in Reference 3.23 is beyond the scope of rapid cal'-"ation. Like
Reference 3.23. Graham'• S3 2 method is restricted to lifting-l_: theory and umswept
wings in closed rectangular tunnels, but with acceptable approximations he derives
corrections to rolling and yawing moment in a practical form. For wings with sweepback
or large chord the interference corrections derived b7 Sivells and Salmi3"6 are practi-
cally consistent with those of the previous paragraph, except that wi/U along the
quarter-chord line replaces 1(0a), in the formulae concerning drag and yawing moment. Z.

3.3.6 Asymmetrically Placed Wings

More difficult is the case of yawed wings when Equation (3.52) applies in all its
generality. The walls also induce an interference sidewash unless the wing is situated

in the horizontal plane of symetry, but this is usually ignored. Provided that the
angle of yaw is fairly small, simple generalizations of Equations (3.67) to (3.71) are
possible. Added to Equations (3.67) there will be contributions AaleI , ACa/Ci and
Ui/CL , which may be estimated by inserting the symmetrical part of (w,/UC,) in place
of (W/AC.) in Equations (3.55). (3.58) and (3.59) and also the antisy metrical part
of (wl/UCL) in place of (w /UC/) in Equation (3.62). Both tiCD ad n will contain
contributions proportional to C2  CI C nd C2  since (8). in Equation (3.68)
must be written in four parts, viz.,

{(wi)L}ls P, (W.) ,} A F_____
S IwiLJJCL + - CL + C1 + C 1 . (3.72)

If, however, the angle of yaw is large, the information on lift distribution maV be
so scanty that a very simple vortex model will be adopted (Section 3.3.1). In

Reference 3.25, Swanson represents the yawed wing as a number of skewed horse-shoe -
vortices corresponding to the equivalent wing sesi-spin of Equation (3.41) or the

spanwise extent of the dihedral or aileron. Lengthy, but manageable, expressions are
obtained for the interference corrections to incidence, drag, rolling and yawing
moments, but it is hard to assess their accuracy for a typical sweptback wing, The
uncertainty is such that there may be little point in applying corrections to the
momet coefficients C1 and Ca . It may suffice to calculate the interference upsash

angles (80t)075 and +Z(Scz).. Then, in place of Equation (3.55).
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= -fs(8o.(s ) d (3.73)2 $- S

and in place of Equations (3.56). (3.63) and (3.68).

1 1
S

.p5(3.74)

_n = f M)ay dy

: where the distribution of circulation F = F(y) should be consistent with the measured
I-,lift and rolling moment. The extreme alternative is to calculate the distribution of

S= /U over the yawed pthnform and then to apply the best available theory, as
envisaged In Section 3.3.3; this would seldes be Justified.

Half-wing or reflection-plane models introduce further types of interference
correction. All corrections to be applied for sy etrically loaded conditions are
precisely those for a complete nodel mounted it a wind tunnel of the same height as
the original tunnel and twice the breadth (Section 3.4.4); Equations (3.55) to (3.59)

Sremain just as valid. But, as discussed in Reference 3.22. there is a second group of
!! corrections for antisymetrically loaded conditions when the reflection would not be

present on a complete model. In such cases there may be large corrections to

half-wing rolling moment = ipU2 (jS)2C(.
• ~(3.7/5)

balf-wing yawing moment = 10(2QS)2sCn

where IS is the l-area of the half-wing planfors and 2s is the span of the complete
wing. The corrections are determined in two parts. PFrstly, the model and its reflec-
tion are corrected for symmetrical interference effects on the half wing. This involves
the main correction to incidence from Equation (3.55) and corrections to lateral
coefficients

___, r 2d

CL iýA + 2ZCL/Z. C

; t -Q (3.76)L _ JO (au
Apart from the effects of streamline curvature, the residual spanwise loading Is distri-
buted along the qu~rter-cherd line according to the assumtions of Reference 3.26. Since

.the corresponding mment on the half wing about an axis parallel to the quarter-chord
line should vanish. Equations (3.58) and (3.76) are consistent in that

2:- .PC- =- (acs) 1 cot AO. 2

g-]
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Secondly snd of greater importance, factors independent of the tunnel cr-oss-section
must be applied to the quantities (Cz + LCI) and (Cn + ACU) to account for the
reflection plane, and these demand special theoretical calculations. Simlified

treatnents are discussed in References 3.4. 3.22 and 3.26.

Large half-wing nodels are often used to test control surfaces, for ahxch the
stremline curvature is particularly significant 3 •. In the present notation the
approximate residual correction to hinge a'ment becomes

AC (B -1) \CL dH L .75 - .25

[c; d(Z

where the weighting* W is selected from Equation (3.55). the integrals are taken

over the span of the control surface, cf(y) is the local control chord, and for 4
tmbalanced control surfaces B Is tabulated below.

FC 1thC 0 .5 0.10 0.15~ 0.20 0.25 0.30w 0. 351 0.401 0. 45 0.50j
3 .01 2.46 2.41  2.723 .82.24 2.19 2112.10 20SI 1., , , ,I,. o.. ..

SValues of B for balanced control surfaces having set-back hinges may be evaluated as
+ 1(b/b from Table 2 in Section 4.2 of Reference 3.4. Fer aut'lsynetrically

loaded conditions a factor should be applied to (CH + AC) to account for the

reflection plane. For outboard allerons this will be less,.important than the corres-
ponding factors for rc-I• ,, and yawing soments. so that an estimate by lifting-line

theory may suffice.

'The interpretation of an inUrference correction may need adjustment if the lift
or rolling moment is not measured. The uncertainty concerns which part of the expren-

sion is c4lculated theGretically and which part is determined experimentally. For
exuaple, Equation (3.7'1) envisages that C, on the left hand side and C •i o tale
right hand side are measured, while the integrals aem predetermined- If, however. ouly
the control hinge ament is measured, it would be necessary to multiply both sides of

the equation by an estivated value of CL/CH ; then the ratio of ACh/CM to ZCW/Z"

is determined by calculation.

3•.4 EVILTATIOV If INTERFERENCE PARAMETERS

In =rder tv z=17 the general methods of Section 3.3. it is necessary to obtain
nmeri-l dam. for ife interference upiash w, due to lifting elements in a particular

tn 6. A Witte ff, ot tunnel cross-section has been employed Jn research centres.

° watiz (" )'U" s ccgb aversh nace of the expresion In sq•ame brackets. UtWaugh
br a sta±ect=Me we-tattna 7 ahold be replaced by the two-dismisio cyfa Jr.~ ieach
Inute=w. te Wcw ±'wleuece of bowary laoers may override this coslderatio,.
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_ / the mo0L cwon shapes having closed rectangulLr boundariee (Section 3.4. 1) or closed
' octgonal boundaries (Section 3.4.2); the latter are asually regarded as rectangular

tunnels with small corner fillets. Much less attention has been given to open rect-
anular tunnels, as tbe rounded circuiar or elliptical shape is more appropriate for aI free Jet; these are considered as well as closed circular and elliptical tunnels in•: ISection 3.4.3. As in the case of rectangular tunnels (Section 3.2.2). some curved

S •, shapes with mixed boundaries have been devised to reduce or eliminate the theoretical3 lift interference, biu: these semi-closed tunnels are of passing academic interest.
Wind-tunnel testing of hUif models mounted on a reflection plane is common practice.
Although this merely doubles the effective breadth to height ratio of rectangular
tunnels and extends the practical upper limit of b/b . in the case of octagonal and
circular tunnels Sections 3.4.2 and 3.4:3 no longer apply; in effect, the latter become
bipolar tunnels (Section 3.4.4).

iJ 'I Table 3. IV summarizes the numerical data available for wings of moderate or large
span. In mau cases the information is limited to quantities such as (SO)• .i and 8 0(y.t) , as defined in Equations (3.44). (3.4r) and (3.42). Ptick are only
sufficient it the wing can be regarded as an unswept lifting line. A tick in the finalf )*colbn of Table 3. IV indicates that the strearwise variation of wi has been c'lculated.*-ether through the quantity 8,(y.t) of ftation (3.42) or sose eore general tabalation
or graph.

34.1 Dectaugular Tummels

The evaluation of upwah interference an large lifting models In closed rectangular
tunnels is basically straightforward, since there is a complete isege system corres-
ponding to any vortex representation of ihe model. The upwash field of a horse-shoe
vortexof strength K surrmmdintg the area x > 0 . HY1 < t , z- = is

S f = v(i,=r.Z.t) [W(STX, y -t. z) - W•W'X. Y-t. z)] (3.73)
whtere

(X +y 72 + Z)22 X2Y

Its image system is a simple generalization of Figure 3.1(b), so that the interference- IUpw"sh is

where, as in Equation (3.13). £ -' denotes that (s.n) takes all possible integral
pairs except tO, 0).

If tbý vllg is of largo span 2s buat of small chord, it may suffice to put
_ I x Z 0 In RqMaion M380). so that in the notation of Equation (3.42)

| (Y, t ) (3.81)
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where

_ (Y-.b+t) + n2hn
76X77 I (y .. 1 +)0 + n7- y Mb _)2+n

bl r1 1 b w(y-mb-t) c 7(Yo-mb t)1
= [oech h - cosech h

(3.82) j

,Hence the mne interference parameters (o) U wnd (80)E for uniform and elliptic
spanwise loading in respective Equations (3.44) and (3.46) can be evaluated. As des-
cribed in Section 9 of Reference 3.1, the early literature has shown that the results
can be derived aralytically, viz..j

h T_ 77h n fsn7A
(so U )0 loge i-T +j- - (3.83)-

and n

(17) = n F (o-) ( ../

(80)e (a) + - +I x"ii --- ) .
(•~ b F b e2,yen'h/b + I\ M17)

where a = 2s/b ; numerical 7alues of F(a) and {J,(7.a)/17Tao} are found in Tables 4
and 5 of Reference 3.1. A good description of the mathematical analysis is given by
Sanders and Pounder in Secticn 2.1 of Reference 3.23. They also give useful graphs of
(8o). and (Oo)a against b/b for or = 0.0.2,0.4.0.6,0.8 and 0.9; the latter is
gii.en in carpet forn in Figure 3.9. The factor (So)(oa)/(So)Z(O) provides a simple
Improvement on the corrections to incidence and drag coefficient for a small winS in
Equations (3.39); thus

AA= (304g(d) f ( + b( (3.85)

SC. .

whe u ore ( 3).( 8) Is given in Flgure 3.9, 81/&0 is given by the upper curve of Figure .9
3.4, and Figure 3.7 indicates a correction factor AX/B to the term involving S.

it is often necessary to calculate the parameter 8 (y,t) of Equation (3.42). Bly
Euatin (3.80) this is readily expressed as

• -M

6 -q- (0, y -b+t. -nh) -- (0. y- b-t, -uh (
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where

BW y(y
2 

+ 2a 2 h 2 )
n(Oy,.h) = -22 3/2

sThe sinularity froi n = 0 is illusory, since in the limit

I - x(0, Y -mb+ t, 0) (0. y -ab - t. 0) t) 2-

2 (y-ob+t!2 (y-xb

" accordinmg as m Is positive or negctive. 7be evaluation of wI for a duplex tunnel
Sagea tet~ o nelt~cly oddmoe tou h l~r xato ht(b = 2h) za accomplished by Cowley cad Mc~illen (Ref. 3.30; 1934), who tabulated upwash

is linear in x . 7hey obtained the equivalent of

1(0. t) I - d

for a range of a = 2-,/b by expanding .(%Ot) in even powers of t/s and neglecting

contributions frow jim > 3 and from jnl > 5 in Equation (3.86). As it stands the
double series converges slowly, but it can be transformed into the rapidly convergent
expressioc in Equation (3.25) of Refarenc 3.23. Hence

0o:(, = - + p (_l)Q psin - cos- - +
24 bt p=1 Ql b b bo/

I 3 E

%here (•( + -) = • 2 is the Trigama functions and

I X(7) = K(") + - K: (

in term of modified Bessel functions of the second kind. It can be aem that
Ftation (3.87) reduces to the first of Equations (3.20) sv> both y and t tend to
zero. A rigrous derivstion of the rapidly convergent series has been given by
Olver 3 ",. who was responsible for the tabulation of S(Y t) for b/h = 1, 9/7. 2,
18/1 in &eference 3. 17.

When the interference upwash is to be calculated from Ecuation (3.41i or 13.46).
i it is convenient to tabulate the quantities

{ts 0 (yjt)} and -i IYW
Ct z

- •tbas been tabulated by H.T.Davis ID2 tabes of the Higher NAtheaat¢iacl Finctio•r, Volme 11

(The PrInclWpl Press Inc.. Indisma. USA. 1935).
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It follows from Equations (3.82) and (3.87) that both quantities are even functions

of y and t ; moreover, they are unaltered when y and t are interchanged. The
diagonal symmetry is illustrated in Table 3.V. where both quantities are given for a
closed square tunnel. Another account of the theory is given in Reference 3. I8 b•y the
present author and Acum. It is shoun that

b b•oYty-t-- _ f -(y -t- - fm +.t - ab

L";

~ 180y~)} ~~ 2 * 1(yhJmb /khI Y1 ~ i

and

tb f (y-t-.b\ -t +.b\ Y+t-m.•
I- -i- . 1 I-f3h _

-f(Y a \1~ .f4(...itj (3.89)

where

ft d {cosech I
f2(k) = {cosecb7X-+

f.(-) = f(?.) + -{•f( } (3.90)

f 1 d. 1
wf (k) 47-(X ) +- t f) + 5, (5 'r...

:are found in Tables 1, 2 and 3 of Referece 3.18. The corresponding interference

parazeters from the antisymetrical part of the spanwise loading are defined in

Equation (3.49). viz.=

U = b O •(Y't) + • .)÷

Then the antisymetrical interference upwsh in Equation (3.50) correspocding to the

vortex model of F41 gwe 3.6Sd) involves the parameters

ml

"5.
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0 (ti0(Y.t)} f (YLmb) -t + b) + f(L mb

and

7 .n ft= +t~ f (Y-t-m} :-f2 m / +ft-~ (3.9)

. ,h )
+f3......... hfj~-. +h 4 ŽZ) (3.92)

which may be computed for any rectangular tunnel from Equations (3.90) for f1 (k)and f 2 (k) and Table 3 of Reference 3.18 from which, with the use of second
differencee. f•(k) may be obtaLned to four decimal places.

For models in the central horizontal plane z = 0 , wi can be evaluated quiteeasily from Equations (3.79) and t3.80) f,)r a gpneral value of x . The terms oforder (x/j6h) 3  will become significant if the model is of great streamwise extent,for example, a large sweptback wing or a complete aircraft. Moreover. the errors in-- assuming a linear uptash will increase nearly sevenfold as the Mach number increasesfrom 0 to 0.85. Furthermore, the foregoing method cannot be applied to yawed or
asymmetrical models. In such cases, or when higher order terms are required, it isconvenient to replace the distributid vorticity by Point concentrations as inFigure 3.8(f). Following Katzoff Pxd Hannah 3. 0 , we replace Equation (3.78) by the
upwash field due to a line doublet of strength

P - lir (2it) =

extending along the x-axis from the origin to infinity. This upwash field is

• • P • J(I3 --,y .z )
= 4W d (3.93)

I where, frus Equation (3.79),

y 2_ y= z 2  x[(y2+z2)(:2+y2_.,2Z) _ 2x22)
I = 2 .2+ . . .. '(394

-W-: . Z)' I (y2 +z2) + (y2+.zZ) 2 (x',+y 2 _Z2)3/2 (3.94)

Now consider a number of lifting elements L= pr!P at positions (x NYNO) in a closed.- •-,,.,,.. rectangular ttmnel. In accord with the image syst". in Pigure 2(a) of Reference 3.20,the interference upwash is expressed as

I[ -
1*->°
KC 77 "" -,____________
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w1(X.YO) _, ~,I~ )n ~ ,N.Y-2mb-b+YN. b) +

+ ,y-2b-by-2mb-yn +nh]

This is conveniently written in non-dimensional form

w bLN L( -" y-b+y- x -xN + x-x y -+b _by

U N u2b2 [AY b byOb b b

(3.95)

where

W b b = _O (-1)D (W(x, y-2mb. -nhAl)]

-w(x. Y0))dy

Thus wi/U may be evaluated from charts of the functions W. and W TLC
former chart A is illustrated for ratios b/h = V/5, 10/7 and 2 respectively in

Figures 7(b). 7(c) and 7(a) of Reference 3.20. The latter chart B in Figure 5 of
Reference 3.20 is independent of tunnel shape. Katzoff and Hannah describe in detail
their graphical procedure for the computation of w, on a yawed lifting wing. -hey
also give useful advice on the calculation and preparation of chaxts with particular

reference to rectangular tunnels with one or more of their sides open. Any such con-
figuration can be treated by means of chart A dependent on b/h and the floor and
roof condition and the universal chart B, but there may be changes of sign in
Equaticn (3.95). '"-o expedite the calculation of chart A. a horizontal row of sufficientiz
distant image doublets (Imi • 2. say) nay be replaced by a row of horse-stioe vortices
of span 2b , so that all the trailing vortices excz.pt the innermost ones cancel in
pairs; for large enough n (Jr. >, 2. say) the upwash field from the complete row of
doublets is approxi•ately that of a two-dimensional bound vorte; extending from y = -W
to y = +OD . as illustrated in Figure 3.10(a). In the case of closed side-walls and
open floor and roof (type (4) of Section 3.2.2), when all t'Vie images are of the same
sign, Katzoff and N:annah suggest that, instead of being extended hori-:,ntally, thp
distant image doublets are extended vertically into a source line and a sink line at a
distance h apart. The source and sink lines in any column cancel In pairs, and only

those at a distance "h above or below the inner group of doublets (1mv < 1, Inm 4 1)
remain, as illustrated in Figure 3. 10(b). Although the image system for a rectangularI "r tunnel of type (4) is not valid, the procedure adopted here amounts to an approximate

summation column by column (first with respect to n ); it follows from the discussion
above Equation (3.17') that this leads to a correct approximation h.ile the alternative

array of Figure 3.10(c) would fail.

|a

I
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A further complication may arise when the displacement of the model from the central

hoizntlplane z a olonger be ignored. T1his can result from long models
at high incidence or when the floor of the tLanel is used to simulate the grouna. In
the former case the interference corrections can be large and changes in the distance
d of the lifting element from the floor can be significant, as has already been seen

i for a snall wing in Figure 3.3. In the latter case (2h - d) may be even larger, and
the interference corrections, though -gller thbn 1.ilal be'a',se the principal image in
the floor is not included, will again depend on d . Silverstein and White (Ref.3.32;
1935) made an early contribution in this 'ield. mainly with regard to interference

effects on the downwash at a tail plane (Sestion 3.6.2). Brown 3
,

3 3 derives general
formulae for (3.). and (80)ug . the corresponding corrections to wind-tunnel experi-
ments in ground effect, qnd he gives results for b/h = 2 and 4 . Some values for
the duplex tunnel are reproduced in Figure 3. 11. In a typical case (d = 0. 25h). the
principal image in the floor accounts for a large proportion, {(So)u - (8o)ug}/ASo)u
of the interference, but the ratio (8 ) J/(SO u increases from 0.036 to 0.118 as o

increases from 0 to 0.6. Provided that d/h is fairly small, crude estimates of
(8 d•S)Ug should suffice (Section 3.6.3).

The quantities S (yt) and &I(yt) fr off-centre models are formulated in
Appendix II of Reference 3.4, and a simple approximation to the double summation for
I (y.t) , based on Reference 3.33. is Included. A full mathematical discussion of

0 (y,t) and interference effects at a lifting line displaced vertically from the
centre line of the tunnel is given by Sanders and Pounder in References 3.23 and 3.24.
They give expressions in Equations (1.51) and (1.52 to 1.57) of Reference 3.23 for the
interference velocities vi and ui respe'tively. The effect of the sidewash v
on the aerodynamic forces is unknown, but ui will give a correction &IT to the
stream velocity akin to that in Figure 3.3(b).

In practice, the distance d between model and floor will depend on x , so that
the complete evaluation of streamline curvature would involve displacements in z .
This effect has been considered in References 3.32 and 3.27 in relation to the downwash
field near a tail by introducing two extra parameters d/h and dl/h corresponding
to the vertical locations of the lifting element and the required wi . In the approxi-
mate representation of Figure 3.10(a). the odd rows would be lowered by the distance
(d - jh) and the even rows would be raised by the same amount. Although it is Inadmis-
sible so to split the image system in two parts, just as Figure 3.10(cý is incorrect.
it is possible to construct the reiuired upwash field from that of an isolated doublet
and that of Figure 3. 10(b) with double the vertical spacing. We need the complete
upwash field of a doublet placed centrally in a rectangular tunnel of breadth 2b
height 2h . with closed sides but open roof and floor

--y b2 [W'x. y-2mb, z-2nb)] . (3.97)bc b) 4-, CO

where ?W/ody is defined in Equation (3.94) and the sumiation is made first with respect
-.- to n . 'The final generalization ef Equation (3.95) is

-il
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= N [ b2  [ /X-XN
y _YN z IN

U N b~ 477~yN
_X- _ y- Z-z - y-b+y. z-h +

YCbWy . C b - (3.98)

b b )6b b b

Since an approximation to Equation (3.97) may be made on the basis of Figure 3.10(b)
with double the vertical spacing, it may well be practicable and desirable to use
Equation (3.98) for g'very long and slender model at high Incidence with the simplifi-
cation that y = yN= 0 . while (z - z,)/b may be far from snall.

3.4.2 Octagonal Tunnels

Unlike rectangular tunnels, an octagonal tunnel has no exact image system. Any
attempt to construct such a system for a closed boundary containing an obtuse angle
is thwarted sooner or later by the demand for images within the boundary. The treat-
ment of octagonal tunnels is necessarily approximate, and artificial methods have to

be introduced.

In principle, the two-dimensional problem of obtaining 50 (y, t) cax be solved by
transforming the interior of the octagon into the half plane; the SchwArz-Christoffel
theorem achieves this. but the algebra Is prohibitive for a general octagenal boundary.
Gent--1 3 has derived the appropriate transformation for a regular octagon of breadth b.

1.7191 ({b) (I - f 2)- dD) (3.99)

with f) - F 1 = 0.1989 and 0, = = 0.6682 . so that the real axis in the
D = Y + iZ plane represents the octagon in the co plane. A convenient alternative
is tc map the octagon on a unit circle by the related transformation

ib f2 d
=-- 1 . (3.100)

where K = 1.9565 . This is written as a rapidly converging pow-r series in fl, which
is inverted to give

A vortex pair of strengths AE at w = i(+b ± t) and a point wi r- (+b + y) transform
into a vorte- pair of strengths ±K at f) = ±T and a point D) =.Y in the plane of the
unit circle. Hence the upwash interference parameter in the w plane of the c-tagon

becomes

-/
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ew1  CI T TI df QI t IS80 (y. t) - Kt _ y + .--2 _y2 Jl d-iI +(3.101)
4Kt 871t L y2-Y + T'_y2J dw t2- y'j

where

(1 +¥e)1 + -a- -Y"

do! b b 4 32

36 b 896 btIt (Z (_9 1 •17

- + -- + .

36 ) 896 (b)

It follows from Equations (3.100) and (3.101) that

2CK (/2 - 1)K 2

0. - - 0.01262.800,0 877ib2 - 47T

consistent with the table i.a Section 3.2.3. Gent also derives this result from the
transformation (3.99). The mean parameters (8o)u end (8o)e for uniform and elliptic
loading are given In Tables 1 and 2 of Reference 3.13 for a- = 2s!b up to O.8. Larger
values of a would require an increasing number of terms in the power series. By a
simple adjustment to Equation (3.100) a similar unalysis could be developed for any
regular polygonal tunnel; the result corresponding to Equation (3.101) would rapidly
approach that for a circular tunnel (Section 3.4.3), if the number of sides were
increased.

For a 2ore general class of closed octagonal tunnels Batchelor 3 1 1 has supplemented
* a• the image system for the rectangular tunnel by superposing the doubly infinite system

illustrated in Figure 3. 1(c). Here each vortex represents a quadratic distribution of
- vorticity increasing from zero at each corner to a ,aximum km at the centre of each

fillet. Each fillet of length a is assumed to bea tne hypotenuse of an isosceles
triangle, so that their images form an array of squares. Batchelor's method exploits
the fact that the image system for the rectangular tunnel !n Figure 3.1(b) gives
approximately an antisymetric linear variation in normal velocity vn across a fillet
with distance along the fillet. The same is true of the corresponding normal velocity
from the vorticity round the image square, and the autual effect of any two squares
can be ignored. The vorticity k. is chosen to ca.cel the velocity vn as best it
can. Batchelor' s formulae have been generalized for arbitrary a . b and h in
Reference 3.12. and the result may be expressed as

-C CG C
S0 8(y. t) = 8oR(Y. t) - X [X(s,. Tp) +X(Sm. t;) (3.102)

bh . 15. 36P 2930

where the cross-sectional area C = bh - a2 
. 8s O(y,t) is ao(y, t) for a closed

rectangular tunnel as given in Equation (3.82), P is the doublet strength 2Xt and
the functions G and X are defined below. G/P is a constant dependent on the tunnel

'I
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geometry and Is proportional to- the gradient of vn at the centre of the fillet due
to a snall wing* at the tunnel centre; from Equation (5) of Reference 3.12.

G 2772 2anu cosh 27T7 + sin 27nM sinh 2rN)(sin 2n + sinh 27N)

P b n= L (cos 27iM + cosb 27T7)3

sin 2uM cosh 27nN

(cos 2Tn + cosh 2 JN)2 (3.103)

where

77a2n =
b./2

w 7a (2n + 1)77h2TN = b-2 b

The function X represents the upuash field of a column of image squares and is given
by Equation (9) of Reference 3.12 plus an extra term. viz..

X(S.T) = 2 (4 2S3 +S) +
15 h/

S(120S -603 + S)T +i h)

S180\ h/
+ -I-o, (- ?2•05 ÷ 8,0S5 -2O2S + S)S

560 \h)

+500S' + 4200S3 
- 546S3 + S)T , (3.104T)

113400 Y 11

where S and T take the values

SM* = sech 2

T = tecb 7r(W2 + b ± 2Y + 2mb)
2h

Note. bow--Ter. the remaks above and below 9+aio 3.4)} tha will depad om t

./2 + b ± 2ylarge.

Tbe b/bts lage.h

I ~I1

|-4



-j-2The parameter (So)E , as defined in Equation (3.46). has been derived approximately

in References 3.11 and 3.12. For three particular octagonal tunnels (So), as a func-
tion of a may be identified with the quantity +8 from Table 4 of Reference 3.11

Iand from Tables 1 and 2 of Reference 3.12. (So)E for a = 0 is given by Equaticns
I (3. 102)'to (3.104) with y = t = 0 . This has been computed for the regular octagon

a = bGV2 - 1) , b = h . Equation (3.103) gives Gb2/P = -1.307 . so that Equation
(3.102) beccues

_ 1 C r2 x -1.30718(00) ;L 1368 - 15.36 (0.0810 + 0.0053 +

I = 0.82843 x 0.15147 = 0.1255

which is to be compared with the exact value So(0, O) = 0. 1262 from Reference 3.13.
The expansion in Equation (3.104) must fail if a/h is too large, but it appears to
be satisfactory provided that a < 0.35h . The regular octagon and the NPL 13 x 9tunnel have slightly larger fillets Lhan this.

A more elegant, but less accurate method of dealing with the same problem has been
formulated by Loos 3:21. He replaces the distributed vorticity around Batchelors image
"squares by a semi-infinite trailing quadrupole vortex at the centre of each square.
The strength of the quadrupole is determined from the condition that there is zero flow
"across each half fillet. Unfortunately, no numerical results are given.

The accuracy to which v. is cancelled by the squares of vorticity is discussed in
Reference 3. 12. With reference to Figure 5 of Reference 3.12. the accuracy deteriorates

I• as wing span increases; for a typical span. a = 2/3.. it is found that the maximum
uncertainty in G/P is of order 20M. and this can well be larger if the fillets no
longer form isosceles triangles. In view of the consequent uncertainty in the second
term of Equation (3. 102) for wings of large span, it is pertinent to consider the
following artifice. Equation (3.28) gives a good approximation to (So). when a is
small; it may be rewritten as

bh + C')2 when a =0. (3.105)-•i 2 b h
When a is very large, the fillets will have a negligible effect compared with those

of the principal images in the side-walls, and we may write

(8) = 8 - when a =1,(3.106)

since the influence of the fillets on wi may be neglected. Since (B.). is an even
function of a . we combine Equations (3. 105) and (3. 106) to give

S(o)E = (8 _A)E + C - )a 2  (3.107)

where (8•),; is given by Equation (3.84) or Figure 3.9 for the rectangular tunnel ofthe sue breadth and height. The success of Equation (3.107) is demonstrated in Figure
3.12 for the rcgular octagon of Reference 3.13 and the NFL 9 x 7 and 13 x 9 tunnelsL"" corresponding to the respective Tables I and 2 of Reference 3.12.

I..
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The treatment of rectangi'lar tunnels in Section 3.4.1 includes an analysis of the

streamline curvature through the parameter 1 (y. t) of Equation (3.42). There is no

correspcn•ding theory for octagonal tunnels, and we can suggest nothing better than

Equation (3.31). which is now written as

S(y.'t) = (3.'108t) °R(Yt) , )
IC BeR y~t

where o(y, t) is given by Equation (3.102) and the parameters Sor.(yot) and 8 ,i(yat)

are those for the basic rectangular tunnel from Equations (3.82) and (3.87). More

simply than by Equation (3.108), it may suffice to evaluate the upwash interference as

if the tunnel were rectangular and then to apply the correction factor

to all contributions involving S ~y t) . With reference to EqUation ':3.55). it is
suggested that the elliptic loading factor S be used, and that AcLbe evaluated

as if the fillets were not present end sp~i•, into two parts

The first part would be replaced by the corresponding quantity for th.e octagonal tunnel,

and the second multiplied by the factor (3.109). Thus

3 3

-- -(8 z&L'i - -" -(,s) C - I . (3.110){( ) i (3."0

The drag correction of Equation (3.)) does not involve 5 1 (yL) and would sily

become

ScD _ E •) (3.111)

s e t for elliptic spanwise loading. fae principle of Equation (3.109) can be aPplied to the

S~residual correction I3C3 CL from Equations (3.57) to (3. 59). (ACm) 2 depends only onastreailine curvature, bunthas to be split Into two parts

Th fere (part) w corresponds to

and [- th so multiplied 1 t fa (.

CL~ C)] (SC~ VLAt C~ 2 0 o C

---

'rhe ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .drgcreto fEuto-35)de o nov ,Y-)adwudsml
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in Equation (3.58). (ACm). 1 has to be evaluated for Zhe "ctagonol tunnel as If
" (y �t) 0 . and the remainder AC' - (oc) 1 1 '= (6C.) 2 + (,Z)2 for the recteangular
tunnel. Thus

e,7+ -- (3.12)

SThe principle can of course be used -with arbitrary spanwise loading aid with an3ý method

of correction to measured quantities suggested in Sections 3.3.3 to 3.3.6. provided
that s0(y~t) is calculated from Equations (3.102) to (3.104) and the factor (3.109)
is applied to all the upwash interference associated with streamline curvatare.

Interference effects ci off-ceiitre models in a particular octagonal tunnel have been
investigated by Batchelor in Reference 3.34. He has shown that fillets have a negli-
gible effect on the incremental interference upwash due to a vertical displacement
(d - iih) of the sodel from the central position for all practical values of d . it
therefore seems that Equation (3.102) may be used with 8o (y, t) as given in Appendix II

of Reference 3.4. The extent to which this holds for values of d outside the range
0.4h < d < 0.6h , say, could be checked by an extension of the analysis for the regular
octagonal tunnel in Peference 3.13.

3.4.3 Circular and Elliptical Tunnels

While rectangular and octagonal tunnels are plentiful, there are not many elliptical
-4 tunnels in regular use today. Closed elliptical working sections are not particularly

"convenient, but the rounded shape is more appropriate for ca open jet and a few open
elliptical tunnels have survived. Only the simplest wall interference corrections are
likely to be needed, and this may explain the lack of theoretical developments for
elliptical tunnels in the past twenty years. On the other hand. the special case of a
"closed circular tunnel has received full development.

A brief description of the early work will suffice. Sanuki and Tani (Ref.3.35; 1932)
use the transformation

y + iZ = 1 cosh (71+ i•) , (3.113)

so that a segment of '7 = 770 corresponds to an -liptical boundary of breadth
b = 21 cosh 0  and height h = 21 sinh770 . They solve for the stream function in the
(77.•) plane and evaluate the parameter (8 o)U for uniform spanwise loading from
Equation (3.45). For a wing situated at

i [ly! < 1 cosh 7)' cos '

l+
z = I sinh 77' sin 

(
:• .•in a closed and open tunnel respectively

)U sinh 710 cosh 770 c~~oshnl o~ý ih2n7fsnn
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sih •5,, cosh ,no c-sh 2nr' cos 2n' + sinh~n7a' sin 2n('1
0 no- Ž.J n~ 2 21 +iy 314Scosh2 .. h S' 1 -2 n(e c 3',

odd even

For a centrally placed wing 7)1 = 0 and the sun_.tions in even n disappear. In the
liniting case of small span, V' =7, the result for a closed tunnel may be identi-
fied with the first of Equations (3.29). Similarly the second of Equations (3.114)
for an open tunnel reduce,- to the first of Equations (3.30) with a change of sign and

7 = = tanh- (h/b) . For wings of finite span and b/h < I there would be a corres-
ponding analysis with the transformation

y + iz = I sinh (0+ iy)

Curves* of (80)U against a = 2s/b = (cosh 71' cos ý')/cosh 77, are given in Figures 4
and 5 of Reference 3..5 for wines lying along the major axis of the elliptical section.
It is found that the minimum interference parameter for small wings in a closed tunnel,

= 0. LL;7 . occurs when b/h = /2 . as does the minimum So = 0. 1190 for closed
rectangular tunnels; the corresponding miania in -So for open tunnels occur when
b/h = 1//2 . For any particular closed or open elliptical tunnel the minimum inter-
ference parameter occurs when the wing tips are situated at the foci of the ellipse.
so that n' = 0 and

21/b = sech 70= (b h 2)2/b

This configuration is of particular interest when the wing has elliptic spanwise
loading. Glauert has proved the remarkable result that the interference upwash is
constant along the wing span, whether the tunnel is closed or open (Ref. 3. 1. pp. 29 to
31); respectively

h b (b2 h2)i
(SO)E = or 4 , when a = h (3. 115)0L 4(b +h) 4(b +h) b

The important general solution for (5o)•. has been obtained by Rosenhead (Ref.3.36;
1933) in terms of elliptic functions. The resulting formulae are ratber coNplicated
and comprise four expressions for (S os according as b > h or h > b and the

O'Eboundary is closed or open: his useful numerical data are presented in Figure 3. !3.
The special case of a circular tunnel gives a am-ple result for the parameter a 0 (y. t)
of Equation (3.42); for closed and open tunnels respectively

_ Ru

- 0 (yt) = t 2 y) (3.116)

where R is the radius (Ref.3.1. p. 13). It can be shown (cf., Ref.3.4, Appendix II)

that from Equations (3.46) and (3. 116)

Sanuki's tabulated values appear in the Appendix to Reference 3.114.

._.9
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16 no
,c, ( ) = - jo Jo t s j ' t) 1 - )

, • [½j 77 (C.2)1 317
W 2

where a = s/R and the complete elliptic integral

E1 (o 2 ) = 0( -co" sin2o)½" dq5

There is the convenient expansion of Equation (3.117)

S2.5 32.52.7
- + 72a + a+ 22.82a 12 . (3.118)

42 62 42.6282.

positive for a closed and negative for an open circular timnel, in agreement with

Equation (6.8) of Reference 3.1.

Analytical expressions for (8) have been obtained when the tunnel boundary is
partly open and partly closed. Kondo 3 4 considers circular tunnels with a symmetrical
closed portion below the wing by transforming the interior of the circle into ar. infi-
nite strip with one straight boundary open and the other closed. For a small wing,
zero lift interference is found when 36.4% of the circular boundary is closed, and the
percentage increases slowly with wing spwn. Riegels 3 3 7 has extended Kondo's analysis
to elliptical tunnels and gives numerical results for b/h = v/2 . For eiample. the

-' closed portion can be chosen so that J(So)Uj < 0.008 for a range of span 0 4 a < 0.6
Riegels also treats elliptical tunnels with closed portions above and below the wing b)
transforming the interior into a rectangular boundary with open sides and closed floor
and roof; but this arrangement is a less effective means of minimizing lift interference
for a range of wing span.

Before we consider further numerical results, it is convenient to outline the more
elaborate mathematical methods that are needed to obtain the completd interference
upwesh field due to the lifting element. General theories for closed and open circular
"and elliptical tunnels are developed by Lotz (Ref.3.38; 1935). An independent treat-
ment of the circular tunnels by Burgers 3 , 39 also epPearea in 1935.

For the circular tunnels I _tZ•-..soQ]-•d--t1 differential Equation (3.2) in cylin-

drical co-ordinates for

+ ýP~ +~ 4 (3.119)

where % is the potential field of the horse-shoe vortex. •1 corresponds to the
image L-vortices of Figure 3.14 so that Ra +1Y satisfies the boundary conditions
at x = 0 and -±0 . and 4 is to be determined. With allowance for compressibility

tij• •.the assumed series to satisfy the differential Equation (3.2) is

I[I
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K / ik-rr
S) cos n- Dn sin -(3 120
,7 ni k=!1

where I = I-M 2  D nk are unknown coefficients, J. are Bessel functions of the

first kind, and the periodicity in x will disappear as p is allowed to increase

indefinitely. For the closed tunnel, zero normal velocity on the boundary r = R

gives the condition

S ((,. + "- , .'
L2 _ = ~ (d +4 W' - co~s n6 say,
o r 4,R n=i

whence, by Equation (3.120).

1 I~ x\ /knx\ /x
Dnk ikllJn(ik7Ip) gn sin \(-) dt\/ :3.121)

nk ik ' ik-np) \, 3p FR

for the open tunnel, zero tangential velocity on the boundary gives the condition

-a(x )x 47,_ = In cos ne . say.

whence, by Equation (3.120).

"1 COs t x-x (3.122)
Dnk k7TJn (ik.•Ip) f P n3R

After the coefficients from Equation (3. 121) or (3. 122) have been substittl:ed in

Equation (3.120), the substitution k7l/p = q is made as p - c. , so that

FI k F is replaced by -F(q;) dq

Thus the respectve expressions for the upwash w2 = ±+(!r)0/ý.6 in the plane of the

wing (0 =-7/2 or 31T/2 in Figure 3. 14) become

aKinn sin (qx/;(R) J n(iqr/R) -DWli 2 t- ± n sin n1-1 -i---• (iq--- g n(; sin (qjf) dF dq

-,4,rrn=1 jo

M7 C n sn CD- sin n Q(x/,SR) Jn(iqr!R) [cos (qD d ] dq

S4wr n= iJ

(3.122)

Along the axis of the tunnel r = 0 Equations (3. 123) become relatively simple e;pres-

sions. since
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J (iqr/R) , J 0 (iqr/R)

iqrP. - and. for n>1. qr/R

for closed and open circular tunnels respectively

-O snJ/ ýiq [gj.I(f) sin (Q0 d6 dq

(3.124)

) r sin (qx/R) l() s Q d dq
2 • J0 7TJ (iq) L- ,

wbere

K. - 1 r (4 + •(M)O cos 9 d9 for the close(' tunnel

7) GR 1

Lengthy" expkessions for the velocity potentials 4ý=, -V'() and 4)(2). are defined by

the vortex configurations in Pigure 3.14. Thle equal and opposite interferen~ce upwashes;

corresponding to 4) and .(2) are readily defined in terms of the function W(x,y,z)
of Equation (3.79). and the limit as z - 0

Ti Kt [i 1~/X

VF wt2 +1 (X-/
"•Z 4-,(R2+yt)[ R2 +yt+{(R 2 +yt) 2 +(xt/2•)}T

• -•Kt XtlP
+ Et 21+x~3± (3.125)

4--.(P.' -yt)L -yt + {(R 2 -yt) 2 + (xt//3 ) 2}-•j

The total interference upwashes in the plane of the wing are

w(l)(x.y) = *(1) + -(l) for the closed tunnel11 (3.126)

w$')(x,y) = w(21 + W(2) for the open tunnel
1 1 2 J

It wil be observed that w(l) and w(21 in Equations (3.123) vanish when x = 0

and the whole interference upwash comes from Equations (3.125). On the other hand.

for a small wing (t - 0) Equations (3.125) give zero upwash gradients -w("/"ax and

.• zPx at x = 0 . so that the stremaline curvature ccees entirely from Equations
-. '* (3. 123).

In Reference 3.219 Burgers considers point concentrations of lift at arbitrary posi-

tions in the tunnel; for an element of 1ift L. at (i, ys) in the plane z = 0 the

1 "•upwash velocity in a closed circular btnnel is obtained as

*I .-- m
S-~.

4.. i- - ... ---
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N = ~~ ,(Kay) 2 J(K,) K xN'o' (y 2nJ~ y YN e -XN)/fl (3.127)• Z 1pun-t s (Ks2R -n 2)yy,[Jn (KR)]2 (.X

when (x - xN) N 0 ; here denotes that. for each n . s extends over all positive

roots of Jn(KsR) = 0 . Uhen (x - xN) > 0
wn

WN(x,y) " WN(o,,y) - WN(2 xN -xy) . (3.128)

The corresponding result for an open circular tunnel, when (x - xN) 4 0 - is

W 2 X )= LN2n J(;Zy) Jn(RSYN) RS(7-XN)/IlN . )( ] (3.129)
77pU.fr~~- R R) 2yyV (j' I ;R)] 2 e

S= No S

where now denotes that, for each n , s extends over all positive roots of
JCn(RsR) = 0 . Again Equation (3. 128) holds for (x - xN) > 0 . The interference
upwaah velocity is obtained by subtracting from wl(x.y) the unconstrained upwash

w-- LN . 2{(x-XN) 2 + 2(y- ) (3.130)
W'o(x'Y) = 47.DU {(x-xN)2 + , 2(y-y_) 2}- - (I -N)3

due to the lifting element. Thus for a number of lifting elements

wi(x'Y) = Z [wN(Xy'Y - WNO(X'Y)] (3.131)

N

in accordance with Equations (3.127) to (3.130).

An outline of the treatment of elliptical tunmeis by Lotz 3 .30 will complete the
tasic theory. She uses the ellipticsl co-ordinater of Equation (3.113). so that the
differential Equation (3.2) becomes

Z2)1 / -am5 24
+ 2 cs~ cs~ + =0.(3.132)

h•e solution is again obtained in the form of Equation (3.119). where @ corresponds
to Figure 14. 15 or 16 of Reference 3.38 and

-4T kk7 -7 k(xq) M ,k() (3.133)

where b . the tunnel breadth, is the major axis of the ellipse. By Equations (3.132)
and (3.133). with separation of the variables q and S

d 21 . 2k2 i7T2 12  M~
Scosh 27) + k 0

p2 2

(3.134)

d2 11 2k, 2k272 12
-d" p Cb2  Cos 2t + ,k 0

bA
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where v is determined, for each k , so that the Mathieu function ;,(t) is periodic
in • . As for the circular tunnels, p is eventually allowed to tend to infinity so

that Z is replaced by an integral. The final expressions for '2 for closed and
k

open elliptical tunnels respectively are found in the formidable Equations (73) and
(50) of Reference 3.38. By Equations (3.113) and (3.119) the interference upwash
becomes

z z•b cosh71sin 7 32 s)nh-cos Z2
IFi -(R1+42) 2 h-cs3.35wi=-z -2 I 2(cosh 2ncosD - (cosh2-qlcos2ý) -.
I -+

IIAlthough Lotz gives graphs of wi for both closed and open elliptical tunnels
rhaving s ha /2 w the calculations only cover small span (l o 0) and unifon m loading

: when a = -j%/2 and the wing tips lie at the foci of the ellipse. TIhese difficult

S• calculations (due te Riegels) illustrate a technique for handling Equations (3. 133) to
(3. 135). Neverthelens. for general elliptical tunnels the data in Figures 3.5 and
3.13 may have to serve. The interference corrections A-- and maD .st then be
evaluated from Equations (3.85) with the aid of (S.) . from Figure 3. 13 and S,/So

• • for a small wing from Figure 3.5 or Equation (3-31). For closed tunnels it seems

better to invoke Equations (3. 110) to (3. 112), where now bh/C = 4/77. The quantities

At ./ and rtCE* (ACN) 11 1

LRICL CL JP.

have to be evaluated for a closed rectangular tunnel of the same breadth and height
as the elliptical tunnel. The ratio ( S O)E/( 8 0R)E for arbitrary b/h and a may
be evaluated from FIgures 3. 13(a) and 3.9. Equation (3. 112) for the residual correc-

] tion to pitching moment involves the quantity (_.CU)11/CL which is to be calculated
from Equation (3.58) as if 8

1(yt) - 0 . i.e. as if

•-ft- = ±-u 0to(y, t)} d Ud

-0 0 UCCL 
s}

S [. J'Zt)}
if the weighting factor W in Equation (3.55) and the circulation F in Equation (3.47)
are both elliptic. 7his requires the knowledge of 80(y,t) . which is formulated on
the basis of Reference 3.38 in Equations (2) to (5) of Reference 3.40 by Gavin and
Hensel; their function So requires the factor 0. 125 to be consistent with Equation
(3.42).

j• For circular tunnels, exact values of S. are available for wings of small span.
Von Baranoff 3 '4 derives the result

1 W q42 K2'U - QjCI(q) d
I~(q)

77. ja II(q)

Jo f IK(q) dq = 0.24975 (3.136)

4 .-
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when the tunnel is closed* for the open circular timnel

I• q2 KI(q)

• = -dq - 0.19921 , (3.137)
.47 "OI1 (q)

where I ,(q) = -iJ,(iq) and KY(q) are the modified Bessel functions. Lotzts calcula-
tions are consistent with the latter result, but overestimate the former. In Figure 8
of Reference 3.19 Eisenstadt gives further evidence to suggest that Lotzt s calculations
for the closed circular tunnel are incorrect while those of B5urgers are reliable. The
relative simplicity of Equations (3. 127) and (3.130) as compared with Equations (3.123)
and (3.125) commends the method of Burgers as a computational procedure. For the closed
tunnel, however. both methods have received important development. While Eisenstadt 3 "9
has extended Lotzf s method to treat a swept lifting line. Sivells and Salai 3 2 ' give

extensive tables and charts based on Equation (3.127).

As a lifting element Eisenstadt takes a skew horse-shoe vortex with corners at an
origin on the axis of the tunnel and at a point (x. r.9) (t tan A, t sec A, •,) in
the co-ordinate system of Figure 3.14(a). Thus A is the angle of sweepback of the
bound vortex, and t is the perpendicular distance between the trailing vortices. He
chooses 1P to correspond to the L-vortex of Figure 3.14(b) in the half plane 0 = L.
so that Zý/Zz is independent of A and is given by the second term of Equation
(3.125). In an appendix he proves the validity of Lotzf s method and discusses the con-
vergence of the series for 2 and its derivatives. In Reference 3.38. 7(4m+•')/r
is even in y but not necessarily odd in z , but Eisenstadt's quantity

Zr 'ar 47 i=n(-6

is odd in z but not necessarily even in y moreover. •2 is not in general odd In

x Therefore Equation (3.120) has to be modified and the first of Equations (3.123)
is replaced by

2 n cos {n(9--)l4( cog:

(3.138)

where the negative sign corresponds to y > 0 (9 =In) and the positive sign to
y <0 (9 = 37/2) . The integral in square brackets is expr4r_6d as

f (• cos d f_ = 2•,(q) sin - kn(Q) cos

and the functions In (q) and k (q) are tabulated for n = 1.2.3 . Finally in Table 4
of Reference 3.19

t -(3.1391

- --

•=I
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is given as a function of four parmeters, in the equivalent incompressible flow

(Table 3.1) these parameters become

t (1+# tn2I x Y' - -(2(1 +4
2 tan2A)2 cot-1 (8 cot 1) , k -1 +,-2tat

which are somewhat inconvenient unless U 0

Sivells and Sali 3 "26 had found the results of Reference 3.19 for swept horse-shoe

vortex elements difficult to apply and therefore, following Burgers, used point concen-
trations of lift. They have simply evaluated the quantity

S -i y\ _PU 2  [w1$xLy) _ Wo(XKy)j (3.140)

from Equations (3.127). (3.128) and (3.130) and have given it in Tables l(a) to 1(e) and
IPFigures 2(a) to 2(e) for y/R = 0 , 0.2 , 0.5 . 0.7 and 0.9 . The interference upwash

can then be evaluated from Equations (3.131) and (3.140); illustrative calculationsj are given in Tables 3 to 9 of Reference 3.26.

0ff-centre models above or below the plane z = 0 are covcred by Equations (3.114)
derived from Reference 3.35. The more elaborate theories do not preclude off-centre

*positions, but the numerical work Is coml-cated further and no calculations appear to
have been made. Silverstein and White have evaluated (8 0)U from Equations (3.114)
for closed and open elliptical tunnels with b/h = 1 and 2 ; their curves in Figures 3.
4. 6 and 10 to 13 of Reference 3.32 indicate that the increased interference is quite as
important as for rectangular tunnels (Fig.3.11). The vertical displacement gives a
much greater correction factor to (80)U for small wings than for models of large span.

Full-spsn models are discussed in Section 3.6.4C In their treatment of this problem
for a closed circular tunnel. Vincenti and Graha 3. 2 consider a simplification of
Equation (3.127) on the axis y = 0 . In Equations (8) and (11) and Pppendlz A ofSReference 3.42 they transform the series of Bessel functions into a convergent power

* series in (x-x,).

3.4.4 Malf-Wing Models

When the model and the flow conditions have spanwise symmetry, only one half (y > 0
say) need be considered. In such cases there are mny advantages in using half models
mounted at the tunnel wall. which becomes a reflection plane of symmetry y = 0 .
Van der Bliek3"• has discussed the practical aspects, noting that half models are
cheaper and easier to zmke and may be combined with shorter pressure leads or a test
rig outside the tunnel so as to eliainate sting or strut interference. The Reynolds
number can be doubled, and especially for control surfaces the larger size of model
should ensure more accurate manufacture 3 *-. The use of half models introduces a number

4 of interference effects. The modified upwash interference will be discussed in some
detail; the other effects of tunnel-wall boundary layer and gap between aodel and tunnel
wall are discussed in Reference 3.43.

V i



139

Little need be said about rectangular tunnels. The formulae of Section 3.4.1 have -s

simply to be applied to a complete model in a tunnel of the same height and twice the

breadth. References 3.22 and 3.44 illustrate the procedure for unswept and swept
models respectively.

Ifalf models are frequently tested in octaonal tunnels. Batchelor a method,S~outlined in Section 3.4.2, then requires the modification in Reference 3.45. where•

calculations are made for the tunnel in the middle diagram of Plgure 3.1I2. The origin

iz Ptiure i.c' is shifted one half breadth to the lift, and it is necessary to distin-
guish betweinn the "corner fillets" at y = ib . ±3b , ... and the "central fillets"
at y = 0 . ±2b ...... In the first place it is convenient to re-define the quantity

G/P in Equation (3. 103). so that the gradient of v. at the midpoint of the fillet
is replaced by the mean gradient over its middle half. For the double tunnel of large
breadth to height ratio 2b/h , moreover, G/P is found to depend on the semi-span t
of the horse-shoe vortex. For example, from the non-dimensional quantity

A' = 4/2 bt G/P = 2/2 b G/K = U(t/b) (3.141)

in Table 2 of Reference 3.45 It is seen that G/P is more than doubled when t
increasea from 0 to 0.75b . The corresponding quantity for the central fillets is
negative and mw be identified with -4( - (tib)] . It follows that, in the special
case y = t = 1b , the contributions to the interference upwash from the corner and
central fillets cancel each other. In principle, So(yt) is given by a simple exten-

sion of Equations (3.102) and (3.104). For the column of central fillets near the
reflection plane

7T(as2 + y)
S = sech 22h

Unfortunately the expansion for X(S.) in Equation (3.104) may converge too slowly

when y is small, as shown in Table 3(a) of Reference 3.45; the alternative expansion
of Equation (25) in the Appendix to Reference 3.45 is moree accurate, and it is seen
that relatively large negative values of X are found for small y . The main con-
clusions are that the octagonal tunnel induces considerably more interference upwash

near the reflection plane than does the corresponding rectangular tunnel, but that
elsewhere the effect of the fillets, whether positive or negative, is likely to be

much smaller than for complete models. No simple formula such as Equation (3.107) can

be suggested. but it seems typical that (80)L!(8oa)8 > I for small a and is roughly
equal to the area ratio C/bh for fairly small (1-a). For half-model testing o is

unlikely to be small; when a > I . it is recommended that the fillets should be neg-
lected for all but the most detailed experiments.

ihen a reflection plane is installed to test half models in a circular tunnel, the
effective boundary is of bipolar cross section as illustrated In Figure 3.15. This
configuration was first considered by Kondo (Ref. 3.14; 1935). who used the transformation

y +iz = Rsin41tan (71+ iý) (3.142)

to map the interior into the strip 1.)l 4 f(r-41) , where the angle q/ is indicated
in Figure 3.15. By Equation (3.45). solutions for the interference stream function
along a uniformly loaded lifting line give simple expressions

!I
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(d8) = i-n- lOge for closed tunnels

loge2 (7T-41) Sin

1(3.143)

= 7siu 1-f for open tunnels

shere t is the half-wing span, tan !f = tf(R sin 4j) (F'ig.3.15), and the bipolar area
C = a2 (, +-L+ sin 24,) . Figure 4(b) of Reference 3.14 shows that a closed bipolar

Stunnel has values of ( 8%)U remarkably close to those for the closed elliptical tunnel
of the same breadth to height ratio (1 + cox. 0); this is such less true of an open
bipolar tunnel. Figure 3.15 shows how the interference on a half model of fixed span
can be reduced from that on the corresponding complete model in a circular tunnel

(s = 900). The magnitude of the simple correction to incidence, given by

SC. C (3.144)

falls to a minima as 41 decreases. For closed tunnels the minimum A is about one

half that of a small complete wing or. when t = 0. BR . as little as one third of that
for a complete wing. Less impressive reductions are found in the negative correction

Aa when the boundary is open.

Davison =nd Rcsenhead 3 *-6 have treated the open bipolar tunnel independently by thei ! transformation

77 tan-1' (L " = 2(7- 1k) tan-(7 + Wi) (3.145)

in place of Eation (3.142); Table 2 of Reference 3.46 gives precisely the quantity

plotted in Figure 3.15. With an approximation they extend the analysis to obtain a
convergent eipansion for the corresponding quantity when the spanwise loading is
illiptic.

Sivells and Deters 3
.47 use the sine transformation (3.145) for a closed bipolar

tunnel to obtain the interference parameter

so (Y.t) C -r( { 712)L si T T T /7t 2 I 316
87 12(7 4,(y2 R~i 2o171 72  7.3r2 j 31 t 2 310

where

tan-' = 77 taz- (

R sintin" 7T 2 -€) t_"_'l

C 2R 2(n- + }sin 20)

-* W a-T
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Values of (ARt/C) 80(y.t) = wtR/K at x = 0 are tabulated in Tables I and 2 of 4M,

Reference 3.47 for two configurations ' 43.090 and 60. 140 that are favourable in
Figur• 3. 15. The stremwise variation of wi is represented rather crudely by taking

h - 2 s. 1,

81 (yot) m 2.1 80 (yt)

in Equation (3.M2); the factor 2.1 was obtained from the incorrect calculations of
& Reference 3.38 for a closed circular tunnel, and from Equation (3. 136) the value 1.998

might be preferred. Reference 3.47 also examines the consequences of replacing the
reflection plape by an end plate; this tends to give a larger interference upwash and
a spanwise lift distribution different frov that of a complete wing. It is concluded 4
that a reflection plane should be used wherever possible for half-model testing.

No rigorous method is available for determining the general interference upwash
field w,(xy) in the plane z = 0 of a closed bipolar tunnel. The best approxims-
tion appears to be that of Sivells and Sali 3'26 using point concentrations of lift.
If the elesent of lift L acts at a position (xW Y.). then following Reference 3.47
they obtain

Lf E~ 2 1+(li)R 2sin'I f 1

47TpU [4(77 _,p) 2Lv2 +R2Si,,4')(y2 +R2sinJJ) (7742 ( 7A,

(y )2

where, as in Equation (3.146).

tan " 2(w-= ) tan-' ( i

The plausible assumption is then made that. for any fixed x and x,. the ratio of
w N(xy.yN) to w,(x,.y.y5 ) is equal to the corresponding ratio for the closed circular
tunnel in the (r, %) plane; that is to say.

w Myx) ~ l)(.71 lING(X,.•
j .xy.y)•a = •(x,i•)( - 3I8!

w .y x..) -Mo(i,.7) (3.148)

where j(1) and w5o are defined in Equations (3.127), (3.128) and (3.130) with y.
replaced by qI . Hence the charts In Pigure 5 of Reference 3.26 are derived for the
particular bipolar tunnel of Reference 3.47 with 1 = 60.140 (b/h = 1.49781) .The
Interference corrections ca then be obtained as simply as for the circular tunnel.

f 3.5 NUVNEICAL INTEFERENCE CORRECTIONS

Various formulae for interference corrections to ueasured quantities have been
derived earlier. Section 3.2.4 gives expressions suitable for mall wings. while more
general formulae are discussed in Sections 3.3.3 to 3.3.6. The spplication of these
formulbe to a Darticular ttunel requires knowledge of the apropriate interference

,-
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pnraeters froe Sections 3.4. 1 to 3.4.4. We consider in Sections 3.5.1 -and 3.5.2 the
relative isporteace of the various corrections from available numerical data for rect-
aaalar and non-rectangular tunnels respectively. In Section 3.5.3 an attempt is made
to esass the ccuracy of the simpler methods of estimation.

In the first plae the measured quantities that often require interference correc-
tion can be divided into three groups.

I Geometrical Gaa"'!LyII

C C

the interference upwssh M "

MOiet force coefficients CD , Cn ,
I

SAlthough the vortex representation of the model may be governed partly by the theoreti-
cal lift distributicn, the reliability of interference corrections must also depend on
the mount of ezperimental information in the second group. In half-model tests all
three coefficients may be measured, so that the spanwise and streatwise centres of
pressure mar be known. Vor complete models there will be separate fields of inter-
ference uPuash from the symetrical loading (CL and Ca) and antisymmetrlcal loading
M((t); the latter, though smaller, will be less well defined, since the stresawise
centre of pressure associated with C1 is unknown. There will be varying degrees of
uncertalnty in the absence of one or more of these coefficients, especially when only
the control hInge smment C. or a restricted pressure dintribution is measured. An
Independent ampeal to the theoretical lift distribution or an empirical estimate of
C, or C1  is then essential.

The more common interference corrections can be grouped as in the following table.

-Principal corrections Acz, AC

Zero correction NCL

Residual corrections to -Cs . ACm
longitudinal moments AC, (half-model)

Residual corrections to
Yvortex-induced coefficients AC0  n

The principal corrections are the easiest to estimate quickly; -Am is usually much
more imoortant tham AC, . It is convenient to choose Am such that ACL = 0 . The
rzaidual corrections AC, and AC, are rather difficult to estimate at all accurately;
the latter can be especially imPortant. The vortex-induced coefficients Cov and Cnv
are only part of the measured quantities, but are subject to large percentage inter-
ference corrections. It will be assumed that AC5 is governed by the principles of
lifting-line theory, but it is suggested in Section 3.5.3 that the resulting formulae
are somewhat unreliable.

.Orr
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A different category of correction arises when lateral aerodynamic characteristics
are to be deduced from tests of half-span or part-span models. After the interference
corrections, including .AC , have been applied to give conditions of unconstrained
flow with a reflection plane y = 0 . there remains a lifting-surface problem indepen-
dent of the tumnel shape. The precise details of such a calculation are not discussed,
but the resulting correction factor to (C1 + ,8C,) is of major importance.

3.5.1 Rectangular Tunnels

Attention is now given to specific calculations of wall interference on lifting
wings in rectangular tunnels. An attempt is made by illustrative charts or formulae
or inequalities to indicate the likely magnitude of the various principal and residual
corrections relevant to wing models. Brief discussions of the numer'.cal corrections
for slender wings, complete aircraft modeis and other special configurations will be
deferred until the appropriate subsections of Section 3.6.

Figure 3-2 has already provided the order of magnitude of the correction Aa for
various types of rectangular tunnel. For closed rectangular tunnels Equation (3.55)
with some weighting W has been used to calculate the influence of wing span over a
wide range of planforms. Polhamus3 ,44 has evaluated the mean interference upwash along
a swept lifting line with the weighting W = c/U ; this indicates very little influence
of sweep angle (-600 4 A (4 600) for planforms of moderate taper and span ratios
S= 2s/b 4 0.8 in a tunnel of 'effective shape b/h = 1.4 . Acum3 . 17 used the weighting

W,= 1 + 0.4 7

in Equation (3.55) to evaluate the mean interference upwash at three-quarter chord.
It is found to a useful approximation that, for any particular breadth to height ratio,

bh(3.149)

can be regarded as a function of o and aspect ratio A = (2s) 2/S in incompressible
flow. Not only is & largely independent of sweepback and wing taper, but it is
practically insensitive to spanwise loading, as Appendix I of Reference 3.4 illustrates
convincingly for a square tunnel. For elliptic spanwise loading carpets of S are
reproduced from Reference 3.17 with allowance for compressibility by plotting against
a horizontal scale of a + 3(0A)- 1 in Figure 3.16; the three diagrams for b/h = I
9/7 and 2 show S within the range 0.11< 8 < 0.22 for 6AU 8. a 40.8 and
a + 3(JA)-Y 1 2 . For fixed b/h and r, S is represented as a linear function of
(BA) " we may therefore write

Aa S
- S(BA) , (3.150)

C11 bh

where

86A) = +6 1 ([3 TA

V -- /

S. . . . . . . . . . . . .. . ... . . . . . . . . . . . .. . . .. . .. . . .. . . . . . . . .. . . . . . . .
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E LThere is a Lendency for Equation (3.150) to underestimate A for highly tapered
wings when b/h is large (Fig. 12 of Pef. 3.17) and to overestimate Aa when 8A < 2

Independent calculations of Aa by the method of Reference 3.22 for b/h = 10/7
are included in Reference 3.48. The results take the form

AC S [ sc] (3.151)C1, bh b

where the 'lifting line' contribution Sit corresponds to A = wD and the 'streaLline
curvature' contribution s is roughly inversely proportional to 8A , as in EquationBc
(3.150). The curves against o , reproduced in the top two diagrams of Figure 3.17,
show SUl for three values of d/h , the non-dimensional distance from model to floor,
and the quantity /ASC subject to the restriction 8A >, 2 , say. In Figure 3.18 we
try to piece together the approximate information on S , as defined in Equation (3. 149).
for wings and Mach numbers such that /3A = 2.5 . i.e..

AS 2.5ha = -- = -r
b2 b

The curves of 8 against b/h for constant area ratios S/(I8bh) show how the minimum
interference shifts from b/h = /2 for small wings to broader shapes of tunnel as the
area ratio incienses. Thus the variation in 8 from tunnel to tunnel is likely to
increase with the relative size of model.

Whereas the momentum at right angles to the stream direction is influenced by normal
pressures at the tunnel boundary, the streamwise momentum is virtually uninfluenced by
external forces. The vortex-induced drag is therefore determined by the spanwise load-
ing on the wing and the cross-section of the tunnel. When an elliptically loaded lifting
line can be assumed, a good approximation to the interference correction is given by

CD bh °)E (3.152)

where for closed rectangular tunnels is given as a function of b/h and o
in Figure 3.9. Minor contributions due to residual effects and asymmetrical spanwise
loading are noted in Equations (3.63) and (3.71). The parameter SU1 at the top of
Figure 3.17 illustrates approximately the increase in (SO)E with off-centre models.
The uncorrected vortex drag of a lifting line with elliptic loading is simply

Cv 4s-2 (3.153)

By Equations (3.152) and (3. 153) the ratio

.77bo2
S.(8) (3.154)

CDy h

:.2I t " . .
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which can be large, e.g.. 26 when b/h= 1.6 a o = 0.7 and ,8 o~E 0.105. -his
ma r slightly exaggerated, since does not represent the total drag.

Thc residual correction to pitching moment, as defined in Equation (3.36) or Equations
(3.57) to (3.59) or more generally in the second of Equations (3.67), is independent of
pitching axis. The accuracy of the different methods of estimating AC, will be dis-
cussed in Section 3.5.3. As far as can be judged from a few lifting-surface calcrla-
tions by the Equation (3.67), the correction is likely to lie within the range

or2b •C• o2b

0.03 a < < 0.05 2Ah (3.155)

for fairly large models in closed rectangular tunnels; Equation (3.26) with Table 3.111
would have suggested a much wide.o variation.

The principal correction AC1  to rolling moment is never very large. It appears
in the form of Equation (3.62) or the last of Equations (3.67). For unswept wings of
high aspect ratio, in particular, there are other simple procedures. With a change of
sign, Equation (9) of Reference 3.28, with charts for b/h = 10/7 and 3/2 , gives
-1Cl/C! for wings with deflected ailerons; Equation (3.62) may be regarded as a
generalization of this. Equation (3) of Ref2rence 3.48. based on Reference 3.25.
gives the result in the third panel of Figure 3.17 and incorporates the factor
(2.5 cos q&- 1.5) for wings yawed through the angle j . We now examine the behaviour
of the interference upwash in Equation (3.50). When the wing is small, it can be
shown that

JtK (~t)) bty

(3.156)
Sbty

- {tK1 (y.t)) - --y j
-t 87.h'

where, by Equations (3.91) and (3.92).

=o f'2
1(O) + 2 E (- 1 )' f•'(mb/h)

( . (3.157)

"" = f ,(o). 2 X (- 1 )f fmblh)

the second derivatives f" may be evaluated from Reference 3. 18. The antisysetric
spanwise loading is taken such that in Equation (3.50)

4sl' 2scC 32C !t (

-T C = 7bb s S2- (3.158)

UC~;Em A b
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1•7 By Equations (3.50), (3.156) and (3. 158),
. 1 1 F•----_• V - 1 ~ fI /• 1-•I -W, - - t (I - d(sI (3.159)

For larger-whxgs.4t may be t'ppropriate to evaluate to and in the special casey- t 4 when iefr-e s•imple formulae

- = - fI- )-f -) fl-

2C b2 1(-I) 
ff

2(C)

2 .C (3.160)

2h ([h- ) 3(1 hIh-)2J

Values of to and - from Equations (3. 157) and (3. 160) are listed in Table 3.VI.To obtain a rough estimate of AC, for wings of high aspect ratio, we omit the secondterm in tle square bracket of Equation (3.159) and use Equations (3.62) and (3.159) to
give

A!C1  _ Tg~c/c s2S?2 P111)2 d(!
C- 2(,A + jcL/) 4-aSf \S/ s

With the further approximations

?C. 2,,4 y2\
- -- 1 .= , o _ 2• , W

AA+2 77' S2,

this becomes

0 (3.161)C1  4h R(68A + 4)

w .ich has formal similarity with Equation (9) of Reference 3.28. A typical correctionto C• vould be -2.2%. sbn b/h = 1.6 o = 2.9 a= 0.7 and •A=6. ForwingI of small span MACI/c is negligible, being porportional to a . Equation (3.161)u"ith t0 from Table 3.VI will determine whether the correction can be ignored safely.

The vortex-induced yawing roment involves interaction between symmetrical and anti-symetrical parts of the spanwise loading. Even for unyawed wings, the evaluation ofthe interference correction Cn from Equations (3.70) and (3.71) includes three-ters, end further subdivision of the symetrical part may be needed when controlsurfaces are deflhcted. This is illustrated in the methads of Swanson 3 -25 and Graham3
"
2 8,To obtncin a rough estimate of _ACn we assume a sparwise load distribution

"L Y Y2 32c l y ... 1 )

-' 
(I -.- . 16 2 )-

T= Y 13+ -77, a 7T \ s")(~
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/ C| ~and an interference upwash

(2 -(U/- - o • 0 (3.163)
(-U/ \bh / 4 1 ,~

where the last tern is derived from Equation (3.159). The parameters Se and ý0
here denote suitable mean values dependent on b/h and a-. Then Equation (3.70) gives

CLC -h + (-i o (3. 164)

From the lifting-line integral it is found that the vortex-induced incidence is

1I d F__L1] d(Li'
S-4 7 yA -y d(y/s L

1=

1 A [CL + 16(y/s) C1]

whence

g.l cc s/y 3YCLCZA
Cy .CCLLL- ' dY = -C . (3.165)env = 1 a d-l•'

By Equations (3.71), (3. 164) and (3. 165).

_!2ncn WW°2 [83-'5 + ( ab3' + AC!
S= o 2 8• 3 •0 1 -C (3.166)

This lies between the corresponding ratios 6CnC., and z!C1/Cj from Equations (3.154)
and (3.161). e.g., 10% when b/h = 1.6 , o= 0.7 , o-=0.105 and =0 2.9 . In
practice, A$Cn can be a larger proportion of the measured C. (Section 9 of Ref.3.18).
It is noted that the second term of Equation (3. 1,4) largely explains the difference
between 81, aad -(C/S)(AC.nICC) in the top and bottom panels of Figure 3.17.

Hypothetical cases of swept and unswept half-models with control sarface in a closed
square tunnel are considered in Section 9 and Figures 6 and 7 of Reference 3.4. The
residual correction to hinge moment from Equation (3.77) is seen to be Important for
large models. Further discussion of wall interference on control hinge laments with
aerodynamic balance is found in Reference 3.49; Miss Lyon has pointed out that uncor-
rected wind-tunnel results may be misleading in the design of clcsely balanced elevators.

3.5.2 Non-Rectangular Twmnels

There is evidence in Reference 3.40 of a small effect of spanwise loading on AOL
for unswept wings of aspect ratio A = 8 in a closed elliptical tunnel of ratio
b/h = 1.37 . Given total lift and wing span, the wall interference is less for lift
distributions that are more concentrated towards the centre line. But Figure 8 of
Reference 3.40 shows that A:. is only slightly less for highly tapered than for

I *14
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untapered wings. Even smaller changes would be expected of sweptback wings and those

W of lower aspect ratio; for most purposes elliptic spanwise loading may be assumed.
1 i ~There should be little difficulty !n preparing approximate charts for octagonal and

elliptical tunnels similar to those for rectangular tunnels in Figure 3.16.

Once the principal correction Wn/CL is known for recttngular tunnels, the corres-

ponding correction for octagonal or elliptical tunnels can be estimated quickly from

Equation (3.110). This only requires the further knowledge of the parameter (S.).
for the appropriate value of o. which is given in Figure 3.12 or 3.13; otherwise

Equation (3. 107) is available to give a rough estimate for closed octagonal tunnels.

Although (SO) F will be smaller than the corresponding quantity (S..). for a closed
rectangular tunnel of the same breadth and height, the interference correction will be

larger for the same model. By contrast the bipolar shape. appropriate to a half-model

in a closed circular tunnel with reflection plane, can give a much smaller interference

(Fig. 3.15) than the half-model in a rectangular tunnel of the sane breadth and height.

Equation (3. 152) with bh replaced by C will continue to give a good approximation

to LD. The inequality (3. 155) should again indicate whether A~C, is negligible; if
not. Equation (3.112) is available. Likewise Equation (3.161) with an appropriate

Svalue of o will give the order of magnitude of the correction AC . A crude esti-
mate of SIcv then follows fros Equation (3.164). but this correction will seldom be

* negligible under conditions of asymmetrical spanwise loading. For a closed circular
tunnel it can be shown that o * as defined in Equation (3.156). is

3C= 2 3 R2t 2y 8R_

o ty Tt _ I(R _ t 2y 2 ) -J) ; (3.162)

for the present purpose this is not appreciably different from the quantity for a

closed square tunnel, especially if it is adjusted in the ratio of the parameters S.

for the respective tunnels. In other words, a change in tunnel shape from rectangular
to octagonal or elliptical is likely to influence all the corrections by roughly the

same factor

bh(SO)E

C(SOR) _

For wings of high aspect ratio with part-span ailerons in a closed circular tunnel

the correction to yawing moment is conveniently evaluated by means of Reference 3.50.

In the present notation

-Lcn = (Scm.).+ (SCn,) 2 + (SCj. 3 . (3.168)

where - _ LI____ - IN

.M Y2 -I'

41(4-Y )(Y2 -Y 1) I \
(Sy__)f)3 F

2.* 1 2/-
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(CL)O and (C,) 2 denote the contributions to CL from the wing incidence and the

deflected ailerons respectively, and y, < lyI < Y 2 denotes the spanwise extent of

the ailerons; the functions P 1 , P2 and F3 are formulated and plotted in Reference

3.50. Stewart states that the total correction is likely to be a large percentage of

the uncorrected C. and may even exceed it when s/R is as large as 0.8.

Special reference must be made to the illustrative computation for a complete swept-
back model with tailplane in a closed circular tunnel admirably set out in Tables III
to XIII of Reference 3.26. The spanwise distributions of interferenc- upwash at quarter
chord, three-quarter chord and the tail are shown in Figures 7 and 8 of Reference 3.26.

Tecorrections to incidence, drag, pitching-moment, rolling-moment and yawing-moment
coefficients resemble* those in Equations (3.55) to (3.59), (3.62) and (3.70), and are
evaluated in simple stages with the aid of the charts in Figures 2 and 6 cf Reference
3.26, so that similar calculations for other models are reduced to a straightforward
routine.

3.5.3 Comparisons of Methods

We first consider four methods of calculating the principal correction to incidence,

viz.,

(i) Small-wing method. Equation (3.35)

(ii) Charts of Reference 3.17. Figure 3.16

(iII) Reference 3.26. Equation (3.55) with W = CCL,'/.L

(iv) Lifting-wurface theory. Equation (3.67)

The results are compared in Table 3.VII for fairly large models of various planforms
in closed rectangular tunnels. The wings are uncambered and without control surfacem.
For method (i) the factor X is taken frcm lifting-surface tbeory, as given in Table
3.11. Whether these or the more approximate values X = WE are used, it is only
when o' 0.5 and a o 0.5h/b that the method can always be trnusted within ±l0%

for nearly square tunnels, however, these conditions on a can be relaxed a little.
In most of the examples one of these limits is violated and larger errors are found.

There is little reason to use so crude a calculation when the siwle methods (it) and
(iii) exist. In method (it) extrapolation has been used to cover b/h = 0.911 : in
method (iii) W = c'LL/e'L has been taken from lifting-surface theory and. as for
method (iv), Equation (3.47) is used to determine w,/U . Method (iii) gives margin-
ally better over-all accuracy and a root-mean-square deviation from method (iv) of
0.0011 in _ActAL (0.3 degrees when CL = 0.5); Aa tends to be underestimated by
method (iii), but in the present examples the error does not exceed 0.5K of the
measured incidence.

A compar.sson of WeL for a non-rectangular tunnel is made by applying Equation
(3.110) to the illustrative example defined in Table III of Reference 3.26. With
0 = s/R = 0.656

= 0. 1290 for a closed circular tunnel from Figure 3.13'

= 0.1505 for a closed square tunnel from Figure 3.9 .'A

= 0.1695 for b =h and 8A = 5.11 from Figure 3.16 J
In Referene 3.26 (w/ . replaces 1(v1 /U), in Equations (3.56) and (3.70).

II In.Refrence3.9.
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Therefore for the square tunnel

-= - = 0.0842 x 0.169, = 0.0143\CLIA bh

and for the circular tunnel Equation (3.110) becomes

3
a ( j ) 0 .. ..x . 0 .103 x 0. 1 2 9 ,

CL 0.1505 77

= 0.0177 - 0.0018 = 0.0159

hich Is in excellent agreement with the value W/CL = 0.0158 in Table X of Reference
3.25.

We next consider four methods of calculating the residual correction to pitching
moment coefficient, viz.,

(I) Small-wing method. Equation (3.36) 1
(11) Strip theory. Equation (3.60) with factor

(iii) Reference 3.20. Equati•ons (3.57) to (3.59)

(iv) Lifting-surface theory. Equation (3.67)

The results are compared in Table 3.VII for the eleven exaples of wings at uniform
incidence in closed rectangular tunnels. Method (I) is hy far the simplest and uses
values of the quantity XxkXF from lifting-surface theory" in Table 3.111. As would
be expected from the behaviour of (So) against a in Figure 3.9, both ca.CL and

/CoL are seriously underestimated when b/h < 1.0 and c is large and seriously
overestimated when b/h > 1.8 and a is soderateLy large. For many cases Equation
(3.36) will suffice to show the order of magnitude of the residual correction. W/CL
amounts to a forward movement of the aerodynamic centre as a fraction of the mean
chord U and may not be required to better accuracy than 10.002. say. Method (ii)
uses the formula

__-(x/~~L~(XL-'L+?.~c_-.) - \YCL t 8 ':-

CL (x'/arst 10 .Jo 0. 25/~
(3.169)

where t and iL are defined in Equation (3.60). (,Xx,/El) and (Kx 1/U)st are taken
froa the lat two colums of Table 3.111. The latter is formulated in Equation (3.61)
and the former is defined above that equation; their ratio is an essential correction
factor in Equation (3.169). Except for the very broad tunnels b/h t 2 . method (ii)
gives quite as good accuracy as method (iii); furthermore, unlike method (III). it is .
not restricted to wings of constant sweepback from root to tip. However, method (iii).
does not require the quantity (Kx/U)Is and involves only slightly more comutatioz.
Its root-mean-square deviation from method (iv) Is as small as 1.0010. Finally, from
Table 3.VII. with the exception of Case 11 (ACM/CL = 0.054 a 2 b/h8Ab) all the

Note that Equation (3.38) from strip theory seriously umderestimtes Xxi/c for nseept wings
of aoderate or smal aspect ratio.

-4-! ---a - _ .
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calculations in the last column by method (iv) satiefy the inequality (3. 155). i
The effect of compressibility on C/CL tends to be greater than the factor f3
typical comparisons of methods (iii) and (iv) over the Mach number range 0.4 4 M ( 0.9
are shown in Figure 3.19.

Turning to antisymetricel spanwise loading, we now consider three examples of the
principal correction to rolling mcment coefficient in closed tunnels, viz.,

(a) b/h = 10/7 . Figure 3.17 based on Reference 3.48

(b) b/h = 2 . Tables A3 to A7 of Reference 3.18

(c) Circular. Tables III and XIII of Reference 3.26

For example (a) the wings are unswept and of high aspect ratio; the quantity

fiA + 4 CL6z

j8A SCI

is calculated by Equation (3.161). by Graham's method 3 "2 3 and frem Figure 3.17. Equation

(3.161) gives

"(8A + 4)CL 1  7 ib 3
0oa6 2  0.

4s 2CI 64h 3  O.1431ýo .

where, by Table 3.VI. o = 5.0 and 4.0 for y = t = 0 and lb respectively.
When the latter Is used, the following comparisons are obtained with results from
Figure 3.11 for large values of /.A.

a- 0.5 0.6 0.7 0.8

Figure 3.17 0.19 0.23 0.30 0.42

0.572o-2 0.14 0. 2! 0.28 0.37

By Equation (9) of Reference 3.28 with taper parameter K, = 0.8V/c and section lift-

N. :curve slope 277

(gA + 4)C8.Cz 0.Sh PF(y/b) - Fi(y/b)
42b (yjb)2 

- (y1 b) 2  
* (3.170)

where yI < y < Y2 denotes the span of an aileron and P 1 is plotted for b/h = 10/7
a = 0.68 (0.04) 0.92 in Figure 5 of Reference 3.28. Equation (3.170) has been

ealuated for a = 0.8 to investigate the dependence of the interference correction
on aileron span

0./
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YI/s Y2/8 Equation (3.170)

0.4 0.8 0.402

0.4 1.0 0._420

0.6 1.0 0.438

0.8 1.0 0.444

The results only vary within M% of the value 0.42 from Figure 3.17.

Exanles (b) and (c) are for swept wings. In exasple (b) Equation (3.62) is evalu-
ated with (w /U)o.,s from Table A4 of Reference 3.18 and the lift slope / = 2.80

and weighting W from lifting-surface theory. With A = 2.64, f = 1 and tanA. 25 = 1.
it follows that ;L = 0.835 ; hence Equation (3.62) gives

0c O. 912 x 0.00315
- = =0. 0203

C1  0.1413

in excellent agreement with the value 0.0202 from Table A7 of Reference 3.18 by lifting-
surface theory. The rough Equation (3.161) gives

= 0.01426 to

C1  4h%(8A+4)

ihen SA 2.64 . b = 2h and s = 0.589h . For the broader rectangular tunnels to
varies greatly with wing span. The value to = 1.637 from Table 3.VI(b) gives
-•Ac/C, = 0.023 of the correct order. In vice of the crudity of the approximstions

leading to Equation (3.161) and the difficulty in assigning a mean value to to
errors of ±20% are likely. But the interference correction A i is often so small
that such errors can be tolerated. When applied to example (c) for a closed circular
tunnel. Equations (3.161) and (3.167) with t = y se give

betx7 0.00798

1~ ______(I _a%)_

C1  8(gA +4) (1 - e) 2  t 1o)

when a = 0.656 . 4 A = 5.11 and oe = se/E . This agrees with the reliable value
0.01007 from Table XIII of Reference 3.26 when ae = 0.575 ; the ratio •e/a = 0.88 isf reminiscent of the effective span ratios S,/s discssed below Equation (3.41).

Finally we examine the interference corrections to yawing moment coefficient corres-
ponding to the sine three exales. The simple expression in Equation (3.164) Is
evaluated with o= (So)g and fo from Table 3.VI(b).

-t
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Ezaple Tunnel a oK (S S/CI_ _Eq. (3. 64) Original 4

(a) b/h = 10/7 0.600 0.1117 4.00 0.0857 0.0124 0.0118

I I
(b) b/h = 2 0.589 0.0980 1.64 0.2631 0.0351 0.0435

(c) Circular 0.656 0.1295 10.08 0.1072 0.0175 0.0216

The table cospares the approximate values of -ACn/CLC1 with the original values
from Figure 3.17. Equation (9.8) of Reference 3.18 *nd Table XIII of Reference 3.26
respectively. The discrepancies are as much as 20% for both the swept wings. It is
Instructive to calculate example (c) by the method of Reference 3.50 set out in Equation
(3.168) with =0.656 and (CL) 2 =0

SA/s y A -ACn/CLCl

0.4 0.8 0.0173

0.4 1.0 0.0178
0.6 1.0 0.0181

0.8 1.0 0.0185

The values lie closer to that from Equation (3.164) than to the result in Reference 3.26.
A likely explanattion is that the latter uses the interference upwash (Wi/U)0.25 in
place of fI(wi/U),, in Equation (3.70). while the quuitity in Equation (3.163). and
also in Reference 3.50, is an approximation to j(w 1 /U), . There Is no reason for pre-
ferring either, and the uncertainty of about ±10% in ACn may be fundmental. This
is demonstrable in exawle (b). The original calculations from Table 8b of Reference
3.18 used Equation (3.70). except that (wV)5  and (w,),A were taken respectively at

the local centrea of pressure of the sntisyontrical and sayetrical portions of the
loading. The calculation L= been repeated for the partIcular aileron considered in
Tables A3 to A7 of Reference 3.18. not onlY with Equation (3.70) as it stands hat with
+(wt/U), replaced by (W1/U) 0 •2 5

wi/U Local c.p. 0.25 chord Hafx o Eq(31)

-.-ACn CLCl j 0.0437 0.0376 0.=31 j 0.0351

The results convey the nece-sary warning, that is rather unreliable.

3.6 SPECIAL CONFIGURATIONS

Two Important aspects of lift interference have not yet been ccnalidered. The first
of these concerns slender wings, whose span is small cosared with the tunnel breadth

-I
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and whose length is of the same order as the tunnel height (Section 3.6.1). Tme second
important configuration is that of wing-body combinations treated in Section 3.6.2
which Includes tail-plane interference. Finally there are some remarks on three-
dimensional interference effects when the tunnel floor is used to simulate the ground
(Section 3.6.3) and when models span the tunnel (Section 3.6.4).

3.6.1 Slender Wimp

The vortex model of a slender wing Is represented in Figure 3.8(b) as a distribution
of lifting elements along a portion of the x-axis. Let L(x 0 ) denote the lift on the
portion of the wing 0 < x < xo . so that

I dL

pU dxo 0

defines the doublet strength of the semi-infinite vortex pair trailing from x = xo
Then by Equation (3.13) the interference potential in a rectangular tunnel is

:!i-
I dL

-•1 (x'Y.Z) = 4- _ (x 0 .x.y.z) - dx° ' (3.171)

awhre

4ix0x~~z =z-nh [ ~
(y -mb) 2 + _-h)2 + {x -xo)2 +,82(y-mb)2 +,62(Znh)21.

(3. 172)

and the integral Is taken along the length of the wing. It follows from Equation (3.171)f and integration by parts that the interference upwash along the axis of the tunnel is

w (x) = ; L - - dxo , (3.173)

provided that L(O) = 0 Equation (3. 172) yields

C -)2 8 /2(mY b -2 2n' . 3.174)
0

Berndt 3_' 1 gives the theory for uncanbered wings with unswept trailing edges In
closed rectangular tunnels. His result for wi/U follows from Equations (3.173) and
(3.4174) with J = (-I)n by Equation (3.14) and with the theoretical slender-wing

loading

L(xo) r ( O 1

=~0  1:-) (3.175)
L S(Cr)]

where s(xo) is the local semi-span and it is assumed that s(O) = 0 and ds/dxo • 0
for 0 4 z o 4 cr In his final e;pression

- _.,... . • -.,• _ _•_; . -
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W1 .-. (a + 8'x3,(3.176)
U

is the parameter 8 1) as definea for a small wing in Equation (3.17) and

S'x Crrsgx) 12 (x-xo dxo P r X (3.177)
0 a (Cr)J wk - Ale-/~

where

2 _+ (b/h). 2 _ 2(h/b)n2
877- _ {2 + (b/h). 2 + (h/b)n2}51 2

and F(O) f J(0 de .

Berndt gives graphs of both f(f) and F(O) (0 <!f 4 1) for the four tunnel cross-
sections b/h = V12 * 1 , /2 and 2 . It say be noted that F(co) = 3(1) ; there is
a critical value of b/h above which F(f) ceases to be- monotonic. Equations (3.176)
and (3.177) also hold for a clobed circular tunnel, when S. 0.125 and

f(•) - 1 2 1t2  1# COS (ut)COS dtdu , (3.178)

sv1JO (i+t 2)5/ 2 1i(u)

where IV is the derivative of the modified Bessel function I1. The Interference
corrections corresponding to the upwash angle of Equation (3.176) are easily formulated
from slender-wing theory. In the present notation Berndt's expressions for the incre-j mental corrections to incidence and pitching moment are

A C_ [80 + 8'(cr)J
C .

(3.179)
!!k rr r M 1~2 dz

(8 ['(cr) - S'(x)] -)i-6 C C Ls r1(cr)J I
A useful approximation to Berndt's theory Is to replace f(f) by a constant

f(O) = 81VClh given in Equation (3.16). Then Equation (3.!77) becomes

S , irr FSXo)1 2 d. _, 1  (3.180)

osr -dx0  Xs,<rs = oL(Cr)j d - t%

7o this approximation Equation (3.176) can be rewritten as

w S r8 x -x-
!io + al l (3.181)

U CL 6

where x - i denotes the centre of lift; it may be noted that Equation (3. 181) would
apply to cambered slender wings with swept tr•'inig edges when Equation (3. 175) is
invalid. Equations (3. 179) are replaced by the approximations
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E1N5A
S • + Cr

SPh +(3.182)

A S C S SIr" c - x s(x) l'dx

C J /31 LS(Cr)J

where S. and 81 are the Interference parameters discussed in Sections 3.2.2 and
3.2.3 for all practical tunnel cross-sections; the expression for AC, is subject to
the same restrictions on planform as Equation (3. 175).

The numerical examples In Reference 3.51 concern triangular wings of aspect ratio
A = 1 in a low-speed closed duplex tunnel (b = 2h), and Be.rndt concludes that the
corrections do not differ very much from the lifting-line quantities given by Equations
(3.182) with S. = 0 . This is largely a consequence of the corrections being fairly
small. Naturally Equations (3.182) as they stand should be even closer to Berndt's
values corresponding to Equations (3.179) with 81(x) from Equation (3.177) Pad

, I= b = 2h s(x°) =' -0" NS 1(Cr
S~d Cr C = (s~cr) =½cr" = .3.

Equations (3.182) with So = 0.1368 , = = 0.2927 and 1 = (2/3)cr give the broken
curves of W/CL and AM/CL against cr/h in Figure 3.20. which lie very near the
full curves obtained from Berndt's calculations. Even when cr/h = 1 , the discrepancy
in & is only 0.3% of the measured incidence and the ditcrepancy in corrected aero-

dynamic centre is less than 0.O01cr . It seems worth remarking that at o = 10 degrees,
when the discrepancy in Am is 0.03 degrees, the vertical displacement of the wing
from apex to trailing edge is cr sin a = 0. 174h and is beginning to be significant.
That is to say, in rare instances when Equations (3.182) cease to be accurate enough
because Cr/h is large, Equations (3.179) may well be inaccurate through the assumption
that the lifting elements are situated in the plane z = 0 . The latter defect would
require the unattractive remedy of replacing z in Equations (3. 171) and (3.172) by
z-zo(xo) where z is linear in x.

When the effects of compressibility are calculated, there is greater restriction on

the accuracy of Equations (3. 182) without prejudice to Equations (3.179). The function
f(D) in Equation (3.177) is required over the wider range JfJ < cr/(M/C) and the
approximation in Equation (3. 180) fails for a smaller value of cr/h . If the compres-
sibiity factors of Table 3.1 are applied at very high subsonic Mach numbers, then both
the wing and the tunnel may be regarded as slender 3 " 2. It is easily shown that. in
place of Equation (3.176).

";•iw- = L(x).

U 2

When (0 -4) is small, the interference corrections are therefore

= .. ~ [2S] ~.(3.183)

C.W = ~ L 2 (C

AC 7Lrsx 
2d
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Nevertheless it is difficult to envisage practical situations in which Equations (3.183)

may be used confidently.

Berndt gives the drag correction

-ýC 0 o (3.184)

This can be justified either by considering the momentum flux across a transverse plane
in the distant wake, with the corollary that the vortex drag is independent of any
changes in the chordwise load distribution. Alternatively, Taylor 3 "7 0 has shown that

Equation (30184) is compatible with the concept of normal pressures and a suction force

distributed along the leading edge. The assumptions of linearized theory are essential

to both these arguments.

Unfortunately slender wings usually involve flow separation along the whole leading

edge. Such flows, with a free vortex sheet rolling up into concentrated vortices, are
beyond the scope of linearized theory; the :esults in Equations (3.179) or (3. 182) and
in Equation (3.184) therefore need reconsideration. In the absence of a suitable non-
linear theory the expressions for Aa in Equations (3. 179) and (3.182) will be retained,
but it is doubtful whether those for AC, are worth applying. Equation (3.184) needs
to be modified, since the leading-edge suction force disappears and the whole lift acts
normal to the planform. Even if the wing is cambered, it seems reasonable to neglect
the redistribution of lift associated with the residual interference correction 6C.

then the principal correction & to incidence is accompanied by a correction

ACD = CL AcL = -L [5o + 5'(Cr)] (3.185)
C

by the first of Equations (3. 179). Equation (3-185) should therefore replace Equation
(3.184) whenever there is extensive leading-edge flow separation.

3.6.2 Wing-Body-Tail Combinations

Many fundamental aerodynamic experiments requiring accurate wall interference correc-
tion are carried out on wing models, but the majority of wind-tunnel tests are made on
more complete aircraft models. Although rather lower accuracy may often be sought,
models of wing-body-tail configurations tend to have larger dimensions relative to the
tunnel, so that wall interference remains important. The evaluation of interference
corrections becomes more complicated in each of its phases, vortex representation,
interference upwash field, principal corrections and.residual corrections.

In the first place there are more unknowns in the vortex model, as the wing, body
and tail may all carry lift and only the total forces may be measured. The usual
approximation is to ignore the body lift and to take the theoretical spanwise loading
along the quarter-chord lines of the wing and tail so as to be consistent with the
measured lift and pitching moment. A more detailed representation is of course desir-
able, but is only practicable when there are additional theoretical or experimental
loading data. Next, the interference upwash field involves large streanwise displace-
cents between the lifting elements and the various parts of the model, so that It is

013



inadmissible to sappose that the upwash is linear in x ; this particular complication
is aggravated by the effect of corpressibility. Furthermore, vertical displacements

from the tunnel axis may no lohger be negligible.

A Then there are corrections to measured quantities to consider, and in this respect
it is usual to treat the wing, body and tail quite separately. The principal inter-
ference correction Am is still calculated from Equation (3.55) where (wi/UI)o.
now includes a smali contribution proportional to (C.)t the lift coefficient of the
tiil plane. It is also necessary to calculate a mean value of the interference upwash
along the three-quarter-cpord line of the horizontal tail surface

Sat =J-) Wt d~- (3.186)

where Ut is the local streamwise velocity at the tail. st is its semi-span, and
SWt is the weightinng appropriate to the planfor- of the tail surface. Then the

correction

at = Sat - b 3.187)

may be applied to the incidence of the tail plane. Alternatively Equatiol (3.187) may
be replaced by corrections

AcL _ LACL•. (Sa - Am) I. (3.188)

(C - - jla)

where W./Ba• and .?C,/?xrz are the experimentally detetnined aerodynamic derivatives
with respect to tail setting. A further correction must be applied to the vertical
location of the vortex wake or positions at which the !,-al flow is measured. The
wake displacement is obtained as

_A~z = ( ). dx . (3.189)

where U1 denotes tk-e i:)al strams•ise vel.cicty and the integration is frm the trail-
Ing edge to the position coneerned. 7his correction can be particularly important when
the aerodynamic characteristics of the tsil are strongly influenced by body vnrticss or
trailing vorices fron trie wing. -•ifficulties arine frc the lack of a suitably simple
lifting-surface theory for wing-body-tall configurations. Because the interference
upwash is interpreted separately for each cooponent, the residual corrections are
liable to be larger than usual and less predictable. This is certainly the case when

all interference effects at the body are considered in isolation, as will be discussed
later.

In the earlier theories the affect of the body was neglected. Glauert and Hartshorn
(Ref.3.16: 1924) were the first to evaluate Equation (3.187). from the simple result in
Equation (3.40), viz.,



159

xt••
& ti IhCL

where is the length of the tail arm from the three-quarter-chord point and
is the interference parameter for a small wing. They assume that the tail arm is of
"the same order of magnitude as the wing semi-span and that the dimensions of th8 wing

are small relative to those of the tunnel. Their correction to tail setting 6at and

tunnel-induced downwash at the tail

- = - (so + -- (3.190)

are well confirmed by experiments on the same sodel in closed square tunnels of dif-,..

ferent sizes, as shown in Figures 3 to 6 of Reference 3. 16 (Figs. 17 and 18 of Ref. 3.1).
Towards the end of Section 3.2.4 with reference to Figure 3.6. it is shown that so
simple a theory fails when the tail arm t is as much as half the tunnel height.
The following discussion explains the apparent success of this theory when applied to
square tunnels.

A more general theory is described in Reference 3.30, where Cowley and McMlllan
calculate at with allovauce for wing span and the non-linear variation in inter-
ference upwash with streamwise distance. For uniform spanwise loading w. is obtained
from Equation (3.80) without the teres Iml > 3 and mnj > 5 . and the correction may
be written as

EL = [_ . s) + ) Lxt, Os) _ (o0 )0] • (3.191)

C C

where S,(Y~t) and () are given by Equations (3.82) and (3.83) and 8'(frlxt,0.s)
c3rresponds to the increment in v. along the tail arm. For elliptic spanwise loading
they evaluate

ha~t Eh (3.192i
C

where

ON ~ [80(. t) + (8Jfx.Ot - S(t)} tJ) 2 {I (- 2 d(-.

Cowley and McMillan showed that their results for a low-speed duplex tunnel differed
greatly from the simpler theory of Reference 3.16 when r > 0. 5 . The comparisons
between u,(St). (8)z and tre linear quantity ztj.h against o are reproduuced

in Figure 3.21 for the particular configuration x. = 0. 8s . The additional mixed-

broken curve of

C .4

t O,(Apxt.L.UJ F 313SCI



j¶ I Equation (S 7)aofsta for lamge models more than hallfh error from ReferenceSI •"3.16 is attributable to the approximation that &t is linear in xt . Now for square

tunnels. in which the experiments of Reference 3. 16 were made, the effects of n-!• • linearity In xt and of wing span are in opposition. 7his cancellation of errors must

have played an important part in the otherwise perfect expirinentai confirmation of the
,impler theory mentioned above.

• ' •The most. comprehens•ve calculations of Amt for rectangular tunnels are those of

Silverstein and White -Ref. 3.32; 1935). 7he body and the tail loadings are ignored
* and the wing Is assumed to have uniform spanwise loading. The interference upwash In

the central plane y = 0 is calculated as

= '\ s,/ (3.194)

where i, is a function of a = 2s/b and the vertical location of the wing and the
ratio i. is obtained to a good approximation as a function of a , xt/%- and
the vertical locations of wing and tail. In effect Equation (3.80) is evaluated exactly
where jai and In[ are both less than 3, but the remainder of the double series is
calculated to first order in x znd t = a . Extensive results are available for four

-- different rectangular tunnels in the following charts of Reference 3.32.

Boundary i b/h f"
Closed 1 Figure 10 Figures 15 to 17

S ,opena I Figure 11 Figur'es 18 to 2D

Closed 2 Figure 12 Figures 21 to 23
Open 2 Figure 13 Figures 24t o 26

It is suggested that the values of S,1,for rectangular tunnels may suffice for
* elliptical tunnels of the sae breadth to height ratio and type of boundary, provided

that the correct S, Is used in Equation (3.194). For circular tunnels Figure 6 of
Reference 3.32 would be used in place of Figure 10 or 11 for S. , and likewise for
elliptical tunnels (b = 2h) Figures 3 and 4 woqld replace Figures 12 and 13.

A different method of calculation has been given by Brown' 3
,. The wing loading is

again represented by a horse-ahoe vortex, and the complete expression for the inter-
ference upwash at the tail in a closed rectangular tunnel is given by

16uS Cc
EE= _ (,C 1xt.y-mb+s.dt-d-2nh) - 1O-2xt.y-mb-s.dt-d-2nh)] -

EE- [W(6-'xt.y -mbb+s.dt +d-2nh) - W(O- 1xt..Y-mb-s.dt +d-2nh)] -

11 i- 6W1xt~y+a.dt+d) -WW 1Y-3.dt+d)] (3.195)

' M MP1-
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wiere. as usual, denotes that (mn) takes all possible integral pairs except
(0,0), W(x,y,z) is defined in Equation (3.79). i is the length of the tail arm.
y is the spanwise distance along the tail, d and dt denote the respective dis-
tances of the wing and horizortal tail surface from the tunnel floor. Brown writes
each double sunation in the form

e•O - =-M

and the remainder RV, Is evaluated en the basis that W(x.y.z) is a nearly linear
function of y whezi y and z are not both small; thus

W(X. y+s. z) - W(x. y-c. z) 2 -L[w, .y+fLb, z) - W(x, y- b, z)]b"

so thac

Kk (-- - 1)[(x, y-ab+s. z--2oh)- W(n. y-mb-s, Z-2ub)]

= [2 - c D.zz -1) 2u•) w(x,go+ib+y,=- 2h) - V(x. b+ -Jbz-2nh)] .

(3.196)

Then j 0 . Equations (3.195) and (3. 196) simplify to give

C bjh
,at = St = 7M{(/rIXt. mb+s. z-2nh) - W(BIxt. mb-s. z- 2h)} +

- -

4 Ix. cD z 2h) W Ixt MbZzdt-fu
+-4fC '~ Laz~h b+1b. z-2ah)1.,, -

S-21(/Ixt. s, dt+d) , (3.19?)

'where the square braoset notation Indicates that. as in the case of an Integrated
function, the value 1,- z = dt d is to be subtracted from that for z = dt -d . A
few calculations !or horizontal models (dt = d) in two closed rectangular tunnels
b = 2h and b = 4h are found in Table 8 of Reference 3.33. A more elaborate method
of computation for closed rectangular tunnels is suggested by Sanders and Pounder In
Section 3.4 of Reference 3.23. Whmn the tail span is apreciable. an average value of
scý is required so that the correction to tail setting becomesI A

At&-x(y) d(y/e,) -c 318

-- ;view
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Batchelor 3 3 1, following the method of Reference 3.32 for a centrally placed wing

(d = iti) in a closed rectangular tunnel (b/h = 9/7), has devised a rough procedure for
estimating the incremental effect of superimposed fillets to form an octagonal tunnel.

As an alternative estimate. the assumtion of Equation (3.108) W be generalize. so
that for octagonal tunnels Equation (3.194) is replaced approximately by

U- = L (3.199)

I [ in which (•,A•'8 a corresponds to the rectafigulxr tunnel. The parameter S. for a
centrally placed wing is identified with So(0.s) from Equations (3.102) to (3.104).

For off-centre wings it Is ahown in Reference 3.34 that the fillets have negligible
[ effect on the variation of SC. VC/c with the vertical location of the wing. Therefore

- the result for closed rectangular tunnels from Reference 3.330

provides the increment ~ e2

1 cth -_-h -__(Tt + s)

1 -°Os) • la sinh• .•l +s L+ is lins +si 2

' 2h 2d tanh 2hbm

= -- cos- (3.201)
Ih L cosh2 7(1 +s) + - d

to pr ply to the value of men(ts) from E ations (3.102) to (3.104) for use in Equate.

S(3.199). The piantity (8 ,/8w)a may be evauaed as (8•/ 8) - 1 , hee St and .
are defined in Equations (3.197) and (3. 200). The factor V(bh/C) in Equation (.•.199)

"I is rather speculative when •tis large, and indeed is not required In the limit as

xt ~~ ~ 17b -+ a) 7hnT wehtvrtetnnlscln owvr •• be +oe s) z h

results in Table 3 .of Reference 3. 34 and Table 4 of Reference 3. that the fillets

• , appear to have greater percentage influence on wI at the tail thai on wi at the
i wl•L s tha thefactor V(boh/C) greater than unity is comp•atible.

• I Several papers have been published on tunnel-wall corrections for wing-body combinia-

tions. Sbith3 -S3 considers a circular body concentric with a closed circular tunnel,

S... !l"! :" ! •s=• from the bottom equation os p.4 of IReferuace 3.33. since the lift coefficient
*' - . kL = ¢j , wasedln tbe defiatlonof ST.

cot -~ Io
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represents the lifting wing by a horse-shoe vortex, and solves the two-dimensional
problem in the plane of the bound vortex x = 0 subject to tangential flow at the two
circular boundaries. The resulting infinite sequence of image vortices is shown to

give rise to an interference upwash that may be up to twice as great as for the wing
alone. Gorgui 3 -s gives closed expressions for the series in Reference 3.53 by a
method of conformal transformation and also derives analytical results when the circular
body is symmetrically placed in any closed rectangular tunnel. In most of his numerical
examples the interference upwash at the wing-body junction is practically twice what it
would have been in the absence of the body. Loos 3 "2

1 has treated the sae problem for
a closed octagonal tunnel with an elegant approximation to the influence of the fillets,
and he points cut that the interference effects have to be interpreted as a principal
correction to lift in respect of the vortex pairs added within the body on account of
the tunnel boundary. In consequence there is the excessive residual interference tmwash
at the wing that would be likely to disturb the stalling characteristics of the model.
Smith and Gorgui conclude wrongly that their results cast considerable doubt on the
practice of applying the corrections, such as Equations (3. 186) to (3, !89) to measure-

smets on wing-body combinations. There may be uncertainty as to the interference flow
field associated with body lift, but this merely requires a few point concentrations of
lift distributed along the body and the uncertainty is purely one of representation.
Prom knowledge of the interference field it is a retrograde step to treat the body in
isolation. The principal correction to lift in respect of the added vortex pairs isI illusory or at least highly undesirable. Instead the principal corrections Ami and

SAmt should be applied, and the difficulties of interpretation may then be confined to
the much smaller residual interference upwasla. (wi/U) -Aa in the presence of the

complete model.

So3.6.3 Interference on Gron Effect

The discussion of off-centre models towards the end of Section 3.4. 1 includes a brief
reference to ground effect. Figure 3. 11 shows some results from Reference 3.33 for
uniformly loaded wings in a closed duplex tunnel as the model is displaced towards the
floor of the tunnel. The prin=ry effect on the mean interference parameter (So)U is
the increasing contribution from the principal image in the floor. Then the floor Is
used to simulate the ground, this effect ceases to be part of the wall interference
and the remainder (8 1 falls rapidly to zero as the model approaches the ground
(d = 0) and the other images tend to cancel out. The effect Is illustrated by the
removal of the contribution from the principal image in Equation (3.200). The remainder
represents the upwash interference parameter at the centre y = 0 of the uniformly

loaded wing with ground simulation

[ . 7T(bm +s) 1
b Shd n•d ,- 2SI d6 - sin2 ... (3.202)

+4 77Tm + s) + sin2 r

which is seen to be 0(d 2) as d -- 0. Typically, with d =0.25h in Figure 3.11. -:

is smaller than (SO)o by an order of magnitude and Is not required to great
accuracy. Even for wings in the centre of oblong tunnels (h = 0.25b and h = Q.50b),
Brown calculates stall maibM values of I(s;o) - (8o) I In Figures 2 and 3 of
Aeference 3.33 (0.013 and 0.005 respectively), so that it should be unnecessary to

consider elliptic spanwlse loading vhen d/h Is fairly small.
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SSanders3"ss has derived a fairly eimple expression for the mean upwash interference
• .• along a uniformly loaded lifting-line model in a closed rectangular trutrel. The correc-

tion to incidence with ground simulation i n

- (8 olug (3 203)

where

b I= h NODn snh2 i7n(h b2d)(Sl C2 h2

b sinh (sinhA) 'LnC'r" + ( 4 b2)

j and the first ;erm an the rigtt hand side is identified with Equation (3.83). Values
of (aorg are available in Tables 5 and 6 of Reference 3.33 vmich require the factor I,

and in Figure 3 of Refereace 3.55 where the ordinate is ten times too large. Some of
the results are collected In Figures 3.22 and 3.23 for the three shapes of tunnel,
h/b = 0. 25 , C. 35 and 0. 50. Figure 3.22 shows the effect ofi model span for tWo height
ratios d/h = 0.5 and 0.2 , and Figure 3.23 shows the effect of model height for o.= 0

and 0.6. The series in Equation (3.203) on1y converges rapidly when (h-2c1) Is small,
but the alternative expression, derived 11 Equation (A-3) of Appendix A of Reference
3.55, it quite suitable for the smaller values of d . Sanders also formulates the
sidewash interference with alternative expressions suitable for the two ranges of d
The ima•es of the bound vortex induce a velocity parallel to the tunnel aria. and the
average value of this stream-velocity correction over the span of the wing Is obtained

as

j2hd) + (Z [a ~ i 2211)2 + m zi2}S I + {(nh-211)2 + (a-o.)2 b2 } - 2{(2nh-2d)2 + nsh; }] . (3.204)

- j Tho slow convergence of this double series Is diacRssed fully in Appendix A of Reference
3.55 where Equalton (3.204) is reformulated for computation In the two cases &hen (2h-d)

or d is small. Me ca.1 culations for h r 0.35b indicate that (C/iL)fg can be
considerably larger than (80)ug . Equation (3.204) shows that cut = O(d) as the

model approaches the simulated g• un1d. For the larger values of d , however. ug
can be quite as ieportant as the usual blockage corrections discussed in Chapter V.

But the cosreasibility factor Is only /3- as compared with 8-3 for solid blockage.

As regards interference on ground effect at the tail, the 1araerter l-z,5 y) i1
given ty E4ution (3.195) with the last term omitted. Since T is an even function
of z . It follows that B is unaltered if the vertical locations of the wing and

V tail are interchanged. lkHever, the Interference at the wing Is different In the two

cases, and so therefore is the correction to tail se~ttng

Acttl 8 Sat,(y) d(y/st) - (3.205)

The evaluation of A itg Is discussed further in Reference 3.33.

4 '4.
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Irrespective of tunnel shspe, the interference corrections on ground effect are
reaeJly deduced from those for off-centre models. The remark: on closed octagonal
tunnels involving E4uations (3.199) and (3.201) may be helpful, but it is more staght-
forward to estizaU the correction to incidonco as

£ -a(8) 2  (3.206)

wher3

is defined by Equation (3.203) for the basic rectangular tunnel and the parameter (8O)K
for un octagonal tunnel Is found from the approximate Equation (3.1&7). When the criji-
nal working section is circular. experizents on ground effect require the insertion of
a ground plate &ad the tunnel is effectively of bipolar shape. The parameter (60lug
has been derived for open and closed circular tunnels. In Section 12 of Reference 3.14,
Kondo has given the general expression (S,,') and tabulated results In Table IX in
particular cases what the model 1iea al-su the horizontr'l diameter of the open circular
bouwviazy. Albritton ard Huher 3 5 '6 ie an analytical expression for the distribution
[ 8 o(y.as)l along the span of a horse-sioe vortex in a c-'osed circular tunnel with
-reund plate. The reiults ii Pigure 9 of Reference 3.56 for a = 0.61,R and
0.11 < ds < 0.41 correspond to the range 0.002 < (8o)ug < 0.026 based on the area
of the complete circular section. Again ( iost is an order of magnitude smaller than
the cont.ribution from the, ground plate

0 loge + = 0.082 loge

3.6.4 Models Speaning Closed Tunels

We shall co,'7sider two investigatiovs in which two-dimensicnal models have been tested
under condit-ouia when wall interference is three-dimensional. The first configuration
of an uns=w!t wing in a closed circular tunnel 3 - 2 has already been mentioned in Section
-2.2. and at the end of Section 3.4.3. The other configuration is of a swept wing spn-
ning a closed rectangular tInnel 3 .s. In each casc the practicsl problem Is to determine
whether pressure mee-vrements at the centre section can be corrected to tvo-disetiiomal
vClues.

The analyzis of Viecenti and Graham is bised on their nanipulation of Equation (3.127)
with y = 9 I Appendix A of Reference 3.42. Hence

--- +N47-PR [ 2 Y 11 N~x ~~

-~ 2 J(~j+J~2(P~1) * (3.207)

-+ (+

whera ..2....Ft 1 ( dt,) ~~~(2f + 2)-,T [I()]

-0.999, -1.-7 -9.78, -120.8 tor f 1.2.3,4.
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Since the spanwise loading is approximately constant, LN is replaced by elements

SI ntZgl..I eti atin (32) on (3.207) and the total downtash along the centre line
b wecoos

W( ) L( ,N _, 4--" U"- .(1 (x-- x ., 0) 4-.0%•

wfz plm 1 2x +x-xi))

- -• - -- XXd

-. , dx" (3d208)q 1o•oq (q + 1) 1 (2V + 1) ! (2q •-1)2 6R

,•special care has been taken with the Integration across y, = 0 (PRef. 3.41-). in general

I othe arteoral equation t3.208) would have trbe ib olved for the chordwse load dristribu-
' I tion dImn) with w(x)/U corresponding tor eae nt the wing. But the

+ tothestre eocity i s sade thatt term of brder cand hiher are neodieiblea
I so that only p = 0 is retaine. and Ehsetion (3.208) reduces to

*(1 18 1 1 x -.• ZXN. -1/ 1

- = _fL + - 0. +z8-cr o3.2 0)

U ~ ~ ~~im 47 0. G89CC- q~ '(+)!2+12)

c 1 0.5 9(X -IN

bTout the arter-c the waxl intdrterence Is pdrdii ely that which would arise In a
I t eo-damensional tunnl of hesght w .6in , a i a corretandig treatment the i nterf6rence

to the stream telocfty Is prd isely the solid blockad e of the tiobe model Ib a two-
dimensional tunnel of height 1.5SMP "lbe interfere,,ce corrections are thus

---- j0 . 28e S 2

,~ ~~~~ ~~ where +L an 4"aeteloa itcef ct~tad pthn n ogl

hrereesented s CILy by a eound voctex alon l the quarter-chord lithne. Danenterffi-e

V gives the interference upwash at the centre section in the form

r+~
J
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i _ SLL -L tan( +1(a+1A + (os'A+• 2)+

U ,7T, in2A + (nh/b) 2  {• tZA + 2+ (b/b)2}-

al cos2A -(3211)

I- tan 2A + (a_)2 (nh/b)2)1

As a result of the swept lifting line the interference velocity also has stre.•wise
and sidewash components which are formulated. The final correction to incidence at
y =0 is

Am I . (3.212)
1 + k2CLL

where k= 0.430 andI k2 =-0.084 for the sweepback A = 450

vFigures 3.24(a) and 3.24(b) show the uncorrected and corrected curves of C.
against x from the respective investigations. In Reference 3.42 the corrections of
Equations (3.210) are applied with further allowance for solid blockage to measurements
on two sizes of model, c/R = 0.71 and 1.25 , in low-speed flow. The corrected
results in Figure 3.24(a) collapse on to a single curve apart from uncertainties near
maximum lift, and Vincenti and Graham also find satisfactory agreerent between the two
corrected curves of CeL against CLL . in Reference 3.52 the experimental lIft curve
is corrected by Equation ;3.212) and compared with that for an unswept wing of the same
NACA 631-012 aerofoil section normal to the leading edge with the a ile sweep factor
cos A . The agreement in Figure 3.24(b) is remarkably good, and tht corrected experi-
ments in Reference 3.57 also give satisfactory comparisons with the pitching moment
and wake drag of the unswept aerofoil. Both configurations can be justified as means
of estimating two-dimensional flow.

3-7 EXPERIMENTAL CONSIDERATIONS

Although the study of wind-tunnel wall interference arose directly from experiment.
it rapidly became a souree of absorbing mathematical problems. In some respects the
ensuing theoretical de7elopments have outstripped the needs of ony experimenters to
whom wall interference is one of several corrections to be applied; these vad other
factors set a limit to the accuracy of the investigation. Moreover. there are types Jr
of experiment in which the air flow is so complicated that only the principal inter-
ference corrections are likely to have significance. Flow separation due to high
incidence, leading-edge sweepback, strong shock waves or bluffness of the model occur
in inst programmes of wind-tunnel testing. Any one of these may cause serious viola-
tion of the linear assumptions implicit in the preceding formulae. The remarks in
Section 3.7. 1 concern the experimental evidence of wall interference at the stalling
incidence. Other aspects of separated flow form the sub.iect of (Capter VII.

Nma~urally the precision o.f calculated interference prarneters is far greater than

that of any experimental verification of the underlying theory. The available informa-
tion for closed and open tunnels is summarized in Sections 3.7.2 and 3.7.3 respectively.
Altheugh such of the material is inconclusive, the results have some practical interest.
It U• pertinent that, especially fzr open tunnels, there is more evidence of under-
estLmation than overestimation of interference effects. Neglect or streamline curvature

-.. ... .. . . . ... .....



Is perhaps more prevalent than it should be. Simple approximations co,, )r this and
other refinements, and there can be little justification'for ignoring them.

3.7.1 High Lift

There are many factors to complicate wall interference on wings at .high lift. The

attitude of the model may introduce off-centre effects due to vertical displacement.
If the chord of the wing is large, the wing and Its principal image in a closed roof
will represent a divergent passage and so tend to cause flow separation from the upper
surface of the wing. The high lift will inczease the magnitude of spanwise -ariations
in interference upwash and the chordwise vertraticn known as streamline curvature. The
residual effects of these an the stalling characteristics of the wing are usually
unpredictable, but could be important. Furthermore, the trailing-vortex system ny
suffer pronounced distortion at high incidence, and so may the boundary of =.n open jet.
All these uncertainties leave little confidence in the standard interference corrections.

SGlanert (Ref.3.1. p. 38) gives a clear qualitative picture of the effet of spanwise
Svariation of interference upwsh on the 3tailing of lifting-line models of large span.SA wing of elliptical planforx, having a consteit effective Incidence throughout the

span. can he expected to develop a tip stsal A"]! a closed tunnel and a root stall in an
open tunnel. A rectuagular wing normally stalls at the root where the effective inci-

dence is greatest; in a closed tunnel the interference upwash at the root will often
be. less than the weighted mean Am so that the corrected stalling incidence is strictly
S too high, wad th~e reversf is true in an open tunnel. Cotnversely. with the correction

Am , a highly tapered wing of large span in a closed tunnel should exhibit conservative

S stalling characteristics. while tests in an open tunnel should he unduly optimistic.

In the derivation of the interference corrections in Section 3.3.3 it is mentioned
that the correction to incidence mA is in a sense quite arbitrary. It is convenient
to choose it so that ACL = 0 , if some other value of Am were taken, the residual
corrections would be different. but within the framework of linearized theory the
corrected aerodynamic data would be conmsistent. Such considerations no longer apply
near the stall, and the theory of wall interference is incapable of determining the
effect of wall constraint on maximu lift. Therefore Bradfield. Clark and Fairthorne 3

.S'

carried out an experimental investigation of (Ct)O az on rectanguI'r wings of various
sections in different sizes of tunnel. Their results in closed rectangular tunnels
satisfy the empirical negative correction

A(CL)max = -0.76 S.,b (3.213)

within ±0.005. but there is no systematic evidence of any corresponding correction in
an open circular tunnel. Although Equation (3.213) would appear to be consistent W4'th
the expected higher stalling incidence in a closed tunnel, a further series of experi-
ments by Adamson, Piper and BrownM'3 5  on rectangular wings revealed no evidence of
systematic wall interference on mainum lift. They suggest that, if full account of
wake blockage were taken in Reference 3.58. the correction to 'CL),ax would practic-
ally disappear. Furthermore, tests in Reference 3.59 with off-centre models show little
effect on C.,, . since wake blocktge can usually be neglected in open tunnels
(Seietion 5.5.3). the results of Reference 3.58 for closed and open tunnels become

S "---ompatible"
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A convincing quantitative study of the effect of spanwise variation of interference
upwash hasi been published by Stewart (Ref.3.60; 1941). who considers a large lifting-
line model with elliptic spanwise loading in two closed circular t.nnels. The inter-

ference upwash at the wing root on the tunnel axis

(Wi/U)r SCLIw/ r --- c-

is independent of a = s/R . and it is supposed that this incremental correction has
been applied to the incidence. Stewart obtains the residual interterence at the wing
tip

lrr

1 L 1
(W {(1 -&)-z - 1[ - (3.214)

which gives

(wi/U)t - (wVU)r 0.047 and 0 207

SCL/C

for o- 0.77 and 0.93 respectively. In the two corresponding experiments on an
elliptical planform of aspect ratio 5.88 the tip stall was observed carefully with
tufts to occur suddenly at corrected incidences a = 17.30 and 15.10 respectively.
Figure 3.25 shows the results and indicates how perfectly Equation (3.214) accounts
for the difference in atz:ling angle. It also illustrates two important conclusions,
that the correction to stalling angle is unlikely to be large unless a > 0.8 . and
that no deductions about (C Imx can be made; the larger observed (CL) 5.a correr.-
ponds to the lower stalling angle. Some additional information for a closed elliptical
tunnel (b/n = 1.37) is found in Reference 3.40.

Davis and Sweberg 3 "6 have stadied interference effects in an open circular tunniel
by comparisons of full-scale tunnel and flight rwasurtients of maximum lift for a

couplete aircraft. The experiments are complicated bi the large size of the aircraft
and the high (CL)ax = 1.99 obtained in flight -.ith f1Wpr and lading gear extended.
With these retracted, (CL)sax = 1.36 and 1.39 are deduced frca tunnel and flight
respectively. when allowance is made for ReyIlds number and time rate of chahge of

incidence. In the landing conditJon, however, the corresponding tunnel result
(CL)max = 1.80 is as much as 0.19 below the value in fligh:. Half this discrepancy [
has been explained by two unusual correcticus. The first is associated with a large
spanwise variation in dynamic pressure ahead of the aiicraft die to a distortion of

the circular Jet; weighted in accordance with the spanwise loading, thie gives a large
negative correction to iho dynamic precsure and an increment of 0.05 in (CL)aax . A
second correction of A(CL)cax = 0.05 is stated to arise from the negative camber 4

associated with streamline cu.rvature; a corresponding increment, of 0. 03 eliminates the
smal.l discrepancy in (CL)M" with flaps and lauding gear retracted. The only firm
conclusion is that the area ratio S/C of the planform to the jet should be well
below 0.2. It would be realistic to impose restrictions S/C < 0. 10 for open tunnels,
V/C < 0. 15 for closed tunnels, and never to assume better accuracy than ±0.02 in

L)"L
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3 • ~3.'..2 Close-. T~ennels
Much% of the theory of wall interference in closed tunnels is now accepted without

quedte.oh. Nevertheless, experimental chicks on thd theoretical formulae for Aa and
ACID for wings of high aspect ratio are Important in the historical development of the
subject. in Figures I1 and 12 of Reference 3.1. Glauert ssmsrizes th,; experiments of
Cowley and Jones 3 .62 on a biplane model of span 3 ft, tested in closed square tunnelsW
of side 4 ft and 7 ft. Glaert applied the correctibns of Equation (3.6) with 80
to bring the lift and drag curves from the two tuanels into satisfactory agreement. He
also describes the results of experiments by Higgin 4 '63. on three rectangular wings of
"aspect ratio 6 (a 4 0.6) at constant Reynolds number in a closed circular tunnel:
after trying several empirical corrections without success. Higgins concluded that the
theoretical formulae (80 = 0. 125) gave the best correlation.

In later experiments the method of analysis is to determine empirically the
• corrections

-•A•= 8 C~ CL !
a 

p (3.215)
6C 5 2C
D D V'•/

that reconcile the measurements. It is instructive to coapare the results with the
theoretical values from Equations (3.85). whence

a = (8 o)0 (1 +~h)1 . (3.216)

where 51/8o Is given in Figure 3.4 for rectaneular tunnels. Three exa~les are
taken for square tunnels.

I jExperizent Theory

&uozrce A iA I

Reference 3.8. Case 1i 3. 40 4 0.140 0.140 0.152 0.140

Reference 3.8. Case j 0.60 6 0.142 0.125 0: 160 0. 147•--0Reference 3.64. Test 20i 0.75 6 0.170 0.1? .0.175 0.158

In the last exanple the exierimental SD varied from 0. 15 to 0. 19. The tabulated

St results represent a reasonable confirmation of the theory.

The investigation of Sivells and Deters 3 - 7 justifies the use of part-span models

-- i in a closed circalar tunnel with a reflection plane. Figure 3. 15 illustrates the
reduction in lift interference when a half-wing model is used. The rolling moments
due to aileron deflection ! will also have to be corrected to conditions of anti-
symetrical spenwise loadinS. as discussed briefly in Section 3.3.6.. Fmuther=re.



ifapart-span model As used. there will beathir correction to allow for the change

in planform. In the example of Reference 3.47. sketched in Figure 3.26. these correc-
tions are respectively

Act = -0.0816 Cl

and factors 0. 949 and 0. 934, which combine to give a free-stream rolling moment
coefficient

(cdv = 0.814 Cl

Thesucessofthis large correction is illustrated in Figure 3.26. where corrected
results 4+) from the part-model test at a Reynolds number RN = 8.9 x 106 are com-
pared with the full curve against ! from experiments on a complete model at

6RN = 4. 7 x 10

Reference 3.4 sets out to put wall interference and scale effect into perspective.
Table 5B (Ref. 3.4. p. 45) illustrates how the two corrections may often oppose each
other when the tunnel boundary is closed. It may be typical that the wall interference
corrections to aerodynamic forces and moments due to incidence are as imp~rtant as
corrections to full-scale Reynolds number. on the other hand. the zhar.cteristics of
deflected control surfaces are likely to be influenced less by wall interference than
by scale effect; the case of rolling moment on a part-span or half model is a notable
exception.

3.7.3 Open T1mels

Because open tunnels were used extensively during the period in which the theory of
wall mt!rference was developed, more attention has been given to the experizental
verification of the theory for open and semi-closed tunnels than for completely closed
tunnels. Knight and Harris3

,'6s have tested three rectangular wings of aspect ratio 5
with span ratios o = 0.45. 0.60 and 0.75 in four open tunnals of circular, rect-
angular (b = h/2) and oval section (b = hi12 and b = h with circular sides). Their
analysis follows Equations (3.215) on the assumption that the results in the circular
tunnel can be extrapolated to zero interference. In the present theoretical analysis

Equa±ton (3.216) is used. but SI A is now defined by Euation (3.31) with 8(2)/8 (2)

from Figure 3.4. The comparisons in Figure 3.27(a) for the open circular tunnel ore
reasonably setisfactory. There is further experimental confirmation of the theoretical
lift interference in open circular tunnels published by Tani and Aima 3 . 6; in Figure 3
of Reference 3.66 they make allowance for streamline curvature and obtain consistent
lift and drag curves for three rectangular wings (a-= 0.5. 0.6. 0.7) of aspect ratio 5.
The results of Reference 3.65 are less convincing for the rectangular and oval sections,
but experimentally -Sc tends to be larger than -So and the difference indicates the
order of magnitude of the strenaline-curvattire correctioa. Figure 3.27(b) compares the
experimental results for the oval tunnel (b = h/-) with calculations based on Equations
(3.216) and the approximate theory of Sanukl and Tani in Section III of Reference 3.35
for the particular open boundary.

4

The investigation of van Scblier*tett ' is particularly interesting. Not only does
he give a satisfactory confirmation of the theoretical interference parmetera for an

oper. square tunnel, but obtains experimental results that contradict the theory of

-- =I
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Reference 3.6 for a square Jet with solid side-walls (type 14) in Section 3. 2.2) and a
square jet with one solid horizontal boundary. The double achieveacut of detecting
two theoretical errors by experimental means and correctig both successfully deserves
special mention. Other results for semi-closed tunnels are found in the experiments
described by 7=1 and Tauia in the second part of keference 3.86 for a circular boundary
having a symmetrical closed portion below the model. The related theory Is discussed
briefly in e fo•rth Paragraph of 5ection 3.4.3; Kondo hss applied his theory to the
experiments of Reference 3.66 and obtains very coosistent lift and drag curves in
Figures 13(a) and 13(b) of Reference Z. 14 for three sizes of model and five amounts of
closed portion. For o = 0. 5 he confirm the eltimnaticn of lift interference when

the lower 38.5% of the circle Is cloted.
In Poference 3.67, Silverstein and Katzoff describe tests oa rectsngular wings in a

full-scale open circular tunnel and in a 1/15-scale model of the tunel. The assumption
that the -ree jet is of infinite length Is shown to be adequate for the purpose of
obtainin interference upwash at the lifting line. Traverses of downwash behind the
wings have confirmed that 'it Is essential to consider the finite length of the open
tunnel in relation to interference corrections at a tail plane. ani qualitative agree-
ment is found with a theory of Weinig (Ref. 3.68; 1936). The experiments in Reference
3.67 led presmably to the theoretical developments in Reference 3.5. discussed in
Section 3.2.3 and illustrated in Figure 3.6.

I • Finally we consider tests on three equilateral delta wings (A = 2.31) by Jones and
MileS 3 " in a low-speed open circular tinnel, to which were applied the simle correc-

, tions in Eqution (3.6) with S. = -0.125 . For each of the span ratios o, = s/I = 0.361.S Ii 0.500 and 0.664 the interference corrections to incidence based on Equation (3.35) are

now calculated from the forala

Am = (0o) [ + AE 8j... ,, (3.217)

with 81/8o = 1.594 and X = 1.25 interpolated from Table 3.111. The application of
this correction in place of the first of Equations (3.6) increases the lift slope by
the approximate factor

F = [ so;- 1 + 0.498.) + 0.125 (3- 218)

which Is calculated below with the experk mtal ZCL/Ba = 2.66

Kixde I SiC -(50)r BiR P

A 0-361 O0-072 0-.1255 0.312 1.004If I

B 0.50 0.138 0.1267 0.63 1.011

I . 0.664 J0.243 _0.1302 0. 575 1. 027

It Is stated in Reference 3.69 that respective empirical factors 1.01 and 1.05 were
applied to C. on the models B an C to give consistent lift curves. Allowace for
streamline cnrvature through the factor P Is now seen to account for half the effect

41> _......__ __
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of these ompirical factors. As regards drag, consideration is given to the remarks at
the end of S~ction 3.6.1 and we examine the consequences of applying the correction in
Equation (3.185).

ACV = CLA• . (3.219)

at the higher values of CL when there is flow separation along the whole leading edge.
Uhen this speculative correction is used in place of the second of Equationw (3.6) for
the largest model C . the solid circles are obtained in place of the open circles In
Figure 3.28. The results for the three models are seen to be in acceptable agreement
while CL is fairly small, but the correction in Equation (3.219) reduces the scatter
for CL > 0.4 . Unfortunately Nq = 0.59 x 106 is the highest Reynolds number at
which all three models were tested over the full range of CL . The results In Figure
3. 28 are far from conclusive, but they are included as a warning that the standard
corrections to CD are too small when leading-edge vortices are present.

3.8 INDEX OF FORMULAE AND DATA

The process of evaluating the interference velocity field depends primarily on the
tunnel section, but the requirements are influenced greatly by the configuration of
the model, by the aerodynsaic quantities to be measured and above all by tbe accuracy
of the experiments. When small inaccuracies can be tolerated, many of the simpler
foranlae for interference parameters are most useful. These are grouped according to
tunnel section for various purposes in the first table below; although this includes
reference to the numerical data in '.he present tables and figures, there are imortant
additional sources listed in Tab) d 3. IV. The second table concerns the more elaborate
formulae that define more dttaied calculations of the distribution of interference
upwasb for the three win types of tunnel. MUen the basic numerical data relating to
these two tables are known, aany useful approximate and more accurate formulae for the
corrections to measured gr-antities are available without explicit reference to the type
of tunnel.. These and w•re specia] formulae are listed in the third table together with
calculated results.

Each table •-ves the relevant equations and related tables and figures. For exaple
the entries in the first table under- rectangular tunnels for a small wing issoclate
Equatizm (3.17) with Figure 3.2. Equation (3.20) with Table 3.11 and also with Figure 3.2.

iS
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3.8.1 51mle or Awrou•mte Jaterference Velocity

Rectangular Octagonal Elliptical
tInnels twe ls ;nd bipolar

BOBq T &t F SP TA&F EQP T &P

aw11 wi 17 P2 28 29 P5

20 T2 32 30 P5

20 72 31 P4

31 P5-
136

137

Lfting line 83 Fl1 107 P12 115 P13
84 F9 117 P13

156 T' 118
143 P1.5

Liftings •rface 156 Ts 109

Slender wg 176 176
1__ __"_ __ __ 178

Tal plane 191 P21 199 P6

192 201

194

Groud effect 11 206

203 P22

203 P23

204

! 205 _3

]Off-ctatre wing 25 P3 201 114

1 27 P3

___________________ __________________ __________________

j200~m _ _ _=_ _
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S. 3.2 Elaborate or Accurate Isterferemce tpmum

Rectangular Octagonal Circular
tunnels tunnels ard bipolar j

ft in T&F EMu Ec T& P Em

Lifting1lie 82 101 116 42

88 TS 102 146 44S91 103 167 4

j104 214 725 J

Lifting aa-face 87 108 138 42

89 T5 139 47

Complete *0l 95 j 124 1

to 186
1269-3 189

195 12718L Lq5to

I 196 131

140
1471

14

I
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3.8. 3 Carrntlat to meausred Qmatitles

Bw T P Eg T P Egm T F go T

Gen era%! Snd a 34 161 6
"" xproximate 8 36 37

34 60 164

35 820  1 20 166
282 P0 183 185

183 188

G enertl an 55 57 62 56

mor acurate 67 I 58 67 63
73 C.;9 70

179 M20 6 71

179 P20 74

Riectangular 85 1 517 85
ta els 1r0 716 P19 154

151 P17 T7 P17

Octago•"I 110 !12 ill

ICircular 215 P27 l68

1 215 P2V
_ 1P28

Bipolar 144 P15 1P26

There are also general for alme for AC In Equatio (3.727) and Azt In E 1uatica (3.198).
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TABLE 3.1

Equivalent Incompressible Vlou from Equation (3.5) when M 0 -.82

Geometric Parweters Aerodynamic Parameters

Wing chord c Ste_ dns__y p1
Wing Ben~i-span 18s Stream velocity /3-2UI

Wing uret ASVelocity_ perturbatioo8ns u.1-v. j6'1w

Aspect ratio 15A (Upwash angle AAa)
Wing thickness 1.t

Circulat.ion I

Incidence Vortex strength 'K

Aileron setting P Pressure difference 6-2 (pu -p z)
m ~Lift

lTunnel breadth b Vortex-induced drag DY

Tunnel height [ •Pitching oment -r

STunnel area Rolling moment
DVlEtance from floor 13d

Lift coefficient 1
2C

Moment coefficients ft .82C
The equivalent angle of

nseepback is cot'1(A cot A). Drag coefficient 1 CO,
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ftition S1 from Eqiation (3. 18) for the Evaluation
;• of Streamline Curvature In Uectaagular -j•els

n.h- -s 1 j n ýn -.S 1b b

I[0.25 94.1122 1.30 0.0219

a 0.30 50.1543 1.35 0.0156

4'0.35 28.8239 11.40 1 0..~111110.40 17.4569 1.45 0.0080

0.45 10.9781 1.50 0.0057
0.50 7.0976s 1.55 0.0041

0.55 4.6851 1.60 0.0029

0.60 3.1419 1.65 0. M21

0.65 2.1329 1.70 0.0015

0.70 1.4618 1.75 0.0011

I. 0.75 1.0095 1.80 0.O008

0.80 0.7014 1.135 0.00055
2 0.85 0.48975 1.90 0.0004

A 0.90 0.34335 1.95 0.0003

0.95 0.2415 2.00 0.0002

"1.00 0.17,04 2.05 0.00015

1.05 0.1205 2.10 0.0001
1.10 0. 0854 2.15 0.0001

1.15 0.0606 2.20 0 00005
1.20 0.6431 225 O. 000s
1.25 0. 0307 2.30 0. 0900

itt
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I

TABLE 3.111

Values of *a an Ax/F from Lifting-Snrface Theory aW Strip Theory

,6A Cr/iC A tan A 0 5  1xIC

L-S M. I • L-S Th. 1 .3

0.624 1 0 1.48 1 0.54 0.12s
1 1 0 1.33 1 0.42 0.12s
2 1 0 1.16 1 0.28 0.12
4 1 0 1.06 1 0.20 0.12s
2 1 2 1.04 1 0.33 0.29

4 1 4 0.84 1 0.57 0.79
0.66 1.44 0.88 1.37 1.06 0.49 J._17
1.32 1.44 0.88 1.26 1.06 0.39 0.17
1.98 1.44 0.88 1.26 1.06 0.33 0.17

2.64 1.44 0.88 1.16 1.06 0.29 0.17
0.66 1.44 2.2 1.12 1.06 0.44 0.33
1.32 1.44 2.2 1.11 1.06 0.42 0.33
1.98 1.44 2.2 1.10 1.06 0.39 0.33
2.64 1.4-4, 2.2 1.08 1.06 0.37 0.33
0,667 1,44 3* 3567 0,95 1.00 0.57 0.64

1.334 1.44 3.567 0.95 1.06 0.55 0.64
2.001 1.44 3.567 0.96 1.06 0.54 0.64
2.668 1.44 3.567 0.96 1.06 0.53 j 0.64

1.352 1.58 0 1.30 1.11 0.40 0.15
2.598 1.58 0 1.20 1.11 0.30 0.15
4.329 1.58 0 1.12 1.11 0.24 0.15

1.2 1.75 1.5 1.22 1.19 0.44 0.25
1.8 1.75 1.5 1.20 1.19 0.40 0.25
3 1.75 1.5 1.17 1.19 0.35 0.253 1.75 1.5 ~~1.31V.9 O.3O.2

0.654 2 2 1.31 1.33 0.59 0.33
1 2 2 1.28 1.33 0.56 0.33
1.5 2 2 1.26 1. 33 0.52 0.33
4 2 2 1.22 1.33 0.42 0.33

Gothic mint g.31 1.12
1 J Ogee wing 1.26 1.24 1 _ _-
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TABLE 3.IV

SNewy of ?Nmerical Data on laterferewce tUsma for Large Wing

Tunnel Ref. Table(s) Fig(s) b/h (So % ( 0 (y.t) wi~.y.t)I

Rectangul 3.1 6 10 1.2 Vclosed 3.17 1 to 8 - 1.23.17 9 to 16 - 9/7.18/7 I /

3.18 4to7 - j 2 V V
3.20 - 5.7 2/5.10/7.2 I3.22i 2 3. 4 20/7 V, "

3.23 - 3.4 0.91to2.63 Y/ I/3.27, - , 3 10/7 t
3.30 2-,,3,.9 1,2o3 2 T=yO

3.32 - 15,21 1,2 3=0
3.33 5.6 4,5,12,13 2.4 J. /
S3.44 - 4 1/5

Octagona 3.11 4 10 9/7
f closed 3.12 1.2 6.7 9/7.13/9

3.13 1.2 - reguli x
3.45 .45 - 9/7** I

Elliptical 3.1 1 5 1 " t/ / '

closed 3.1 10 15 %to2 /
3.14 Appendix - %to1 I
3.19 4 3to7 1 1/

S3.2 1 2 1/
3.35 1 - /2,2 2
3.35 - 4 1to2 2
3.38 2 2 -1 to 31
3.38 - 32 to 34 3/2 V3.._9 15 - I t/y=O

3.40 - 2 1.37

Elliptical 3.1 11 16 ,to2 V/ropen 3.14 Appendix - %itoI V/
3.35 2 - v/2,2 1/
3.35 - 5 1to 2 1/
3.36 3_ 3 1 to 3 V1i ~3.38 - 3t2 ,•t

1•3.39i I-!y=O

Bipolar 3.14 1 4 1 to 5/3 V
closed 3.26 - 5 1.50

3.47 1.2 2,3 1.50.1.73
SBipolar 3.1•4 2 6 I to 5/3 V'

OP•..n 3.46, 2.3 3,4 '1 1o2 to 2

Semi-closed I- -circular 3.14 3 10 1 1
arch-shapedI 3.14 7 16 <1
elliptical I 3.37 - 6,7 1/2 1/

Scorrected In Table 7 of Reference 3.33
I' *e half model

I'
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TABLE 3. T

Interference Parameters for a Closed Square TImml

(a) Vales of 7 8-(y.t))

A 0 ,0.1 0.2 0.3 0.4 9.5 0.6 0.7 0.8

0 .136 0.1371 0.1383 0.1404 0.1437 0.1488 0.1561 0.1664 0.1807

0.1 0. i371 0.1375 0.1387 0.1410 0.1446 0.1499 0.1576 0.1684 0.1835

0.2 0.1383 0.1387 0.1402 0.1429 0.1472 0.1534 0.1622 0.1746 0.1919
0 .3 0.1I404 0.1410 0.1I429 0.1,464 0.1518 0.1595 0.1704 0.1857"0.2071

S[0.5 0.1488 0.149.9 0. 1534 0.1595 0.1688W 0.1822 0.2D13 0.2286 0.2687

S|0.6 0.1561 0.15761 0.1622 0.1704 0.1830 0.2013 0.2278 0.2571 0.3276
0. 7 0.664 0.1684 0.1746 0.1857 .2029 0.2286 0.2671 0.3269 0.4259

0.8 0 .1807 0. 1835i 0. 1919 0. 2D71 0. 2313 10.26871 0.3276 0.42591 0.6065

(b) Yalues of -I- rtS (y.t)}

T |

0t, 0.1 0.2 0.3 0. 0.5 0.6 0.7 0.8

0.1 02t0 [7 0.2413 0.124350.2476 0.2545 0.2655 0.28261 0.3082 0.3464

0.2 2 0. 7.AW 0.2435 0 . 24631 0.2517 0. 2605 0. 2743 0. 29521 0.328 0. 3737
0.3 0.-222Z1.56 0.2517 0.2593 0.27158 0.2902 0.3183 0.3607 0.4253

0.7 0. .5435 0.12105 0.2715 0.2390 0.3156 0.3557 0.41715 0.510

1 . 6-42 0.1&2W 0.1746 0850.2902 0. 225 6 0.3-544 0.41 3269S 0.6659 A5I!

G-5b 0. 0.5 0.2952 0.3183 0.3557 0.4143 0.6577 0.6731 0.8994

_ 4711

0-7 0.0 0.M2 0.3261 0.2 462 0.4172 0.2592 0.62318 0.3•1 0.37837

.28 0-33.9916 G034 0.3737 0.4251 0.5140 0.2359 0.93945 1.47783 2.690C317 -w

-- -
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TABILE 3. VI

- IJterferemce Parmeteh's and ý, for Closed Iecta•gular Tmmils

I b 12 7 bý.

S0.8 [14.746 108.34 9.44 5.38
I 1.0 9.028 56.24 9.03 6.23!I
1 1.3 5.688 33.42 9.61 '.-4

1.6 4.426 26.73 11.33 9.66

l 2.0 3.847 24.16 15.39 12.56

- (6) y = t = 16. Equations (3.160)

b 1 27 br

19-189 180.98 12.41 74
1.3 j018 74.58 10.19 .32
1 2.3 S. i59 30.55 8.55 7.85

*1.6 2.93 1649 7.511 B."9

j2.0 1.637_ P:. 0 6. 55jL j

-I

SI,

K4

i ~
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TABLE 3.'VII

Comparative Calculatio" of 'C/CL WW AS/CL
for lis.s In Closed bectwwpalar Tinsums

bWing aIC S

1 0910. 500 2. 00 l.01 0 0. 2.83 0.37.9 0.1138

- I I----
2 0.911 0.714 4.0o 1.00 a 0.8 4.62 0.271 0.1162
3 i0.911 C. 684 4.33 1.58 0 0, 4.-3 .1 .930 0,6, 4.33j 0.180 0.0983
4 0-911 0.684 4.33 I 0 10.8 4.95 0.240 0.0983 -

5 1 0.450 150 2.00 2.00 0 1.83 0.300 0.1350

6 1 G. 4-50 1.50 2.00 2 .00 0.8 2.02 0.500 0.1350

7 1.2.3 0.s61 2.64 ..44 2.20 10 2,Soj 0. M 0.o819

12 0.393 2.64 1.44 2.20 o0 -80 0.8M 0.o1170

1 3.7,0

9 2 0.589,2.64 1.44 2.20 0 2.o 0.40 0.2631

10 W7 0.473 2 1.44 2.20 0 2.80J 0. 460 0.2175
I1 Wb7 O.96I 3 .O .75 41. 50 0. 8 3.70 0. 479 0 .1lO31tS

Case a0 Ref. 3.17 e 7t. a-0 Em1Ref.3.26l L1M.
&w. Pit. 3. 16 ft-U fti. Eip. (3. 169)1 O, m

S. 0.0240 0.0253 0.0253 0.00581 0.004 .078 -.006]

2 16 0.o o0249 0.0259 0.02571 0.0048 0.0062 0.OM6, 0.00721
0.0171 0.0194 0.0193 0.0194 0.002 O.0038 0.0035 0.0037

4 0.01o± 0.0202 0.0203 0.0205 o.o045 6.0063 0.0061 0.0056

5 o.06 o024 0.0241 0.0255 e.0047 0.005o1 0.0056 0.0054
6 0.0209 - o024 0.028 0.o00o 0.0OIo0 0.01,11 0.00%8

7 0.0285 0.0283 - 0.0283 o0.0063 - - o.0065
8 0. 92215: 0. t1-6 0.0176 0.0179 OA0.5"05 0.0027 0.003.4 0.0036

9 0.0546 0.0388 0.08 0.0397 0. 0.077 0,0072 0.O0 0.0103
10 0.01 0.072 .0.0168 0.0179 0.0105 0.0052 0.009 o0 00036

11 0.0286 0.0212 0.0224 0.0238 0.0136 0.0073 0.0120 0.01001

,-s.
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-(a) Upwash intirference A O SCL
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Fig. 3.5 Lift interference on small wings in ellipticol tunnels
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Reproduced from Fig.24 of Ref. 3.5

uI t Closed
X R jtunnel

S~~0.25 . .

0-20_I

! .

__' _ ____ __• - - - ,__ __ _ _ __I

0-11

CW'°"•" / /I

°'°' ,~~~o-o., R-'-!-/

I\\x- \ 'N . I , t,.

•,xX ~~...•.• j

-005 /

-0-251- opn-ozq-' I fl'.r

-2 0 X-R 1 3o

Fig. 3.6 Axial distributions of interference upwash for several positions of a small
lifting wing in a closed-open-closd circular tunnel

.-. . ......



+I

* •196

Values of X from lifting-surface theory for
illustrated platforms are compared with
those from two-dimensional strip theory.

S(• Lif ting-surfoce theory

-- " • • /1 from equation (3.38)
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Based on F19.6 of Ref. 3.20
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Fig. 3.10 Approximate representations of doubly infinite arrays of doublets to
evaluate WA for rectangular tunnels
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Refs.3.12 and 3.13
Rectangular tunnel
Equation (3.107)
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Reproduced from Tables 10 and 11 of Ref. 3-,
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Portly reproduced from Fig. 3 of Ref.3.30
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Reproduced from Fig.4 of Ref. 3.60
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Reproduced from Figs. 27 (a) and 34 (b) of Ref. 3. 47
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NOTATION

a width of slot

constants defining the lift distribution In Equation (4.34)

SAn constants defined by Equations (4.26)

b breadth of tunnel

c chord of aerofoil

F mean chord of wing (S/2s)

Cr root chord

ct tip chord

C Theodorsen' s lift function, defined In Equation (4.23)

C1  rolling moment coefficient = (rolling aoment)/(pU 2Ss)

CL = CLeit, lift coefficient (lift)/(fpU2S)

Ca = CmeiIt, pitching moment coefficient = (pitching moment)/(dpU2Sc)

Cn constants in Equation (4.19)

d representative length of tunnel crosb-section

E free vorticity defined in Equations (4.13)

E function defined in Equations (4.35)

f. f1  functions defined in Equations (4.75) and (4.76)

P function defined in Equation (4.27)

p I, P2 functions defined in Equations (4.74) and (4.79)

a function defined in Equation (4.80)

h height of a tunnel of rectangular cross-section

In prefix denoting Imaginary part of

K kernel of integral Equation (4.39). defined in Equations (4.40) and (4.41)

K geometric slot parameter In Equation (4.98)
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K kernel of integral equation, defined in Equation (4.72)

I = 7ei't , non-dimenusional wing loading = (pI - pu)/(fpU2 )

1z. 1i direct heaving derivatives (see Definitions)

l•, la derivatives of lift due to pitching (see Definitions)

L lift force on wing

L(x) lift per unit length in the stremawlse direction

LR . LI spanwise lift distributions defined in Equation (4.62)

oz. m! derivatives of pitching moment due to heaving (see Definitions)

am. a; direct pitching derivatives (see Definitions)

9 Nuc number of undisturbed strem

n outward normal distance from tunnel boundary

N number of slots in roof (or floor) of tunnel

p pressure

pO.y) shape of a general mode of oscillation in Equation (4.65)

P. pressure of undisturbed stram

PC pressure in plenum chamber

jp5  weighting function for generalized force P.

P wall porosity paramoecr defined in Equation (4.7)

Pn generalized force (n = 1.2 .... ) in Equation (4.68)

q = Qoela, amplitude of a general mode 4 ?qustion (4.65)

r radial cylindrical polar co-ord in Zquations (4. 101)

r non-diensional radial distance = r/U

R radius of circular tunnel

R non-diuensional rasdis =

2.8 see Equation (4.41)

Re prefix denoting real part of

S- - ,... . ..
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s semi-span of wing

s(x) local span of wing

non-dimensional semi-span - cs/U

S area of wing planform

t tine

T tunnel slot parameter in Equation (4.99)

U velocity of undisturbed stream

w = ieit. coaponent of velocity in z direction

wi = Fieit part of w induced by tunnel walls

I streamwise distance

xo value of x at pitching axis .

y spanwise distance

z upward distance {

;. wing node shape defined by z =Rei(•x~y)eI~t}

za non-dimensional amplitude of heaving mode (see Definitions)

C incidence of wing (in radians)

amplitude of pitchinZ oscillation defined by a = oeit

aE offective angle of incidence of i rotating wing

/3 = (I _ 2
)t

r bound vorticity in Equations (4.13)

r = POe t. strength of vortex; circulation in Section 4.7

In functions defined in Equation (4.20) -'

l, i vortex strengths defined In Equation (4.64)

Sprefix denoting contribution due to will interference:4

A prefix denoting increment due to wall correction

S non-dimensional interference upwash defined in Equation (4.55)

____
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o. 81 1 interference upiash parmeters for a small wing defined in Eqtations (4.86)•-" S. S••or (4.90)

7 = y/d

B angular chordwise parmeter in Equattin (4.22)

B6 Jangular cylindrical polar co-ordinate in Equations (4.101) (Section 4.7. 1)

P I I eigenvalue In Equation (4.37)

AL frequency parmeter =

I• I
Sv frequency pzinret~er = ot~c/U

S~frequency parameter = w-c/U

= xd

, locad chordatse centres of pressure corresponding to L 3, Li

p density of undisturbed strew

0' aid
I i " = : eiwt. perturbation velocity potential in Equation (4.2)

I •velocity potential of a steady horse-shoe vortex in Equation (4.43)

f components of P for a rolling wing in Equation (4.105)

see Equation (4.107)

o angular frequency of oscillation

W singular velocity of steadily rolling wing

critical . uular fre"quency for tunnel resonance in Equations (4.28) and

Subscripts
tt

SI P denotes flow in free air.

: .1 denotes quantity induced by tunnel walls.

I * u denotes lower. upper surface uf wing.I

L. T denotes leading, trailing edge of wing.

+ Ao

-..-. + j-"
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DEFINITIONS

If the wing is performing oscillations such that its surface has the equation

z = [ZC + ao(x-ox0)]ei~t

the derivative coefficients are defined by

Lift = pU2S eiwt[(lz + iilo)zo + (l1 + i01a)o]

Pitching muent = pU2.S;e'wt[(mz + iri)zo + (MC + riz)%o J
The pitching moment about x = x0 is reckoned as positive if it tends to raise the

leading edge and depress the trailing edge.

Fbr two-dimensional wings E is the (constant) chord, and then -7=V = c/U .

The usual convention about the interpretation of complex quantities in sinusoidal
oscillations is assumed; each of the three equations above should U interpreted as
having the prefix Re in its right-hand side, and similarly throughout the whole
chapter.



INTERFERENCE EFFECTS IN UNSTEADY EXPERIMENTS ]-

SW. E. A.Acua

, -i

4.1 INTRODUCTIONEEUE

As might be expected, the calculation of unsteady interference eff.!cts on wings
oscillating in wind tunnels is considerably more complicated than for steady flow;
as a result not all cases of practical importance are covered by theory. Moreover,
since it is possible for an oscillating model and a wind tunnel to form a resonating
system, a new phenomenon not occurring in steady flow must be considered. Inter-
ference effects can, however, be calculated for many cases of practical interest,
although here again a difference arises in that the calculation may be quite lengthy.
and simple formulae cannot usually be given.

For the most part this chapter will be concerned with wings performing oscillations
sinusoidal in time, but steadily rotating models will be dealt with in Section 4,7.

In most theoretical methods the equations, which have to be solved in order to
determine the tunnel interference, are basically those of the small perturbation
theory for oscillating thin wings in a free stream, but with modifications to the
usual boundary conditions to account for the tunnel walls. The basis of linearized
wing theory is set out in Reference 4.1. Thus for thin wings the perturbation
velocity potential. $(xy.z.t) . is assumed to satisfy the linearized differential
equation

+ 2U-- + (4.1)

Since the flow is oscillating with angular frequency o , we take

= Re{R(x.y.z)ei•jt , (4.2)

and obtain
A B a 2*N 2 a Co2M2 -

'- !(I-_M2) -- 2 +W +Z-i• - 5x_ - - 0 . (4.3)

The linearized expression for the pressure corresponding to is

P p = -pe +(o ei

•-pRe +iW icit} (4.4)

fc
I -

.. ~,,, -i .
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As is customary in the theory of sinusoidal oscillations, the symbol Re for "the

real part of" will be omitted unless there is any risk of ambiguity.
/

Oa the wing the vertical velocity of the fluid is determined by the wing motion.
In the linearized theory this condition becomes

U = U i+ it (4.5)
f 'az

on thae part of the plime occupied by the placform, where the wing surface is assumed
to be defined by z = i(xay)ei3t, and the plane z = 0 is chosen so that i

always small. At infinity 6 must represent nutgoing waves; in the presence of
tunnel walls this condition can be applied only in the upstream and downstreau
directions. The wake is Assumed to lie in the strip, downstream of the trailing edge,
defined by x > x- , jy! < s . z = 0 ; the pressure must be continuous across the
wake, so that, provided 9 is an odd function of z . its distribution over either
side of the wake satisfies*

U +i- =0 .(4.6)

dx

At the trailing edge it is assumed that both F and W4•x are continuois, so as to

satisfy the Kutta-Joukowski condition.

On solid tunnel walls the normal velocity. '/Zn , must be zero. In an open jet
the pressure must be continuous at tbe edgo of the jet and the boundary condition
follows from Equation (4.4). These two cases are the limits of the boundary condition
which is sc:;.times applied to represent a porous wall, that is, that the velocity
normal to the wall is proportional to the pressure difference across it. This may be
written

P - PC - po n (4.7)
-P1 B

where P is the porosity parameter. p is the pressure on the inside of the Vall,
and Pc the pressure on the outside. This p. is normal.jy the pressure in a plenum
chamber. Solid walls correspond to P = 0 and free surfaces to P -- o . The
applichtion of Eriation (4.7) to steady flow is discussed in Section 6.7.

B y asyuetry F.- is an oed function of z for free-3trean flow, and for most practicel tumel
arrangetents. If 0 is not an odd function of z . then the condition for the continuity

W of pessure across the wake becomes

jU-+ (onu-C1) = :

it dc-s not follow that either ;% or serarately satisfies Equatior (4.6).

•i *• Ibere free surfaces are =cncerned these rearks avply only to wind tunnels. I a water

SI tunel has a free surface, the effect of gravity say have to be taken Into consideration.

r~ '



231 1
In the theory it is usually assumet. that p" P, and that Equation (4.1 may be
linearized by using Equation (4.4). It is conceivable that, to give a good re-
presentation of the conditions for an oscillating flow, P might have to be a complex

S~number.

Equation (4.3) is valid for thin wings provided M is not too near to one. It is,
however, not the only differential equation which can be used; for ezxaple, the
approximation

-+ -Z2 o (4.8)

may -be used for very slender wings, while near M = 1 the ursteady tran xiic
equation

Zq -a 21CJM 2 4 "~2M

W "" 2  (4.9)

is more applicable. In fact little use has so far been made of them for problems of
unsteady wall interference. MUlls'"I gives a susary of the parmeter ranges in which
Equatians (4.311. (4.8) and (4.9ý are valid, and an account of their derivations.
For two-dimensional flow Equation f4.3) still holds, but the derivative with respect
to y vanishes.

In sost theoretical treatments the tunnel is assmed to be cylindrical and to
extend to infinity upstream and dmanstreas, so that the determination of tunnel
interference is equivalent to solving Ewat'•cn (4.3) with boundary ccadit-ons sueb as
those shown in Figure 4.1. which reresents a wing in a closed two-dimensi(oal tunnel.
Jordan (Ref. 4.2; 1953) has considered the effect of a two-dcfensitmal vY4,-ex wake of
finite length, but in general it seems easectial to assume that the wake is infinite
if a mathematical treatment is to be feasible.

For rectangular or two-dimensional tmnnels the method of images, which is exactly
analogous to that employed in steady flow. may be used. As in free-stream theory, It
is then often possible to replace the differential equation by an equivalent integral
equation. For the general cylindrical tunnel, with that of circular section as the
most important example, it is not possible to construct an image cystem, and present
mtetiods of solution are restricted to the special cases of incompressible flow or- • low frequency. •

Wind-tunnel experiments inwolving force measurements msy bha of two kinds. The
object of the first is the determination of some furce acting on a ZC1e, and the
correction is applied te obtain a value ampropriate to free-streta conditions. in
such cases it is desiraz!e that as much as possible of the measured data should be
used in computing the interference corrections, in order to offset the i,.wuracies
of linearized theory. In particular, the calculazion of a correction by tating t•e
difference between

(i) free-strewm linearized theory

and (ii) linearizad heory modified to include the presence of t-hf walls,

is not likely to be satisfactory unless the theory rerpesents tae experimental.
situation with an unusual degree of acturacy. The second k•nd of experiLent has as

_____ ____ _____ ____
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."-• 1its objective An •ssessaent of the accuracy of a theory. If this theory is the samSin principle for both the freae-stretm and tunnel cases. then it is sufficient to
• cr-atae (Hi) with the uncorrected experiments.

Seetion 4.8 simsrizes the methods recommended for typical configurations In

iscompressible and in compressible flow. There are difficult cases where no method

of solution exists. and others where the numerical work 'ight well be considered
phhibitive.

4.2 TWO-DIMENSIONAL WINGS IN INCOMPRESSIBLE FLOW

- Consider first an aerofoil of chord c on the centre line of a two-dimensionalI
tunnel with solid walls distant h epart. Suppose that the motinn of the aerofoil
may be described by the equation

-. ! z = -[zoc + ao(x-xc)]eit (4.10)

so that the notion is rigid pitching of mplitude a. about an axis x = xr , super-

imposed on a rigid hesang sotion of mplitude z 0c . If io is not zero,
Equation (4.10) also represents a rigid pitching notion about the axis

0 -zoC/%

Since the fluid is Incompressibla. Equation (4.3) reduces to

= 0 , (4.11)

with boundary conditicns (Fig. 4.1)

"3 $ ITX

+ 0 on z 0 x > X* (4.12)

- 0 on z Ijh - <x

furthermore a z = z. , d B?/3x must be continuous with respect to x .
For a general mde of osw!ilation the first of Equations (4. 12) has to be replaced by
Equatioe (4.5).

The alternative to the solution of the differential Equatina (4.11) lies in the

forsulation of thc co.responding integral equation. in this approach the vorticity
dIztribution over the wing and wake is regarded as being the sau of two parts,

fe-wt . the "-boud- vorticity. which is proportional to the local lift, and &i~ t

the "freew vort~city TO aad are de'iied by
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r +
(4.13)

T, OzI1~

.\ U)

so that. by Equation (4-4). the local loading per unit area ia

DI - -U 2r(.4
uU U

and. b+ L f-ations (4.13).

RW)~~1~~j.j~f ely.dx' (4.15)

ZL

In the wake, xy > xE raio is zer4, so that for X> iT the upper lit of integration
in Eqation (4.15) is

Now in the unbounded free stream the upwash corresponding to the vorticity
distribution (r + E) would be given by

i(x=Z)e I ( + Lu dx' (4. 1o)

this relation is a stroAghtforward extsnion of that arising In the e reat ntet of
itwo-dinensvicna~l thin wings it steady incoc!-vtssible flow, for esamp'a S.hat. given in
Chapter VIII of Reference 4.3.

In the wind-tunnel case it is necessr to u mdifl thib by including t Ue cit-
tributions of the iaiss which are assmed to be pyesent in a way arogouS to that
for the. corresponding stnbdy flow (Chapter 11). Thea for a olce-"d tunnel the upwa.e
on z = 0 is that due _9o an infinite colum of -vortex sheets, of alternsatiz sign.
lying on z nb , n = 1, 2.3 ...... E.yation (4.16) is then replaced by

i(0,O) +[ ' +d(x')]1-[ •- x
Sxx(_i xf- .n, .J+ (x--' -/•_, C x-')' + n'b'

I or, with the known sm of the infinite series,

0)[oz1)+'-i) c7h z1 dx' (4.17)
!r) h h

i a
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ahe si•ularity at x' = x is accounted for by taking the Cauchy principal value.
Since i(x.O) Is knowm from Equation (4.12) for x < x < xI . Equation (4.17) is

the required integral equation for + •).

Explicit analytical solutions of Equation (4.17) are available covering most
cases of practical interest. However, it may be remarked that for experiments of the
first type discussed at the and of Section 4.1 such soluitions are not essential.

Mhe equation for the interference upvash, due to the images only, is

•i(xO) = f r'(xf) 4- E((x)]tA . cosech d-x' . (4.18)

NOw if 1 were known. (r + E) conld be calculated from Equations (4.14) and (4.15)
and il evaluated numerically using Equation (4.18). Unless c/h were large.
wi would be obtained sufficiently accurately if I were given Its free-stream
theoretical value, modified by a factor to make it consistent with the measured forces.
The interference forces could then be calculated from free-stream theory.

Som progress towards a solution of Equation (4.17) may be made by the modification
of the Ovortex sheet" theory for two-dimensional oscillating wings in Reference 4.4
hIch is itself an extension of the simple theo•ry for steady wings '3. For the

oscillating free-stream case, the boud vorticity is expanded in the form

r u (4.19)

10 = L{r.dC-) cot 16 + -V sind) 1

'X = -2 sin 0 + cot j-4 + !I, !.sin-9 + sin ejI(•.o

r/
jsinj~+l)S (4.20

L n+ 1 2)

were V = o .ciU (4.21)

3tI = IL + 240-C030) .(4.22)

and C(1') is Theodorsen's lilt function

ix216) (4.23L.Y.s N('2) an 2 ("r4 /{ (elfuncti)on .: Te} . (4.ie)

K• *ere__t• and He) are Eankel functions. The upiash distrlibution is the given

[ '•" IH I I Fby m



235

-U + Ž.1 + Cn coneJ (4.24)

[!i

and the unknown coefficients C. may be determined by comparison with the first of
Equations (4.12).

I
Now, if tunnel walls are present, EQaation (4.19) will not lead to Equation (4.24) t

but to a modified form of it. There appears to be no simple method of working out
what this is for general values of the ratio c/h , but Jones (Ref. 4.4; 1950) has
given a method for small c/h . Equation (4.24) is replaced by

U[ CO + + +AO)+ (C.+ .4) cosDBI (4.25)

where
Ao = •'' o ½ - +EL +Jo(½V)FC o

.A 0= TO [CO2 + Odlrco(4.26)
S= 21nt(4 [okZ (n 1)

Here

___exp (.1) 7C ep(-iY)

.~ii fei -~Y) Vh sinh (lrcy/vh]df. (.7

C= C-zv) is given by Equation (4.23) and Jn is the Bessel function in the usual
notation.

Lilley (Ref. 4.5; 1952) has transformed Equation (4. 16) into one of a type having
known solutions, but unfortunately the result for general c/h ratio is too long and
complicated to reproduce here, although some simplification occurs if c/h is of
order one or larger. Certain modes of oscillation of cascades cause flows like those
ccnsidered in tunnel interference; for example, the flow through an unstaggered
cascade in which consecutive elements are oscillating in antiphase is the same as
that past an aerofoil In a closed wind tunnel. as may be seen by considering the
image system. Reference 4.6 could be applied in this way.

The alternative to ez approach via vorrtex-rheet thamb - is tbe- solution of the
diffemetial Equation (4.11i) nd aswscIated bwoudary conditions. This has been
cerried out by Rosenblat (Be•.4.7; 1957) by a meftod involvint conformal trans-
formation of the Interior of tba tunnel, and alo by TIM= (Ret.4.8; 51) by a
modification of 7heodorsea's fre-e-strem thzee-ry, The =analticl sipressims are too

lecgthy for Inclusion, but de Jager bias presenWe Tmasn'r; rnvUlts in Reference 4.9.

I4
|I

j _ _-_ -
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algebraically and as graphs, for a rigid aerofoil with or without a trailing-edge
control. It should be noted that, contrary to the statement made by Rosenblat in
Reference 4.7, his results do in fact agree with Timan' s.

It is likely that in most experiments c/l will be small enough for
Equations (4.25) to (4.27) to apply. A comparison of the results from Reference 4.4
with the graphs of Reference 4.9 indicates that this may be expected to be good
enough for c/h < 0.25 . Figure 4.2 shows the variation with v of Am and
vi'; (where the prefix A denotes free-strem value minus tunnel value) for a wing
pitching about the aid-chord axis. The results from Equations (4.25) to (4.27) (Ref. 4.4)
for c/h = 0.21 fit in very well. Alternatively the tunnel corrections nay be
estimated from the graphs of Reference 4.9. A method of applying the theoretical
quantities such as a to practical situations is set out in Section 4.4.3.

A further simplification occurs when both the frequency parameter and c/h are
small. If this is so, there are explicit expressions for the lift and pitching4 11 moment'; these will not be given here as they are merely special cases, with
M = 0 and 6 = 1 of the corresponding expressions for co"ressible flow in
Eqaatics (4.35).

1 4.3 TWO-DIMENSIONAL WINGS IN COIPRESSIBLE FLOW

'4' Before considering the possibility of calculating the tunnel interfere-ce it Is
necessary to recognise that, if the fluid is compressible, the phenomenon of "tunnel

i! resose is possible. It has been shown in Refereces 4.10 and 4.11 that,
according to linearized theory, the interference uplash due to a small oscillating
model wing in a two-dimensional closed tunnel will become Infinite for certain
critical frequencies, the smallest of which is given by

SU
The physical significance of this particular frequency my be seen by considering

the possibility of perturbation flows of the form

e1kxsin "-Ah) (4.29)

where k is a constant, as yet undctermined. 74is a sutomtically satisfies the
condition of no flow through the tunnel walls at z = ±fh . but unless k is real
I will not remain finite at large distances upstream and dovistres. Substitution

I of Equation (4.29) into Equation (4.3) sives

'M k2 +(4.30)

0 .be secoed equation In Section 14 (P.271) of Roferesce 4.7 should reed

q = 1 k2 '1 +10+i+(0)7j

4J
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237and the smallest value of . for which Equation (4.30), considered as an eque~tion ••

for k ,has real roots, 1s in fact a as given by Equation (4.28). The lowest
critical frequency for resonance is therefore the smallest for which a disturbance of
the type Equation (4.29) can remain of finite aMlitude at all large distances from
the nodel.

According to Equation (4.28) the critical frequency is small if R ir near to one.

and measurements at high subsonic, speeds are most likely to be affected. It might
also appear that wor should be small for a very large tunnel, but it must be borne
in mind that kqation (4.28) Is deduced on the assumptions that the tunnel is of
infinito length =nd that viscosity is negligible, and it can therefore only roughly
represent actual experluents. There is. nevertheless, strong experimental evidence.
such as that in Figure 4.3, that the result is approzimately correct.

The evaluation of the forces on a thin wing in a wind tunnel requires either the
solution of Equation (4.1) with the appropriate boundary conditions, or else a

solution of one of the equivalent integral equations. In free-streaw flow the lift
and upwash distributions are related by Posso' s equation

u(x f x [-o X ') x
U 8 Z, exp [ -Ia x')

/• + d~x: z(4.31)
Zz20 ýt2 a

where 2)(z) is a Hwszel function of arguent z ; the velocity potential on the
upper surface and the upwash are related by

(4.32)

These relations can be obtained from the corresponding three-dimensional integral
equations by integrating spanuise with respect to y

In the case of the closed wind tunnel the simulation of the walls by images
introduces sims of the form

0 2

No analytical solutions of the integral equations modified in this way seem to be
known, and calculattions have to be made by approximate and numerical methods.
Nevertheless, by analytical treatment of the series Equation (4.33). it was shown in
Refereancex 4.10 and 4.11 that the sm Is infinite when coh/U = ( - I-)iO/M .
(a 1,2,3 .... ); obviously wr corresponds to a = 1 SIM" I
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In Reference 4.12 the integral equation corresponding to Equation (4.31) is studied

is asme4andthe upwash evaluated at a number of control points on the asrofoil.
Thre pontswere found to be enough for h/c =3.8 . and frequencies co < co
In tis pprachthe aerofoil in a free stream is merely a particular case.

Figure 4.3 refers to a wing pitching about the mid-chord axis and shows how the lift
H 5varies with frqec.in particular the marked effect as resoornc is an~roached.

The e3perimental phase angle agrees very well with the calculated value but theI ~ amlitude of the lift tends to be overestimate by theory. This behaviour is typical
foritenl ptchisg moentho ocalolatichnumies freaonam sa.3sftor0.7 proied the2
fordethe itching mentho ocalsolatio ias numersofro 0.35sfatory 0.70vided 12).
numerical work can be tolerated.

Molyneux (Ref. 4.39; 1964) has pointed out that the range of frequency for which
the forces on the model are strongly affected by resonance becomes narrower if the
size of the model ii reduced while the height of the tunnel remains constant. This

K favours the use of mall models. NSolyneux. also observes that the sharpness of the

resonance decreaseb as M incresaes, particularly as regards changes in phase angle.

* ~If the frequency is well below critical, the method described in Reference 4.10
say be used. TIbs again is a collocation treatment. based on the modified form of
Equation (4.32). and inrolfing =~ expansion of the kerrel in powers of frequency:
it is accordingly restricted in frequency range. When the frequency parameter is
small and c/h is not large, the heaving and pitching derivatives for .ýeference axis

at the aid-chord (Fig. 4.1) are

I iz= 0 2):(

7T*n 7, 2 C2 \

z~ + j )7Tc2\3J32 5~(7cc~iI(4.35)

~. *.- 7! 
2C2  

- l2,2M2l

where T
lo 2 1E{eothG( )

According to Equations (4.35) 1& and s;L tend to infinity when h tends to
infinity for a fixed c .This agrees with the fact that in a free stream

r
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(Q. and (ma), do become infinitely large for very small v .Although the tunnel
corrections are theoretically infinite, the forces in quadrature with the pitching
notion are in fact proportional to v(la), and P(sa)r , which remain finite.

Tabulated tunnel corrections for the compressible case are few in number. and in
the nature of illustrative examples only, but enough evidence is available to show
that the corrections can be significant in practice. For example, the following
table, taken from Reference 4. 10, refers to a wing for which h/c = 4.75
oscillating about its mid-chord axis in a stream with U = 0.7

0 4.399 4.556 -o -8.882 -1.100 -1.119 a 3.012

0.04 4.066 4.510 -12.981 -8.715 -1.015 -1.106 4.030 2.969

0.08 3.757 4.339 - 8.903 -7.979 -0.933 -1.061 2.981 2.778

0.20 3.117 3.657 - 3.877 -5.084 -0.759 -0.880 1.669 2.023

0.40 2.638 2.975 - 1.274 -2.026 -0.617 -0.694 0.976 1.236

The values 1a/(1•)F and tan'(vl/l) have been used to plot a series of
points in Figure 4.3. These agree quite well with the trend of variation predicted
by Reference 4.12, although the magnitude of the correction is different since the
value of c/h is different.

4.4 GENERAL THEORY FOR THREE-DIMENSIONAL WINGS

In this section the calculation of tunnel interference for three dimensions will
be considered from a general viewpoint; corrections for tunnels with rectangular and
circular sections will be left until Sections 4.5.1 and 4.5.2.

It will be assumed that the tunnel is a cylinder of infinite length with generators
parallel to the x axis, and that linearized inviscid theory may be used. The model
will be as~sumed to lie in the plane z =0.

At the outset it may be pointed out that, even if the wing is represented by a
lifting line, Prandtl's theorem relating the flow at the wing to that far downstream
does not apply to oscillatory flow.

Three-di•mnsional lifting-surface theory has now reached the stage where the
calculation of wing loading can be carried out with an accuracy sufficient for
application to tunnel interference by one or other of the versions of the "kernel
function" or *collocation" theory, for example References 4. 13, 4.14 or 4.15. The
succesi of free-strem lifting-surface theory depends on replacing the differential
Evuation (4.1) by an equivalent integral equation. With the added boundary conditions
at the tunnel walls this integral equation becomes extremely cceplicated. In the
absence of special simplifying features an analytical solution of the differential
equation is not possible; although a numerical finite-difference treatment night

el.
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conceivably be attempted with a high-speed computer, no programe for doing so seems
to exist. In practice, therefore, we are largely confined to tunnels for which theL ~ method of images is possible, or to flow conditions (M << 1) for which the method
suggested in Section 4.4.2 is available.

applicability, having for example local supersonic regions or separation from the

leading edge of the wing, the theory may be used to estimate the far flow field.
Provided that the measured derivatives are available to adjust the predictions of

linearized theory, the conditions at the tunnel boundary, and hence the interference
upwash, can be established fairly accurately.

4.4.1 Twmmel Resonuice

This phenomenon has already been discussed in connection with two-dimensional
tunnels, but it seems reasonable to suppose that something slimlar will occur in

I three dimensions also.

In Reference 4.16 arguments are put forward to show that for a three-dimensional
tunnel the critical frequency for resonance is given by

-. _A (4.36)

i f
This equation is to be *satisfied inside the empty tunnel cross-section, with the
boundary conditions that 4/Bn = 0 at a solid wall and q-- 0 at an open boundary.
M Nodes for which the derivative of q5 normal to the plane of the wing is zero. may be

ignored. Reference 4.16 includes some calculations for open and closed three-
Sdimensional tunnels and for three-dimensional slotted tunnels. Sm experimental

evidence supporting the view that resonance effects occur in three dimensions may be
found in Reference 4.17.

For a rectangular tunnel with solid roof and floor the relevant critical frequency
turns out to be the same as for the two-dinensional tunnel of the sme height. If
the tunnel has open roof and floor the critical frequency Is doubled. For a closed
circ.lar tunnel of radius R the critical frequency is given by

S r = 1.84-- (4.38)
U N

where x = 1.84 is the first zero of the Bessel function J (x)

For other croas-sections the ease or difficulty of finding the critical resonance
frequency Is simply that of determining the eieuvslue X of Equation (4.3?); in
general this will have to be done numerically.

II .... _.... . . .... .. .. . ... .... .. ... . ........ ....... . . .. .......... .......
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4.4.2 Relations Between Steady and Unsteady Interference
The basic idea underlying the method given below is due to Goodman (Ref. 4.18; 1953),

but the development differs from his.

Let it be assumed that the wing and its wake lie in the plane z = 0 . Then
according to linearized theory 4 ' 13 in an unbounded stream 4 is antisymmetric with
respect to z , and

yZ) -(x y + +0) K(x-x', yy' z) dxfdy , (4.39)

where

11W ep Iex t~ / Rol (4.40)

with with= [(x-x') 2 + )(yy,)2 + 62z2]• (4.41)

The region of integration in Equation (4.39) is that part of the plane z = 0 in
which ý(x'. y', + 0) • 0 , that is the wing and its wake. If the interference
effect can be represented by an image systes. Equation (4.39) provides formally a
method of calculating the interference flow field due to the images, but the co-
putation would be formidable. Nevertheless a practical procedure can be developed
provided cA is small.

Consider first a steady horse-shoe vortex of circulation P and span 2s in an
Incompressible flow. This mav be represented by

( ,y.+O0) I- P for x> 0 IYI <s 1
S(4.42)

0 for x<O or ly >s s

Then by Equation (4.39) the associated flow field is given by

%-Z) dx 'dY (4.49)

1- X [(x-x'12 + (y_y-)2 + Z2]d3( )

Hence

5 1 [ (s -y) (s+3) -= d . (4.44)
•-v 4• + z + (s-y)2 + Z2) . 2 + (s+y)2 + zy)

so that

rz I (s-y) (s+_ + z)
2+Z2) [X2 ++ (S+V)2 ;2=. (4.43)

x 47T 2 + Z2 112 (S _y M.
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"Now consider an oscillatory horse-shoe vortex of the same span with circulatioil

ri 't so tha.

t~iox\
S0y )= IT exp for x'> 0 10 <

.(4.46)

= 0 for x' < 0 or ly'l > s

Hence, if the flow is incompressible.

exp Z~j~~dx dy 1(4.47)
_ I s[(XXI)2 + (y-y 1 ) 2 + Z2]3 1 2

= __ ( x 1 -y) + (s+Y) d!

4P+z + (S .Y
2 + ziz [2(~)+2

exp ,•-U ) '0 de (4.48)

Alternaeively Equation (4.48) may be written

= )V(x.yz) _ exp /xp %(I.yz) 1! (4.49)
U

Equation (4.49) refere to the free-stream values of ý and 4v " If 4) is

taken to represent the potential of a horse-shoe vortex in the presence of a tunnel.

a function 4 may still be calculated from it by Equation (4.49). Now V2.v = 0

and it follows from Equation (4.48) and the vanishing of 1% and its derivatives at

x-m that V4 = f . Moreover, if on the walls •4!./n 0 , it f.Alows from
Equetion (4.48) or (4.49) that a/"n = 0 ; similarly if 4)v 0 at the tunnel

boundary, then 4 = 0 . Thus 4) = ' is the oscillatory velocity potential in

the presence of the tunnel walls. Since both the free-stream and wind-tunnel values

of ý and 1% are related by Equations (4.48) and (4.49). it fcllovs that the

isterference fields satisfy the same relations.

The foregoing argunent is based on the assumption that M = 0 . If M is not

zero then is found by suhstituting from Equation (4.46) into Equation (4.39).

This yields

it IN-,_ .4•(;,yxz) = -K e- )x-X'. y-y'.z) dx'dy"
--7. Jey'= 

/-

-3 .... ....

?f
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that is, by Equations (i.40) ard (4,41)

f FiPeyp lexor 1'exp (i A)
II

Then by an argument Siz'jlar to th%ý in ApPl-e(x I of RefeieZce 4.19 it can be shown
that for srm II w Equation (4. s.- be xzplazed by I

es)
92 Z I= 0I e

~ ~ /e= dY'dyr+ 0(ct 2 loe'r) (4.51)

If the integration with rspeAt to yI is perfa.=d it follows from Equ&ut±in (Ot.4-)
that

1 exp --xp1 O df+0(w2 lcg .5

By virtue of the fact that V24, = 0 it follows that 4'. as given b3 the in••rzral
4in Equation (4.52), sati.fi's

-P= 0 (4.53)
Z1 ~2 +W +57 U 7X j2,02

so that, provided c.2 Is negligible, •.tisfies Equstion (4.5). Moreover as for
incompressible flow ý -epresents flow i1 the tunnel, or in a free stream.
according as tv does so; hence, if tv reprosents the interference in steady
incompre;isbie flow, then T is the inte'ference in oscillatory compress!ble flow
with an er•ror of order C 2 logao . An alternative form of Eqwation (4.52) is

6' exp i ce - d (4.54)

which reduce to Equation (4.49) if R = 0

The interference upwash angle due to an oscillatory hor e-shoe vcrtex of span 2s
and circulation r = Kei"w will be written in the f~ru

Pe .-x Y -J

U U "d d d U (

where d is a representative length of the tunnel cross-section. Then Equatit (4.54)
becoaes

. A•••'

g.
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L. eip( 4,4:o;L) = SO. -q; a,:0)od-

= exp (-"1.•) [ 0.(e, n; a. 0A) expy- -)d6 1 (4.56)

where

71 = yd 
(4.57)

- • 4.4.3 Geleral lnterfereace Corrections

; 'It order to apply the theory of Section 4.4.2, it is necessary to know the Inter-

Sference upwah due to a steady horse-shoe vortex. and moreover this must be known fori al" puints umstream of the model. It is then necesary to express the potential

diatribution round the oscillating aodel in terms of those of horse-shoe vortices.

} Consider first a steady lift distribution symmetrical with respect to y . It say
; !be shM4-"%° that the interference upwsh is siven by

r8  Xi.(W)
w (3.7) 1 ' ad'74-,. y') di -d I( '

U 2d jd d d'•"S=U0 Jx•WX (YI)J

L
r - ~f .7 r/) 7 );',' .. q; . 1z)] deldn' (4.58).

2 1

where 8 is given by Equation (4.56). The planes y = 0 &nd '1 = 0 need not be
syretrically situated in the tunnel, indeed the tunnel need not have any symetry at

f all -cyvided thut It is cylindrical, but S must refer to a horse-shoe vortex lying
V in z = 0 sad symetrical about S = 0

SFe(r s distribution of lift antisymetrlcal with respect to y = 0 , ftiat±on (4.58)
will still holdr 2 0. provided 1(7, r; a. 0) now defines the. interference upwash
ancle due to the distribikon of potential on z = +0 given by

-- it



~ .- 1 for x>O and lyl<s 1245
21YI (4. 59)

= 0 for x<O or lyz > J
The argumts of Section 4.4.2 apply to such a distribution; in particular
Equation (4.56) still holds. Sin-ce =7 lift distribution asr be split into syametrical

nd antisysetrical Parts. the corre-ponding Interference upwash m•a be calculated.

Of course In most experiments 1 will not be measured in sufficient detail to

apply Equation (4.58) directly. generally one or sore derivatives will be found, that
Is to say there will be available weighted integrals of 7 over the planform. A
possible 5iXplif4citiou is to asuMe that the real nd lxasinary parts of I may be
cencentrated on the curves p-assiun through their respective theoretical centre8 of

I pressure at each spsawise position. Suppose the centres of pressure are deflued by

S�' e =-(71) and 4-' =0(,)) (4.61

Thfa Equation (4.58) be•3oes

I o1 U 2'
too

where

T(1
IR1r + -01 I e),7:)dý 4.2

, h and after tlte differentiation we put

This should be a valid approximation provided the chord of the wiug is small
co"ared with the dimensions of the tunnel.

An alternative method may be found by obas.,Ing that the circulation round any
sectin of the wing is given by

2

mid then regarding P1 and as being concentrated into vortices along the curves
I= R(O71) and f = ZifQ() . Thein Equation (4.61) -Iz mst be replaced by
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2To/Vd and L- by 2P4/Ud Provlded that the chord is small, the difference In
the calculated values o. w,/U aiJwI be sasl. If the chord Ia large neithier form
will te e&curate, but fortinately fairly ciude representations of the mode! are

Iuually satisfactory for interference calculations.

A further aproximatlon is obtained by assming that the span of thee wing, &3 well
an its chord, is small relative tn the turne!. This vill be dealt with in
Sectio 4.5.3.

The calculation is very such facilitated when a theoretical treatment by one of
th evaileale ltft~ng-urface theories for oscillatin wiW (e.g. Refs.4.13 to 4.15)
Is carried out in cenjunction with the experiments. If such a calculation has been
performed, there are available a theoretical lift distribution and the reqnirpd
theoretical derivatives. Swppose that the win is oscillating in sowe mode

Z -= QOeI*tp(X~y) -- qp(Z'y), (4.65)

amd that measurements are made of the mplitude q and the generalized forcesII
I (x.y)p,(x.y) dxdy (n =1. 2.. (4.66)

ihere p. is a weighting functioa. The theo'etical free-strem lift distribution
and derivatives (WPZ/q) may be calculated, and hence the corresponding theoretical
interference -upish wi is evaluated from EqjatIon (4.58). Again by lifting-surface
theery the distribution ii mW be converted Into theoretical increments (ZPn"q),

S due to wall Interference. A linear factor (P,/Q)/(BP,/Zq), is awplied to the
theoretical free-strem loading, so that it becomes consistent with the measured

generalized force P, . Then the contribution to P. due to wall interference is
E

P- P (4i67)

The wall interference can be regarded as a correction Aq to be applied to the

mwe-ured amplitude q and residual corrections

1. ~~APU -Si' +t(P 3 q) AM (4.68)

It may be convenient to choose

2: sotlis

S; so that
A (4.69)

A p r 1 . . . ... . . .... . .. .. . .. -. 2 )I-u
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The right-hand sides of Eqatie•s (4.69) are theoretically detersi.ed complex numbers.
so that in general Aq involves a phase shift as well as a change in aeplitude.

If only one force has been measured there is no choice in the above prwedure, but
if several have been measured some care muat be taken. For exaple. if Fn Is a

control hinge moment giving no information about 7(x~y) off the control surface.

thev it is probably beat to take P, to be the overall lift, if this is measured or
can be estimated.

4.5 APPLICATION TO TIREE-DIVENSIONAL 2I14GS

IN CLOSED TUNNELS

The general theory of Section 4.4 is now applied to closed rectangular and

circular tunnels "Sections 4.5.1 and 4.5.2). There are great simplifications for
s35ll -sings (Section 4.5.3). and these form the basis of an approximate treatment of
wall interference for oscillating slender wings (Section 4.5.4). Soze numerical
examples are given in Section 4.5.5.

4.5.1 Rectaigular Tamels

Before aplying the theory developed above we observe that. since the interference
in a rectangular tunnel maw be represented by an image system, expressions for the
interference potential say be written down at once by a simple extension of free-

stream subsonic lifting-surface theory. For a wing syinetrically placed In a closed
rectangular tunnel the kernel function in Equation (4.39) has to be replaced by

E E )(.(x-0',)-.'-ubz-z'-n) . (.70)

where b is the breadth of the tunnel and h Its height, The interference upwash

for a given ;kx,.yt, + 0) is obtained by omitting the term m=n = 0 from the

double samation; alternatively Equation (4.39) as modified by Equation (4.70) may be

regarded as on integral equation for 'P(xI. y', + 0) . The some remarks apply to an
alternative form of lifting-surface theory such as Eaference . 15 hbich uses the

loading T as the unknown instead of 4, For the wing symmetrically situated in a
rectangular tunnel this sives

F r
i(x.Y. 0) L f

whr Z- 8-,7jjnw-

Mh. ULl(z-'. ZVI z),= -)'(y-y', , y

( 4.--)~i- 2r )=•|/ 0-'- + 02Z2
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hUnfortunately both of the expressions 92uations (4.701 and (4.71) are too unwieldy
for practical cosmtation. ezcept in special cases. Moreover. lu view of the remarks
on ttunel resonance in Section 4.4.1. it maty be expected that the sums will become
infinite for critical values of w.

In order to aW•y the method proposed in Section 4.4.2 it is niecessary to consider
first the interference in the steady case. From Equation (4.55) and Equation (7) of
Seference 4.20 it may be shown that*

e8(jf.-r;o0.O) = P ! )..p 1  .(- . (4.73)

lb{ (bc b\ 7b b%bere

- fh ( T-)+ -. Tccsech -h +

b) b( h bK b ?

( -- +f -, . +

h/ 0

7TbQ.+n) ("-a)_
S7Trcosech - + 7r cosech ] 1 (4.74)

hh

f(xy) = (-I)n'2'• y 1+ 2+ 2 , (4.75)

(.5) + 4.76)

f; 2

S~Tables of f(x.,v) sy be found in Reference 4.20.

(Tdhen by _atJons (4.73) and (4.56)

I d•: /" exp dO • • (4.77)

In lefereace 4.20 the typ!cal length d wv taken to be the twue! breadth b; in the preant
expositloc d sill be left general until nmerlcal examples are given in Sectios 4.3.5
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No difficulty arises in these calculations since the series In Eqation (4.74) Is
rapidly convergent. and the-infinite integral in Equation (4.7"7) converges by virtue

+ of the fact that ?I- 0(r") as if m

If /•is small.

- I

ýed d (

-Ld p o s • i-" - d, ..4 o(i'1)

Further, it follows fron Rqaatio4 (4.717) that 8 tends to zero as 1A tends to

infinity.

ohe function required for the calculation of the Intfeirence upwanh by
Equatilon (4.58) or (4.61) is - natera(! i Eqi (4..7) coegjes. If we put

fBFi (Ks)
IP2 (K..) - dx (4.79)

and

71; ;L) dV -o _ fid 77d_

Furtherd itv follow 1rod 71aiq(.7)ta e ds to (eo4s.9t0d)t

S~then

gad. by Equation (. 4.58). for [ symmetrical ift distribution,

eip F. ! X = 1.. •,(14X") '.,,,,+s' (4.79)

,, * (4I81* ____ z 1~'~'G(-~, 7-7 ~ f O d~'d' . (4.82)

The interferences upwsua will be required at mhatever set of points Is employed in
* the lifting-surface theory usad to estiate 1. this tins the set of values nf

(f.71) in Zaaation (4.82). mad hence the region in which G(f, X; A4 has to be
det•rained. The tabulation of G(f, X.; 14 in this regivo is the mWn pat of the
rcmutatia iinvolved, and has to be followed by intgration over the platfori. 7Tis
method involye too a•ch numerical work to be generally oracticable.

-------
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The approximate Equation (4.61) may be written

!j (f. 1) ft. p .(77')Q~jf 1f77')1 . 1 77-7 +
U 2 ,

- iL?(1')UI•-• 1 (7I/) , 7- .•1 ; '7 77 (4.83)

This still involves the tabulation of G(i. '7; z) for one or nore values of /IL

although only a single integration is necessary after that. A few examples of

calculations by this method are given in Reference 4.20.

For routine use it is desirable tv represent the vorticity distribution over the

wing by discrete horse-shoe vortices, as few in number as possible. The calculation

then reduces to the determination of 8 for each of them. MY Equation (4.77) this

involves the calculation of PF(!.X) for several specified values of X and all

points. i. upstrem of the model.

The calculation for antlaymetrical lift distributions is formally similar; the

basic equations may be found in Reference 4.20.

4.5.2 Circular Tunmels

Just as for the rectangular tunnel, the first point ahich arises is the avail-

ability of the interference upwash of a horse-shoe vortex in steady flow. In

Reference 4.21 expressions are obtained for the interference upwash due to an

elementary horee-sboe vortex arbitrarily situated in the tunnel. but they are rather

complicated infinite series and only a few rumerical values are given. Eiseastadt

(Ref. 4.22; 1947) has given tables of interference upwash for horse-shoe vortices

covering a range of spans and upwash positions which should be adequate for the

majority of wings. Eisenstadt's tables include the interference upvash for horse-shoe

vortices with swept cross-stream parts and can moreover be used for antisymmetrical
as well as symmetrical lift distributions.

Once the required steady data have been obtained, the procedure of Reference 4.23

can be applied; this is almost identical to that for a rectangular tunnel, and it is

unnecessary to elaborate on it here. The results of a typical calculation are given

in Section 4.5.5.

4. .3 Small Wings
If the overall chord and span are both small compared with the tunnel dimensions.

the lift may be regarded as being concentrated at a single point. Consider first a

closed rectangular tunnel and suppose the small wing is at the origin. Equation (4.82)

then tecomes
i _ . (4.84)

! -
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Since the wing is small, only small values of if and 17 need be Included. TAke
= 0 and suppose that is negligil m11. Then by Equations (4.80) and (4.84).

__P (0.0%1 +- P2(0,0-
U 2b2 L2 J32~ 0)ez

-P 2 (0 o 0) (od + eoo)-

/L2 P(6 To' 0)e2p (!4 d~ * (4.85)

wheri- r12 [_XKL1

If also I is small. Equation (4.85) may be written as

!A(s, - +, + ( (o + +0• ( • -(4.86)

wreU bb h 1  U 0  b~k 2 /
where

h

2A2 FP21(0. 0)

S1 (K. () (4.87)

x 0J

ELY F-uatioos (4.74), (4.75), (4.76) and (4.79). and by virtue of the fact'that

77.sc7 ,1 + 2• y.
Srcose�,i y = -22 +(-)n 12 (4.88)

it follows that
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b2  2 b2 _n 2h 2
F2(O.O b = ( 1 )n (m2b2  n2h2 )2  , ( 0.n 0,0) (4.89)

so that we recover tha usual expression for steady interference (cf. 8(1) in
Section 3.2.2). A more straightforward method of tabulating So. s 81, 81 is
described in Reference 4.23. which includes a table of their values. They are plotted
in Figure 4.4.

Reference 4.23 also gives, for incompressible flow, the interference upwash for a
mall wing in a closed circular tunnel of radius R ; by Equation (4.56) the coam-
presaibility factors are the sune as in Equations (4.87), and hence

Sal. [a (4.90)

where S0o = 0.125. 8 = 0.25,01
(4.91)

, -0.o7/'. 8' = -0.25

Go'dman*1" has given an analysis by a:method basically that of Section 4.4.2 for
the small wing In the circular tunnel, but without assuming that x and -R/U are
small. The results are presented in the form of a chart which, apart from a number
of misprints, appears to be consistent with Equations (4.91).

For a tunnel of any cross-section the quantities So. 0 S P 81 and ' may be
found from Equation (4.56) provided 7(,7 ; o-, 0) is known.

An alternative approach, valid when N = 0 , has been given by W.P.Jones (Ref.4.24;
1943). His method may be illustrated by referring to Equation (4.71) which, for
M - 0 , leads to the following expression for the interference Upwash

j ir (z .1) _ __ U ____U

xf2 + (y'I + b) 2 + n2h2)5I2 d.dxdy' , (n,n / 0,0)

"" (4.92)

where it is assumed that wi/U is independent of y When it is also assumed that
the wing is small, Equation (4.92) leads to

.-- . -.-._ ., _ .
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ST(Y:y,) d 'dY' -D 2, +f_•)n +.• ' _ -
s L "I-:-

+ ox (m.n 0.0) (4.93)
•%'" -'•' • M2b2 _2,572

+ x• _(-I~n(m~b2+ n2h)i'+o).

The second sumation is that encountered as 8•)in the treatment of steady later-

ference eiven in Section 3.2.2. The integrals in Equation (4.93) are studied in

Ref.erence 4.24 and reduced to tractable expressions.

4.5.4 Slender Wlings i

It the model is very slender, it may be regarded as made up of a number of small ,

wings arranged in the streaawise direction. C~onsider a slender wing oscillating with s,
_ ~small frequency parameter in a closed rectangular tunnel. it follows from"

Equation (4.86) that the interference upasab is given by4'25

U. (0.) 1 f +••y - 8 + x- 'Idd
b =0o • • h I

= - , + 8+-• + + • ,+ -(4.94•.)

bh ~ ~~~ h *

bh ~L

where 8o 81 , So' and S' are given in Fmattons (4.87), and Carefers to the

Snose-up pitching moment about the axis x = 0 . A similar formula. may be constructed

for any tunnel for which S. & 81 , 81 and 81 are known.

The interference, upiwash may b;e used to calculate the overall corrections to forces

snd swaents as for general wings, but since the wing is slender the aerodynamics are

considerably- simplified. especially because i1 may be regarded as independent of
y.From the formula of unsteady slender-wing Itheory4*'26 the correction to lift Der

unit length in the streamriss direction corresponding to W1 is

Al(x) = 'n' s P) + 2s(x) ,h(4.95)

S I

+~~ ~ 1197X~ U- mUb + ( Un 00)(.3

Twhere s(x) is ihe local span.

An example of the ctplicat.on of Equations in an (4.95) may be found in
.4Refercnce 4.25.in



4.5.5 Numerical Examles

only a small amount of Duzuerical data on the numercal. corrections to three-

flow. The reason is obviously the fuct that hesvy computation is involved unless
datcsimplifying assumptions are m~.de. The earliest attempt on the problem seems

to be V~ie. by II.P.Jones (Ref.4.24; 1943) described in Section 4.5.3. It is assumed
tbht the wing Is small aitheuagh the frequency Js .9eft general. Some numericul values
are givan for the corrected and uncorrectcd pitching derivativts of rectangular wings
in t. timnel of square rcross-section.

An exsnplz of 'Palculation for which the 7ing ups not assumed to be smali is given
in R~eference 4.23. A model with the swept planform shown in Figure 4.5 was assumed
to be performing low-frequency pitching oscjilationq in the closed circular tunnel
shown there. Two pitching axes were considered. as shown in I'?igure 4.5. The

tb~eoretical pitching derivatives. as detarmliled by the me' thod of Reference 4.19.
are given in the following table.

i/C) e IO 1 _ C

.63 0-852 0.892 Q.055 0.301
038 0.852 0.738 -0.099 j 0.159

It was asstmed that the parts of the circuiati-m in phase and in quadrzture wittn the
incidence could be regarded as concentrated in horse-shoe vortices with their finite
parts swep.t through 600 and semi-span equal to 0. 35 of the tunnel radius. The
position and strength of these vortices are then easily calculated from the pitching
derivatives given above, and are plott~ed in Figure 4.5. Since the interference for
steady horse-shoe vortices of this planfors is tabulated in Reference 4.22, it is
a straightforward matt~,-r to calculate the required oscillatory interference upwash
distribution by Equation (4.56). Since the interference forces were also calculated
by the L-ethod of Refereuice 4.19 weith. 2 chordwise and 5 sppenwise stationa, these
upwashes were In fact required at only six points on the half sning. -7he ove.rall
iný;erferezce increments to the derivatives for the two -,it chiug axes 2are giren below.

1 0/Or. CL~a

0.61? 0.051 0.004 0.00 A

1 0,738 C lif1 I005 _O .

It is Interesting t.o cLonpare these values with those ebtained by the "aswai-Wize~
~ .~ method of Section 4,5.3, wbich gives
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- I
0.613 0.051 0.013 f 059 0.003 OW

0.738 005 0.C4 --. 01 0.00 * I

The differences between the values computed by the two methods are negligiblc except
for SI• when it is of order 0.01. Even this Is only marginally significant compared
with the aecurtcy of present experimental techniques. The inference is that, for
wings up to the size shorn in Figure 4.5. the small-wing approximation is probably
adequate, when the frequency parameter is small.

The small-wing theories of Jones"' 2 4 and Goodman 4 *e both predict that the inter-
ference effects decrease rapidly to zero whim the frequency pareneter becoues large. ;
but nevertheless remain significant over much of the practical range. 7his effect " :1
may be Illustrated by Figures 4.6(a) end (b) which show respectively the in-phase and
quadrature components of interference upwash in a closed 9 x 7 rectangular 'unnel due
to a horse-shoe vortex with 2s/b = 0.4 . Note hov, for positive ! . the in-phase
part decreases as g -increases, while the part in quadrature at first increases but
eventually starts to decrease.

hle effect of model size and frequency may be Illustrated by som.e calculations
from Reference 4.20. A cropped delta wing of aspect ratio 2s/c = 1.8 and taper
ratio. ct/cr = 1/7 is assL.-ed to be performing pitching oscillatioDs about an axis
through Its apex In a closed rectangular 9 x 7 tunnel. The load distrisutions are
calculated by the lifting-surface tbeories of References 4.19 and 4.2-r for the low
aad fiinite frequency cases resp.ctlvely, and the interference upwwih is obtained from
Equation (4.31) with the lift replaced by the circulaticn as suggested after
Equatic-i (4.64). The results obtained say oe sumarized as in the following ta•le
in the notation of Sectitn 4.4.3.

_ 2s dao0 A
U b L CL

- 0 0.25 0.006 - tu 0.003 0.001 - lu 0.001
-0 0.5 0.02W- 0.008

- 0 0.75 0.07.6 - i 0.133 O.u20 - i•O. 025

1.6 0 50 0.000 - i 00.008 -0.001 - ij. 0.002

bTese corrections are given as a correction to . and a residual corrzction to
C. " The complex value of 0 L would be determined from wind-tannel messurements. p
ee may note the rapid increase It the correct1Uns as 2s/b Increases, and that the 1
correctico to incidence involves a change of phase as well as monitude. Indeed it
Is obvious that for 29/b = 0.75 the model would be too large for measurements to be
satisfactory. The effect of taking the frequency to be no longer suall is a large
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reduction in the corrections, as might be expected frcm the results of Reference 4.10
and Figure 4.6. Of course th•. e remarks apply only to this particular configurtion,
and it would be rash to generalize thea.

4.6 PERFOCATED AND SLOTTED WALLS

The use of ventilated tunnels Is tasential. if a fixed wall geometry is to be
preserved for measurements in transonic flow. The usual wsy of achieving this is to
use either a perforated tunnel, having a large number of snall holes in one or --ore
of its sides, or a slotted tunnel, usually with the slots parallel to the direction
of flow.

SIn practice, tunnels with perforated walls are the less common, but most of the
available oscillatory theories are in fact concerned with then and relate to the
r i boundary conitio in Equation (4.7). It. is assumed that the perturbation velocitiesS~are imsall. so that Equaticn (4.7) is taken in its linearized form

r ,• P =0 (4-96)

For perforated tunnels to be aenable to these theories, it is necessary to find a
,costant, value of P to use in Eqation (4.96). which then ezomes a simple
homogeneous boundary condition. 7he paraeter P for steady flow in perforated
tmu~ls is discussed in Section 6.7. It is not known whether the parameter should
remain =changed for oscillatory flow; possibly P should then be complex. and
results obtained using Equation (4.96) should not be trusted if the frequency is:i ' •large.

I The two-dinensional problem of a slowly oscillating aerofoil symetrically situated
4(• j • between perforated walls has been investigated by Drake'".26 ., using the boundary

condition Equation (4.96). He derives an integrtl equation expressing the known
upwash distribution on the aerofoil as a weighted integral of the lift distribution- and obtains solutions by expanding 7 in k series similar to that in Equat.--n (4.34)
-rith coefficients assused to be linear functions of frequency. Uafortunately the
expressions for the derivatives given in Reference 4.29 are incorrect.

There is an alternative treatzent due to Rosenblatg' . which is restricted to
low-frequency oscillations in incompressible flow. The derivatives are g.ten as coa-
plicated analytical expressions and have not been evaluated,

DraZet' 31 has also treated some transonic flow problems involving porforated
tunnels by solving Equation (4.9) for the following three cases

S. ' (i) two-dimensional wing midway betwee- two perforated wills,

(1i) slender wine midway between infinite perforated roof and floor.

(iii) slender wing in a rectangular tunnel with solid side-walls and perforated

roof and floor.
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In all these caaes mathematical diff:calties require that the frequency parameter is
-sall. and in (iH) and (iii) that the porcaity parameter is small. The use of
Equation (4.9) also it-Poses the restriction4' 3 2 that the lzickness has to be very
small. Drake's forulaie for the derivatives are too lengthy to be given here. but
are for the most part fairly straightforward to evaluate numerically.

The hoeogeneous boundary condition for steady flow in slotted tunnels is given in
Chapter VI as Equation (6.7). The corresponding condition for oscillatory flow is
not known with certainty, hat from the analys1s of Reference 4.40 it seems plausible
to ass*ne that it ehould be

•x+• + K~i •n- n + (4-97).

where, for rectangular tunnels with solid side-walls and the roof and floor each
having N equally spaced slc-ts of width a .

b 7Na
K = logcosec - . (4.93)

2b

Equation (C.97) is perhaps harder to arply than the boundary conditinn for the per-
forated tunnel in Eqatien (4.96), while its validity is possibly even more dubious
if the frequency is large.

It is now necessary to enquire if the steady and unsteady interference flow fields
in ventilated tunnels are related by the simple Equation (4.56). This depends on
whether or not the unsteady potential 4, defined by Equation (4.48) or (4.52),
satisfies the -nsteady boundary condition when lk satisfies the steady boundafy
condition. It my be deduced that this is not true for tunnels with boundary cm-
dition (4.96) or (4.97). because these both contain adfitional terms in w when the
flow is oscillatory. Nevertheless, when viscosity is negligible so that P - CD ,
Equation (4.97) becomes

+ = 0

and it follows that the oscillatory and steady interference fields do satisty
Equation (4.56). Alternatively, if the boundary of a longitudinally slotted tunnel
may be regarded as a finite number of solid and open portions on which the boundary
conditions are _*Z./•n = 0 and ý = 0 respectively. then the argument following
Equation (4.48) remains valid and Equation (4.56) is applicable.

7here is experiaental evidence that the interference in slotted-wall tunnels mSy
be very large for some unsteady experiments. References 4.33 and 4.34 describe some
measurements of pitching derivatives made in various rectangular tunnels with loni-
tudinally slotted roof and floor. As show in ,Igre 4.7. it h2s been found that by
varying the n--ber of slots very large chages are caused in the pitching damping
derivative of a half-model M-wing in the PL 275 in. by 20 in. Wind Tunnel. Te -.
parameter T is defined by I
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obtaine fo muwp aee zfcdlia th -w .'.. -. e!:~-- In.- -t cae th

rroenceu! l~rA reuce --abth or-d of 25 at 51 = ,0toO roea

witosel anImportantpolem. Unopeunatl ronslor satlfarkably tiaeorretlsoultios for ee
obitaied for mel are yipt tviable.e afadli h etun'~ nht ae

3knrcdXoe-""hv on some vxvL-metion of the large Interference effects
In taue .7 y oesdein aelizitine n~e, T +'A .The small-wing theory ofSeto 4...ifatiua qai (4.86), vay ini vrfnciple be applied to any

toml or hih s a13i. ' wd 3'armkio~ A half model in the NPL 25 in. by
20 1. Tmelcareapn-dacloelyto zmplets model it- P. duplex tunnel (b = 2h)

fo ahatna i*hsldsd-al and open floor and roof I-. is calculated that
+iD1596-1as ompredwit S'= -. 00468ý for a completely closed tunnel of

termsaeivreypootoa to tunnel area. It is now possible to make a
thoeia esimt ofth difference betwee -% for T = -1 and for 7 !: &I

on he ypohess tat he ingis small. Computationis for the M-wizig at Mach numbers
0.6 nd .8 or he itcingaxis indicated in Figure 4.? give respective differences

V-'=+i- _%O~l= -0.55$ and -0. 81

ths r rsstn ihFgr 4.7. The calculated effect of compressibility is
slgtygetrta h fco 46 In So' ; this appears to explain the largerdifvne obemida 08ad above. 70he same conclusions -ire derived for
th unwp aprdwngtse in the san tunnel.

4.7 STEADILY ROTATIN4G MODELS

SapPose th~t a wing of syoetrical Planfcora has its line of syametrzr ir. the
direction of the airflow while rotating with a constant angular velocity w about the
line of symmetry. It will be ressumed that the vortlcity shed at the trailing edge Is
convected downstream in a direction parallel to the velocity of the undisturb~ed fluid

ftferec 4- 4 is sipersoded bzv the fully tbooretical and experimental study in the following

et. ! Slotted-Well Tannlt at bzi Se ds ~ i

Exeiet VL Rpr 1211. AC Report !8,339, L4M6

t 'w
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flow, so that each element of the trailing vortex sheet will be a helix with pitch
inversely proportional to al Obviously the theory of the rolling wing mWy be
expected to be clos6ly related to that of the screw propeller 3 5s; in fact the treat-
ment of the circular tunnel given in Section 4.7. 1 is an extuension by Mandl and
Pounder (Ref.4.36; 1951) of Goldstein's theory (Ref.4.37; 1929).

"The assumption that the trailing vortices are exactly helical implies that the

circulation is small, and therefore that the induced drag is mall, and hence, in most
cases, that the total drag is also small. By the momentum theory of wall witerference
on propellers (Ref.4.3. Chap. XVII), if the thrust coefficient is small and negative.
then the correction to the tunnel stream velocity may be neglected even in closed
tunnels.

If the rotation Is sufficiently slow, the helical nature of the vortex abeet will
be negligible and the tunnel interference may be calculated by the theory for steady
wings with antisymetrical loading. However, in order to establish the range of w
for which this method would be sufficiently accurate, it is necenary to consider the
effect of non-zero angular velocity. Only for a circular tmnel cross-sectiou is such
an investigation practicable.

4.7.1 General Theory for Circular Twoels

aha following analysis is essentially that of Reference 4.36* with different
notation and sg'r conventions. Both the flow in the tunnel and that in the free
stream will be assumed to have a velocity potential satisfying Loplace's equation

-Dý IB21ý B24)(4.100)jr + -~ + _r2 1Wco)j__
•r= rgr r2 • 2 "•x2

in cylindrical rolar co-ordinates (irO) 9here

Y r rcos•
- = rcosO (4.101) s

such that the angular rolling velocity c is in the sense of 8 increasing. Par
domustrew the flow field will have helical symetry so that 4 must satisfy

4 ' r,B+cAt. x+UUt) = (k(r,8,x) ,

vere 3t is m arbitrary increment of time. Thus

-U , (4.102)

daxt'=n M =- becomes

"-Maas-wer cmta s several errors of sit.i S
I



I• he bomnxary coad.11ime are Z/•r = 0 on a solid wall, =0 at the boundary of

an open jet, W~ for the free streI 1)- 0 as r -- cD.

SNow consider ý at a tie when the wigis in the position 0 = ±-br. let theScirculation on the tper half (0 be r(r). Ten the boundary conditions to be

satisfied by I on the line 6 = a±' w re shown in Figure 4.8. Let the wig be a
lifting line in the plane x = 0 . By consideratioDs analogous to those used in
steady flow it follows that at the wing the normal velocity induced by the vortex
systt ia

where 4 has its value in the helical wake far domnstrem. Thus the problen of find-
ing the interference velocity is reduced to solving Eqation (4.103) subject to the
boundary conditions in Pigure 4.8. The first step in obtainin" a solution is the
remval of the discontinuities across the line 0 = ±I . From the theory of 6rier• ;-•series it follows •tlm*

itO:/ i 'i •r(r) -)

- sin 206

has the required discontinuities. although it will not satisfy either Equation (4.103)
or the other boundary conditices.

It. is now convenient to change to the non-dimen•sional variables

I Ir/U

9 = Ws/ . f4.104)

Then Evatico (4.103) bec*ms

+ + =_2 o

Now put

Z ( sin 20+ E lnif)sin 2oO (4-105)

"and it is faund that the functicas .-D) xust satisfy*

?bTe first amatin In Mquttlon (4.105) bas a l z varlaticm between discmotinuities sad
"therefo cantrbt~e nothing to Z2V .

i-°.
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(r (4.106)

d-2 =rldF " i2 .n n drf 2 F =d~

If we put

thenr) 4id-r) ar ) (4.107)
WT

then
d~lin ), I n nI LndFr 2  ii -,-1+~Lr (4.108% A

This last step removes &ny difficult. associst-e with infinities in the derivatives i
of r at the wing tips.

Men its right-hand side is zero, qiatio•n (4.108) has the two fundamental !!4
soluti•on

= I2 (2nir) an 2 (2n-r)

in the usual notation for Bessel functions of isainsry argument. The solution for
arbitrary r-) may be obtained by the method of "Variation of parameters". it
follows eventually thr- for an cpen-jet tunnel the Incrseent to P due to the tunnel
boundaries in -

2 UI(2n(f) I 2 ,(2g)"(,) de , (4.109)

while'for a clsed tunnel te factor

.2P."1 ? h bs toereplaced by f
I( 2 0(R) . I(2R

T-e interference Yelocity at the wing is thus

• , f (4.110) .
2r-

This rewsUlt nly applies to an unswept wing of mall chord. There appears to have
been no development of a theory capable of dealing with rolling wings of significant - L
streaawise extent.

It is now necessary to assess the effect of the interference velocity on the
rolling wmment. Mandl and Pounder'sG use simple strip theory as applied to wings of I

fairly hih aspect ratio. Thus an elewnt dr of the wing ct a distance r frcm
the tvunel axis is regarded as being at an incidence - tan- 1(air/J) to a free stream
of speed /(U 2 + wJr 2 ) . The circumferential component of the interference v6locity
opposes wr so that the effective angle of incidence

__I__N

:1 ___-___ _"__ __



a 1c = tan- (w - w + U2 • • . 4 1

' when terms !.n w 2ar neglected. Then the rolling mement coefficilent is defined" by

Et -

S iCl (CL)F + 8Cz 2 - r ddr (4.112)

i! : where .thae element of lift dL corresponds to the local incidence as.

Fr the 4nlitd_! assumption that the circulattion Is r(r) ,a factor

SUSSCl

2 •rP(r) d"

i-0

i• ~mst be *Wliped to the right-hand side of Equation (4.112). so that the assuaed

Srolling toment is consistent with the measured CI To the first order in w, the
Siinterference correction to C1 is given by

AC I acL z •le
C .... j ) ( 4 . 1 Z 1 3 )

E' {

wAlernatively the correction rlg m t f t ie

= =(4.114)

SI+ (AC z/C;)

Smay be applied to the measured angular velocity.

:! •,C7.2 Slowly Rolling WingswhrIf the ensular velocity is small enough, the helical nature of the wake mcy be

Sneeected; t ia calculation of th e i rculthen reduces ro that for an anti-

spimetrfecal~y loaded wilng in steady flew. 'his topic is treated in Sectic'n 3.3.5,
tnd needs no a uedtheT cons ideration here.

Evans (Ref.4,38; 1947/) has treated the rolling wing in a circular tunnel by another
rethod in wlich the trailing norticity is convected downstreo alont straight lines.h
He assrmen thcz the spctwise distribution of circulation is

AMtandl and P coder aerently Jrclude an axtil eonoxnnt of interference velocity, which Is
taken to be R1c- 1 cx as giver by Ec 1tions (4.10) and (4.409). .14 Justification for this

is obscure. Morpl ver. th e earedi streag velocity . ould appear to incltde a cotribution
n-gle ocder cwI/U . oefe cm~derathe s do not influence the results for (a= 0 . but the

PIP
stmetrcslc ly t aed wrian gyefc in steaeryncl4.3 Tis togaidei wtreatedpinction.335

and eed n" -'rthe considertion here
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and evaluates SC, by strip theory for wings of arbitrary taper ratio. At first

sight his formula for SC, is incoesistent with the limiting result from
Reference 4.36 as w - 0 . However, Evans has implicitly assumed that the circulation

at the wing tp is zero; in Appendix A of Reference 4.36, Mandl and Pounder have shown
that t6 discrepancy disappears provided that 1

4.7.3 Propellers

Rolling wings might be expected to lead on to corrections for airscrews in wind

tunnels, but in fact this subject eeems to have made relativeLy little progress since
a method of correcting the longitudinal velocity for a model propeller in a closed
circular wind tunnel was devised by McKtrmon Wood and Harris•'"" as long ago as 1920.
This method appears to be satisfactory. The correction to free-atresa velocity is
presented in various standard works either graphically (as in Reference 4.43) or in a
table (as in Reference 4.44). In practice it is sufficiently accurate to use the

approximate formula 41 [
7U7•D 7

U 8C (I+ 27)r)•'(.1/

where D is the diameter of the propeller disc. C is the cross-sectional area of

the tunnel and 7r is the thrust coefficient defined by

Thrust = -'i-TpUJD-r (4.118)

Young (Ref.4.45 IM4) gives a correction for compressibility in which r is replaced
by 7-/'2 in Equation (4.11l7).

Equation (4.117) is obtained by an ezension of the axial momentum theory"'4 end
Is normally used only when - is positive, so that the propeller has a slip-strew of
the usual type and the closed tunnel gives a negative correction to free-streem speed.

In the terminology of Chaapter V it might be said that a positive thrust is equivalent,

to a negative drag and therefore produces a negative wake-blockage factor. The
applicability of Equation (4.117) to other propeller operating conditions depends on
how well the assumptions of momentum theory are satisfied. Presumably windills
(-r < 0) would be covered.

Alternatively the correction to free-stream velocity may be found by measuring the
axial velocity near the tunnel wallr'•. This method has the advantage that it is i:

applicable when the propeller is rountep on a boda.

-- Theory points to the conclusion that the interference effect on a propeller in a

circular open Jet is negligible. and this is confirmed by experiment in Reference 4.44.4

Some recent empirical work by Berry and Ibiting' on models of marine screw

_ _ _
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f ] I propellers in water suggests that the interference is much reduced in tunnels having
longitudinally slotted walls.

4.8 APPLICATIONS TO COMMON EXPERIMENTAL SITUATIONS

It is genera-ly advisable to estimate the tunnel corrections before the experiments
are carried out. The lift or vorticity distribution should be represented as simplyan possible. The recommended pr-c-edures fcr oscillatory measurements in incompressible

flow are sumarized in Section 4.8.1. The availability of methods for compressible
flow is indicated in Section 4.8.2. For numerical data or formulae reference should
always be made to the original papers.

"4.8.1 Incompressible Flow

(1) Two-dimensional closed tunnel

•I: ' | For c/h small, use Equations (4.19) and (4.25).

For c/h not small, estimate I from free-stream theory, then use
Equations (4.14). (4.15) and (4.18) to compute i•

Corrections for rigid modes may be obtained from Equation (4.35) if
v << I and c/h is small, or may be estimated from graphs in
Reference 4.9.

(Hi) Closed rectangular tunnel

In general, represent the vorticlty distribution as simply as possible and
apply the theory of Section 4.5.1 (Ref.4.20).
A rough estimate of the interference upuash may be obtained from

j •Equation (4.86) and Figure 4.4 by assuming that the wing is small, or from
(|) Equation (4.94) for slender wings.

] • (•11i) Closed circular tunnel

Apply the theory outlined in Section 4.5.2 (Ref.4.23).
Rough estimates may be made, as if the wing were small or slender.

(iv) Tunnels of other cross sections

The method of Section 4.4.2 may be applied, provided that the distribution
of interference upwash cAn be estimated for steady incompressible flow.

Simplified formulae for small or slender wings then follow from
Equations (4.56) and (4.58).

(v) Longitudinally slotted tunnels

i •When viscous effects at the slots are ignored, the slotted tunnel becomes
a particular case of (iv).

-; Unfortunately the stezdy interference upwash (Chapter VI) has not yet been
calculated in sufficient detail to be used In this way.



2654.8.2 C ressible Plow

In all the following applications the experimental frequency should be kept below
that for tunnel resonance (Sections 4.3 and 4.4.1). -

(i) Two-dimensional closed tunnel
In general, the interference may be evaluated by suming over the izages
the upwashes as given by Equation (4.31) or (4.32).

The chofdwlse loading 7 may either be assumed to have its free-stream
value, or the integral Equation -4.31) may be solved numerically' 12

If the zhord is small and v is small, then Equations (4.35) may be used i
for rigid modes.

(ii) Three-dimensional tunnels

There is no general method for three-dimensional tunnels. If the fre-
quency is low, the method of Section 4.4.2 may be used provided that thesteady interference upwash is knoun.

(iWl) Closed rectangular tunuel

In general, the evaluation of Equation (4.71) is required. For low fre-
qwency the theory of Sections 4.4.2 and 4.5.1 may be used.
For small or slender wings and low frequency the theory of Sections 4.5.3
and 4.5.4 may be used.

(iv) Closed circular tunnel
Por low frequency the theory of Sections 4.4.2 and 4.5.2 may be used.

For srall or slender wings and low frequency, use Section 4.5.3 or 4.5.4
and Equations (4.90) and (4.91).

I
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SReproduced from Fig.3 of Ref. 434
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I BLOCKAGE EFFECT-S IN CLOSED OR OPEN TUNNELS
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-J NOTATION
distance between source and sink

a* critical speed of sound

A cross-sectional crea of aerofoil

An maxium transverse cross-section of model

b br&•-.th of tunnel

c chord of aerofoil

C cross-sectional area of tunnel

CD drag coefficient = D/-p1U2S

COO •drag coefficient at zero lift

-CV pres"-re coefficient = (p - pw)!i/pU2

d distance of model from floor of tunnel

D drag of model

i f fineness ratio= l/t

h height of tunnel

1HI functions given in Table 5.1

k(x) moment of inertia of aerofoil about chordwise position x = constant

kx om-ent of inertia about x axis

k = A/tc

k3  =

- length of body

an major axis of elliptical tunnel

U Mach number of undisturbed stresm

I minor axis of elliptical tunnel
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p local static pressure

pM static pressure of undisturbed stream

P strength of doubletI

Sq local surface velocity

Q strength of source

R radiuz of circular tunnel

" .�RN Reynolds number

s distance along body contour (Section 5.2.1)

s semi-span of wing

S reference area of model

t maximum thickness of model

T shape parameter of tunnel (cf. Figures 5.3 to 5.6)

u x-component of velocity

U velocity of undisturbed stream

SV volume of model

x distance downstream (origin at leading edge of aerofoil or centre of
body axis)

spanwise distance normal to body axis

distance upwards from body axis

Z (&U)/(u - U=wall

M incidence of model

/3 = (i -U2)5

7" ratio of specific heats (taken as 1.400 for air)

prefix denoting increment due to wall correction

C blockage factor = (AU)/U

'n Glauert' a two-dimensional wake-blockage factor
~I

A- - -

A - •-= .• •_ .. . . .-
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I Glauert's three-dimensional wake-blockage factor

0 chordwise parameter of aerofoil = cos- (i - 2x)

0 static temperature of undisturbed stream

x 2 s~ape parameter of aerofoil (Fig. 5. 1)

x 3  shape parameter of body (Fig. 5.2)

A angle of sweepback

p density of undisturbed stream

T shape parameter of tunnel (cf. Figures 5.8 and 5.13)

Subscripts

8 denotes effect of blockage.

c denotes corrected value.

e denotes equivalent value.

g denotes effect of velocity gradient (buoyancy).

Sdenotes solid blockage.

Sv denotes wake blockage.
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I
BLOCKAGE EFFECTS IN CLOSED OR OPEN TUNNELS

E. W. E. Rogers

5. 1 INTRODUCTION

In the preceding chapters. the boundary interference arising from the model lift
has been discussed in some detail. There exists, however, an additional interference
effect associated with the fact that the model and its wake occupy a certain volume
within the finite tunnel stream. Tbe streamline pattern about the model is thereby
distorted compared with free-air conditions, and tnis distortion exists even at zero
model lift. The magnitude of the streamline displacement will depend. amongst other
things, on the relative sizes of the model and tunnel working sectior, and on their
cross-sections; the direction of the distortion (and hence the sign of the ensuing
correction) depends on whether the tunnel boundaries are of the fixed-wall or open-jet
type.

This interference is said to arise from the "blockage" of the model and its wake.
that associated with the model itself being called "solid blockage", and that due to
the wake "wake blockage". For most purposes it is sufficiently accurate to assume
that the two blockage conponents are independent both of each other and of the model
lift. This simplifies the analysis and enables corrections for blockage effects to
be evaluated at zero lift. Such a procedure irplies that the model is small compared
to the tunnel working section and that the lift is not too large; moreover it is
assumed that the blockage only influences the longitudinal component of the flow about
the model, and this is true only if the model is mounted in the centre of the tunnel.

In the simplest case, the flow about a small model in a tunnel corresponds to that
about the same model in free air. but at a corrected velocity U i AUs . where U is
the nominal velocity of the tunnel stream and AU, is the sum of velocity increments
associated with the solid and wake blockages. For streamline flow it is convenient
to express the ratio AU BJ by the blockage factor E. . which is then the sum of

corresponding solid and wake blockage factors

e+E . (5.1)

Flor bluff bodies tk~is subdivision of blockage effects is not applicable. The principle
of correspondence between the observed flow and some free-air flow at a different
velocity is valid for a wide range of flow conditions. Sometimes, however, it may be
necessary to determine the variation of the blockage factor along the model length, as
for example in the case of a long slender body, or perhaps to consider whether the
model blockage is affected by changes in the model inciderce. .hese more complex

analyses are usually less general in application than those concerned simply with some
average correction applied over the whole volume occupied by the model.

-- I



1he present chapter will be concerned with blockage effects in tunnels with either
completely closed or completely open bo~undaricý. Related problems for ventilated

4tunnels, having a combination of open and closed boundaries, are discussed in
SCapter VI.

Tine wallsof acompletely closed tunnel impose z constraint on the flow about the

mdel such that the flow near the wall follows that surface. The stream tubes
su.-rounding the model do not take up their free-air shape but are compressed together,
causing a corresponding increase in the local fluid velocities. A similar conclusion
may be reacged by equating the mass flow well upstream of the model to that at the
model position. The velocity correction. and hence the solid-blockage factor, will
therefore be positive in a closed tunnel.

The conditions at the boundary of an open jet are less easy to define precisely,
but it is usual to assume that the jet boundary is one of constant pressure, equal to
that of the surrounding motionless air. In practice, the edge of the jet may be
difficult to specify because of mixing between the stream and the surrounding fluid
and moreover it may be distorted by the presence of the model. Such difficulties are
frequently overcome by assuming that the constant pressure condition may always be
applied at the undisturbed boundary and that mixing effects can be ignored.

The assumption of a constant-pressure boundary also implies that the perturbation
velocities, particularly the streamwise component, are small at the edge of the jet.
since Bernouilli's equation may be applied to a boundary streamline extending from
well upstream to a position opposite the model. "..-z the model induces supervelocities
at this position, the constant-pressure conditzon may only be preserved by a reduction
in the effective stream velocity approaching the model. Thus for the open-jet tunnel
the solid-blockage factor will be negative.

C'lauert (Ref. 5. 1; 1933) has pointed out an additional matter which makes the
treatment of the open-jet turnel lcss precise than its closed counterpart. in the
latter case there is usually a considerable length of working section of almost
constant cross-section upstream and downstream of the model. A free jet on the other
hand frequently issues from a noz.le placed at a relatively short distance upstream
of the mcdel and flops into a collector not far domnstream. The assumption of an
infinitely long jet inherent in much of the analysis is therefore violateds'r 7 and the
validity of the simple theoretical corrections must rest largely on experimental
evidence. The boundary conditions appropriate to finite-length open-jet tunnels have

been discussed b- Katzoff et al. (Ref.5.48; 1950) and in more general terms by
Vandrey (Ref. 5.49; 1942). but up to the present the simple constant-pressure condition
has been most widely used in the theory of wall interference.

It should perhaps be pointed out that the reasons for using short working sections
are entirely practical. It is, for example, difficult to obtain a stable jet longer
than about two jet diameters. In effect this imposes a restriction on the model size.

since the ends of the model must be a moderate distance from both nozzle and collector.

and the model length is hence unlikely to 2xceed about 0.3 Jet diameters. In turn the

S • small model size implies that the corrections will not be excessively large.

Sf iThe simple boundary conditions of the open-jet tunnel suggest that the flow behind

the model can enlarge to allow for the presence of a wake of reduced velocity. This
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is not the case in a closed tunnel of c2istant cross-section where, to satisfy
continuity upstream and dounstrem of the model, the flcw velocity outside the wake
must be greater than in the free strews thead of the model. The effect of the wake
in the zlosed tunnel is to increase the effective stream velocity, so as to introduce
the wake-blockage factor C. P.t the model positio and to impose a longitrdinal
pressure gradient along the model. 7he latter baysalcy effect is equivalent to a
boundary-induced drag force on the model, for wjich a correction is -equ-red. in the
open-jet tunnel, the wake-blockage ve.1ccit5 increment is ab'ent. bait there is still a
buoyancy correction.

Nihen the flow departs significantly from the classical streamline flow, it beccmes
necessary to reconsider the cathematical model of the flow. 7he reprea~etation must
incorporate the essential features of the separated flow and still remaiD xisple
enough to leave a tractable problem when there are zlosed boundaries. Such a theory
for a non-lifting bluff body is developed in Chapter VII. 7he re.atively large
blockage factor for a bluff body is c;nfirmec by experiment.

In the following sections nethods of estimating the solid-blockage and wake-blockae
factors will be discussed for a variety of tunnel cross-sections. The two important
methods of determining the blockage factors are from theoretict.1 calculations Involving
the model and tunnel geometry, tunnel Mach number and model drag (Sections 5.2 to 5.5).
and from pressure measurements made at the tunnel wall (Section 5.6).

At high subsonic stream Mach nusbers, shock waves nay be present in the flow about
the model, and some change in the form of the blockage factors discussed earlier may be
required. In addition modifications may be necessary to the simple linear theory used
to estimate the effect of stream compressibility. Mztters of this kind are considered
in Section 5.7.

7he use of the blockage factors in correcting the measured quantities is discussed
in Section 5.8. whilst the final Section 5.9 sets out the more important formulas used
in the text.

5.2 SOLID BLOCKAGE FACTORS IN CLOSED
BECTANGULAR TUNNELS

5.2.1 Two-Dimenstiogl Aerofoil

Se will consider here an s-r2oil of ch-rd c . maxiians thickness t . sponing
centrally a rectangular tunnel of height h . An early method of calculating the
sGlid blockage of this configuration was givsn by Lock (Ref. 5.29; 1929: see also
Reference 5.1). He reprseeted the aerofoil by an eo!valent doublet and the effect
of the tunnel walls by an infinite array of dcublet imnges extending above and below
the model and spaced at thl tunnezl height h . The additional velocity induced by
the imaes at the model post--tion nae then be calculated and this is the velocity
increment due to the solid blocksg'e. 7he solid-blockage factor es in incompressible
flow is then given by

77 2 -.2 It\ 2

S 12\Ii) (5.2)
- 2 QJ -IX2
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where X 2 is a parameter related to the profile thickness such that the model is
I replaced in the anaslysis by a cylinder of radius tA, . Lock calculated X for
j J four typical body shapes (.ig.5. 1). but a simple formula is obtained in only a few

cases, e.1g., ellipses-' and Rankine ovals.2. An accurate determination of X2
can be made if the surface pressure distribution about the model is known, so that the

jlocal surface velocity q can be found. Then for a symmetrical aerofoil

I •2 I 2 z(s) ds (5.3)

where s is the distance along the body contour from the leading edge and z(s) is
the surface ordinate from the chordline at a . The integral is taken along the curved
surface from leading to trailing edge. For a cambered profile it is sufficient to
consider mnly the thickness distribution of the section.

Allen and Vincenti (Ref. 5.3; 1944) use the blockage factor

A =

. I so that

E ~ A (5.5)S= 48 \h .

Values of A for various basic aerofail profiles will be found in References 5.3 and
5.27, and K, may easily be obtained from these sources. As Figure 5.1 shows. values
of X 2  for typical families of NACA 6-series aerofoils are close to those for

a Joukowski-type profiles. The solid blockage of an aerofoil in an incompressible
streax has also been considered by Toussaint (see Reference 5.54) usiag a complex
potential methed. His equation is similar to (5.2) but tends to give somewhat suallar
values of E, "

In a compressible fluid when the stream Mach number is subsonic and not too near

the choking value, the effect of compressibility may be allowed for sufficiantly
accurately by small-perturbation theory .3,S. a The velocity increeent at the
model position is then 9-1 times the appropriate increment for aw incompressible

- I fluid in a t~unel of height fbh ; the model thickness and chord are assumed to remain
unchanged. Thus Equations (5.2) and (5.5) must be multiplied by a factor .
Lock' s o.riginal equation then becomes

77 2 / 0  2 11. =i 1 () )9 2 (5.6)

Sometimes however a more direct relationship between the blockage factor and sodel
geo3eTrv Is convenient. Thor (Ref. 5.4; 1943) replaced the single doublet of Lck' s
method by a series of sources and sinks distributed along the model chord. For a thin
aerofoil the Cistribution need not be very complex and leads to the relationship

77A A
CS 2 4 -, (5.7)4 60. 524
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where A is the cross-sectional area of the profile, related by some numerical factor
to the product ct . If this factor is known, Equation (5.7) may be rearranged to a
form similar to (5.6). For thin aerofoils the two equations yield similar blockage
factors. Von Baranoff (alef. 5.39; 1940) had earlier derived an expression for the solid-
blockage factor identical with Equation (5.7).

Alternatively, use ma be made of a simple formula developed by Young and Squire
(Ref.5.5; 1945), which i equivalent to

A
es = 0.62 (5.8)

Mhe numerical factor is higher then in Equation (5.7) and Reference 5.5 suggests that
Equation (5.8) may be preferable for thick sectiovs. 7he effect of profile thickness
has in fact been allowed for empirically IV 7howson (Ref. 5.6; 1948), whose work
suggests an equation of the form (see Reference 5.25*)

= 0.524 1 + 1.2L8 J/Ph (5.9)

which agrees with Thoma's relatalcn for very thin aerofoils and with Young and Squire's
equation when the thickness/chord ratio is about 0.2. An equation similar to (5.9) is
probably the best simple approximation for the soilid-blockage factor provided c/h is
not too large, say about 0.25 for moderate subsohic Mah numbers.

It is interesting to note that. iZ A = a 2ct and the aermfoil is replaced by an
ellipse of the same area mnd thickness (but smaller chord). Equation (5.6) mWy be
IIwritten in a similar fors! tivi 8nA~tion (5.9) but with the numerical factor 1.2 replaced
bi f,-./ . If k 2 = 0.65 . a typical value, then I-ffi2 = 1.21 . This correspondeona
sugkesth that a more general form of Equatien (5.9). or of Equation (5.6) is possible;
in the latter case X m2.:t be replaced by 441i + O2 Ar)(c/t)]

It is obviously pcssiblr to ext.end the precedIng analyses to include terms up to the
-ourth povr In (cih); this was done in incmmpressible flow by Goldstein (Ref. 5.7; 1942)
who derived a= equation which must be solved for each aercfoil. Allen -nd Vincenti' ,
show that the fUrst term in this is Identical with Equation (5.7), so that Goldstein's a,-
relation becomes

A ." c z(x) cos (5.i)
a h2  960 C sin

where , with x measured from the leading edge, 6 is defined kq

x = -c(1-cos). (5.11)

STe compressibility facter a•lied to the aerofoll thicka Isa knatlat (5.9) was ctitted
In omps&W's criginal ;er, and ilaer .nserted by Evans. nocO not strictly In acword
date and Is recameded tg the prme-nt author.

.4 -
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•29Fhe more complea solid-blockage corrections have also received considerable attention

from foods. In Reference 5.8 (1954). for examle, he shw that the distribution of
solid blockage aloag a thin aerofoil may be written &s

77A [I k(x) ( ,
Es(x) = • +p i ) j ' (S.12)

whore k(x) is the moment of inertia of the section about the position x . The
parameter M4 is given by

2 r'rdz(x') z(x) dx'7 (5.13)

/j £o 
dx' f .

MTs topic is also discussed in Section 7. 8 of goods! s book (Bef. 5. 22; , I). To the
first approximation ea(x) Is constant along the chord and has the vaue calculated
by Thom in fquatlon (5.7). WTs variatifo of iE aw be used to determine uOx mem

L value over the lmath of model. Particularly if balance aessurefAnts have been zade.
in correcting the measured pressure distribition along the model, the local value of1Ex my be unA; care is required if es chst-es ereatLy along the dwil, as this may
indicate that the pressr distrebution Itrself o be distorted by the tB.l als.i ~thus reducla.g the validity of aw~lyln• a blockag•e factor of the re.contained inf j gr•i;ation (5.12). More complicated methods of calculating the blockae mwy then be
rewired; some of these are discussed below.

To illustrate a particular application of ftiatic (5.12). an elliptical profile
sm be considered. Then

es W_ = [l I 6 . (5 14
The solid blockage is therefore a maziuma at the aid-chord of the profile and falls
off towards the leading and trailing edges. the fIrst turn is in fact similar to that
"derived by Thompson in EQuation (5.9) apart from the comnressibility factor for thick-

, ness cffect. The second term of Equation (5.14) in incompressible flow might be
expected to agree with that derived from Equation (5.10) for an ellipse. At the sid-
chord position, Woods' equation has a term of magnitude -(/1920)(c/h) (t/c)
whtreas Goldstein's equation has a (c/h) tem of zero value. Similar discrepancies
occur for a biconvex profile.*

Inechtel (Ref. 5. •2; 1953) has made a esperimental investigation in YhIch the ratio of
* aerofoil chord to tunnel height was varied progressively. 44ea zexo-lift cmditions

at Mach numbers up to 0.85 satisfactory corrections c.n bemade for bouzdary-intlrference
effects with only terms in (c/h)2  unless c> 0. 15h . For larger models the simple
corrections beccme increasingly questionable.

in allowing for the effect of coaressibility Woods uses hodograph-typo equations
to avoid the limitations of simple wall-perturbation theory. Considerations of this

-,.:: ! type tave led Klunker and Harder (Ref. 5.9; 1951) to use the so-called Prsndtl-Busemnn

a • przmeet the rcuu !or this disatemet is not appayrt.

E -, <
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iteration method for small disturbances to calculate g second approximtion to the
blockage corrections for a thin symmetrical body at zero incidence. It Is 2ssumed that
the potential function of the non-linear equations of motion a& be expanded in a series
form where each successive term is small compared with its predecessor. It is possible

in this way to calculate the blockage effect over the co3plete model surface and to

estimate the errors which may arise, when c//3h is large, from ignoring the chordwise
changes in induced velocity.

The occasional need for more precise solid-blockage corrections than result from the

simple theories has given rise to several diverse approaches, a few of which my be
mentioned briefly. 7hom and Klanfer (Refs. 5.10 and 5.11; 1946-47) have developed a
"squares" method for solving.the complete field about an aerofoil in a wind tinnel.

A similar relaxation technique has been used by Emons (Ref. 5.12: 1948) and by Epstein

and Albers (Ref. 5.13: 1948). In the latter case a 10-per-cent-thick symmetrical sero-
foil of two sizes, c = th and c = h . was considered at stream Hach numbers of zero

and 0.5. Tsien and Lees (Ref.5.45; 1945) have combined linear perturbation theory with
a representation of the aerofoil by a source-sink distribution and consider the
carrection to the maximum surface velocity on a 10-per-cent-thick parabolic-arc profile
for two different heights of tunnel. Uhitehead (Ref. 5.17; 1950) gives an additional
method for calculating the solid blockage of very large bodies, and the effect of the

tunnel walls on the critical Vach number of a circular cylinder spanning a tunnel is
" disaussed in a paper bY Suzuki (Ref..5.5.; 1041) heo uses the hodograo method.

These examples perhaps serve to illustrate that in seeking wre accurate coarrctions
for a large model much simplicity is lost and extensive calculation my be e-ed-ed for
each case. It is unlikely therefore that use of such techniques for routine test work

will be wide-spread. With large models indeed it may no longer be sufficient to
calculate the distribution of blockage along the model and assume that this is

independent of model lift. What may then be reQuired is the distortion of the surface

pressure distribution due to the presence of the wind-tunnel walls.

A process of conformal mapping is valuable for obtaining this information. No
general expressions can be derived and a fresh calculation must be made for each aero-
foil and test incidence. Both the symmetrical aerofoil at zero lift and the arbitrary
lifting aerofoil have been discussed by Perl and Moses in References 5.15 and 5.16;
the results, obtained by a series of flow transformations, are compared with those
obtained fron image methods of LockW" and Goldsteins. At incidence the solid

blockage is calculated as well as the modified surface pressures. It is claimed that
the conformal mWping method is very convenient to use If more exact corrections are
required: than would be given by equations using terms up to (c/h)" . A similar
though less cp~licated vetbod of maopig was developed acme years earlier by Franke
anid Weinig (Ref.5.20; 1939). A full discussion of the use of a complex potential

ethod for determining the combined lift and blockage interference of a two-dimensional
aerofoil is given by Earbieux (Ret. 5.54; 1955). where conrison Is made with the simple

equ-ations derived by Lock, Mos. Alle and Yin-enti and others. Uarbieux gives resalts
from which the distribution of blockage along the profile my be calculated.

Though the advanced general methods deal adequately with the lUfting merofoll. It is

possible to adapt the simple theory to deal with the solid blockage of an aermfoil at
an incidence a. Tis was done for incomoressible flor by Btchelor (Ref.5, 21; 1944).

who showed that the solid-blockage factor must be increased I- an ,nc proportional

-- !
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to ? . he relationship between the new blockage factor and that appropriate at
zero incidence may be written approximately as

]E4() = Es I+ 1.1(Ct)o3]. (5.15)

where a is measured in radians. For c/t = 10 and a = 100 the blockage factor is
about one-third greater than at a = 00 . This order of increase is near that derived
from semi-empirleal corrections to large models at incidence based on the measurement
of wall pressures. One such approach is discussed in Reference 5.19 where the
velocities at the walls of the tunnel close to the model position were measured und
then averaged to remove the lift effect. The increase in this average value with
model incidence was related to changes in the blockage. Such a technique can. of
course, be regarded as an extension of more normal methods for estimating the solld
blockage from the pressures on the tunnel walls, a subject discussed further in
Section 5.6. For compressible flow. Equation (5.15) may still be used. though
presumably with the additional factor A in the term in r-2

In all the foregoing discussion it has been assumed that the model is placed midway
between the two tunnel walls. If the model is offset from the centre line iq a
distance (1h - d). so that d is the distance of the aerofoil from the tunnel wall,
a small increase in the solid-blockage factor occurs. This effect has been estimated

I, for low-speed flow by BatchelorS.21 and the relationship between the off-centre and
centre-line blockage factors nay be written as

C (d) = e 1+ 2cot -

this equation is also valid in subsonic compressible flow. Thus. a model offset from
the tunnel centre line by O.lh will be subject to about 8% increase in solid blockage.

; It should be pointed out that. when the model is offset. the transverse component olf
the velocity induced by the images of the model is no longer zero; strictly therefore

there should be an incidence (and camber%, correction due to solid blockage. This is
Susually very small, especially when compared with the corresponding correction due .to

the lift on the model. The aerofoil displaced from the tunnel centre line is also
discussed in Reference 5.7.

5.2.2 Body of Revolution S/

The analysis for a body of revolution, though more complex, is in many ways similar 1

to that for an aerofoil. In the early work Locl- fRefs.5.I; 5.29) replaced a small body
hiy a doublet whose strength was related to " ,stream velocity by a factor A3 •
analogous to X2 in the preceding sectic ody was then effectively represented) by an equivalent sphere of diameter (4A/")-A3 . where A. is the maximum cross-
section of the body normal to the stream and. corresponding to Equation (5.3).

) = 4  t3 ds. (5.17)

I

-... -. " \
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The images of this doublet persist to infinity on all sides of the model, so that
a doubly-infinite summation is r-equired to obtain the solid-blockage factor. Fbr a
model centrally placed in a tunnel of height h and breadth b

()3 /2 ,

where

bh 3/2

.&- (32b2 + n2h2)

Here indicates that (mn) takes all integral pairs except (0.0). T is a

numerical coefficient which must be determined for each ratio of tunnel height to
breadth: for a square tunnel 'r = 0.309 (Ref.5.1). Lock calculated ' 3 for a Rankine
ovoid and a spheroid and this work was later extended by Borden (Ref. 5.2; 1954) and
Herriot (Ref. 5.23; 1950). The latter reference contains tables froL which ) can be
estimated for many shapes of body. The variation of X3 with body fineness ratio Is
shown in Figure 5.2.

Young (Ref. 5.5; 1945) has also estimated X-3 for bodies having pointed tails, for
a range of maximum-thickness position. If the fineness ratio of the body is denoted
by f , the equation

A'3 = 0.4+ 0.49f (5.19)

approximately represents Youngn s results (Fig. 5.2) and gfves a rather lower value than
for symetrical bodies of the same fineness ratio. A more recent discussion of Lock's
method, which includes an approximate method ef deriving X3  for stremaline bodies
has been given by Vasy (Rf.5.24; 1957).

Despite the existence of fairly extensive data for estimating A3  for any given
body. rau authc-rs have adopted the alternative approach whereby the blockage factor
Is related To the bdy volume V . TIs is analogous to tVe use of the cross-sect!onal
area A in the case of a zro-diaaisionsl aerofoil. It can be showr that

2k3A;z'ý 1/1_7V , (5.20) 4
and that the strength P of the doublet representing the model is given by the pr•oduct
VU . Thus Equation (5.18) may be rewritten (2)

(2 1\/2/
"CS r •7T ) V T, V.

where the tunnel shape factor

S3/L
__!

E |+
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j rall perturbation theory allows the effect of compressibility to be estimated in the

same ay as for an serofoil*. Thus

I ~ J6$ =Ty) . (5.22)

iVanss, 25s using some earlier work of Tho.pson 5 5, includes an additional term to allow

for the effect of body fineness ratio, so that Equation (5.22) becomes"

' (1)3/2 V

Es = T( - -(I + o .4 /f) . (5.23)

If it. is asmed that V= k3 t 2 , where I is the length of the body and t its
amulaw d'ameter, this modification is equivalent to putting in Equation (5.18)

4
i = -k [f + 0.4] * (5.24)

773

which, for a typical value k3 = 0.45 , gives values of X3  close to those derived
more direatly.

* In Section 5.2.1 it was suggested that the solid-blockage factor of an aerofoil
could be determined readily if the model was replaced by an equivalent ellipse.
Similarly, the body of revolution aey be replaced by a spheroid having the sane volume
and maximum thickness; the length of the equivalent spheroid will usually be less than

I , and the equivalent fineness ratio will be

6k3
S.~ff. (5.25)

1 77

7he value of X. for the body may now be found directly from Figure 5.2. As an
example. consider a body of actual fineness ratio 10. where the equivalent-spheroid
approach yields the value X3 = 5.91 in close agreement with X3 = 5.96 from
Equation (5.24).

Bo far ve ,ave co•-kideed the mcntribution of the model geometry to the blockageI factor. The tunnel shape alv* Influences i5 through the parameter T or r and
values for specific tunnel cross-sections are given in e-everal Dapers (e.g., References
5-1. 5.4. 5.23). The most cozmplete calculations for the tunmel-shape paraaeter are
probably those by Herriots 23. covering values Gf b/h between 0.29 and 3.5 with

corresponding changes In r frcm 0.81 to 1.73. These results are replotted in
Figures 5.3 and 5.4 in terms of T . where nse is made of the fact that for a small
"model the value of r is independent of the orientation tf the wdel with respect to

In sowe early pApere. there was confusion about the precise form of the boundary conditims

at the &Adel and hence of the coapressibility f-actor. It is now generally accepted that
.8-3 is correct.

*- Te remarks contained la the footnote. radicated Just before Eqution (5.9), about the
, -9'..![ coepressibility factor for thickne effect of two-dimensional profiles apply to three-

idimnsional bodies also.

L4Z
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the wells. Approximate formulae for T have been suggested as an alternative to the

more precise calculations. Thus, for j• < b/h < 2 , Thompsons" 6 recomends

T = 0.36 + (5.26)

As Figure 5.4 shows, this lies very close to Herrnot's curve. For 1.2 < b/h < 2.0
Young and Squires s have suggested the following formula

T = 0.65 (5.27)

which, though far less satisfactory, leads to a very simple form of Equation (5.22).

es = 0.65 1 , (5.28)

it is claimed that this gives the blockage correction to within ±5% for any three-
dimensional model. For a body of revolution specifically, Young and Squire suggest
that the numerical factor is taken as 0.68. There would seem to be little to be savea
in using their form in place of the sore exact relation (5.22) or (5.23). combined with
(5.26).

As In the case of the two-dimensional aerofoil, it is sometimes necessary to use
more complex expressions for the solid blockage, if the body is long compared with the
tunnel dimensions. This problem has been considered, for example, by Evans (Ref. 5.25;
1949). whose method is essentially a development and extension of the earlier papers ty
Thorn and Thompson. A thin body of revolution may be represented approximately by a
distribution of sources and sinks along the body axis, and the walls by an infinite
array of images. The variation of the blockage factor along the body may now be
calcuated; this is done by Evans for a tunnel where b/h = 1.43 . The method, though
more complex than the simple analyses discussed earlier, may easily be applied to any
value of b/h so that the validity of the simple equation can be checked in any
particular case.

A model mounted off the tunnel axis is considered in Reference 5.57.

5.2.3 Wings and Wing-Body Combinations

FoPr the purpose of calculating the solid-blocirage effects the small wing or wing-body
combination of finite span may be regarded as identical to a body of revolution of the
same volume. This implies, however, that the wing is replaced by an equivalent sphere
or spheroid. and not. as one might feel is more appropriate, by an equ.valent cylinder.
A rectangular wing of 6 ft (1.83 a) span. I ft (0.305 a) chord with t/c = 0.125 would
be replaced in the analysis by a sphere of diameter about 11.8 ins (0.30 i): the
equivalent spheroid, having the same frontal irea as the wing, would not be greatly
different from this sphere.

Though precision is not possible in such matters a "snall" wing =ma conveniently be _,
regarded as one in which the ratio of the ;.ing span (2s) to the tunnel breadth (b) is
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below about 0.5. Within this range, Equation (5.22) may be used and Equation (5.23)
modified to necome

es = T ( -)3/I. + ], (5.29)

where C = bh . It is assumed in this equation that the wing effects will be more
important than those arising from the body.

When the model is no longer small compared with the tunnel dimensions, its
representation by a doublet becomes invalid. For a slender delta planform a
distribution of sources and sinks lying along the model axis should be used and the

• ' " calculation made as for a long body of revolution5 25 . In practice, a singleI moderately swept, it may be better to represent it by a series of finite line sources

and sinks running either parallel to the span, or parallel to the leading edge. Such
an approach was made by Theom°', who chose to keep the strength of the sources and
sinks constant along the span despite the fact that this arrangement strictly entails
some distortion of the planform and a reduction in wing thickness near the tip. The

* axial velocity induced in the tunnel by the images of the distribution representing
the model may now be found, though in some cases the calculation may be complex.

The representation of the wing by line sources and sinks was also adopted by
Herriots 2 3 , whose results cover a wide range of tunnel shape (0.29 < b/h < 3.5) and
model span (0 < 2s/b < 1) in compressible flow. Herriot's results may be expressed
in terms of the tunnel-shape parameter r and the body-shape parameters X2 and 3
In the notation of the present text his equation for the solid-blockage factor at the
centre of a finite wing of frontal area A, may be written as

Is = 4,33 (bh) 3/ 2  (5.30)

-here T now depends on 2s/b

Equatiox (5.30) my be transformed to yield equations similar to (5.22) and (5.29)
I* above, but where T is now a function of b/h and 2s/b . as shown in Figures 5.5'

and 5.6 which are based on Reference 5.23; when 2s/b < 0.5 , T does not vary greatly
with 2.s/b . The general forms of Equations (5. 23) and (5.29) may be applied to wing-
body combinations as well as simple wings, since the effect of the wing is generally
of greatest importance in determining the blockage. In cases where this is less
obvious, the contributions of the wing and body separately may be estimated and their
effects added.

When the wing is sweptback, and per•a•r; tapered, the lines of sources and sinks may
no jonger be normal to the stream and the infinite sunnations are less easy. Evanss. s

has shown that most wings may be represented by a uniform non-tapered wing, having the

For 2s/b = I . a comparison can be made with two-dimensional results by putting '. = Ab in
Equation (5.22). In this case = 7()*l( 2

where the first term corresponds to Equation (5.7) and the second term arises from the
side-wall images.

S.
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same volume, mean sweep and thickness-chord ratio as the original wing, but with a
span equal to 2Z3kx. where kx is the radius of gyration of the original wing about
the x axis. In Reference 5.25. Evans is concerned with a tunnel with b/h = 1.43
and carries out summations for various mean sweeps. so that Es may be calculated
over the model. The method, however, is of very general application.

When a half-span modt~l, mounted directly on to the tunnel side-wall, is being tested.
the solid blockage at the model position is approximately that due to a complete model
in a tunnel of twice the breadth.

It may sometimes be necessary to calculate the solid-blockage effects of model
supports, such as struts and stings. Some care is required, because the strut is
roughly equivalent to a half-wing model and the sting to a very long solid of
revolution; moreover the corrections to stream vclocity are required at the model
position and not at the centre of the support. It is sometimes preferable to attempt
to measure directly this velocity increment associated with the support gear in the
absence of the model.

5.3 SOLID BLOCKAGE FACTORS IN CLOSED
NON- RECTANGULAR TUNNELS

5.3. 1 Octagonal Tunnels

Many wind tunnels, though basically of rectangular cross-section, have corner
fillets to form what say be described as an octagonal working section. The effect of

the corner fillets in modifying the results presented in Section 5.2 is therefore of
some importance, though it is likely that significant differences will only arise if
the fillets are large. The analysis for an octagonal tunnel is less straightforward
than for a rectangular tunnel and only very approximate methods are at present
available. Batchelor 5 ' 2 1 . considering incompressible flow, uses the fact that the
tunnel height varies along the span of a two-dimensional aerofoil and argues that
there is a consequent spanwise variation in 65 which locally is given by Equation
(5.2). This means that when the overall force on the wing is measured the inter-
ference must be averaged across the span to give an equivalent height, as defined by
Equation (2.29) of Chapter II. Details of the results for the Melbourne 9 ft x 7 ft
tunnel will be found in Reference 5.21; some care is required if the forces are
measured on only part of the wing span. Batchelor' s approach probably overestimates
the interference present on a full-span model, and it would seem safer to adopt the
alternative equivalent height suggested in Equation (2.30) of C-apter II. The fillets
can probably be ignored in relation to measurements of pressure at the mid-span position.

Batchelor also discusses the interference likely to arise from three-dimensional
models within the octagonal working section. It is assumed that the solid blockage is
the sum of that due to the basic rectangular section and a contribution from the corner
fillets. The condition of zero flow across the fillet boundary is only approximately
satisfied by the chosen distribution of sources and sinks because of Ibe complexity of
the analysis. Working in terms of the tunnel-shape parameter -, and the three-
dimensional model-shape parameter X3, Batchelor estimates the blockage factor from
the following equation

J A-'
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wher •ois the value for the basic rectangular tunnel, 't is the calculated
Inr~¢due to the fillets, and C is the cross-sectional area of the ow'tagonal

Es =T +T (5.32)

whech is in an analogous form to Eationr(5.18).la r the Melbourne tunnel = 0.83

iand the first tern in the uare bracket has a value of 0.71. l is estimated to be

about 0.04 which is sufficiently omall t• suggest that, for moderately small fillets.asufficiently good answer a be obtained simply calculating the bmockbge factor

appropriate to the basic rectanular tunnel, i. e., by -utting rl - 0 in Equation
S(5.32). If ths procedure is vali= , then any of t0e formulae in Section 5.2 3ay 2)

* . used and the effect of co~~re~sibiti-y is allowed for oy the factor •- 3

The lift interfere ;ae on a nlo r e in a(1 octagonal tunnel was also discussed bySBatn theor in Reference 5.21 a .aproach was later extended by voos (Ref. 5.51;

1951). who represented the s unnc t salls in a simpler but rather more approxlfite

fasu cn. It seems possible What a similar analysis could be made tor •he blockage
co prection.

(5.3.2 Circfilar ani Elviatica d thens

uTwnel• havh~g a closed circular crots-sectcon are :iow less widely empooyed than in

Sthe past: as a cR sefer nce there is leas literature on blockaae effects than fo5 the
correctangular . ring section.

;•,c calcalation of tue solid blockage attributable to an aerofoil spanning a closed
circular t 'nnel is far frcm easy nd seems first to have been discussed by Vincenti and
Graham (Ref.5.27; 1946); they :v•inted out that the interference cannot be found !y the
iage methcd. since no system of images satisfies the appropriate conditions at the
tunnel boundary. Tre floe field of the non-lifting two-dimsnsional model was

ji represented by a distrilbution of horse-shoe vcrtex elements of infinitesimal span for
which the interference field in a circular tunnel is known S . In the present
notation. these authors obtained, for the solid-blockage factor at the tunnel centre,

= 1.356 ( 1~ (\,)#yX, 5 a

where R is the radius of the tunnel. hlis is identical to Fquation (5.6) for an
aerofoll spanning a two-dimensional rectangular tunnel of height 1.558R. It follows
that. provided this transformation of tunnel height and diameter is made, the sever?.l

"blockaga equations of Section 5.2.1 may be used. 7hompson-'s Equation (5.9) becomes,
far ezaznple.

0.216 1+ c. / Lt.) (5.34)

I. 13 3p2
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Vincenti and Graham show th.t, because of the symmetry of the system, no vertical
velocity is induced at any pos~tion along the span of the aerofoil,- nor is there a
streamwise pressure-gradient associated with the solid blockage.

The blockage effect of a body of revolution inside a circular tunnel was ant, of the
earliest problems of this type to be discussed, Lamb (Ref.5. 26; 1926) considered a A
Rankine ovoid. The series of Bessel functions Phich Arise in the analysis eeae
sibsequently reduced to a sore usable foa by Watson (PFef.5.28; 1.93t. Glauert-
and Lock" 2 9 derived the solid-blocLage £fctor f.r inco•:xes•Ne _flo in the simple
form

= 0.797-.A .5

snere C =R . Hence

0-t44(m/X 3 / 5•36)

X3 may be drJved for e wu'e range )f bodies from the tables in Referen:e 5.23, or
alternatively eszi•Jat•d frcm Figure 5.2. The nuaericn), factor in Equatlon (z.35) IQ.
of course, a tunnel-sbsp- pomrumeter onalogous to 7, ; its value is close to tljat for
a square tamnel tO.al).

Once again It is sometimes convenient to use the model volume V and a tunnel-shvpe
paramntu-er corresponding to 1(--• ). With allowance for corpiessibility, Egoations
(5.35) and (5.36) thev' become

I/2 V

es = 0.706) , (5.37)

and

V
Cs = 0.128 BR 3  05.38)

^h'e tunnel parameter T 'hus has a value of 0.706 for circular tunnels. Equations of
this type have been derived by sever-l uthors$. 2 3

.5.30-$.32 for small bodies of
revolution, sall -e~gs or wing-body coabinatices. bhompson's thickness modification
say also be applied by multiplying the equatious by either [1 + I.ZB(t/c)] or
(0 + 0•4,8f).

When the model z)n is ro longer -mll ccpaned with the tuanel breadth, the
nacerical constants in Equations (5.35) and (5.37) must be modifiedS- 2 3 as shown in
the foilowing table and Figure 5.6.

; ' 0.797 0.812 0,8:5 0,15 M

T.7 I25b .2 35 t.7
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The actual variation in T with model size is very clo" to that for a square
tunnel. Herriot's 'theory is not really applicable at the limit 2sfb = I but a
s!'ilar difference to that , oted for rectangular tunnels (footnote in Section 5.2.3)
occurs It his limiting results are cftpared with the quasi-two-dimensional Equation
(5.34).

Fuchshaber (Ref. 5.59; 1961) gives a nathematical solution of the axisymetrical
problem without numericel results. 7he solid-blockage corrections assciated with a
body of revolution at incidence in the centre of a circular tunel has been considered
In general terms by Cremer and Kolberg (Ref. 5.58; IM€0). Even the eipression for the
velocity incrneuet at the centre-line of the tmnnel is quite coeplicated, end the
authors suggest the use of a comIuter in &Wy applications--.

* The distribution of solid blockaw altng *. body of legih I placed at the axi of
a circular tunnel has beem discussed by Vaniey (Ref.5.-3; 1951) in a paper which uy

*1be regarded a" the cau-iterpart of Borden' ansalysiJ35.2 for rectangular tunnels.
- • Vandrey replaces the body by a Rankine ovoid having the same volume and maxima croat-

section and obZ&izs an expreasion for tie solid-blockage factor at a distance x fros
the body centre

z.( = L.(f ,1 - Hi•)ý] 5! (5.39)

a I

2 it
I -

i I .5

and !W( Is given in Yable 5.1. Distributions of c (z% for bodi3 o•f affererit
* j~ ength.s are illustrated irt [igure S. 7

The maxim= blockage factor is reached at the centre of the body (x1 0). we-re

*1 C~t0) 2 [Hi.~ (5.40)j [

where a is the distance between the source and the sink that represent the body.
For a Rlnkine ovoid the shape pmrmeter X Is approximately equal to the body fineness
ratios 2 . Equation (5.40) army be rewritten as

E (0) 4R {H ( X (' /2

= "r(. C/ *• (5.41)

which is formally similar to Equation (5. 18). 7he parameter r will now vary with ,he
ratio of the body length to tunnel diameter (FIl.5.8). For very a1 bu .r
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approaches Lock's value of 0.797. It is at once apparent that use of this small-body
valzie for long bodies vill seriously overestimate the maximum s•lid-blockage
correction.

""•ough the analysis is strictly only applicable to R'mkine ovoids, it 1hola alGo
apply approx1mately to bodies of rather similar shape. Thus Equation (5.41) may be

rewritten as

VI VYsO) = T ,.(5.42)

where T(--•.-r1T) is also given in Figure 5.8,. It is interesting to note the marked
similarity betwe-en iarAxrey' r work and an earlier discuassion by Lock and Johanse
'Ref. 5.34; 1931). The va•le of ý6,0) is by %2efinittio the maximam achieved on the

body and not the average over its length. It w- be argued that for many purposes,
such as the deterglnatAon of critical flow CiAi*.lton. it is this maxi=im value which

is of greatest importanza: in other cases. ei-t as the wrrection of drag wad pressure
measurements, the mean blockage way well be us-4d.

Vandrey' s method may also be applied to find the solid-blockage factor for a
semi-infinite body; the variation ahs4f of. *ad along, the body Is shown in Pigwre 5.9.
"The maximum value oz C6 has almost been rexceC by one tunnel diameter from the noze
of the body. Pbr this case the origin can convyei.rtly bo c-rhged to the scarce
pQsition near the body nose. If x. is tie ¢istnce trom this origin, then Equrtion
(5.39) reduces to

c.(x() C6. 5 + f,:) - (5. 43)

ibere 1  .

Bince the velcity aradiut at the origin dre to a. sou.ce corresponds in magnitude
to the velocity induted by a dopblet, the tanget to the cave s-ouin in FPiVa 5.)
may be regarded as equivalent to Lock's small-body PJluation (5-35! if the fineness
ratio Is asum~ed to qqual X.

!vaogh several authors have considered the lift iuterference zssociated with a odel
mounmted in a tunnel of elliptical cross-section. the corresponding blockage problem
seems to bave been neglected. lb estimate the solid-blockage factor vt the centre
section of a two-dime••ional aerofoil spa•ning an elliptical vunnel, it would sea
possible to apply retsagular-tuel corrections for an effective tinnel hoaht he
If a and n are the major fspnwise) and minor axes of the twnel, then he will be
in the range betwren the values for circular and rectangular tunnels 0.779 < he/n < 1;
in the absence of other evidwece, a sidle linear relationship between h/n and niM
is suggested in Figure 6,10. ftr balance seasure*ents on the full aerofoll span. be
my be taken an equal to I-n.

For a small three-dimensionea sdel the tunnel-shape parameter T or T for a
circular tunne! is wt-hin 2% of tbat for a sqare tunnel, and Figure 5.6 shows that
ihe variation of the tunne!-shape psrameter with increasing model size is similar for
the two shapes of working sect-io. In the abance of direct infomation it is suggested
that. for three-dimensional models, the approximate value of T or r for an

- .. :
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ellptialtme m betaez s batfora reaars-cartuml f breadth to height

1 ~5.4 WAKE BLOCKIAGE FACTORS~ IN CLOSED~ TUNNELS

1 53.4,1 Two-M1mfsto? Aarofexi in a
9ectanaular Towl

IAn oarlsy &zteg* to allow for the vake blockage of a twa-d*.sen&ian21 aerofoii in
I ~~ineomressible flow was made 1W Page (Ref. 5. i5; 1-029) anid lock (IPef.,5. 29; ;929). who

introdosced an mpfrica1 facto? br~sed on tho effective width of the wake, into the
I aolid-blockage corre,,cou. Later Qlauarttl exew an analogy with the discontinuous

flow behind a bluff body in a constricted atream and 3aggented that the effect of the
.ske-u1L'r~d loagitudinti ielocity increment Ga the measured drag force (D) could be

rep" sented by

where k- Is '2be wevrntedd inrg qt Is the effective width of the iake &mne distance
S4mrlitnit of the aode-l andIs 15 sumed to vary with thickness/eborO. ratio in the manner

j j ashown In Figure t.1It. Ibis carve is based on the ewprimental evidence available when

Weerence 5,,1 wns written (lW'.. ftuattioi± 0.44) corresponda to a wake-bokage factor

I IIt terms In -2are reglected.

I ~Sabaeqent sathars havc se03 that the use of thie factor -n, was In many ways
* ~~ungatiafactor-', particiziarty for aerozluils =6u slender W~oits and It Is aow usual to

I relate a. to the semsred b~oov '4rag: when thisi is )mown or crn be ceatinsted. Use
*i Ihu. oftetn bee-n Wae of Prandtl s; sutzea.1-on that the wake can be represented by an

equivalent source sitm!ted at s'ze point an if- aeroffoil (say. ald-chord or t- ilifis
edgo). Tke atr-ength of ý'hiz igmice Q is related to tho acrofici. drag by

~~0. -V)

A slak of equal strength zwzt b-- placed 1f1r daiwnAres4. The v3Iocity incrtment Ciue to
'ae lockage Wa then be calealyted as thit *ffectively i *ued at the model position

by the inflnite array of source and altiwtjages. Tt~ nropriate 'vake-blaekaae factor
In incompresslble flow

(.5.47%

bas Nema derived 1w sy a"thors. NOr modern aezofeli cecticms, lBqustlonl.(5.47) gives
,I~ ja lower value of ew thea- lquation 01t,45) 9Wd ts to be Preferked.
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Fkzuatioa (5.47) is derived in slightly differeat ways in the literature, mainly
because of inherent difficulties in satisfying the conditions well downstream of the
nodel*. hese differences are of little importance in incompresasible flow, but mY
affect the compressibility factor that is applied. 7hu 5s4 sad Gotherts -31 re-e- nd
multiplying Equation (5.47) bLy g-2 to give

C)~ I :() CO (5.48)

Allen and Vincentli 3 consider that the source representing the model wake should give
the same pressure drop far downstream and not, az in Reference 5.4, the same drag as
the model in the trnnel. Allen and Vincenti obtain a different compressibility factor
which, for the ratio of specific heats 7 = 1.4 , gives

I, cIc+I + 0.(442

This compressibility factor li-s between 6-2 and - (Fig.5.12). 7howsc-'"

doubts whether this more complex factor is theoretically better than the simler fore.

because the representation of the wake tw a source is in any case difficult to jstify
rigorously. The use of Equation (5.49) sometimes leads to better agreemet lwith
experiment at high subsonic Mach numbers than does Equation (5.48). since in practice
the compressibility fa--tor - often underestUates the effect of strema MNch number; 4
for this reason alon-•1•. uatiauc (5-49) would seem to be preferable.

GoldsteLns- 7 has &Iso considered the wake-blockage effect in incompressible flow and
concludes that the source-inave systet of representing the wake and walls is valid if
C0  is mail, even though c/h is comaratively large. In such cases, however. terms
o to (c/b)" miy be required. Although no direct expression bora wake-blockage factor
Is contained in Reference 5.7. the cvrrection is implicit in the equations derived for
finding the 3tream velocity froa neasurements mode at the tunnel wall.

Equation (5.48) is the first tern of an equation due to Woods " ". who gives a xsme-
what different approach both in allowing for stream comiressibility and for representing
the wake. This Is replaced tj a stIng of thickness g attached to the trailing edge
of the model and extending to infinity downstream. In an unbounded stream

g TcC (15. 50)

and this remains true in the tunnel prorided term in C. can be neglected. Woods
shows that e, may along the model chord and derives the expression, valid in theneighbourhood of the aerofoil,

C'(x (= -~) % a z.)} (5.51)

* Coaq~re. or exople. the nethods of Referemces 5.3 and 5.4. 7km, in the latter poor.
discses the poestt-o of the sink a& camcludex that It need aot be at Infinity peVmIded
it Is urther awsy from the mdel than Gh at waller sa ( I s affected.
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The largest value of es along the chard of the model occurs at the trailing edge

4 ,(z = c) and is that given tW equation (5.48). Equztion (5.51) xv be used to calculate
ian approximate mean wake-blockage factor for a large model, for say, the correction of

balance results. If the variation of e. along the model is large tst• may indicate

that the pressure field around the model is distorted and dos not correspond to some
free-air pressure field. The validity of using the local islue of e. to correct the
measured pressure distribution then seems doubtful. As far as is kuovn. the distortion

Sof the model surface pressures due to the presence of a large wake has not been
j ' considered.

5.4.2 Tbree-Diamsomai odels Ia
Sectiogmlar Towel

Originally G-lauert 5-1 augges-ted that his epiricall wake-blockage factor 77 might
be applied in a modified fora for three-dimensional bodies, particularly solids of
revolution. A new factor

V

71 2 = 71 (5.52)

: was suggested. 77 being obtained froi en equivalent two-dimensional body of the same
fineness ratio. Equation (5.52) imlies that the wake-blockage effect is far less

important for small three-dimensional models than for aeroloits. Such arguments are
less forceful for a large wing. and later authors have pce more preferred to relate

I •the wake-blockage factor to the model drag. As in two-aimensional flow, the wake is
S I replaced by a source at the model position. The corresponding equation to (5. 48)
* above is

I . I(S

t where 6 is the model area on wbii-'1the ae-rodynmic coefficients are based (e~g.. the
planform area of a wing,. Altermtively. following Allen and Vincenti 5 3 and

- ! ! erriot'-23. we have

N. w ~ 4 6ýh) f2 C5-54
]I
J These equatictn-are usually held to apply to any three-dimensional model but some care

is needed if this is a liftiLng ing; the drag is t-en partly due to the trailing-vortex

Ssystem and partly to surface frictlon and incomplete pressure recovery over the alter
part of the model. It eeems reasonable to ignore the influence of the vortex drag on

the wake blockage, so that in Equations (5.53) and (5.54). CDo . the zero-lift drag
should he used. Such an approach is of course consistent with the general assmption

- that the blockage Is independent of lift, -provided the latter is not large. With
•F : ;separated flow. however. an alternative method Is required and this is discussed in

Chapter VII,

Methods so far discussed have largely ignored the actual structure of the wake.

This matter was considered y Ej ss5 .25 who. starting from the momientum and continuity
equations of the flow, showed that the form of the velocity distribution within the

Swake had little influence on the velocity Increment experienc3d by the flow outsideP -_
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the wake. The velocity inside the wake can therefore be considered as coeastant atfl

times the uncorrected free-stresm velocity U . 7he velocity Increment sufficiently
far downstream from the model (where the wake blockage will be higher than at the model

where •

-•( I lM2]

S•A source of strength Q Placed on the tunnel axis at the model Position gives an
Stncrament

'Thus tbu br.%ce strength equimrlent to Equation (i;.55) ia n

Ine'DI

tNow wk is about 0.9 in the region doestrea of the model and hence as the atreas
tins ntber increstes froe zero to eunlity W changes from i. e to about 1.S. Ems i n
fact sugsts that a value of (.4 is appropriate for aost high-speed tnael tests. If

ho more exact Information Is available. 7homs"' and others. using Eqluation '5.46),.
aay be regarded as putting W equal t.o unity In Equaltion (5.57).

The form of Equation y5-53) adsoc-ted IV Evan then becoms

6( 4kU ) Ia W C (5.58)

If f) Is taken as unit;y for all stream "ich ntm'mrs, this equation reduces to a form

identical with Equstion (5.54) above.

For a long body, tons suggests t.hat the source be placed at. the model centre-of-
volume and the wae-blockage velocity Increment calculated not only aloog the length
of the body but along the tunnl walls as well. An Eectton 5.6 sbo.m, the latter"
infers--tion Is vxluable. in providing a method of checking the validity of blockage-
correction theoryj. Although Reference 5.2°5 is tvacerned wM~ a tunnel where -
b/h = 1.43 , the asth.M Is of general asolicatlon.

l As in the case of the solid bloc~se, the wae blockage for a U~lf-sma model
wounted directly on the side-teal! of a rectangular tunnel should be calculated from :•
the value appropriate to a cme~lete aodel in a tunnel of twice the breadth. be •-
wake blockage of struts zvrtin• a model may sr~etimes be significant and thewe

S~~should be rega-rded as equivalent to half-wings mounted on the tannel flo~r. It is '-
usually sufficient to asset that the Yttloctty Increment calculated from present
techniques of be applaed at the actual model apoitton.

inorsuen

S•oQ
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.1.

1 •5.4, 3 CIcae4 Non-kectanplaz Tuniel,

SM tchelors 21 and Vincent! and Grahaum5 ,k discuss the appropriate wake-blockage

I factrs for two-dimensional aerofoils spanning octagonal and circular tunnels
respectively; they recomend, as for solid blockage (Sections 5.3.1 and 5.3.2). that

Ij a similar formula should be used to that for a rectangular tunnel, but with an

equivalent height he in place of h . A. the centre secat!on it seeas best to ignore
corner fillets, to take he = 1-558R for a circular tunnel, and to use Figure 5.10

S j for an elliptical tunnel. When balance results on a fall-span uodel have been obtained

and require correction, it would seem best to put

C
he = -, (5.59)

as suggested in Equation (2.30) of Chapter II; this would give a slightly larger value
he = 1.571Z for a circular tunnel, or gener-ally for an elliptical tunnel he = 0.785n

, -in place of Figure 5.10. Me relevant wake-blockage equation in all cases will be

•'; i ]1 fc\/+ 0.4N2\
+ 0-'81 2 )CDO. (5.60)

4\khe// /

where C., is the zern-lift IMa.

For bodies of revolution, wings and wing-body combinations, it is sgested that

I Equatlon (5.54) be used to determine the wake-blockage factor, but with the tunnel

cross-sectional area C in place of bh . If the wake characteristics are known.

Equation (5.58). similarly modified, my be employed.

j5.4.4 Wake Blockage Gradient

In the prece'.ing sections, the discussion has mainly been concerned with the
calculation of the effective velocity increment at the ,wdel position caused by the
imags of the source and sink, that simulate the walls of the tunnel. This velocity
increment varies along the tunnel axis. and hence along the model length, but theI calculated value at the source position usually represeits an average increment over
the model unless this is ver7 lon.

Unlike the solid-blockage velocity increment, the wake-blockage effect is not
msyqmetrical about the model but increases continuously from nose to tail. The model
is therefore subject to a longitudinal velocity gradient. This buoyancy effect IwmosesSa drag force on the model which, since it would be absent in free air, must be
corrected Zor. The method of doing this is discussed in Section 5.8.2.

S5.5 BLOCIAGE FATTO3S IN OPEN-J i TUNNELS

5.5.1 Solid Blockag for Models Spaming
the Tunel

For an open Jet of rectangular sbhae the method of images my be used to represent
the model and the Jet boundaries. The doublet images are no longer of the sane sign,

-- - ..-- ~- ••-•-
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but alternate with distance from the model. The induced velocity is therefore Wmaller
at the model position than for a closed tunnel and of opposite sign. as shown by the
equation (Refs. 5.1. 5.29)

es -( C 2 ( 1)2 X

24\h/\c/

where X2 is given in Figure 5.1. In magnitude this is half the blockage correction
appropriate to a closed tunnel: accordingly the equations of Sect-ion 5.2.1 may be
modified simply. Equation (5.9), for example, becomes

=- 0.262 1 + 1. (5.62)

In Reference 5.22. Section 7.21. Woods has considered the distribution of blockage
factor along the axis of an open-jet tunnel due to the presenze of a two-dimensional
aerofoil. At the centre of the model the value obtained is identical to that given
by the simple theories.

The blockage effect on an aerofoil spanning a circular jet seems to have received
little consideration. By analogy with Equation (5.62) one possible assumption is that

the blockage factor is half that of the corresponding closed tunnel, and of opposite
sign, so that in place of Equation (5.34)

C = -0.108 1 + 1.Z8 (5.63)
!P

A similar assumption may be made for elliptical working sectIons.

5.5.2 Three-Dimlesional Solid Blockage

The boundary conditions for a small model at the centre of a rectangular free jet
may be represented by a doubly-infinite set of images, as for a closed tunnel. As in
the two-dimensional case the signs of the doublets alternate, this time in rows and

columns, so that the velocity induced at the model position is smaller than if the
boundaries were closed. Locks 2 9 evaluated the blockage factor for a square jet; the
equation is similar to (5.M8) above

(Am1

but now T = -0.238 compared with its value 0.809 for a closed square section. The
magnitude of blockage effect in a square open jet is thus only about 0.29 of that

present in a closed tunnel. In terms of the model volume. .ith allowance for :"

compressibility effects, a simple equation for the square jet tunnel is

V
E -0. 211- (5.65) iI

I-1
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The general case of a rectangular jet has only recently bE M considered, both at
- -the NPL avd by Vuest 5 *5'. In the former work, values of r were evaluated from the

double summation in the notation of Equation (5.18)

I -=' I_) bI bh (5.66)

and are given, together with T(=--7rT) in the following table:

b 2.00 1.80 1.667 1.60 1.40 1.25 1.. 10
ih 0.50 0.556 0.60 0.625 0.71 0. SO 0.• . 1 .

T -0.461 -0.392 -0.35" -0.339 .--0.189 -0. 260 -0. 242 -0.238

T -0.409 -0.352 .0316 '-0.3009 -- 025 -0 260 :.1 J.-1
Me results are plotted in Figure 5.13. 7he Dercentage increwse in the tunnel-shape
factor in the range I < b/h < 2 is mich larger th•a for similar closed rectangular

$- •tunnels (see Figure 5.4). but the wtaml cheange in value It thts range is ltle
different for the two types of bo "_dary.

Wuest has aleo mon-idered the effecs, of -displacing the model from the tunnel
centre line.

I •,The circular open jet coitaming a =all model was discussed in Lock's original
-] • paper5 '.'9 and lad io -. silar equation to t-in for the closed tunnel but with a

" " differ-mt numerical factor, aind of opposite aign,

0.2 -) X 3 , (5.62K)

I where ,k3 is given in figwre 5. 2, Mhe ratio of solid blockage in open and closed
circular tunnels is therefore -•.026. a value close to that for square tunnels. A

I simple equation in terms of the stream Mach number, tunnel diameter, and zedel volume
S- ois

0. 0.3 3 3  )4 j (5.68)

:I Cremer and Kolberg (.ef.5.58; 1960) have considered the solid-blockage effects due
t to a body of revolution placed at ipncidence in a circular open jet. General expressions

* -LI• are given for the velocity increnents Induced in the vicinit-, of the model and for the
deformtion of the streamlines. These expressions are very complicated, however, and
are not reedily evaluated without machanized computation.

Vandreys5  has cousidered the solid-blockage correction for long Rankine ovoids in
circular open jets and obtains fn analogous expression to Equation (5.39)

SX)= [I(5 - I 2 ) (5.69)
C

Y-
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where and •2 are defined, and values of I(e) listed, in Table 5.1. It is

interesting to note that the largest value of es(x) is reached at the centre of the
body only if the body length is less than 6R . For longer bodies Es(x) is larger
near the ends of the body than at the centre and on a semi-infinite body this mUximum

is acbieved at a distance 1.2R downstream from the nose of the body (Fig.5.9).
Fuchshuber (Ref.5.59; 1961) gives a complete axisymmetrical mathematical solution and
has evaluated the flow along the boundary of the jet. For body lengths greater than
about 1.5R the maximum velocity increment is obtained at two positions fore and aft
of the centre; these maxima sharpen and their positions approach the ends of the body
as its length increases. Because of the difficulties of obtaining long stable jets it
seems that these results will seldom be needed.

Many open-jet tunnels are of elliptical cross-section and some simple blockage
correction may therefore 4e required. In the absence of more direct information it is
suggested that an equation of the form

/1 )3/2
s= r + 0.029) ) , (5.70)

may be used, where T. is that for a rectangular open jet of breadtb/height ratio
equal to m/n (Pig. 5.13) and C = •7m-r.

5.5. 3 Wake Blockage Effects

It is often stated that wake interference effects are zero in open-jet tunnels,
but this is true only in a restricted sense. If the model wake is represented iy a
source, the effect of the tunnel boundaries may be simulated by an array ;;f images
alternating in sign with the original. The velocity increment associated with the
wake blockage due to the presence of these images is zero, because the alternately
positive and negative infinite sets of images produce zero velocity increment at the
model position and at infinity downstream or upstream. The velocity gradient along
the model length is not zero, however, and is opposite in sign to, and smaller than.
that in the corresponding closed tunnel. Thus for a small model one =my conclude that
4w = 0 , but for a long model a distribution of ew corresponding to the velocity
gradient, will exist. A correction must therefore be applied to the measured drag to
allow for the wall-induced horizontal buoyancy. 7his is discussed in Section 5.8.2.

The distribution of the wake-blockage factor along the chord of a two-dimensional
aerofoil spanning a two-dimensional open jet is discussed by Woods in Section 7.21 of
Reference 5.22. At the mid-chord position the blockage factor becomes zero, though
the gradient is finice.

5.6 ESTIMATION OF BLOCKAGE FROa WALL
MEASUREMENTS

In the preceding sections we have been concerned with the calculation of the blockage
effects from the geometry of the model and tunnel, and from the state of the tunnel
stream. The existing theory may also be used to estimate the incremental blockage
velocities anywhere within the working sectins, for example, at the tunnel-speed hole.

The changes in stream velocity induced by the model and wake and their Images may also

11



312

be calculated at the tunnel wll imediately opposite, say, the midpoint of the model.
7he ratio (Z) of the velocity induced at the model position bo the images alone, to

W t. total induced velocity at this wall position is important, since, if this is known
on theoretical grounds, the blockage of the model may be found very simply from measure-
ments at the wall. An approach of this kind Is therefore most valuable and hss special
advantages. it is of course of greatest application to tunnels having closed boundaries
and these will be mainly considered in relation to two-dimensional (Section 5 6.1) and
three-dftensional (Section. 5.6.2) models.

I
4 In discussing the methods of estimating blockage from wall measurements it will be

assumed that the model is at zero lift. If this is not the case, the lift effect on
* •the wall pressures most be removed by averaging the pressures obtained above and below

the model.

5..1 Two-Dimenioeal Aerofell

For a small aerofoil placed at the centre of z closed rectangular tunnel the solid-
tlocklage velocity incrmet at the wall immediately atove or below a non-lf4 .ing model
is aboaý 1.788 times that at the model positicn. The velocity increment at the wall
deduced from pressure me.surements will. however, include the increase in velocity due

' to the model itself, as wel,3 as that due to the imzes. nhe velocity ratio (Z. ) for
this case is exactly 1/3; that is to say, tho solid-blockage factor at the model will

*b &oivea !Y

-Z6 = - (5.71)

where (u - iU,, is the maximum supervelocity at the tunnel wzll opposite the model
and may be estimated from the wall pressure distribution.

: The value of Z is unaffeeted by compressibility of the tunnel stream (Refs. 5.4.
* 5.2S). b'it at high Mach numbers the velocity peak on the wall tends to nove downstream

from a position opposite the ma1u.imm thickness of the model. For large models Z, y
fall below 1/3; !ocdss' 5 Las considered the relation between the distribution of E.
along the model and the velocity increments along the wall.

As the distunce upstream or docnstresa of the model increases, the supervelocity at
the wall due to the solid blockago becomes smaller end finally vanishes. At infinity
dc&wstrezz, however, a velocity increment will be recorded ubieh is due entirely to the
wake blockage and is found to be twice EwU . If (u - U), is estimated from the wall
pressures well downstream, then

t G - - = 2 (5.72)
(u-U)"

-I

I b m homs' discusses the variatiou scro. the tunnel and gives this ratio as 3(n2 -44)/,,2

Ses also Reference 5. F4.
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Goldstein5 *7 gives ageneral expression fotevelocity at te wlinncompresil
flow

It +(7r)A ecbl1 C .() r1tvix . (5. 73)

where

In terms of the solid and wake blockage factors this expression becoces

=I + (3A sech2X)E.+ (I + tanh XA), *(5.74)

thps enabling the solid and wake blc'.kage te be estimated from measurements made at any
two stations; one of these should preferably be close to the model and one downstream.
Because tanli X rapidly approaches it~s asy~totic value as x increases, Whilst
sech2X decreases, the latter station nee-d not be further dowastream than about 1.5
tunnel heights in order W, zke an accurate estimate of C~. .This is of great con-
venience In view of the livited length of tunnel working sectlans. The solid-blockage
contritetio6 at this Porition will be less tMan IS of the total.

The vaiues of Z,. and Z.. for En tierofoil. spaning a circular tunnel have only
been discussed in alimited Minner5 ': it seems likeLy that t-he metbods of
Reference 5.27 could be extended to =oer thin case.

* 5.6.2 Three-Dimensioral K*4e~s

For a rectaagular tunnel containing a three-dioensional model m~all enough to be
represented by a doublet, the 'value of %is different (a the roof andI vide-uslls.
unless the tunnel cross-section js sqwae. In an early paper Thow" zhowed that Z
was respectively 0.28 and 0.56 for the roof and side-walls f a tunnel with bjli = 1.43.
*ien the model was represented by a simple doublet. For a wing ceo~poed of line sources

* and sinks, whose span is 0.6 of tue tuneel breadth. these values tLcome 0.16 and 0.3
A body of revolution ina square tuprnel gives Z3 = 0.43;: in a circular tunnel 2Z, 0. 45
(Ref. 5. 30).

Those s work for a rectangular tunnel was leter eatemded hy Hcuaol (Ref. 5.40; 1951).
who represenWe a finite-spin *iog ta a distribution of line sources and sinks. and st
body of revolution by a distribation of point sources and sinks. 7he finite swept wing
however Pres~ets certain analytical difficulties, and discrete doublets were used Mn
this ctse. ff.-sel3 s method is quite ge~oralz and can be applied to any closed rectangular
tunneL. Ite unwerical computation is nowever complicated, and in Re?5xence 5.40 results
are given only for bih Ike Th effect of speep on Zs for both the side-walls and
roof Is sbhow in Figures 5. 141(a) and (;)i. Althoush Zo is larger for swpt than lor Z
unswept wings. it. should be remembered thr-t the actual wall velocity increments are
smaller in the latter case, so that the tread in %5 with sweep is not riecutssarlly that
of .3 .value of 2ýat the roof for an "~swept Miite wing alsoet completely
spanning the tunnel exceeds that for a two-disensional wing. A similar effect occu~'s
In the direct calculation of the solid blockage (see fcftnote Is Section 5.2.3).U
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For compressible flow Hensel recommends the use of An equivalent sweep angle At
related to the geometric sweep angle A kv

A tm Ae = tan A (5.75)

A. can then be used in the charts or equations of Reference 5.40.

Hensel' a analysis assumea thaL the body length or wing chord is mall compared with
the tunnel dimensions.. 7his will often be the case for models tested in high-speed
windI tUnnels. Exceptionally long bodiez of revolution my be investigated and then
the method developed t7 Rus$" 2S seems preferablc;.- though the calculations and experi-
ments described In the reference are primarily concerned jith a tunnel where b/h = 1.43.

E B e •hos that Zz is not onstmnt for large uodels but depends on the length of the
model and the Mach number of the streaw.

• BHensel points out that. for lorger wings, the velocity ratio shculd be related to
* •the near blockage increment over the wing spmn and not to a local value on the centre

section. This mean is CoMaratively easy to calculate for a straight wing, but for a
Ssweptback planform each sp-nnwise position lies in a 4ifferent longitudinal position

and this complicates the analysis. The effect of wing taper on both swept and unkwept
wings cannot readily be obtained by Hensel's approach. though he suggests that the
effects of ignoring both wing taper and apanwise variation of Z. tend to cancel each
other. evans considers that any wing, unless of most worthodox shape, may be repre-
sented by a non-tapered swept wing of equal volume, seen angle of sweep and tbickness/
chord ratio. but with a span /3kx where k, is the radius of gyration of the

Sa original wing about the x axis. Slender delta wings are best replaced by an

* .equivalent body of revolution.

SEvans also suggests an allowmance for the effect of suall s•personic flow regions
I Iadjacent to the model surface, an effect likely to be present at high subsonic strew

speeds. This aspect is briefly discussed in Section 5.8.2. In general Reference 5.25
I showz that very good agreement may be obtained betw'en the calculated and obaerved wall

pressures, and that the lLtter may be used reliably to estimate tne solid-blockage

I factor.

The wake-bloc*kre factor for small thr-e-diAmesional modelz may be found froe the

velocity incre.meats far downstream in the same wmy ss for a two-dimensional aerofoil tw
Equation (5. 72).

The velocity-ratio method of obtaining blockage factors for models I circular cloaed
tmnnels has been discussed by (therts5 30 &W Schsi ."6. As was mentioned eari~er.
the value of % for a mall wing or " is 0.45. which is close to the valu* for a
square tunnel. .For an unawot wing ihose span Is tal to the tunnel radius. Zs

L •equals 0.50.

1 References 5.36 and 5.59 both consider the case of an open-jet tunnel containing a
body of revolution, thouo it seem naikely that the velocity-ratio mettod will be

used tn find the solid-blGckage factor in this type of tunnel.

I



BPEEDS IN CLOSED TUNN!ELS

The effects of compressibillty have been allowed for in the earlier sections by
seanus of a small perturbation tbeory which essentially becomes less valid as flow
Xacb numbers approach unity. This mants that the compressibility factors become
unrellable as the tunnel Aach number reaches high subsonic values. Moreover. in saud
flows, supersonic velocities my be reached locall~y about the model and the associated
shock waves violate the asewaption that the flow is everywhere Assentropic. Mifortunately
it is just in this region of atream Mach nusbor that the model cberacteristics show
the greatest sensitivity and a precise value of equivalent free-air Mach number (Wn
hence of the apprepriate blockage correction) is important. ?be maesntude of the

blcaecorrectious will in any case be larger than at lower stream Mach numbers
because of the foims of the simple compressibilfty factors (Eig. 5.12). Pand also because
the 2odel drag used in the wake-blockage correction factor may Increase very rapidly
with 9 , The highest Mach owfoer obtainable in a clossed-wall tunnel is that achieved

when thc tunnel choke~a; no additional, mass flow can then be passed through the 'Working
section by increasing the fan speed or tunnel power. The exact value of the chokicg
Mach number depends on the geometry of the model and the tunnel. bt.t a simple one-
dimensional consideration often gives a useful guide to this limting speed (see
Rference, 5.56. for example).

Theprseceof a aiu w ubr the clash between the increasing magnitude

andimprtaceof the blockage corrections and the uncertainties inherent in their
deemiaio.led wotedelpeto ind tunnels having slotted or perforated

sections bas been such -As to reuetedemand for more accurate blockage corrections

at hiah subsonic arpeeia. Nevertheless such corrections will be required occasionally,
and x short discustion of some available techniques is justified.

5.7.1 Notiifcatlom of Simple Im~resaibility Theory

Exix~rimentall evidence suggests that 1v usting the simple compressibility factors

giveu by maill perturbation theory the true compressibility effect on blockage is
frequantly underestimated; jsome modification of the factors maty therefore be coa-
sidered. or alternatively a new theoretical approsch attemted. Blockage correctionsIZ
applicabie near tiýe choking condition have been put forward by Thorn and Jones (Ref. 5.18; 7-
1947: Ret. 5.41: 1946); a noticeable feature is a new term in the solid-blockage relation
proportional to 46s . This method is not easy to apply In general. and perhaps the
nost valuable and simple suggesti~on was made by Evanss5 2: that the corrected Mach
number should be used in calculating the factors 8, 2 and A-3 of the simple theory.
This impliea, of course. that. the fins! value of the corrected strew Maeb number is
reached by successive approx..satiotis; usually two or three iteratJons are sufficient.
Th.4s techniqu:e is amply Justified by the experimental evidence of EvAns' a paper, shich

Examples illustrating agemewnt between theory and experiseut are given 1z Figure 5.15.

Doge(Ref.5.14 91 a developed =n apprximation (due to Gewatitsch sand

vai na M=1) usflfraayigthe transonic flat past an aerofoil. and frcs
wbich a transonic similarity law relating the aerofoll pressure drag and a free-stream
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Mach number (9*) based on the critical velocity of sound (a*) my be derived. Drougge
suggests that tkii law mQ be applied to the blockaxe problem at high transonic speeds,
it tests results are available on two similar moD.els of different .izes. An extra-
polation to zero model size* valid at transonic speeds ma then be made.

5.7.2 W40a af J•o•l Swereoaic Flow

bhe preseice of regions of local supersonic flow on the model further complicates
the problem of blockage corrections at high subsonic speeds. Thompson" .6 conaiders
that potential theory can still be used to calculate the velocity increment at the
model position due to blockage from an array of simple doublet images. but that the
theory is no longer walid for finding the strength of the equivalent doublet fur the
model. This suggests that the effect may be simulated by an increase in the effective
volume of the model in the solid-blockage equations. Evaus. 25 in fact argues that
the influence of the supersonic regions on the induced velocity at some distant point
is similar to that produced by a local bulge on the model surface. The extra volime
may be related roughly to the increase in drag coefficient (EC.) that occurs after the
drag rise has begun. From an analysis of experimental results on three unswept wings
in the RAE 10 ft x 7 ft High Speed Tunnel, Evans deduced an equation for high subsonic
speeds which may be rewrLtten, in a fern analogous to Equation (5.29) above,

SI/ V [I tt~ 1 / 2

es ~ ' =IlTlc2+Bc(\ ý (5.76)

Iiere fl (I - 4)' corrsponds to the corrected Mach numbor Mc . The actizal value
of the n•erical factor in the last term is rather uncertain and is best determined
directly for each tunnel and class of model. Slender bodies of revolution develop
extensive supersonic flow fields only at test Mach numbers close to the choking on-
dition and for this limited speed range an equation &imilar to Equation (5.23) above.
but with Ac in place of P8. is probably sufficient.

The growth of the supersonic region and the lateral extension of shock waves w'll
widen the wake behind the body. thus increasing the wake-blocks~e effect. 7he usual

wake-blockage equations contain the model drag, which increases rapidly with stream
Mach number in this region, but in certain cases they eW seriously underestimate

* the true wake blockages' . 7he wall pressure downstream of the model is then more
reliable. If the theoretical wake-blockage equations are used. the corrected value

* .of the stream Mach number should be used i- the compressibility factor.

The use of the wall-velocity increments to deduce solid and wake blockage is velY
valuable at these high subsouic speeds, because, though small perturbation theory may
no longer apply at the model, it may still he valid at sone distance away. GOtherts- 3

0

indeed considers that the velocity-ratio method ay be employed up to the choking speed
of the t~mnel for this very reason.

D.-oaW alto considers the sore sisple case of extrapolation to zero xodel s.ze at zoderste
sunbaisa Mac numbers. ne technique has also been discussed by Ackeret. Degen and Rott
(Ref.5.43; 1950) for both straigbt and swept wigs. and by Petersohn (Ref.5.50; 1948) for
tva-dlssicnl nodels spanning a circular tunnel.

-VIA
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5. USF. OF BLOCKAGE FACTORS IN CORRECTING
MEASURED QUANTITIES

• hayv so far been concerned with the estimation of the blockage factors E. and
C. kssociated with the Presence of the model and Its wake within the tunnel. It is
now necessary to consider how these factors are used to correct the measured quantities.

Once more it is assured that the model is small enough for the blockage effects to be
additive; in addition the stream Mach number must not be so high as to invalidate the
simple linear-perturbation theory.

The quantities to be corrected fall conveniently into two main groups; those, such
as velocity and density, associated with the working fluid (Section 5.8.1). and the
forces, moments and surface pressures measured on the model (Section 5.8.2).

5.8.1 Corrections to Stream Qnamtities

It is one of the important assumptions of blockage theory that the model behaves
within the tunnel as it would in free air at some speed slightly different from the
nominal tunnel velocity. It is the purpose of the theory to establish means of
estimating the necessary incremsat AU, shich must be applied to the tunnel velocity
U . Me latter is of course that appropriate to the model position in the empty tunnel
and must itself contain any corrections required by the tunnel calibration. Thus the
corrected stream velocity is given by

U = U+AU3 . (5.77)

In terms of the solid and wake blockage factors this becomes

Uc = (1 + Es E+C) (5.78)

Usually. however, the tunnel speed is determined from the pressure at same reference
hole on the tunnel wall upstream of the model position. In some cases this pressure
may itself be influenced by the presence of the model, so that the undisturbed free-
stream velocity will be unknown; the effects of both the model lift and the blockage
must then be considered. The influence of the lift can, in principle. be removed by
eneraging the pressures on the top and bottom walls of the tunnel, or its magnitude
may be calculated by replacing the model by a vortex of the appropriate strength.
Mhe e.lid-blockage influence on the tunnel-speed hole has been considered by
Goldstein.5 " ad Thom" ' amongst others. The latter shows that, for a small two-
dimensional wing at zero lift in free air, a small negative velocity would be indaced
at positions ahead of the wing and the magnitude of this perturbation decreases with

distance from the wing. Then the model is in a tunnel with closed rectangular
boundaries the effect is counterbalnced by the influence of the images which induce
a small positive velocity. Ahead of about 1.5 tunnel heights from the model centre
the two effects almost cancel out. and a wall hole upstream of this position should
similarly indicate a velocity very close to ths postulated undisturbed free-strea
value U . Goldstein shows that the effect of the wake blockage is negligible beyond
about one tunnel height upstreas of the model.

itz•"*36 has also a.nsiderped the orrctions required in a rectangular tunnel,i

and his results are in general agreement with earlier sethorz. In addition. he
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discusses the closed circular tunnel containing a body of revolution and shows that
the correction Is very small at more than one tunnel diameter ahead of the model.
Open-Jet tunnels of rectangular and circular cross-section are considered in
References 5.36 and 5. 59 and it is interesting to note that in these cases the velocity
increments induced at a position on the edge of the jet corresponding to the tunnel-
speed hole in a closed tunnel may be positive and thus of opposite sign to that induced
at the model position. This effect is probably of little practical importance, since
the stream velocity In open-Jet tunnels is oftea determined from readings of wall
pressure within the nozzle, a calibration having been made with the tunnel empty.
If, however, a direct measurement of tunnel velocity is made in the stream ahead of
the model, then this may be subject to blockage interference.

For compressible flow the stream velocity is of rather less importance than the
stream Mach number M . 7he correction to M can be obtained very simply bY differ-
entiating the adiabatic isentropic flow equations. For y = 1.4 the correction to
the nominal Mach number is given by

AN = (1 + 0. 2V2 )ygB (5.79)

Then

Mc = M + Am, (5.80)

where LX takes the sign of eg . which is positive for closed tunnels and negative
for open tunnels.

Once the blockage factors are known, corrections may also be wode to the stream
static pressure (p). density (P) and static temperature (8) on the assumption that the

flow is icentrpelc and a edabatnc. For ra = 1.4

Ap. = - 1. 4•p=sEa (5.81)

Ao = - M'PI. (5.82)

AO = - 0. a$k . (5.83)

In incompressible flow. Equation (5 81) will be replaced by

!! J Ap= -. - ,E:• % 5.84)

It follows that the correction to the stream kinetic pressure is given bySA~~~~~~(-!pU) M 2- .) (f•"• .(~s

•--" : 7he test P•-lmolds numb~er (lN) is also modified by the blockage effects. Usually such

changes can be ignored, but a correction may be calculated from a knowledge of the
changes in stream velocity. density and temperature. If a suitable. but simple.

- relationship between fluid viscosity a;nd temperature is used, a simple correetic-n

equation may be obtained. FOr example, if it is auumed that the viscosity is

Sproportion to )3/x5 then
SAlt= (I 0.7M)eRO . (5.86)
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5.8.2 Corrections to Model Qantities

The lift interference discussed in Chapters II and XII gives rise to corrections to
the neasured codel incidence, forces and moments, but not to the stream velocity at the
model position unless this is off the tunnel centre line. The correction to t.e stream
ve icity. because of the solid and wake blockage effects, has already been discussed,
toget.hr with the change in stream kinetic pressure. In forming the non-dimensional
coefficients from the measured forces and moments, use can be made directly of the
corrected kinetic pressure; the resulting coefficients will then be corrected for
blockage effects. Alternatively, it is sometimes convenient to form these coefficients
using the umcorrected values of stream density and velocity and then to apply a
correction to the coefficient itself. Thus if CA is a typical non-dimensional
coefficient, the corrected value will be

C A + tca - c[A( - (2-W2e 6 ] . (5.87)

if squares of mall quantities are neglected. Equation (5.87) is obtained by using
Equation (5.85) above and ma be applied to any measured force or moment coefficient,
provided due regard is paid to the restrictions implicit in the derivation of 65 "

An extra correction is required to the drag coefficient, because, as was neationed
in Sections 5.4.4 and 5.5.3, the images of the source representing the waie Impose a

.- Z
longitudinal pressure gradient along the tunnel and hence a longitudinal buoyancy
force on the model. !he measured drag is higher than the free-air value in a closed
tunnel, and lower in an open tunnel. The pressure gradient may conveniently be regarded

as linear along the length of the model. The buoyancy force D. may then be taken as

the product of the pressure gradient and the effective volume of the model V , where
this is the sum of the actual volume and a virtual volume Vv corresponding to the
virtual mass of the body in the accelerated flow along the tunnel axis. Thus

p= P= _ + vV) (5.88)

Now V1 may be related to the shape Parameter X2  or and to the doublet strength
P representing the potential flow past the body (see References 5.1. 5.23, for exasple).
Thus for a slender body of revolution in incompressible f"-

P = v.u = tu (5.89)

On the basis of linear theory the pressure gradient may be written as

=dp o- = -PU 2 Be. (5.90)

If AU, denotes the solid-blockage effect of a doublet of strength P then the
gradient (%/Zx) (EMU) due to a source ef strength Q is precisely Q(AU,)/P
(References 5.37 and 5.38). Moreover the source strength used in the wake-blockage
a!alysis is equal to D/pU. Thus

= / ! (5.91)9

- ~ ~ ~ ~ ~ ~ d went ~ ~ 'c.l.u.~sC ~ fnSfd3
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With the substitution of Ve and (dp/dx) from Equations (5.89) and (5.91). Equation
•.%(5.88) gives a -aimple ex•-ression for .,Dg , •icL- can be rewritten non-dimensionally

*a a cor-rectio•t to drag coefficient

•':(Acv)g Ce -Cps (5.92)

7his eqation is independent of corrections to the kinetic pressure it second-order
terms in e. are neglected. Goldsteln5. 7 derives a more complex relation for the
4 Jke-buoyancy correction in incompressible flor, but shows that Equation (5.92) is
valid if the square of the drag coefticient is small enough to be neglected.

The influence of compressibility on tLe wake buoyancy correction has sometimes
coned difficulty. Equation .15.881 is unaflectcd by sirple compressib1]ity thecry,

j and some authors have argued that no compressibility factur is reqg'red in Equation
' (5.91) other than that inherent in C itself. Others 5 

.335.23 consider that a
( o n( compressibility correction to the source strength should be included, as in Equation

-•i (5. 49). so that in place of Equation (5.92ý

(ýA ;-C'O(j +.4M2)6. (5.93)

Ludwieg 5 3 7. moreover, points out that the virtual volume is also modified slightly
by compressib'lity and Herriots 2 3 considers it worthwhile allowing for this in the

1! drag correction. FOr most wind tunnels and models this particular effect will be
saill even at high Mach numbers.

SThe sign of the buclancy force follows that of es and hence Is different in open
and closed tunnels. For a two-dimensional rectangular section the magnitude of the
open-Jet correction is half that of the closed t*Wne!: for three-dimensional models
this ratio ie about one-quarter.

The ftll correction to the measured drag coefficient Is obtained by combining the
corrections obtained in Equations (5.37) and (5.92) or (5.93). Thus. in two-dimensionalSflow, either

AG]= - -E + (2-M 2 ),EdC (5.94)

or

AD - - L(l+0.4X2)Cs + (2-M2)Es]C. (5.95)

In three dimensions CD !s replaced by COo in Equations (5.92) and (5.93) and there
iis corresponding adjustment to tae first ttras in Equations (5.94) and (5.95).

Allen end Vincentis'• reaa-k thot it is not at once apparent that these equations
apply to dr?.g ccefficients determined by the wake-traverse methods*' and. after

- discussing the matter, they suggest that, for normal-sized aerofoil models, the error
7 < in using Equation (5.95) Is about the same order a. the experimentsl error. This view

has sometimes been questioned. The smatter is extremely complex and each term in theI i.• fornalae used in calculating the zerofoil drtg f~rom the experimental data needs to be

considered with great care. Moreover the physical significance of the formula xust
be clear: for example the final calculated drag ticed i-ot be the force actually
experienced hy the model in the tunnel, and the final drag coefficient sky be cbtained
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in a way which allows for some wall-interference effects. In the opinion of the
present author o wake-buoyancy correction should be applied to a drag coeffic'ent

obtained from wake-traverse measurements if these are reduced in the usual way.

The pressure coefficient C on the body will also require correction because of

changes in both the static and kinetic pressures of the tunnel stream. The req-jisite
correction may be written as

p U +Lj A (jpU2)

= [2 - (2-M 2)co] . (5.98)

Such an axpression assumes that the observed presures are those w.•.Lch would be obtained
in the corrected free-air conditions. That is to say. the use of Equation (5.96) is
equivalent to the use of Equations (5.81) and (5.84) before the pressure is non-
dimensionalized. The actual distortion of the pressurs distribution about the body
because of buoyancy effects and other higher-order well correction c=not. be obtained
in this anner. Methods such as the conformal mapping of Ratererces 5.15 afd 5, 16 or
the higher-order calculatiocs of Gollsteins must be used Provided that the model is
not too large, the stream Mach number is not near unity and the model incidence is
moderate, then the distortion will be sint.

I

5.9 SUMMARY OF PRINCIPAL BLOCIAGC FORMULAE

It is convenient to list together che simple formulae which my be most frequently
required in calcelating the blockage effects and which seem most satisfactory in use.
O0nly those which give expiicit answers will be presented; for more complicated
eXpwessions requiring extensive calculations the text of this report and the appro-
priate references should be consulted,

5.9.1. Closed Rectasgular Tmiel

For two-dimensional aerofoils

Es = " \) C A . (see Pigure 5.1)

77 r(t1A
or ex = - [I+ 1.2p AI..

I e 1 + O. 0J2 .•.o

and IEW

If incidence effects must be allowed for, put

+
E5cz = + all ~ i
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S• If the model is at a distance d from the wall. put

es(d) = Cs I +- 3Cot2 77d

8 4 h44

I FOr three-dimensional models

or esr jr 2 3 2V

' wbere for wings

2 (Pig. 5. I)

.1\

j I e )G = I + 1.21

I• and for bodies

-I--x • 3 ( P i g . 5 . 2 )

E = *ii -+

G I + f
•IiValues of 7'(=2T/v/7_) and T depend on ratios b/h and 2s/b (Figures 5.5 and 5.6).

t | For large wing-body combinations. it roay be better to add the sepurate contributilons
Sof the wing and body.

1 1 .0

C& = \bh/ fi2 D

|If the wake structure is known, use Equaticn (5.58) instead. For lifting wings. use
- zero-lift drag coefficient.

11

r5.9. Closed Non-Rectanplar Tunnels

For two-dimensional aerofoils. use the solid-blockage equations for the rectangular
-! tunel o an quivaentIeih (h- The value of he depends an both the tunnel

i!" ":.shape and whether a correction is required at the cid-span position or &R an average
over the orplete span.

!•.• Value of he

_ TmnelShae I A.- Mid.-Spwn Average

Circalar 1.558R I.57IR

"t •' • 1octagonal b (at centrel, C/b
Elliptical Fig. 5.210 0.75n

|, t
-V G. . ..... = ..... . _1................. . ..... f
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For the wake-blockage factor, in all cases use

where h. is the value used in calculating the solid-blockage. For lifting wings,
use zero-lift drag coefficient.

For three-dimensional models, use equations for rectangular tuninel, with appropriate
alues of r or T and with bh replaced by the tunnel cross-sectional area C .

5.9.3 pen-Jet lwnnels

For a two-dimensional aerofoil in a rectangular jet

2 • -7J - (see Figure 5.1)
E t

or -. j1 + 1.2( ] ,!12 C, ̂

and ew 0.

For three-dimensional models, use equations for e. for closed rectangular tunnels,
but with values of T and r given in the table in Section 5.5.2. For non-rectangular
tunnels, replace bh in these equations by C : for a circular tunnel T = -0. 182 and
r = -0.206 : for an elliptical tunnel take T, + 0.029 (or r, + 0.032) where Ta (or T.)
corresponds to a rectangular open jet of breadth/height ratio equal to m/n . The wake-
blockage factor

= 0.

5.9.4 (brrections to Strezm Qmtities

For y 1.4.

AU = (C + CW)U = Est

=H - (I + 0.M2 )M•E

(½ . = - 1.4M2pe 0  I
Ap = - m2pe3

t.(pI 2 ) _ =)(

(I- 0. 7N2)Ne

For incompressible flow
pp ,U =
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5.9.5 (Wrrections to Model (pantities

AcCA = - (2-12)CA68

uhere CA is a nov-dimensional force or moment coefficient other than drag coefficient
CD!

PF-r tvc-dinensional aerofoils

[aC9 = - [(1+0 4m2 )a (2--B

SFor three-dimnesit-ma! sodels

- AC0  - (I+ G. Q 2 )1EsCa - (2_¥2)EsCo.

1. In both cases

A- = [2 - (2 -VIC 16

These corrections vnly apply if thbt uncorrect-5d stream quartities (Section 5.9.4" are
useJ in obtaining the non-dimcnsional coefficients.
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TABLE 5S.

FPmctions Giving the Distribution of So!id Slockage
along Bodies in Circular •Uaels (Ref.5.33)

.4 -1-
10.0 0.000 0.000 2.0 0.439 0.048

0.1 0.040 0.010 2.2 0.449 0.043

0.2 0.080 0.020 2.4 0.456 0.038
0.3 0.119 0.029 2.6 0.463 0.034

10.4 0-155 0.038 2.8 0.468 0.020

O.5 0.190 0.045 3.6 0 .472 0.027

I 0.6 0.220 0,052 3.2 0.476 0.024

10.7 0.250 0.057 3.4 0.478 0.021

018 0.276 0.060 1 3.6 0.481 10.019
.9 0.9 200 0.063 3.8 0.483 0.017O 1

1.0 0.322 0.064 4.0 O. 4850.015

1.1 0.342 0.064 4.2 0.486 0.014
1.2 0.359 0.064 4.4 0.487 0.013I0.4.6

1.3 0.374 0.063 4.6 0.488 0.012

1.4 0.387 0.062 4.8 0.489 0.0111

1.5 0.399 0.060 5.0 0. 490 0.010

S1.6 10.409 0.058 6.01 0.I93 0.097
1.7 0.418 0.055 7.0 0.495,0.005

1.8 a 0.426 0.052 8.0 0.496 0.004
j1.9 0.433 0.050 9.0 0.49?7 6. 03

2.0 10.439 0.048 10.0 0.4" 0.002

For closed and open circular tunnels respectively

!C

a and e(X)= [II(f) - ((-2)1 9. .6.)

+U

"-" iwhere -i- I
q

-R J
x is mesured from the centre of the body. and for slender bodies a N I (Ref.5.2).
Note that H(-X) = -H(x) , 1(-x) =-I(%)

* '
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Based on Fi 9 .6 of Ref.5.40
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Reproduced from Fig.32 of Ref. 5.25
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WALL INTERFERENCE IN TUNNELS WITH VENTILATED WALLS
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NOTATION

a width of slot (Fig. 6. i)

A cro3s-sectional area of aerofoil

Ae equivalent value of A (Section 6.3.2)

: An coefficient in Equaticn (6.67)

!C Sb breadth of tunnel

S• !c chord of aerofoil

geometric mean chord of wing

c a-erodynamic sean chord of wing in Equation (6.64)

C crosa-sectional ares of tunnel

CD drag coefficient = (drag)/jpU2S

CL lift coefficient = (lift)/fpU2S

Ca (pitching moment about quarter-chord axis)/-jpU
2SF

d periodic spacing of slots (Fig.6. I)

f thickness of slat (Fig.6.l)

non-dimensional slot parzatter (Fig.6. 1)

F0 value of P giving zero interference

ih height of tunnel

10.1 1 modified Bessel fwunctions (Ref.6.27)

I A, s.C.,D Integrands in Equations (6.18). (6.23). (6.28)t (6.51)

I ZIF. ,G. H Integrands in Equations (6.52), (6.58). (6.84). t6.95)

K geometric slot prrameter in Rquatticn (6.2)

KKO.Ki modified Bessel functions (Ref.6.27)

distance between source and sink r- c)

V Vach nuwber of undisturbed stream

$-- 4•

. *t I.
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t outward normal distance from tunnel boundary

. number of equally spaced slots in a single wall

p pressure

PC pressure in plenum chamber

P porosity parameter defined by Equation f6.6) •s

q variable of integration ""

r radial distance from axis of circular tunnel

R radius of circular tunnel

s semi-span of wing

S reference area of model

T shape parameter of tunnel (Chapter V)

U velocity of undisturbed stream

-n velocity normal to perforated wall

V volume of model

Ve equivalent 'olune of model (Chapter V,

eW, interference upiash velocity

x distance downstream of model

y spanwise distance from axis of tunnel

z distance upwards from model

incidence of Aerofoil (in rad!ans)

--/3 = (_u2)

-- n list interference parameter for a mall mode]

lift Interference Paraeter associated with streamline curvature

lip pressure drop across a slot ctu

prefix denoting increment due to wall correction

-6 blockage f•actor. AUiU (Section 6.3)

q71.
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tan ('/p

cylindrical co-ordinate

= cot-L(O/P)

p density of undisturbed stream

a0 = 2s/b

perturbation velocity potential

r 4 (row) in a tunnel of infinIte height

S1 !P - 1r) contribution from slotted roof and floor

solid-blockage parameter for slotted tunnels in Equation (6.46)

*s • blockage-factor ratio in Equations (6. 16), (6.24)

limit of fl as slotted walls become fully open

&bscripts

Sdecotes effect of blockage.

c denotes closed turnel.

, denotes effect of velocity gradient (buoyancy).

S " denotes quantity induced by tunnel walls.

a dcnctes mode7 alone.

s denotes solid blockage.

w denotes wake blockage.

;Io
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£• WALL INTERFERENCE IN TUNNELS WITH VENTILATED WALLS

E. W. E. Rogers

6.1 INTRODUCTION

The use of wind tunnels with partially-open, or ventilated, wails for transonic
investigations is now widespread, and such tunnels are inevitably employed for tests
at subsonic speeds. a. fixed wall geometry usually being retained throughout the speed
range. Ventilated walls may be of several different types, but frequently the
openings consist of longitudinal slots or circular perforations; these allow the air
to pass between the working section and the surrounding plenum chamber or tank. ine
ventilated walls may constitute the coaplete tunnel boundary or. alternatively. the
side-walls of the tunnel may be solid, with glass windows, thus easing the problems
of viewing or supporting the model.

The boundaries of the ventilated wind tunnel influence the flow about the model in
a similar manner to the boundarics of the more conventional closed or open-Jet tunnel.
Indeed, these two types Pay often be. regarded as the extrene limits within which the
amount of wall ventilation may be varied. Fortunately. many of the wall-interference
effects are of opposite sign in the t*o extreme geometries, and hence by using a
partially-open tunnel it is possible to reduce, or even eliminate, these effects.
Such considerations sometimes determine the design of the wall geocetry to be used;
frequently, however, the need to reduce shock-wave reflection effects at transonic
and low suprsonic speeds may be more important and become the basis of the tunnel
design3'2. Indeed for tunnels with perforated walls, where shock-wave reflection
can be considerably re-huced by careful choice of wall geometry, some degree of wall
interference may have to be accepted. becazzse the criteria for wave-reflection elinina-
-ion and zero subsonic wall lnterferpnce will probably be incompa;ible.

In general it is not possible to remove all types of subsonic wall interference by
choosing a particular wa'-.], geoeetry; corrections are therefore required to many of
the measured quantities. nut very often these are not zpplied. One imortant reason
for this apparent neglect is that the necessary corrections are frequently very small,
partly because the model may be _-!all in relation to the tunnel. and partly because
the chosen wall geometry may well lie close to that needed to eliminate the particular
interference effect. In addition, the theoretical rotential-flow approach to the
problems of ventilated-wall interference is sometimes felt to be less soundly based
than when applied to tu-anels with uniform boundaries. particularly since the effects

Sof visenity on the flow thrdugh the ventilations my be of considerable significance,
yet difficult to estimate. The approach developed by. say. Baldwin et al. (Ref.6. 1;
1954). In which the general effects of viscosity (particularly on the flow through
longitudinal slots) may be allowed for. is of great value in meeting this type of
criticism. The analysis is inevitably made more comlicated. however, and knmowledge

I -~
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of the porosity characteristics of the wall is required. This can often only be
•- found by direct experiment.

Though iuch analysis has been undertaken in the general field of ventilated wind-
tunnel interference, the supporting experimental checks on the theory (as opposed to
tests demonstrating that certain interference effects are small) are at present
iusufficient to confirm or modify much of the theoretical work. Theory, however, does
form a useful and general frame of reference against which the tunnel operator must
often make his own assessment.

Interest in the use of mixed boundaries to minimize wall interference was aroused

as early as 1931. when Theodorsen6" 2 discussed the interference experienced by a small
lifting wing in tunnels having a combination of oplan and closed boundaries, and

-suggested that constraint effects could be reduced considerably by using these uncon-
I ventional types of working section. These ideas were subsequently extended by many

authors6"' 1 2 . both lift and blockage interference being considered. A few experi-
V' mental tests were also made 6",. 1 0 , 1 . The blockage factors appropriate to

rectangular tunnels having one or more completely open walls have recently been given
by Wuest (Ref.6.50; 1961) who used an electronic computer and by this means was able
to calculate the effects of displacing the model from the tunnel axis.

In terms of present-day tunnel configurations, these papers may be regarded as
dealing with working sections having one or two longitudinal slots of considerable
width. There are, however, certain disadvantages in using a small number of slots.I For exapple. the flow in the working section may deteriorate due to jet instability6.2,
and the flow field in the neighbourhood of the model will tend to be rather distorted.
The power requirements of the tunnel may also be large. For such reasons, workingI sections having multiple longitudinal slots have been adopted and much of the modern

I analysis has been concernred with this type of boundary.

The use of perforated walls to produce a partly-open boundary seems to have arisen
from considering the characteristics of porous walls, where the flow through the wall

I ' corresponds to a slow viscous motion, and in which the pressure drop across the wall
I is proportional to the mass flow passing through it.t

It is convenient therefore to divide the discussion of wall interference into two
sections. dealing with tunnels having (a) longitudinal slots and (b) perforations.
This is largely a matter of convenience since, as Mseder and Wood (Ref. 6. 13; 1956)
show so elegantly, both types of ventilation are particular cases of a more general
boundary condition; the proposed arrangement however does correspond to the najor
division in wind-tunnel construction, even though there are certain tunnels with walls
which in effect combine slots and perforations.

Historically, and perhaps also practically, the elimination of solid-blockage
effects has been considered of more importance than the removal of lift-interference
effects, probably because it wae felt that the test Mach number could then be
accurately determined, particularly at high subsonic speeds. It is proposed therefore
to discuss blockage interference initially and subsequently to consider lift inter-
ference, particularly the value likely to be present in a tunnel designed for zero-
blockage conditions. it will be assimed that the lift and- blockage corrections are
Independent and additive, and hence that it is sufficient to calculate the blockage

1age
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effects ct zero model lift. A sumary of the re3ults to be presented in this chapter
As included at its end, as Table 6. I. ,S L

S6.2 BOUNDAUY CONDITIONS FOR WALLS WITH LO.GITUNNAL SLOTS

ntz(- five,, &ctempt to calculate the lift Interference expcerienced by a szall wing
S~in a t%;-.'' .!tav~ng multiple longitudinal slots wass made in 1940 by Ptstoles16'"1 for

e. cir'.it~r "•unnel. Simi=•_- recalzs *--re ebaired in 1953 by Vatthews6"1' in an

ikdependczt analysis, which was more detailed tnar. the earlier work and allowed for
variations in slot configuration, wing span aod loading. The blockage ,f a slender
body in a slotted circular wind tunnel was discussed by Wright and Ward (Pef. 6. 16;
1948). again using the exact boundary conditions. An extension of this method to a
two-dimensional aerofoil was made in 1950 by Tomlinsonb''.

It proved difficult however to apply these methods in practice due to the complexity
associated with the mixed nature of the bounda:y; for example, to satisfy the correct
boundary conditions Zor a source-sink doublet placed on the axis of a circular-slotted
tunnel, ap infinite set of linear simultaneous equations arises in the calculation of
the interference functions. -veD with certain simplifying assumptions, extensive
numerital work is often required. Difficulties of this type led to the consideration
of a simpler, Though less exact, wall condition by an a•iproach attributed in Refexence
5.17 to Busemeun. This assumed that the real slotted wall could be rcplaced by an
eqruivalent homogeneous boundary whose influence near the model would be very similar

to that of the real wall. Since this influence may be imagined as a weighted mean of1
the effects due to the slots and the solid slats, it seems that the cquivalent wall
would give a close representation of the flow near the tunnel centre. Drovdued that
the dimensions of tle tunnel were large compared with the distance between adjacent
slots. The calculations and discussion-s of Davis and Moore (P.cf.6. 17; 1953) confirm
the vulidit.y of this argument, and show that the simpler analysis based on the
equivalent bcimdnry gives, in geaeral. correctloo eff-cts which are in very close
agreement vith those calculated by the earlisr exact methods.

The linearized boundary condition of the equivalent wall has been derived by more
than one method. (See References 6. 1. 6. 13, 6.17 to 6.20). In most cases the cross-
flow approsching a single slot and slat is considered, and this leads to a simple
homogeneous boedary condition for subsonic flow, which is assaued to apply along the

entire length of the tunnel working section and is thus independent of x

+!
+ • -0, (6.1)

where 4' is the perturbation velocity potential, x Is measured in the stream
direction and n along the outward nozml to the wall surface. The parameter X
having the dimensions of length, is defined by

K =- logecosec (6.2)

I2
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Here, the slats are assumed to be of srall thickness normal to the cross-flow
direction. d is the periodic spacing of the slots, and a is the slot width (Fig.6. 1);
the open area ratio a/d must be small. d being a small fraction of the tunnel
dimensions. Equation (6.1) should be compared with the exact conditions, represented
usually by

- 0 at the slats

. (6.3)

x- = 0 at the slots

The boundary condition used by Woods in Sections 7.30 to 7.32 of Reference 6. 19 (1961)
is somewhat different and overcon'as certain difficulties involved in the assu-ption
that the calculations are being made for a position whose distance from the wall is
large compared with the slot spacing. This alternative boundary condition would seem
to be of most value when only a few widely spaced slots are prestmt. Goethert
(Ref. 6.18; 1957) in a more exact analsis of the cross-flow near the slots shows that
Equation (6.2) may be regarded as the first term of a power series ip the open-area
ratio a/d ; unless this ratio is stall, higher-order terms may be significant.

Wood"? discusses the validity of the linearized boundary condition in Equation
(86.1) with particular emphasis on the large transverse velocities which can occur in
the neigbbonrhoed of narrow slots when large models are tested, and on the significance
of the displacement of the free boundary free the contour of the slotted wail. These
considerations le~d to the non-linear homogeneous boundary condition

I2
i -- ÷ 4  = 0 (6.4)

-3x 77

which implies a similarity between the transverse flow in the slot and a two-
dimensional Helmholtz jet. Reference 6.57 includes a measured velocity distribution
along the wall, that appears to Justify Wood's non-linear calculations for a non-

! ~lifting two-dimensional serofoil. FUrther applications of this non-linear boundary

condition have not so far been made, and the analysis in the present chapter is based
f on linear boundary conditions.

- 'So far the flow has been assumed inviscid, so that there is no pressure drop across
the slot boundary, apart from that associated with changes in fluid velocity. InSpractice, the effects of viscosity may well be of importance, particularly if the slot
width is saall compared with the wall boundary-layer thickness. Equation (6.1) then
needs to be modified. Baldwin et al. '" 1 do this ty adopting the homogeneous boundary
condition for a porous wall'6 ,21,6. r in which the average velocity normal to the wall

-. - is assumed to be proportional to the pressure drop (8p) through the wall (see
* Section 6.7). This is a linearized approximation to the viscous flow through a porous

"medium and leads to the boundary condition

0 O. (6.5)

TX P Be
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where P is a porosity parameter defined by ¾

Sp = C (6.6)P~n

Here U is the free-stream velocity, ZZn the velocity normal to the wall, and p
the fluid density. As mentioned in Section 6.7. P may be determined experimentally
for any given wall by measuring Sp for various values of p(ý/Zn) .

It is assumed therefore that. for a slotted wall having viscous effects within the
slots, a boundary condition

+K 0 (6.7)
-x Zx~n P n(

may be used; alternatively, if the porosity parameter is found not to be linear with
W"n . a more complex condition may be required (Appendix B of PReference 6.1).

Solutions based on Equation (6.7) will include the following special cases:

the closed wall (K - W or P = 0),

the open Jet (K =0 and P- co),

the perforated wall (K = 0).

the inviscid slotted wall (P - co).

The perforated wall will be discussed in Sections 6.7 to 6.10. The last case will
henceforward be referred to as an "ideal" slotted wall.

Alternatively the effects of viscosity in the slot region may be represented by
considering the slots to be covered with a porous or perforated material; a more
complicated boundary condition is then required'" i. In some wind tunnels perforated
cover plates have been fixed across the slots, so that the pressure drop can be
increased artificially to match the local outflow characteristics in free air.

Much of the existing analysis for interference effects in slotted-wall tunnels is
based on an inviscid boundary condition similar to Equation (6.1), and it is now
possible to estimate the required corrections for a wide range of models and tunnel
cross-sections for this ideal slotted wall. Some of the experimental checks that have
been made in References 6.23 and 6.24 suggest however that the ideal slotted wall
condition P - mo may not always be achieved; indeed for typical working-section
configurations P may be of order unity and not greatly influenced by the stream
Mach number. Much more information is required on this point, and it Is here perhaps
sufficient to point out that the ideal slotted-wall correction factors say sometimes
need to be applied with caution; fortunately interference corrections have been
evaluated in several cases for the more general boundary condition (6.7). and these
are discussed below. The assumption of an ideal slotted wall, however, Is valuable
in enabling a general picture to be obtained of wall-interference effects In slotted
tunnele, especially the trends with slot geometry and model size.

It will also be assumed (unless stated tV the contrary) that the slotted working
section is long compared with the tunnel hoight or breadth and that the slots are

- - -*~- ~ -- ~ ~~ - - -ago
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uniformly spaced, have sharp edges, small thickness and no longitudinal taper. Further
"it will be assumed that the model is mounted centrally in the working section.

i In certain cases, the restrictions on slot geometry may be overcome. For example.
if the walls have tapered slots. Equation (6.7) may be used as the boundary conditionI but P , instead of representing the viscous effects in the slot flow, may now be
related to the slot taper by

I d
(6.8)

P d x

K being given by Equation (6.2); this matter is discussed further in Reference 6.1.

If the slats have a thickness f , a boundary condition of similar form to
Equation (6.1) may be derived, but with a somewhat different definition of the
parameter K (Ref. 6.52; 1957). Unfortunately, as f tends to zero this new defini-

i tion of K becomes inconsistent with Equation (6.2) above. The differences are quite
large and seem to arise from the way in which the slats are represented in the analysis;
by doublets. when the slats have finite thickness and, in effect, by sources for the
case of very thin slats. Since in practice most wind-tunnel slats are thin compared
with their width, the definition of Equation (6.2) seems a reasonable one to use in
such cases.

The discrete boundary conditions at a slotted wall may be satisfied if the rheo-
electric analogy is employed: in this the electric potential in an electrolytic tank
may be identified with the interference velocity potential, the tank being contoured
to represent the tunnel section. In the exact aralogical model the solid portions of
the wall are insulators, whilst the slots are mWde of conducting material, so that a
wall consisting only of a few slots and slats may readily be represented. If
required, the linear homogeneous boundary condition of Equation (6.5) can also be
represented by a simple analogy (Tirumalesa, Ref. 6.55: 1959). The actual profile and
incidence of a two-dimensional aerofoil may be simulated in tte tank, a considerable
advantage if the model is a large one, and this aspect is discussed in detail in
Reference 6.55.

At Birmingham University, Rushton (Ref. 6.60; 1965) has developed an electrical
analogue computer to study slotted-wall interference effects. The computer consists
of a rectangular array of resistors which form, in effect, a model of the wing and
tunnel cross-section. The equations of the electrical network are made identical to
the finite-difference form of the two-dimensional differential equation governing the
velocity potential, and the resistance network can then be used to estirate the
interference upwash at the wing for different types of tunnel boundary. Rushton in

r fact considered the interference experienced by small lifting wings in rectangular
tunnels having both roof and floor slotted or all four walls slotted. With such an
analogue it is possible to compare results obtained under the linear homogeneous
boundary condition, discussed earlier, and for walls with ideal slots and slats; this
comparison is discussed below in Section 6.5.3. The analogue method can also be used
to check the significance of assumpticns necessary to secure an analytical sllution

S ' to a particular problem, and to give, if required, improved data for the interference
corrections. Exaispes of this are contained in Sections 6.5.3 and 6.5.4.

-.-I.• - •'_-
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"6.3 TWO-DIMENSIONAL BLOCKAGE IN TUNNELS WITH LONGITUDINAL SLOTS

Blockage interference arises from both the mode: arn its wake, the t.yo components

being called solid and wake blockage respectively. It manifests itself as an increoent

AUE = eBU in stream velocity at the model position. The total blockage factor e6

is convenientl3 expressed as the sum of the solid-blockage factor Cs and the wake-

blockage factor E,. which are derived independently at zero model lift. Associated

with both the solid- and wake-biockage increments are longitudinal velocity gradients,
which imposi a corresponding drag force on the model.

The analysis for slotted tunmels is rather less extensive In scope than for the
closed and open tunnels, although most. of the important simple zases have now beeri

discussed. The present section is concerned with two-dimensional models spanning a
slotted tunnel of height b ; the tunnel side-walls are assumed to act. merely as
reflection planes contributing nothing to the flow about the model.

6.3.1 Solid Blockage

if the model is small and thin, it may be represented by a two-dimensional doublet
whose velocity potential in a free stream of subsonic Mac. nwuber Y is

ý (6.9)

where A is the cross-sectional area of the model, and I = - M2). The origin
of the co-ordinate systun is at the centroid of the model. in the tuvne! the perturba-

tion potential is given by

+ = 4i(6.+14)

4i being the potential of the wall constraint. The Irtter must satisfy the general

linearized equation of flow

Z20 2 (6.11)S+

The potential ' must also satisfy the boundary condition (6, 7) at the slotted Wdlls,
so that

I- K-~- ~ X + (6.12)
Z xX P dZ/=j X ýXZZP~j~

From Equations (6.9). (6.11) and (6.12). tl;e intesrference potentiA- nnmy be found.
Differe'tt techniques have been employed in the solution for Pi . Pe•.ere=e &1. for
example, uses Fourier transforms

G14.z) = [ (.e

(6.13)

1NI, Z)7(i-zc e
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* - for both and 41 Once the solution for 1i is known, the solid-blockaek
f factor can be obtained from the expression

I
s (6. 14)

conditions at the origin being taken as the mean of the distributed effect along the
model. In the general case" !

6 1'TAN Ll-P 2Q2-(l/p) 2] + [(l-p ) :Alp) 21 e- 2 QesA - -6:2 - q dq ( 6.5
S \~~133h/ JO (cosh q + Pq sinh q) 2+ (Id (.5

where q = The effect of slot geometry is represented by the parameter P
(= 2Ka/). and the influernce of viscosity on the slot flow by the ratio /3/P . Thus.
if P is assumed to be indepcndent of stream Mach number (as certain tests suggest).
the influence of the viscous slot flow will vary with M ; moreover, as the stream
Mach number approaches unity. )3/P tends to zero. and the ideal slotted tunnel condi-
tion is approached.

Fbllowing Reference 6.17. it is convenient to use a parameter (1 -! F)--f to
illustrate the variation of the solid-blockage effect with slot geometry. This
parameter has a value of zero for the closed tunnel and unity for the open tunnel.
It seem.s reasonable, too, to consider the ratio of 6s in tne slotted tunnel to its
value (6.). in a similar tunnel with closed walls. The latter quantity is that in
brackets outside the integral in Equation (6.15). Thus

£15= s/ ~ 6,8=( 'h/ (6.16)

i' considered as a function of (I + F)i . This typ- of presentation may be of value
in extending the present results for simple model shapes to more complex representa-
tions, by assuming that for a given tunnel the value of Qs is unchanged if the more
sophisticated methods discussed in Chapter V are used for determining (Es)c.

The variation of Qs with (I -t- Fri-& for a tvo-dimensional aerofoil is sho-n in
Figure 6.2 for two values of A.T . One, taken fros Reference 6.17, corresponds to
the ideal slotted tunnel (F - co) and indicates ar almo•t linear variation of O-s
from the fully closed tunnel to open-jet tunnel. Yoe other, broken, curve has been
calculated for M = 0.8 , P = 1.0 ; the latter value. though arbitrarily chosen. may
well be typical of many tunnels.

SZero solid blockage will correspond to fis = 0 , and this is achieved in an ideal
slotted tunnel for the condition

• (1~~ + F02 .6' (6.17)

whence P = F O = I8

I : *" For the broken curve, P0 = l.OL . The variation of F' with ,IP to give zero

blockage has been estimated by Baldwin et al. " and is reproduced as Figure 6.3.

-•!•-I
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The definition of P contained in Figure 6.1 indicates that for each value of the
ratio of tunnel height to slot spacing (h/d) there is a critical value of the opea-
area ratio for zero solid blockage, as illustrated in the following table, where the
ideal slotted tunnel is compared with one having ,81P = I

Percentage Open-Area Ratio for Zero Solid BlocLae

h J 21 I 4 6 8 12S~d

a 0-4 0.9 0.2 0.1
100-- for - 0 10.0 1.6 1d P t- o - XI-

0a .8 .6- 0.6 0.100-!- for___ =1 20. 6.4 0.64o t- I
_ d___x 0_. I0- __

These values are remarkably small for the slot configurations usually enployed*.
and it seems doubtful whether the theoretical app~roach can be considered entirely
valid for the two-dimensional case. On this evidence, slot configurations usual in
twc-dim.ensional tunnels would be often too open, and the solid-blockage factor mould
be negative. Experimentally, Pearcey et al. (Ref. 6.24; 1959) found zero-blockage
conditions for a particular slot configuration h/d = 6.37 . a/d = 1.6% . for which
"P 0.37 . As Figure 6.3 shows, this would correspond to a value 13/P = 1.20 , though
no attempt was made to measure this quwitity directly.

"The alternative boundary condition suggeste,• .I Woods in Section 7.31 of Reference S.19
is claimed to be more valid for h/d < 2 . but for greater values of this ratio there
is little difference between his results and those obtained by other authors.

Maeder (Ref. 6.25; 1953) discusses the =ase in which the model is too largc to be
represented sufficiently accurately by a doublet and where use of a Rankine oval
(discrete source and sink) is preferable. His theoretical curves for the ideal slotted
tunnel are reproduced in Fi'igre 6.4 for difLerent values of the ratio 1/3h . where I
is the source-sink separation distance. When the aerofoil is thin, this ratio is
approximately c/,h , where c is the model chord; a more accurate relationship
between 1 and c will be found in Reference 6.26. Fi4gure 6-4 shows a discrepancy
between Uaeder' a curve for a very small m-odel and that given by Davis and Nore 6";
this is due to an approximation contained in the analysis of Reference 6.25t. The
discrepancy does not affect the estimated value of P0 required to give zero solid
blockage (Fig. 6.5) and, since most wind tunnels operate in the region tetween this
condition and that for an open-Jet. the difference between the two methods of analysis
may usually be unimportant.

For example. if h is 10 units and the slot spacing d is 1 unit. then the caloilated slot
width for zero interference 1z 6 x 10-9 units for the Ideal slotted tmanei and about i z 10u nmits
for A/P = 1.0.

f 7bere Is a similar discrepancy for a smail threme-dimensional sod.I in a tunnel with solid side-
walls and slotted roof and floor (Section 6.4.2); this is discusse ty Acm. (Ref.6.34; 1961).

tI
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T-he problea f an aerofoil whose chord may no longer be regarded as small compared

with the tunnel height is also discussed by Tirumalesa. using the rheoelectric
analogy"' 5. His results in Figure 3 of Reference 6.55 are In broad agreement with
the theoretical calculations of Maeder and confirm that, as the model size increases
relative to the tunnel, F. also incresses (.Jig. 6.5). For a fixed sict spacing, this
corresponds to a reduction in open area ratio.

6.3.2 Longitudinal Pressure Gradient Due to Solid Blochege

In the preceding section. the velocity increment at the model position due to the
solid blockage has been discussed. This increment, however, varies both along and

across the working sections. The latter variation is small in the region of the model
and may usually be neglected. The longitudinrl velocity gradient has been detected
experiwentally by Wright (Ref. 6.28; 1959) and is of importunce for two reasons.
Firstly. if the stream velocity is measured at some position -n the tunnel wall uprstre3a
of the m-del, this position mcy be itself subject to a small interfereace effect".
Seccdly, consideration must be given to the velocity gradient, and hhece the eurres-
ponding pressure gradient, along the model to see whether this influences ite measured
drag.

In an ideal slotted tunnel with the linearized, homogeneous boundary condition, the
solid-blockage velocity increment varies symuetrically on either side of the position
of a small m"del, so that the longitudinal pressure gradient there is zero (Fig.6.6).
Hence there is no horizontal buoyancy force, and no correction to be aWlied to the
measured drag. On the other hand. Wood'" 5 7 shows that for large interference velo-
cities, where the linear boundary condition may no longer be valid, the interference
Svelocity iay be antisymmetric on either side of the model, giving rise to a buoyancy
force.

The interference syaet.-- is also lost if viscous effects smpear at the slots and
the linearized boundary condition (6.7) with finite P is used. The longitudinal
velocity gradient for a two-dimensional aerofoil may be derived frem the general
solution for i Equat ion (19) of Reference 6. 1. At the model position

24
( dS'C - I., dQ(6

where

qz
I A (cosh q + Fq sinh q) 2 + (13/P) 2 sinh2 q

c =d( -A/(60h3) is the value of Cs for a clcsed tunnel. The pressure gradient,

" 'apf• . is given by -pU2(Z63/•x) , and the magnitude of this gradient for a particular
ratio. 6/P = 0.6 . is illustrated in Figure 6.7.

I *" j In sw tmmels. the wte•e speed i1 deter-ined f.reu the Dressure In the plenum ckwober
sarrocading the working sectlcn. 'he Influence of the woel on the plenw-chaber pressre
is dlsca.eed briefly in Reference 6.49.
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The pressure gradient associated with the solid blockage imposes an unwanted drag
force on the model. which is given b" minus the product of the pressure gradient and A
the equivalent area of aerofoil cross-section (A,). Now A. miay be shown to be
equivalent to 6.1 3h2 (Es) 0/'7 (see Reference 6.43. for examle), and it follows that
the required correction to the measurcd drag coefficient for the wall-induced velocity
gradient is

eP Ae

(ACD)sg =
2~s& ý)Xjp2C

288 632h /- '•s)2~ IA dQ (.9
c13 c "P Jo A

where I is the integrand in Equation (6.18).

6.3.3 Wake Blockage

As discussed in Section 5.4.4. the presence of the wake downstream of the model
gives rise to two constraint effects when the tunnel walls are solid. One is an effec-
Live velocity increment at the model position: the other is the horizontal buoyancy
associated with the lngitudinal velocity gradient at the model position. In the open-
jet tunnel, the first effect (but not the second) is usually taken to be zero, because
the boundaries of the jet car be displaced awa from the tunnel axis in order to -com-
pensate for the low-velocity air in the model wake. Mere is then no need to increase
the stream velocity in the flow outside the wake in order to maintain the same mso
flow upstream and downstream of the model. Similar considerations would apply to the
slotted tunnel.

Formally, tne model wake is replced ay a source. The subsequent analysis has been

made for au ideal slotted tunnel 1w Maeder6_':3,6'2s and for a tunnel with a porosity

parameter P bY Wright6'28, using the techniques of Reference 6.1.
SWhen the rodel is a two-dimensional aerofoil, the effective interference velocity',

-,U . at the model is found to be zero, provided that the slot flow corresponds to A
that in an ideal slotted tunnel. The velocity gradient at the model position for this
case is

ODt
-r C• c , (I - Fq•)e-Qq dq- . (6.20)

_Zx ~ cosh q +Fq sinh q

The velocity gradient associated with a single source has the sawe magnitude as the
velocity due to a donblet of equal strength. Provided that the bound%y conditions
are independent of x , as in Equation (6.7) when P -co . then the wake-blockage
gradient can be identified with the solid-blackage factor es , apart from a numerical
facttor. Thus for the condition 8/P = 0 , it follows fro% Equations (6.15), (6.16)
and (6.210) that

There my be an Induced velocity at some reference point upstream of the model and in conse-
4&eqe~ an eqal un Wposite effective interference velocity at the model.

!S1
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which becomes zero when v vanishes. Hence, in an Ideal slotted tunnel, the wake-
blockage velocity increment and horizontal buyancy are eliminated if zero solid-
blockage conditions are present. If this is not the case, the correction to the
measured drag is

(&C0),g = - 8(Es)CC . (6.22)

the derivation being similar to that described in Section 5.8.2.

If the tunnel does not conform to ideal slotted conditions, the velocity increment
far upstrem is still zero, but at the model position by Equation (23) of Reference 6.28

* j there is a wake-blockage factor

Zr 2h (6.23)

((1 + Pq) sinh q + cosh qje•
where =

"(cosh q + PQ siu 0) 2 - (/P) 2 sin•iq

The 1uastity in square brackets outside the Integral in Equation (6.23) is (ew)c
the 'ealue of =W for a closed tunnel. to that the ratio of the uske-blo-kage factors

__ mia be written as

2,
-- = = -- I . (6.24)

The velocity gradient at the model and the associated drag correction are still given

by Equations (6.21) and (6.22). and it follows that these vanish if the tunnel is
i operating under zero solid-blockage conditions.

6.4 THREE-DIMENSIONAL BLOCKAGE IN TUNNELS WITH
LONGITUDINAL SLOTS

Tiere are three main types of slotted working-section used for testing three-
dimensional models: (i) circular; (ii) rectangular with slots on the top and bottom
walls; and (iii) rectangular with all walls slotted. These will be considered in turn.

6.4.1 Circular Tomel

A small three-dimensional model say be replaced by its equivalent doublet, whose
potential in tree air is Oiven approximately by

ýPa 77-[(x2 + 82r 2)3;2 1
*(.5
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where V is the volume of the model, and r = (y 2 + Z2)a is the radial distance

perpendicular to the tunnel axis. In cylindrical co-ordinates the velocity potential
satisfies

+= . (6.26)
5x2  r (r~r/

As in Section 6.3.1. we write + = -P + 41 * which satisfies Equation (6.26) and the
boundary condition at the wall (r = R),.

S+= K -I+ +-+= - + X -- + (6.27)

Biar P -z. Zx~r P ý • i)

This corresponds to Equation (6.12). Fourier integral expressions for and
may again be used to deduce the perturbation velocity at the model position and hence
the blockage factor. Baldwin et al. . give this in a form which may be rewritten as

r0. 797V1 d
~0 . 4 0V13~J Icd (6.28)

with 41

OM OM Q~FIx.(Q)x0(q) 2F 20 q1() + J2)KI(q) I I(Q) q2+ •2

[o(q) +q71 1 (q)] 2 +• I(q)]

where for the circular tunnel F = K/R and the modified Bessel functions 10 .1
K. and K1 are tabulated in Reference 6.27. For the ideal slotted tunnel P - c
and 1c becomes

SC -lo(q) + qn 1(q)] (6.29)1

The expression in brackets in Equation (6.28) is the solid-blockage factor for a
closed circular tunnel, so that we may write

s= - - 0. 40 Icdq (6-30)

The variation of 11. with slot geometry is shown in Figure 6.8 for the ideal slotted
tunnel only. Davis and Moores* 17 used these results to demonstrate the validity of
the approximate homogeneous boundary condition (6.27) by showing that they are in good
agreement with the exact calculations made by Wright and Ward", 16.

Zero blockage in the ideal slotted tunnel occurs when the abscissa (I +FP)- = 0.798
i.e. nhen F = F 0 = 0.57 . Now for a circular tunnel with N equally-spaced slots



1K4

d 277

R N

so that the non-dimensional slot parameter F becomes (Fig. 6. 1)

: K 2 •
R = H cosec . (6.32)

The variation of the open-area ratio with the number of slots to give zero blockage in
an ideal tunnel is illustrated in the following table corresponding to F = FO,= 0.57

N 2 4 6 8 12 16 24

10 - 38.3 20.7 11.6 6.5 2.1 0.", 0.07.
"" d

These values are far larger than those for a two-dimensional model and give reasonable
slot widths even when the number of slots is large.

.. The effect of viscosity on Po is discussed in Reference 6.1. from which the present

Figure 6.9 is reproduced*; certain values have been transferred to Figure 6.8 to indi-
I !cate the possible trend of the curves for D. . There seems to be little direct evi-

dence as to whether the assumption of zero viscosity at the slots is reasonable or not
in typical clotted circular tunnels. Nevertheless the tests of Referew-e 6.16, made
in a tunnel with 10 slots and open-area ratio 12.5% ((1 + F)-Z = 0.861 exhibit an
t interference of about the magnitude expected from the curve of" Figure 6.8. It seems
therefore that. if there is no information about the apopropriate value of A/jP for a
given tunnel and the wall gefmetry Is not far.removed from that required to give zero

-I blockage for an ideal tunnel, then it may be assumed that 8/P = 0 . The longitud-iml
Pressure gradient of the model due to the solid blockage is absent for this condition

only; when A/P has a finite value, the resulting velocity gradient, and hence the
pressure gradient, my be calculated from Equation (34) of Reference 6. 1.

The make-blockage effects of & sm1i t ree-dimeusiooei model in a circular slotted
tunnel are discussed in Reference 6.28, where the wake is replared by a three-dimensional
point source whose strength is proportonal to the model drag. The expressicns for the
axial interference vclocity ratio and the velocity gradient along thV tunnel, at the
model position, are

(E)+" -2 
(6.33)( • (e.)• •77p Ui~ + • (),+ iq)

* ' 1 * Attention Is dram to the EraMta to Reference 6.1: which corrects the original FigrL-e 4.

I
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and TI
1 (6.34)Sw - l eI Ic dq = (6.34)

where IC is the integrand of Equation (6.28) for the solid-blockage factor and

CD1

S being the reference area on which the model drag coefficient is based. It follows
from Equations (6.30) and (6.34) that, if the solid-blockage interference is zero,
then the velocity gradient at the model due to the wake will be eliminated. Similarly
it may be shown that for this flow condition 6 is zero too.

When zero solid blockage is not obtained, the wake blockage may be found from
Equation (6.33); the buoyancy correction to the measured drag is precisely that con-
tained in Equation (6-22).

6.4.2 Rectangular Tunnel with Slotted Roof and Floor

In this case the model may once again be represented by the doublet whose potential

in free air (%~) is given in Equation (6.25). 7be solid side-walls require a condition
of zero flow velocity normal to them and can therefore be represented by a horizontal
row of doublet images spaced at distances equal to the tunnel breadth (b). The poten-
tial 81r of such an image-row can be derived simply from 4• (Ref. 6.17). Anoaher
potential % may be added to ',. to satisfy the conditions at the slotted walls.
Thus in an ideal slotted tunnel 1 = 4r + will satisfy

0 (y b)

1 (6.35)

x z 0 0 (z=+½h)•x *•x~z I
The formal solution for @s is given in Reference 6. 17. The solid-blockage incre-

mental velocity at the model position has two components, one associated with the

slotted, and the other with the solid walls; thus

A. (6.36)

After substitution and some manipulation6, 3  it follows th'it

Ea V 1 1 22 ro qe-Q(F-Q -1)

2rr +tt2 jcos h q + Fq si q

r. 4.4 2b (Q2• - 4.),e-q(Fq - 1)

-- ;;i-- - d J( -7



where Q0 unh/b and, from Figure 6. 1.

2b 7rNs
P = - loge cosec- . (6.38)

7T~h 2b

The first term in the bracket expresses the influence of the solid side-walls, and the

remainder the influence of the slotted roof and floor. In the special case F = 0

corresponding to a tunnel with open roof and floor, Equation (6.37) becomes 6 "as

2 3 2+ t b K, ) , (6.39)("s)Wi =_ 0 n3 1 hz -hbI ~

Sa and for -co, corresponding to a closed rectangular tunnel.

(6s)c- -L ty 21 (6.40)

T xponential behaviour of the Bessel function K1(2•nth/b) ensures rapid convergence
of the series (6.39) and (6.40) which are most convenient for computation. In Figure

* 6.10 values of 0s = e/(Es/ )c from Equat!ons (6.37) and (6.40) have been plotted as
functions of (1+F)T- for representative values of b/b . As might be expected, the
effect of varying F is greatest for small values of h/b ; for h > 1.17b zero
blockage cannot be achieved. This confirms an earlier prediction of Wieselsberger
(Ref.6.7; 1942). Numerical values of 03 b3 e /(8V) are given in Table 1 of Reference
6.34 for the complete range of (I + F)-: and h/b ; alternatively, the solid-blockage
factor for small wings my be obtained from Figure 6.10 with the aid of the tunnel-shape
parameter T from Figure 5.3 or 5.4 of Chapter V.

-aeder" 2 s has used a somewvhat different technique to evaluate solid-blockage correc-

"tions and has extended his method to include the effect of model span. His result for

i a small model is obtained by taking only the first two terms inside the bracket in
* Equation (6.37). It can be shown that for large qo

0b2 rw(q, - q,)1e-q(Fq -2 1)
2 cosh q + •q sinh-q dq = O(qO e- (6.41)

and will be small. If h = 1.25b , the difference between Mieder's values of % and
those from Equation (6.37) is less than O.00064'/(8b) 3 . but for smaller values of b/b
it becomes appreciable. 1n effect. Maeder assumes the influence of the slotted roof
and floor to be ithependent of model span. Then, for a model of span 2s * the first
term of the hrxeet in ftoatloi (6S. 3 is repl!-ced by

= 0.1913 + +.2) 0029 2 + 0.0002ar' + (6.42)

2W (n 2 -I 27(4 a-2 )2

&ere a = 2sib . The effect of model span, shown in Figure 6.11. is obtained by adding
the terms involving a on the right-band side of Equation (6.42) to the bracketed

S .-| I __ _
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expression in Equation (6.37). The curves of +/(es)co against ( +)- are
thus displaced upwards by an amount independent of F , but depending on a and h/b.
For a square tunnel zero blockage can only just be achieved if a- is as large as 0.8.
Maeder' s treatment does not hold when h/b is small and should be used with caution
when h/b < I

The wake-blockage effects associated with a small model in an ideal slotted tunnel
with ventilated roof and floor are discussed in Reference 6.28. It is there shown

that ew may be taken as zero, whatever the slot geometry, and that the velocity
gradient at the model vanishes when the wall is designed to eliminate solid blockage.
The influence of viscous flow within the slots on the foregoing analysis, cf. Equation
(6.18). does not appear to have been considered for this type of tunnel.

6.4.3 Rectangular Tunnel with Slots on Each Wall

This particular case does not seem to have been treated directly, though several
authors have suggested that the solid-t'ockage effects for a square tunnel should be
very similar to those obtained in a circular tunnel of the same cross-sectional area.
If the solid-blockage factor for a small model takes the form

SEs = T (6.43)

where C is the tunnel cross-sectional area, then T will depend on the tunnel shape
and slot parameter F . For example. T has values of 0.706 and 0.717 for the circular
and square closed tunnels respectively, and for the corresponding open tunnels, these
values are -0.182 and -0.211. Uhuso when the tunnel walig are close to the open-jet
conditJon, the error in using the circular-tunnel corrections may be of consequence.

In the absence of direct information, it seems more realistic to use the existing
knowledge of the blockage corrections for the open and closed square tunnels, which
correspond to values of 0s of 1.0 and -0.294. These values may be joined by a
straight line 6

.
3 3 or. better still, by a scaled version of the curve for a circular

tunnel. These estimated curves for the ideal slotted square tunnel are shown in
Figure 6.12 and are almost coincident in the important region near zero blockage at
approximately P = PO = 0.675 . If F is assumed to be equal to K/R' , where
RI = v/(C/Ir) is the radius of a circular tunnel having the same cross-sectional area,
then for a square tunnel

VnK d 7-a
F - = -log cosec

h X- loge 2d

7loge cosec 2d (6.44)

where N is the number of slots on each wall. For zero solid blockage, the open-area
ratio a/d is given in the following table.
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SiN 1 2 4 6 8 10

|I

100 j 19.5 5.8 0.53 0.05 0.0045 00004

* Around the tunnel periphery there will be 4N slots, and the open-area ratio corres-
ponding to this number of slots in the table for the circular tunnel in Section 6.4.1

*• is about the same, suggesting once more the correspondence between the two types of
tunnel. It seems reasonable therefore to apply to the square slotted tunnel similar
influences of slot porosity to those aiready discussed for the circular tunnel.

The foregoing procedure may of course be applied to a tunnel of general rectangular
cross-section; the appropriate values of es for fully open and closed boundaries
(Chapter -in would replace the end values of Figure 6.12. If the correspondence with
the equivalent circular tunnel is maintained, then in place of Equation (6.44)

'/-k d 77a
.F - = - -/T loge cosec - . (6.45)

2d

One interesting point, which perhaps strengthens the use of an approximate method
similar to that at present being discussed, is revealed by replotting the known results
for slotted tunnels in terms of a new parameter

'V - S Q (6.46)

S

* where fs is the value of fs for the condition F = 0 . Thus T• varies between
unity and zero as the slotted walls change from fully closed to fully open. As

*i Figure 6. 13 shows, most of the known results lie fairly close together. Except perhaps
for tunnels having a large ratio of breadth to height, some mean curve could be used
to estimate the solid-blockage factor for other configurations including, for example,
elliptical and octagonal sections. In particular, for rectangular tunnels with slots
on each wall the blockage factor for the open-jet case must be determined first; typical
values of ()' for a small centrally-situated model are listed below.

s

h b
e or - 2.00 .380 1.60 I.40 1.25 :.:0 1. 00

-0 . 449 0. 413 0. 376 0 . 337 0. 313 0. 296 0. 293

The wake-blockage effects in tunnels with all four walls slotted do not seem to have
been discussed. For tunnels of near-square cross-section, it would seem reasonable to
calculate the ap roprlate velocity incremeot and drag correction frou Rq•ations (6.*M.

and (6.22) for a circular tunnel of the same cross-sectional area. For an. ideal slotted
tunnel, it may be assumed. by analogy with the circular tunnel and that having a slotted
roof and floor, that the wake-blockage factor is zero and that the gradient at the model
vanishes for the wall geomet.r- giving zero solid blockage.
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6.5 LIFT INTERFERENCE IN TUNNELS WITH LONGITUDINAL SLOTS

The induced upwash associated with the walls of a circular, slotted tunnel containing
a small lifting wing was one of the first proble.'s of this type to be considered, anu

in the eaxly work of Pistolesi 6 '114 the exact boundary conditions were employed. M!uch

simplification results from the use of the equivalent homogeneous boundary co, itions

discussed in Section 6.2. which are valid provided that there is a reasonable number
of slots; by this means the lift interference has nuw been evaluated for two- and
three-dimensional models in the types of tunnel most frequently employed.

The lifting model is usually replaced by a simple vortex system, for example, a
single bound vortex if the model is a two-dimensional aerofoll, or a trailing vortex
pair in the case of a small wing. This type of representation will be sufficient for
most purposes. The actua', interference experienced by the model may i. general be
regarded as composed of two parts; an upwash (or incidence) correction at the model
position, and a "streamline curvature" effect associated with the variation in the
wall-induced upIash along the model length. The latter becames of importance if this
length is of the same order as the tunnel height.

Once again it is convenient to discuss separately different sorts of models and
working sections. Firstt. the two-dimensional tunnel will be considered, and then three
types of working section suitable for testing three-dimensional models.

6.5. 1 Two-Dimensional Tunnel

As before, the aerofoil is considered to span the tunnel breadth, the solid side-
walls acting merely as reflection planes. The interference is due to the pressure of the
slotted boundaries above and below the aerofoil which is replaced by a two-diuensional
vortex of strength "-UcCL

Wright 6 " 28 has developed for this particular case the approach contained in Reference
6.1. which allows for viscous effects within the slots. TMe potential of the vortex in
free air is

UCL 4z
4M -- tan- .I (6.47)

4r, x

At the slotted boundaries, the interference potential '-1 must satisfy Equation (6. 12).
The method of solution is then similar to that used for the solid-blockage interference,
outlined in Section 6. 3. 1. In the general case. the induced upwash angle at the vortex

position becomes

Wj - N, cCLI r6 dq
U U Zz 2rh P [sinh q + Fq cosh q] 2 + cosh (6.48)

Consider first the ideal slotted tunnel (P -o); in this case Equation (6.48) reduces
to the limit

-i- - . . .
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(6.49)U 4h(l + F)

which is Independent of stream Mach number. This lift interferenc. becomes zero when
the tunnel walla ake closed (P -coý) and has the value -!,(c/hCL for an open-jet
tunnel (F = 0). Tor the condition of zero solid blockage in an ideal slotted tunnel
-(Fo = 1.18) the lift interference is about 0.46 of that predicited for a tWo-dim-ensional
"open jet. Because it is prcportional to c/h , the interference may be of considerable
magnitudz.

Holder Ref. 6.58; 1962) has evaluated Equatia (6.48) for a range of values of 3/P
His resu4lts wre presented in Figure 6. 14 in. ters of the parameter

hwii .o (6 . 5 0 )
••-,•UcCL

The induced upwash interference disappears for the condition P = 0 , vhich represents
a wall with extreucly high resistance Lo cross-flow. In this condition., an inportant
limiting case is the closed tunnel (P = S. F -,) in which a. is known to be zero
froc earlier work on upwash interference. One important feature revealed by Figure 6.14
is that, for a given slot ge,=etry (constant F). the upwash interference decreases az
the viscrus effects grow. This suggests that in practice the actual interference is
likely to be smaller than that predicted by Equation (6.49). The eyperinents described
in Reference 6.24 provide evidence of such a trend, but the effect ZZy not be attri-
buted with certainty to the influence of viscouls flow within the slots.

The general expression for the induced upwash ang]t along the tunnel axis may sovte-
times be required; Equation (6) of Reference 6.28 simplifies to give

Wt !S Dl dq *~.i

U 2Ifh 'o

wherc

_.--OSp \ i(i - Fq)(sinhq + Fqcoshq) -

For an ideal slotted tunnel (P - co) Equattons (6.40) and (6.51) are inconsistent. It
is explained in Reference 6. 28 that Oe uniform upwash corresponding to Equation (6.49)
must be added to Eq:Ation (6.51) to make w. vanish in the limit as x -- = .
""ortunately. if P is finite. there is no singularity in ID at q = 0 and co.nge-
quently no difficulty at x = -c:

For a completely closed tunnel, the upwash vanishes both far upstrmaw and at the
4. model position. The well-known lift-interference corrections for an 'aerofoil in r

tunnel with close4 boundaries result from the strea-line curvature and are proportional
to tc/h) 2 w.en higher-order terms are neglected. The strea line curvature effect

A j. a slott ed-wall tunnel ýt x r0 can be obtained by differentiating EQuation (6.51)!

V1.
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C ZWj 02C L (.2
UT 3h 2  IE ( (6.52)

where
it

((1 - Pq)(sinh q + Fq cosh q) - (,P)2cosh qqeQ
1E = [sinh q + Fq cosh q] 2 + (NJP) 2cosh 2q .Q

As Glauert" j •ointi )ut. the correction to incidence, Aa is the value of wj/U

at the mid-chord of the aeroftil. The representative vortex must be placed at the
centre of pressure. and the mid-chord is approyimately at a distance c(¼÷ + CCL)

downstream. Then

L~+t - (_

U U 'ax \,4 CL!

SCCL C 2
= - I -C + C0 (6.53)

wherc. bry i•Qtions (6.49). 06.51) and (6.52).

=c -w when P -W
UZCL, 4 (1 F)1

I ,I dq when P is finite € 54)

2,zb

- IE dq for all P
UcC. zx r JJ

The residual corrections due to streamline curvatuee are conveniently expzressed ts
_equivalet Incre•ents t-, the coefficients of lift and pitching mioent about the

AC3L - S cO 2,U (6.55)

T I -U s 1( SI

1Nr a closed tunnel a' = 0 and 81 12- . and Equations (6.53) and (6.55) tecoae

identi'cal to Equations (2. !,) and (2.17) of Cha-ter I1.

For the ideal slotted tunnel fi!P = 0 and

I1 = (6.56)Sinh q + Fq cosh q
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For zero solid blockage when F Fo 1, 18 . Wright,6. 2 has evaluated = -0.027which is small relative to the corresponding values for closed and open tnnels.

a Values of So and 3 at other values o" F say be ottained fron Figure 6.15, where

the abscissa (1 + P,' is a useful parameter f-r presenting Iift-interference curves.
Zero streamline curvature occurs when F = 1.59 .

Tirulalesa 6 .5 5 has used the rheoelectric analogy to treat the case where the model

j chord is of the same order as the tunnel height. The distribution of interference
upw•,sh slong a Zmo-divensional model. displaoed. from the axis of the tunnel, isj| discussed in Reference 6.30.

P

6.5.2 Crtular Tunel

Matthews'6. 3 has extended the early qort of Pistolesi " 14 and provides a general
siYaition fov thG correct boundary conditions; In special circzmstancef the method of

* PReference 6.15 may Ze of great value, and in addition it provides a check on tb use
oi the lass precine ,hoogeneous boundary condition (Section S. 2). The linear form of
*this condition has been employed by several authors for a ltftiug wing ir the centre
of a circular slotted tunnel, and thC me'eod devi•eiý by Baldwin et al. 6• • is again of
significance because. of the way in which It can allot for viscous effects at the slots.

In this analysis the wing is r-,pla.red by % small horse-shoe vortex. wýose potential
in infreeR ir is

•,. x Dino0

!%7T + , ,•X2 + r

where S is the wing planform area and x . r and e are the cylindrical co-ordinates.
-2.e fact that the actual span (2s) is finite introduces higher-order terms which are

negligible at distances large compared with t•he nodA4 size. The interfierenca potential
S• mist satIsfy Evuatton (6.261 and the boundery condition %6.27): it. Reference 6. 1.

a-a and its derivative ZIi/"z are obtained ey a Fourier tr-nsforn setLd.

Mie upwash angle at the .moJc! position way tb expressed as

U -___ dq__ (6.58)

where

Sq
2

+- F = - 2)11 (q + (z14r•] • ÷ (/ 10) •2 (l 2

_nd. as in Equation I6.28). F = Ki3. 1. an- I zre modified Bessel functions. The
incidence correction is unaffected ty cowressibility, except through Atp

For a small model it is convenient to express the lift interference as

V U C

I *-
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C being the tunnel cross-sectional area. In the present case C 77R2 , and the

interference parameter

oo --= ! L . (6.60)

The valul.s of P = P required to give zero Uift interference are shown in Figpre 6.16 V
against the slot porosity parameter j3/P .

Davis and Moore 's 1I have shown that a wing of uniform spanwise loading, represented

us a horse-shoe vortý. in an ideal slotted tunnel gives an interference parameter

I C, 2
80(r ""13.5 .. ) 66)• i

'S° • ,r-(Fn + 1) .

which is ohtalncd as an average nlons the sexI-3pan s) 4 y .s Evea for quite large
values of s/k. only the first tera need be tonsidered. so that it is sufficient to

writ6

(6.62)

which is plotted as a straigbt line against (1 + F)- 1  in Figure 6.17. It can be
shown that Equation (6.60) tends to this result. when th? ideal slotted tunnel 'a
c:Dnsiderre- by the limiting process P -. cw. In Reference 6.17 Egiistion (6.62) is
compred with the exact values obtained by Matthevs'" 1 5 for tunnels havina 4. 8 and
12 slots: excellent agreement is obtained between the two methods of solut.on.

The coenditio for zero upwaah interference corresponds to the value F. 1. ,
compared with a value of 0. 57 to eliminate solid-blockage effects. It is apparent

therefore that it is not possible to eliminate both upiash and blockage Interference
Ms'.ultaneously in a circular ideal slotted tunnel, but, as Pigure 6.16 shows, this wj'
w,11 be achieved if AtP has a value s-ound 0.7. At P = 1.0 , the relationship

between the total number of slots and the open-area ratio is as follows.

N 2 4 6 8 1. 16 24

1C 24o 8.6 3.2 1.2 0.26 0. 02 o.o 0004

The ideal 2 e.- blc.':age coniltioc may well be the one for wbich the tunel In d•s•i4acd;
0 Is then -e.34, xhleb Lo of the -,posite sign to the correction I. a solidwall1

tunnel am- about. 27 of i,• kapitadc.

If the model crd itR of the ame order as the tunnel diraeter. sme correction for g.

streamline curvature sky to rrpired. For the zase where fl/P Is not zero the curvn-
tre can be obtaltred at.

.... ............
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A=

vhere B is the geometric mean wing chord and is given tv Equation (46) of
Reference 6.1. Reynolds et al. 6.23 give curves of the corrections for a value of
P = C.'191 appropriate to the Cooperative Wind Tunnel in California with different

values of the porosity parameter P . The total correction to incidence taKss the
form

Sc
AO = ý (6.63)

::'! I ~ ~where - "r•t of =USCL

is independent of Mach nuaber. The second term in Equation (6.63) represents the
incremnt in w;/U associated with a displacement fý in the streamwise direction,
where the aerodmic mean chord

= [c(y])2 2
c 0  j d~ (6.64)1

I This choice of Am approximately eliminates any residual correction to lift, but there
iremains an approzimate pitching-moment correction

1 IaCL Xxi 1jAC* = 2U (6.65)

I f where the planform parameter Xx,/E is discussed in Sections 3.2.4 and 3.3.4 and
S f typical values are given in Table 3.111 of Chapter III.

According to Guderley- 20 the curvature correction is very small in an ideal
slotted tunnel designed for zero solid blockage. Wright" 2 '5 estimates it to be about
-1% of the correction appropriate to a closed circuisr tunnel. he adds that no .dquate

experisental data exist for checking the interference corrections in a circular slottied

tunnel.

If the wing is so large and slender that the wing and tunnel may be treated as a
slender oonfiguration, then the Munk-Jones theoryg" l may be used. In tW.s case
Tirumslea' 3 7 has derived a value of the lift-interference parameter.

SC(__z lF-

0C = I4F -1] (6.66)

which is just twice the value given for a small wing 1r, Eqi.tion (6.62).

N

ii.

!-
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6.5.3 Rectangular Tumael with Slotted toot and Floor

As in the calz-ulat.-On of the solid-blockage interferesce, the effects of the solid
s~de-valls mny be adequately represented tT a horizontal row of vortices exteading ini
a plane containing the wing span. To the potential 4Ir associated with this row. ay

~,eadddapote tia -~ to that the total +~~ %~ will satisfy the bouadary

werelo (3 a- Reeec 6 s/.Vweea vrg nef-neuwo ntepaeo

of the louierin coaie oeisf o smal s andti Zreduce t eo ban vrsok t

77An sihnf (=a *(6.67)

bz1 + DIji

where a 2s/

Inthe limiting cae of t sealdl spzean thes coredcstionfcrislltaednire

f bed etel.c of te. 6.29; s95 ize anth coirretion fator (is 7 Ilsrted inFogrtes

'Idtera!c psashd atunl the coid-sa itionfozeoupws tisontearens aderor anti correcpndto

expressim Is

h (2 ) h

trisessentia~lly aasccitte.d wt b iemlIvsse k hsde o a
with the slot paramaeter P. -The third term i-_ identica~ly the Incidasce corj*rgcioMI for a two-d~pensi.rAl aerofoil in S~uatico (6..54) and thus my be ln~gin~d as givine
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"the influence due to an aerofoll spanming the tunnel breadth and having the stme total
lift as the wing. 7hese authors conclude therefore that the sutiation term in Equation
(6.67) my often be neglected, as it merely indicates the difference in the 3lotted-
wall case between a mean two-dimenzional vortex system and an exact vortex syst*e. .1he- approuimate equation for S. then becomes

• = ( - (6.70)
I

I jwhich is indepecdest of stream Mach number; (8 0)c denotes the value of So in a
I| closed tunnel, to be found in Chapter III for different value of h!b . For a square

tunnel, the discrepancy between the two equations is small. even when the ratio of
model span to tunnel breadth is as small as 0. 1 (Pig. 6.18). At h/b = 0. 5 , however.
the approximate formula is no longer valid (Fig. 6.19) due to the dominant effect of
the slotted boundaries. Katzoff and Barger (Ref. 6.30; 1959) have discussed the limits
of this approximate method and give corrections which may be applied to values of 8o
obtained in this way. By using the results contained in Reference 6.30, it is possible
to obtain easily the upwash disn-ibution along the tunnel axis.

Wright "62 discusses an interesting difference between the approach of Referenccs

6.25 and 6. 29 on the one hand and Reference 6.30 on the other. Katzoff and Barger
ascribe the slotted-wall effect mainly to the interference on the bound vortex, whilst

: the effect on the trailing vortices is used merely to derive a small correction. Maeder
[ and his associates c�'•'-•consider the main correction to come from the interference

I of the slotted walls in the presence of trailing vortices.

The streamline curvature at the model is also discussed In Reference 6.29. Similarly
to Equatioa (6.63). the total correction to incidence is expressed as

22 (a 0 (6.71)

where S = M-

7he correction term in Reference 6.29 is esuivalent to

S+ • q dq .(6.-t21

h I- Fbq
and ( 8 ,)c denotes the value for a closed tunnel (Chapter 1!). 7he variatiem -ith

slot geometry for a tumel with b/b 0.89 is shown in Ficure 6.20 as a full l.ne.
,• ~~It should be noted that this result Is .r aprxmate; the lingitng value 81Z ---0. 13

Sfor P = 0 compares wl the eact .-alue l = -0.21 for m cpn floor and roof
{(Chapteer III). *re accurats results have been obtained IV Pasht=6-- 1 usisg a ttree-
dimensional electricl ansloue. and these are sbout dIwejce

"!
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between the two curves is quite large, particularly when the wall is designed to give ; 1
zero solid blockage.

For a square Ideal slotted tunnel designed to operate at zero solid blockage, the
streamline curvature is about -0.28 of the value obtained in a square closed tunnel,
if the model is reasonably sMall 6

. 28.

The influence of viscous flow within the slots on the results discussed in this
section haz been considered by Holder6' s9 He has extended the analysis of
Reference 6.17 to satisfy the boundary condition (6.7). The average interferencee
parameter in the transverse plane of a uniformly-loaded wing can be written as*

dq

_[slab q + Fq cosh q" +[ cosh q0 !

-_. The•eond erm isprecisey the iterfernce upesh ofI t~ -diesonP8rooli

7he ecod trm s pecielythe interference upwash of a two-dimensional aerofoil in
-- uation (6.48). For an ideal slotted tunnel (P - 0, this reduces to the second term
of Equation (6.70) and the third term of Equation (6.73) therefore represents a correc-
tion to Equation (6,70). it can bee shown that Equation (6.73) reduc*s to Equation (6.67)
in te liat as P-oi O

Equation (6.73) has been evaluated by Holder for a range of values of AP , for a
square tunnel cross-section and one where h = 0.5b . These results are shown in
Figures 6.21 and 6.22 for the case of a very small model (or = 0), and also where the
model s&an is half the tunnel breadth (a = 0. 5). For a jimea slot geometry, the effect
of the viscous flow in the slots is to increase the induced upwash, and for. values of
P/P greater than about unity it w no longer be possible to obtain the zero lift-
interference condition. The value of P. for tbis condition is also affected !w the

span of the wing, the effect Veing ;articularly marked for the duplex tunnel cross-
sea•hin. The variation of P0 with T/P is shown in Figure 6.23. !

The preceding discussion in this section has been bed on the use of the hogmeoeous
b.4WAQ7 ("dltlto at the slotted walls. By esloying an electrical analogue technique,
horver, it is possible to obtain results for ideal slot flow in %hich the discrete
slots and slats are rojDresented. Thus a 4irect coparlaow between the use of exact and

%P roxifate bomdary ccoditiona may be made, and this has mean eone by Rushtca"o6 0 for
t e case of a small lifting wing in the centre of a rectangular tunnel with slotted

=of and floor. The exact boundary conditions are represented In a linearized form by

SAn error in ftmation (9) of Seferace 6.59 has b.m corrected here.

- - --. .- . . .- • , ,- - - _ - - .. _ . .•
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378H Equations (6.3). The interference potential ci satisfies Laplace' s equation subject
to the discrete boundary conditions at the roof and floor in place of the homogeneous
condition (6.12). The resistance network automatically solves the finite-difference
form of Laplace' s equation, and in Reference 6.60 the boundary conditions are applied
to the voltages in finite-difference form, if necessary. Then the electrical potentials

are measured on the network, and these my be equated to the velocity potentials.

' iRushton has investigated tne validity of the homogeneous boundary condition for an
ideal slotted %all by considering a rectanguilaz tunnel with h/b = 0. 5 . The slotted
roof and floor had an open-area ratio (aid) equal to 0.125. Two symetriral arrange-

j ments of the slots are possible. with eitter a slot or a blat directly above and below
the small wing. Four cases of each arrangement were considered, with a total of
N = 2,3.4 or 6 slots forming the ventilated wall and, if necessary, half slots at the
corners. For the fixed open-area ratio the slot parameter P is inversely proportional

to N . The interference parameter S. obtained with these discrete arrangements of
slots ma be compared with those deduced from Equat!on (6.68). and this comparison is

: shown in Figure 6.24 against (I + F)-f . It is clear that. us the nunber of slots is

increased, the differences between the exact and the homogeneous boundary conditions
I become smaller, and for N >, 6 these differences may be neglected. Further, the value

of & deviates towards that for an open or closed tunnel accordihg as a slot or slat
I lies directly above the wing. Some points obtained from the electrical analogue. but

with the homogereous boundary condition at the slotted wall, are plo.ted in Figure 6.24.
I These agree well with the analytical solution from Equation (6.68) and illustrate the

"validity of the analogue technique.

It is periaps worth 3tressing that these results are for the small ratio n/b = 0.5
I and for one particular value of the open-arva ratio (0.125). More favourable results

would be expected for larger b/b : many tunnels operate with an open-area ratio not

I I very different from 0.125. and it is unusual to have fewer than six slots in a venti-
I lated wall. One may conclude then, that in most cases of practical importance the use

of the simple homogeneous boundary condition is satisfactory.

6.5.4 Rectangular 'Inmel with Slots on Each Wall

The lift interference experienced by" a small wing at the centre of an ideal slotted
rectangular tunnel has been considered by Davis and Moored*17 uIto use a method which
involves the transformation from a uniformly slotted circular tunnel. The widths of
the individual slots in the rectangular tunncl vary, and their dimens).ons may be founa

by calculating the points which correspond to the clot edges in the circular tunnel.
The technique therefore is less precise than that used for other cross-section shapes

- and geometries.

[.• The general solution for the interference parameter S. in the slotted tunnal
* involves elliptic functions, but very simple approximations for So may be derived.

For a square tunnel. Davis and Moore suggest that

I where F is defined in Pigure 6.1; and for extreve rectanzjlar cross-secimns
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sa-2a (i1.b (6.ot)

and

~ ,,.

These equations give good approximations to the limiting values of 0 for completely
closed or open tunneis. A straight line joining these limiting values results if So
is lotthed against (I + p)po . EQuation (6.74) is very similar in form to that given
in Equation (6.62) for a circular Idueal slotted tunnel. As shown In Figure 6.17, both
these results are close to that for a square tunnel with solid side-walls and ideal
elotted roof and floor. This would seem to justify in par'. an assumption, commonoly
made. that the interference in a sqouare solotted tunnel is equal to that obtained in a
circular slotted tunnel or the sae cross-sectional area. Reynolds et al 6. uggest
that the curvature correction for as near-square tunnel with all four walls slotted way
b frbased on the analogous Equations (6.63) and 65) abovre for the slotted circular
tunnel having the same cross-sectional area.

The method of analysis proposed by Davis and Moore is rather unsatisfactory, and it
is therefore particularly valuable to have results frma the electrical-analogue tech-
nique for rectangular tunnels with all four walls slotted. These restlts, pres.rnted
by Rueshton in Reference 6.60. correspond to the ideal homogeneous boundary condition

0for slotted walls. Three tunnel geometries, with h/b = 0.5 . 1.0 and 1.6 6 are
considered over the suaole range of slot parameter F . la Figure 6.25 the full curves

from the analogue experiments are compared with the results deduced from the linear
relationshap suggested bY Dnefrn and Moore. Between h/b = 0.5 and h/b = 1.0 the
linear approximation does not lead to large discrepanties, but more serious errors are
incurred when h/b = 1.6 . The data given by Rushton are probably sufficient to allow
corrections to be estimated for most tunnel geometries at prese 'in use.

Zero upwash interference in a square slotted tunnel does not correspond to "ero
blockage; at the former condition the interference correction due et o bnockn g is about
0.12iofthe value appropriate to a square tunnel (i.e., Pl = 0.12 in sur fic.ent
Conversely. fcr the square tunnel operating at zero blockage, the .wash wilL be about
-0.28 of the closed-tuanel value. The evidence in Figures 6.13 and 6.253 does suggest,
however, th3at both interference effects could be elliminated in a rectangular tunnel,
hbarinK ideal slots on each wall with F = 0.8 approximately and a ratio h/b betikeen
1.4 and 1.5.

6.6 SOME GENERAL REMARKS ON INTERFERENCE EFFECTS IN TUNNELS
WITH LONGITUDINAL SLOTSI In the preceding pages. an attempt has been made to outline the techniques and

results at present available to correct, aerodynamic data obtained in wind tun1uels with
longitudinally-slotted walls, It is aprwent that the vo~t inportant types of working
section geometry and shape btve been analysed, for small models tt lfast, in sufficient
detail to enable the required calculationa to be made. A suagry of the relevant

figures and equations is given in Table 6.1.
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l• • The theory of Reference 6.1 is particularly valuable, in that for certain cases it

enables some estimate to be made of the influence of viscous effects on the slots.

The theory indicates that in compressible flow the primary parameter is not 1/P . but

A P . so that the conditions required for zero blockage or zero lift interference will
vary with Mach number, even if P remains constant. As the stream Mach numberapproaches unity, /3/P will tend to zero, so that the ideal slotted tunnel conditions

will be approached, However, it is just in this range that the theory itself becomes

less reliable, and the magnitude of the interference effectb is probably best deter-
mined by experimental comparisons. An allowance for the viscous effects, though
complicating the interference correction, is of great value in suggesting a mechanism
by ahirh in real tnnels both blockage and lift interference may be eliminated or

f minimized for a given slot arrangement (Figs. 6.16 and 6.23). The viscous effects.
linked as they are to 3/P . -may also be responsible for the disagreement sometimes
observed between the trend with Mach number of the experimental results and that pre-

: I dicted for an ideal slotted tunnel 6 2 Q. 2"- 3 1

It is likely that the theoretical corrections based on the linear boundary conditions
of E4uations (6.1) and (6.7) would have most validity when applied to reasonably small
models. for with these any distortion of the flow field which may correspond to a
second-order effect is likely to be small also. For larger disturbances at the boundary.
the noi-linear condition of Wood 6 ' 57 must be considered. Wright 5 26 also suggests that
the lift interference is less well determined than the blockage interference in a
slotted tunnel, due to uncertainties in the boundary conditions for the former. This
consideration is likely to be of greatest significance for two-dimensional flows

because of the appearance in these cases only of the conditions at infinity upstream.
Wright argues that any significant downward displacement of the tunnel flow resulting
from the lift imposed on the model will cause an increase in the inflow on the wall
above the wing and hence an increased bomndary-layer thickness. The actual boundary
condition in this region might then approach that for an open turnel or resemble the
non-linear condition of Equation (6.4).

"Despite reservations of this type. the progress made in recent years towards under-
standing the general problem of slotted-wall interference has beep considerable, due

mainly to the use of the equivalent homogeneous boundary conditions. Their validity
for most types of problem has been established beyond doubt, provided the disturbance
due to the model is small.

It will be apparent from the foregoing text that. for a tunnel designed to have
zero-blockage with a small model, the interference corrections will be considerably
smaller than those appropriate to either % closed or an open tunnel. In many cases
the effects of the tunnel walls can be neglected altogether; it is important, however.
to consider whether this action is justified for each combination of model and tunnel.1_ . and whether the interference quantities could become comparable with the permitted
tolerances In the observations.

G.? THE PERFORATED WALL

The other form of ventilated boundary in comon use contains regularly-spaced
openings into the surrounding plenum chamber, the dimensions of the openings being{-small compared with the tunnel height or breadth. Such walls are usually called

____



I'
381

'perforated'. The perforations may be of various shepes, but most frequently they are

L circular, with the axes of the holes normal to the plane of the wall. Occasionally,

for reasons conuected with the need to minimize wave reflection at low supersonic

stream speeds, the hole axes may be inclined away from the normal.

There is an important difference in the behaviour of a wall containing an array of

small perforations and one having longitudinal slots along the working section. In

the former case any pressure difference between the working section and the plenum

chamber is primarily due to viscous effects in the slot. the resulting pressure change

being given by Equation (6.6). With a perforated wall a preosure difference is associ-

ated with a cross-flow, even if viscosity is ignored. For convenience, the solid part
of the wall may be likened to a lattice of small lifting wings whose incidence is the
flow inclination to the wall (vn/U). Thus one may write approximately

zvn

Sp•z ½pU2n PUVn (6.77)
U

so that
pU pU•_

-- vn -- (6.78)P=P-c p 'n P 'an

where p, is the pressure in the plenum chamber. This is precisely the Equation (C. 6)
used for estimating the influence of viscosity on interference effects in tunnels with

longitudinal slots, Unless otherwise stated, it will be assumed that a perforated
wall has the linear pressure-drop characteristics, implied by Equation (6.78). where
the porosity parameter, P . is mainly dependent on the wall geometry and stream velocity.
In general, P must be determined experimentally for the particular wall geometry of
interest and at the required stream Mach number. Theoretical values for P have so
far only been obtained for single and multiple slots transverse to the flow direction
(Refs. 6.19. 6.32. 6.42. 6.47). In the case of the single transverse slot it has been
shown 6 "S4, contrary -o Reference 6.57. that separation on the plenum-chamber side of
the wall does not affect the linear form of the pressire-drop equation.

The experimental cross-flow characteristics of perforated walls arf discussed in
some detail by Goethert in Reference 6.32, and further information is contained in
References 6.22, 6.38 and 6.47. For circular holes with axes normal to the wall there
mzy be a small decre~se in P as the stream Mach number rises. The wall boundary
layer, which develops uore rzpidly along a perforated wall than along a longitudinally-
slotted 6. may have a marked influence on the observed porosity

paramizter and on the range over which the linear variation of pressure diff nice with
flow Inclination is uaintained. Markedly no,-linear effects can be obtaineL .r small
cross-flows, if the displacement thickness of the boundary layer is large compared with
Zhe hole diameter. Similar deviations may be obtained if the wall thickness is conpar-
able with the hole size; in addition, the hole may now act as a diffuser- so that the
overall pressure change across the wall is reduced. It bas also been found experi-
Wadtally"2, that the cross-flow characteristics of a rcrforated wall are changed, if
the working-section length is short compared with the tunnel height. These and other
aspects of perforated-wall behaviour are considered in Reference 6.32; it is sufficient
here to note that the theoretical analysis of boundary Interference in perforated-vall
tunnels assumes a pressure-drop relationship of the linear form given by Equation (6.78)

-4 !OZO

- -- 1



382

and a siaple linearized homogeneous boundary condition at the perforated wall, which
"is equivalent to Equation (6.5). viz.

1~ =0 (6.79)
It is perhaps necessary to consider briefly the difference in the behaviour of a

perforated wallo and one which is truly porm.s. In the latter c•se friction effects

dominate the flow, and the pressure drop is directly proportional to the mass flow

tbrough the wall6" a. The equation analogous to (6.78) is then

Sp = P = (6.80)

The porosity parameter P for a perforated wall is foplaced by PtU and thus depends

directly on the stream velocity. This is an undesirable characteristic which is partly

responsible for the limited use made of porr.us-wall tunnels. Analyses for wall inter-

ference in tunnels with porous walls (e.g., Ref.6.21) a&e immediately applicable to

the perforated case, provided that the porosity parameter is defined by means of
&Euation (6.78). Conversely, the results set out in the subsequent sections of the
present teg. with perforated tunnels in mind. may be used for tunnels with porous
walls.

It is apparent that an actusa perforated w-e.l may. in certafn flow conditions, not
cunform to the behaviour of the idealized wall assusaed in the analysis; to this extent
it =V be argued (as in Reference 6.28) that the corrections for wall-interference
effects in perforated tunnels are less soundly based than in the case of longitudinally-

slotted tc-ndaries. Neverthtless. it is felt that the simple theory at present avail-
able does give a valuable indication of the approximate magnitude and trends of the
interference effects in wind tunnels having perforated bound2ries.

As will be sboun below, tb.% raroneter deteraining the intzrference-free flow is

NP . whers P is defined by Equation (6.78) and is dependent mainly on the wall

gecmetry. Thus, to raintain a constant value of O/P ever the complete range of test
Mach number, the wrll geometry wooild need to be continuously varied. In contrast, the

- interference-free conditton for an Ideal slotted tunnel L. usually independent of
stream Much number and attained simply through a specific value of the geometric para-
meter F = Fo (Pig. 6. 1). This distinction is sometit7vs used as an argument, that the
perforated wall is less suitable as a boun4ary for subsonic tunnels thAn one having
longitudinal slots. However, when viscous effects are present, so that F0  is n~w a
_nnction of A'1P . experUmntal evidense suggests that the value of P for slrtted
malls is not grestly infl-eneed by stream Mach number, and hence, as in the case of a
perfcrated wall, continuoun variation of wall geometry is strictly required to Waintaln

interference-free conditions. The relative advantages of the two types of wall are
thtm less obvious.

As the stream Manh wn ber aproaches unity. AT? ttds to zero. and the perforated
tunael tLeaves -ore and more like an open jet. In this flow regime the linearized

th~eory. on whlh the analysis 's based, is of limited validity; the interference
• prcsent =st therefore 'e calculated froz flow equations with the proper transonic
approx_-ations.

'4
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However, the choice cf the geometry of a perforated wall may be influenced by con-
stderations other than the need to minitize subsonic wall interference. Par tunnels
which are required to operate at transonic and low mupersonic spes-ds. a perforated wall
can be designed te. reduce shock-wave reflections6*''%.- the open-area ratio of such a • J

wall (as well as the inclination of the holes to tU waJl surface) may well be very
different from that which would be chosen solely to z.atisfy the need for small wall
interference at subsonic speeds. More sLecifically, the velue of j3/P for a wave-
cancellation wall may be as low as 0.3. so that tt.e tannel behaves rather like sn
open-jet configuration and corrections for wall interference are far from negligible. 1
In some cases, however, there may be an incidental advantage in operating the tunnel
away from zero-interference conditions; the ]_•gitudinal pressure gradient along the
tunnel axis and the streamline curvature say then be s.'raller, .o that a more unifom
interference effect is achieved over the wle length of the model. |i

It is clear thbt the actual design of a pmrforated wall caa be a compromise between -

conflicting requirements. Nevertheless in the present text sme stress will continue
to be laid on conditions which achieve zero wall interference at subsonic speeds.
Sufficient data are presented, however, to enable the corrections to be cIlculated for
a wide range of Al/P

6.8 TWO-DlUENSIONAL BLOCKAGE IN TUNNELS IITH PERFORATED WALLS

6.8.1 Solid Blockage

The solid-blockage interference experienced by % to-dimenriional model in a per-
forated tunnel was considered independently by Goodman (Ref. 6.21; 1950) and Kassner
(P.ef. 6.35; 1952). Both authors use the boundary condition (6.79). Later, a solution
was obtained by Baldwin et al. 's as a special case (K = 0) of the hon.m.geneous boundary
condition (6.7ý, for longitudinal slots with viscous flow. The interference potential

and hence the longitudinal interference velocity increment at the model position
*3 . may be found similarly to that for Ion tudinal slots, discussed in Seci+.cn 6.3.1.

Alterna -urier analysis me • , 'ied imae
method. my be employed. The solid-blockage factor es is most conveniently expressed
in terms of ", I the ratio of its value In the ventilated tunnel to that in a
geometrically-similar tunnel with closed walls. For a two-dimensional model in a I
perforated-wall tunnel a simple equation for this ratio is

S= - 6 , (6.81)
5!

vhere u = cot- 10p) may var= between zero and jzn , the value for an open-Jet t-nnel.
The variation of Q. with porosity parzmeter is =Lo= in Figure e. 26. Zero solid -

blockage occurs when ? = 1.28 ; a reault close to this, but derived in a different
wAY, was obtained by Brescia (Ref. 6.40; 1952). 1

The boundaries of a perforated tunnel, unlike ideal slotted walls, induce a velocity j
gradient along the model due to the solid blockage. At the model position this CradienW
ma te obtalned frc Equation (6. 18) witlh F 0

w - ..-, .
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_24 q2tq (6.62)

j 1p 7!6 P c~s2q + p) 26jnh2 qLii 12
if the turnal is designed to gi-ve zero blockage (68/ = 1,28". Figure 6.21. taken from

peference 0.35. Zhows how 6s varies eaang the tunnel for different wall porities

The correction to measured drag wu be calculated from Equation (6. IN, with P = 0

7he broken curve in Figure 6.27 suggests that (gOC)st is roughly i matinux when

Ej(0) is Mero.

SIn Section 7. 28 of Referece 6.19 Woods has consideret! the more ceneral prcblem of

a two-dimensional tunnel with perforated walls of finite length. He derives a simple,

but lengthy, expression for es(x) which is shown to become .consistent with Fquptaiou

(6.81) wheu the perforated walls are of infinite streAwwlse extent.

6.8.2 Uke Blockage

Wright 
6*2 has considered the wake-blockage effects expezienced 1.2 an aerofoil in a

perforated tunnel by methods similar to those of Reference 6.1. The ratio of the wake-

* j blockae factor in the perforated tunnel to that in the closed tunnel may be denoted

by ftv . and for the two-dimensional aerofoil

- 2i,0 dQ 2

t 
tad- (6.83)

7- P1 p'.oth q + (,6/p)2Sinhq I

The variation of Q. with j6/p is shown in Ftgure 6.26. At zero solid blockage.

is about -0.57; for i9/P > 1.28 , the wake blockage would tend to counter the solid

blockage.

whereas 1I in Equltion (G. 81) tends to the cm-rect limits - and 1 for open

(B!P = 0) and closed OT - co) tunnels respectively. .1w only tends to the correct

liait in the former case. Just as for an idsal slotted tunnel Pw = 0 for finite

values of P . so here ft is negative for finite values of "3/ ; neither tUnds to

the definition 0, = I fcr a closed tunnel. In the analysis of Refcrence 6.28, the

model waske is represented by a single source and the interference velocity beomws

zero far upstream of the model; the wake-blockage correction in Equation (6.83) is

simply the interference velocity at the mode: pomition. .The same is not true of a

closed tunnel, unless the model wake includes a sink of equal strength far dcwnstre(a.

The velocity gradient at the aodel position due to the wake images my also be

derived formally'"2S. MTe ielocity gradient due to a source is closaly related io the

""elocity increment associated with a do-blet, and hence the wake-blockage gradient

"vanishes when the solid blockage is wro. In generl. Zc,/Zi and the corresponding

drag cbrrectio% are given by Equations (6.41) and .fg.22), where ns now takes the

- approp~riate v-lue from Equatton (6.81).

; .......................... ...... .............. . .... = __• .. ..... __ =........ ... .. _. _=__ =• ._ =.... .....
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6.9 TEREE-DINENSIONAL BLOCKAGE IN TUNNELS WITR PERFORATED WALLS

6.9.1 Circular Tianel

7he solid blockage of a small body in a circular tunnel of radius R may be solved
tq similar acthods to those used n considering the slotted ttumel. Goodman 6

-36 pro-
vided the first solution in 1951. At the model position, the blockage-factor ratio
fl becomes

-0. 4 c (6.84)

With

I,{oml,( - (__'_,)2X___ (q)__-
I G -2 +2

where the modified Bessel functions 10 . I, :X and K are tabulated in Reference 4

6.27. The variation of Ds with W/P iz shown in Figure 6.23. and zero solid blockage
occur* for 4/P equal to 1.22.

Once again the velocity gradient at the odael positicn may be obtained directly by
twice differentiating the interference velocity potential from Eqation (34) of Reference
6. 1: hence .I

ox : (cs)c !_ 40 •.

-r dq (6.85)

According to Wright-• 2 8 the expression in square brackets is equal to !.4.7 when A'P
has the value 1. 22 appropriate t. zero solid blockage. This is confirmed by independent
calculation and, not unlike tb.1 two-dimensional case in Figure 6.27. the expression is
close to its maximum va•l tt.&t occurs near jS' = 1.6.

In considering the say;. blockage, the model wake my once more be represented iey a
three-dimensional sourc-. The make-blockage factor at the model position is obtained

a special case of 24uation (6.33).

(ep4  - iv P 0 [10((,)] 2~ +(,pI 1 q

A crve of f0. agaijst 4/P is shown ia Figure 6. 28; this only vanishes for an open-
jet tunnel (8/= 0).; and no perforated wall geometry will rftnve tie wake-blocktge
effect. For L tunel designed to have zero zolid blockage , -0.43. A5 in the
two-diacneloni l case below Equatior: (u.83). the lizit -l Rs -1P - c cannot be_
identified with the definition I for a clebed tunnel. An exrression for the
vafiation of the wake blockage along the axW6 of ^be tunnei for different vaYUes of
4/P Is gi7en in Reference 6.45. Aa in EQuatioc (6.34) the gradient gt the rodel
position is

o.1 dq

*;



where !~defined in Equation (6.84). is identical to Ic in Equation (6.28) with
- = 0 . It follows that the wake-blockage grtient vanishes with the solid blockage.

6.9.2 Reetssmlaar Thinel

Blockage effects do not seen to have been considered for a rectangular tunnel having
either two op~osite. or all four, walls perforated. A working section with four per-
forated wall, may be rearded r- having similar interference characteristics to a

"+| circular tunnel of the same cross-sectional area, provided the height/breadth ratio is
near unity. •he results of Section 6.9.1, or •igure 6.28. ma then be used for a small
model 3ounted on the axis of the tunnel,

1 6. 10 LIFT INTERFERENCE XN TUNNELS WITH PE3'OIATED VALLS

6.10.1 2hw-Dime1oadl Tnmel

the lifting aerofoil may be represected lV a two-dimensional vortex having the same
I- circulation. The subsequent analysis is then very smilar to that for the solid-Si ' bloc•aige interference. and is set oGt in detail by Wright in Reference 6.28. The

-s boundary-induced uppish at th2 model positior. is

cc.
cot-,(6. Va)j,+ I U - 2-7Th.m

Since the geeeral expression for *.AT bkscome zero far upstren from the model.
Equation (6.89) represents the complete interference upwash acting on a small aerofoil.
For the closed tunnel (P = 0) wV is zero, bat for any other value of P sme induc2d
upvash must be present; in the limiting case IVP = 0 . the vtlue wi/U = -(c/h)S

t is consistent with an (wen tunnel. Equation (6.88) may be recast in term3 of the
j j interference pa-meter

--•hi 1  - 1 *. )

so = - = - -- co - (6.89)

which is plotted in Figure 6.29; at zero solid-blockage conditions, the correction Is
0.42 of that appmpriate to the open tnnel.

Wright hxs also considered the streesxine curvature at the model position and showas
that this may be expressed as

I -- -- -11-61- -

where t-.-'w) -

The quantity in square brackets is identical in form to thet- arising in the expresion
for the 3olid blockage of a two-dimensional model in E•qation (6.81, tmt now contains
S- A) in place of /.. It follboi that the streamlie curvalpire wiil be zer-o for a

.- value A/P = 0.78 , the reciprocal of that which elixinates the solid blockage. An
* 4
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equat'Aon similar to (6.90) was obtained by Brescia'" V, using ai different snalytical

aMpgroech. fhe interference varametei

6OC r +8- !f (6.91)
UOCL -a 11 [1 P-G, + 6(/

is also plotted as a fu-ntion of 6/P in Pigure 6.29; the stremline curvature in the

two-dimensional perforated tunnel. designed to have zero solid blockage, is as much as

0.46 of the value appropriate to a closed tumel. The correctioas to incidence, lift

and otarter-chord pitching moment are given Iv Equations (3. 33) and (6.55).

22

' c77 c2

where the quantities ao and 81 for a given porosity parameter my be taken from

Equations (6.89) and (6. 91) or from Figure 6.29.

6.10.2 Circular Twmel i

The corrections for a smll wing in a circular perforated tunnel my be considered
as special cases of those derived in Reference 6.1 for the general ventilated wall
baving both Porositr and longitudinal slots. The original solution by Goodman"'
considered only the perforated tunnel. Vie induced incidence at the model position
may be eýpressed as

E -a
;i..L - I-Flx dQ * (6.93)

where I., is the i.W.egrand of Equation (6.58) with the substitution F = 0 . As in
Eqmtions (6.54.) and (6.60), the interference parameter So becomes

nR2 wl VL ,.
so =1POi. 1.J 7  dq (6.94)

S U 8 L -1P 1 Q

Inae variadon of So with M/P is shown In -Figre 6.30. Zero lft interference "

occurs when 8/P = 1.13 , comared with ./P = 1.22 required to remove the solid-
blockage velocity increment. 7hus, at zrro solid blockage. S. will be only 0.04 of

S•*s value in c, closed circular tunnel. The xgarked contrast between this caso (P = 0) .

and the ideal slotted tunnel = ) .)s illustrated in Figure 6.1.6.

The flow curvature at the o;igin cau be obtained directly from Equation (47) of

Reference 6.1 .which gives

-- •- • ••
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, --- J I. dQ (0.95)
USCL ZX 4 77

where

Swhere II = {q2 lK(q)I 1 (Q) + (",/) 2 rIX(q) + QJyo(q)3[li) . q1o(q)]}q 2J 1[qI (Q• 2+ (- ) 2[ 11(q) - 0 (Q)

At zero solid-blocksge conditions, the stremlive curvature is large. 0.59 of its value
in a closed taMel'6*2. 7he corrections to incidence and pitching moment follow from

Egastious (-5.63) and (6.65) and may be evaluated with The aid of Figure 6.30.

bod"MSn. 3 points out that for the perforated tunnel a solution to the uprash at
the model positio m.- not be deduced by considering the flow in a plane ftr domwstream.
In the closed or ideal slotted tunnel, for exumple, the upwash at this position is
twice that at the nodel. and this analogy maw be ursed to simplify the analvsis. The
"bonogeneous bomdary condition for the perforated circular tunnel i3

; i- --- = 0; (.6.96)
S•ýx P .ir

gince ZVx = 0 in the distant wake, the boundary condition at infinity downstrem
reduces to

I

- 0 -10 (6.97)

Sthe boun rzy cozdition for a closed tunnel. It is necessary therefore to consider thej three-dimenzional flow at the &del position in solvijg tha interference problem

Goethert'6, 2 suggests a physical reason for this behaviour of the perforated sll.
The wall. actisig like a lattice of elementary wings, generates free vortices at posi-
tions a•%w fr-• the axis of the tunnel. Tshe distant-wake analca holds true for each
elementary vortex; but. since these are Dot all generated in the treansverse pl&,-- of
the model, x = 0 . the analogy doea not hold for the complete vortex systec.

9. 10.3 Recta•gular T••1Ihe interference exerienced ta a small lifting wing in a rectangular tunnel seems
only to avse been partially solved. the a•jor coDtributicn coaing from an early msper
1w GQodRan (Ref.6.39; !951). He considemr the cse of P wing mounted between to
infinite V or•.--ted walls, either vertical or borizcnt&l. The wing itself is replaced
in the analp..h.e ty an infinitesimal herse-shoe vortex. For vertical Valls. the inter-
ference upwash at the win is given••bY

* ~ ~ ~ ~ ~ 1 rrh - i rL{ ,/)2sinh 3 + COS;h2ql*- A/P ihj q

L4-b sin(9
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and this may be expected to hold it h/b is large enough. Similarly, if hb is
small enough. Goodman's result for horizontal perforated walls may be used,

8, 2.o _(/p)2Cosh 2  +Snh2q]tcos.99

Values of (bA/) 8 fr(oa Equation (6.98) and of (h/b)S, frca Equation (6.99) are
plotted against porosity paraseter in Figure 6.31; zero lift Interference occurs for
4*'P = 0.81 and 1.50 respectively. The equtions become ideutical to Equations (6.75)
and (. 76) in the limiting cases of closed (j6/P - co) and open jet (W(P = 0) tunnels.
Som6 dea of the range of applicability my- be obtained from Figure 6.32 ibere these

limiting results are compared with exact values calculated from the usual image methods
(Chapter II1). For the closed tunnel. it would seem that the horizontal walls have
neg'lill gb influence when h/b > 1.25 , and the vertical walls when h/b < 0.4
Sintliarly, for the open Jet, the discrepancies can be ignored unless 0.8 < h/b < 2.5 .

Unfortunately, mar existing tunnels are nearly square, and it would sees best in
these caaes to estimate B. from the curve of Figurc 6.30 for a circular tunnel. This
is reproduced in Pigure 6.31 and suggests that the tunnel with vertical walls only is
a good approximation for XP > 2.0 , and the tunnel with roof and floor only is useful
for N3P < 0.5 . Fr the intermediate range of B/P . curves of 8,, against h/b in
Figure 6.33 have been estimated graphically by identifying the squaie and circular
tunnel and using the asymptotic formulae (6.98) and (6.99) for large and small h/b .

Goodman does not consider the curvature induced by the perforated boundaries, but

it ma7 be obtained as a direct extension of his analysis.

6.11 APPLICATION OF CORRECTISN FAZZO7S

The ways in which blockage and lift interference M be used to correct the measured
quantities are discussed in Sections 5.8 and 3.2.4 respectively.

The blockage factor 6= + e determines the increment to the measured Mach
number by means of the equation

A-M = (1 + 0.2l2)Ms ; (6.100)

in addItion, there ere corrections to other stream qaantities, such as density and
Reynolds number. Alternatively, corfections may be applied to the measured force and
pressu.-e coefficients. If corrections, Emch as Equation (6.100). are aplied to strew
quantities, then there remains 2 correction to drag coefficient due to longitudinalS~Pressure aradient,

2V

We - ME

s611



ikere the equivalent volume of the model V8 *my be eativAted from Equation (5, 89)
and Piure 5.2. In two-dinensicnal flow (6Co) sg . the first term on the right hand
side of fquatiou (6.01). is given by equation (6.19).

The interference u9pv4h on a lifting model

26U °. (6A02)

leads to Incremental :orreatioa- to ;Pci.dence, dra, lift And pitching aores. For a
three-dineusion&- wdel in a rectanigular tunnel

= -CDo
.(6. 103)

ACL 0

'a rx C 2,&"a

where the planfor. parameter Xx1/- is discussed and tabulated in Chapter II. O~rres-

two-diumsional flow there is no correction to drag; the co.rrections to incidence. lift

and pitching moment are given iv Equations (6.92). In correcting the pitching moment
for a complete aircraft model, care must be taken to evaluate the change in interference

upuwah botween the wing and the tail surface; the linear dependence of wi/U oM x
ass!wed in Ruation (6.102), may not be accurate enough.

j ~ The evaluxtion of interference corrections requires the knowledge of Es . E 1

/ , so and S. " Table 6. 1 is a guide to the available information for tunnels
with slotted or perforated walls.

- A
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TABLE 6.1

Sumiry of Results

g alls Model .s.

Figs. Ersa. Figs. Eqns.
! -6.2 6. 1. .5 6.1

~ ~~~oa1, Slotted sma~l 63 6.48

Ioj 6.4 to 6.18 6.51

dimensional Slotted Large 6.7 6.20 6.54.

_~o Perforated %'iall 6.26 6.29 6.89

Tro-"
Perforated Large 6.27 6. 8A 6.29 6.91

Circular Slotted Small 6.8 6.28 6.16 6.58
6.9 6.33 6.17 6.8

- . t |.
Circular Slotted Large 341 6.61

1 . I6.63

Circular Perforated Sball 6.28 .4 6.30 6.94

S. .. . . I

Circular Pe-forated Large 6.85

5.87f .i

Slotted roof 16. 2 to 6.870
Rectangular and floor 611 .0 6.37 6.21 6o73

Setted roof 6.18

Rectangular a tdoor Ltrge 6.11 - to 1 6..3

tt
i .' ' ~6.S774 1

=- 6. 1!
Rectangular All slotted Small 6.12 6.75'| 6.25, ~6.76

Rectangular Perforated -6

Geneal i Slotted small 
_._3 6.46 - -

"LW-W' IAotes that the 2tf-ect o? lonsitudial pressur gradicat, strenlzne curvature,
lIgth or 9M of model I* cmIud2red.
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1 1Open araratio i
_ d

K' log cosec yd

(a) For a tunnel of height h and breadth b with solid side-walis

2K d to

2; l ogcosec

•Nh 2d

I J : where N is the number of slots in the roof or floor

j (b) For a circular tunnel of radius R

rK 2 IrSlg N - o 9 cec id

(c) %r a rectangutar tunnef with evenly spaced slots on all
four w0113

417K dIrPmF am log0 cosec z

S, -. Pig.8.1 !Iotation a•d geometry for lo0gitudinsl slots
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Reproduced from corrected Fig. 4 of Ref. 6.1
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Fig.6.9 Values of slot and porosity, parameters required to give zero solid blockage
for a small three-dimensional model in a circular tunnel
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Based on Fig. I of Ref. 6.23

Zero upwash j -
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Pig. 6. 16 Values of slot and porosity parameters required to give zero upwash
interference for a small three-dimensional model in a

circular tunnel
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NOTATION

A aspect ratio of wing

b breadth of tunnel

B cross-sectional area of wake at plane 2 (Pig...1)

c chord of wing

C cross-sectional area of tunnel

CD drag coefficient = D/qS

CDo profile drag coefficient

CDs separated-flow component of C. (Fig.7.6)

C vortex-induced drag coefficient

Ci jet moine..tum coefficient = soeentum/qS

CL lift coefficient = lift/qS

C pressure coefficient

Cpb base-pressure coefficient

CT thrust coefficient = thrust/qS

D drag

h height of tunnel

k base-pressure parameter in Equation (7.1)

I length of body

1 distance alcog wake of lifting rotor

a = B/s

:b base pressure

q dynmic pressure of undisturbed stimam

R radius of vortex ring

s smi-span of wing

S area of planfora of wing, reference area

I9
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t thickness of body

U velocity of undisturbed strew

V z-couponent of velocity

*o upward velocity induced at centre of rotor

w1  interference upwash velocity

V non-dimensional downwash in Equation (7.13)

I V for vertically directed doublets in Equation (7.14)

W2= I for horizontally directed doublets in Equation (7. 15)

x stremwise distance

y spanwise distance

z upward distance

O' incidence of wing

r circulation

so upwash interference parameter in Equation (7.18)

jh upwash interference parameter for wake of horizontal doublets

•w nen-dimensional w, in Equation (7.17)

prefix denoting incresent due to wall interference

blockage factor = AU/U

= 2z/h

71 = 2y/h

0 blockage factor for bluff-body flow in Equation (7.6)

Sangle of deflectict o£ jet f}sp

.wake skew-angle of lifting rotor

cS debscriptS [c denotes corrected value.
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BLUFF BODIES AND HIGH-LIFT SYSTEMS

E. C. Maskell

7.1 INTRODUCTION

The extent to which it is possible to establish corrections for boundary constraint

on a given flow depends largely on the extent to which a theory of the corresponding
unlimited flow has been developed. Thus. for any unlimited flow that is well
represented by classical aerofoil theory, it is usually possible to derive constraint
corrections more or less rigorously, as the foregoing chapters have shown. But for
other kinds of flow field. some of which have assumed great practical importance in
recent years, the situation is much less satisfactory, because the mechanism of
non-streamline flows is much less well understood. The difficulty in such cases is

a fundamental one, that of establishing a mathematical model of a flow that is
sufficiently realistic and, at the same time. amenable to the'retical development;
its resolution has been attempted in relation to only the few specific problems which
form the basis of the present chapter.

The feature of an external flow that distinguishes one kind of flow field from
another is the manner in which the wake, in particular the near wake, forms behind the
body and interacts with the flow over the body itself. For most streamline flows this
interaction is accounted for adequately, if the wake is represented simply as a plane
sheet of stresawise trailing vortices. This is because the wake behind a streamline
body is, by definition, thin, and because significant distortion from a plane sheet
"usually occurs too far downstream of the trailing edge to have much effect on the near

field of the body. * In the flows considered here at least one of these simplifying
properties is absent. In consequence, the appropriate mathematical models are both
more difficult to justify on physical grounds, and less tractable theoretically than
the streamline flow model.

The flows in question fall into two distinct groups, the first of which is typified
by the flow past a bluff body. The wake in this case is far from thin, and its
interaction with the near field of the body is not well understood. However, constraint
corrections in closed tunnels have been derived'-by Maskell (Ref. 7.1; 1963) by a
Lmethod which relies heavily on limited experimental evidence. An interesting conclusion
from this work is that distortion of the wake under constraiLt makes a significant

contribution to the large blockage correction derived.

The second group of problems has arisen from increasing practical interest in
recent years in V/S7OL aircraft. The flows in this group are therefore of a kind in
which lift is obtained, directly or indirectly, by the downward deflection of jets

The slender wing is an Important exception, in which the wake develops initially in the form
of leading-edge vortices, often from the apex of the wing. .,



"or slipstreams. Here the paths of jets or slipstreams are important features of the
flows. which might be greatly affected by boundary constraint. Realistic mathematical
models can usually be constructed if the effects of mixing at the boundaries of the
Jets or slipstreams are ignored, so that, in principl3, the appropriate interactions
can be taken into account. In practice, however. the resulting mathematical models are
intractable. Considerable simplification is therefore inevitable, and the problem
is to establish what kinds of simplification are justifiable.

The most promising approaches to problems of this kind have been concerned with
flows that can be regarded as essentially single-wake flows. Two examples are the
flow past a helicopter, in which the dominant wake is evidently the slipstream of the
rotor, and the flow past a jet-flap, in which the jet sheet simply replaces the usual
trailing-vortex sheet. Heyson (Ref.7.2; 1960) has treated the helicopter problem,
using a simple linear approximation to the jet path. The method is physically
convincing at the limits of hovering flight, and high forward speed. But, in general.
interaction between thL slipstream and the external flow would be expected to lead to
a curvzd slipstream. However, until the effect of this curvature has been investigated
for the helicopter In an unlimited stream, its neglect in the constraint problem is
plainly inevitable. The flow past a jet-flap wing is more closely related to
streamline flow, and has been treated as a simple extension of classical aerofoil
theory by Maskell and Spence (Ref.7.3; 1959). The further extension to the problem
of boundary constraint has been given by Maskell (Ref.7.4; 1959). who points out
that distortion of the jet path by the constraint results in an effective change in
the jet momentum coefficient. However, here again the approximation to the jet path
employed in the theory is, to some extent, open to question, although there seems little
doubt that a correction of the order of magnitude of that derived by Maskell is
necessary.

More general V/STOL configurations employ multiple wakes, in that they usually
consist of combinations of lifting wings with the deflected slipstreams of fans or
jets in which the vortex wakes of the wings would be expected to follow markedly
different paths from the slipstreams. The main problem, again, is to decide how
necessary it is for these paths to be represented correctly. Heyson (Ref.7.5; 1962)

i - has proposed an extension of his lifting-rotor theory to the general flow, and there
is evidence that the method has given plausible corrections in certain cases. However.
the basic model is less ccnvincing, on physical grounds, when applied to multiple-wake
problems, which therefore seem to require much more attention. It is likely that the
aerodynamics of such flows will often depend crucially on the mutual interference
between the different wakes and slipstreams, and hence that it may be vital to determine.
and interpret, the effect of boundary constraint on this interference. For purposes of
this kind a more realistic mathematical model than Heyson's would be needed. But
little further progress can be expected until the basic theory of such flows has
advanced a great deal.

-7.2 BLOCKAGE EFFECTS ON BLUFF BODIES

Following a comment by Glauert on the na'ture of the blockage effect associated with
a thick bluff-body wake. Fage and Johansen (Refs.7.6 and 7.7; 1927-28) made what
appears to have been the first serious attempt to establish the magnitude of the effect
experimentally, for the particular case of. a two-dimensional flat plate normal to a
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wind stream. They tested several such plates, of different sizes. and so determined
the drag coefficient corresponding to an unlimited stream by extrapolation of their
measurements to zero size.

However, the attempt of Glauert to develop a correction formula Mn Equaticn (17.13)
or (18.5) of Reference 7.8 was less successful - partly, perhaps, because he sought
to make it too comprehensive. With greater understanding of the differences bofWeene
the properties of the wakes of streamline and bluff bodies, it now seems unrealistic
to suppose that the wall constraint on a bluff-body flow can be broken down into
separate solid-blockage and wake-blockage effects. This sub-division is a physically
realistic, and therefore useful, procedure when the influence of the wake on the form
of the pressure field over the body can be regrrded as a second-order effect, as it
can be, for the most part, in streamline flow. But the pressure field over a bluff
body depends crucially on the wake structure, and generally bears little relation to
the inviscid. attached-flow, field of the body, from which the conventional solid-
blockage effect derives.

The bluff-body flow evidently needs to be represented, from the outset, by a
mathematical model that is quite different from that appropriate to streamline flow.
But since very little is known about the internal mechanics of a bluff-body wake, there
is little prospect of constructing a flow model that bears more than a superficiai
resemblance to the observed flow. The best that can be done at the present time is to
ensure that the external effects of the wake are adequately reproduced in the model,
and to take such account as is necessary of the internal field through empirically
determined auxiliary equations designed to match the behaviour of the model under
constraint to observation.

Mask-ll (Pef.7.1; 1963). has pointed out that the observed properties of the forward
part of a bluff-body wake (i.e. forward of any substantial pressure recovery) are well
represented by a model incorporating a stream surface extending downstream from the
edge of the body; the static pressure on the stream surface is supposed constant, and
equal to the base pressure Pb as far as the plane 2 in Figure 7. 1, where the cross-

sectional area of the wake is a maximum. The corresponding constant velocity he firitea
as kW . Then, if wall constraint is to be exactly equivalent to a simple increase in
stream velocity, the form of the pressure distribution over the body must be invariant
under constraint, and it follows that

CD ___ _ (7.1)
0 = constant

2  1 - Cpb

independent of boundary constraint, where C b is the base-pressure coefficient,
CD is the drag coefficient D/q.3 , q the dynamic pressure of the undisturbed stream.
and S a representative area of the body. It follows, also, that the velocity U_
of the unlimited stream which gives rise to a pressure distribution identical to that
observed is such that kc.U = kU , and hence that

U! k C (7.2)
112 kc2 C~

U2I

CDC1

- - - - i
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The relation (7.11 has been shown to hold exper>-.entally (Fig.7.2) for a set of
geometrically similar sharp-edged square plates, and is supposed to hold generally
for incompressible fluw in closed tunnels.

A further relation between the variables defining the f lou model can de derived by
considering the conservation of momentum within the control surface bounded by the

walls of the wind tunnel, the surface of the body and the constant-pressure surface

bounding the effective wake, and two planes normal to the u.-disturbed velocity vector -

plane 1 lying upstream of the body. and plane 2 located where the cross-sectional
dimensions of the wake are greatest. Neglecting certain supposedly small contributions,
Haskell 7l has concluded that the momentum balance reduces approximately to

--CD = mk mS/C) (7.3)

where m = BIS , B is the cross-Cectional area of the wake aet the plane 2, and where

(CS/C) 2 is taken to be negligibjy small.

"In order to complete the set of equations necessary to define the blockage effect
completely, on-Ž further relation is required, to account for the d'stoition of the
wake under constraint. Tne auxiliary relation adopted by Maskell can be put in the form

C• D. - C; S

-= 1 - D-CDC (7.4)
SMc (k2 - 1)(k•- 1) C

if te--.s of w(S/C)2 are ignored, and is well supported• by limited exper-l-ental data
obtained with a series of square flat plates.

Eqjuations (7.1) to (7.4) yield the correction foreula

SCD S
= 1+ -- + O(S/C)2  (7.5)

which may be written, alternatively, in the more c-nventionAl form

SAq C S
a= '--. (7.6)

€C

Pere Aq = ac - q is the effective increase in dynamic pressure of the undisturbed
stream due to contraint, C, S/C is the usual wake-blockage parweter, and

OA ? (7.7)

c

iz the so-called blockage factor for the bliff-body flow.

If both the drag and the average base-pressure coetf-cient C b= 1 -Vk are
measured. k2 

, and hence i , can be determ-ined from Eauarton 5) - most conveniently.
perhaps, by means of the iteration for-ia

S ,+ k{ +(

__(k:_ I

-. - - ~ -C-s
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where (k) is the nth approximation to k2 and the initial value (k2) k2
C a .1 C 0

In this way Fail. Lawford and Eyre (Ref.7.9; 1957) have concluded that the blockage
factor for rectangular flat plates varies with aspect ratio A in the following manner:

A 1 J 2 5 10 J 20 C

0 2.77 2.70 2.41 2.13 J 1.47 0.96

It turns out that the blockage factor varies very little in the interval 1 < A < 10
where it lies roughly in the range 9 = (5/2) ±(l/4) . In this range, therefore, the
constant value 6 = 5/2 is unlikely to lead to appreciable error in practice.

The correction formulae from Aquation (7.5) appropriate to drag and base pressure
are given in both Figures 7.3 and 7.4. For square and two-dinensional flat plates
respectively the theoretical straight lines against CDSIC are shown compared with
experimental results. Tbe blockage factor 9 varies from about five times to twice
the corresponding quantity for the wake blockage of streamline bodies (Chapter V).

More recent studies of blockage effects on bluff bodies are described in References
7.10 and 7.11. Lefebvre?, 1" gives results rather similar to those of Reference 7.1.
and relates the geometric and aerodynamic blockage with particular reference to
circular cones. Calvert". 11 compares experiments en blunt-based bodies of revolution
with the predictions of Reference 7.1 and cmnciades that the theory gives a good
estimation of the blockage correction for fineness ratios 1/t < 3 , as shown in
Figure 7.5. In the range 3 < l/t < 5.5 Maskell's theory still leads to reasonable
results, but the methods of Chapter V are more appropriate to the more slender
non-lifting bodies.

7.3 LIFTING WINGS WITH SEPARATED FLOW

7.3.1 Stalled Wings

The breakdown of stresmline flow past a wing of finite span gives rise to region;
of separated flow that bear sre res(Abiance to bluff-body wakes, and would therefore
be expected to lezd to blockage effects sinilar i" kind to those treated in Sectiza 7. 2,
In fact, experiweutal measurenents by Kirb- azd Spence (Ref.7.12; 1955) In the wakez
of models of particular delta-wing and swept-wing aircraft suggest that. for vIav
of moderate to s-ell aspect ratio, the locailzed regions of separeted flow that derelop
as such wings begin to stall resemble axi.syametric bluff-bldy wakes surpr'isingly
closely. Furthermore, Fail et al. 7-9 have observed a stroug tendanc$ :o axial symnetry
in the iakes of non-axis.yiRtric bluff bodit-. And Mas.ell bas been led to au ase
the tendency to axitl sywnetry in the separated flow region to be universal, withinI the practical rt.S-e of zLng shapes, and to give rise to the blcckae factor 6 = 5/2
appropriate to woqi bluff-body flows.

However, tht :forcul derive•d in Section 7.2 cannot be applied directly t.o the
partlal"_l stz--led lifting wll.ng, because its total ira 1ý only partially related to.

- . ..
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the separated-flow regions. Me!ert are two other contributions to the total drag;
the vortex-Jnduced drzg Dv. and the momentum defect associated with the wake within
the stresaline regions of the flow and corresponding to the conventional profile drag
Do Hence,. the drag coefficient that occurs in the blockage parameter is not the
total drag coefficient CD . but its separated-flow component

There re2ains the problem of determining the drag coefficient C frcm normalexperimental observations of lift and drag. Since great accuracy is not usually

necessary, Maskell suggests that the most logical procedure is to define C., by
extrapolation from the measured properties of the unstalled wing. Linear extrapolation
of the appropriate part of the measured CD - C2 relation, sketched in Figure 1.6. is

# usually sufficient. But visual observation of the flow development. allowing the onset
of flow separation to be located, obviously helps to identify the point at which tha
bluff-body type of blockage effect begins to make its appearznce. It will be noticed
that the procedure ensures that the derived C., is zero for the unstalled wing, as
it should be.

it is convenient, in practice, to combine the blockage correction corresponding to
separated flow with that appropriate to stresaline flow in the following manner,

i IS 5S

= I +- - (CDR + CD°) + - - (CD - CDT - CO)"

where, for the sake of co&pleteness, a drag coefficient C., associated with the
support rig - and assumed here to correspond to streamline flow - has been included.
The composite formula reduces autotW.i•:a1%y to the correct formula for streamline flow
at incidences below that at which flow separation fi-st occurs.

""te 3ffectiveness of the correction formula is indiocated in Figure 7.7. which shows
the results of applying it to data obtained with two models of an aircraft having a
delta wing of aspect ratio 3.

For Pr stalled wing of infinite span there is no vort4x-induced drag, and the drag
coeff-icent appropriate to the blockage parameter is the total C. if. as is usual.
th'o tatal drag is predominantly due to the separated flow. The problem in this case
is tý gsign a value to the blockage factor s. and no doubt the best procedure is to
msre the pressure distribution over the upper surface of the aerofoil and to derive
the ap-ropriate factor from Equation 07.5). * However, from the limited experimental
evida-pe available, 9 seems unlikely to differ greatly from unity once the stall is
f'ully developed.

7.3.2 liags with Hinged or Split Flaps

V. Hnged or split flaps deflected near the trailing edges of wings also give rise to --

reigioms of separated flow similar to bluff-body wakes. It is reasonable to suppose,
therefore, that the theory of Section 7.2 can again be used to calculate the blockage
effect.
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In this case the situation is much the same as that treated in Section 7.3.1, but
with the important difference that some separated flow is present at all angles of
incidence when the flaps are deflected. However, there is still a range of incidence
over which the separated flow is restricted to the wakes of the flaps themselves, and
in which the appropriate C5D can probably be defined with sufficient accuracy. Then.
if CDo is determined from the clean wing (i.e. with flaps undeflected), Equation- (7. 10)
can be used as before, with C0 s ( CD - - C0 o) non-zero at all angles of incidence. -

The above procedure, though plausible, must be regarded as less well established than
the application to stalled wings considered in Section 7.3.1. because it has been =uch
less severely tested. In any event, for flap aspect ratios that are greater than 10,
say, a blockage factor of 5/2 is most likely inappropriate. It would be- reasonable to
expect e to fall as flap aspect ratio increases, roughly according to the table in
Section 7.2.

t 7.3.3 Slender Wings with Leading-Edge Vortices

At angles of incidence less than some critical value, flow separation from the
leading edges of slender wings gives rise to a characteristic vortex flow that bears
no resemblance whutever to the bluff-body wake. In fact this kind of "separated flow"
is much better regarded as a generalized form of the classical streamline flow. It isessentially ;teadiy, with a. thin wake, but one that originates from all the edges of

the wing, and not only from the trailing edge. The rolling-up of the wake. which is
taken to occur predominantly downstream of the trailing edge in the classical flow mrodel
to form the so-called tip vortices, therefore begins xt the apex of a slender wing
and forms leading-edge vortices. In consequence, the appropriate blockage correction

is of the streamline-flow kind, viz..

U S

where CD, is the profile-drag coefficient.

However, at the critical angle of incidence, the le-ading-edge vortice-s are sa.d to

break down. 7heir structure changes from the orderly streamline form to gometning
much more unsteaO, and generally enclosing substantial regions of reversed flow which.
once again, bear some resemblance to axisyometric bluff-body wakes. At the critical
incidence, the vortex breakdown occurs in the neighbourhood of the trailing edge of
the wing and, as incidence is incressed. the point of breakdown moves forward towards
the apex. At angles of incidence below the critical, vortex breakdcr may still occurd
but not sufficiently close to the wing to affect its near field materially.

It seems reasonable to suppase Utat a blockage effect s.imilar to that experienced
by a bluff body will be felt by the slender wing at angles of incidence higher than
the critical. Moreover, since the regions of separated flo" in the rake of a
partially stalled wing of moderate sweepback haye a similar vortex structure to that
which follows vortex breakdovuI on more slender wings, it also seema reasonable to
suppose that the saw blockage factor 0 = 5/2 will be appropriate in both cases.

The point at which the hither blockage fEctar becces applicable is perhaps best
identified from visual observations of the vor•t•x flov. However, there is some
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evidence to suggest that the procedure outlined in Section 7.3.1 may be satisfactory
,• as most empirical C0 ý- C2 curves for slender wings appear to exhibit a linear region

for a substantial range of incidence below the critical.

" i "I~. 4 V/STOIL CONF'IGUR•ATIONS

i7.4.1 Lifting Rotors

A wholly self-consistent mathematical model of a lifting rotor seems to follow
from the apparently simple assumptions that the rotor itself can be represented as a
uniformly loaded actuator disc, and that the effects of mixing between the slipstream
and the external flow can be ignored. Thus a uniform rise in total head would be
supposed to occur across both the rotor disc and the interface between the slipstream
and the external flow. And the precise shape of this interface would be such as to
wake it a stream surface across which the static pressure varies continuously. However,
such a model is not yet amenable to theoretical treatment, even for an unlimited
mainstream, and further simplifying assumptions aust be introduced.

" In general, the interaction between slipstream and malnstream, implied in the
boundary conditions at the interface, would be expected to result in a slipstrem
following a curved path aod having cross-sections that bec3me increasingly distorted
dowmstream of the rotor disc. Of these two effects on the geometry of the slipstream.
the forzer seems much the more imortant, since it implies a continuoas transfer of

' downward momentum from the slipstream to the external flow downstrean of the rotor.
But theory has not yet advanced far enough to allow even this effect to be accounted

for *dequately, and the best that can be done at present is, following Heyscn
(Ref.1.2:; 1960). to replace the true path of the slipstream by an appropriate linear
approxination.

Heyson represe.ts the rotor slipstream by a skewed elliptic vortex cylinder of
uniform strax-th (r-'idl , where r. is the circulation associated with a length I

along the skewed slipstream. The velocity field of the rotor in free air can then
f 'be calculated bY integrating the Siot-Savart expression for the velocity field of a

4 , vortex elevent over the surface of the vortex cylinder. In particular, the upward
induced velocity wo at the centre of the rotor, and normal to its tip-path plane,
is givEn by

I dPTo = -- __ (7..12)
2 dl

In general. the upwash w associated with the semi-infinite vortex cylinder can be

written in the form

W = w -V (7.13)

where b and h a respectively the breadth and height of the wind-tunnel test
section, C is its croms-sectional area, and S is the area of the rotor disc.

SI
% - ,° 3.* - .
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An alternative expression for the singularities representing the slipstream follows
from the fact that each elementary vortex ring is exactly equivalent to a uniform
doublet sheet, circumscribed by the ring. of total strength IVY2 . where R is the
radius of the circular element. In consequence, the far field of the rotor reduce' to
the field of a semi-infinlite line of point doublets, directed vertically downwards if
the rotor disc is in a horizontal plane. Equation (7.12) relates the strength of the
line of doublets to the upwash at the centre of the rotor, and the function I in the
expression (7. 13) reduces, in the far field*, to

+ +7,• 2 + p ODsx 12

= p(p+ cos X-!sin X) -fp(p+ CcosY - sin X•J (7.14)

where p 2 
= f2 + )2 + C2 and X is the skew angle of the wake defined in Figure 7.8.

The upwash field thus derived is related strictly to Cartesian axes fixed in the
rotor, such that the axis Oz is normal to the rotor disc with z measured positive
along the thrust line. It gives the true upwash relative to wind axes only if the
rotor disc is at zro incidence. However. if the elementary doublets representing the
slipstream are supposed always to be directed normal to the rotor disc. they are
readily resolved into components directed horizontally forwards and vertically downwards.
in wind axes, and the associated component fields can be superposed to yield the
complete upwash field of the rotor at incidence (Fig.7.9).

leyson expresses the upwash field due to a line of horizontally-directed doublets
of strength ,AfR2 in the form of Equation (7.13). as before, and the corresponding
upwash function is

-- _- p sin + p cosX)

W2(j.77.C) = p 3(p+CcosXfSinX) p2(p+ ( cos X_ sinX) 2 . (7.15)

The derivation of tunnel-wall corrections is now fairly straightforward, once the
slipstrem skew angle X is known. Following usual practice in helicopter theory,
Heyson takes

U cos (
tonXX =-- (7.16)U s in ac + we0 .1

an expression for which there is some- experimental support:, and ignores any possible
effect of constraint on i in the immediate vicinity of the rotor. However, it is
evident that, as the true slipstream approaches the floor of the wind tunnel its
curvature increases rapidly. This effect is represented id Heyson' s model by supposing
that the slipstream follows its initial path until it strikes the tunnel floor, and
then continues downstream coincident with the tunnql floor, as shown in Figure 7.9.

In conseqence, there are two basic elements in the derivation of corrections. These
are obtained by considering slipstrems composed of vertical and horizontal doublets,
together with their first reflections in the tuneL floor, as illustrated in Figure 7.9.
It will be noticed that the parts of the slipstreins coincident with the floor cancel

Hasn* t ives also the general expression WU-.-. for a tkewed cylinder of radius it
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_ each other when the doublets are vertically directed. but reinforce each other in the1 "second case. Their upwash fields are readily obtained by superposition of fields from
Equations (7.14) and (7.15) respectively.

Heyson considers two wind-tunnel configurations, both having solid lower boundaries.1 i He then takes the remaining boundaries to be either wholly solid or wholly free, and

Iexpresses the interference velocity at te centre of the test section in the form

i(wi = aw w 7.17)
_., 1

Some indication of its dependence on X . a mnd b/h , for the two types of tunnel,
:1 is provided in Figures 7. 10 to 7.13. where for consistency with the foregoing chapters

,f#• •o - ";)w(7.18)
0 S

is plotted. In particular, it should be noted that at high forward speeds. when

4a slipstrem skew angles are close to 900, the corrections are the same as those for a
wt4. as they evidently should be; at very low speeds. i.e., suall skew angles, they
are lairgely determined by the floor of the wind tunnel, and the interference upwash at
the rotor is large.

ileyson points out that care is needed in the interpretation of the interference field.
In hover, and at low forward speeds, the rotor performance is governed primarily by
the change in inflow rather than by the change in effective incidence. Be suggests.

Stherefore, that a possible interpretation of the results is that the interference
velocity corresponds to a change in rate of climb (or sink) between corresponding
wind-tunnel and free-air conditions.

7.4.2 Jet-flaps in Closed Towels

The main differences between a jet-flap and a conventional trailing-vortex wske
are that the vortex representation of the Jet sheet includes bound-vortex elements
of strength proportional to the jet-momentus coefficient Ci and that there is local
curvature of the sheet. The presence of these bound-vortex elements gives rise to a
substantially larger circulation about the wing than would otherwise occur; in
consequence, the effect of wind-tunnel constraint on their strength must be considered
carefully. There will be additional curvature of the jet sheet due to constraint,
leading to stronger bound vortices in the jet than would occur in an unlimited stream
with the same Jet-.omentum coefficient Cj and Jet-deflection angle Tr. It is
essential, therefore, that this wall-induced curvature be taken into account.

Waskell (Ref.7.4; 1959) has considered the constraint p.-oblem for the Jet-fli9 in
a closed wind-tunnel, as an extension of the unlimited-stream thoory given by
Maskell and Spence" 3. The main problem is one of interpretation. The interference
velocity field can be largely determined as for a three-dimensional wing, so that the
interference upwash at the wing and at infJnity downstieam are knozun. However. it ia
the variation of upwash between these limits that determines the curvature of the Jet
path. and hence the bound-vortex strength. #nd uaskell chooses to represent this
variation by an interpolation that lerds to a simple interpretation of the effect of

' IO

I
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the induced curvature. He points out that. if the interference upwash wI is related
linearly to the total downwash -w in the canner shown in Figure 7.14. the indaced
curvature is equivalent to an increment ACj in jet-momentum coefficient. The particular

choice of interpolation in wi is. of course, open to question. But the conclusion
that the effect can be interpreted as a correction to C seems sA'iud, and the order

of magnitude derived by Maskell is probably correct.

The first-order effects of constraint are obtained as a correction to incidence h

A[+ ] . (7.19)

where So takes the classical value from Chapter III, and a correction to jet-momenti-

coefficientSAci A
c- - +(X+(w/U)C (7.20)

where = (7.21)
7A + 2C3

The zpplication of the corrections requires zome care, since the lift and thrust forces
measured in the wind tunnel are of the same order of magnitude. In consequence, when
these forces are resolved normal and parallel to the effective stream direction,
increments to lift a&d thrust coefficients result, of magnitude

AC, CAM +tjs*SI(r+T ) M
• , (7. 22)

Ac - q& + ACj cos (Tr + a)J

where Am and &Cj are given in Equations (7.19) and (7.20). If a drag coefficient

is defined according to

CD = CJ-C.CT (7.23)

then

ACD = A c .-AC-.

and Equations ('. 22) can be expressed in the alternative form

6 = T s+n C + (W/U)

Sr+• .w~ (7.24)

ACD(I- Cos(T+c~ a)

Ite corrections from Equations (7.19) to (7.22) for a typical wind-tunnel experiment " 13

are plotted in Figure 7.15. For comzrlson, the effect of ignoring the correction to
AC', . as in Glsuert' a?- * classical theory, is also shown. However, there is, as yet,
no experimental confirmation that the magnitudes of the corrections are adequate
in practice.

!4



Reference should be made to Maskell' 87" , original paper for a discussion of the
effect of boundary constraint on the performance of the tailplane of a Jet-flap aircraft.

7.4.3 More Gemeral Configurations

More general V/SM. configurations must be expected to require representation by
mathematical models incorporating sore than one wake or slipstream. If the overall
performance of a configuration of tohis kind depends crucially on the mutual interference

between the different lifting elemewts and their wakes or slipstreams, there seems
little prospect of deriving adequate wind-tunnel corrections until the nature of the
interference is better understood than it is at present. Much depends on the
"importance of -bound vorticity of the kind included in a jet sheet and related to its

curvature. But this problem has not yet been considered generally.

It may be that the jet-flap effect can be largely ignored in relation to jets and
alipstresas of initially circular cross-section. Nevertheless, fair approximations

" to the true paths of the elements of the multiple wakes, and to their relative vortex
or doublet strengths, would no doubt prove essential. Provided that Heyson's lifting-

I ! rotor model is adequate for the single-rotor case. it can be extended, plausibly, to
"twin rotors with separate wakes. But the combination of. say. a fan with a conventional
lifting wing appears to be too complex to handle in this manner.

Heyson (Ref.7.5; 1962) has suggested that such general problems might be treated by
a simple extension to his lifting-rotor theory, in which the multiple wakes are
approximated by a single mean rotor wake, the parameters of which are determined by
the measured lift and drag. He has given an extremely comprehensive theory based on

Sthis simple concept and tables of interference factors in a series of reports7 5,7 14-7. 17

to which reference should be made for the detailed corrections. But the theory would
seem to be most plausible when a single wake or slipstrem predominates.

Several experimental studies have been made of wind-tunnel interference on V/STOLi configurations, notably by Grunvald•" 16.7 . 19 and by Davenport and Kuhn" 2O. TheSbroad conclusimn from these particular investigaticis seem3 to be that Heyson's general

~ theory accounts for most of the interference effects on lift and drag, but may fail to
Scorrect pitching moments adequately. Further work is needed before these conclusions

can be generalized to other configurations. Similtr caution is advocated in an inde-
pendent review by Templin" 721. who discusses the magnitude of wall interference by
Heyson' s theory in relation to acceptable sizes of model and wind tunnel.

sf t .-O
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