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SURXARY

The subject of wali interference spans nearly half a century and
X remains a field of active research. The classical theories of 1ift and
E blockage interference in two-dimensionsl and three-dimensional tunnels
3 are now highly developed for stesdy subsoric flows without separation in
.34 fully closed or open tumnels. ©scillatory experiments, cases of
' seberated flow, and tunneis with slotted or perforated walis can be
treated by more recent analysis, but results are relatively limited.

The theoreticsl background is reviewed and modern developments in the
formulation, caiculation ard application cof interference corrections are
discussed ir seven chapters. Chapter I gives a general review and lists
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';. : aregs in which further resesrch is needed. Each of the more spscialized
b 33 chepters contains sclected grasphs of nimerical data and a summary or
19 table of principsl formuiae.

-1 3 RESUME

L’ étnde de 12 question de 1’ interférence due & 1s paroi remonte 3
presque ur dewi-sidcle et continue & faire 1'objet de recherches
sctives. Les théories classiques concernant 1° interférence due & la
port&nce oa au blocage dans les souffieries bi- et tridimensionnelles
ont eaintenant été €labordes A un haut degré pour les écoulements
subsoniques stationnaires sans séparation dans des souffleries 3
circuit entiéremeat fersé ou ouvert. Les expériments oscillatoires,
les écoulements séparés et les souffleries & parois & fentez ou
perfordes peuvent étre traités par des méthodes d’ analyse plus
réceates, mals les résultats ainsi fourais ne sont que relativement
limités.

Les sept chapitres constituant la présente Agardographie passeut i
en revue 1’historique des théories & ce sujet et examinent des :
développements modernes dens la formulation, cslcel et applicstion

des corrections de parois. Le premier chapitre donne un sperqu

gereral et indique les cdomaines dsns lesquels de nouvelles

recherches scnt nécesssires. Chxcun des chapitres plus spécislisés

comporte des grsphigues choisis de donndes nusdrigues, sinsi gu’un

résaaé ou tablesu récepituistif des principsles formuleg utilisées.
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STATUS OF INTERFERENCE EFFECTS

b h.C.Garner

1.1 INTRODUCTION

By its very natv~e the most perfeéﬁ subsonic wind tuanel cannot reproduce an
unconstrained flow past a model. The problen of wall interferenceihas been of lasting
‘concern to experimenters and theoreticians while tunnel design, model shapes and
experimental fechniques have been developing thrcugh tae years. The decision .o
prepare a monograph on subsonic wind-tunnel wall corrections was made during the
planning of an AGARD meeting on interference effects in aerodynamic test facilities,
held in Brussels in March 1959. Goethert’s! ! monograph on transonic wind-tunnel
testing, then in course of preparation, concentrates more especially on flows at high
subsonic and lov supersozaic Mach numbers. As regards wzll interference, this and the
present AGARDograph are largely complementary. The slight overlap on the subject of
ventilated tunnels is not inappropriate as there have been recent developments in this
important field. A review of progress and current p.coblems was presented by Rogersi-?
in the intrcductory paper to the AGARD meeting. Further advances and new problems
have since emerged, and such facts confirm the continuing importance cf a study that
has already occupied nearly half a century.
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The foundation of researck on tunnel-wall interference is attributed to Prandtl
(Ref.1.3; 19i9), because his lifting-line theory led to many experimental investigations
with the object of verifying the theory. Moreover, the basic principles of the lifting-
line theory are essential to an understanding of the simplest calculations of wall
interference on finite lifting wings. The method of analysis for closed and open
tunnels is established in Reference 1.3, where Prandtl develops the concept of trailing
vortices so that the problem of wall interference at a lifting line involves two
dimensions only. Theoretical and empirical studies then foilowed in quick succession,
and after some ten years of research the elements of wall interference had been built N
into a practical framework so as to influence model testing and the desizn of wind
tunnels. A comprehensive account of these early developments is given in Glauert’'s
classic monograph (Ref.1.4; 1933).
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Interference effects in subsonic wind tunnels may arise from the influence of tunneil-
wall boundary layers, disturbances from measuring gez: and model supporis within the
airstream, and irregularities of the airstream itself due to non-uniformity, unsteadiness
or small-scale turbulence. 1In different ways these can all be important, but they are
mairly outside the scope of the present monograph. The nrature of tunnel-wall coastraint
can be deduced from physical principles of streamline flow. It is alsu associated
directly with the theoretical consideration that, althcugh the differential equations
of the flow are the same in the tunnel as in free air, the outer boundary conditions . .
are different. A logical and precise evaluation of the interference flow near the
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model by linearized theory would invoive firstly a solution for the velocity poteatial
in the presence of the tunnel boundaries, and secondly s seclution for the velocity

field near

the model when all the boundaries, inclucding that of the model, are removed

and the velocity potential at the surface of the model from the first solution is

preserved.
surface of
correction

The resulting perturbations of velocity-potential gradient normal to the
the model represent the interyerence-flow field which way be regarded as a
to the free strean. In practice this correction has significant vertical

and streanwise components. If the medel is smali enough, these can be interpretad
as respective corrections to the direction and speecd of the s.ream: if the model has
ennrenighle span, average values may suffice: if the model has appreciable length, the

respective

components involve a streamline curvafure and a longitudinsl pressure

gradient with consequeat corrections to pitching moment and drsg. The correction to
stresm direction und the streamline curvature are known as l1ift interference, since
they are usually associated with circuleticn or vorticity round the mcdei; in mest
applications they are considered to be independent of the changes in lengitudinal
velocily, known as blockage interference and usually arising from the volume occupied
by the model and its wake, Although the basic probiem is tc determine the interference-

flow field,

this needs iv be interpreted in the form of corrections to nearly all the

ueasured serodynamic quantities.

Prom Reference 1.4 it is clear that many of the early developéents were associated
with lift interference, and that the comcept of streamline curvature. thovgh implicit
in tailplsne interference, first arose as the essence of two-dimensional interference.
Glauert’ s zonograph is of more thep histerical icportance; it continues to provide a
comperative back-ground for most of the subsequent developzents. Above all it gives

& full and

lucid account of the many principles underiying 1ift and blockage interference.

Some nore recent works of reference are m~iefly reviewed in Section 1.2 from the

standpoint

of tunnel-wall interference in subsonic flow. Section 1.3 discusses the

conteuts of Chapters II to VII cf the AGARDograph, and conclusicns regarcdisg important

fields for

further research are pregented i S2cison 1.4.

1.2 GENERAL REFERENCES

References 1.1 and 1.5 to 1.12 comprise & representative collectien of treatises

concerning,

among other important fopics, the theory and applicaticn of subsonic

wind-tunnel wall corrections. These are considered below in chrocological corder.

The contribution in Reference 1.5 by von Kdrz4n and Burgecs followed shortly sfter

Glauert’ si-

* monograph. They consider oniy 1ift interference and give the spalrsis

for two-dimensional flow¥s with closed boundaries and for a lifting line in clcsed and

open rectan
gereral sol
element in
there is th
blocksage in

gular and circular tupnels. By far the most importent contribution is the
ution, due te Burgers, for the three-disensional flow field of a lifting
a2 closed or open circular tunnel. Under the editorship of Durand sise,

e chapter in Refereace 1.6 by Toussaint. This iacludes a discussion of
terference fuller than that of Reference 1.4 without improving its practical

ocatent. The treatzent of two-dimensional 1ift interierence in Reference 1.6 is

unreliable,

but the uniformly loaded lifting Jine in rectangular tunnels is considered

in =ore detail than in Reference 1.5. In psrticolar, the correct expression is given
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for the case of solid side-walls and open floor and roof, for which Glauert quoted
an erroneous resulte.

In an AVA monograph Riegelsi-? gives s most comprehensive collection of graphs to
illustrate meny aspects of lift incerference in incompreassible flow. These include
off-centre models, streamline curvezture along the tunael axis, aad types of mixed
boundary to achieve zero interference. With brief discvssion of some sixty references
of later date than RcZlerences 1.4 to 1,6, the monograph represents a major advance,
especially with regerd to circular and elliotical tunnels with closed, cpen or mixed
boundaries. Solid and wske blockage sre also considered in some detail. Of the same
period there is a shert informative article by Katzeff?-? that deserves to be reasd by
all wind-tunnel users. These two references highlight the impact of research on wall
interference in the dozen years following the preparation of References 1.4 to 1.6.

Two vaiusble works on wind-tunnel practice by Fankhurst and Holder!- % ard Popel-1°
appeared early in the fcllowing decade, both of which give full accounts of wall inter-
ference corrections. Three-dimensional lift interference is regarded primarily as a
function of tunnel shape and wing spsa, apart froz the trcatment of tailplane inter-
ference. Blockage interfersace effects, inciuding the buoyancy correction to drax due
to longitudinal pressure gradient, are well discussed. In many confignvations of the
present day, however, the influence of stresmline curvature on lifting wings is usualiy
nuch more ipportant than the buoyancy correction, and in this respect References 1.9
and 1.10 have both beer overtaken by developments. By wey of contrast, Pankhurst end

Holder!- ? give more information on octagonal tunnels and alternative metheds of applying

the two-dimensional lift ianterference corrections, with particuiar attention to the
neighbourhood of the stall. Popel-!Y however, gives a fuller account of corrections

to downwash in the wake of a liftingz wing and includes some mumerical data on stresmiine

curvature; moreover, he gives nore discussinn of reflection-plane models angd the case
of asymmetrical spanwise loading. Pope gives considerably more graphical dats, but
perkaps concentrates tco much oa lift interference for uniform spenwise loading in

conjunction with the equivalent span of the roiled-up trailing vortex; howevwer, elliptic
spanwise loading is by no means neglected. Pankhurst and Holder include scme particularly

useful tables and reinforre their more limited graphical data with tabulated values;
by contrast, Pope includes no tables but does give illustrative werked exasples of
calculated interference corrections. Both zcrks serve the wide needs of the sing-
tunnel operstor most admirably and carnct be judged from the standpoint of wail
interference alone.

It is unfortunate that ventilated tunnels were subject to security classification
when References 1.9 and 1. 19 were prepared; their most serious limitation erices from
the intensive deveiopuent and wide us2 of ventilated tuanels for transonic testing.
Goethert’ s!- ! monograph deals compreheasively with this subject for the first time.
Subsonic wall interference is reviewed in some detail. There is a good physinal
discussion of solid blockage in open and clesed tunnels prepsratory te 2 chapter or
tunnels with lopgitudinal slots. The replacement of the sipgular boundary conditions
of discrete siots by a homogeneous cne is discussed, and there follows the general
ccnclusion that with inviscid flcw the open zarea ratic of slotted tunnels for zero

interference decreases exporentisily as the nusbsy of slots increasss, The homogenecous
boungarr condition is generalized to account for slot depth snd viscous effects such as

friction or local separatioa inside the slots. GCosther: argues that the slots sre

* This, the coly error the asthar has detected in Reference i.4, is ciscessed in Chepter II1
(Séction 3.2.2).
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treated ss in slender-wing theory, so that the boundery zondition is essentially

indepentient of Mach number, ulthough the viscous effects say be eltered by compressibility.

The more detailed theoretical treatment of 1ift and blockage interference is conZined
to two-dimensionel 2nd circular slotted tunnels. There is a physical discussion of
the flow near perforated walls and of the existence of an inage system when tae model
and the tunnel sre two-dizmensionsl; again the theoretical results are iimited to two-
dinensicnal 2nd circular tunnels. Finally Geethert points cut 8 nasic difference
between perforatad tunnels and ideal slotted tunnels without viscous effects. The
poundary condition for & perforated iurnel (and indzced for s slotted tunnel with
visceus effects) bebaves like that for a closed tunnel ir the distant wake of 2
lifting wing. Hense the Tra2fftz coandition that the downzesh at large distances behind
the wing is twice as large sz the comwsch at the planc of the wing does not hold irue.
The importance of ventilated tunnels is emphesised in ths account of sudbscnic wall
interference by Allen axc Spiegeil-3l. ¢losed and open houndaries sre regarded
virtually as special ceses of siotted or perforated wslls. The theoretical 1ift snd
blockage interference in tunnels of circuler section are used to illustrate the
fundamenial characteristics of tne two types of ventiiated tunnel and the mamner in
which they are intermediste between closed sad open tunneis and can zchieve 2evo
interference.

The previous references give very little attention to wind-tuniiel interference in
unsteady experiments. Molzaeux!: 12 has recently written s-useful revies of the
problems, Por dynemic investigations there is a pere extensive range of interference
effects which inclule rescasnces uvssociated with transverse accustic waves, the tunnel-
drive system and induced floss externe! to an open fet. There is also the passibility
of random disturbances in s veatiiated aorkilgz section from furbulent mixing at the
downstreas end of slotted or perforated walis. Reference 1.12 gives a brief discussion
of other aspects of wall conctraiat on oscilieting zedels and provides s practical
introduction to the subject.

1.3 PRESENT KNOWLEDGE

Prom many aspects of wall interference there have been considersble advances since
the preparation of the important works of reference discussed in Section 1.2. Chanteis
II to VII of this AGARDograph incorporate such advances and also include sriginal
contribations and unpublished numerical data. Some of these recent developments sre
outlined below in reletion to earlier achievereats.

1.3.1 Lift Interference

Por two-dimensional tests in clssed tunnels the most well-known correcticns spply
to smell, thin wings and neglsct terss in aervufoil thickness te chord ratio t/c and
in (c/d)" where h 1s the tunnel height. Bat Goldstein’ s!+ i3 analysis includes
iaterszctions of thickness and incidence in wall interference, such 2y tae effect of
thichness on 1ift intorference mad tdat of incidence on solid blockage. In Chapter I
his theor> is presested in a sisplafied form for symetrical serofoils, so that the
corrections include terms in (c/h)? and (c/h)™ with coefficients liunearly dependent
2n t/e. Tha formulae are easily generalized to incorporate first-order efilectc sf
cmpressibility sad some allowance for viscous effects. The cosplete correctiors
sre apylied to the systesitic experiments of Knechtell:!® on the NACA 4412 profile
with encourazivg success.
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Theve is 2 tendency in theoretical sork to express wall interference in terms of
correction factors to tue wmeasurcd forces. In practice the interference on a iifting
aserofuvil is iantervreted acre appropristely as incresental cerrestions to the measured
quantities, including the incidence. This ie particularly true of serofoils with
hinged flsps. The theory of Preston and Manwelll-!3 is develeped to give the necessary
corrections to incidence, 1itt, pitchinz mozent ang Linge wmoment, A later thecry by
de Jager and van de Vooren!- !, also dizcussed in Chapter II, considers the nos-limesr
ckaractrristics of fleps at jarge angles of deflection for which the interference
corrections sre shown to change sigu.

It 3eems profitless to treel two-dimenaional testing in cpen tunmpels in great detsil.
Bitaer the flow is far frow two-dimansional, or else with the model betweep solid
side-walls the interference corrections are large, cf order c¢/h, =nd of dudiuvus accurscy
so As to place s very restricted limit on model size. However, there is considersbie
tiecretical interest in the configuration of an saerofoil spanning a rectangvisr tunnel
xith s01id side-walls, when the working section has aper flcor and rocf between & ciesed
entrance rvozzle and a coilector dewnstrez=. The ususi boundary conditicn imposes the
sme constant pressure at the two free boundaries. Katzoff!-17 introduces differential
pressures ts prevent spiliage at the colleutor, and urder such conditions the wall
interference of order c/b znd the sireenline curvature can bath be nearly eliminated.
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Chapter III draws more heavily than other chapicrs froa classical theory as compiled
b> Gizaert!-® Ry 1935 the bssic theorv for simple lifting-line wings with a tail are
was available for moat tunnei shaper. Improved setkods have been developed subszequently
for calculating the interference upwash in rectangu’ar and circular tuannels, but tae
basic theory survives. New tuanel configuracicas have peccssitated ths thecretice:
developeent for closed octagenal tunnels by Batchelori- 12, sad Katzoff ot 23,117
nave aaalssed the probles of open citcelar tumnels of finxte jet 1eagth. The testing
Gf half-zodels mounted sn a reflection plane kks in effect introduced Gther Chapes
of tunnel; the bipolar shapes corresponding ro tircular tunruis hav: 2een tyested with
closeqd truadaries by Sivells end Salmii-1” and with open boundaries by Davison and
Rosanhead®- 2%, Gther developewents fer the lifting-line zcdel of & wing with tail
include off-centre madcls considered by Silverstein and Whise!s 2¢ and isterference
corsawtions on goound eifect by Brownl- #2 what vhe floor of the tmmnel is uséd to
simuilate the gzround. Tke ultisate refitedent of the lifting-line treatment in that of
Sanders angd Pounderl- 23 for clesed rectanguler tuanele,

The rain develepments of three-Cisensional 2ift interference im the past twenty
¥ears have conearnd cae swepiback, and lster slewder, wings dessigned for high-spéed
Tilght. The tifting-line zodel o longer spplies. sO that a difforent iaepresentevion
of toe lifting wing by distribated vortices :s needcd, tcgether with more eiaborate
xethcde of interpreting the interferecce upwash. Difficuliies of preserntation in
Chapler III arise frox tae wide variety of vortax models, nctstions and procedurer for
obtaining the futerference zurrecticns. The aodels vary froe distrisutions of 1ifting
elsments slong the iocus of sections] streamwisc ceatres of prossure used by Acumi- 2%
to the point concenirstions of 1ift used by Xatzoff and Hannah* 2?5, GQhe forowlatiova
varies frca #he admirsble appoximate exprosaions i1 Refyrence 1.9 to that of
Reference 1.26 which reguires the usc oI cane of the lifting-surfsce theories thel have
come tn Teplece the inadequatc lirting-ijne theory. Allowance for Mach nusder R is
includrd, wherever possihie, by using the Prandtl-Glsuer: analogy axd insartiog the
wppropriate poser of S = V(i — %) as a factor in the gensetric snd serodynxsic l
peraaclers of xn equivalent incomprecuitlie flow., In this wey the results cen usumily
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be preseated for & general suosonic Mack auaber and in a unified xotstion. The special
aux0 of sleader wings iavolves & distributlon of 1ifting eliaents slcrg the axis of
the-sumael, and {3 this scose can be regerded #s an axtension of the theory for ssall
wings. Berrdt!- 7 has given ar exact heory for slender wings, to which & useful
simpiifying spvroxisstion cac be made.

There are some aspects of lift-interference correction that are much less satisfactory.
Tucse ar{se primarily through def:iciencies oc coaplexities in the theoretical treutment
of tie ncsresponding probles in oacopatrained fiow. Three particular instances, when
the corrections are gquite lerge, are conirol-strfsce hinge womenis, vortex-induced
vawing noment snd w#ing-body comvivationz. 7The hinge moments iuvolve wncertsinties
of large viscoue effects, and tbe correctienx of Bryant snd Germer’ 2% gllow for these
19 a crude tco~dineasionsi ¥asiz. Mure serions sre thought to be the shortcomings of
the interferenc: corrections tq ysxing pozent, Apparentiy all existing formulae for
these sre derivud from 1iftizgiline theory. Likewise the theory of wall interference
ot lifting ¥ing-bhody cosbinationz is insdequate, and the author concludes that the
literatrre on tkis aspect sf 21ft interference is misieading.

It is cbserved experizentally by Knight mad Herris!- 2% on wings of acderately high
aspret ratfo, that the fnterference parazeter for the drag coefficient Ty 1is closer
to the lifting-line correction than is the interference parazeter for correcting the
incidence a ; that Is tc say, the streaaline curvature associsted =ith the stresawise
extsat of the podel has & larger effect on Oa than on 4G, .~ However, circmmstances
are diffarent for slender wings with lewding-edge separstion. With the loss of
leading-zdge suction the effects of streaalive curvature ou 8a and 4C, become
equaily ipmortant. dut the svaluation poses an unsclved non-linear problea.

The 2iversity of methods znd notations iz coupled with scarcity of published
acaerica’ exwepics. An attempt is made In Chapter IXI to digest numericsl data in the
mcst genersl forn, with particular emphasis on formulae that sre applicable to general
sebsouic Mach nuwber, gerorel planform and a rasge of tunnel shape. Simplified
astnods of evxluating the interference corrections are developed where pessible.
Specifin cmparisons etzesn the results of different setkods are quite enccuraging
ané show 22ich of thom arve useful approximations and which give primarily s rapid
astimate of the oider of magnitude of the corrections.

1.3.2 Blockige Iatesference

Chepter V is baset cn assvaptions that the iift is not large and that solid and wake
Elockage effects xre independent. It further asswuses that only longitudinal flow is
subiect to blockage interference, which is only true if the model i3 mounted in the
ceatre of the tunnel. #or closed boundaries the condition of zero normsal velocity is
reiiabld. The corresnonding assusption for an open-jet boundary is one of constant
presaure; mixing effects sre ignored and a linearized conditicn is spplied at the
undisturbed boundery. WNoreover, it is frsquently sssusmed that the jet is of infinite
1szxth, dut in practice the pozzle and coliector sre relatively near the model and may
strongly infiuence the constraint correctiensi-!?. It follows that the spen-jet
corrections, though usually sesller in magnitude, are less soundly based than those for
a closed twel; furthsrmore, there are few experimental date from vhich to assess
the validity of the estimated corrections for open tunnels.
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Fith these limitations the range of available corrections is fairly complete.
Two-dimensicnal solid and wake blockage are discussed by Thom in Reference 1.30, and
Goldsiein!< 13 gives a more general treatment including terms im (c/h)*. With
particuiar reference to the work of Herrioti-3!, the solid and wake blocksge corrections
to the uzual serodynamic coefficients may be calculated with some confidence for
three-dimensional models in tunaels having a wide range of rectangular cross-sections.
The circular tunnel also presents no great problems, but for elliptical and octagodal
cross-sections certain simplifying assumptions need to be made to relate these to
corresponding simpler shapes. Allen and Vincenti: 32 give & zound basis on which the
effsct of compressibility et subcritical Mach numbers can te incorporated simply by
linesr-perturbation techniques; even the presence of locsl regions of supersonic flow
about the model, with attendant shock waves, say be allowed for in an empirical manner,

Thus the topic of blockage interference on small streamline models is in a reasonably
satisfactory state, though there are instances in Chapter V of differences of approach
which can lead to someshat different answers. These, however, sre the exceptions in an
ares which after nearly forty years is, within its limitations, approaching finality.

The bulk of established interference theory is concerned with streamline flow. It
is iapiicit that the wake is thin and that it can be taken to originate from the
trailing edge of & wing or from the rezrmost point of a body. However, there is s
growing interest in flows which depart significantly from this classicsl pattern and

also somz evidence!: 37 to show thst new, and sometimes surprising, interference effects
may arise.

It is perhaps worth emphasising that high 1lift does not, in itself, imply s departure
from the classical flow pattern. Tie principles of the classical interfereance theory
of Chspter V can, therefore, remain valid, although wind-tunnel models may give rise
to larger correctiors than are strictly within the scope of current theories. High-
order czlculations of the interference field are straightforward in principle, but it
may well be impossible to interpret such calculations usefully in teras of modified
free-stream conditioas. In sny event, it is plainly dergerous to azsume that large
corrections can be estimsted satisfactorily. To do 30 implies that the entire flow
field could bave been calculated with fair precision at the outset.

The extension of classical intcrference theory to a non-streazline flow is never
straightforward, evenr though the appropriate corrections may be small. The distinguishing
feature of a problem of this kind is that it requires, as & first step, the astablishment
of s suitsble mathematicsl model of the given flow. The dominant physical charscteristics
of the flcw must be described adegquately by this model, but it must remein simple
enough to adeit of further analycis. Some typical exsmples sre considered in

Chepter VII, in particular Maskell’ s!-33 thecry of blockage effects cn two-dimensional
and three-dimensional bluff bodies and on stelled wings in a closed wind tununel.

1.3.3 Veatilated Tusaels

The development of the ventilated-wall tunnel srose from the desire to exploit tke
opposing interference offects asaociated with clossd and open boundaries; by combinirg
these in some judicious maaner zero wmll interferencs might be obtained. The subseqaent
attainsent of transonic test speeds seems to Raye been a most fortunate by-predact, with
its own rapid 2xploitstion. The development of general theories for the calculation of
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wall interference stems from the concept of replacing the gixed boundary conditions by
a single homogenecus coadition valid over the entire wall, as discussed in Section 1.2
(Refs.1.1 and 1.11). Baldwin et al. !-3* have constructed a couditicn for inviscid or
viscous flow 2t a ventilated boundary. The actual geometry of a slotted wall and the
degree of porosity of s slotted or perforated wall appear as two parageters in the
hozogeneous condition. 7The validity of this siaplification has been estahlished by
ctmparison with earlier and more exsct calculations of Fistolesil: 33 and ¥atthews?- 3¢
or 2 circular tunnel with discrete slots, and by exaxinatisn of experimentsl data for
the poresity parsmeter as in Reference 1.37. Thus the way is open for the calculstion
§ of the interfercnce correctiors dus te 1ift and blocksge; the latter assumes great

3 importance ss the Mrch muzsber spprosches the region of high subsonic f£1-».

# huring the prepsration of Chapter VI some calculations of two-dimensional 1ift
interference have become availsble; Holder®- 35, using <he boundary conditiocn of

: Reference 1.34, cevaluates the influeace of slot geometry and porosity for a sasil

| two-disensicnal model in s sloited rectangular tannel. Two-dimensional blockage

1 : interference iz covered fajrly completely in References 1.23 sad 1.34. A similar

situation exists for sxall three-dimensicnal models in circular slotted tunpels

{Refs.1.40 and 1.37), put the more impertsnt cases of rectangular tunnels with slotted

floor and roof are rsther more difficult to calculate. Dasis and Moorel- *0 give = fow

resvits for 1ift and blocksge interference wien thnerc is inviscid flow near the sists,

but iaportent extensions to their apalysiz have sppesarsd recently in Referepces 1.41

! and 1.42. HolcCerl: *! has given anslytical expressions and represertative calculatiocns

; of 1ift interference to satisfy the homogeneous comdition including the porosity

parsmeter. Acum®-*? hes sieplifed the sspression for ¢he solid-bleckage factor in

' Reference 1.40 2ad gives results for & wide range of rectangrlar cross-sections. The

influence of vizscous slot-flow on biockazs interference does not sees to havc been

considered for this type of tumpel.

.
1
Ao h S ——— -y i

The thecretical approsch tc interference corrections in a rectanguiszr tuanel w»ith
ail four walls slotted is less setisfactorr. Lift and blockage interference can be
estimated frox Chapter VI on the basis of liaiting values for rlosed and coppletely
open tunnels by allowing an snelogy between the cffect of slot goocmetry in circular
ard other turnels, A similar basis might be used to estisate streamlipe curvature,
but there is insuffinient relisble infurmation for any {ype of siotted tunael.

i Solutions by =23lectrical analogue shonld nrove useful Lere, snd 8 proxizing 3tar? has

) bean made by Rushton in Reference 1.43 and the ssubsequent devclopment of & three-
disensional nefwork. Little expzrimental information exists oz the valre of ibe
porosity parsmeter defining viscous effests near the siots, axd in the absence of this

5 i the theoretical results cannot be applied with any precision. More experiacnts are

' 2ssential, becauae estimates of voth lift and bLlockage interfererce asde for ideal wall

conditions ®may be grestly 1» ersor.

W

’u‘: Tho perforated wsll has distinct cheracteristics, meantioned in Secticn 1.2 and
! . diecussed more fully ir relaticn to experizent in Refereacs 1.1. The bounialy coadition
e is & 1iaiting form of that uscd for a siotted wall with viscous flow ag the 3lot
- soacing tends to zero. Farazetric analysis suggests that the perforsted Sumnel behaves

more and more like an open jet az sonic flow is arproached. Theoreticzi coiculaticns
of interference corrections in temms of the porocity parameter are awvkilable fcr
! 1ifting and aon-1isting two-dimensioasl mcdels and fairly swall winga in circolsr
- tinnels from the work of Geodman in Refriesces 1.44 and 1.45 and later develojeents
1% . given ip Reference 1.46.
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Slockage effects, howaver, have not been considered in a vrectangular tunnel having
two opposite or all four walls perforated. A lifting model may be treated as a special
czase of Reference 1.41 when the floor and roof are perforated. If the side-walls are
yerforsted also, 2 graphical procesdure in Chapter VI zay be followed, but this is

soacwhat upsetisfactary as the square tunnsl is considered by anslogy with s <ircular
tunnel.

1.2.4 Vnsteady Interfereace

Xost of Chapter IV is concerned with cscillstory problems, but some considerstion
is given to rotating models. Rolling wings of high aspect ratic can be treated fsirly
satisfactorily; for more slender wings cnly 2 qussi-steady theory is availadle, but the

corrections are sa2all. The interference corrections to propelier tests in Reforrsace {.4
have been standardized for many years.

There are rarely formulee or tzbles for corrections in osciliatory experiments, and
Cagpter IV is much ®ore concerned with methods, soee of which invoive heavy computstion.
The subient is fn & feirly aatisfactory state nusericzlly 2 regards two-dimeasicnal
closed tunnels. Timsani-*7 gives the basic theory for incospressihle flos;
coapressibility introduces the phenoacncn of acoustic resonsnce which 1s included in
the general methad of Runyan et al. !+ ™%, For closed three-dimensionai tunnels, also,
there is a convenieat theory, provided that the product of Msch number and frequency
parazcter 33 seall: the basic idea stems from the work of Soodesn®-*?, by which the
unsteady interierence upwash can be derived from its distribution upstrcam of the
model in steady flo¥. The respective applications to closed restangular and circulsr
turnels by Acua in References 1.50 and 1.51 suffice for incospressible fiow.

Chapter IV includes s generaiizstion for ambsonic Msch nmbers snd =azll frequeacy
paremeters. Ac af- %2 gives sore explicit results for slosly oscillatitg alenaer wings,
but even for slender wings ther2 is no zethod when the Nach number and the freguescy
parameter are both fairly lerze, whatever the tunnsl cross-section gay be. Fortuunately
the freguency parspeter iz usually saall for experiments on rigid models in subsonic
compressidle flex, but correstions to flutter tests pose a difficult probles.

The protlege for vaptilsied funneis sre also difficult and perhaps tore poascing.
Wight 139 hys vaviewed experipentsl €sis sbtained §n slotfed-well tuanels with slois
open end with =miots scuted, shich ravesl some particuisrly large ingterference effecta
ct damping derivatives, Unlortimately the steady interference upwash in ventilated
tunnels has ast Fet beln forsulszted in saflicient detail to be .used on tke basis of
Reference 1.49. Novertheless, a likely explanation of the cbserved differences in weil
isterference batveen closed snd slottad tunnels is reportsd in Chapter IV through an
extension of the clssaical theury of 1ift interference.

Farther progress alang the tioes of investigaticn described in Chapter IV sesss
lizely to lesd tc increased suslytical, algebraic and computational complexity. One
is teapted %o wonder whether & batter alterastive would sct be to use direct numerical
solotions of the differential 2quaticns oy snalogue experiments, such as those

amyissged in Reference 1,17 or im cnurse of develcpment ss an extension to
Referancs 1,43.
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1.3.5 HRigh-Lift Systess

& comson feature of the exsmples dealt with in Chapter VII is that they are concerued
with flows differing materially from the essentizlly stream-line flow, with small
1ift, of the previous chepters. The flow past jet flaps or slender wings with leading-
edge vortices can be regarded as an extension of the classical streamline flow. The
sppropriate mathematical model is still a vortex sheet, but one which includes novel
features that require specisl attention whern the effects of the interference field are
to be interpreted. Haskeil’ s} 5% trestment cf a three-dizensional jet-flap in a closed
tunnel illustrates this group of probless. 1In others, for examsple bluff bodies and
stalled wings (Ref.1,33), a thick wake of uncertair structure is the dominant
characteristic of the flow patterns. The main prodlem is to identify those properties
of the wake that are most significant, and then to devise & mathematics! model that
reproduces thex with sufficient sccurscy.

A& third group of problems is ccncerned with configarations for vertical or short
take~off snd landing, in which lifting rctcrs, fans or fets may be coxbined in various
ways with wipgs and bodies te form systess in which the interference between the varfous
constitucnt flows is fundamental to the performance of the systes as a whole. Heyson
has given linearized theories of tunnel-wall corrections for lifting rotors
{Ref.1.55) anc other high-lift systems (Ref.1.56). In the latter case there are serious
unresolved difficulties, both in the construction of o suitsble methematical model of
the flow and in the interpretztion of the effects of wall constraint on the mutusl
interference hetween the different elements of the system. The subject is well re-
viewed Dy Teuplin in Reference i.57 waich is complesentery o Chapter ViI.

1.4 OUTSTANBING PROBLENS FOR RESEARCH

There remain unresolved difficulties in gsubsonic wind-tunnel »all interference. only
& few of whick are likely to be overcome by athematical xnalysis sione. In scme
instances the nost promising method of solution may well be cne of pumerical analysis
by & finite-diZference technique: experiments by electriczi saslogue offer za alternative
sprroach. In others, the primary handissp is the lack of a mathematicsl =odel or
dafinitive boundary conditions, snd progress msy neceasarily have o stee from
experisental researcha. Apart from the thirieer general problexs srouped belaw, there
is scope for wind-tupnel investigations to check the applicability of existing
thzoratical methods of interference correction; notable exemples are the non-iinear
tso-Finonsional theosr 2 asrofolls with trailing-edze flaps 2i iarge zngles of
deflection *%, 1ifting clender wimgs in clcsed tamhzlsh ?7, hinge moments from
threc-dizensional control testing®- 29, and blockase iutarference on diuf? modeis Ior
non-seyonauticsl purposesi- 33,

Closed ond « en tunnels

1. Two-dinensional cambered serofolls are often teosted at digh sub-eritical Mech
numbars. In such cases the zffects of t/c aad ¢/b ot ®all interlerence are sggravated
by cospressibility. It is desirahle to seek & hetier solulicn te the uon-iisesr
matheastical problem then tae reiestively simple extensict to Referemce 1.13 zuggested
ic Bupter 11,




ot

2. The conventional correction to yawing moment is calculated on the basis of
lifting-line theory. In Chapter III this is shown to be problematical for wings of
moderately small aspect ratio, and a precise treatment of the interference ccrrection
demands a reliable lifting-surface calculation of the spanwise distribution of
leading-edge suction. Such a development for subscnic flow would have many applications.
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3. For slender wings with leading-edge separation the correction to drag needs N
clarification; it is likely to be larger than in cases of attached flow. There is
scope for a non-linear theoretical treatment of constrained flow with leading-edge

vortices.

4. There exists no satisfactory method of applying residual interference corrections
to, say, the pitching moment on a 1lifting wing-body coubinetion; the theories
discussed in Chapter III are thought to he of little help. As the corrections are
unlikely to be very large, there may be justification for an adaption of slender-wing

theory.
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5. The uncertainties of blockage interference in open tunnesls impose considerable
restrictions on model size (Chapter V). The protlem becomes more acute whea bluff
bodies have to be tested in open tunnels. It is important tc estabiish whether the
corrections for non-streamline flow increase as dramatically in open tunnels as in

closed tunnels?!- 33,
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) 6. The discussion of Reference 1.56 in Chapter VII suggests that a convincing theory
of wall interference on high-lift systems may require an improved mathematical model
and further insight into the interpretation of corrections. This most novel aspect

of wall interference may require inspiration frocm experimental sources.

Ventilated tunnels

3 7. There are insufficient numerical data on the streamline curvature induced by
slotted walls. Even for rectangular tunnels there is no image system; the problem
may best be solved by means of a three-dimensional electrical anslogue (Chapter VI).

8. It has been demonstrated theoreticslly, acd is illustrated in CThapter VI, that
viscous effects near slots, represented by a constant porosity parameter, have large ;
influence on lift and blockage interference. More experimental work is needed to i
establish an empirical formula for the porosity parameter appropriate to various Mach
numbers aand types of slot geometry, and to verify that its variation along the tumnel

is small enough for the theory to apply.

PR

] 9. There sppears to be no information on three-dimensional solid-blockage interference
4 in perforated rectangular tunnels. Eeach arrangesent of perforated wslls poses a
distinct problem that should be smensble to mathesatical analysis.

10. The probles of 1ift interference in rectangulsr tunnels with all four walls
perforated is consicdered by 2 crude graphical precedure in Chapter VI. The interference
upwash in the transverse plane of & lifting element is not expressible in terms of a N
two-dimensional flow, and sclution by electrical analogue is recomsended. -

e

Unsteady interference
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11. One mathematical definition of the liresrized problem of an oscilleting three-
imensional wing in a subsonic clo..d rectsngular tunnel is given in Chapter 1V, but

=5
=

2
b3
£ k)

Yeeters
3
.
g'
~

’ : -~ o - T R s e - I R I T IR TR T S O 2 S S L e — Y s %
: H
t
-




N PANAg eIl L

AT e A9
.

16

numerical analysis may well be prohibitive when neither Mach number ror frequency
paramster is small. A new approach to this problem might be sought, say, for slender
models. -

12. As discussed in Chspter IV, there have been mathematical formuletions of the
interference on an oscillating model in & perforated tunnel, but the possibility of s
phase difference between the pressure drop znd the nommal flow through the perforations
has not been considered. This possibility is worthk examination theoretically and
experimentally in two-dimensicnal flow.

13, More theoretical work is needed to establish a method of evaluating the large
interference effects on oscillating wings in slotted-wall tunnels!- %3, It is desirable
tc examine experimentally whether or not the effects are smaller in perforated tumnels
and how they can be minimized in existing ventilated tunnels.
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NOTATION

speed of souna

b R VAR WEAARD T eas e}

1ift slope = Bq/'au

eC /o€ ,

coefficient in chordwise loading frcs Bquation (2.12) ;

breadth of tunno:

twice the horizont<) projection of a corn-r f£illst

96,/

ooy ef ;

coefficieat is spanwise loading frem Bgastion (2.51) 5

chord of aerofoil

crogs-sectlional area of tunnel

drag coefficient = (drag per unit span)/ici’z

(hinge mowent per amit spen)/EouEc?

lift carfficient = L/iou%c

pitching-moment coefficient = B/Fm%?

Taction 22 aerofcil Hrogile iz Bguation (2.37) (n = 0.1,2,....)

distance of eerofcil froe floor of tunnel {Pig.2.1)
I

function of serofcil camber line in Eguatiez {2.34) (& = 8,1,2,....) EE

ratic of flsp ckard tc aerofoil chord i'?

fuistioa dzfined in Bouatioa {2.13}

AT AN

function defined in Eqation (2.73% :
heighe of tunse:

twice the vertical projectise «f a coarmer fillet

aguivalent haight of toanel {(Section 2.2.3)

vortex strepgth per umil leugth
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strengtk of vurtsx

nop-disensional aerodynamic lcsding in Equation (2.14)
length of open working seciion (Section 2.5)

lift per urit span

Ac,/3a

3(“/35

Mach mmber

pitchiny sowent per unit zpsn aboul axis x = ¢

pitching moment per unit span apout axis x = t¢

presaure

rsdfus a3 gircy’ -1 tinnal

arex cof planform of model

thickness of aerofoil

x-componenz of velocity

berturbation in horizental velocity at upper Soundary of jet (Section 2.5.4
velocity of undisturbed stream

z-coapanent of velocity

value of w in distant wake )
distance domnstreax of leading edge of aerofoil

centre of pressure cf aerofoil in Egeation (2.8)
distance of mede: from entrance nozzle of open-jet tunael
x in sransformed plane

spanwisv distaace froa centre of tunuel

distance upwards from leading edge of aercfoii
transforred co-ordinete = Sz

incideace of aercfoil (in radiens aunless otherwise stated)
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LIFT INTERFERENCE ON TWO-DIMENSIONAL WINGS

H. C.Garner

2.1 INTRODUCTION

In any two-dimensional, steady, isentropic and irrotational compressible flow the
velocity potential ¢ satisfies the differential equsation

. u? 32‘P+(1 wz\a“’@ 2uw 3% o 2 1)

where u = 99/0x , w= d%/0z and a is the local speed of sound. The linearized
form of this equation

2 9% 3%
(I-M)-a—x;#;z; = 0 (2.2)

follows from the simplifying assumption that terms of second order in the component
perturbations of a uniform velocity U = Ma are negligible throughout the field of
flow.

The problem of wall interference arises becsuse the differential equation is subject
to outer boundary coaditions dependent on the working section of the tunnel. For
example, the flow must be tangential tc the wall of a closed tunnel and of constant
speed at the boundary of aa open jet. More complicated boundery conditions are used
in cases of ventilated tunnels which are treated separately in Chapter VI.

There are twn distinct mathematical spproaches tc the problem. One is te obtain
solutions for ¢ for a particular model both with and withcut the boundary conditions
imposed by the tunnel. Through neglect of viscous forces and wany other approximations
the potential solution that satisfies the extras boundary conditions cannot be identified
with the real flow in the tunnel; large differences between these would cause rajor
uncertainty in the interpretaticn of wall interference. The more realistic approach
is to assume distributed doublets and vortices within the model compatible with its
shape and tke aerodyneric forces measured on it. The interferecce is then :dentified
with the potential flow which, when added to the field of the model, satisfies the
outer soundsry conditionms. -

The 1ift interference is that associated with the circulation round the model.
Whea the model is a thin aerofeil, its field csn be represented by that of a distribution
of vorticity along tke length of the chord. The resulting potentisl flow within a
ciosed tunnel thus corresponds te the infirite array of vortices partly illustrated
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in Figure 2.1. The interference wiil then depend on the height L of the tunnel, the
Hach number M , the chcrd ¢ ard lift distribution of the aerofsil, and {ts incidence
o and location d between the walls of the tunnel. Wken the aercfoil is thick, its
field involves a chordwise distribution of doublets as well. The 1ift ipterference

and blockage corrections (Chepter V) then intereact.

%hen the linearized differential Equation (2.2) is used, the transformation
X = x, Z = z(1-¥)7 = B2 (2.3)

is piade, sc that the potential in the new co-ordinate system satisfies Lapisce’'s
equation for incczpressible flow

2% 2329
5;‘;-5-3—23 =0 . (2. 4)

It is convenieat to regard the perturbation petential (9 ~ Ux) as unchsnged in the
transformation. Thus c¢hord and vortex strength are invariant, while the incidence of
the eaerofoil ard all lateral dimensions ase reduced by the fector £ . The comporent
perturbetions of velocity in the (X,Z) plene are unchanged in the longitudinal
direction and increased by the factor A~! irn the lateral direction. In accord with
the linearized boundary condition the velocity ratis w%/U on the aerofoil is reduced
to match the inclination of the transformed surface dz/dX = SB(dz/dx) , s¢ thst in tke
(X,Z) plane the undisturbed velocity and the iocal upward component are respectively
8720 and 3w . Thus the linearized solutioa is readily expressed in terms of taat
of an equivalent incompressible flow. The prcblem involves the evaluation eof ﬂ"wi .
the vertical velocity induced by the image systea of Pigure 2.1 with U , h, d and
x replaced by 8%, Sh, Bé and Bc respectively.

The tuanei-induced vertical velocity %; has to be interpreted as a puxber cf
corrections tc measured quantities, such as incidence, l1ift and pitcking mozent. The
increpental correction to incidence is e sompewhat arpitrery average valus of % /Y
radians. After this correction has been spplied, the residual upwash field is
corverted into “residual” increszental correctiocns to the aerudynamic forces. The
eveluation of these corrections, which are as important as the incidence correction,
is greatly simplified if the residusl upwash field of the image system cezn be expressed
as 2 uniform streamline curvatare along thz length of the model. #hen this is too
epproximete, & fuller mathematical treatment is necessary; further analysis is then
required tc isolate the individusl onrrections and to relate them to the measured
qguantities.

Provided that the incidence and aerofoil thickness are small enough and the whole
flow field is subscnic, then linearized theory is valid and the problem of wall
interference is relatively simple. W®ben, however, the incidence of the serofoii is
no longer small, it is cecessary to use conformal transformetion of the general
equaticas of inviscid flow, even though the serofoil is tnin (Section 2.2). Such
applications are restricted to incompressible flow, for which Equaticn (Z2.1) reduces
to Laplace’s 2quation. Likewise the treoateent of 2 thick aerofoil between parzllel
walls involves conforasal transformation (Section 2.3); some allnawance for cuepressibility
ney still be incorporated by means of the equivalent inccmnoressible flow. The xcre
difficnlt non-linear problem of compressible flow has recsived little attention.
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Other instances of wall corrections on two-dimensional models arise with regard to
control surfaces (Section 2.4) snd open-jet tunnels (Section 2.5). Problems of
interference on aerofoils with hinged flaps are treated either by means gf the
linearized equations or by & non-linear theory for incompressible floz. The linear
treatment includes corrections to measured hinge moments, which may be subject to =
semi-empirical factor to take account of large viscous eifects. For very large flep
deflections the non-linear thecry shows s marked reduction, snd even & reversal iu
sign, in the corrections to 1ift and pitching moment. An serofoil spanning en open
tumnel is strictly a three-dimensioncl configuration, since the 1ift fsils to zero at
the boundars of the jet; nevertheless, work on this pmblea is reviewed in Section 2.5.
It is also necessary to consider the interference on an aerofoil mounted on solid
side walls or large end plates for which it is usuel to ignore any spsnwise variation
in 1ift distribution. The analytical solution and its phrsical interpretaticn are i
couplicated by the finite length of cpen working section whick is bounded by = closed
entrance nozzle upstrear and a collector downstream of the model.

mmw
- ¢

T

P . -
"Nn PUARPID Pt U2 LAA S, 2 vl G

The final Section 2.€ considers viscous effects and experimental approackes to the
probleas ¢f two-dimensional wall correctiens sad the coaclusions that may be drawn.
It might be helpful to remark in advance that the boundary layers on the side malls do
not Lave extensive influence on the pressure distribution. Pros their investigation
dendel sohn and Polhamus (Ref.2.1; 1947) conclude that the luss of total losd on sn
gserofoil spanning a closed rectanguiar tupnel is unlikeiy to excesd 1% at imcidsnces
below the stall. Figure 2.2, reproduced from Reference 2.1, chows that very close to
the wall (v = - 1b) the locsl 1ift is less than 16% below that at the centre of the
tunnel (y = 0), while there is little effect on pitching memeat. Large changes in
side-%all boundary-layer thickness sre found to produce oniy smail changes in the
losding. One =2ay therefore have confidence in a purely two-dimensioral theoreticsal
analysis.
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A supmary of the principal references, figures and equaticns and their fields of
application is contained in Table 2.1.

2.2 ¥INGS OF ZERO TRICKNESS IN CLOSED TUNNELS

2.2.1 Corrections to Order (c/h)2

The classical work cf Glsuert provides the basis on whick twn-dimensicral wsll
interferesce is evalusted for thin serofoiis at sasll incidence and having moderately
seall chorc. the lifting serofoil caa then be replaced by & single vortex of strength
K at the ceatre of pressure to obtain the flow field induced by the wells. Batchelor
(Ref. 2.2; 1944) considers the incospressible flow past a vorfex situated at an ssbitrary
distance d froc= the floor of the tunnel. W¥ith allowance for cospressibility
{Section 2.1), the primary interference near the model thoen appesrs 8s a vercical
velocity

L

BR x -3 = x-X
W = — — -2 - = . 2.3
. 27 ,FZ&(:-:)“é.Bz(zh-d)’ ,,Z,(x-i)2+4ﬁ'n‘h2 (2.3
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waich, st small stresavise distance /x — X) froe +he ~vortex, hecomes

Rz -3 /2 , 7
# = —— [ =t et —) +Oox -2 . 2.6}
! 88n? (3 h) ( (2.8

If the 1ift snd pitching z0ment shout the quarter-chord axias are

L = ok = 3pblel,
s (2.7
B = {on%?g,
then the centre of pressure 1s at a distance
< 1 G)
A S = — 2.8
(4 &) 2.9
downstrese of the losding edge. Frox Pquations (2.€} to (2.8} the induced upwash angle
in radiacs is
.
vy 7’ x 2 + 2 + 2 7d 2.9
_ = _——— -+ COt* . .
T e\ 7)) TSzt J
Batchelor?- 2 alsc stows that there is an induced horizontal velocity
K 7rd G 7d
B = - oot oo = o gy T2 (2. 10)

st the wing, which vanishes when the vortex is placed cantraily (& = 3h).

The serofoil is nsualiy taken to be in t3e central plane cy the tunpel. This
problem is considered hy Allen and Vincenti (Ref.2.3; 1944;, w=to represent the field
of the podel by continuvusly diatrituted vortices and reglect teras in (¢/R)°. To
carry out the snalysis, points on tie serofoil are defined by the angular co-ordinate
& such that the disteoce frox the leading edge

x = fcf1-~cos8) . (2.11)

The vortez strength in {he tunnel iz exprezsed as
{ &
X = 29 1», cot 16 + E;'.’l A, s1anf {2.12)

per utnit chordwise distance. From Bguation (2,6) the vertical velocity induced by tone
system of Images is
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f"’ TK(X ~ Xg)
o  126n%

7%c?y
Ty —— {(A, + 1A,) - (2A, + A)) co8 6}

(]
iy~ {(cL + 4Gg) - 2Cy co86} (2.13)

which varies linearly and confimms the sccuracy of Bgustion (2.8) to order (c/h)? im
the special case d=in.

The non-dizensionsl serodynaxzic loading is defined as

Pi =5
= e—m—— {2, 14)
00°

#here D; aod p, are the respective pressures on the lower snd zpper surfaces of
the aerofoil. To the approxization of linearized theory I = 2%/U, ssd ithe upwash in
Swaticn (2.12) is eguivalent to s theoreticsl increment

/¢

li T';'—\ph

?
) {(C, + 4Cy) 0t 10 + 20, 5in6} (2. 25

by whick the loading in the tunnel would excsed that in the fres stresn. Alisa and
vincenti srgue “hgt the dats obtained in =z wind tummel should be correcisd in such 2
wer that the paak loading near the lesding sdge 1s umaltered. Accordingly

Dx = &2{ch+§cg) ]

E /o\e } (2.18)
Al = .‘1 < 1 i
2{%) Ci.an‘!

are appiied as corrections to the messured incidence o 3nd losding 1 . Oz (radj iz
precigely the value of w,/U0 st mid-chord i€ = 7). sinca the symstrical stremaline
curvature equivalent to the second term of Equsiion (2.13) introduces o incremesnial
singulsrity in the loading st the lesding edge. The lcading A leads te resideal
correcticas

a4, IRERV:Y

72 ( c\
192\ Anj
¥ith thz respective iocresents fo Eguation (2, 17) the measurad scefficients of 1ifi

and pitching moment relate ts uncosstrained ¥ of valoeity U past the actual
serofoil at the correctad imcidence {x + Ax).
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2.2.2 Corrections tc Order (c/h)*

In Reference 2.4 (1234) snd Reference 2.5 (1235}, Toaotiks uaes a series of conformal
traasforwstions to obtalr the 1iff and piiching mesent on & flat-plste zerofoil inmcitned
at an arbitrary angle « to ay incoepressible siress hetvsen parsilel walls. Ths ajd-~
chord o the plats 13 sssumed 10 Iie on the centre line of the tuznel. His rasulis s
axpanzions in povers of 2/h sre

¢
- c
213 - 52 zin’c - 22 sin®w + 0(;—) s {3.18)

f ,_,72 !,' z _
B = T ll roly) @+ s -
. 5 6\.
7T A [
—-——f ) - 2, _ -.\ - \ :
ey 2: 1 {11 - 174 sin“c - 170 sin= + 0 AL (2. 19)
where (B ) 1ou%cin sin o c08 o) . The toznel o free-air ratios L/L, sad

Moy )y are nlo*ted against ¢/t for selected valves of « ia Pigure 2.2. The
broken carves for a =0 and o= 20° are ontained when tens in (c/h)"® are omitted.
the diacrepancies sre apparent when ¢ = 0,34 and czceed 3¢ when ¢ = &. 52 ; it shonid
thereiore be recognized that Bquations {Z.16) and {2.17) are subject to significant
ingccurscy whea € > 0.45h .

Havelock (Ref.2.6; 1938) considers the sase hroblem by tresting the flat plate as
the limiting case of an ellipticel cylinder. He confirms Tomotiks' s2- ¥ result in
Equatios {2.18) and derives Equation (2.12) independently. Havelock neglects temms
of higher order thea (c/h)*® and gives formalse for L/L, and E:e/(me)o for a
plaie shose midpzict is et an arcitrary cdistance d froe the fioor of ths tunnel
{Pig.2.1}). !Iib re3uits can be written as

r
_ I 2 27rd
L = !:ojl-—ca. s“““"_—i §-+c::t ry I
L
+ {243 oot in? }x»o,"\a.l 20)
- cot® —» (3 - z.
\3 s (%) ] (‘
anc
e 7d w%c? | /2
- TR Y - —_— _— ~ = 2
m,}c— (“zv':' i 21"co h)sin +32h2{(3'fcot .

7d c\?
+ \/4 + 10 cot? -h—) sin’a}+ e(-h-) . (2.2
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Equetion (2.9) would laad to the ratios L/L, and B

« =0 in Bguations (2.20) and (2.21).

10° are compared below.
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c)o obtained by sabstituling

Havelock’ s v ues !or ¢c=0.2 and =0 and

d/h 0.3 0.2 0.5 9.6 0.7
L/L, for «=0 1.628 | 1.019 { 1.616 | 1L.o15 | 1.028
L/L, for «=10° | 0.880 | 1.402 | 1.617 | 1.037 | 1.071
B o/(Byedo for a=0 1.014 | 1.010 | 1.008 | 1.010 | 1.014
Byo/My), for «=10° | 0.977 | 0.994 | 1.010 | 1.030 | 1.339

By contrast with Pigure 2.3 the effect of incidence oz wsll imterference can bé of
primary importance when the mid-chord is off ths centre line., licresver, & domnward
displacessnt of an aerofoil at positive incidence csn change the sign of the interference.
It should also be noted thst, even for c¢ = 0.2k , the turms in (c/h}* are becosing
significant in the sbove table for « = 10° and &/5 = 3.3 and 6.7, when the seriss
converges comparatively sicwly.

We have already seen that Equations (Z.16) and (2.1i7) represeat a practical forw of
wall correction, but become ivsccurate when c¢ > 0.45h; this condition is restrictive
at the high Nach nusbers. The thecretical ratios L/L, sad mcl(B; froa
Equations (2.18) and {2, 19) must then be ased to chtain ferms 14 (c) n* . The :
pitching-soment coefficient sdgut the quarter-chord axis is

By, - 4cLoosa
]ipuzcz

G

nsinaeosa{-—-( ) (1-4:;.11%:\‘L

+-——( ) (22+153mza+10§aina)1 .

28080 J {2.22)

When o is msll,

-

= -23!1 'ﬂz(c\z-n””_"- ‘}~
@ = gty E) 7630(511 i

T 77’(‘) 13_—,
E Pr en

where the linearized cowrczslbilitg factor S hss been inserte:i.

’ (2.23)
c: =

It remsins to convert tbe resulte in Bquations ¢2.23) ints incremental corrsctions
to the messured incidence, .ift sud pitching sosent. Tt2 previous discvazion leavas

BRI B , Cone R 7
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ps dcubt that. to oerder (c/h)¥ , Bqusifon (2.18) is the Nost definttion of Ou .
Althcugh this could st+il be Gsed, we prefer the detinirion

8 AN A R ENY B

9%\ At 92160 \Bj

which conforms to that of Equation (2.36) in the foliowing Jestion 2.3.2. Then

ag, = (:})(a+Aa)-cL .

A

which by Eqations (2.23) and {2.24) heccmes

f ﬂ,z > 6l
o, = c"i & mz(ﬁn, ('53) ,} ' @

Since C, 12 zero ia unconstraired flow, it follows from Zqusticons (2.23) that

2 ( c\? ( ) of Y’l
= - = € —_— . 2.23)
8 = -G L8] mwo\A) O\ j ¢
A atternative and mors practicai form of Equatisn (2.24) is

el ( , ety 2. 77
2 .y + - C—— a. £

96/ L % 307205°h*
sad this should be used whenever C, LAac been aeasured. Io two-dizensional sulaonic
flow Equations (2.25) to (2.27) give the wall interferedce on a thin aerofoil with its
rid-cbord o the centre line of & clossd tunnel a3 incremental corrsccions to the
measured quantities o, C; and C, . If the servfoil were dirplaced vertically,
corresponding formulae conld be derived from Reference 2.6 with neglect of 0{c/fBb)° ;
these wotld include the effect of a nen-uniform stresmwise flow that ig indicated by
Equation {2.10).

2.2.3 Hom-Zxctsngnlar Tunacls

There is 0o exsct trestment cf flat-plate serofoiis spamniag closed lumnels of
non-rectanguisr sectizn. The mathemstical cifficulties involved in the case of &
ciccular tumnel are well discassed ard treated spyroximately ty Vincent] and Grahse
(Ref.2.7; 1948). Thelir assmvtic of uniforze spmwixe losding on s teo-dimensicpal
wodel is smply justified by experizent. &ven with Lhis sisplitication it anly spuears
possible to obtsin che interference upwesh to ordar (c/h)? at the cenire of the
tuzael. To this spproxiuwstion the }1i:Y effedt i& that in a two-dimensional rectangular
tunnel of height

hy, = 3.843 x {dismeter o2 i{tmnel) . {2.28}

2 lower 2qmivalent height would e expested, {f it weve possible to vssliurte the
svecege interference acrogs the 3pan. Nevartceless the ses<it (2.28) rhouid agply to
prassare distributions at che cenire sectiwn, rvhich Exy oe oorrected ¥y Equation (2.16).
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For tunnels of octegopal section Batchelor™ ? assumes that ths flow in sashk plase

nornal to thC spen 18 two-dimensional, so that the intsrference kss £0 be sveraged
acroge the span. His simple procedure lesds tc an equivalent height

bfa?  1-% .
he = h{l‘l‘mi . {5.58)

oA

stere b’ and ih’ are the prcjections of each cormer fiilet on the horizontsl sad 2
vertical eslls respectively.

Equation (2.28) must szriously underestieate 4, unless
th2 f5ilets are fairiy oeall, PFor balance measurements cn & full-spsn model 3t may be
safer to vse, in plsse of Equations (2.28) and (2.29}, an equivalent height /b,
rade ( ism tle orcss-sactional area of the tunnel. Thea respectively

b

e 0,785 x (dismetZt of tunnel}l

b

e

. . (2. 30}
k- 'R/

2.2 WINGS OF FINITE THICKNESS IN CLOSED® TUKNELS

2.3.1 Effect of One W1}

P RN AR AR 8 SR A YD

By way of introducticr it is interesting to consider e thick aerofoil ip the
presence of one wall. Tomotika et al. (Ref.2.8; 1951) investigste thosretically the
forces acting on certain thick camberad serofoils st incidence in s two-dinsnsional
incompressible flcw bounded by one plane wall shich can be taken to represent the
greand. The exact solution for the 1ift is derived =3 an intrastudle integzral of an
infinite series gnd is evaluated sumericglily. It caa be said st once that corresponding

cisct soluticns for tiow in & strafgnt channel ase gxceadingly isborions mpd tiat they
defy nmmerical analysis if the fluid is compressible.

[ F 2

Por poritive incideaces L/L, , the ratio of 1ift with groud to the uncopstrsined

1ifc, decreases at firat fros unity 88 cfd incresses but later increases rapicGly as
tic chord grestly exceeds the distsace of the acrofeil from the gromnd. Thes, b7

Figure € of keference 2.8, bdoth thickness and positive cssher G the asrofoil cas cause :
largo redoctions in L/Lo . although these reductions do mwt appear to excead %% for
the values of c¢/4 that normally cccur in problemz of »»il intsrferencs corrections.

R

2.3.2 Goldei21n's Theory

The geperal two-dimensicasl probles of = thick, csabered aerofoil xt incidense in
a iow-speed closed ttunel hes becn solvsd by Goldstain (Ref 2.5; 1942) as an algebraic
powr series in c¢/h . Rs first darives the transforgation of the asesrofcil into a
circle ard then considers the velncity-potential -field at iarge distances {roa the
a2rofoil in & wnifuvrm frec stresm. Superpssition of corresponding potestisl fields
frox the 2afinite syotem cf images gives a first approzimatict to the non-uniform flow
field genercted by the walls of the tunnel. This flow is calcuiated iz the seighbourhond
of the aserofcll, sié hence Geldstelnr svaluates R wodified velocity distridbution on the
asrofoil hv the theory described in % first paper ol Reference 5.9. This provided
& second suproximstion to tie distazt fizid of the serofoil and keace to the non-
uniform interference flow field from which the aersdynssic forces a2re obtained correct
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20 the oyder {(c/2}” . The tedicys sigebri is restricted to cases in which the origin
of ths transformation clase to the mid-chord peint Iies in the aiddle of the tumnel.
@oldatein points out that, elthough simpler calcuiations. zuch ss those descrided in
Section 2.2, are noraslly adequate for correcting 1ift anc moment, his method sllows
ua to declds whether this resains true in excepticeal circumstances vhen c¢/b ,
thickness/chard ratio of the sorofoil, its camber or lift coerficient is larger than
usual.

Yhen 2.l second-order terms in thickpexs, camber and incidence sre meglected, the
1{f{ interference is incependent of zerofoil thickness, just as the blockage corrections
(Chapter V) are independent Gf azrofoil camber and incidence. Goldstein defines s
correction to incidence fu he the interferenco upwssh sngle gt z=id-chord. In the
present cctation Bgustions (76), (77) and (75) from tks secop? paper of Reference 2.9
becoxs

L ,,z(c)z(z +D,) + " (c‘ ‘( 2a + 20D, - 210,) (2.31
g = —{— o =} (-2 - : e
o6 \n ¥ 7 32160 h) ; z *
Ao - waicb(c)z"-?naa; c\}= {36, + 21(25 - T, + D, + Dy} (2.32)
BT e \s) Twmml) BRTTORO k. G
azd
7w fe\?
g, = - A, + (—~\ 20 + D 2.33
Ca Lt Sra\n S 2 23

respectively. Here a, iz the twe-dimensional 1ift slops ’nd

1

4 ¥z, sin nf
B = - —_
a 7J, ¢ sin @

a6 , (2.39)

wiere Z, is tbe ordinate of the cazber line of the aercfoil and & is defined iz
Bquaticn (2.11). Osldstein shoxs that

b)) - 2 '2" 234'0.:2 (2. 35)
2 ﬂc“T;:""- (E) . .

substitution 6f B,‘. from Equatics (2.35) and a, = 27 in Fquaticn (2.31) gives

therefore, to order (c/B}? ., Equations {2.: ; to {2.27) for a fiat plats serofoil
are not influenced hy first-order effects of camber.

. 1f the aerofoil is unchmbered, i.e. D, = 0, then with the aid of ths ralaticaskip

(€, +4q) = ax+8a, = 2m(x+ Doy
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Equations (2.31) to £2.33) reduce to

Ba ﬂ(c‘g 4173 [(.\
98 ) 22160 \ 1 /

A, 72 re\N?  m® jen?
L= ~—={-) 4+ -——(-= . (2.3
g, 48\h / 3072 \h /

Ac, reN?  w" fe\*t
] = e =}
£, 192( B/ 160\ /

it

These sxpressions sre consiastent with Bguations (2.24) tc {2, 26).

For a symetrical serofoil it is straightforward to retsin terms of seccnd order
in «, G and functions of the asrofoil profile

2 P7 z,/e
-] ——af
7o 5in &

o
i}

. (2.3

4 P72 cos nf
C,L = ag ? 1
£ r siz & 21

Tdo

%
<

4

shere 2z, 1is the ordizate cf its upper surface, By Appendix 5 of tha Iirst paper of
Refereace 2.9 and Equations (68), {72) and (74) ¢of the second paper with the
apuropriate theoreticai 1ift slope s, = Zm(1 + £;) , we have

7e\?

ba = — {2m¢1 + C) + G, 0}
a = 96\11/ 2 T GT,

{zm(1 - 260, - 9C, + 420 + C (110, + 318} (2.38)
~ 92160 \h) ¢ 2 ¥ 4% + Gl 2}

2
[+

3

4 y
4 {2r7at82 + 408C, - 120C, ~ 180, + 120C,) +
N 92159 (3/ (B 4 )

+ € (125 + 6320, - 70C, ~ 78C, ~ MC, - 63C.j} (2.39)
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and

[
A¢, = - 3, + — i (;) {27~ 80, + ac,) + o (- 3C, +3C)} +

Tf‘ \
+ - + )
(h/ {z-ru(«gz 212¢, + 84C, + 20C, + 36C,) +

+ C(156C, ~ 79¢, - 35C)} . (2.40)

To determine the theoretical relationship betweer o« and C, ., it is necessary to
equate (€ + Ag) with 27 (1 + Cg)(a + Ba) . Thus we substitute

s armvien oaamine KAV R SR O RN A Y oen s

2 I' 72 fen 2 3
3 M = Cpl(1- Cy) -—(——) (4 + 10C, ~ 3C,) (2.41)
: L 96\ h
‘i i to give
} !
# ‘
Ba 7 fey? 7 e\
. Fl: = 55\;) (1-C,+C, +C)) -~_(F 41 +788, + 11C, +C; +31C, +42C,) , (2.42)
B}
: ST ) (2+14C, -2C,-5C,) + ) 210 + 1004C, -190¢, -96C, +185C, ~ 59
: c, 2 92160\ 5) ¢ %
! ; (2.43)
f and
;
‘ 3 .____= /i\z(zmc -5¢,~C,+3C,) -
1 3 § e, B\ b/ 3 1-42 3
: ey *
: ; -368840 E) (183+514Co~430(:1+4402+18503-10503+35(!5) < (2.49) -
It i& interesiing to note that Equation {2.42) again redveces to '
£
b " , c s
) Do = S, +4Cy) + 0( ) ,
X 96\n / ( G) h
l\: -
3 ) since, to fifst; or"er in thickness, the theoretical centre of pressure occurs at a8
distance .c(‘l + - C, - C;) bvehind tae leading edge (Ref.2.10).
Equstions (2.42) t5 {2.44) heve been evaluated for a 10-per-cent-thick RAE 102

aerofoil (Ref.2.11). By Bquations (27) of Reference 2. 10, this serofoil may be
defined uppmzmss;elz by the coeficients

g LY _TIR LN
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4i
c, = 0.07728 |
C, = 0.05343
8, = -0.01512
o (2. 45)
¢, = 0.00089
c, = 0.00085
C, = 9 )

whick lead to the curves of 243&/C, , AC/C, and AG/C, sgainst (e/h)? in
Figure 2.4. The terms ia (c/h)® are seen to reduce the magnitude of each quantity
and cannot safely be ignored urless c¢ € 0.5h . The effect of thickness is especially
important in the case of AC! /cx. which is increased by 50% or more. Even for a
5-per-cent-thick sercfoil, -~ ACL,’CL would be seriously uaderestimated by

Equation (2.36; unless ¢ € 0.3h .

Goldstein derives to avder (c/h)® the residual corrections to the distribution
of velecity on the zerofcil; his formulae in Equation {97) of Reference 2.§ can be of
importance in special iavestigations, when the crude altermative. Al in
Equation (2.16), is unlikely to suffice. The problem of a thick aerofoil placed
snywhere in the tunnel is solved to order (c/h)? in Heferenmce 2.9, and the results
are consistent with Egquations (2.20) and (2.21) of Section 2.2. Unfortunately their
usefulness is restricteé by the rather slow convergence of the series in powers of
c¢/h , when the aerofoil is far froo the middie of the tunnel.

A method of conformal mapping has beer applied by Moses (Ref.2.12; 1848) to calculate
the velocity distributions oz sn arbitrary aerofoil at incidence in a closed wind
tunnel. The mathod provides s satisfactory numerical solution. If it were necessary
to include terms of higher order than (c/h)® , ther it would appear to be more
convenient co use Reference 2.12 than to extend the analysis of Reference 2.9. As an
example Moses considers & :2-per-cent-thick serofeil at o« = ¢° and a ratio
c/h = 0.5, which provides s severe test of the formulae (2.42) snd (2.43). Froz the
ordinates of the asrofoii in Table I of Reference 2. 32, we obtain, by Reference 2. 10,

C, = 0.0%, ]

€, = 6.05.

C, = ~0.0229 } (2.46)
e, =  0,0065,

C, =  0.0052

and & theoretical value (a,); = 6.848 , which gives a free-strems

C;, = 6.848 x 0,06981 = 0.478 in agreemen: ufth the resalt im Reference 2.12. The
value calculated by Moses for the serofoil in the #unnel is C, = 0.537 , when

a = 0.06981 radians. When these values are correcied to free-streem conditicne by
Equations (2.42), (2.43) and (2.46), we have
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C, +4c, = 0.5022

o + O« 0.07340

Hence

a

L = (Cy + A0/ (x + B 6.842

which is virtually a perfect ckeck. If (c/b)* 1is neglected in Bquation (2.42) and
12.43), then the 1ift slope is aver-corrected by nearly 3% to 8, = 6.65 : if, on the
other hand, serofoil thickeess is igpored (G; = 9), then the corrected value a, = 7.01
is about #% too high,

2.3.3 Allowsnce for Compressibility

Sclutions for the symaetrical compressible flow past azerofoils have yielded fermulae
for blockage corrections (Chapter V), buf the difficult non-linear problem of a lifting
aercfoil in & channel remains unsclved., VPranke and weinig (Ref.2.13: 1939) use the
transformed linearized differcntiasl Eqaation (2.4) aed represent the aercfoil by its
velocity-pctential field at large distances

s

@+1% = A log{ - A, + ALY, (2.4T)
here }\ .A, eand A, arereal and { = X + §Z . The accuracy of the resulting
simple famulae is cozuparable with that of Referance 2.3.

Since there is no practicable 2lternative to the evaluaticn cf the ipterfereace
upwesh by limearized subscnic theory, th¢ recowmended correcticas are thosz of
Eguations (2.42) to (2.449) =odified in accord with the remarks in Section 2.1, e
first construct the solution for the equivalent incozpressible flox of density £ aad
velocity 5% with boundary conditions set hy the geometrical paraneters listed
belos. The asrodynexmic quantities so obiuined can then be equated as follows,

Geometrical Parometers Aerodynaxic Quantities
=F4L,F®
Porce ~oefficients = 5°C,, 8%,
=f's

= fAa

Tupnel height

h

Lift, Koment

foil chord

[+]

Aercfoil incidence

]

Upwash velocity

Aerofeil thickoess

Upwash angie

where h,t,C., C,,Dax, etc, refer io the reel coapressibie flos.

‘Taus

apfe
96 \Bh

Do
e ){ +8(-€,+C, +C} -

7B
" ‘s2160 E‘"

L 3
{41 + B(I8C, + 11C, + €, + 31C, « 42C)}

g 2o PO

(2.48)

3
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—rm o

ACL wése\ 2 :
— = -t} {2+ 8u«, - %, - :
CO T \ﬁh) e

AN SR b

v v A

R
[
v (E) {210 + B(1004c, -~ 1sn-:,‘- $6C, + 105C, ~ 65T}

. weae

Aag, 7% fe\?
2 { = 1
— —_—f ] 12 + 6C, = 5C, - €. + 3CY¢ -
. 384 (,Bh) Aty 17 F2 ¥ )

AN <3 xDiie BN Ba e Whdlos

evm

L 3
{168 + Bsi4C, - 430C, + 44C, + 185C, —

1

" 358640\ Bn/

~ 105C, + 35C.)} ]
where €, 1is given b: Equaticns (2.37) or may be identified with A, in Equstions (27)
of Reference 2.10. In Figare 2.4 with abscissa relabelled (c/3%6)? the sppropriate
curves will give 21l/(5C),OcC /Cy, AG/C, for a typical symeetrical aercfoil of
thickness t = 0.1c/8. The implicit assumption, that e, = 2W(5 * = C,), =ust de
recognized. Io the ebsence of . more exact theory of two-dimensiopal wali interference
there is some justification in thet t2is lift siope will normally lie belcw the exact
theoretical value and shove the experimzertsal one.

~

s dprhent

’

%hen Equations (2.16) end (2.17) will not suffice, the xall correciions for g thick
caxberzd aerofoil shouid be obtained in %o parts. Iif the measured lift coefficient

is written as
Cm = o + oyt - gyl

then the contribution to interference froz C,(0) 1is found by setting ca =8 in
Equations (2.31) to (2.33) as eodified in accord with the above table. Thus
1

(c\‘ il (c.zzon 21D
4 — P
D 92169 ﬁh)( 2 ) ,

by
[1

L {

c i Zr

( \ e + =~ isc,_(o) +=—{-D, +D, + 133)} > (2.49)
48\ Bn) 153&) Boj B ]

Ag

ac,

86 = -2g+ 51440(131;) B

shere D, is given by Equetion (2.24). To Equations {2.49) sre added contributions
froe Equatiuas :2.48) with the salstitntion c, = o (@ - c(m] . It may be
necessary to reduce these corrections on account of the aerofcil bourdary-lager; 2
siaple semi-espirical procedure for this is discassed in Ssction 2.6.3. -
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2.4 AEEOFSILS ¥ITR BINSED FLAPS

Section3 2.2 znd 2.3 bave been concerned with 1ifting serofoils without f:eps; they
anply to serofoils with undeflected flsps, but an sdditionsl formuls 1z needed for the
residual corraction AC, to the hinge-zoment coefficient. The interference on 8 thin
syraetrical 2ercfoil witk deflected trailing-edge flap spanning a closed two-dimersicnal
tunnel has been obtsined to order {c/h)* by Preston snd Manwell (Ref.2.14:; 1941).
Thecretical vxluer of the non-dimensionsl derivatives of 1ift, gquarter-chord pltching
aoment aad hinge moaent with respect to incidence o and flap setring £

&, = 3(:1‘/30. . 8, = BCL/af ’
1 [ LEM 5, = o/,
b, = 3fx  md b, = g/

are given in the respective Equations (28}, (39), (43a). (44a), (50) and (53) of
Peference 2.14. The thecry takes po account of firite thickeess, and it is verified
that the expressions for a, end =, are consistent with the full curves in Figure 2.3
for « =0 . Ratios of the other derivstives to thelr free-stresm values, b,/(b;), .,
8,/(a),.8,/(m,), and % /(b,), sare plotted in Pigure 2.5 ¢s functions of c/(B)

ad B=cefc, where c, ie the chorc of the flap. Wen ¢ =90.5fb and 2=0.3,
the inverted ratics are &8s felloes.

Tunnel derivative ) b, g, 1 13, b,

Correcticn facicr 0.914 0.837 0.939 | 0.3817 €.930

The correction factors tc sa,, 2, and b, decrease as E increases and ar2 of the
sace order as that tc 8, . The interfersnce corrections tc b. are ceparatively
large and avch less dependent oz E .

Ir conforrity with Secticns 2.2 and 2.3, we 2xpress the resulfs of Reference 2.14
as theoretical incremental ccirections to incidence and the serodrnumic coefficiemy.
The corrected hinge zoment on the nndeflected floz is 10U%ci(C, + 8C,) with

Cq+8C = ba+dgy = (B la+dn , {2.50)

where b, and (b,), ia Egratiocn (50) of Refereace 2. 14 require the asual modification
for compressibility, sad Dx is defined in Equation {2,24) for a flet-plste aercfoil.

Substituting
B I r 3 4 2 s
o = Bl _TeN +c(—°-) (2.51)
P 2¢\ Bn/ \ Fn
[ o

from Equstion (2.23), p; obtsis
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3
4B%(Ac,) mfey? 1
———— 2 ] ca— { 97 - ¥ + -
< 288(,3'3) 12(7 - 8,3 co38, + étsint?x sin 36,} !
[ e\*
- { —) {~60(m -8,y + 608(2r - 0.3 c088, ~ 5208828, ~
921602 \ Bn / @ -9 + 8000 - O3 o8,y e
- sie 28, + 258036, - 55w, + sipss,} (2.52)

Pt Y Sy

wece E= cofe = 3(1+ c086)). In~1{ignr's 2.6(8) curves of Al,/C, sgainst -c¢/B
are drooa Jor several fixed values of ' E . There is no reascn to suppose that the
effect of serofoil thickaess on these curves is any greater than on AC/C; in
Pigure 2.4. However, the terms in (c/Bh)S nay become especisily importast in the
case of As,,/c,‘ ; it sppears 1ikely shat tr o> 0.43h these higher-order terms ace
zove sigrificeat than thickness effect.

For the compressibie £low rast « thin aerofoil at reruv ..cidence with deflected
flap, we write

PR L T L BRIy YV e ABAO AN V0 o L S 1R u-ﬂh‘f{)‘ vap e
/ 7 dh;& o\
¥

T, +8¢, = ‘z§+AC.,'= (2,) £+ (8,35 4
G+l = v f+0g = (M) £+ (a3 . T (2.53) -
Cy +8C; = bE+AG = ()€1 (e

(a,),. (@), =8 (b)), are 5! times

shere (v,)), = 25/R, @), =0, (), .
= 6. The correction &= to iacidence is

their values it Refereace 2.1¢ for ¥
chosen from Bquation (2.27), #heénce

orha w2 c)z{(1 R W fen©

Bc, 48\ Ba, | * 15350 | B/ ¢
By Bquations (2.53) snd (2.54)
& 1 o, 2eba )
i T ~— {{8,3, - 8.} + I i
cL a2 ‘cha ] § 3
‘
I L
& i 4 ¥z
(% 4 ";:
g.-
1 Dx ;
ﬁ = - {(bz)c -0+ () p— 2 =
&% 8, G ) "% .
Theae corrections are plotted as Punctions of c¢/fh sad B ip Pigares 2.6(b) and ?
27 Oc/C, falls sharply as B decreases, aad to order (c/h)? it tends to zero S
ss E—0. Tothisorder AC/C, sad &86,/C, are independent of B and ACy/C =

is given by Bgustion (2.52); for large snough ¢o/5h, hoeever. all these corrections
for & detiected ficp are nugerically lsrser than the correspouding zeimes in
Pigurvs 2.4 sxd 2.5(a) for the 1i1ft interferencs due to cerofoil incidance.
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In the case of & symeetrical serocfoil at incidence with deflected flap, OAa cheuld
first be ovsluated directlr from Bquation (2.27). Then the residual corrections AcL,
G, and AC; should be estimated both from Pigures 2.4 and 2.6(2) and froz
Pigures 2.6(b) and 2.7. enever these differ sppreciably, a =2an value skould be
weighted according to the contributions to € from serofoil imcidence and flzp setting.

rofcil cepber should be treated separately as in Equation (2.49). Se=i-empirical

correction factors to A08 vill noreslly be required tc take sccount of the boundary
layer (Sectien 2.6.1).

The results in Pigrres 2.6 end 2.7 only spply to unbalanced two-dimensicnal flaps.
To order (c/h)2, Miss Lyon {Ref.2.15; 1942) has extended the analysis to flaps with
sealed ahrouded balance on the supposition that the chordwise przessure distribution is
that of an unbslsnced flap of increased chord. The hinge moments are further modified,
since the Lkinge is now set back froe the ncez of the flap. If required, the resalts
for dalanced flaps could ba derived to order (c/h)* with the aid of Reference Z. 14.

De Jager and vaan de Vooren (Ref.2.18; 1961) have considered the con-lincar problem
of 2 hinged plate between parallel wells ir incompressible flow. The forward portios
of the plate lies along the centre of the channel, tut the rear portion or flap is
daflected through large angles & so tbat the yorticity may no longer be assumed to
lic entirely in 2%e centzal plere. Humerical solutions with six terms to represent
the vorticity are cbtained for a wids range of £ wehen E=10.2,0.25,0.3 and
o/h=0.2,0.3, 0.4 . Because of the non-linesrity, the results cennct be presented
28 in Equstions (2.33) to (2.55) with & correction Oax, nor can any relisble allowance
be mede for coapressibility. The corrections OC /C, from Reference 2.16, reproduced
in Pigure 2.8, are therefore not comparable with those in Figure 2.7. The most striking
fosture of the results iz the rapid decrease in the corrections as & increases above
30%; there is indeed a reversal in the sign of the correction near £ = 81°, 70° and
58% for E = 0.2, 0.25 and 0.3 respectively. With the aid of the graphical data in
Figures 2, 3, 5 and § of Reference 2.16 it is simple to calculate the ratio

Ac, 8¢, (6 {1 + (Bg/ep)

c, C, (€ o{1 + (8o /cp}

to obtsin the curves in Pigure 2.9 for E=0.25 . 1In this cese, since (R,), =0,
the results for small £ are seen to be consistent with the corresponding

Bquation {2.55) s3d the curve in Pigure 2.7 that is practicselly independent of E.
Fcr esch value of c/h the correction is halved near £ = 40° and vanishes pesr
£ =7 . It wuld be ‘nteresting to have experizental confiraation.

2.5 OPEX-JET TUNNELS

2.3.1 PBcundary Conditions

At one time it was common practice to test two-dimensionsl serofolls spemning sa
oren jet; such models conld e supported conveniently ontside the streasm. The problea
of jet-boundary interference Lss to be considered from seversi poiats cf view, The
flow is far from two-dimensional, since the 1ift falla to- Zerc shere the aerofoil
croasas the boundsry; the wing therefore experiences 3 lsrge downwash due to 1ift
interferencs snd slso some 1lift-dependent drag which is sbseat in purely two-dimcnsionsl
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tlow. In 8 flow of finite cross-section with free upper and Igwer boundaries, a
tinite 1ift on the aerofoil indnces a finite downwesh iz the distant wske and &
consequent interference at the model. Both of these censiderations lead to large
corrections Ox proportional to the chord of tke serofoil. Furthermore, the flow

i8 sccompanied by some distortion as weil as the deflection of the jet, and these
effects haw. never been incorasorated in the boundary copditions. Therefore the inter-

ference corrections are not only larger but less soundly based thap those for closed
tunnels.

The bcundary condition to be satisfied at the odge of 2 jet is that taz pressure
has a censtant value equal te thet of the surroundicg xir. Although lipear velociiy
perturbations are hard to fustify where the aerofoil emerges frox the jet, this
assumpticn is made; it ther follows from Bernmouilli’s egnation and the conditicns of
constant pressure, that u = U over the entire bouzdary of the opea jet. If it is
further assumed that the jet is infinitely long and undistorted by the meodei, thex on

the boundery the velocity potential is & = Ux and the perturbstions in velogity havs
zerc tangentisl coxponents.

2.%.2 HRully 9pen Jets

¥e first ccnsider e lifting aerofoll spaaning an incospressible jet of bresdth
B(- <y < 1b) and infinite height. Stiiper (Ref.2.17; 1932) ias treated this
probles as an application of the classical lifting~line theory to s wing of infinite
spen st incidence o(y) = (- 1)V, where N is the imteger nesrest to y/b . This
unit function of periodicelly cheuglng sigp is expanded ss & Fourier series

- 13 3
xi3) = “‘Z( i {-? m+n} . (2.56)
4

R*J H

Hence, for |y] € ib , the 1ift per unit zpes is o0 (3) with

- x)n fﬂ’ 1
P = Gcll-—? ¢ cos J(mox\ -3 (2.5
05 b L B Y J
zhore 8, 1Is the two-disensicnsl 1ift slope and
A = gbf(mac} = ¢b/{wic) sher 8, = 27
7he togal 1lift
~
3
H3
- Gy e
r =2
2 r i 13ﬂ I's by
- Lo {i-— z-——-——-—.cost%fm(mfm d9 .
rj LD+ 1A
t -1
%
i {2.58)
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2 1 ” (_2. &)
= I"O 1 -3 — 1
72 Ee (20 + 13(2 + 140) J’
‘This 1s easiiy summed when A is s positive {nteger; in genseral
= [‘1 $ s g Hiyd
L = Lyjt ~ o8 5T F 214 ) - ¥a+ g, (2. 5%}
i 7w

where 0.5772--- is Euler’ s constsat and values of the psi femction ¥(x) wili be
fcond in Rsference 2. 18. ‘The boundary interZareucs wiil depend an shetder the
experimental dstz ares taken fros measurements of total fosce or from pressure plotting
st the centre secticn. Iz the fouxes case L/Lo is given by Equation (2.59) and is
plotted in Figure 2.310{a) z-ainst c/b = §/(@?\) ; even for a =nall wing cf chord

¢ =0.1b the corrsction factor Ly /L is as high as 1.37.

Stiiper?-17 deals with cpen rectangular tumnels for wtich ke cbtains as a
generallzation of &mation (2.57),

i 13> (- D® oo {ezm + Dy}
;f’) =213 e 7 — . (2.69)
0 w %o (2n + 1).3 + Pn/)J
where
Fy = $a8¢

7. = (22+ 1) wta{(z: + Iywh/and
o
He provides evidence from experimentsl pressure distributions for h/b = -;- and i in
support of the spanwise losiings predicted by &gatlos {2.60). Aithough there is less
interfereace on the 1ift at the ceatre sectica thar cx the sotal 1ift, tke curves of
ToyA . ssainst ¢/b in Figere 2 10(c) show that Lhe vorrecuica factors fo1 8 wing
of chord 0.1b are [/f¢0) = 1.18,1.20 axd 138 for h=0, b ad 3b
respectiveiy.

Another cenfiguration that has received considerrbl= attentiop is s rectangular wiag
spenning a circilar open j&t. Ik Referencs 2.17 there appesr to be errous on the {eft-
bhand sides of the final equrticns for the coefficients I {he sranwise logling.

Boreove>, Squird (Ref. 2.19; 31C39) poiuts cut thet Stiper’s form of solution misrepresents
the =athexatice’ singularity la downwash at the wing tips. Squile gives # asre exast
treatsent of the iifting-line prohle= with s distritutica of 2ift
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where R is the radius of the jet. Equation (2.61) yields

Lﬁ - ﬁrﬁ.,z-"n -] ' (2.62)

e AN O B Mt §

[ Y

where by(n=9,1 sad 2) are obtained approximately by collocation. The numerical
resuite are plotted in Pigure 2.11(s) and are not greatly different from the values of
U0/, and L/L, for a square jet.

At e R NN & MWW,@;@.
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As a consequence of toe noa-uniform spanwise loading across the jet, the wing
experiences 1ift-Gzpendent drag which is absent in parely two-dimensionsl flow. Quite
s221l errors in the spansise loading are significant in the evaluation of this drag;
it is not surprising, therefore, that Stiiper’ s values are sppreciabiy greater than
those from Reference 2.19 which are used in Figure 2.11(b). Here the corrections to
incidence and drag are given by

Tl (MPHEAY 4w o

wa b

ba 1/,
- = - —K-—- -1 {2.63)
'JL a: L'

end by AC/cf . shere AC, is equal and of opposite sign to the theoretical drag
coefficient of Reference 2.1¢ with &, = 27 ; it is e2aliy shomn thal the resuits are
not sensitive to the choice ¢f 8, .

S L T

The treatment by lifting-line theoxy ignores the effects of induced curvature of
flow, which will be of the saxe ordar as the corrections for closed tumselz in
Figure 2.4. By comparison with the positive values o2 Aa/CL for closed tupnels, the
quantity defined by Egquation (2.63) in conjunction with either Pigure 2.10(a) or
Pigure 2.11(a} is negative and of much higher magnitude. The likely accuracy of the
interfereace corrections for open tunnels does not warrant silowance for induced
curveture. Similarly there is lititle justification for applying iifting-surfazce
theory, although Reference 2.0 {Rethorst, 1958) cculd be adapted for the purpose.

2.5.2 Two-Dimcasionsl Tests f

It is pow supposed that the breadth of the tunnel is very large, or that with %he
aid of solld side-wafls or end plztes a two-dimensional flov is preserved. On the
sizple .rgusent, that tha interference downwash at the wing is half that ia the
distent wake, w¢ hsve

%o
Aa = % =

T

LIC

SC (2.64)
ch :

gsicce from considerations of momentum the lift force ipuzscL balances the rate of
growth of dowmward aoseptum - pUCw,, . An exsct solution of the imccepressihle 1
‘problex hy Sasaki (Ref.2.21; 1928), cquoted in Glauert’s Eonogisph, hes given nimarical 1
valuss of L/L, for a fiat plate placed midway between the bouncaries of the jst at
su incidence « = 10°. ‘These are plotted against c/h in Pigure 2 10{b), and for
€ =0.2h the correction fastor L /L has reached 1.24. From consideration of
Equation (2.84) 2loae we would have

W '#mmmh‘(ﬂwﬁ« FYEPTIIA
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=131 , (2.65)
whica is o fair aprroximniicn tc the accurate theo:ry.

We now suppose *hat the 1ifting aeroXoil i= of 'small chord snd can be repleced by a
single vortax st an srbitrary position between the udper and lower boundaries of the
jet. Corresponding to Ecuations (2.6} and (2.10) for a closed tunnel, the induced
unward «nd streapvise velocities for a tunnel with open roof aad floor ere

o = -2 (4 + cot? 2 (2.66)
=S ————— {— ¢ cOt° — .
i 88n?2 3 n
and
K #d _ UcC,  d
4y = ——cot— = —~Zcat — . {2.67)

4fn h 88 b

Bquaticns (2.58) and (2.67) arise fruom an imsge system comprising a column of vortices,
exch of the sme sense; Chese contribute 8 finite upwesh ¥ _ /U = + icC /b upstreaa

of the model sad au equal and ovposite domnwash w,/U = ~ 1¢C /b ir the distant wake.
In order to eliminate the undesired upstrea= upwash, a uniform downwash can be added

to the sclution in Hquation (2. 65) without violating the condition that the tangentisl
velocity is unperturbed at the boundary of the jet. Hence, by Equations (2.7 erd (2.8),
the indaced upwash angle in tae neighbouriwod of the model is

v 1¢c c el (x 1> ‘e (4 . tzwd\ (2.68)
= = ---C - _—— ~+cot?—1§ . .
] gh ¥ 168nf \c 4 A HE h ;

Glauert has stown that this result with £=1 and d =0 is in very good egreezant
xith the exsct solution of Reference 2. 2i.

Vandrey (Ref.2.22; 1342) hes considered = sezsll medzl in a two-dimensional open
tunnel wit: a closed entrance nozzle, and he gives a physical discussion and mathematical
solution of this mixed-boundarf problem. The model is representzd by a combianed vortex
and sotrce, and the interference velocities are expressed in terzs of lift and drag.

The 11t interference of Reference 2.22 can he regarded as & specizl case of the mork
¢t Sartaer and Diesendruck in the seccad part of Refergnce 2,33 (1950). However far
downstrean the model may be, the clesed egstrence nozzle takes care 9f the upstreaz
flow condition. One configuration of tumn2l in Reference 2. 23 has a closed entrance
nozzle and 8 single lomer ezit 1lip. i.e. a roofless collector; for a lifiing model
aideny between the roof and floor, the induced velocities at the zodel are

- K ﬂ!c/ﬁh )l
T T F «
s (2.69)
"= __% [F /8D g _ 9(3 + o™"X0/Fby-1]
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whare
(e i/Ph 4 g2rxo/Bayt 4 gmU/FD

P = o2TI/AB ¢ cawxo/Fh '

.

X, and ! are the respective distances of the model and the exit lip downstreas of
the entrance nezzle. 48 l—@, u; =9 =xnd

K - -
- (lte mxo/ABy-1 (2.70)

which is conzistent with Reference 2.22.

Of greater practicel interest is the two-dimensiopal closed-open-ciosed tuunel with
an open working section of length | and & closed eptrsnce nozzls and collector. In
Reference 2.23 the interference velocity is derived for an arbifrarily placed vortex
in such a funnel. The streaawize coaponent u; venishes wher the vortex is in the
horizental plane of symsetry, and

X mx - 1) -2
v = —E Go‘?-——E-h—— G1+0(x-x) . {2.71)
shere
(ei‘wllﬂx - I\el’ﬂxc./ﬂh .
8, = - — (2.1
o (1+ emtzlﬂl)(ezn!/ﬁh 4 g2Xof! %
i (e?ﬂl/ﬁh - l)emngﬁh
G, = “"5"* (1 + e?™o/hb)2(o2w /B | 2wxo/Bhy x

x {eTV/Bh(y + L7 x0/Bhy _ g7mxo/Bl(1 4 oFmXe/ly} (2.72)

and {x - X) denotes the distance downstreas of the vortex. We subsiitute

3
1 3

K = fucq,

x-X = ¢+ cf,/C,

<y, wcf1 C.“
Ag = - =28, %o~ ~+ =18 . 2.33)
411 ] ﬁh Q CL) 1 (4 'i
Then the residsal correstions to 1ift snd zoment are given by
b, _ _melm ﬁ(’f_\ ’
. 288 °x 8 \ A/
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where G, is dsfined in Fquation (2.73). If x;-~%*®, G -0 and G, ~-1/6 and
%2 have the results for a clcsed tunnel in Equetions (2.16) and (2.17). If | — o and
then x,—-®, §,—~1 and G, -+ 1/3, so that for an open tunnmel the residual
corrections in Equaticn (2.75) ere of twice the megnitude and of the opposite signs.
The functions G, and €, .are plotted in Figure 2.12. 1In a typical case ! = 1.56b,
X, =0.5f, 6,=0.96 sad G, = 0.33 ; such a closed-open-closed tunnel has
interXerence characteristics very similar to those of a completely free jst.

2.5.4 Spillage Behind the Modoi

In the fiy¢st part of Reference 2.23, Katzoff remarks that considerable uacertainty
exists witk regaid to conditions at the exit and the mathematical equivalent of these
conditions. Accordingly, certain compromises are justified when idealized domnstream
conditions are uscd in a determination of boundary interference. 1In the example
l =158, x5 = .58 quoted above, it is found from integration cf the vertical
component of velocity at sither free zurface, that the downward displacement of the
jet at the collector is 1.20K/U = 0.60ZC, . The physical implications of this have
teen ignored; we ms suppose, however, that the errors in the interference as given in
Equations (2.74) and (2.75) would oecome serious, were the downward displacment of the
jet to exceed 6.18 . Thus tests on an aerofoil of chord c = 8.2%h would nead to
be restricted to incidances below 8°.

Katzoif also points out tkat the velocities at the two free boundaries need not be
equal. If the space below the lower boundary is sealed off, the pressure at this free
surfece will adjust itselr\so that the jet attsches smoothly at the lower lip of the
collector. By mosifying the toundary conditions so that there are horizontal
perturbation velocitics + u’ on the upper free boundary and - u’ on the lower one,
incresents to the interference velocities are obtained in Reference 2.23. The downwsrd
coxponents of induced velccity along the central axis and the free boundaries are given
27 simple fupctions of ellintic iptegrals. In the numerical example with I = 1.56h
and x, = 0.58h ., the incrementsl upward displacement of the jet is 3.895%'h/U ; the
original downward displacement 1.208K/U is exactly cancelled if u’ = 0.31K/{%n) .
Now if the interference near the model is expressed in the form of Eguation (2.71),
the increment due te the unequal velocities at the free boundaries is

wy 1.44%" + 1.98u’(x - x,)/h

{0.45 + 0.81(x - x)/fa}k/h . (2.75)

In cther words, tke incremeats to G,=0.96 and G, =0.33 are - 0.9C and - 0.39
respectively. This deponstrates thearetically that i.ft interference may b2 nearly
eliminated if spillage at the collector is preveated by enclosing the space into which
the spillage would normally occur.

On sccount of the large and unreliabie interference corrections the use of a
compietely cpen tuncel for sccurate testing of two-dimensicnal models is nct recomzended.
The likely inaccuracies in the corrections predicted by Figures 2.10 zud 2.11 set too
low a limit on the chord of the model. 7f, however, two-dimensional flow is preserved
by means of solid side walls or large end plates, then the chief uncertainty is the
condition at the collector downstreaz of the jet. The liaearized theoretical results
in Egquations (2.74) and (2.75) with Figure 2.12 ignore aay effect of the jet ueflection
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t#o-dimensional closed-open-closed tunnel with straight unflared collector and with
self-adjusting unequal pressures at the free surfaces to prevent spillage.
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at the collector, though Reference 2.23 permits the evaluation of the vertical .
displacement of the jet. A conditicn that this should not exceed O0.1h , say, might Ea
restrict the tests to low incidences. Pinally, there is the theoretical merit of a §
1

2.6 EXPERIMENTAL CCNSIDERATIONS

2.6.1 Viscous Effects

Unless there are extensive regions of separated flow, the theoretical interference
corrections to lift and pitching moment can easily he mcdified to take some account of
viscous effects; the correction to incidence would remain unchanged. From the semi-
empirical reasoning in Section 4.2 c¢f Reference 2.24 (Bryant and Garner, 1951), the
incremental 1ift and pitching moment due to streamline curvature sre influenced by
boundary layers in roughly the same ratio as the lift slope. Viscous effecis on twe-
dizensional wall interference can therefore be incorporated by applying to ACL/CL
an¢ AC_/C, the epproximate correction factor

1
©, = {corrected experimental 9C,/da} , (2.77)

vhere (a)), = 20(8"'+ C;) with C, = 0 unless aerofoil thickness has been taken
into account (Section 2.3). _The author (Ref. 2.25; 1957) hss shown that this factor
will become important at low Reynolds numbers, especially if the trailing-edge angie
is large.

In the case of hinge moments, however, viscous effects will alssys be important and
cause considerable uncertainty in the residual correcticns ACH/CL . as is discussed
in detail in Reference 2.26 (1950). There is limited evidence that the hinge moment
due to induced curvature of flow is influenced by boundary layers iz the sane ratio as
the derivative b1 . It is advisable therefore to apply to ACH/CL the correction
factor

1 - E o d
My = (b_\— {corrected esperizental aCc, /e (2.78)
it

where, with cos & =2E -1,
48E%(b)y = - 2(m - 6))(1 - 2c0s6,) + 4siad, - sin26, .

This factor may well reduce ACH/CL to less than ope half of its value in PFlgure 2.6.

As discussed in Section 2.1, Mendelsohn and Polhamus?-! have shown experizentally
that side-wall boundary layers can be igndred in problems ¢f two-dimensional inter-
ference correction. PFurther evidence to this effect is given by Vincenti and Graham
in Pigures 6 and 7 6f Reference 2.7. Howsver, Barbieux (Ref.2.27. 1955) has suggested
that a reduced height of tunnel should be teken to allow for the displacement thickness
of boundary isyers on the ronf and flocr; such a correction would only become important
if the ratio c¢/h were unusually large.
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2.6.2 Closed Tunnels

Sarbieux?'?’ has provided important experimental data on wall correctioms ia
incompressible flow. An eerofoil (p. 137 of Reference 2.27) was pressure plotted in a
t#o-dimensional closed tunnel whose hiight was varied systematically in the range
¢ $h<3c. He applied an original theory of interference correction, ;which is
described in Chapter I of the seconud paii ¢f Reference 2.27. This differs from
Goldstein’s theory ia that the model is represented more simply by the combination of
a streanwise doublet at its ceatroid, a finite vertecx at its aercdynamic centre and a
transverse doublet corresponding to the pitching moment at zero lift, each of which is
assuned to lie midwey between the wells of the tunnel. The resulting formulae, given
as power series up to (c/h)® , are summarized in Tables IX to XII of Reference 2.27.
The 1ift interference is expressed as an incremental correction to incidence which is
chosen suck that there is a residusl correction to pitching moment but not to 1lift.

By following the sequence of Pigures 62, 70, 76 and 79 (legend in Pigure 82), it can

be seen that Barbieux’'s results cellapse on to a unique 1ift curve against incidence
within about % 2% ; his fully corrected experimental pitching-moment curve ir Pigure 80
shows some small systematic residual effect of c¢/h . The results are remarkably good
in view of the extensive range of c¢/h .

Nevertheless, the formulation of Grldstein’s theory in Section 2.3 is preferable,
since thisz involves a rigorous treatment cf the first-order effects of serofoii profile
and & rigorcus representatior of the interference flow field o the order (c/h)* .

The resulting corrections in Equations (2.48) will now be ceomsidered in the light of
viscous effects (Section 2.6.1) and an experimental investigation of Knechtel

(Ref. 2.28; 1953) of two-dimensional =®all interference in subsonic compressible flow on
an NACA 4412 aerofoil. By varying the effective height of a closed tunnel, four ratios
c/h in the range 0.119 € ¢/h < 0,,95 were obtained without change of Reynolds number.
The two highest values c/h = 0.357 and 0.535 were obtained by using respectively
two and four image aerofoils so es to simulate tunnels of 1/3 and 1/5 the true height.
Tests were al%o carried out on the same model in a large two-dimensional opena tunnel
with c¢/h = 6.026 and negiigible wall interference. The main conrclusion from

Figures 2(a) and 2(b) of Reference 2.28 is that wall corrections ty the method of Allen
and Vincenti?-3 give satisfactory comparisons provided that ¢ < G.15k ; for larger
values 6f c¢/h , wall interference becomes progressively greaier and results corrected
by this method become increasingly guesticnable. The evidence on 1ift coefficient at
o = 4% 1is reproduced in Figures £.13(e) and 2.13(b) for Mach numbers in the range
0.3<4<0.8.

¥e now suppose that accurate blockage correcticrs and approximate 1ift interference
froa Equations (2.16) and (2.17)

17(‘2

——9615;1, (C + 4Cp)

7 e\ ?
= -%(am) o

have been applied in Pigure 2.13(b). It will be seen that the curve for c¢/h = 9.595
lies roughly 7% below the others. Equations (2.48) with the viscous correction factor
4, from Equation (2.77) give more comprehensive corrections than Equation (2.79).

O

(2.19)
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To estimate the effect of sercfoil thickness, we use the velues of C; from i
Eguation (2.45) #ith a generalizing factor 10t/c to obtain the numerical formulae
2 3 5 f h 3
. mc’C t e t 3
Ba = E;L—o.sasv.’s_ - — 41+s7.335—} ’
968n? | c | 921608 c! u
Y . (2 80)
A i fe\2 [ At uh c\uf Bt
C, = pC |=-—f = T +5.23 — ¢+ p— 210 + 685.4 — ¥
LT Ha 48&/311) i ° 92150\ 5n / 1 c
J R
We have seen in Section 2.3 that to orcer ({c/h)? Equations (2.75) and (2.80) for
Ax ere identical, and we shall regard the term in (c/h)‘ in Equation (2.80) as an

increment 1o the correctios Ao given in Equation (2.79). This increment must b2
converted to an equivalent lift coefficient by means of the factor - 2, , since we
wish to compare results et a fixed incidence « = 4° . Thus we epply as a further
correction to CL , 2s given in Figure 2. 15(b), the increment

> o

.8 Z 2 2
' a ¢ G feid i <
Ac = {41 + 67.33 — ¢+ (} - p) —| =} C
) 92160,-3321‘{ c} 0=k 48(,3h) Lt

“ 7
+ il c\\2 5. 253 i, il {, AN 210 + 689. 4 A (2.81)
i _—— . — —_— -« — » .
#ah 48\ 3n/ c J 921603 5h J c

where

a, Ba, ,Btl'l
= = 1+0.7T3 —
B TG { 5

and a, is estimated from experiment.

The four terms of Eqation (2.81) may be described as

(i) the equivalent of the {c/M)® terz in A 1
(ii) the viscous correction to AC; in Equation (2.73)
(iii) the thickness correction of order (c/h)?

(iv) the (c/m)}® tem in AC, in Equation {2.80)

For the thickness to chord ratio t/c = 0.12 the correctior factor 1 + (8C)'/C, {
has been evaluated with c¢/h = 0.1i9, 0.155, 0.357, C.565 and M = 0.30, 0.45, 0.63,
0.76, 0.80 ; typical results are given in the following table, where the separate

contributions (i) to (iv) often tend to caacel. i
|
i
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- Contributiors to AC )
: L " @a) "/, ;o O
- Cp
(1) (ii) (ii1) (iv)
0. 156 0. 60 0.821 0. 000 0.001 - 0.003 0.000 0.998
0.357 0.30 0.849 0.002 0.603 - 0.015 0. 005 0.997
i 0.357 0.60 0.827 0. 004 0.007 - 0.017 0.010 ° 1,004
1 ' 0. 357 0. 80 0.4:3 0.005 0.043 - 0.011 0.914 1.051
- 0.585 0.30 9.840 6.014 0.013 - 0.040 0.039 1.026
1 0.595 0.69 0.827 0.027 0.020 - 0.047 0.074 1.074
- 0.595 0.80 0. 413 0. 041 0.119 - 0.032 0.110 1.238
- The results so corrected are plotted in Figure 2.13(c), where, for the four values

' of c/h and Mach nuabers in the range 0.3 <M < 0.7 , the discrepancies appear to
be raudom and never exceed % 2% . Althcugh the results for the interference-free
case c/h = 0.026 are up to 4% higher, this discrepancy can be attributed to effects
of extraneous flow in the large open-jet tumnel with side-walls installed?-28,

It may be inferred from Figure 2.13 that effects of shock-induced separation on the
NACA 4412 aerofoil at o« = 4° gare felt at Mach numbers above 0.6. The theory of wall
interference is based on the velocity-potential field at large distances froa the
serofoil where the linearized equations continue to give s good approximation to the
. flow, and so to Ox . Although the residual corrections AC, and AC, are less
' certain, the evaluation of wall interference remains justified until M approaches
0.8.

-

There can be general confidence in methods of applying two-dimensional interference
corrections for tests in srbsonic clcsed rectengular tunnels. The metbod of
Reference 2.3 will norsally be adequate for correcting lift and pitchiasg zoment;
Equations (2.79) to (2.81) indicate some of the insccuracies in such an spproximation.
When these are tco large, Goldstéin’s theary?-®, ss formulated in Section 2.3, is
recommended.
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2.6.3 Open-Jet Tunnels

An experizental investigation by Adamson (Ref.2.29; 1941) includes tests of two
rectanguler wings of different chord spanning an open-jet circalar tunnel. The
3 weasuresents of 1ift and drag have been corrected according to Squire’s theory2-!® as
given here in Figure 2.11(b). These corrections sre too small in magnitude on sccount
of the approximate lifting-line theory. It is fcund that the corrected two-dimensional

3 “"'3.’ lift slopes 3, from Figure 1 of Reference 2.29 sre rather lower than would be
?’gt;’ predicted by Equation {22} of Reference 2.25. The following tsble shows that the
'é, inaccuracy in 1ifting-line theory is of the correct order of asgnitude and sign to
2 account for the discrepascies in &, .
= A
‘i'
3 o
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Value of Estimated
2R e a inaccuracy
Aerafoil — Re’"‘;‘ds !

: ¢ rusber Ref. | Ref. | s, (Ref. | L.-L.
2.25 | 2.29 2.29) theory
RAP 34 7.5 | 0.50 x 10° | 5.05 | 4.95 -2z + 4%
RAF 48 50 | 0.75 x 10° | 5.29 | 4.88 - 8% + 19

Nevertheless it would be unwise to expect a result to better accuracy than 5% f.cm such
experimeats, whatever care were taken.
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TABLE 2.1

Summary of Principal References, Figures and Formulae l
!
{

Velocity I, LorM Correction Correction i
ui or wi in tun.nel Aa or ACL Acﬂ or ACH i
Subject Ref. Fig. Egn. Fig. Eqn. Fig. Egn. Fig. Eqn. ;
|
Thin 2.3 2.9 2.3 2,18 2.16 2.17
aerofoil 2.4 2.10 2.19 2.17 2.26
in closed 2.5 2.20 2.24
tunnel 2.6 2.21 2.25
2.27
Thick 2.9 2.31 2.33
aerofoil 2.12 2.32 2.4 2.48 ,
in closed 2.2 2.4 2.48 2.49 ;
tunnel 2.28 2.49
2.13 2.81
Aernfoil 2.14 2.5 2.7 2.54 2.6 2.52
with flap 2.15 2.55 2.7 2.55 ) :
in closed 2.16 2.8 2.9
tunnel 2.24
Open-jet 2.17 2.67 2.10 2.60 2.74 2.75
tunnel 2.21 2.68 2.75
. 2.22 2.89
i 2.23 2.12 2.7
f Noa- 2.2 2.11 2.61 2.11
{ rectangular | 2.7 2.62
j tunnel 2.19
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Pig.2.1 Thin tw-dimensional astofoil and its image system for 1ift interference




Reproduced from Fig.6 of Ref. 2.1
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Fig.2.2 Spanwise distribution of lift and pitching ooment on an serofoil
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Fig.2.4 Wall corrections for an RAE 102 sercfoil
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(a) Lift interference due to incidence . Eqn.(zvsz)
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(b) Lift interference due to flap setting. Eqn{2:55)
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CHAPTER IIIX

LIFT INTERFERENCE ON THREE-DIMENSIONAL WINGS

by

H.C. Garner

Aerodynamics Division, National Physical Laboratory,
Teddington, Middlesex, England
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pressure coefficient
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- 4 L rolling moment
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radial distance

radius of circular tunnel
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sepi-span of equivalent horse-shoe vortex in Equations (3.41)
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thickness of wing
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x~component of velocity perturbaticn
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z-ccaponent of velocity

interference upwash velocity

weight factor in Equatioa (3.55)
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integral defined in Equation (3.60)

distance between three-quarter-chord points of wing and tail surfaces
x in transformed plane

spanwise distance from centre cf tunnel

inboard end of aileron

outboard end of aileron

transforsed co-ordinate = Sy

upward distance froe centre of tunnel
transformed co-ordinate = Sz
incidence of wing (in radians unless otherwise stated)

incidence of tailplane

= (1-uni
non-dimensional circulation = [7/2sU
: circulation
; 3 1ift interference parameter in Equation (3.150)
3 8! iccremental upwash interference ir Equation {3.176)
8, upwash interference at s lifting line
=§ s, upwash interference associated with streamline curvature
f ; s, scditional upwash interference downstresa of wing ‘
% SD drag interfereace parassizr in Bguaticn (3.215)
‘
; 8, upwash interference parsmeter at wing
Sa incidence interference parsmeter in Equation (3.215)
ix, ;é‘! € non-dimensional correction to streas velocity
¥ :i Co interference parameter in Equations (3.15€)
i - L, interference parameter in Equations (3.156)
£~

S 7. elliptical co-ordinates in Equatioa (3.1i3)
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7, = tanh~}(h/b) for elliptical tumnel (b > h)
é angular cylindrical polar co-ordinate i
Ky antisymmetrical upwash interference st a 1ifting line ;.
K, effect of streamline curvature in Equation (3.49) '
X planform parameter defined below Equation (3.60)
A angle of sweepback .
A sweepback of leading edge
73 planform parameter in Equation (3.62)
£ angle defined in Pigure 3.15
£ angular deflection of aileron
ol density of undisturbed stream
o span ratio = 2s/b
o, equivalent span ratio = 2s./b
$ velocity potential
@, velocity potential in Figure 3.14(b) or 3.14(c)
3, incremental velocity potential in Equation (3.119)

functicn defined in Equation (3.104) i
)1 angle defiuved in Figure 3.15 :
¥ stresa function in transverse plane ¢
@ cuoaplex (y.z) plane 1
Superseripts
(1 closed tunnel !
{2) op€n tunnel
Subscrints
.25 quarter-chord
0.5 sid-chord




2. 75 three-quarter-chord

® vwake {1 = @)

A antisysmetrical part

£ eiliptic spanwise loading

| free-strean

4 ground effect

i induced by tunnel walls

1 froe antisymmetrical loeding

L from symmetrical loading

a ncgel

N point conceatration of lift

R rectanguiasr tunnel

s symsetrical part

t tailplane

T with tunnel constraint

U unifors spsnwise loading

L4 vortex-induced

Prefixss

5 contribution due to wall interfererce

A increment due to wall correctica

2&2' denotes that (m,n) takes all possible integral pairs except (0,0).
o

Ttprimed denotes diZferecticticn unless othaywlse sisted.
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LIFT INTERFERENCE ON THREE-DIMENSIONAL WINGS

H.C. Garner

3.1 INTROBUCTICN

In Chapter II various aspects of lift interfersnce on tws-dimensional acdels have
been covered. The wall interference correztions on three-dimensional lifting models
are not only more numerous and greater in magnitude, but they imvol. s considerably
more geometrical parameters to represent the wind tunnei and the model. There is a
corresponding diversity of mathematicel techniques, and often the analysis demands
sipplifying assumpticns that are unnecessary in two-dimensicnal flow. Gleuert’s
classic monograph (Ref.3.1; 1933) illustrates both these points and provides a
comparative background for most subsequent develcpments.

The governing linearized equation for the -velocity potentizl in three-dimensional
steady ideal compressible flow is

% % 3%
xE wE agt

(1 -4% =0 (3.1)

ir rectangular co-ordinates; alternatively, in cylindrical co-crdinates,

3% 3 1% 1 9%
— 4 +33az = 0. (3.2)

%2 &? rer r¢yd

It is assumed that squares ard products of the cosponent perturbations of a uniform

velocity U = Ms are negligible throughout the field of flow. The differential

Equatioca (3.1) or €3.2) is subject to outer conditicns

e3/3n = ¢  at a closed boundm}
. (3.3}
98/9x = U at an open boundary

the former is exact, but the latter follows from the linearized approximation ic
conscant pressure at an undistorted free boundary (Ref.3.i. p.3}. #ore coaplicated
boundsry conditions are used iz cases of ventilstzd tunmnels (Chapter VI). Thuere are
in sdditicn the upsiream snd domastresa conditions thst the flow is endigxturbed &t

x = -0 und independent of x fer large pesitive values of X .

The first-order effects of cowpressibility can be obtained froe solutioes of the
iizesrized differential Sguatios (3 @) with the aid of tiae trapsformatica

Yot
!

X=x., Y=pf., Z=45, 6.9 —-
.. A%
L
= - -
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i
where 8= (1-N%)7 . In the new co-ordinate system the potentiul satisfies Laplace's
equation for incompressible fiow

% %
T mE

a. (3.5)

It is convenient to regard the perturbation potential (¥-Ux) as unchanged in the
transformation. Then, by the argument in Section 2.1, the linesrized solution in
coapressible flow is readily expressed in terms of an equivalent incompressible €low
with the geometric aud aercdynamic paraseters listed in Table 3.I. That is to say,
the equivalent incompressible flow gives an upwash velocity S '= or an upwash
angle Sw/U corresponding to a model of chord c , aspect ratio BA amd thickness
2t in a tunnel of breadth Bb end hzight SBa at an incidence SBx to a strees of
density p sand velocity B °U . There are alterzative methods of allowing for
cozpressibility in Reference 3.2, where the free-strean velocity rather than the
perturbetion velocity potential is kept invariant. As Geldstein and Young point out,
the lipear perturbetion theory of compressible flow is not intended to be applied
when shock waves are present, and it must clearly fail in the neighbourhood of a
stagnsation point. Nevertheless, the theory of wall interference only involves the
potential field at appreciable distances from the model, and the linearized equations
can still be used to satisfy Bquations (2.3) at fairly high subsonic Mach nuabers.
Tae effect of coxpressibility is obtained by substituting the generalized parameters
of Tabie 3.1 into any formuiae or numericasl data for wall interference in low-speed
tunnels.

The classical approach due tc Prandtl is to regaré the model &s a lifting line,
when the probles of wall interference reduces to s sclution of the two-dimensional
Laplace equation in the trensverse (y,=) plane containing the model (Ref.3.1, pp.3tc5).
The perturbation potential in this plane is exactly haif that in ihe distant wake.
For a glvea spanwise 1ift distribution and tunnel geometry, the interference upwash
valocity ¥, (¥} along the wing span can usually be obtained anslytically; hence the
simple corrections

Ba = &sC/C
(3.6)
ey = 808812,/0]

to tne sesasured inciaence and drag coefficient of the model are derived (Ref.3.1,
pp.8 te 13). Tke interferepce parameter 50 is a non-dimensionelized mean value of
%, weighted proportionally to the spensise lift distribution and given by

s di
5, = 1 AT N (3.9
vl \i s /o

Since the drag coefficient is determined by the conditions in the distant wake, the
expressics for ACD in Equation (3.6) is usually regarded as exsct according to
lineerized theory. The corresponding expression for Au 1s often tod spproximate
end vnderestimates the magnitude cf the correction.

e m.
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Unless the wing chord is saall, it is necessary to consider the streamwise 5
variation of w; . which is interpreted as a curvature of the free str. - due to wail ; ;
constraint. For wings of fairly ssall span the results of Section 3.2 « - often be g
used and the interference correcticm to incidence is approximstely

. = |
= = —L 3 ¢
Lo (30 + 27h 81 c - (3.8) ¢

where ¢ is the aercdynamic mean chord and 81 is independent of Mach number. 7Thus,
as Gothert remarked (Rei.3.3:; 1948), the streamline curvature correction is of growing
izportance in compressible flox. A more general treatzent £s necessary for sweptback
wings of moderate spen, which must be considered as 1ifting surfuces. MNany different
vortex represerntatiocns of the model have been suggested (Section 3.3.1). For mocst
purposes it is sufficient to regard vi(x,y) in the plane of the model 2s a linear
functicn of x (Section 3.3.2). Indeed, with the exception of interference effects V
on long siender wings (Section 3.6.1) and tail planes (Section 3.6.2), a sore detailed !
representation of the model than appears practicable would be required to justify a

precise evaluation of the streaarise variation of the interference upwash.

A e ea I caav B Y

There is a miscellasy of literature concerning wall interference on lifting wings,
ranging from the excessively numerical to the excessively mathematical., Some papers
deal exciusively with one particular tunnel section and rely on extensive tables cf
interference upwesh and approxisate computations; the numerical results are only
useful for the single tunnel shape, and it is often difficult to assess the ultimate
accuracy. At the other extreme, it is no® always cxpedient to carry the asthesatical
analysis so far that the complexity of the resulting formulae prohibits their use.

An attempt is made in Section 3.3.2 to steer a middle course in presentinz the bssic

interference paramaters.

Broadly the cases to be ceonsidered fall intc four categories

{a) coeplete spanwise symmetry, e.g.., a wing at incidence,

(b) symmetrical planfora bu% asymmetrical spanwsise loading, e.g., a wing with
deflected ailerons, ’

(c) ssymzetrical planform reistive to the tunnel, e.g., a yawed wing,

(d) special coafigurations to be coasidered in Secticn 3.6.

Even with complete spanwise symmetry there is no unigue procedurz for converting the
t'mnel-induced upwash distributicn into corrections to the measured quantities. The
incremental correction to incidence, such ss Equation (3.8), is a somewhat erbiirsry
average value of 11/0 radians, =znd the subtraction of the residusl upwash field is
2ade equivalent to incremental correcticas to the serodynsmic forces. The complication
of asymmetry introduces residusl correcticns to the lateral =mosenis {Secticn 3.3.53.
Tte nathematical thesries leading to the basic interference parameters for the various
types of tunnel section are discussed in Sections 3.4.1 to 3.4.4, end soge available
scurces of numerical data are listed in Table 3.IV. The final incresental corrections
are censidered nuxerically in Section 3.5, and in Section 3.5.3 an sttexpt is nads

to essess the accurscy of alternative methods where comparative calculations ezist.
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Bxperisentsl consideraticns of high 1ift and some practical confirmation of wall-
interference theory are given in Section 3.7. The former is largely espiricel and
beyond the scop2 of linearized theoretical methsds; the latter usually involves tests
in diflerent tunnels, on different wodeis or at different or rather small Reynolds
nuabers and iacks firm conclusions. Unfortunately it is no easy matter to amalgamate
the tunnel corrections for wall interference and Reynolds nugsber. Sometimes large
aodels or half models are tested to achieve the highest possible Reynolds nuaber,

: since the uncertainties of scale effect exceed those of wall interference. In Reference
3.4, Bryant and the present author have suggested a scheme wherehy the estimation of
wall interference includes a correlation between cxperiment and an approximate wiag-
ioading theory incorporating sectional wing chsracteristics dependent on Reynolds
. ! nuaber. This ideal philosophy envisages corrections to full-scale conditions after
3 ; % vall interference has been tsken into account.

1 ! %

There are many broblems of 1ift interference, where s mathematical solution must
invcive simplifying assumptions regarding tunmnel cross-section, wing thicknese or
location of model. 1In sucn cases the use of an =lecirical analosy is worth
consideration. In particviar, Reference 3.5 discusses the basic coacepts of such
i analogies and their technical difficuities in reiation to open wind tunnels of finite
. jet lengths.

Attention is drawn to the final Section 3.8 which serves as an index to the more
igportant equaticns, tables and figures. It is intended as & preljminary geide
firstly to the more approximate forsulae and numerical data, and seconcly to the nore
coaplicated and accurate formulas for the interfereance upwash. A third table lists
the various expressicns and results for the iaterference corrections themselves.

s W S SRR Sy = M)

3.2 SMALL WINGS IN CLOSED AND OPEN TUNNELS

Useful estizmates of lift ir“erference can often b2 made when the mcdel is assumsed
to be small. The interference upwash at the wing and the stresaline curvature are
given respectively by

nron

Ow
W o |
usc, -
3 . 3.2)
- a
t . 81 = -———m --—--'i
UsC, ©ox

Both parameters are readily evaluated for closed or opea rectangular tunnels

(Section 3.2.2). Por more general cross-ssctions & method of conformal transforestion
will usually determige &, . When the analysis for &, becomes intractsble, a

: approxizate formula may be used to relste 81/8o to its known value for a rvectangular
Qg%» tunnel (Section 3.2.3). Several types of semi-closed tunnel with mixed boundary
S conditions are slsc discussed.

The applications iu Section 3.2.4 sre restricted to wings of fairly small =pan; if
sccuracy within #10% is necessary, then the wing span should not excaed Lalf the
tucnel breadth or half the tunnel height. For miny purposes the formvlae and graphs
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will give tde order of magnitude of the interference corrections with & minimum of
effort.

R

3.2,1 Nethod of Images

M

N

The smell wing is represented as s semi-infinite vortex pair trailing from the
origin of co-ordinates. The doublet strength is

lis (2Ks) = 3USC, . (3.19)
S0

and the corresponding velccity potential is

e

= py+—aZ iy X 1. 3.11)
a 8m(y? + z2) (x2 + B52? + B2%)?

where x 1is in the horizontal direction of the undisturbved stream, y spanwise and 2

i
upwards. The boundary conditicns (3.3) to be satisfied by the potential $=& + & E
are supposedly independent 2f x . Like <§. . the interference potential is then of i
the fore §
Qi = f(’oz) + P(xvy'z) » ?
where FP{x.y,2) is an odd function of x . PFrom Prandtl’s argument (Ref.3.1, pp.3
to 5), the solution for Qi in the plane x =0 ix given Ly the two-dimensional i
Laplace equation x
o%, 3%,
+ = G
2  ? ’ .
by Equations (3.3) with the upstream condition and Equation (3.11) the bcundary
conditions on 'I’i are
o _ 2 %z t & closed boundary
_— e at a close un Z
n % {8m(y2 + 23 )
. (3.12)
UsC,z 4
@1 T et at an open bourdary “
87n(y® + 29 2
where o/ cn denotes differentiation along the outward normal to solid portione of i
the ttnnel boundary. e
- :‘%
2%
For special shspes and types of tunnel a convenient systen of images can be

constructed to give the required potential (Pi in the plane x =€, or s good
approxisation to it. Typical examples sre illustrated in Figure 3.1i.

i

In the case of .:%
a closed circular tunnel the image system is particularly simple, but it is necessary 2

to consider the wing as a uniformly loaded lifting line of finite span 28 and then
take the limit s s < 0 with the sid of Equation (3.10). The imsges for a closed
rectangular tunnel are doubly infinite in ausber and are evenly distributed over the
(¥,2) plene; ss ¥ill be seen in Secticn 3.2.2, image systezs of this type are not
glways valid. When image systeas fail or do not exist, special analytical trestment

i‘.&;’év
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is sought. 7The third illustration of Pigure 3.1 represents an 1ncte-ex;ta1 irage systea
to the previous one, to give an approximate soluticn for an octagonsl tunnel obtained
by the addition of isosceles corner fillets (Section 3.2.3).

In general, the method of images can only be applied to the interference parameter
80 in Equstion (3.9). For the isportant class of rectangular tunnels, however, the
iwages can be regarded as semi-infinite vortex pairs trailing from the plane x =10,
which hy symmetry provide & complete three-dimensional systes from which ‘I’i , and
hence 81 . can be evaluated. This is not frue of the circular snd octagonal tunnels.

3.2.2 Rectangular Tunnels

As early as 1931, Theodorsen® ® studied different types of rectangular tunnel from
the standpoint of minimizing 1ift interferenmce. Four particular types of breadth b
and hefght h ,

(1) completely closed tunnel
(2) completely open tunnel

(3) open sides, closed floor and roof f

(4) closed sides, open floor and rcof )

will be considered. In each csase there is a complete image system comprising semi-
infinite doublets of strength '}USCL and the appropriate sign; for a central model
they are situated at (x.y.z) = (0,mb,nh) where = and n are integers. Thus, by
Equation (3.11). the interference potential for a saall lifting wing is

USC;,(z - nh) T

- 8n{(y ab)? + (z-ohy %} l {x? + fty~am)? + fiz-m}F}| "

o

where 3.5, denotes that (m,n) takes all possible integral pairs except (0,0).
-0

Pollowing Glauert (Ref.3.1, Figs.7 and 8, pp.21 to 24), we take

-

i= 3% = 0
= (2} = ~1)8
§= =07 A (3.14)
i = 3 = (e
J = j(') =1 J

respectively for the four types of tunnel, the rirst of whi: i3 illustrated in
Figure 3.1(b). From the definitions in Equations /3.9) the . .t-interference
paraxeters st the origin are obtained as

s, - w2y B E E ¢ ) R abT oo (3. 15)
° "~ ysc, 2z (a?b? + nn?)? @
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and

Bon? 3%y _ zz - 2n%?
%1 = USC, dz3x @ m’b2 +a%)/2” @19

Theodorsen® ¢ derived expressicns for tiae interference-upwash parameter 5, for
the four types of rectangular tunnei. It was later remarked by Rosenhead (Ref.3.7:
1933) that the doubly infinite series of Equation (3.15) is not absolutely convergeat.
He therefore re-exsmined the problee rigorously and confirmed Theodorsen’s result
for types (1), (2) and (3), but not for type (4) having clossd sides and open floor
and roof. Van Schliestett (Ref.3.8; 1934) attempted to verify Theodorsen’s values of
8n by experimeatal means and revealed serious discrepancies for a square tunmel of
type (4); he likewise re-exsmined Theodorsen’s work and gave a third expressica for
88') that differs from those of References 3.6 and 3.7, but is consistent with his
experiment. A full theoretical discussion of this problem is given in Reference 3.9.
An smalytical treatsent in Fourier series and aa independent calculstion hy -elaxation
show that the correct result for Sg') is obtained when the summatior (3.15) is
carried out colimn by column (first with respect to n). However, Equations (3.13)
and (3.15) are strictly divergent in this case. The image system fails, since the
velocity gradient at the tunnel bounmdaries is satisfied, but not the upstream
condition for undisturbed flow at x = -0 . When this last condition is correctly
applied, Rosenhead’s rigorous analysis is reconciled with the others. Some expressions
for 5, are given below.

B

For s ccapletely closed rectangular tunnel ]
wh mx = a
80 = 88‘) S —— p— Y R
24b b 3 e2mk/d 4 4
For a comdletely open rectangular tunnel
b  Th E
5 - 8(3) I e —
G 0 2¢h  h < emb/h 1
wh 7h an -1
- -a -.2—b§ e(a-x)"h/b — 1 L 2 (3.17)
For open sides, closed floor snd roof
mh 1rh o -1
§, = 83 = .
[} [ “b 2b = e(a‘l)’h/b +1
3 Por closed sides, open floor and roof
]
5 = s - 1, ™ ™ B___.
° ° T b b &g e™/b_y
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In Reference 3.9, Rosenhesd’s discrepancy in 5{*) was resolved by the super-
position of a uniform upwazh velocity to restore undisturbed flow at x = ~® without
violating the conditions (3.3). The stremmline-curvature parszeter 81 in Zguation
(3.16) is unaffectad thereby; soreover. this dcubly infinite series is seem to be
abaolutely convergent. To evaluate the series, we write

7
n? - 2(oh/b) 2 1
8, .2.,: (= ('-3/ + ZZ ZU z g (nh/b)”"’/’JJ

aecl | a=-

and consider the summations in curly brackets. It can be shown that

2
E: W tends asymptoticaily to —F wshn A is lazge.
]

We therefore put

2 2}\2
2
ax-o
= - 167° Zp’l&o(znph) iy Z pxltznph) (3.18)
p=1

which behaves like -87A~Te 2™ for large A . Next s consider

Z D" = kol
2 + )l) S,

- &,(\) +38,(1N), (3.19)

8,0

which is idencified with the derivative coefficient f£’(\)}) of the functicn in
Equation (AR) of the Appendix to Reference 3.19. en the appropriate values of §
are substiiuted fros Equations (3.14), 81 is obtained as follows.

For comdletely closed rectangular tuonels

For cospietely open rectangular tuanels

5, = 8 4m;2 ZH). n: (nh>

(3.20)

P VPSS pr——

® 3he fwmactions K, and X, are defined sad tadulated in “A Treatise on the Theory of Bessel
Fuactioss™ bty G.N.Batsca (Cembridge Usiversisy Press). -
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For open sides, closed floor and roof

1
_ _ - <
o = S S e (3)].

(3.20)

n'gl

For closed sides, open floecr and roof

@
5 = §(® 'n' I‘Z /X!h .
! ! T 12 47:::’!. n,, ‘\b

SRR R i

Here

2 (-1)" -

E — = 1.2020, exd - = -0.9015_; :

L | | o
K= a2=1

i
;
H
i
H
:

5,(ah/b) from Equation {2.18) is evaluated in Tudle 3.II and S,(ch/b) , given by
Eqmion (3.19), is identically f£’{od/bh) “rom Zable AI of Reference 3.10.

Glauert (Ref.3.1, pp.23 and 24) records rumercus relatioaships between Sg” .
Sg"') ) Sg:’) and Sg‘) regarded as functicns of h/b . the most important of which is

80 /by + 8{Dm/my = 0; (3.21)

owing to the correction to Rosenhead’s work, Equation (9.068) of Refereace 3.1
becomes in the present aotation
3(* /by + 8{/m) = -0.25 (3.22)

with the corollary that 5;" = -0.125 for 2 squsare tunnel. The following
relationships between §(, 8(?), 8{ and 5{* are deduced from superpesition
of the imsge systeas:

X
80 w/my + &My = 5N {n/b)
$Vas/by + 3N vy = 15{" (/) :
. (3.23) .

5Dy + 3wy = 15(2(an/my G
kS

2w/ + 5Vavt) = § ) | -

o

<
Py
R v i

Special interest attsches to rectsngclar tunmels of types (2) and (4) in Chspter VI.
The completely open tunnel is a limiting case of a tunnel with longitudinal slots

on ail feur walls {Secticn 6.5.4): similariy, type (4) is a limiting case of
rectangular funnels with slotted floor and roof (Sectlion 6.5.3). Figurs 3.2 gives
all the 1lift interference parsceters of Bquations (3.17) and (3.20) for the rsage of
tunnel shape 0.5 S b/h < 2.0 .

4
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If, however, a lifting model is displaced vertically from the centre of the tunmnel,
thers arise both stresmwise and upward interference velocities. For a completely
closed tunnel with the model (and origin of co-ordinates) at a distance d from the
floor, the interference potentiel corresponding to Bquation (3.13) is

e Usc, (z- 1) r x
i sz sri(y-mb)2 + (z-D) %} ll Y3+ By -a? + Fa-DA

where j = +1 with [ = 2nh and all integrai pairs (a.n) except (0,9)
3= -1 with { = 2(nh~d) and all integral pairs (m,n) i

Then the upwash and stream-velocity interference at the model are respectively

c ® 222 _ 72 ]
5, = == = RSS2
7 (] 4
USC, oz 81 Ll @*? + %)
- (3.24)
ce € 3, _ bhm -L
s,  USC, & snﬂz_zm @®? + (12

where in the latter equation the terms invoiving j = +1 cancel.

Z, m?-A?
Z @ +AH2

Bt~

Since

% cosech?(7A),

h < , 2n{ah+ad) » 27(h ~d)
+ — cosech " + cosech -—-—-—b-——- -2

]

22nnh &
cosech® —— ». (3.25)

b J

Similarly to Equation (3.18), we put

© b
2 A
53(.\) = --): + Z '('.—;:'}'\2—)37'2' = 8‘”2 p!l(Zﬂpk). (3.26)
n=-0 p=t
It then foilows fros the second of Equatious (3.24) that
-] o
h b 2(nh -4d)
lf: Ry Znh—d+z 83((1: >
L I § T peo N\
3.2D)

1 1 B e 2(ch - d)
= -=co -+-—§s3 .
8 B 8mb
n=-o
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Equaticns (3.25) and (3.27) with (3.25) have been evaluated for b/h = 0.5, 1.0 and ‘

2.0, and both interfereance parameters are plotted sgainst &/h in Figure 3.3. For <4
example, if b/h = 2.3 and the model is displaced from the central position 3
d=0.5h to d=0.625h , then the upwash interference is increased hy 24%. The ’f
corresponding contribution to the stream velocity at the model is given by <
A e = 0.095 2k ’
U Y st :
whick could exceed the solid-blockage factor €, (Section 5.2.3). 3
i

3.2.3 Non-Rectangular Tunnels

Nany closed working sections are of basic rectangular shape, but have triangular
corner fillets. Batchelor (Ref.3.11; 1344) devised an image systes to obtain &,
when the fillets are isosceles. As illustrated in Pigure 3.1(c), the fillets and
their images form a doubly infinite array of squares. To the image system for a
closed rectangular tunnel in Pigure 3.1(b) can be added an appropriate distribution
of vorticity round the perimeter of each square, so &8 to cancel the normal velocity
across the fillets and preserve the other boundaries as stresaglines. Batchelor's
zethod provides a good approximation to this, and his formulae for a particular
tunnel have been generalized in Reference 3.12. By a conforma! transformaticn,

Gent (Ref.3.13; 1944) obtains So exactly for a closed tunnel of regular octagonal
section. These theories are outlined in more detail in Sectiocn 3.4.2, where wings
of finite span are considered. The interference upwash is ircreased by the presence
of the fillets, but the increaznt is only about half that which would arise if w;
were inversely proportional to the cross-secticnal area C The parsmeter 80

of Equation (3.9) i3 therefore reduced by the fillets. An approxisatz formuls,
suggested in Appendix IX of Reference 3.4, gives

5, = 8¢V e (3.28)

0 2bh

where Sg” is the value for a closed rectanguls: tunnel in the first of
Equations (3.17). The recults of References 3.11 tc 3.13 irdicate the likely

accuracy of this formula as follows.

c Theory
Tunnel = o - 8{1 | Equation (3.28)
¢ 4]
9 x T (delbourne) | G.9028 3.11 0.1138 | 0.1204 0.1145
9 x 7 (RPL) 0.9048 3.12 0.1140 | 0.1204 Q. 1147
13 x 9 (MPL) 0.8932 3.12 0.1125 § 0.119% 0.1127

0.8284 3.13 0.1262 | 0.1368 0.1251
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~ - . —— g IR "
e B

- e e e t— . &
e T RS AU e H




(XA

PORAGDRL AL it 2y

JANBEAAIL AL I

et heareer

Seemere

3%
25

42,5
24
-2

Y

4, ony
%5’?‘.3‘3’3, i

*
W

OLs 3
).&m {7
R

S

el
. @,ﬁ r\s
Y “‘?'hf v,*: W,

b

. v —

I

o

=
= -
S
Pacy

po Ry

28

The uncertainty in the decrement (Sg’) - 80) is of the c'der +10%. but &, itself is
within #1%. When the corner fillets are scalene, the squares of Figure 3.1(c) become
rheebuses and Batchelor’s approach is fcund to be less zatisfactcery. In such cases
Bquation (3.28) may continue to be a useful guide.

Conformal transformatiovs frow the (y,2) plane can simplify the boundary conditions
{3.12} end in effect reduce the problem cf evaluating 8c_ to one having a simple
image system. Examples are the Schwarz-Christoffel theorem whereby Gent®: 2 transforms
the interior of the regular octagen into a half plane, the bipolar co-ordinates waereby
Kondo3: !* lnvestigetes turnels with boundaries of circular arcs, and the simple

transformation whereby Glauert (Ref.3.1, p.32) relates elliptical and rectangualar
boundaries.

In this last instance § o for closed or open elliptical tunnels is reduced to
double sumpations similar to Equation (3.15). In the present notation Glauert gives
for a small wing in a ciosed elliptical tunnel

-]
2p -1
Lo -
2 z sinh 9cosh62 TP D 41
p=1

©)
[

> (3.29)
7t 1 72— 2p - 1
LAt

- 1 . —
= 5 sinh O cosh € o0t T 667 < o(20- 1228 | §

7

where b/h = coth & 2 1 ; numerical values of & due to Sanuki are published in the
Appendix to Reference 3.34. When the wing span lies aloug the minor axis of the ellipse,
there are corresponding expressions from Cquations (10.05) of Reference 3.1;

-

s = & 8 e = -1

¢ = 1 8inh U cosh Zezﬂzn-i) ~
p=1

- > . (3.30)
72 1 2 o 2p
= l int — - —— N
asmuaﬁ’coshSLae2 6+62f:';e”"2/6 1
) =

where b/h = tanh @€ < 1 . The second of Equations (3.29) or 73.30) is rapidly
cogvergent, uniess the ellipse approaches very closely fo a circle. In the limit

as 8 -~ , the first of Equations (3.29) or (3.30) teads to the result 80 = 0,125
for a closed circular tunnel and is consistent with the image system cf Figure 3.1i(a).
Results for opsn elliptical tunnels follow from Glauert’s interference theorem; es
expressed in Bguation (3.21), Eo kas the same augnitude, but opposite sign, as that
in 8 closed ellipticsl tunnel of height b and breadth h .

To the accuracy envisaged in Secticn 3.2.1 forx fairly sasll models, it is
considered satisfsctory to assume that the ratio of Sow,/9x to wilfc is the same
as for a rectangular tunnel of the same breadth to height ratio, completely ciosed
or completely open as the case may be. Thus we approximate tc 81 by the formuls
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,bh §(1) e 5(2)

S = —— 13 —_—i

%, 3, ¢ 30 or 3, c 53 (3.31)
0

where {1, 3{® 8£‘) . 8{?) are given in Equations (3.17) and (2.20). The

ratios 5&171351) and ng)/sgz) are plotted against b/h in Pigure 3.4. The
valuyes 81 = 0.248 and -0.209 so obtained for closed and open c’rculasr tunnels are
acceptably close to the respective exact values 5‘ = 0.2497 ard -0.31992 cowmputed
from Equations (3.136) and (3.137) of Section 3.4.3 and shown in Figure 3.5. The 1lift
interference parameters 80 and &, for closed and cpen elliptical tupnels can thus
be calculated from Equations ¢3.29) to (3.31) and are ziven in Figure 3.5 for the

range of shape 0.5 € b/h < 2.0 . Equations (3.28) angd (3.31) combine to provide s
rough formula

§

.., bh+C
= Dy (1)
8x = 5! Py & 3% (3.22)

for small wings in closed octagenal tunaels, 3£1) being given by the full curve
against b/h in the lower panel of Figure 3.2.

Generally spesking, the problem of Jift interference ir wind tunnels having partly
closed and partly open boundaries is more complex. Tunnels with slotted walls
(Chapter VI) and open-jet tunnels of finite length are cases in point. The latter
problem is considered in Part III of Reference 3.5 by Eisenstadt, who gives a solution
for a circular tunnel involving expansions in Bessel functions. In this particulsar
problem the linearized condition in Equation (3.3) for constant pressure on the open
boundary must in general be replaced by

98/0x = U +u (u # 6),

to achieve continuity of velocity at the lip of the closed entrance nozzle. However
w = ¢ in the speciel case of a small model situsted on the axis of the tunnel, and
numeriesl results are obtained by satisfying the boundary condition at te- points
along the free surface. The distribution of interference upwash along ti .unnel axis
is reproduced in Figure 3.6 for a jet length ! = 3R with the wing at various
distances x, domstream of the entrance nozzle, the broker portion of each curve
corresponding to the extent of the open boundary. Provided R £ X, £ (1l -R} , the
corrections at the model (x = 0) are essentially thcse for an infinitely long open
jet, but the streamline-curvature paramseter 51 zay only apply over a restricted
axial distance. As x, decresses belew R, the upwash-interfersace parameter 80
changes rapidly towards the average (zZero in this case) of that for an opea tunzel

and that for a closed tunnel. The greatest stresaline curvature occurs in the region
of the collector x = (i-—xo) .

For tunnels of infinite length, Kondo’:!® has obtained exact values of &, in
two particular cases of mixeé bcundaries, namely semi-closed tunneis of circular and

arch-sheped sections. EKondo's exsmmples serve to illustrate aus interesting general
theorem proposed by Glauert’-’:

“The iaterference ou & very small aerofoil in a tunnel, whose bcundaries
are partly rigid walls and partly free surfuces. is of the sae magnitude,
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but opposite in sign, as that on the same serofoil rotated through a right

angle in a tunnel of the same shape as the previcus one but where rigid walls
replace free surfaces, and free surfaces replace rigid walls.”

Glauert has proved a corresponding theorea for completely open tunnels, cof which

Equation (3.21) is =& special case. In the notation of Section 3.2.2, consequences of
tte zoneral theorem sre that

b

8{(w/by + 8 w/my = o

843 (/) + 5% (/)

"

0

the former is true, but the latter conflicts with Equation (3.22) and is false. The
present author>: !5 has recently proved the theorem for a wing arbitrarily placed in
sey tunnel having cne closed porticn and one open portion, ea is true of Kondo's
examples; apart from an additive constant, tke interference velocity potential of tke
first half of the theorem can be identified with the interference stresm function of
the second half. With the exception of rectangular tunaels of type (3) having cpen

side-walls and closed floor and roof, the preof cannot be extended to funnels whose
toundaries consist of two closed and two open portioms.

3.2.4 Applications

The vslaes of 30 and 8l . discussed ip Sections 3.2.2 and 3.2.3, will oflen
suffice for the purpose of rapid estimates of tunnel wall interference. Equations (3.6}
give the correcticns to the measured incidence and drag of 2 smell model. Aithough

streazline curvature dees not normally inflvence the latter correction, it does imtrodace
a variation in the interference upwash

"o 25\ %
-U— = <8°+,8h8’ z (3.33)

along the centre line of a wing. The first term of Equation {3.33) is eguivalent to
& 1ift cocefficient

c)) 3 56, %, ting at th tre of 1if* )
= —2—— acting a e centre x=9;
1 1] 4] c aa g

the second term contridutes an increment in lift coefficient

AcS, sc, 3,

(3¢
#r T 2

L)z

acting et some position x = X .
where A end x, are to be detercined.

The correction Nz iz a somewhat arbitrary average valae of 71/5 over the
plenfora. ¥e may sizply take
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a0 7
Ao = Sc——li
C
AcS, sC, oC
Ac, = - b Wt "W 7} . (3.34)
L 25h € Oa f
_ Az} scL oCL
» 2,81: ¢ da ]

skere €, is referred to an axis throuch the uncorrected centre of 1ift. But it is
often morz convenient to choose Ax such that there is no residusi correctfon te 1ift.

if
Aa -—P- 2.35

then the residual interference upwash (\vi/!}} -Ay gives rise to increments in lift
coefficieat

3¢, !
(3c), -bda == = -(3C), actiget x=0 |
a
A28, 5C;, O,
écy, = ascting at x = x,

2ﬁhcaa

Together these give zero 1lift, but s pure couple or pitching momernit coefficient

which has tc be subtracted from the measursd c, to give 8 residual corroction

x Az 3 sC oC
Ao, = 2 = —1_L_ % .36
» 3 Beu, 2% € s @.363

independent of pitching axis. As in the second of Bquations (3.8) the correction to
the drag coefficient is

fe, = & —=. (3.37)

Any residual correction to spenwisc loading would involve a correcticn ¢o drag, but
this is usaally ignored.

It is sometimes suggested, by analogy with two-dismensional models, that A =1
and x, = (1/8)C . %hen the wing is regarded ag a three-dimensierai 1ifting surface,
both A amd x. usually ‘ake larger values. Cn the approximste basis of strip
theory, in which each streamwice section of & wing is treated 25 if the flow were
two-dimensional,
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where A = 28/C 1s the aspect ratio of the wing and A, , is 1ts midchord sweepback
(assuwed constant). Thus Ax, would vary from (1/8)T for rectangular wings and (1/3)C
for delta wings to lsrgzr values for some wings with sweptback irsiling edges. The
interfereace corrections resulting from Eguaticns (3.35) to (3.3¥4) are

-

I (RS-ALA
Ty e
so
A, = 83"{;— . (3.39)
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where ¢ is given in Egquation (3.38); the terzs imvolving e1 ere gpproximate, the
values ef A and x, fros Equations (3.38) being poor substitutes for values from
lifting-surface theory.

[¢]

Typical theoretical values of A and Ax,/C are compared with the corresponding
veiues froe Equations (3.38) in Table 3.I1I. Apart from rectangular wings and some
slender wings, C/C lies within 16% of the appropriate theoretical value of A .

The sccerscy of strip theory for various planforms is illustrated for a range of
ieading-edge sweepback A, in Pigure 3.7, which suggests that ©C/€ is likely to
overestisate or underastimate A according as A tan '&L is grester or less than
about 3. Table 3.III shows the unreliability of the Equation (3.38) for }\xili ;
typically it i3 Iow by a factor of order 2 for wings without trailing-edge sweepback,
whatever the taper parsmeter cr/E . but rather too large for wings of high trailing-
edye sweepback. Whilst the residusal correction AG- is usually feirly small, it
seess difficult to estimatc without recourse to lifting-surface theory. Nevertheless,
Table 3.111 gives some gnidance for uniformly tavered wings.

The interference upwash at the tgil of a complete aircraft model aay be estimated
from Equation (3.33). This early applicsiion was pade by Glaueri and Bartshorn
(Ref.3.16; 1924); efter s correction D« i3 made to incidence, there resmains a
resjidual correction to tailsatting

5, sC
bey = z;gh == (3.40)

wlere 9 is approxiastely the distance between the centroids of the wing and tail

surfaces. 7This will often be quite iarge and rather inaccurate. For exsapie, in a
closed circular tunnel with x, =R and B =1, Bauation (3.40) gives

- v a € EeTs n
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2 ba, = 0.125
SCL

as coepared with the correct value 0.093 from the full curve of Figure 3.6.

Ic practice the formulae (2.39) snd (3.40) =may be of more use in open than in
closed tunnels, since it is inadvisable to test large models in open tunnels. The
free boundaries of the jet will distort and spillsge may occur at the collector
dowmstream of the model (Section 2.5.4); for such ressons the more accurate inter-
ference corrections for lerge models beccme unrelisble. Ip closed tumnnels, however,
the more sccurate interference cerrections will often be reliabie and yet differ
sppreciadbly from those for small modeis on account of either large span or lsrge chord.
Present formulae for 80 wiil give accuracy within about 10%, provided that the wing
span does pot exceed hals the tunnel height or bresdth, i.e., o <ia/b 2nd o< i.
These conditions will often be satisiied for slender models, when the chord iength

becomes . .aiting factor. However, Equation (3.33) is a useful approxzimation to the
more exact analysis considered in Section 3.6.1.

Half-models mounted on the side-wall of a tunnel sre treated as complete wings in s
tunnel of twice the area with the side-well as reflecticn plane (Section 3.4.4). In
view of the grest difficulty in obtaining &, for non-rectangular configurations,
it way be expedient to use the simple formuls of Bquation (3.31) in conjunction with a
aesn valve of 5, appropriate to the span of the mcdel. The corrections to messured
quantities ip either Equations (3.34) or Equations (3.35) to (3.39) =ay then suffice.

3.3 GENERAL THEORY OF LYFT INTERFERENCE

In general the formulatjoms of Secticn 3.2 will be too approximate. When the wing
is large, there are many ifferent approaches to the evaluation of interference upwash
depending mainly on the represeatation of the xzodel (Section 3.3.1)}. The choice of
vortex mocdel will be jofluenced by aspect ratio, sweepback and yaw of the wing, the
symmetry or asymsetry of its spanwise liit distribution acd by the availsbility of
tabulated interference paraseters for any particuler ‘tunnel {Section 3.4).

In Sectio: 3.3.2, the irterference parameters ave defined for different basic types

- of model. 1rrespective of tunnel cross-section. Generai expressions for the distributioa

of interference upwash are then derived. 7The procsdures for coaverting such distri-
butions into corrections tc measured quantitics are far from standardized. Section
3.3.3 suamarizes the general epproach to this problem. The various cases are then
classified according to the degree of symmetry sbout the centre line. Sections 3.3.4

to 3.3.6 summarize approximate formulse for the finai 1ift interference correctiocns
relating to coeplete and haif-wing sodels.

3.3.1 Representziion 27 Nodel

In problees of two-dimensiona. lift interference it msy wccasicnally be desirable to
represent the model precisely s&s s thin serofoil is represented in classicsl theory.
Toe smme oaly remains true in three dimensions in the case of unswept wings of high
aspect ratio to which the clsssicai lifting-line theory applies. As jllustrated in
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< Pigere 3.8(s), an elementary strip of the wing (Sy) having circulation I is
- \—-1 represented by a trailing vortex element of strength -(di /dy)Sy. At the other
' extreme, s slender wing can be divided into elementary strips (5x) supporting a 1ift
3L = (di/dx)dx . The lift interference (Section 3.68.1) is regarded as that due to &
distribution of trailing vortex pairs of doublet strength JSL/0U along the centre
3 line; Figure 3.8(b) is the generalization of the representation of a saall wing in
- Section 3.2.1. Thus even a slender wing is replaced by a simpler vortex mcdel than
that used in the corresponding free-stresa theory.

% This is still more evident for 2 general planforz, a5 a complete vortex sheet is

{' nesdlessiy complicated. It is desirable to let the vortex mcdel depend upon as sany of
¥ the aerodynamic ciaracteristics as are seasured or can be estinated easily. Figure3.8
‘_1 includes three typicsl representations, bat there is no universal opinion as to shich
is best. Ia Reference 3.17, Acum uses in effect a lifting iine through the lccal

‘ji chordwise ceatres of pressure with the sppropriste trailing vorticity. The same model
# is used in Refereace 3.18 for wings with asyametrical spanwise loading, but it is then
it desirable to split the loading into its symeetrical and antisymmetricsl parts, as

% indicated in Pigures 3.8(c) and (d), Eisenstadt (Ref.3.19; 1947) uses discrete vortices
i . in the forx of swept uniformly loaded lifting lines, while Katzoff and Hannzh (Ref.3.20;
n 1948) use point concentrations of 1ift, each representing s portion of the wing. These
\ two vortex models, illustrated in Figures 3.8(e} snd (f), are more adaptable, being

] readily applied to yawed wings.

It is sometimes sufficient to replsce s trailing vortex sheet hy a single vortex
- pajr. By expanding the velocity field of the trailing vortex sheet in inverse powers
; of the latersl distance, Loos (Ref.3.21; 1951) derives the equivalent semi-span s,

sad vortex strength K, . such that -
z & dr [ ]
X2, = - —ydy = f IMdy

Jo & °
i' . (3.41)
1 84
i Esg = - j‘;y’dv = 3‘rryza'u

s ¢

o

, ( To & useful approximation 2 horse-shoe vortex of strength K, and semi-span S

i gives the same interference upwash distributicn as the unswept lifting line of
Pigure 3.8(a). For elliptic spanwise loading se/'s = $/3. sSince the interferences
apwash has to be aversged over the coaplete span, it may be expedient to replsce the
wing by s uniforsly loaded one of semi-span slightly greaier thar s, . Ia this
reapect Swanson ard Toll (Ref.3.22; 1943) have suggested thet for their particular
spplication the effective span ratios se/s = 0.93, 0.28 and 0.53 may be used for
wings of tsper ratios c,/c, = 1, 0.5 and 0.25 respectively.

Certain types of model may require more complicated represeatation. Consideraticn
of tail-plane interfarence and wing-body cosbinatione will be deferred umtil
Section 3.6.2. Wings with deflected control surfaces mey bte treated by the procedure
suggested in Section 4.5 of Reference 3.4. Basically this ascints to the super-
pesition of discrete elements of the type in Figure 3.8(e)}. The introducticn of
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coatrol surfaces affects the loci of the iifting lines in Pigures 3.8(¢) aad (d), ut
otherwise leaves mcdeis (a) to (d) unchanged. Model (f) might well call for greater
subdivisfon of the wing, dut would serve for syemetrical and asymmetrical loading
a&like.

3.3.2 Basic Interfereace Parapeters

In the first place the wing and its load distribution are supposed to be
symmetrical about the vertical plane through the axis of the tunnsl. The vortex
models of the wing ia Figures 3.8(a) and (¢) can be constructed by superposition of
syemmetricaliy pleced horse-shoe vortices of strengtk K and zemi-span t . The
interference upwash angle in the plane of the wing is then expressed a=

—3 (7.t + o(

3
. (3.42)
)

shere, os in Acwe’s®-!7 theory, 8 (v.t) and §,(5.t) are functfons to be determined
for a particalar tunnel (Sectioc 3.4) and terms involving the third and higber powers
of x/fh are neglected. Equation (3:42) is a generxlization of Equation (3.33) for
a small wing; both &, and 3. may be regerded sz aiso dependent on any vertical
displacesent of the Iinz from the tunnel axis.

] 4Kt
4= —Iso‘y.t} =

U ncl b

C v de” o ot e e CORARIAS el

The well known theores of Prandtl shows that, in the limit as x -~ @, Equation
{3.42) becomes

-~
-

Xt sl
:L = — {25 {7.1) <
- = {28 (5. 00} ,

which may be calculsted on 2 two-dimensional basis. Thus, if the chordwise extent
of the aodel is szsll, as envisaged in Figure 3.3(a), &, may be neglected and for
certain tunnels the expressions for w /T! are quite suple. Sanders and
Pounder3+23:3-2% ayploit this for closed rectangular tunnels co the basis of lifting-
iine theory. For asn untwisted, uncambered wing st incidence, lifting-line tleory
yields the simple result in Eguaticas (3.6) ané (3.7) with the mean iaterference

parameter
c\ &
= ...I (ui \ —fa, {5.43)

seb/d;y

Rt

¢

vhere di,/dy denctes the ii:t per unit span in free air. For a uniforely losded
wing it is particularly essy to obtsin

G, [ 3,\!.8) d( Y (3.44)

Alternatively (50) is given directly by the two-dimensionsl soluticn in the
transverse plane zor the iaterfercnce stream function ?i correspondicg tc &, ,
since

RUEseIvie ,mﬂw% deaes
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it
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(89) = —c" :Ld 3 :-.ﬁ. l??ld/i

U osc ) U \s SC, J, U %y \s
¢ =0

Y. £3.45)
8 =3

' in practice s would be teplaced by & reduced effective semi-span, &z discussed in
i Section 3.3.1. A better approximation is to sssume thst the spanwise loading is
| elliptic over the full span, wheii Bquation (3.43) bucomes

,' 1 H
1 4 3 c 2
[y . 6o = 2] (:x_ ix— (z)] d(z), (3.46
7 4o \U SC, 8 8
where "o 4 8( £) 1 i
——; ;T- " -— —.}

This has been calculsted for a wide raage Of tunnels (Section 3.4).

i

t

! Por sweptback wings of moderate aspect ratio the interference upwash due to tae

; vortex model of Pigure 2.8(c) is readily expressed in terms of J,(y.t) and

S 4(y.t) . Pollcwing Reference 3.17, we replace the elementary vortices by a horse-
shos vortex of strangth [° and semi-span (t + 5t) together with one of strength -
aod semi-span t . Hence

Sw, 4o , _ x-X ¢ -
~t = _!'_I_ {t5,r. 0} Mt {ts,(y.t)}] 3t

eCj:
where x = X(t) 1is the curve through the local centres of pressure. Integration over
the span of the wing -s < t < 3 gives
1
v ars) o . X-X(t) 3 £t .
—= = — = {tS (7. 53} + — {8 (7.0)} d[—} : (3.47)
o Ioucat o7, &) Bn % (7. %) s/
fcjr elliptic spanwise loading Equation (3.47) beccues
. i 2 1t
2
v mL[[a, x-%(t) ? i t2i [t
- —= = — {t8 _(7.)} + S (v.t3}lq1-—=} di—-}, (3.48)
- '.31: o(7.t) Bn { N4 } szr \
¢

as obtained ir Equaticn (20) of Reference 3.4.

If the model reamsins symmetrically situvated but its spanwise loading is
asymmetrical, then the load distribution can be split into symmetrical aad
antisysmetricsl portions represented by the vortex mcdels {c) and (d) of Figure 3.8.
In Reference 3.18 (Garper and Acum; 1953), the symmetrical part of the interference
is obtained in the form of Equatios (3.47). In addition to Equatica {3.42) we now define
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vi-atx(t)*x:c(yt)-r()/x: (3. 49)
v - e o’b -& 1tJe \& .

a5 the interference upwash angie due to & pair of asymmstrically plsced borse-shoe
vartices, one of strepgth -X and span -t <y < 0 and tke other of strength K and
span G Xy <t . Yt then fcliows that, corresponding to Pigure 3.8(d),

A 2 41"5{3 ) x~X(t) 9 /t
. [TAs1 0 ) + 2 a2 . .
- L e {tx, (y. 02} B % {tx (v, 3] dk’ (3.50)

e

an antisyscetrical function of y in skick ' and X(t) refar tc the antiaymmetricsi
porticu of the wing lcading. This approach to wall interfereace demands the tabulation
of tke basic parameters

2, 2, . G ) .
5 Edgmnd}. 3 i Gul, 3 ety o {xound .

which can be evalusted feirly easily for rectengulsr tunnels (Sscticn 3.4.31). There
is no eguivaient procedure for asywmetricsliy situated wings.

The aore flexible method of Kstzoff and Hsonah ip Refereace 3.27 uses poict
sources of Iift, which are conzidered to Iie in the horizootsal plane throash tig
certre line of the tunnel. as irdicsted in Migare 3.8(f:, it is naceazary to segaen?
the wing and to estiaste the 1ift L. sad its ceniroid (x,,y,) or each sogaect. The
tetal interfereace upwash is obtained ss

” L X~-x Yy Y
A = X w[ E 2, 2k (32.51}
u gpvzb’ ‘\ﬁb 'b'b)‘ g

where b is the breaéth or some typical length of the tunpel cross-section. In
general, charts of

must be constructed for a series of spanwise locetions of the doublet L“!p!l . Por
rectanguler tunnels, however, the function ¥, can be defined by two charts
independeat cf y,/b .

Both the foregoing procedures for sweptback wings are economical as regards the
bssic computations for any particular tunnel cross-section. Both imply some
knowledge of tae 1ift distribution; [ and X ir Equstion £3.47) or (3.50) are
noraally obtained by lifting-surfsce theory, while L, an3 (x4, ¥y) in Equation (3.51)
must be estimated likewise. The forzer procedure of Reference 3.18 neglects temms
of order [(x-%)/8h)® and is restricted tc unyawed wings. These limitations do not
apply to that of Reference 3.20, which suffers from the inaccurscies of a graphical
method and the poorer representation of the model. Betmeen these two extremes are the
intermediate schames of References 3.19 and 3.25, which apply to closed circular and
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rectangular tuncels respectively. For esch half of the vortex model of Pigure 3.8(e}
Bisenstadt tabuletes, in the present antition,

o

: 4Cx 2x 2t
> —i as g function of w,-?-{.-—- and  cot B cot A) ,
: F44 S8 b b
,-- : the last paramster being the ¢guivalent sweepbeck sngl: of the beund vortex lite

i3 - {Teble 3.J3}. Swanson’s spphroach in Referanee 3.25 is foi & particular zodei, but it
w20m)d in gen=rkl iavelvs the pon-diwersional interference upwash in ferms of the same
frar pereseters. There acdenes gre sore cunversome thau the Chree-paraxeier systes of
& Equetion (3.51) or the two-parameier system of Eguation (3.47). Gu the cther hand
Katzoff and ffannsh uave pointed oui in Pigure 9 of Reference 3.20, that £ series of
saixlatiss Zor one swess angio may suffice for computing the wall interference on =
Epg of differsut swesyP.

Sl
el H OO

'f 3.3.3 Correctioms to Reazured Quantitics

} . %e Tirst sepposs that z suitable vortex mcdel of the wing may be identified with
) soe theoretical approximation to the non-dimensional wing ioading I.(x,¥) in the

it ? frez strear. The basic interfersnce parsmeters then determine an upwash angle

; Sa{x,7} from which an egquivalent incrementsl loafing &l(x,y) =Ry de ccaputed

3 ttecretically; this inmtroduces additions to be superposzd on the vortex model. The
) procedure msy then be repeated to obtaia the corresponding 5%c sad 8% , sad so
, ocn until the final tkeoretical picture gives distributions of lcai and interference
upwash

foam e
e

]

I I+ 81+ 8%+ ... }

: vi/U

Sa+ 8%+ 8%+ ...

in the tumnel. For many zeasons I, wiil not be identicsl to the weasured distridution
!, and there will be imeviiable Jdiscrepancies batween the thesretical cocfficients of
11ft and rolling moment <, asd C,, correspocding to I and the messured €

aad C; . It become= necessary to subdivide I, juto I g+ I, . the sum of
symaetrical and antisyzmetrizal functicns of y . and tO apply respective sorreciiosn
factors CL/C,’ ¢ and c,/c;.! o 1y and 1, snd the appronviate parts of =,/U .

The magnitude of the dissrspanciss, so remozed, would be expected to be 23 great 3
that of 3C, or &C, norresponding to 51 . This wonld justify the minor
siaplitying sssmmption that §! is directly prorortional to lp . i.e.,

3x,3) = kig(xy) .

It then follows that

i . 3

. i l. = Lql+k+k2+%...) = 1 /ti—-kt!

H?w;iv 4 T ’ v .

e w/B = Sal+k+k¥+..) = Tof(1-X)
e 3 . The origizal vortex model, based on the serodynamics of the free stream, will suifice,
N2 2 A provided that it is separated into its syametrical and antisymsetrical parts with
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adjustable factors to ensure consistency with the measurad 1ift and rolling moment i,
respectively. We therefore express 3
i
L (w,) {wy) i
e B e 6 ’l.lcl. (3.52) i
d
3

For symmetrically placed wings [(wi)b/llcb] will be a symmetrical function of y and
[¢my),;/0C,] antisymmetrical, but in general they will both be asymmetricel. The
associated factors sre the measured 1ift and rolling moment coefficients; the subscript T
can now be caitted without awbiguity.

q Chond
T o we

The distribution of incidence 'i/U has to be converted into corrections to
measured quantities, both geometric and aercdynamic. 1In principle there is no difficulty
in using lifting-surfsce theory to compute the aerodynamic coefficients &C, , ¢C; and
8C, corresponding to w;/U and also the increments 80,:‘v and SC“ in the vortex-
induced drag and yawing moment coefficients. Wall corrections could simply amount tc
the subtraction of these interference quantities from those measured; for exexzple, in
the notation of Equation (3.52) we could take

sc 5
ne = s = | Ol _[CG) (3.53)
»n n ' L c 1
L !

where the second ters would venish {f the wing were symmetrically placed. An
arbitrary correctiocn may be applied to any seasured geometric quantity, in particular
a correction Ax to the incidence of the model. It is then necessary to calculate
the sppropriate free-stresm derivatives 9oC,/da, 9C;/ da and 30./3:1 . aad, for
exaaple, to add the qusatity Ar,-.(ac./ d0) to the right hand side of Equation (3.53).
It is often convenient to choose Ao such that ACL =0 . Then Equation (3.53) would

become

r ]
oc, | (3¢ (5Cw) 3¢, [(Ecl,) 8¢y
A = B il 7 B L it L - ! .
. L[ ) ] [ c, ] C, + 3CL[ c, ¢, C; (3.54)

Tie expressions in curiy brackets are theoretical quantities dependent on the vortex
model, the tunnel cross-section and the wing planform. Thus, iike tilﬂ . each
inzerference correction beccaes the product or sim of products of theoretically and
experismentally determined quantities.

(RN

Difficulties arise when greater precisiou or, as is more often the case, rapid
calculation is required. Reference 3.23 is an esinent example of the former; in
effect Sanders and Pounder shun the use of Bquation (3.52), for their treatsment
inplies that the load distribdution cannot be regarded as independent of wall inter-
ference apart from factors proportional to the messured €, and C; . Even within
the framework of liftipg-line theory their analysis becomes exceedingly complicated.
The more common difficulty is that, because corrections are fairly saall and
therefore not required to grest sccuracy, the use of lifting-surface theory is
considered to be an unwerranted computation. Section 3.2.4 has already illustrated
the trouble. For & small symmetrical wing Equation (3.54) reduces to Bquation (3.36), Y
but the theoreticel quantities X and xz, must be estimsted. Pigure 3.7 in -
conjunction with strip theory can perksps give A within $10% and so Aa in
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Equation (3.35) to a fair accuracy. However, Table 3.IXI suggests tnat in the
absence of lifting-surface theory the residuzl correction /_\.cm . proportional to
hxx . is liable tn be excessively inaccurate. In the following Sections 3.3.4 to
3.3.6 suitable approximstions are considered for different types of problem when the
wing is not smali.

3.3.4 Complete Spanwise Symzetry

For large wings having somplete spanwise symmetry there are gpproxizmate methods
by which rapid interference correcticns may be estimated. It is usual to take Dax
as a8 weighted mean of vsi/U along the thres-guarter-chord line, such that the
residual correction AC, is negligible. Thus

P \
(%. ) - a@ , (2.55
0 L/s.15 s

Reference 3.26, Equation (29), v

where® fros

o€, /3C,

Reference 3.17, Equation (11),

=
1}
r—-—-"-'-\
/""'\
n l‘<

elliptic loading W

)
p-a
i
TN
|«
v d
N
(=)

strip theory ] ¢/T

The first weighting is the spanwise loading factor for the wing at uniform incidence;
charts of cCLL/ECL are given in Pigure 6 of Reference 3.26 for various sweep
angles, aspect ratios and taper ratios. The second, equivalent to 0.6 times the
elliptic weighting added to 0.4 times the chord weighting, can be evaluated when the
factor °cu./5°x. is uncertain. In many cases the elliptic weighting is accurate
enough, and the basic interference parameter (80)3 in Equation (3.46) is useful.
The chord weighting from strip theory has little tc commend it.

* Ry application of the reverse-flow theorem C.R.Nlor3’7c ol the Aerodynazics Depart=ment of
the Royal Aircraft Estabdlishment has pointed cui the precise result thst

_1 s
Aa—gg-}ch‘-zdxdy.

where [ is the non-dimensional wing loadisg on the reversed planfora at uniform incidence;
the corresponding spanwise loading factor c(‘!w/‘c&u would therefore seem to b2 an
appropriate choice of W in Equation (3.55).
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¢ The drag correction is usually tuken to pe conststent with lifting-line theory and
Equatlons (3.6) and (3.7). If (wi'/ucb)m denotes the value of w,/UC, in the distant

wake, then
A v eC ’
1 _“‘ d(’) ) (3.56)
2 2 s

L

where chL/ECL pow represents the actual spaawise loading that would be measured on
the wiag. As in Equation (3.37), a small term from a residual correction to aspaawise
loading is neglected.

Since ACL =0, Ac. will be a pure couple independent of pitching axiz. Im both
Refererces 3.26 and 3.17 the residual correcticn may he written as
Ac, = {bcy), + (8c),. (3.37)
where (AC ); results from the shift in spaowise centre of lift associated with the
speowige variation of (%;/0C,), ;5 , and (8C.), arises from the streamline
curvature. Alternative formulse for (AC ) a.re given in References 3.26 and 3.17;

the former is preferred as it avoids s calculation by liftiag-line theory and in
the present notation, gives diresctly

o), _ FTA2(3C,/30) ten A‘,_25 d IV, @G
c, 7A + 29C, /Oa s

where & is the aspect ratio and A 25 is tke gweepback of the quarter-chord line.
(AC-)z is incorrectly derived in Reference .17: with allowsace for compressibility
Equation (35) of Reference 3.26 becoses

1 [
(acy), - _meoshy A, / ai __ 2 _{) ' 2.55)
CL i- ! cos ‘! s
o. zs_]

where Ao.s is the half-chord sweepback.

Equations (3.58) and {3.39) are not applicable to planforms with curved or cranked
edges. In place of Equation (3.57) strip theory would give the less accurnte
expression

1 ’
Ac 3¢ /% _ ¥ c /¥
i B | .[_z. (x, -5, + 3 -2 - oy | zdl=) . (.60
c, 2a t uc, Uc g \s
o a.,15 84.25
where
c? .‘;‘
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It may sometimes be convenient to use Equation (3.60) with a correction factor based
on lifting-surfuce theory. In the light of Equation (3.36) for s small nodel, it may
he sixple to evaluate the quantity hxl/E by both strip theory and lifting-surface
theory. In gemerzl AT /da is the lift coefficient and x = x, is the centre of
1ift correspending to an incidence £x/T , where Xx 15 messurad from the theoretical
aerodynamic centre. Thus & Fifting-surface solution for the wing in steady pitching
motion will suffice to determine an accarate value of )\zll‘ . By strip theory

24 1 - -\ - 1=
e r x. +3c ¥ ¢ % + 3C% +z
(-——-9 = 2 <1_, il 2 \f: d(—-’:) . 2( L - 4)(11, - c> ) (3.61)
Lot ja T /% \e \ C c

which reduces to the second of EBquations (3.38) for straight tapered wiags. The ratio
hx:/E to (hxllE)st may be inserted as a correciion factor on the right hand side of
Equation (3.860); typical values may be obtained from Table 3.I1II. The relative
accuracy of this method and of Bqustions (3.57) to {3.59) is discussed ia Zection 3.85.3.

Other wmeasured quantities mey require interference corrections. Although control
surfaces are considered under asymmetrical configurations inm Section 3.2.6, the
approximate residual correction to hinge moment in Equation (3.77) also applies when
there is spauwise symmetry. To apply z residual correction to surface pressure, it
is necessery to use lifting-surfsce theory and to replace CE by Cp in Equation
{3.54). Referesnce 3.25 includes expressions for the ipterference corrections to
downwash angle and wake displacement. Swasson and Scatldenfrei’:?’ consider these
corrections in the presence of & slipstrean behind a powered medel.

2.3.5 Non-Symmetrical Spanwise Loading

We xzext consider sy=metrically Dlaczd wings with antisymmetrical spanwise loading.
The case of deflzcted a2ilerons is treated epproxinately ir References 3.26 and 3.28.
Sipce Reference 3.28 is restricted to unswept wings, the expression from Equetion (41}
of Reference 3.26 is of greater generslity. Hence

1
Ac A 128G, /O 5
L. ARG/ e AN Y (3.62)
c; 2(mA + p oG, /3 Qjcl s sj
= c 0.75

where

2 + VA(S® + tanz'l'\o_,‘_5 + 4

)
2 +/A%(5 + ten®h, ,,) + 16

and W is the weignting factor in Eimation (3.55) given by charts in Pigure 6 of
Reference 3.26. There will be a corresponding correcticn to the drag givea by

1 1
2 4 (.__1.) _f_ng,,(z) (3.69
c 2 \Ugy) @, \s

v

—h

It is now inarppropriate to apply a correction to any messured geomatric quantity such
as aileron angle. In the case of & slowiy rolling wing., however, ti~ szgative
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correction AC; car be replaced by a positive correction to the rate of ro11?-%?, g
£imilar considerations could apply to wings having smooth antisymxetricai modes of g
deformation. g
z
Interference corrections for symzetrically pirced, asymmetricelly loaded wings é
are derived in |mzterence 3.18. In place of Equation (3.52) we may then write “2;
() (w;) i
w w . 3
Sa & 4, : (5.69) 2
nc, 2
likewise the spanwise distribution of circulation may be written as ;
2 .
T = 20y = 250(yg+7,) . (3.65) %
xhere g
9 "2
3
CL = 2A 75 / \ :é
\s/ :
L (3.66) 3
1oy /y i
¢ = A'[ rag d(") :
o 8 S £
By the application of lifting-surface theory the symsetrical interference upwash N

acgle (wy) /U gives increments 3C, and 3C, to 1ift and pitching mcsent, and the
antisymaetricel part (w;),/0 gives an increasnt 8C; tc the rolling moment )
ccefficient. Hence .

La %

C,

(6/2) 24 ['7g dwrs)

A
Ay sc,

Ao oC,

-t 5 > -

(3.67)
1 ¢, ©°c
24 fo s d(z3/s)

5c,

— D e

¢,

1
A [ vyt dors

h

.
Y

PR T LRk 1 ¥ S » e

Tre second of Equations (3.67) is equivalent to Bquaticn (3.54), since -

(5C); = (3Cy); = 0

A

.

for symsetrically placzd wings. Bqustions (5.55), (3.57) and {3.62) are workius

aprroxisations to Equatioas (3.67) and are recosmended whemever it is imexpedient to
calculate the increments &C, , 88. sad 5C;, Ly lifting-suifsce theory.

i
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The evaluation of the usual interference corrections to drag and yawing moment do
not require cklculations by lifticg-surface theory, provided that the distributions of
Ys and 77, can be estimated. Tnese corrections are calculated on the principle® that
the local 1ift per unit span acts at right angles to a local effective stream direction,
azd that wall interference causes this to deflect upwards through the angle (8, -
Under linear conditions this defiecticn does not influence the 1ift itself, but reduces
the drag per wit span by an azount

A
ol (3x)g = 1p92 s(-}) 3, -

Thus there are increments

1 ! ¥
SCD' "—2— A I.l 7(8&)Q d<—8->

1 1 ¥ [x‘
3¢ —-A S5y — dl—
nv '] j 7O \s)

(3.68)

4

to the vortex-induced drag and yawing moment cocfficients. When v and (8a), are
separsted into their symmetrical and antisymmetrical parts, Equaticas (3.68) become

[ 6
f (8o 830

Woen 7 is replaced by cC,,/4s , it is seea that -SCD? is equivaleat to the sua
of Bguatioas (3.36) and (3.62). Onlyr in the case of yowing moment do the symmetrical
and anvisymmetrical parts interact; the seccnd of Equations (3.6S8) becoxes

]
!
P

© Gn— A 8 ot b o brtn

(3.69)

o
0
1

r e . v o 3

'3

! [ wi) C(Cu.),\_ ("0) c‘czt’sl ( ) (3.70

where the right hend side is determined theoretically. It can essily be shown that
8007 snd RC are unaifected by the application of the intorference correction Do,
since the reductions in magnitude due to the substituticn ik 160, - 8l tor (8w,

=
o)

Ca

c

3
19

-|

(]
()
»hl et

. »>ep in Equations (3.G3) exactly cancel the increases due to the chenge of wind axes. But
5 the result of residusl corrections to the load distribution needs to be considered.
e as A, any correction to 7Yy will have a negligible effect on vortex-induced

drag e.nd yaving moment. The correction AC, isplies a correction to 7, . which may

be regarded crudely as s factor {1 + (L’aCl/Cl)) : this will increase (C,), . the

A
‘
- LA

- * By coosideration of the total energy of flow in the wike this prirciple can be justified 22
tbe case of drag. For yaring soment. bowever, the pripciple is not rigorous and ameerical
~ valpes of the interference corvection sve ir sape Soutt (Sectiom 3.5 3).
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vortex drag corresponding to the satisymmstrical part of the spanwise loading, by the

tactor {1 + (AC;/C;)}? and the total C_, by the factor {1 + (AC;/C))} . The final
corrections are therefore

Ac
ACD = - Sch +2—= ¢, (cov)k
, {3.7Y)
Ac, = -§C ey Cpy
n ny + c

L

where SCW s&nd 80“ are given by Equetions (3.69) and (3.70). The last terms in
Equations (3.71) are approximaie and relstively small and can ususlly be neglected, zs
in Equatior (3.63). A full derivation of EBquations (3.71) is found in Raferencze 3,18,

but the latter is given incorrectly in Equatiocn (8.13) of Reference 3.18. The m&zni-
tude of the corrections is discussed in Section 3.5.1.

References 3.23, 3.26 and 3.28 also consider the interference corrasctions for
syometrically placed, asymmetricaily loaded wings. The rigorous treatsent by lifting-
line theory in Reference 3.23 is beyond the scope cf rapid calr~’ation. Like
Reference 3.23, Grehaa’s3:%® method is restricted to lifting-1r.. theory and unswept
wings in closed rectangular tunnels, but with acceptable approximations he derives
corrections to rolling and yawing moeent in s practical form. For wings with sweepback
or large chord thé interference corrections derived by Sivells and Salmi®°2® are practi-
cally consistent with those of the previous paragraph, except that '1/‘0 alcng the
quarter-chord line replaces ,(Sa), in the formulae concerning drsg ancd yawing moment.

8 et & bR DS RGS R B SRR R BB g

3.2.6 Asymmetrically Placed Wings

PN

More difficult is the case of yawed wings when Equation (3.52) applies in all its
generality. The walis 31350 induce an interference sidewash unless the wing is situated
in the horizontal plane of syumetry, btut this is ususlly ignored. Provided that the
angle of ya¥ is fairly small, simple generalizations of Equations (3.67) %o (3.71) are
possible. Added to Equations (3.67) there will be contributions Ad/C; , Oc /c; and
Ac,/C, , which may be estizsted by inserting the symmetrical part of (w ,Uc,) in place
of {¥;/ ’60.) ir Equations (3.55). (3.58) and (3.59) and slso the antis*netricnl part ?
of ('1/UCL in place of (w, /ec)) in Equaticn (3.62). Both OC, and OC, will contain

B
contributions proporticnu to c . €,C, and C}, since (Sa)c, in Equstion (3.68)
aust be written in four parts, viz.

p | 1 s
Gy = {——..{(")"}‘} c, + [_._‘(")L"-“ c, + [—__{('13’}7 £, + [_—__{('1)‘)“] c,. (312 3
L uc, L | gy o, |
If, however, the angle of yaw is large, the information cn 1ift distriboticn =ay be -
S0 scanty that a very simple vorter model will be adopted (Section 3.3.1). In B
Reference 3.25, Ssanson represents the yawed wing &3 & nueber of skewed horse-shoe ;
vortices corresponding to the 2quivalent wing sewi-sp.a of Equaticn (3.41) or the - &
spsnwise extent of the dihedral or aileron. Lengthy, but manageahle, expressions are e~
obtaired for the interference correscticns to incidence, drsg, rolling and yawing ;i?.
moments, but it is bard to sssess their accuracy for a typical sweptback wing, The _§
uncertainty is such that thers mxy be little point in applying corrections to tde )
momert coefficients c, ad C, . Itaxy suffice to calculate the interfererce upsssh
azgies ($a), ,, mod 1(5w), . Thea, in place of Equation (3.55),
=25

R e, T L T T SRR, e




g~ _—
1 s = —j (B0)y ;. ¥ d<3> . (3.73)
1 T s

\ 2 4.
‘ and in place of Equations (3.56), (3.63) and (3.68),
i : ’
; ‘ 1 s
-3 Ac, = Ej,s Féa dy
¥ - (3.79)
i 2 1 s
¥ i AC, = ~— f T3a) g,y dy
(. ' . 2uss J_g }

wshere the distribution of circulation I =I'(y) should de consistent with the zeasured
1lift and rolling moment. The extreme alternative is to calcalate the distribution of
S = 'i/U over the yawed planforz and then to apply the best available theory, as
eavissaged in Section 3.3.3; this would seldoms be justified.

L
e e
-~

B! ‘ Half-wing or reflection-plane wodeis introduce further types of interference
% correction. Ail corrections to be applied for symmetricaliy loaded conditioms are
precisely those for a complete model mounted in a wind tunnel of the same height as
the original tunnel and twice the breadth (Secticn 3.4.4); Equations (3.55) to (3.53)
. rexain just as vaiid. But, as discussed in Reference 3.22, there is s second group of
corrections for antisymmetrically loaded conditjons when the reflecticn would not be

o oam
-

ooy

i : - present on a complete model. In such cases there may be large correctioss to
' ; half-wing rolling moment = 3p02(is)2sC,
. (3.73)
balf-wing yawing moment = 3o02{isi2sC,

where TS iy the area of the haif-wing planfors and 2s is the span of the cosplete
wing. The corrections are determined in two parts. Pirstly, the acdel and its reflec-
tion are corrected for symaetrical interference effects on the half wing. This involves
the main cerrection to incidence from Eguation (2.55) and corrections to lateral

coefficients

 «

L3
bc, - ‘;‘”Aack/au ;&:1> _E "{GG\
A 9¢C,/9 Y 3
. 7k + 2 Cx./ a . L EC, v Cy 3 s//

(3.76)

Apart from the effects of stresaline curvature. the residusl spanwise loadieg is distri-
buted along the qusrter-cherd line according to the assumptiocas of Reference 3.26. Since
tie corresponding moment on the half wing about an axis psraliel to the guarter-chord
line should vanish, Bguations (3.58) and (3.76) are consistent ia that

2s8C; = - z’:‘(l'lca)x cot Ao.zs'

.
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Secondiy snd of greater importance, factors indedendent cf the tunnel cross-section
zust be cpplied to the quantities (c; +Ac,) and (ca +Ac,) to account for the

reilection plsne, and these demand specizl theoretical csiculations. Simplified
treatsents are discussed in References 3.4, 2.22 and 3.26.

l.arge half-wing zodels are often used to test contx;ol surfaces, for which the

streszline curvature is particularly significant3-*. 1In the present notation the
approxizate rasiduasl correction to hinge woment becomes

< A
[s (&) -(8-1) (-U—';i) --E-“-] w2 dG)
_e_c_}i = __a__c_ﬂ_ L 0.75 L 9.25 L Y (3.77)
CL - y !
we? df =

where the weighting® W is selected frog Equation (3.55), the integreis are taken

over the span of the control surfece, ct(y) is the local control chord, and for
unbalanced control surfaces B 3is tavulated below.

N

\\‘.,'

i

-

FETRTA YL ul“:»«' LW)»&I;:.%WM%M!%WMWM‘

H i
cg/el 0 19.65|0.20{0.15}0.26{0.25; 0.30} 0.35] 0.46 0.45{ 0.50

B 2.50§2.46]2.41]2.37]2.33]| 2.281 2.24} 2.19] 2.15{ 2.10§ 2.05

TP HITTE M I AT TN

Vvalues of B for belanced control surfaces having set-bsck hingea ssy be evaiusted as
7+ &(b'/b)) from Tebie 2 in Section 4.2 of Reference 3.4. Fer satisymmetrically
losded conditions a factor should be appiied to (C, +4C,) to account for the
reflection plane. For outtosrd eilercns this will be less importsat than the corres-

ponding factors for rcllizs. and yewing :osents, zo that an estimate by lifting-line -
thenry may suffice.

The interpretation of an intarference correction msy nced sdjustment if the 1ift .
or rolling moment is not messured. The uncertainty ceacerns which part of the exprea-
sicn is celcnlated thesreticallr and woick part is determined experimentally. For
exmple, Equation {3.77) envisages that C, on the left hand side and oC,/9c on the
right hend side sre measured, while the integrals ere predetermined. I, however, ogly
the controil hinge acment ig messured, it mould be necessary to sultiply both sides of

tre ecustion by an estimsted value of C,/C, : then the ratio of AC/C, to oC/3x
is determived by calculsation.

Yo

R
LI S

LA

3.4 EVALTATIO¥ &F INTERFERENCE PARAMETERS

ke Ty
Qb g

In srder tiv sfp%y the general methods of Sectionz 3.3, it is necessary to obialn
umeryczl datz for ke interference uprash w due to 1ifting elements in a particular
tmeil. A wide TExge of tunnel cross-section has been eaployed Sn resesrch centres,

et
T T

.
A
A

¥

i

§

© Zquaticz (2.70) iee== z reugd sverage velce of the expressicn in sguare bracketa. Althocgh
7 strimthecrr dfie wegkting ¥ should be replaced by the two-dimensfonal &Cy/Ou ir each
intepaed, t2e mxicy fxfisemce of bommdxry Ixvers may override this coasiderstion.
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the most comson shapes having closed rectangular boundaries {Section 3.4.1) or closed
octagonal boundaries (Ssction 3.4.2): the latter are 2sually regarded as reccangular
tuanels with small corner fillets. Much less attention has been given £o open rect-
angular tunnels, as the rounded circuiar or ellipiical shepe is more appropriate for a
free jet; these are considered a3 well as closed circalsr and ellipticsl tumnels in
Section 3.4.3. As ig the case of rectanguler tunnels {Section 3.2. 2), some curved
shapes with mixed boundsries have been devised to reduce or eliminate the theoretical
lift interference, bu* these semi-closed tunnels are of passing academic interest.
Wind-tuanel testing of haif models mounted on a reflection plane is common practice.
Although this merely doubles the effective bresdth to height ratic of recteagular
tunnels and extends the practical upper limit of b/h ., in the case of octagenal and
circular tunnels Sections 3.4.2 snd 3.4°3 no ionger apply; ineffect, the latter becoms
bipolar tunnels (Section 3.4.4).

Tsble 3.1V summarizes the numerical data available for wings of moderate or lsrge
span. In many cases the informstion is limited to quantities such as (Bo)y . (82)g
and 3,(y.t} , as defined in Equations (3.44), (3.4€) and (3.42), whict are only
sufficieat if the wing can be regarded as ar unswep: lifting line. A tick in the final
‘column of Table 3.1V indicates that the streamwise variatioa of ¥, has been ctlcuiated,
rhether through the gusatity & 1y, t) of Buation (3.42) or sose s5re general tabalation
or graph.

3.4.1 Bectangular Tumnels

The evaiuvation of upwash interference on large lifting models in ciosed rectangular
tuntels iz basically straightforward, since there is 2 complete imege system corras-
ponding to any vortex representation of ite model.  The upwash field o2 a horse-shoe
vortex of stremgthk X surrcundicg the area x>0, |y/<t, z =g is

K
Y2 wEneh = —BE ' vt 2 - 9B y-t D)), (3.73)

! + ! M {3.79
z2 x? 422 yfeg? {xz+yz+zz)% - {3.79)

its imsge system is & stzple geserslization of Pigure 3.1(H), so thst the irterference
cpwash is

where

g:x- Y. z) = -

+ |

2

-

hod
K ! o nm
w = —4;2.2 (-DPME7x, y-abte, z-oh) ~W(E7x, y-ab-t, z-mn)] ,  (3.80)
-

<
where, as in Eguetion (3.12). ZQZ:' denotes that {x.n) tekes all possibie integral
pairs excegt {£,0).

I? he wing is of large span 2s but of samall ckord, it may suffice to put
X=2z=0 in Bqguation (3.30), so that in the notatica of Equation (3.42)

4Kt
w = E—S,,(:. ty ., {3.81)
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where P)
y-ab+t y-mb-t
Soly.t) = Zz Dt - P I 7 . 22
167t (y-ab+t) + n‘h* (y-ab-t)° +1n‘h
wr | 1 , T -ab-t) (5 -nb +t)
= -—--—-"---— Z‘_ - cosech —— | .,
wrtly —t y+t! 16t
(3.82)

Hence the mean interference parameters (8;,)n ard (3;_.),_ for wniforn and elliptic
spanwise luading in respective Equations (3.44) end (3.46) can be evalusted. Xs des-
cribed in Section 9 of Beference 3.3, the early literature hag showm that the results
csn be derived apalytically, viz.,

8o log, —= T8 i = sin m’e\z 3.83)
- 0 — - v d .
VT fme? e uimme b L 6?0 43\ mo )
and
- .
47 n /3 (ﬂna}\
o)y = — PO) +— - = | (3.84)
£ gem"/b +13 ™o / *

where o = 2s/b ; pumerical vslues of F(c) and {Ji{ﬁd)/‘rm'}z are fooud in Tables 4
and 5 of Refercnce 3.1. A 2004 description of the mathematical analysis is given by
Sanders and Pounder in Secticn 2.1 5f Reference 3.23. They also give useful graphs of
{0o)y and (35); against Wb for o =0,0.2,0.4,0.6,0.8 and C.9; the latter is
given in carpet form in Pigure 3.9. The factor (8,)g(9)/(80) (D) provides s simple
improvesent on the corrections to incidence and dreg coefficient for a seall wing in
Eguations (3.39). thus

/
. e, \sq
Ba = (3¢) o) (1 +25h‘ p

> . {3.85
2

SC.
ACD = (89) E(c) —c—u'

4

whiere (3c)p(0) ie given in Pigure 3.9, 5,/3, is given hy the upper curve of Figure
3.4, and Pigure 3.7 indicates a correction 'e.ctor AE/S to the ters involving 8

It is often necessary to calculate the parameter 81(1,1:} of Equetion (3.42). By
Egeation (3.80) this is readily expresssd as

£en?/ ow
5 (5.t -4
1.0 axe\ 3x/
=0
;

1 ¥ o
- nx—-— - - -
is _S_ E -1 laxw ¥y ~#b+i, -ph) > {0, y-sb-t, —nh)]. (3.86)
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where
o _ y(y? + 20%h?%
ax (o'y"‘nh) - T n?ﬁ?(yz : n2h2)3/2 *

The singuiarity froz n =9 1ia illusory, since in the limit

M 6 yombtt, &) - O y-mbot, 0) = £ ! 1
x L TTEE YT S R b ter?  (y-mb-t)?

according as = 1is positive or aegstive. The evaiuation of %, for a duplex tunnel
(b = 2h) w=as accoaplished by Cowley end McMillen (Ref.3.30; 1934), who taiulated upwashk
angle st the tail of an ellipiicaily loaded model without the agproximation that @

is linear in x . They obtained ihe equivalent of

1

%; Esim.t) (-:;)Z i- (-E-)z ) d(%)

for & rapge of o = 2s/b by expanding 5,{9,t) in even powers of t/e¢ and neglecting
contributions froe im| >3 and from |nf > 5 in Equation (3.86). A3 it stands the
double series converges slosly, but it can be transformed into the rapidly convergent
expressior in Equation {(3.25) of Reforencs 3.23. Hence

p i - Z'I’Dt- 2npy (2
o,(y,%) = —-+~——-22(—17“ ‘psin cos')mJ X(ﬂmﬂx)

p=l g2l
a? y+t t\
+ 1+ +--—- +’i”(-—-—-—- ‘1”; I
327rbt b
{3.27)
[
shere F(1+m) = > — 1 is the Trigamsa function® and
(1 + m)?

n=3

1
Xm = K +;7-z,(1;>

ip terms of modified Bessel functions of the secoad kind. It cax be sesn that
Bquation (3.87) reduces to the first of Equations {3.29) a5 both y ond t tepd to
zero. A rigerous gerivstion of the repidly convergent series has beer given hy
Olver®-?}, who was responsible for the tabulstiem of §,(5,t) for b/h =1, 9/17, 2
1871 in Zeference 3.1%7.

When the interference upwash i3 to be calculated frem Equation (3.427) or {3.48),
it is convenient t¢ takbulste the quantities

3, 3 \
.;'it8o(y,t)} and gt-{tS,(y.t),.

* ¢ has been tabulated by H.T.Davis io Tabies of tie Higher Nathexatical Functionz, Volume IX
(The Principel Press Inc., Ipdisas, USA, 1935).

*
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It follows from Equations (2.82) and (3.87) that both quantities are even functions
of ¥ and t ; moreover, they sre unaltered vhen y aad t are interchanged. The
disgonal symmetry is illustrated ir Table 3.V, w»here toth quantities are given for s
closed square tunnel. Another account of the theory is given in Reference 3.18 by the

present acthor and Acum. It is shown that

9 . b =, ¥ y~t-mb y-t+mb /y+t-nb
= {ts (v.t)} = — | ———] - ] - f | ——— ] -
5 W} = g Z{ f‘( ) ) ‘( h f‘\ h
Lll-l
Yt +mp /y-t) Y+t
- dilkinel B GPIN RN B 3.
fl( h ) 2\ h ) 2 h ) ( 88)
and
) b = y-t-ab) ¥y—t +ab\ y+t-—nb\
— {t8 (7.0)} = — —f(————i-f —_— e — -
I I&nhgah/3\h/’h/
Y+t +zb 1 7~ /x4t
-f:’(————\) —r‘/\-—>‘flk ) . (3.89)
\ b j h h
where
£, = T‘K{cosech A}
d 1
£, = * {msech n)\—ﬁ}
£.0) = —10) +—— (1)} ? (3.90)
3 A dA
1 i 1
£.(0) = —fQ) +— {t)} + —
ey )\f( J d.\{ )} lh's
=ith ) = iR GA) + SR (37 + 5K (57N ~ ...} |

are found in Tadbles 1, 2 and 3 of Reference 3.18. The corresponding interference
parapeters from the antisymmetrical part of the spanwise loading are defined in
Equation (3.49), viz.,

r
w 4Xt x b AN
-g* E{KO(L t) +E K, {y.%t) +0<§;)

Then the satisymgetrical interfereace upwssh in Eqnation (3.50j correspending to the
vortex model of Pigure 3.5.d) invnlves the parameters
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P

3 b {’-v y-t-mb {S'—t +mb /y+t—mb
— .t = ~1)3¢ - - f + e
% {try (v, 0} o | 2 (-1) f,( - - £, -

_ 1
+f (ynﬂ’b\ -f (y ¢ +f (L“ J (3.91)
1 / 2 2 h

\ b h

and

r /3 -t -mb\ (:'—t +mb\ ﬁ+t—mb>+

@
b
5 e, (v, 00} = prey Z(-n‘{- fak - / -1, T )+ I, N

§=1
.
. - /s
+ 13/3’+t+”b P Cai By (A . (3.92)
e AR

which way be éomputed for any rectsngular tummel froax BEquations (3.90) for f 1()\)
and £,(A}) and Table 3 of Reference 3.18 from wshich, with tbe use of second
differences, f (A) way be obtained to four decimal places.

For models in the central horizontal plane z2=¢, w; can be evaluated quite
easily from Equations {3.79) and (3.80) for a general value of x . The terms of
erder (x/fh)® will become significant 1Y the model is of great streamwise extent,
for example, a large sweptback wing oi a complete aircraft. Moreover, the errors in
assueing a linear upwash will incresse ucarly sevenfold as the Mach number increases
from @ to 0.85. Furthermore, the foregoing method cannot be applied to yawed or
asymzmetrical models. In such ceses. or when higher order terms sre required, it is
convenient to replace the distributad vorticity hy point concentrstions as in
Figure 3.8(f). Following Katzoff epd Hennah®-2°, we replace Equation (3.78) by the
upxash field due to a line doublet of strength

L Eim (2Xt) = L/(o6)
=G

>

extending along the x-axis trom the arigiu to infinity. This upwask field is

P ON(Biz.y,z)

S e — 3.93)
477 dy (
waere, from Equation (3.79),
_3_ exy.2] = yi-z2 . x[(r?+2) (22 +32 - 22%) - 23227 3.90)
a. 2 (y2 +22)2 (yZ ,-.zr)z(x? +y2?22)3/2 ’ *

Now consider a number of lifting elements Ly = £UP;  at positions {24, ¥, 0) in a closed
rectangular tunnel. IR accord with the image syst=x in Pigere 2(a) of Reference 3.20,
the interference upwash is expressed as
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L ) X-x ;
¥ (xy. 0 = 24_,,:,3 ZZ(—l)“a—y '<5N . y-mb—h-tyN.--nh)} + )
N -o
K. ' 9 X~X
Sran 2R a9 |
-

This is conveniently written in non-dimensionzl form
F ~¥ o X—-X y-b+y.]
Y=Yy A L k}l.

1] L [ X-X y-b+y, X-X
i _ :E : N N N N
— = w . + W .
v 5 mzsz“(ﬁb b ) ‘(ﬁb
{3.85)

 —— ’
L Miaepe Wu!u"m ;‘,5 '!alﬁaEI%
8

. where i

x ¥ b <, 2
"™\b b an -1)% — [W(x, y~2mb. —nh)]}
s 3y

! . (3.86)

. x5 b"’arw( o]
b v/ 47723yL .3

Thus wilu may be evaluated from charts of the functions ¥, and ¥ . Tte
former chart A is illustrated for ratios b/h = 275, 10/7 and 2 respectively in
Figures 7(b), 7{c) aad 7(a) of Reference 3.20. Tae lastter chart B in Pigure 5 of
Reference 3.20 is independent of tunnel shape. Katzoff and Heanah describe in detail
their graphical precedure for the computation of w, o3 zavwed 1ifting wing. They

i

'

o

; also give useful advice on the calculatiop snd preparation of cherts with particular
: reference to rectangular tunuels with one or more of their zides open. Any such cun-
¢ figurstion can be trested by means of chart A dependent cn b/h  and ths floor and

roof condition and thke universal chart B, but there may be changes of sign in
i Equaticn (3.95). To expedite the caicziestion of chert A, & horizontal row of sufficient];
£ distant image doublets {|m| > 2, say) may be repiasced by 2 row of horse-stoe vortices
{ of span 2b, so that all the trailing vortices excipt the innermost ones cancel in
pairs; for large enough n (|n! 2 2, say) the upwash field from the complete row of
doublzts is spproximetely that of a two-dimensional bound vortex exteading froz y = -w
to y =+ , as illustrated in Figure 3.10(a). In the case of closed side-walls and
open floor and rocf (type (4) of Section 3.2.2), when all tu2 images are of the sane
sign, Katzoff and Hannah suggest thst, instead of being extended hori-uptally, the
distant image doublets are extended vertically into & source line and a sink line at =z
distasce h aspart. The source and sink lines in any column cancel in pairs, and only
those at a distance 3h above or belcw the inner group of doublets (|mi € 1, [m] < 1)
remain, as illustrated in Figure 3.10(b). Aithcugh the image system for a rectangular
tunnel of type {4) is not valid, the procedure adopted here amounts to an approximate
suzmation column by column (first with respect to n ); it folloews from the discussion
above Zguation (3.17 that this leads to 3 correct approximatican while the alternative
array of Pigurs 3.10{c) would fail.
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A further complication may arise when the displacement of the model from the central
horizontal plane z = 0 can no longer be ignored. Tais can result from long models
at high incidence or when the floor of the tianel is used to simulate the grouna. In
the former case the interference corrections can be large and changes in the distance
d of tke 1ifting element from the floor can te significant, as has already been seen
for a small wing in Figure 3.3. 1In the latter case (3h ~ d) may be even larger, and
the interfererce corrections, though <maller than nsual because the principal image in
the floor is not included, will again depend on d . Silverstein and %hite (Ref.3.32;
1635) mude an early coatribution in this “ield, mainly with regard to interference
effects on the downwash at a tail pimme (Section 3.6.2). Bromn®-3? derives general
formulae for (80)0 and (80)u . the corresponding corrections to wind-tunnel experi-
ments in ground effect, and he gives results for b/h =2 and 4 . Some values for
the duplex tunnel sre reproduced ir Figure 3.11. In a2 typical case (d = 0.25h}, the
principal image in the floor accounts for a large proportion, {(80)U - (So)ug}/(so)u.
of the interference, but the ratio (89)U (SO}D increases from 0.036 to 0.118 as ©
increases from 0 to 0.6. Provided that ‘h is fairly small, crude estimates of
(sn)ng should suffice (Section 3.6.3).

The quantities & (y,t} and 5,(y.t) for off-centre models are formulated in
Apperdix II of Reference 3.4, and 2 simple approximation to the double summation for
Sl(y.t) , besed on Reference 3.3%, is ipcluded. A fuil methematical discussion of
So(y,t) end interference effects st a lifting line displaced vertically from the
ceptre line of the tunnel is given by Sanders and Pounder in References 3.23 and 3.24.
They give expressions in Bquations (1.51) and (1.52 to 1.57) of Reference 3.23 for the
interference velocities vy and uy respertively. The effect of the sidewash v
on the aerodynamic forces is unknown, but uy will give a correction AU to the
strean velocity gskin to that in Figure 3.3(b).

In practice, the distance d between model and floor will depend on x , so that
the complete evaluation of streamline curvature mould involve displacemeats in z .
This effect kas been considered in References 3.32 and 3.27 in relation to the downwash
field near a tail by intreducing two extra parameters d/h and d’/h corresponding
to the vertical locatiecas of the lifting elezent and the required . In the approxi-
mate representstion of Figure 3.10(a)}, iie odd rows would be lowsred by the distance
(¢ - 3h) snd the even rows would ve raised by the same amount. Although it is inadmis-
sible su to split the image system in two parts, just as Figure 3.10{c} is incorrect,
it is possible to construct the reguired upwash field from that of sn isolated doublet
and that of Pigure 3.10(b) with double the vertical spacing. We need the complete
upwash field of = doublet placed centrally in a rectangular tunnel of breadth 2b ,
height 2h , with closed sides but open roof and floor

- -]

x y z b* :E: ]
.|, =, =} = — -2_ — [®¢x, y-2mb, z-2nk)) . (3.97)
c(b b b) dn el ;

where OW/ov is defined in Equation (3.94) and the sumxmation is made first with respect
to n . “The final generalization c¢f Equation (3.95) is
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Fi. thmb? {_4_1;%'.\,,(";:; ' yf"n' z"*u)} * i

Lg (XoR Yo¥y Z- z\ W(x-xN y-Yy z—h+zh.)+

C,Bz;’b'b, B b " b

-3, -b Z2-2 - ~b¢ Zz-h+2
X 1‘c(xa:.e 3 b+y,, 2 N‘) _wc(xﬁ:x 4 - I - N) . (3.98)

4

Since an approximation to Equation (3.97) may be =ade on the basis of Pigure 3.10(b)
with double the vertical spacing, it may well be practicable snd desirable to use
Equation (3.98) for o very long and slender model at high incidence with the simplifi-
cation that y = ¥g = 0, while (z - zN)/b may be far from small.

3.4.2 Octagonal Tunnels

Unlike rectangular tunnels, an octsgonal tunnel has a0 exact imsge system. ALy
attempt to construct such a system for a closed bLoundary containing an obtuse angie
is thearted sooner or later by the demand for images within the boundary. The treat-

pent of octagonai tunnels is necessarily approximate, aud artificial methods have to |
be introduced.

In principle, the two-dimensional probles of obtaining So(y, t) can Ge solved by
transforming the intericr of the cctagon intc the heif plane; the Schwarz-Christoffei
theorem achieves this, but the algebra is prohibitive fer & general octagcmal boundary.
Gent®-!3 has derived the appropriate transformation for a regular octagon of bresdth b,

Q 1
@ = 1.7191 (3b) I TT (€ - F)~*dn (3.99) :
vo P71

with Q1 = Q;‘ = 0.1989 and Qz = Q;‘ = 0.6682 , so that the real sxis in the

Q= Y + iZ plane represents the octagon in the « plane. A convenient alternative )
is t¢ map the octegon on & unit circle by the related transformation :

iv P2 dQ

W = — e ———— » )

T, (3.1003
o @+ B¢

- emn e m—

where « = 1.9565 .
is inverted to give

fox  x 1 /wx x\ 11 fwx <7
= [~—w=~—] + —_—— w3 ... .
\ib 2 36 \Ib 2 4895 2

{

A vortex pair of strengths 3K at «w=i(ib +t) and 2 point «w=- i{lb + ¥) transform 1
1}

!

This is sritten as s rapidly convergircg powrr series in ), which

into & vortex pair of strengths 1K at (I = #T and s point (7 =Y in the plsne of the
unit circle.

Hence the upwash interference parsmeter in the « plane of the cctagon
becomes
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ow c T T ! dan t
5 (y.t =__;=__|'_ + — I__.+—-—-.], (3.101)
0. 9 4Kt 8t | T2-v2 172-y?||dw tz-y‘_!
where
ans K 0 K 1. 3 6 \)
l——' = —(1+Y%)% = —[1+=Y® - —Y¥Y'¥ + ..,
dw b b 4 32
kt 1 [t 11 [kt
T = —+—~|—)-—[—) +... .
b 35\ b 4896 \ b
v 1/xx\° 11 [x3\V?
Y = ~¢4 —|~) = —|— +oen
b 36\b/ 48%\¢b
It follows from Equations (3.160) and (3.101) that
Ox? V2 - 1«2
50(0.0) = 7 = = 0.1262 ,
8rb 4n

consistent with the table ia Section 3.2.3. Geat also derives this result from the
transforsation (3.99). The mean parazeters (3,); eand (8,); for unifora and elliptic
loading are given in Tables 1 and 2 of Reference 3.13 for o = 25/b up to 0.8. Larger
values 0f o wotld require an increasing number of teres in the power series. By a
simple sdjustment to Equation (3.100) a similar unalysis could be developed for any
regulir polygonal tunnel; the result corresponding to Eguation {3.101) would rapidiy

epprosch that for a circular tunnel (Section 3.4.3), if the numder of sides were
increased.

For a more general class of closed octzgonal tunnels Batchelor®-!! has supplemented
the image system for the rectangular tunnel by superposing the doubly infinite systes
illustrated in Figure 3.1{c). Here each vortex represents a quadratic distribution of
vorticity increasing froam zero at each corner tc a maximum ka at the centre of esach
fillet. Bach fillet of length a is assumed to be tae hypotenuse of an isosceles
triangle, so that their images fore an array of squares. Batchelor's aethcd exploits
the fact that the izsge system for the rectangular tunnel in Figure 3.1(b) gives
approximately an antisyametric linear variation in norsal velocity v, across a fillet
with distacce along the fillet. The same is true of the corresponding normal velocity
from the vorticity round the image square, and the autual effect of sny two squares
can be ignored. The vorticity k! is chosen to caucel the velocity v, 8 best it
can. Batchelor’s formulae have been generalized for asbitrary a ., b and h in
Refereace 3.12, and the result may be expressed as

c 06 <
S (y.t) = — & (y.t) - st ™ + sl )] . . 102
ol¥. ) o 15.36!'; X(sp. 1) +X(s;. 1] (3.102)

wshere the cross-sectional area C = bh - a2, 80'(y.t) is Eo(y,t) for s closed
rectangular tunnel ss given in Equation (3.82), P is the doublet strength 2Kt snd
the functions G and X are defined below. G/P is a coustant dependent on the tunnel
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geometry and is proportional to the gradient of Vo at the centre of the fillet due
to a sanrll wing® at the tunnel centre; from Equation (5) of Reference 3.12,

G _ 2mia (1 + cos 2m cosh 2nK + sin 27k stnh 2nN)(sin 2 + sioh 2N)
P b L (cos 2k + cosb 2N)?
sin 2nM cosh 27N
- . (3.193)
(cos 27 + cosh 27N)?
where
a
28 = —— ]
b2 )
ms  (2n + 1)wh
o = —_—

w2 b

The function X represents the upwash field of a column of image squares and is given
by Equaticn (9) of Reference 3.12 plus an extra temm, viz.,

. 2 [\’ -
8T = —|—) (-~25°+58) +
1S\ h
V2 [7a\* 3
+=~—!—] (- 6S° + 3)T +
15\ 1

1 [7a\®
4 —f—] (245° - 20S° +8) +
30\ &

V2 fra\¢
+ -—-(—- (128s° - 6083 + S)T +
180\ b

8 [fmay 7 s 3
4 — -—) (- 720S7 + 840S5 - 1825% + S) +
sso\ b

172 [7a\® 1 s 3
+ —} (- 5040S° + 4200S°> - 5465’ + S)T , (3.104)
113400\ h

where S and T take the values

/2 + b 1 2y + 23b)

2 _
s' = sech n
7{&/2 + b 1 2y + 2ah)
'r: = tank :
2h

¢ Note, howsver, the remarks atove and below Equation (3.141), that G/P wiil depead cm ¢
whes d/h is large.
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The parazeter (8,)p , as defined in Equation (3.46), has been derived approximately
in References 3.11 and 3.12. For three particular octagonal tunnels (80)g as a func-
tion of o mey be identified with the quantity %8 from Teble 4 of Reference 3.11
and from Tables 1 and 2 of Reference 3.12. (250)s for o0 =0 is given by Equeticns
(3.102) to (3.1C4) with y =t =0 . This has been computed for the regular octagon
a=b(V2-1), b=h. Equation (3.103) gives Gb%/P = ~1.307 , so that Equation
(3.102) beccges

-

2 x -1.307
———— (0.0819 + 0.0053 + ...)J

c
80(0.0) e 0.135678 -

0.82843 x 0.15147 = 0.1255 ,

which is to be compared with the exact value 80(0. 0) = 0.1262 from Reference 3.13.
The expansion in Equation (3.104) must fail if a/h is too large, bu® it appears to
be satisfactory provided that a < 0.35h . The regular octagen and the NPL 12 x 9
tunnel have slightly larger fillets ihan this.

A more elegant, but less accurate method of desling with the same problez has been
foraulated by Loos®s2!. He replaces the distributed vorticity around Batchelor's imege
"squares by & semi-infinite trailing quadrupole vortex st the centre of each square.
The strength of the quadrupole is determined from the condition that there is zero flow
across each helf fillet. Unfortunately, no numerical results are given.

The accuracy to shich Vp is canceliled by the squares of vorticity is discussed in
Reference 3.12. Witk reference to Figure 5 of Reference 3.12, the accuracy deteriorates
8s wing spaan incresses; for a typical span, ¢ = 2/3,, it is found that the maximum
uncertainty in G/P 1is of order 20%, and this can well be larger if the filiets no
longer form isosceles triangles. In view of the consequent uncertainty in the second
term of Equation (3.102) for wings of large span, it is prertirent to consider the
following artifice. Equation (3.28; gives a good approximation to (80)3 when O is
small; it may be rewritten as

th + ¢
(). = (5,..), —— when c = 0. .10
e = (Gondg —— (3.105)
¥hen o is very large, the fillets will have a negligibie effect compared with those
of the principal images in the side-walls, and we 38y write

wshen c =1, (3. 1086)

since the influence of the fillets on w. Bay be neglected. Since (80)8 is an even
function of o, we combine Equations (3.105) and (3.106) to give

-

c C
(Gglg = (g [(% + EE;) - (‘% - .2?!;)02 . (3.107)

where (8”)g is given by Equation (3.84) or Pigure 3.9 for the rectangclar tunnel of
the same breadth and height. The success of Fquation (3.107) is demonstrated in Pigure
3.12 for the regular octagon of Reference 3.13 and the KPL 9 x 7 sad I3 x 9 tunnels
corresponding to the respective Tsbles I and 2 of Refereuce 3.12.
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Tye trestwant of rectangular tunnels in Section 3.4.1 includes sn analysis of the
streamline curvature through the parameter Sl(y.t) of Equation (3.42). There 1s no
corresponding theory for octagonal tunnels, and we can suggest notking better than
Equation (3.31), which is ncw written as

th 8,5y, t)
§,(v.t) = &,y 20w B (3.108)
C sog\yvt)

. where 8 o(7.t) is given by Equation (3.102) and the parameters 8 ¥, t) and 8 2.t
are those for the basic rectangular tunnel from Equations (2.82) and {3.87). Hore
simply than by Equaticn (3.103), it may suffice to eveluate the upwash interference as
if the tunrel were rectapgular aand then to apply the correcticn factor

°h\ .(-’19_5- ~ /zm (2.109)
C; Bople \ ¢ 2bh ”

to 21! contributions involving Sl(y,t) . With references to Equation (3.35), it is
suggested that the elliptic losding factor W bLe used, and that AcutL be eveluated
as if the fillets were not present snd splii into two parts

/

4L S Acx s

—_— =z (3 .} { ) = (5 ) .
(3) = & ower| () - 0w

The first part would be replaced by the corresponding quantity for the octagonal tunnel,
and the second sultiplied by the factor (3.109). Thus

Ax /bh\ 8 (=) S ) (_*’_’1;
0’E c
-/

N
e ——

- 1O

cb \C/ (SOR)B \\CL/? ¢

The drag correctlon of Equation (3.56) does not involve Bl(y,i) and wculd simply
hecome

- II . (3.110)

O S

~2 = Z(s5) {3.111)
2 2’E AR

cL C

for elliptic spanwise loading. The principle of Equation (3.109) can be applied to the
residual correction Ac;/cL from Equatious (3.57) to (3.59). (Aq.)2 depends only on
streapline curvature, but cas_)l has to be split into two parts

(ac), = 5y, + ), .

where (Asu),, corresponds to

w, Da} &S {tS( o) t"" 4 t 815)
W, 4, | 7C ¥ s? s) c ot
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in Bquation (3.58). (AC )., has to be evslusted for ihe ectagenal tunnel ss if
8,(v,t) = 0, and the remainder Ac, - {8c.),, = (Ac,),, + (AC,), for the rectangular
tunnel. Thus

ac, _ 88, /oY (g 9_0__ (_AC) . (3.112)
€ (803) Sy Sk

nleo

The principle can of course be used with arbitrary spanwise loading exd with any method
of correction to measured quantities suggested in Sections 3.3.3 to 3.3.6, provided
that 80('3. t) iz calculated from Equations (3.102) to (3.104) and tke factor (3. 10%)
is applied to 21l the vpwash inter{erence associated with streamline curvstura.

interfevence effects ca off-ceutre models in a particulsr octegonal tunnel have been
investigated by Batchelor irx Reference 3.34. He has shosn that fillets have a negli-
gible effect on the incremental interference upwash due to a vertical displacement
(d - %h) of the svdel from the centrsl position for all practicel values of d . 3t
therzfore scems that Equation (3.102) may be used with SOa(y,tj es given in Appendix II
of Reference 3.4. The extent to which this holds for vzlues ot & outside the range
0.4h < d < @.8h , say, could be checked by =2n extension of the analysis for the regular
octagonal tunnel in Reference 3.13.

3.4.3 Circulsr and Elliptizal Tunnels

Wniie rectangular and octagonsl tumnels are plentiful, there are not many ellipticsal
tunnels in regular use today. Closed elliptical working sections are not particularly
convenient, but the rounded shape is more appropriate for a2 opep jet and a fey open
elliptical tunnels have survived. Only the simplest wall interference corrections are
likely to be needed, end this zmay explain the lack of theoretical developments for
eiliptical tunnels in the past twenty years. Cm the other hand, the special case of a
closed circular tunnei has received full developzent.

A brief description of the early work will suifice. Sanuki and Tani (Ref.3.35; 1932}
use the transformation

y+iz = lcosh (m+il) . (3.113)
so that a segment of 7 = 7, correspords to an -jliptical boundary of breadth
b = 2lcoshm, and height h = 2lsinh7, . They solve for the stream function in the
(7.0) plane and evaluate the parameter (8 ) for uniform spanwise loading from
Equation (3.45). Por 3 wing situated at
Iy} < 1 cosh 7' cos U’ ]
z = [ sinh 7' sin U’ I

in & closed and open tunnel respectively

). = sinh 7, cosh "Iol.icosh’nn' cos?n{’ N i sinh’an’ sin®nl’
o’u 2 cosh¥y’ coszg'[u=1 n{e?7 + 1) £3  n(e®% - 1)

odd even Vo (3.114)
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5 sinh 7, cosh n°r§" cosh 7’ cosn(’ . i siah%n! stn®nl’ 5. 114)
@ody = -3 cosh*n' coszcil;§1 n(e®™™ ~ 1) i n(ee 4 ) ‘
odd even

For s centrally placed wing 7' = ¢ and the summstions in even n disappear. In the
limiting case of small span, ! = $7, the result for e closed tunnel may be identi-
fied with the first of Equations (3.25). Similarly the second of Equations (3.114)

for an open tunnel reducez to the first of Equations (3.30) with a change of sign and
6 = m, = tanh”™*(h/b) . FPor wings of finite span and b/h < 1 there would be & corres-

ponding analysis with the transformation
¥y +iz = [ stph (9 + i}

Curves® of (&), against o = 2s/b = (cosh o' cos {')/cosh 7, are given in Figures 4
and 5 of Reference 3.2% for wings lying along the mzjor axis of the elliptical section.
It is found that the minimum interference parameter for szmall wings in a closed tunnel,
8, = 0.1.37 , occurs when b/h =2, as does the afnimuz §, = 0.119¢ for closed
rectangular tunnels; the corresponding migiwz in —60 for open tunnels occur when

b/k = 1/¥2 . For any particular closed or open elliptical tunnel the minizmum inter-
ference parameter occurs when the wing tips are situated at the foci of the ellipse,
sotaat ' =0’ =0 and

o = 2l/b = sech n; = (bz-hz)%/b

This configuration is of partgcular interest when the wing has elliptic spanwise
loading. Glauert has proved the remarksble result that the interference upwash is
constant along the wing span, whether the tunnel is closed or open (Ref.3.1, pp.23 to
31); respectively

1
h b b2-h?)7
). = —— or - . when o = -‘———)— . (3.115}
o’e 4(b +h} 4(b+h) b

The important general solution for (éo)z has been obtsined by Rosenhead (Ref.3.36:
1333) in termss of elliptic functiors. Tke resulting formulae are rather coxplicated
and comprise four expressions for (80)E according 83 s> h or h>bH and the
boundary is closed or open: his useful numerical data are presented in Figure 3. 13.
The special case of a eircular tunnel gives a s3imple result for the parazmeter 5°(y,t)
of Equation (3.42); for clesed and open tunnels respectively

Rﬂ
3,(7.t) = t——— o | 3.136
o (R® -t .16

where R is the radius (Ref.3.1, p.13). It can be shown (cf., Ref.3.4, Appengizx II)
that from Equations (3.46) and (3.116)

® Sanuki’s tabulated values sppear in the Appendix to Reference 3.14.
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i 2 2 -%{ 7v\?
(8:)g ;;Jfo J. 87, 1) (-:-) 1- G)} - G)

1
t—s 7 - £(cH] {3.117)
mno

vhere o = s/R and the complete elliptic integral
'."7
27 B
E, ) = f (1 -o" sin%p)? d¢p .
0

There is the ccnvenient expansion of Equation (3.117)

1 l 3 325 32,527
- : LI 8 4 12
@gg = el TR TEet? TEerer? | 3. 118)

positive for g closed and negative for an open circular tunnel, in agreement with
Equation (6.8) of Reference 3.1.

Analytical expressions for (80)u have been obtained when the tunnel boundary is
partiy open and partly closed. Kondo®-® considers circular tunnels wilh a symmetrical
closed portion below the wing by transformipg the interior of the circle into ar infi-
nite strip with one straight boundary open and the other closed. For & small wing,
zero lift interference is found when 36.4% of the circular boundary is closed, and the
percentage increases slowly with wing spaz. Riegels?®:37 has extended Kondo’s analysis
to elliptical tuanels and gives numerical resuits for h/h =v2 . For exenple, the
clcsed portion can be chosen sc that ](So)ul < 0.008 ror a range of span 0 < c £ 0.6 .
Riegels also treats eiliptical tunnels with closed portions abcve and below the wirg b
trausforning the interior into a rectangular boundary with open sides and closed floor

and roof; but this arrangement is s less effective means of minimizing lift interference
for a range of wing span.

Before we consider further numericel results, it is convenient to outline the more
elaborate mathematical methods that are needed to obtain the completé interference
upwesh field due to the lifting element. General theories for closed and open circular
and elliptical tunnels are deveioped by Lotz (Ref.3.38; 1935). An independent trest-
ment of the circular tunnels by Burgers®-3? aiso eopearea in 1535.

For the circular tunnels Lotz2:?® solves=it® differential Eguetion (3.2) in cylin-
drical co-ordinates for

¢ = $, + ¢3 = 4; +6 +9, , (3.119)
where ¢E is the potential field of the horse-shoe vortex. @1 corresponds to the
izage L-vortices of Pigure 3.14 so that (§, + §;) satisfies the boundary conditions
et x=0 and o, and éz is to be determined. With allowance for compressibility
the assumed series to satisfy the differential Equation (3.2) is
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= - cos T D osin{ —! J = —~—— . (3.1200
’ o = o SpR/ P\ PR /

where 37 = 1-M?2, D,, are unknown coefficients, J, are Bessel functions of the
first kind, and the periodicity in x will disappesr as p is allowed to increase
indefinitely. For the closed tunnel, zero normal velocity on the boundary r =R

gives the condition

3% 3 [ *°
2 = o — (& o+ Py = - g{ —) cos nf, say,
or ar = n}? o\ &
whence, by Equation (3.120},
1 P knx’ / x \
Dpy = ~ T €, —) sin : £3.121)
: ixnd} (ika/p) j_o \,.59 ’*’R/
for the open tunnel, zero tangential velocity on the boundary gives the condition
3@;2) ° (3. + (2 K < ! /x\ -
= - ¥ = o — — |} cos ne say.
3x ex E ! anR £ "\3}1) nd

whence, Uy Equation (3.120),

1 P x\ /knx\‘ x\
D, = --—-—-f Lleicos [—)dl—,; - (3.122)
kmd (ik7/) J_p "\ SR/ SR\ 3R/

After the coefficients from Equation (3.121) or {3.122) have been substituzed in
Equation (3.120), the substitution k#/p = q is mede as p -, so that

-

1 [uns\ i
Z ~-P —/ is replaced by - F(qg) dq
Q

9

Thus the respec\;ve expressions for the upwash w, = #( llr)E@t/B:’ in the plane of the
wing (8 =@a/2 or 3n/2 in Figure 3.14) become

- - 3

.- A = < D
K sin (ex/{R) J_(iqr/R)
wi o= o — n sin nf &8 §,(&) sin (g€) d& ! da
o n=1 Yo r"q‘]r.(m) ¥ R
) ;
, K ' sin (ax/3R) J_(igr/R) | P°
"z(") = +— n sin nf - 4 1,(£) cos (af) d¢ | da
dnr T4 Jo 7@, (1Q) | Voo |
Py
(3.12%)

Along the axis of the tunnel r = 0 Equations (3.123} become relatijveiy simple expres-
sions, sirce

ik
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4, (iqr/R) J (iqr/R
L. % and, for n>1 , _ﬂgll__l —

iqr/e iqr/R :

for closed and open circular tunnels respectively

K [® sin (ax/BR) | [ 1
(- . |
" . ———— 2,(£) sin (q€)df | dq
2 87R Jo ﬂj;(iQ) Joo ! J
> . (3.12%)
£k [® i sin (ax/8R) | [® .
#? = f L(£) cos '@&14€ | dg
87R J, nJ(ig} Voo

K x\ 1 §" 2 ]
( } = —;j‘ 3 (¢, + @{”)rzk cos 8 d9 for the closec tumnel

— (=} =
>1
8mR "\ BR o
3
K x 877 @ .
Py ll(EF: = -_';;- 5 (3, + 3{??) .; cos & d6 for the open tunnel
: 7/ 0

P

Lengthy expressions for the velocity potentials €, ('’ and &{? are defired by
the vortex configurstions ir Pigure 3.14. The equal and oppesite interiference upwashes
corresponding to ®{!' and &) are readily defined in terms of the fuaction ¥(x,y,2)
of Equation {3.79), and the limit as z -0

aq{l) .

(1) - 2y _ s _ £t l- ‘:»/E

W, F oWy = = 2 1+ 2 2 F3 +
3z Ry | Ryt + {R%+r0) 2+ (xtB) )

N4

+ At |-1+ xt/8 (3.125)
@R -y R -st+H{RZ-g0) 2+ (BT T

The tote: interference upwashes in the plane of the wing are

W{”(I.S‘) ?{” + wf‘,” for the closed tumnel
. €3.126)

:g”(x.y) = w{? 4+ w{? for the open tunnel

It %::] be cbserved that wé” and wg"’) in Equations (3.123) vanish shen x =0
and the whole interference upwash cczes from Bquations (3.125). On the cther hand,
for 2 small wing (t — 0) Equations (3.125) give zerc upwash gradients 31‘1“/31 and
z«gz;,'ax st x = 0, sc that the stressline curvature cozes eatirely from Equations
{3.123).

In Reference 3.39 Burgers considers point concentrations of lift at arbitrary posi-

tions in the tunnel; for an element of 1ift Ly at (xy, y,) in the plane z =0 the
upwash velocity in & closed circular tunnel is obteined as

« -R&. el 2~ - - L TR IR AR e T




R O )

135

3% Ly < n%_(k.¥) J_(K ¥yy)
i, RPN 8} = N n'"s o\ In K (X~Xp)/B
wy ' (xy) 700 nZ Es " e 87N (3.127)

oz K;;’R’ - nz)ny [Jn (KSR)] 2

when (x - xN) €0 ; here };-' denotes that, for each n, s extends over all positive

roots of JI'I(KSR) =0. Wen (x-x) >0
'N(Z'Y) = 'H(moy) - 'H(ZXN—X.Y) . (3. lm)

The corresponding result for an open circular tunnel, when (x - xN) 0, is

Ly < 3 (Ry) I (RY) % (s
w{(x,y) = —L nos ‘n &K Ke(z-1)/B (3. 120
: a2 ;Z; zs: (RRY?5y, [37 (RR))? )

shere :;- now denctes that, for each n, s extends over sll positive roots of
Jn(:?sR) =0 . Again Equation (3.128) holds for (x - xx} >0 . The interference
upwash velocity is obtained by subtracting from w,.(X,5) the uncenstrained upwash

1
L, 2{(x-x,32 + By -y 2}
WeolX,5) = — £ i 2L :,y; 1) (3.130)
’ 47U {(x-x)% + By -3 32}7 - (x-x)
due tc the lifting elexent. Thus for a8 number of lifting elements
w (x,y) = 2;" Deytx, 3 - wyo(x. 3] (3.131)

in accordance with Equations (3.127) to (3.130).

An cutline of the treatment of elliptical tusceis by Lotz3+?° will complete the
tasic theory. She uses the elliptical co-ordinater of Equation (3.113), sc that the
differerntial Equation (3.2) becomes

22 0 1 (a?@ a?@)
R, = 0. (3.132)

9x?  1%(cosh?n ~ cos?l) -3—=7-5+ f

The solution is again obtained in the form of Equstion (3.119), wiere @x corresponds
fo Figure i4, 15 or 16 of Reference 3.38 and

K 2kmx _
%, = - 4_‘"2”.‘; €, Sin (Ef—) W () 1, (0) (3.133)

where b , the tunnel breadth, is the major axis of the ellipse. By Equations (3.132)

b 4

and (3.123), with separation of the variables 7 and {,

4% 2k%?12 -
l"k-( cosh2n+viN, = 0

d._,lz pzbz
P (3.134)
a%M, . v S ; _
Tl + e cos 2L+ v )N, = O
4
.- -
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where v is determined, for each k , so that the Mathieu function i, ({) is periodic
in I . As for the circular tummnels, p is eventually allowed to tend to infinity so
that 4‘;. is replaced by an integral. The final expressions for ‘1>2 for closed snd

open elliptical tunnels respectively are found in the formidable Equations (73) and
(50) of Reference 3.38. By Equaticns (3.113) and (3.119) the interference upwash
becoaes

v - _3_@ £ 5 = 3@1{ cosh 7 sin { 3@2+ sinh ncos { 9%,
17325172 7 3z " I(cosh™-cos?l) 3 I{cosh®n-cos?) &

{3.135)

Although Lotz gives graphs of w; for both closed and open elliptical tunnels
having b = hv/2 , the calculations only cover small span (0 = G) and uniform loading
when o =3v2 and the wing tips lie at the foci of the ellipse. These difficult
calculations (due te Riegels) illustrate a technigue for handling Equations (3.133} to
(3.135). Nevertheless, for general elliptical tunnels the data in Pigures 3.5 and
3.13 may have to serve. The interference corrections Ac and ACD mast then be
evaluated from Equations (3.85) with the aid of (8_)); from Figure 3.13 and 3,/
for & small wing from Figure 3.5 or Equation {3.31). For closed tunnels it seems
better to invoke Equations (3.110) to (3.112), where now bh/C = 4/7 . The quantities

@ = 5
CL 3 cl. cL 3

kave to be evaluated for a closed rectangular tunnel of the same breadth and height
as the elliptical tunnel. The ratic (5.);/(8,;)y for arbitrary b/k and o a=ay
be evaluated from Figures 3.13(a) and 3.9. Equation (3.112) for the residual correc-
tion to pitching moment involves the quantity (2C)),,/C; which is to be calculated
froe Equation (3.58) as if Sl(y,t) =9, i.e, as if

r 1 1 S
et _ba J. 1-W I 4Ts 2 w5500 d(i\ d<-{>
[(UCL)O.'IS CL] [] 0 le. at ¢ ¥ S/ s
slg PO £\ )2 t
E{; L 5 {t8,(y.t)} {1 - (;)} d(-s-) -Gy |

if the weighting factor # in Equaation (3.55) and the circulation " in Equation (3.47)
are both elliptic. This requires the knowledge of So(y,t , waich is forzmulated on

the basis of Reference 3.38 in Equations (2) to (3) of Reference 3.40 by Cavin and
Hensel; their function 50 requires the factor 0.125 to ke ccnsistent with Equation

(3.42).

For circular tunnels, exact values of 81 are available for wings of small span.
Von Baranoff’-*? derives the result

1 f° a% -
5, = _']' q 2(q') &
47 I(®
1 x!
= -—r 3-%(1) dég = 0.24975 , (2.138)
7, I(Q)

R T S—
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when the tunnel is closed: for the open circular tunnel
1 1 a%
§, = -— K@ dg = - 0.19921 , (3.137)
wm §, 1,(Q

where I1,(Q) =-iJ,(i¢) and K, (q) are the modified Bessel functicns. Lotz’s calcula-
tions are consistent with the latter result, but overestimate the former. 1In Pigure 8
of Reference 3.19 Eisenstadt gives further evidence to suggest that Lotz’s calculations
for the closed circular tunnel are incorrect while those of Burgers are reliable. The
relative sizplicity of Equations (3.127) and (3.139) as compared with Equations (3.123)
and (3.125) commends the method of Burgers as a computational procedure. For the closed
tunnel, however, both methods have received important development. While Eisenstadt?-?®®
has extended Lotz’s method to treat a swept lifting line, Sivells and Salsi3- 2% give
extensive tsbles and charts based on Equation (3.127).

As a iifting element Eisenstadt takes a skew herse-shoe vortex with corners at an
origin on the axis of the tunnel and at a point (x,r,9) = {t tan A, t sec A, 37) in
the co-ordinate system of Figure 3.14(a). Thus A is the angle of sweepback of the
bound vortex, and %t is the perpendicular distance between the trailing vortices. Re
chooses ‘I’l to correspond to the L-vortex of Figure 3.14(b) in the helf plane & = -}1' .
so that 99,/9z is indeperdent of A and is given by the second term of Equation
(3.125). 1In ar appendix he proves the validity of Lot2’s method and discusses the con-
vergence of the series for &, and its derivatives. In Reference 3.38, A, +®,)/or
is even in y but not necessarily odd in 2z , but Eisenstadt’s quantity

3, ) K < x
—2 =z o= +d) = - — ‘z‘(‘*) sin {n(@-17)}
o o ® 8 R £ TR\ R :

is odd in 2z but not necessarily even in y : moreover, @2 is not in general odd in
x . Therefore Equation (3.120) has to be wodified and the first of Equatiocas (3.123)
is replaced by

9, K < ® I e/ i [T a\ |
—= = F — n cos {n(B-ln)}I e I £,.(5) cos ( -——)d' X: I
— mg W | e |, %€ o€ - o) 6| ¢

(3.138)

where the negative sign corresponds to y > § (£ = t7) and the positive sigm to
¥y <0 (6 =37/2) . The integral in sgusre brackets is express:d as

. )
QX

. cos (e -) 48 = 20.(q) sin o+ 2 (Q) cos
&y Y, a &

-

Br

and the functions 1.(qQ) and k,(q) are tabuiated for n =1,2,3 . Finally in Table ¢
of Reference 3.19
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is given ss a function of four parameters, in the equivalent incospressible flow
{Table 3.I) these parameters tecome

t 1 3
S+, ot Bt ). sad %(1 + B2 tar )

x

B

which are somewhat inconvenient unless N =0 .
Sivells and Salmi®-?% hed found the results of Reference 3.13 for swept horse-shoc

wortex elements difficult to apply and therefore, following Burgers, used point concen-
trations of 1ift. They have simply evalusted the quantity

F(’" x-x, ¥\ _ mpudR?

o (x,3) = wy, (x,7)] (3-140)

' A& R Ly

from Equations (3.127), (3.128) and (3.130) and have given it in Tables i(a) to i(e) and
Pigures 2(s) to 2(e) for y/R=0, 0.2, 0.5, 6.7 and 0.9 . The interference upwash
can then be evaluated fros Equations (3.131) aud (3.140); illustrative calcuiations

are given in Tables 3 to 9 of Reference 3.26.

Off-centre models sbove or below the plane z = 0 are covered by Equations (3.114)
derived from Reference 3.25. The more elaborate theories do not preclude sff-centre
positions, but the numerical work is cosplicated further and no calculations appear to
bave been made. Silverstein and White have evaluated (3.); from Equations (3.114)
for closed and open ellipticel tunnels with b/h = 1 and 2 ; their curves ia Pigures 3.
4, 6 and 10 to 13 of Reference 3.32 indicate that the increased interference is quite as
isportant ss for rectangular tunnels (Fig.3.11). The vertical displacement gives 2
nuch greater correction factor to {So)n for smzall wings than for models of large span.

Full-span models sre discussed in Section 3.6.4- I their treatmeant of this problem
for = closed circular tunnsl, Vincenti and Graham®‘"? consider a simplification of
Equation (3.127) on the axis y =06 . In Equations (8) and (11) srd &ppendix A of
Reference 3.42 they trausfora the series of Bessel functicns into & convergent power
series in (x-x,).

3.4.4 WMaif-Ying Nodels

¥hen the model and the flow conditions have spanwise symmetry, only oze half (y > 0,
sgy) need be considered. In such cases there are many aivantages in using half zodels
sounted at the tunnei wall, which becomes a reflection plane of symsetry y =0 .

Van der Bliek® *> has discussed the practicel aspects, noting thet half nodels are
cheaper and easier to make and may be combined with shorter pressure leads or a test
rig outeside the tunnel sc as to elizirate sting or strut interference. The Reynolds
number can be doubled, and especially for control surfsces the larger size of model
should ensure more accurate msnufscture’*®. The use of hslf aodels introduces a number
of interference effects. The modified upwash interference will be discussed in some
detail; the other effacts of tunnal-wall beundary layer and gap beiwesn aodel and tunnel
wall a2re discussed in Reference 3.43.




> R s SN P . - —_—— -
N ke o n - - Shah P . g .~ .

bl

ui

139

S, A
, "Waﬁ%gi
' [

Little need be said about rectsngular tunnels. The formulae of Section 3.4.1 have
simply to be applied to a complcte model in & tunnel of the smme height and twice the
breadth. References 3.22 and 3.44 illustrate the procedure for unswept and swept
models respectively.

-

Half models are frequently tested in octagenal tunnels. Batchelor’ s®+!* method,
ostlined in Section 3.4.2, then requires the modification in Reference 3.45, where
ealculations are made for the tunnel in the middle diagram of Pigure 3.312. The origin
jo Wigure ifz} is snifted one half breadth to the 1lift, and it is necessary to distia-
guish between the “corner fillets” at y = b, 43b, ... and the “central fillets™
at y=0, +2b, ... . In the first place it is convenient to re-define the quantity
G/P in Equation (3.103), so that the gradient of v, at the midpoint of the fillet
is replaced by the meaa gradient over its middle half. For the double tunnel of large
breadth to height ratio 2b/h , moreover, G/P is found to depend on the semi-span ¢t
of the horse-shoe vortex. For example, from the non-dimensionel quantity

© bbb b BAIRERN alslion STV SN Y,

N = 4258 6/P = 2/256/K = Gl(t/b) (3. 141)

in Table 2 of Reference 3.45 it is seen that G/P is more than doubled when t .
increases from 0 to 0.75b . The corresponding quantity for the central fillets is
negetive and mey be identified witk -G{l — (t/b)] . It follows that, in the speciel
case ¥ = ¢ = 3b, the contributions to the interference apwash froa the corner and
central fillets cancel each other. In principle, SD(y.t) is given by a sisple exten-

sion of Eguations (3.102) and (3.104). For the coluan of central fillets near the
refiecticn plane *

VoA f

S = sec

" 7(a/2 + y)
2h

Unfortunately the expansion for Z(S,T" in Equation (3.104) may converge too slowly
when y is small, as shown in Table 3(a} of Reference 3.45; the alternative expansicn
of Equation (25) in the Appendix to Reference 3.45 is more accurate, and it is seen
that relatively large negative values of X are found for smsli y . The main con-
clusions are that the octsgonal tuanel induces considerably more interference upwash
near the reflection plane than does the corresponding rectangular tunnel, but that
elsewhere the effect of the fillets, whether positive or negative, is likely to be
much smaller than for complete models. No simple formula such as Equation (3.107) can
be suggested, but it seems typical that (8)p/(8,.)p > 1 for small o =and is roughly
equsl to the area rstio C/ba for fairly smsaii (1-0). For half-model testing o is
anlikely to be saall; when o > 1 . it is recommended thst the fillets should be neg-
lected for all but the most detailed experiments. . '

v

#hen a refiection plane is installed to test half models in a circular tunnel, the
effective boundary is of bipolar cross section as illustrated in Pigure 3.15. This
configuration was first considered by Kondo (Ref.3.14; 1935), who used the transformation

»

.
NS

3

y+iz = Rsinytan (3 + 10) (3.142)

to map the interior into the strip [n] < $(7~y) , where the angle ¢ is indicated
in Figure 3.15. By Sguation (3.45), solutions for the interference stream function
aiong a uniformly loaded 1lifting iine give siwple expressions

4
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7 8in ]
(,) log % for closed tunnels
o’y 2 108,
167t £
(mr-y) sin
r . (3.143)
7 sia 2
(80)‘J 3 log, £ - for open tunnels
167t ng
2{m~y) tan (-———-)
7P J

shere t is the half-wing span, tan & = t/(R sin ) (Fig.3.15), and the bipolar area
= W¥(m-y+% sin 2¢) . Figure 4(b) of Reference 3.14 shows that s closed bipclar

tunnel has values of (3)), remarkably close to those for the closed elliptical tunnel

of the smme breadth to height ratio (1 + cos y); this is much less true of an open

bipolar tunsiel. Pigure 3.15 shows how the interference on & half model of fixed span

can be reduced from that on the corresponding complete model in a circular tunnei

(¢ = 90%). The magnitude of the simple correction to incidence, given by

nRAx 7iR?
= —(5), . (3.149)
sC,. c

falls to s minimum as  decreases. For closed tunnels the minimum Ax is about one
half that of a small complete wing or, when t = 0.8R , as little as one third of that

for a complete wing. Less impressive reductions are found in the negative correction
Acx when the boundary is open.

Davison snd Rcsenhead®-“% have treated the open bipolar tunnel independently by the
transformstion

+ iz
7 tan”?! Rysin ‘/’) = 2(m - ) tan" Y7 + 10) (3. 145)
\

in place of Equation (3.142); Table 2 of Reference 3.46 gives precisely the quantity
plotted in Pigure 3.15. With an approximation they extend the analysis to obtain a

ccnvergent expansion for the corresponding quantity when the spanwise loading is
elliptic.

Sivells and Deters®:*? use the same transformation (3.145) for a closed bipolar
tunrel to obtain the interference parascter

c[ =a ; /t t 1
§,(5.) =—[ (1+77) sin ¢ {T A ] (3.146)

87 | 2m-P)y 2 +R%sin%Y) |72 -72 7mai-1] yi-t?

E(f tan~? t )
2(7 ~-y) R sic

- ”
S Sy (n ain ¢>

C = R~y +isin2y)

where

o
B!
{
[{]

v
.




R 3
o o Trem st I D R e S

A

141

Values of (4RE/C) 8 (y.t) = w,R/K st x =0 are tabulated in Tables 1 aad 2 of
Reference 3.47 for fvo conﬂsuntiona Y= 43,00 and 60.14° that are favourablz in
Figur2 3.15. The streanwise variation of /] is represented rather crudely by tsking
h= 22 and

N

S,(v.t) = 2.18,(3.%)

in Equation (3.42); the factor 2.1 was obtsined from the incorrect calculations of
Reference 3.38 for a closed circular tunnel, and from Equation (3.136) the value 1.998
might be preferred. Reference 3.47 alsn examines the consequences of replacing the
reflection plare by an end plate; this tends to give a larger interference upwash and
& spanwise 1ift distribution different fros that of a complete wing. It is concluded
that a reflection piane should be used whevrever possible for half-model testing.

RTINS BT AT SR RO

No rigorous method is avaiiable for determining the general interference upwash
field w 1(x.¥) in the plane z =0 of s closed bipolar tunnel. The best approxime-
tion appears to be teat of Sivells and Salmi®-2¢ using point concentrations of 1ift.
If the elesent of 1lift L acts szt & position (x then following Reference 3.47

~e

Wrrt e anvordaA e el INE WARSIBIAERU e a0 Lrn Syt SIARA ’l‘i\'&aw}iam,,. st g gy 2
-~

‘) -N ’
they obtain ‘
3 Ly 731+ 77 (1 + 3R %sin?Y 1 1 .
: (XY, ¥ = 7 TS T 7+ 2 :
; 4l | 4l -y (72 +R%in Yy +R%S 1Y) | (m-n)?  (1-1my) ‘
L 1 i'
; -—l . (3.147) ‘
(y-yp

where, as in Equation (3.145).

-1 w af ¥\
tan * =z ——— tan {21
iy 2@ -y (8 sia /

The plausible assumption is then msde that, for any fixed x and x, . the ratic of
w (X757 to wn(zﬁ,y.y,‘) is equal to the corresponding ratio for the ciosed circuler
tusnel in the (7, ) plane; that is to say,

" (X.7.7,) WX - w2, . |
- Yy Y - . (3.148) i
WXy ¥ ¥y M w7 no(Xye 7!

vhere '5,““ and w,, are defined in BEquations (3.127), (3.128) and (3.130) wit2 ¥,
replaced by 7, - Hence the charts in Pigure 5 of Refererce 3.26 are derived for the
particular bipolar tunnel of Reference 3.47 with ' = $0.14° (b/b = 1.48781) . The
interference corrections can thea be obtaised as simply as for the circular tunnel.

TN SN

3.3 NUMERICAL INTERFERENCE CORRECTIONS

PR

.

Vsrious formuise for interference correctiors to s=asured quantities have been
erived earlier. Section 3.2.4 gives ezpressions suitable for smsll wings, while more
general formulae are discussed in Sections 3.3.3 ¢0 3.3.6. The application of these
formulse to a particular tunnel reaquires knowledge of the appropriate interference
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paragetors from Secticns 3.4.1 to 3.4.4. ¥We consider in Sections 3.5.1 and 3.5.2 the
relative importexcs of the varioua corrections frow available numerical data for rect-
sagelar shd nca-ractangular tunnels respectively. In Section 3.5.3 an attempt is mede
to taseus the sccuracy of the simpler methods of estimation.

in the first plsce the measured quantities that often require interference correc-
tion can be dividsd into three groups.

Geometricel gusctily a

Force ccef?icients affecting c ¢ c
the interference upwash L YI* “m
Octher Jorce coefficients Cp . Cu . cH

Altkcugh the vortex representation of the model may be governed partly by the theoreti-
cal 11ft distributicn, the reiiability of interference corrections smust also depend on
tse mmount of experisental information in the second group. 1In half-model t{ests all
three coafficients may be measured, so that the spanwise and streamwise centres of
pressure say be known. For cosplete models there will be separate fields of inter-
ference vpwash froe the symmetrical loadizg (C, and Cy) and antisyemetrical loading
(Cy); the lstier, though sasller, will be less well defined, zince the stresawise
centre of pressure associsted with C;, is unknown. There wili be varying degrees of
upcertainty in thes absence of one or more of these coefficients, especially when only
the control hinge acwent C, ors restricted pressure distribution is measured. An
independent appeai to the theorstical 1ift distribution or an expirical estimate of

CL er C; £s then eszential.

The more common interference corrections can be grouped as in the following table.

Priscipal corrections Acx, ACI

Zero correction A,

Residnel corrections to &c, . Acy
longitudinal moaents AC, (half-model)

Residual corrections to

vortez-icduced coefficients 46 . ac

n

The principal corrections are the essiest to estimate quickiy; Aa is ususlly much
sors important than AC; . It is coavenient to choose Aa such that 4G =0 . The
reaidusl corrections Ac. and Acn are rather difficult to estimate st all accurately;
the latter can be especislly isportant. The vortex-induced coefficients Cpy and Cnv
are only part of the measured quantities, but are subject tc large percentage inter-
fereace corrections. It will be assumed that Acn is governed by the principles of

lifting-line theory, bdut it is suggested in Section 3.5.3 that the resultirg formulae
are somewhat anrelisble,

- T—————.
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A different category of correction arises when lateral aerodynamic characteristics
are to be deduced from tests of half-span or part-spen models. After the interference
corrections, including Acl , have been applied to give coaditions of unconstrained
fiow with a reflecticn pilane y = ¢, there remains a lifting-surface problem indepen-
dent of the tunnel shape. The precise details of such a calculation are not discussed,
but the resulting correction factor to (C; + AC,) is of major importance. £

W e
o
PRt

3.5.1 BRectangular Tunnels !

Attention is now given to specific calculations of wall interference on lifting
wings in rectangular tunnels. An atteapt is made by illustrative charts or formulae
or inequalities tc indicate the likely magnitude of the various principal and residual
corrections relevant to wing models. Brief discussions of the numerical corrections
for slender wings, complete aircraft modeis and other special configurations will be
deferred until the appropriate subsections of Section 3.6.

NERETFY 'Y 8 FY SEPEN

Figure 3.2 has already provided the order of magnitude of the correction Aax for
various types of rectangular tunnsl. Fer closed rectangulsr tunnels Egqustion (3.55)
with some weighting W has been used to calculate the influence of wing span over 8
wide range of planforms. Polhamus3’®* has evalusted the mean interference upwash along
a swept lifting line with the weighting W = ¢/¢ ; this indicates very little influence
of sweep angle (-60° < A < €0°) for planforms of moderate taper and span ratios
o = 2s/b < 0.8 in a tunnel of effective shape b/h = 1.4 . Acum®:!” used the weighting

2.4 y\2 }§ c
vz —d1-(= +0.4—
. 7 | s c.

in Equatior (3.55) to evaluate the mean interference upwash at three-quarfer chord.
It is found to a useful approximation that, for eny particular breadth to height ratio,

/ bh
= { — ) Ax (3. 149)
SCL

3

can be regarded as a function of o and aspect ratio A = (28)%/S in incompressible
flow. Not only is & largely independent of sweepback and wing taper, but it is
practically insensitive to spanwise loading, as Appendix I of Reference 3.4 illustrates
convincingly for a square tuanel. For elliptic spanwise lcading carpets of & are
reproduced from Reference 3.17 withk sllowance for compressibility by plottiug sgainst
a horizontal scale of o + 3{(£A)"! in Figure 3.16; the three diagrams for b/h =1,
9/7 and 2 show & within the range 0.i11 <5< 0.22 for SA<8, ¢<0.8 and
o+3(BA) < 2. For fixed b/h and o, 5 is represented as & linear function of
(BA)"! ; we may therefore write

Ac S

= - 258 . 3.150
c, vy (BA) ( )

where

=
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There is a Lendency for Equation (3.150) to underestimate Ax for highly tapered
wings when b/h is large (Fig.12 of Ref.3.17) and to overcstimate Aa when B < 2,

sey.

2r,
Independent calculations of Aa by the method of Reference 3.22 for b’h = 10/7
are included in Refsrence 3.48. The results take the form

curvature’ contribution 88c is roughly inversely proportional to SA , as in Equation
{3.150). The curves against o, reproduced in the top two diagrams of Figure 3.117,
show 811 for three values of d/h , the non-dimensional distance from model to floor,
and the quantity [BAS;, subject to the restriction SA > 2, say. In Figure 3.18 we
try to piece together the approximate information on & , as defined in Equation (3.149),
for wings and Mach numbers such thet 0A = 2.5, i.e.,

Ao S
— = — [5;,; + 5] . (3.151)
Cy,

where the ‘i1ifting lirpe’ contribution 811 corresponds to A = =and the ‘strearline

The curves of & against b/h for constant area ratios S/(Sbh) show how the minimum
interference shifts from b/h =v2 for small wisgs to brosder shapes of tunnel as the
area ratio increases. Thus the variation in & from tunnel to tunnel is likely to
increase witn the relative size of model.

Whereas the momentum at right angles to the stream direction is influenced hy pormal
pressures at the tunnel boundary, the streamwise momentuz is virtually uninfluenced by
external forces. The vortex-induced drag is therefore determined by the spanwise losd-
ing on the wing and the cross-section of the tunnel. When an elliptically loaded lifting
) : ine can be assumed, a good approximation to the interference correction is given hy

PRER R OIS ATt s o g% 2

ScZ
ac, = —= (8o . (3.152)

where for closed rectangular tunnels (80)g is given as a function of b/h and o
in Figure 3.9. Minor contributions due to residval effects and asymmetrical spanwise
loading are noted in Equations (3.63) and (3.71). The parameter 81 1 8t the top of
Figure 3.17 illustrates apprcximately the increase in (so)s with off-centre models.
The uncorrected vortex drag of a 1ifting line with elliptic loacding is simply

——— . a wemw

SCr
Cpe = 777 - (3. 153)
?;.-,5 By Equations (3.152) and (3.153) the ratio
¥, e *
2.
N AC 7bo?
AZ D = T (5,); . (3.154)
: ch h
-
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which can be large, e.g., 26% shen b/h =1.6, 0 =0.7 and {3, =0.105. ™his
may appear s$lightly exaggerated, since Cp, does not represent the total drag.

The residual correction vo pitching moment, ss defined ir Equation £{3.36) or Equetions
(3.57} to (3.5%) or wmore generally in the second of Equaticns (3.67), is independent of
pitching axis. The accuracy of the diffsrent methods of estimating Acn will be dis-
cussed in Section 3.5.3. As far as can be judged from a few lifting-surface calcvle-
tions by the Equstion (3.67), the correction is likely to lie witkin the rasge

o Ac, )
0.03 — < —2 < 0,05 — (3. 155)
Ba BAh

for fairly large mecdels in closed rectargular tunnels; Equation (3.26) with Table 3.III
would have suggested a much wid.r variation.

The principal correction AC, to rolling moment is never very large. It appears
in the form of Equation (3.62) or the last of Equaticns (3.67). For unswept wings of
high aspect ratio, in particuler, there are other simple prccedures. %ith a change of
sign, Equation (9) of Reference 3.28, with charts for b/h = 10/7 and 3/2, gives
—ZSC,/C, for wings with deflected aiierons; Equation (3.62) may be regarded as a
generalization of this. Equation (3) of Refarence 3.48, hased on Reference 2.25,
gives the result in the third panel of Pigure 2.17 and incorporates the factor
(2.5 cos ¢y — 1.5) for wings yawed through the angle Y . We now exanine the beheviour
of the interference upwash in Equation (3.50). ¥hen the wing is small, it can he
showm that

9 bty
5: {tKo(F.t)} = 533 g,
, (3. 156)
¢ bty
g{tf‘,(!'.t)} = -8-1;5_ '

where, by Equaticns (3.91) and (3.92),

e 1
L, = £5(0) +2 21 (-1® £{ab/h)
n=
; (3.157)
«©
g, = tH0) + 2 zl (-1)® £3(zb/h)
o=

the second derivstives fé’ zay be evaluated from Reference 3.18. The antisymmetric
spanwise loading is taken such that in Equation (3.50)

st 2scC, 3350 t (1 t2>%

ue c 7bh s s?

(3.158)
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By Equations (3.50), (2.156) and (3. 158),

I
i w ssysc, [* x -3(t) £\ t?2\F /¢
i‘i&:—\ —61 = -;;]“—l LO + TBh gl —s- 1- ;{) d(-s— . (3- 159)
. \ o [
E':\',- - \\
H For larger\wmgc\it mey be sppropriate to evaluate Co and . im the special case
i Yy=t=2%, when e simple forzulae
z L ausf £46) + f ) f(b) ?Zm:(l)"f(nb)-
- = —1I- - (- + - _— - & - —
=0 2 2 1 b3
] 2h s b/ |
> - (3.160)
f- ~ © N
8h? /v b b
T -t sy — - [—) -2 -n® £ { —
e reen(z)-o(z) R e ()

P

Values of §° and ,Cl from Equations (3.157) and (3.160) are listed in Tabkle 3.vI.
To obtain a rough estimste of Aci for wings of high aspect ratio, we omit the second
ternm in the squere bracket of Equation (3.159) and use Equations (2.62) and (3.159) to

give
B e () of2)
g, 2(7A + 423C;/3a) 4n°® b, \s s
With the further approximations
2C. A 4 v2\
= 1, - = . W= —(1~— ’
# 3 Ba+2 7 s?/
this becomes
AC ns®
=1 - ‘TA—T ) (3.161)
Cl 4h (B + &)

shich has forzal similarity with Equation (9) of Refersnce 3.28. A typicsal correctiocn
to C, would be -2.2%, shen b/h = 1.8 , ,=29, 0=0.7 and Ba=6. Por
wings of small span ‘5‘3:"01 is negligible, being porportional to o?. Equaticn (3.161)
with {o froz Table 3.VI will determine whether the correction can be ignored safely.

The vortex-induced yawing noment involves interaction between symaeirical snd anti-
symmetrical parts of the spaawise losding. Even for unyawed wings, the evaluation of
the interference correction .&cn frow Equaticns (2.70) and (3.71) includes three
o~ terms, cad further subdivisica of the syasetrical part say be needed when coatrol
.3 surfaces ave deficcted. This is illustrated in the methads of Swansond-25 and Grakam3-28,

-, To obtein a rough estimate of AC, . we assume 2 sparwise load distributicn
o, < s2\i 2y (¥ g
s —t = 2} 0, T {3.162)
: c 7 8 / m \ 8
Of\
3t

o -
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and an interfererce upwash

1/w SC, aysC
et § —L)s + l . 3.163
2(0).,, (bh>8° 4h'> % @189

where the last tere is derived from Equation (3.159). The parsmeters Sc and Lo
here denote suitable mean values dependent on b/h and o . Then Equaticn (3.70) gives

& s bs?
av _- 2 50 + 3.) go . (3.164)
CC, bh 32h

From the lifting-line integral it is found that the vortex-induced incidence is

1 M os a [ecy,] d(y')
Y 4mA ¥ -y d@3/9) E_j,_:,. s

Q
'

1
~-— [c, + 18(3/5) ;] .
TA

whence
B ac,c
Cpy = % 1 av—%-y-di\ = -1 (3.165)
nv ) T s \s/ 7A
By Equetions (3.71), (3.164) and (3.165),
o o2 o’ 1 ac
Bz — |54 | = )L = - (3. 163)
Cov 3h 128h c,

This iies between the corresponding ratios AC)/C,. and AC,/C; from Bquations (3.154)
and (3.161), e.g., 10% when b/h =16, 0=6.7, 3,=0.105 and {;=2.9. In
practice, Acn can be a larger proportion of the measured cn (Section 9 of Ref.3.18).
It is noted that the second term of Equation (3.154) largeiy explains the difference
betwsen &;; aad —(¢/s)(4C,/C.C;) in the top and bottom panels of Figure 3.17.

Hypothetical cases of swept and unswept half-models with control sarface in a closed
scuare tunnel are considered in Section 9 and Pigures 6 aad 7 of Reference 2.4. The
residual correction to hinge moment froe Equation (3.77) is seen to be important for
large models. Further discussion of wall interference on control hinge aoments with
aercdynamic balance is found in Reference 3.49; Miss Lyon has pointed out that uncor-
rected wind-tunnel results may be misleading in the design of clcsely balanced elevators.

3.5.2 Non-Rectangular Tusnels

There is evidence in Reference 3.40 of a saall effect of spanwise loeding on Aa
for unswept wings of aspect ratio A =8 in a closed elliptical tunnel of ratio
b/h = 1.37 . Given total 1ift and wing span, the wali interference is less for 1ift
distributjons that sre aore concentrated towards the centre line. But Pigure 8 of
Reference 3.40 shows that A:c is only slightly less for highly tapered than for
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untapered wings. Even smaller changes would be expected of sweptback wings and those
of lower aspect ratioc; for wost purposes elliptic spanwise loading may be sssumed.
There should be little difficulty in preparing spproximate charts for octagenal and
elliptical tunuels similsr to those for rectanguiar turnels in Figure 3. 16.

Once the principal correction Au/cL is known for rectsngular tunnels, the corres-
ponding correction for octagonal or elliptical tunnels can be estimated quickiy from
Equation (3.110). This only requires the further knowledge of the parameter (3.} £
for the sppropriate value of o , which is giver in Pigure 3.12 or 3.13; otherwise
Equation (3.107) is available to zive a rough estimate for closed octagonal tunnels.
Although (5,); will be smaller than the corresponding Juantity (8,5)g for a closed
rectangular tunnel of the same breadth and height, the iaterference correction will be
larger for the ssae model. By contrast the bipolar shape, appropriate to s half-podel
in a closed circular tunnel with reflectior plane, can give a much saaller interference
{Fig.3.15) than the half-mcdel in a rectangular tunnel of the saze breadth ard height.

Bquation (3.152) with bh replaced by C will continue to give s good approximation
to AC, . The inequality (3.155) should again indicate whether AC. is negligivle; if
not, Equetion (3.1:12) is available. Likewise Equation {3.161) with an sppropriate
value of ’;o will give the order of magnitude of the correction ACI . A crude esti-
mate of SC“ then follows fros Equation (3.164), but this correction will seldom be
negligibie under conditions of asymmetrical spanwise loading. For a closed circular
tunnei it can be shown that [ , as defined in Equation (3.156). is

3R? a{ R4y } _ 8R®

ty ot sm‘-t%z)J R -t5?? :

0 (3.167)

for the present purpose this is not appreciably different frca the quantity for a
closed square tunnel, especially if it is adjusted in the ratio of the parameters 80
for the respective tunnels. In other words, & change in tunnel shape from rectangular
to octagonal or elliptical is likely to influence all the corrections by roughly the
sane factor

bh(8o) s
0(8“)8
For wings of high aspect ratio with part-span ailerons in a closed circular tunnel

the correction to yawing zmoment is conveniently evaluated by means of Reference 3.50.
In the present notation

-Ac, = (8y), + (8CL,), + (8CL), (3. 168)
1
mere oy, = SENG fe (s"?\ -F (fir_\
v’ 1 452(y§_y§) 1 32/ 1\ g?

S(6),C, { [sy sy

s, = TR (R) () T

(3Cpy)y = 2 :2 F, =2, 4
47’02-y1)(y2—yx) R !2/

P
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(C,), and (C.), denote the contributions to C, from the wing incidence and the
deflected ailercns respectively, sad y, < lyl <y, denotes the spanwise extent cf
the ailerons; the functionz F,, P, and F, are formulated and plctted in Reference
3.50. Stewart states that the total correction is likely tc be s large percentage of
the uacorrected Cn and may even exceed it when s/R is as large as 0.8.
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Specisl reference gust be mede to the illustrative compatstion for a complete swept-
back model with tailplane in a closed circular tunnel admirably set out in Tables III
to XIII of Reference 3.26. The spanwise distributions of interferepc: upwash at quarter
chord, three-quarter chord and the tail are shown in Figures 7 and 8 of Reference 3.26.
The corrections to incidence, drag, pitching-mogent, rolling-moment and yswing-moment
coefficients reseable® those in Equations (3.55) to (3.59), (3.82) snd (3.70), and sre
evaluated in simple stages with the aid of the charts in Figures 2 and 6 cf Beference
.26, so thst similar calculations for other models are reduced to a straightforward
roatine.

- amprenry
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3.5.3 Comparisons of Nethods

We first consider four methods of calculating the principal corrections to incidence,
viz.,

(i) Sxail-wing aethod. Eguation (3.35)

(ii) Charts of Reference 3.17. Figure 3.16
(iii) Reference 3.26. Equation {3.55) with W =cC.,/%C, | ~ :
(iv) Lifting-surface theory. Equation (3.67)

The results are compared in Table 3.VII for fairly large models of varicus planfores .
in clesed rectangular tunnels. The wings are uncambered and without control surfaces. ‘1
For method (i) the factor A is taken frem 1ifting-surface theory, ss given in Tsble
3.111I. Whether these or the more approximate values A = &/T ere used, it is ealy
shen o< 0.5 and o < 0.5h/b that the method can alwsys be trusted within 110%;
for nearly square tunnels, however, these conditions on o can be relaxed a little.
In most of the examples one of taese limits is wiolated and Iarger errors are found.
There is little reason to use so crude a calculation when the simple methods (ii) and
(iii) exzist. In method (ii) extrapolation has been used to cover b/h = 0.911 : in
method {iii) ¥ = ecLL/&L aas been taxen from lifting-surface theory and. as for
method (iv), Equation (3.47) is used to determine tilll . Method (i1i) gives margzin-
ally better over-all accurscy and & root-mean-squsre deviation from method (iv) of
- 0.0011 in Ax/C, (0.3 degrees when C, = 0.5); AOx tends to be underestimated by

method (iif), but in the present exsmples the error does not exceed 0.5% of the .
messured incidence. .

A coaparison of Aa/'CL for a non-rectsagular tunnel is made by applying Eguation
(3.110) to the illustrative exsagle defined in Table III of Reference 3.26. With !
o =s/R =0.65 ,

{6g)g = 0.12, for a closed circular tunpel from Pigure 3.13
(3p)g = 0.150, for a closed square tunnel from Figure 3.9 .
8 0.169, for b=h and SA=15.11 from Figure 3.16

* In Reference 3.26, (w,/0), ., Teplsces {(v,/U), in Ecuations (3.56) and {3.70).
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Therefore for the square tunpel

Ax s )
—} = —38 = 0.0342 x 0.169, = 0.0143 ,
€./ b

and for the circular tunnel Bquation (3.110) becomes

3

4\ 0.129, x 0.9143 T \

- - 0.107 x G.129, J--x
T/

4 0.150,

Ax
¢

©.0177 - 0.0018 = 0.0159 ,

which is in excellent agreement with the value Ax/C, = 0.0158 in Table X of Reference
3.26.

We next consider four methods of calculating the residual correction to pitching
noment coefficlent, viz.,

(1) Ssall-wing m¢thod. Egquation (3.36)

(i1) Strip theory. Equation (3.60) with factor
(£i1) Reference 3.26. Equetions (3.57) to (3.59)
{iv) Lifting-surfiace theory. Eguation {3.67)

The results are compared in Table 3.VII for the eleves exskples of wings at uniform
incidence in closed rectangular tunnels. Method (i) is hy far the simplest and uses
values of the guantity .\x:/E from 1ifting-surface theory* in Table 3.III. As would
be expected from the behaviour af (8,), agsinst o in Pigure 3.9, both Ac/C, and
Ac /€, sre seriously undersstimsted when b/h < 1.0 and ¢ is iarge and serjously
overestimated sten b/h > 1.8 and o is xoderately large. For Eany cases Equation
(3.36) will suffics to show the order of magnitude of the residual correction. AL‘./CL
ascunts to a forward movement of the aerodynamic centre as a frection of the aean
chord T and may not be regquirad to better accuracy than 10.002, say. Metkod {ii)
uses the formula

85, _ Ax/8),, o0 P/ W - ® ; c [s

e amr (R, areem-(3r) ol -

L Y St L] Y 0.75 L/0.25 \ -
(3.:169)

shere € and X, are defined in Equation (3.60), (Ax,/@);, =md (Ax/GT),, are taken
from the last twe columns of Table 3.III. The latter is formulated in Equation (3.861)

and the former is defined above that equation; their ratio is an essential correction
factor in Equation (3.169). Except for the very breoad tunnels b/h 3 2, method (ii)
gives quite as good accuracy as method {iii); furthermore, unlike method (iii), it is -~
pot rzstricted to wings of constant sweepback from root to tip. However, method (1ii) -
does not require the quantity (Ax/¢);, and involves only slightly more computatioz.

1ts root-mesn-square deviation from method (iv) is as small as 9.0010. Pinally, from
Table 3.VII, with the excepticn of Case 11 (AC,/C; = 0.054 o?b/SAh) all the

* Note that Equatiom (3.38) from strip theory seriously underestimates ).xIIE for unseept wings
of soderate or small aspect ratio.
{
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calculations in the last column by method (iv} satisfy the inequality (3. 155).

The effect of compressibility on Ac_/cL tends to be greater than the factor S5 ;

typical coaparisons of methods (iii) and (iv) over the Mach aummber range 0.4 < M € 0.9
are shown in Figure 3.19.

Turning to antisymmetricel spanwise loading, we now consider three examples of the
principal correction to rolling mcment coefficient in closed tunnels, viz.,

(a) b/h = 10/7 . PFigure 3.17 based on Reference 3.48
{b) b/h = 2 . Tables A5 to AT of Reference 3.18
(c) Circular. Tables III and XIII of Reference 3.26

For exazple (a2) the wings sre unswept and of high aspect ratio; the quantity

_,BA + 4 Bcic,
Br  sC,

is calculated by Equation (3.161), by Grahsa's method3°?® and froe Figure 3.17. Equatica
(3.181) gives

(B + 4)CAC, b’ o?

= = 0.1431.¢° .
4s°c, 64n° &

where, by Table 3.VI, [, =5.0 and 4.0 for y=t =0 and ib respectively.

¥hen the latter is used, the following comparisons are obtained with results from
Figure 3.17 for large values of SA.

o 0.5 0.6 0.7 0.8
Pigure 3.17 0.19 0.23 0.30 0.42
0.57202 0.14 0,25 0.28 0.37

By Ecuation (9) or Reference 3.28 with taper parameter xl = 0.8%/c and section lift-
curve slope 27

_ (B +49)cac, 0.8k Py(y,/b) - Fi(y,/b)
8, = b @GS0 - @G/

(3.370)

where ¥, <y <y, denotes the span of ar aileron and Px is piotted for b/h = 10/7
o =0.68 (0.04) 0.92 in Pigure 5 of Refersnce 3.28. BEquation (3.170) has been

alusted for o = 0.8 to investigate the dependence of the interference correction
on ailercn span
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y,/s Y,/s Equatioa (3.170)
0.4 0.8 0.402

0.4 1.0 0.420

0.6 1.0 0.438

0.8 1.0 0.444

The results only vary within 1£% of the value 0.42 from Figure 3.17.

Exasples (b) and (c) are for swept wings. In exsaple (b) Equation (3.62) is evalu-
ated with (Ii/U)o..,s from Table A4 of Reference 3.18 and the 1lift slope acL/Ba = 2.80
and weighting W from lifting-surface theory. With A =12.64, S=1 and tmmA , =1,
it foliows that ;. = 0.835 ; hence Bguation (3.62) gives

A5, 0.912 x 0.00315

= 0.0203
c, 0.1413

in excellent agreement with the value 0.0202 from Tabdle AT of Reference 3.18 by lifting-
surface theory. The rough Bquation (3.161) gives

o ns"
-l = — L. 0.01426 L, .

when SA=264, b=2 snd s =0.58%h . PFor the broader rectangular tunnels
varies greatly with wing span. The wvalue Lo = 1.657 from Table 3.VI(b) gives
-4c,/ C, =0.023 of the correct order. In vice of the crudity of the spproximstions
Jeadirg to Equation (3.161) and the difficnlty in assigning a mean value to
errors of 20% sre likeiy. But the interference corrsction AC, is often =0 small
that such errors cen be tolerated. When applied to example {c¢) for a closed circular
tunnel, Equations (3-161) and (3.167) with t =y = S, glve

Ac, ot 0.00798

"o, T sArn(1-on®  (1-o9?

wher 0=9.65 , SA=5.11 and o, =s,/R. This agrees with the relisble value
0.01007 from Tadble XIII of Reference 3.26 when 0, = 0.575 ; the ratio ae/a = 0.88 is
reminiscent of the effective span ratios se/s discussed below Equation (3.41).

Finally we examine the interference corrections to yawing moment coefficient corres-
poending to the same three exasples. The siumple expression in Bquaticn (3.164) is
evaluated with 8° = (80)‘ snd [, from Table 3.VI(Db).
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Exaxple Tunnel - (3¢ Z, s/c
Eq.(3.164) | Original
(2) b/h = 10/7 | ©0.6006 | 0.1117 4.00 | 0.0857 0.0124 0.0118
(b) b/h = 2 0.589 | 0.0930 1.64 | 0.2631 0.0351 0.0435
{c) Circular 0.656 | 0.1285 | 10.08 ; 0.1072 0.0175 0.0218

Tae tsble compares the approximate valves of —Acn/cLCI with the original values

from Figure 3.17, Equation (9.8) of Reference 3.18 and Table XIII of Reference 3.28
respectively. The discrepancies are as zuch as 20% for both the swept wings. It is
instructive to calculate example (c) by the method of Refareace 3.50 set out in Equation
(3.168) with o = 0.656 sand ), =60.

Jh tiab a3 ¢ AV NI I Sovbt e S e B ] . ,
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y 1/:’. yzls -ACD/CLCI
0.4 e.8 0.0173 .
0.4 1.0 0.0178 :
0.6 1.0 - 0.0181
0.8 1.0 0.0185

The values iie closer to that from Equation (2.164¢) than to the result in Refereacs 3.26.
A likely expiaaation is that the latter uses the interference upwash ('1/3)0_25 in
place of -}(wifu}m in Bquation (3.70), whils the quentity in Equation (3.163), snd

also in Reference 3.50, is an approximation to 3(w,/U), . There is no reason for pre-
ferring either, and the uncertainty of about $10% in Acn nay be fundemental. This

is demonstrable in example (b). The original calculations from Tsble Sb of Reference
3.18 used Equation (2.70), except that {"'1)5 and ('1) A Were taken respectively at
the local centrez of pressure of the antisymsatrical and symmetrical porticas of the
loading. The calculaticn kes been repeated for the perticular sileron considered in
Tables A3 to AT of Reference 3.18, not only with Egustion {3.70) ax it stands ht with
%(wi/!])m replaced by (w,/0)

0.25 °
v /g Local c.p. 0.25 ckord Half x=w Eq. (3. 164)
‘ACn.-’CLC 1 0.0437 0.0376 0. 0331 0.90351

The results convey the necessary warning, that Mn is rather unrelisble.

3.6 SPECJIAL CONFIGURATIANS

Two impertant sspects of 1ift interference have not yet been ccnsidered. The first
ol tkese concerns siender wings, mhose 5pan is smali cospared with the tunnel breadth




154

and whose length is of tbe same order as the tunnel height (Section 3.6.1). ‘Tne second
isporteant configuration is that of wing-body coabinations treated in Section 3.6.2
which Includes tail-plane interference. Finally there are some remarks on three-

3 dimensional interference effects when the tunnel floor is used to simulate the ground

’ (Section 3.6.3) and when models span the tumnel (Section 3.6.4).

3.6.1 Slender Wings

The vortex model of a slender wing is represented in Pigure 3.8(b) as a distribution
of 1ifting elements along a portion of the x-axis. Let L(x,) denote the 1ift on the
portion of the wing 0 < x < X, . SO that

P

SHONON
oy
&

: defices the doublet strength of the semi-infinite vortex pair trailing from x = X, -
X . Then by Equation (3.13) the interference potential in a rectangular tunnel is

1 f 8, (x.5.2) 1 r,,[, )de (3.171)
U4 & x'y-z = ( .x- .z - [ .
‘ 1 ampy § T 0t Y dx, Yo
§ whare
], |
H { D ?
z-ch X-X
’ * [ ] = 1 o ]
¥(xy. %,3.2) ZZ ! (y-gb)2+(z—nh)2[ ¥ {(x-x,)? + By ~ab)? + Bz )2} |
(3.172)

and the integrsl is taken along the length of the wing. It follows from Equativa (3.171)
and integration by parts that the interference upwash along the axis of the tunnel is

B e L

o? L 9 L
i w(x) = (—-—1> = — ‘[( j‘b [1 -—-(x")] dx, . (3.173)
( 0z Jyoze ampy § \223%, jyo e L
provided that L(0) = 0 : Eguation (3.172) yields
‘a:\,’} \ . & F (x_x’}z + ﬁz(nzbz_znznz)
= - E: ; s o — . 3.174)
333‘02=z=o g Zm B fa—xp? + Pt samy) 12 (

Berndt3-*! gives the theory for uncasbered wings with unswepl trailing edges in
closed rectangular tunnels. His result for '1/0 follows from Bquations (3.173) and
(3.174) with j = (-1)? by Equation (3.14) and with the theoretical siender-wing

i loading
> .
B L) [s(x°)] . (3-175)

> L s{c,)

. > ' where s(x,) is the local semi-span and it is essuaed that s(0) =0 and ds/dxo 20
. & for 0<x,<c,. Inhis final expressicn

Py T
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sC
-%1 = 2[5, +3'(0] , (3.176)

8, is the parameter 5!’ as definea for s small wing in Equation (3.17) and

Crls(x)]? /x-x.\ dx e, -x\
5’ = —2 !t — S -P{= . 3.177
x ,L [s(ct)] (WC) B/c (,B/E/ ¢ )

where

1 ! £% + (b/m)m? - 2(b/b)n?
bd = -1 u ’ '
© 8n ZZ D {£2 + (b/h)m? + (b/b)n?}%/? i

and PE) = Iff(é) ac .

s o At

Berndt gives grephs of both f(£) and F(£) (0 € £ < 1) for the four tunnei cross-
sections b/h=3/2, 1, V2 and 2. It may be noted that F(w) = 35§! ; there is

a critical value of b/h above which P(£) ceases to be monotonic. Equations (3.176)
and (3.177) slso hoid for a closed circalar tunnel, when 3, = 0.125 and i

dtdu , (3.178)

_ 1 191" (2-t? cos ut cos (ub/m)
1) 8/17,[ I

- 2\8/2 g1
o Jo {1+t9 Il(u)
where I'1 is the derivacvive of the modified Bessel function I,. The interfereunce
corrections corresponding to the upwash angle of Equation (3.175) are easily formulated

from slender-wing theory. In the present notation Berndt’s expressions for the incre- .
mentel corrections to incidence and pitching moment are

P T L L.

A

SC
-—(-:1“- [8y + 8'(cp)]

b . {3.179)

s{c,)

-

SC e s(x) | dx
ac, #%j@ £5'<c,)—8'(x)][ -l 5

s

A useful approximation to Berndt’s theory is to replace £(£€) by a constgzat
£(0) = SXV'C_/h given in Equation (3.16). Then Equation (3. 177) becomes

-

5 Srfs(x ) ]? .}
8'x) = L J [ °] dx, - (¢, -2) § . (3. 180)
w|l, ] - emn)

To this spproximation Equation (3.176) can be rewritien as
s xX-X

et G 4 [ 8, + 5 (3.181 :

u c L o ﬁh b ) B

where x = X denotes the centre of lift; it may be noted that Eguation (3.181) would
apply to camdered slender wings with swept trs‘ling edges when Ecuation (3.175) is
invalid. Egquations (3.179) are replaced by the approximations

— - . -
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8C c,.~-X
Aa:TL-[SO*‘ rﬂh 81]
. (3.182)
Ac =5c‘,‘a_c,‘8 "rc:-x s(x) zgf
" C % 'J, Bn |{stc)| ©

where Se and 8, are the interference parameters discussed in Sections 3.2.2 and
3.2.3 for atl practical tunnel cross-sections; the expression fer AC. is subject to
the same restrictions on planform as Equation (3.175).

The numerical exaspies in Reference 3.51 concern triangular wings of aspect ratio
A =1 in a low-gpeed closed duplex tunnel (b = 2h), and Beradt concludes that the
corrections do not differ very much from the 1ifting-line quantities given by Equations
(3.182) with 81 =0 . This is largely & consequence of the corrections being fairly
small. Raturally Equations (3.182) as they stand should be evenr closer to Berndt’'s
values corresponding to Equations (3.179) with 3/(x) from Equation (3.177) and

2
ﬁ:l. b:zh' s_(ﬁ)_=.§£' S—:.l—(.c_L). 6:%0' ﬁ:1_3.
s(c,) c, c 8\k r da

Equations (3.182) with 80 = 0.1368 , 81 =0.2927 and X = (2/3)"1- give the broken
curves of Aa/C; and Ac‘/cb against c./h in Pigure 3.20, which lie very mesr the
full curves obtained from Berndt’s calculations. Even wner cr/h =1, the discrepancy
in Ax is only 0.3% of the measured incidence and the diccrepancy in corrected aero-
dynamic centre is less than t".()()lcr . It seems worth remarking that at « = 16 degrees,
when the discrepancy in Ao 1is 0.03 degrees, the vertical displacement of the wing
from apex to trailing edge is ¢, sina= 0.174k and is beginning to be significant.
That is to say, in rare instances when Equations (2.182) cease to be accurate enough
because cr/h is large, Equations (3.179) may well be inaccurate through the assumpticn
that the lifting elements are situated in the plare z = 0 . The latter defect would
rzquire the unattractive remedy of replacing 2z in Equations (3.171) and (3.172) by
z-zc(xo) where z, is linear in x, .

When the effects of compressibility are calculated, there is greater restriction on
the accuracy of Equations (3.182) without prejudice to Equetions (3.179). The function
£(£) in Equation (3.177) is required over the wider range |§’ < cr/(,B/C) and the
appreximation in Equaticn (3.180) fails for a smaller value of cr/h . if the compres-
sibijity factors of Table 3.1 ere applied at very high subsonic Mach numbers, then both
the wing and the tunnel may be regarded as slender®+®2. It is easily shown that, in
place of Ecuation (3.i76),

"o 2L(x) £25
5 ¢ ow B -
U £5C

When (i1-~M) is samll, the interference correcztions are therefore

8C
Ba = —% {25 ]
Cc
. (3.183)
Ac AQECL Jc’ : Feex) 121 st 72 dx
L Sa J, s(c.) is(cr) [
P
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Nevertheless it iz difficult to envisage practical situations in which Equations (3.183)
may be used confidently.

Berndt gives the drag correction

scz

bey, = 5, =+ . (3.184)
C

This can be justified either by considering the momentum flux across a transverse plane

in the distant wake, with the corollary that the vortex drag is independent of any

changes in the chordwise load distribution. Alternatively, Taylor3:7’® hes shown that

Equatioa (3.384) is compatible with the concept of normal pressures and a suctjon force

distrihuted along the leading edge. The assumptions of linearized theory are essential
to both these arguments.

Unfortunately slender wings usually involve flow separation along the whcie leading
edge. Such flows, with a free vortex sheet rolling up into concentrated vortices, are
beyond the scope of linearized theory; the _-esults in Equations (3.179) or (2.182) and
in Equation (3.184) therefore need reconsideration. In the absence of a suitable non-
lirear theory the expressions for Ax in Equations (3.179) and (3.182) will be retsined,
but it is dcubtful whether those for ACE are worth applying. Equation (3.184) neads
to be modified, since the leading-edge suction force disappears and the whole lift acts
normal to the planform. Even if the wing is cambered, it seems reasonable tc neglect
the redistribution of lift associated with the residuai interference correction [K% H
then the principal correction Ax to incidence is accompanied by a correcticn

sc?
Acy = C fx = -F‘*- [5, + 8'(cp] (3.185)

by the first of Equations (3.179). Equation (3.185) should therefore replace Equation
(3.184) whenever there is extensive leading-edge flow seperation.

3.6.2 Wing-Body-Tail Combinations

Many fundamental azrodynamic experiments requiring accurate wall interference correc-
tion are carried out on wing models, but the majority of wind-tunnel tests are made on
more cozplete aircraft models. Althcughk rather loser accuracy may often be sought,
models of wing-body-tail configurations tend to have larger dimensions relative te the
tunnel, so that wall interference remains important. The evaluation of interference
corrections becores more cogplicated in each of its phases, vortex represeatation,
interference upwash field, principal corrections and.residual correcticns.

In the first place there are more unknowns in the vertex model, as the wing, body
and tail may all carry lift and cnly the total forces may be measured. The usual
approximation is to ignore th2 body lift and to take the theoretical spanwise loading
along the quarter-chord lines of the wing and tail so as to be consistent with the
measured 1ift and pitching moment. A pore detailed representstion is of course desir-
able, but is only practicable when there are additional theoretical or experimental
ioading data. Next, the interference upwash field involves large streanwise displace-
nents between the lifting elexments and the various parts cf the mcdel, so that It is
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inadnissible to suppose tha{ the upwash is linesr in x ; this particular complication
is aggravated by the effect of compressibility. Furthermore, vertical displacements
from the tunnel axis may no lohger be negligible.

Tsen ther» are corrections to measured quantities to consjder, and in this respect
it is usual to treat the wing, body and tail guite separately. The principsl inter-
ference correction Aa is still calculated from Equation (3.55) where (“i/U)o.1s
now includes & small contribution proportional to (C.,t the 1ift coefficient of ihe
teil plane. It is also pecessary to calculate a mean value of the interference upwash
along the three-quarter-chord lime of the horizontal tail surface

AANE: a2
Say = | {2) —w, af =] . (3.186)
o \ 9/t Ut St

shere U, is the local stresawise velocity st the tail, s, 1is its semi-spen, and
wt is the wesighting sppropriate te tte planfors of the tail surface. Then the
corvection

Do, = Gay - b (3.18T)

zay be appiied to the incidsnce of the tail plene. Alternatively Equation {3.187) may
be replaced by cnrrections .

°C
C, = - L (50, —
AC, oy 8oy - O0)
. ‘ {3.188;
oC
ac, = - — (ot - 2a) l ,
oy J

shere 3(/%x, and qulaut are the experimentally detemined acrodvnamic derivatives
with respect ts teil setting. A further correction must be applied to the vertical
locaticn of the vortex wske or positioms at whick the iozal f{low is measured. The
wake displacement is sbtained as

x LA
Az = ol Reor- ds , {3.189)
TE g/ 0

whera U’ denotes ¢la isuval stresawise veiacity and the integration is froe the trail-
ing edge to the position concerned. This correction can be particularly important whem
the aerodynamic characteristics of the tail are strongly influenced by hody vart:icss or
trailing voriices from the wing. Zifficulties arise frcm the lack of a sultably simple
1ifting-surface theory for wing-body-tafl configurations. Because the interference
upwash is interpretud separatelr for =2ack cosponent, the residual corrections are
liabla to be largar than usual and less predictable. This is certainly the case when
well interference effects ai the body are considered iz isclation, as will be discassed
iater.

In the eariier theories the affect of tne body was neglected. Glauyert and Hartshorn
(Ref.3.16; i9Z4) were the first to eveluate Equation (3.187). from the simple result in
Rquation (3.40), viz.,
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where X, is the lepgth of the tsil ara from the three-guarter-chord point and 31
is the interference parameter for a saall wing. They essume tbat the tail arm is of
the same order of magnitude as the wing semi-span snd that the dimensions of the wing
are small relative to those of the tunpel. Thelir correction to tail setting Aat and
tunnel-induced downwash &t the tail

5.\ s
- .'_\ = _{30.,.514)—& (3. 190)
U/ Y £h c

are well confirmed by experiments on the same zodel in closed sguare tunnels of dif- .

ferent sizes, as shown in Figures 3 to € of Reference 3.16 {(Figs.17 and 18 of Ref.3.1).
Towards the end of Secticn 3.2.4 with refersnce to Figure 3.6, it is shown that se
siwple a theory feils when the tail ars X, i3 as much ss half the tunnei height.

The following éiscussion explains the apparent success of this theory when applied to
square tunnels.

A more general theory is described in Reference 3.30, where Cowley and McMillan
calculate Aat with allowatce for wing span and tke anon-iinear variation in inter-
ference upwash with streamwise distance. For unifcrm spanwise loading v is obtaired
from Equation (3.80) withcut the teres |m| >3 and In] > 5, and the correction may
be written as

sC .
by = —ch(sg),,. = —: [84(0.8) + 5'(F'x,,0,8) - (3,), . (3.191)

vhere £ (y,t) and (8,), are given by Equstions (3.82) and (3.83) and 3'(87'x,.0,s)
corresponds to the incresent in v, along the tail are. For elliptic spanwise loading
they evaluate

SC
ba, = —C—E (&g » {3.192)

where

.a-

1 7+\2 2 }-%
3y = 2 f [8,(0.t) + 8'(8 }x,.0.t) - {3,(t3}y] G\ 1- (f‘.\ d(f;) )
7 Jdo v s/ s
Cowley and McMillan showed that their results for s low-speed duplex furnel differed
greatly from the simpler theory of Reference 3.16 when o > 0.5 . Tke comparisons
dotween (5;)‘5 . (8{)8 and tne linear quantity xtE:/h sgainst o are reproduced
in Figure 3.21 for the psrticular configuration X, = 0.8s5 . The additional mixed-
broken curve of

C
-gc—-da.t = 8'('45’111._.(‘.0) = F(%) (3.193)
L
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by Eqation (3.177) shows that for large models more than hal? the error from Reference
3.1€ is sitributable to tne approximatica that Aa:t is linear in . Now fpr sgquare
tunnels, in whick the experiments of Reference 3.1i6 were made, the effects of non-
linearity in x, aad of wing span are in opposition. This cancellstion of errors must
have played an important part in the otherwise rerfect exprrimentsl confirmation of the
simpler theory mentioned above.

BL2 et

The most cosprehensive calculations of &‘t for rectangular tunnels are those of
Stlverstein and white (Ref.3.32; 1935). The dody and the tail loadings are ignored
and the wing is sssumed tc have uniform spanwise loading. The interference upwash in
the central plsne y = 0 1s calculated as

b G 1/14»25-\
O,

— 5'

4 C \

where 8' is a function of o = 238/b and the vertical location of the wing and tke
ratio 35,/5 is obtsined to a good approximation as a functicn of o, x, /A and

the vertical locations of wing and tail. 1In effect Equation (3.80) is evsluated exactly
sbere |mj snd |n| are both less thsa 3, but the remainder of the double series is

calculated to first order in x and t = s . Extensive results are available for four
differect rectangular tunnels in the following charts of Reference 3.32.

. (3.194)

R PV BRI A SRt SIRR)

; T

3 v Boundary b/h 8' 8‘/8'
Closed 1 Figure 10 Figures 15 to 17
Cper 1 Figure 11 Pigures 13 to 20
E Closed 2 Pigure 12 Pigures 2i to 23
: Opea 2 Pigure 13 Pigures 24 to 26

Ll L

It is suggested that the vslues of SA,‘S' for rectangular tunnels may suffice for

; elliptical tunnels of the same breadth to height ratio and type of boundary, provided
H that the correst 8' is used in Equation (3.194). For circular tunnels Figure 6 of
Refersace 3.32 wouid be used in place of Pigure 10 or 1 for 8' ., and likewise for
elliptical tunnels (b = 2h) Pigures 3 snd 4 would replace Figures 12 and 13,

A diffarent method of calculation has been given by Brown®-32, The wing loading is
again represented by a horse-shoe vortex, and the compiete expression for the inter-
ference upwash at the tail in a closed rectargular tunnel is given Ly

16
: = Sayly) = ZQE'!ILB"xt.y—-Ms.d;-d-mh) - WA !z, y-ab-s,d, ~d-2nh)] -
i L -
>
‘ & - gfg'[-w-*xt.y -mb+s,4, +d-2nh) - W(B 'z, ¥ -wb-s,d, +d-20h)] -
3 - ME7 x5 +3,4, +2) - W(B 'y, v-8.6, +d)] , {3.195)
51
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where, as usual, - derotes that (m,n) takes all possible integral pairs except
{0,0), W(x,y,z) is defined in Equation (3.79),

y

x, 1s the length of the tail arm,
is the spanwise distance along the tail, d and dt denote the respective dis-
tances of the wing and horizontal tail surface from the tunnel floor.

Brown writes
each dcuble summation in the fomm

553 S

f=z=-M n=-% ]
'
snd the remainder R, is evaluated cn the basis that W(x,y,z) is a nearly 1inear
function of ¥ whei ¥ and 2z are not both sszall; thns

W(x, ¥+8, z) - ¥(x, y-¢, 2) =

2s
- W(z, y+ib, z) ~ W(x, y-3b, 23] .
so that

e (g -2

?
)['(x. y-=zb+s, z--2nh) ~ ¥(x, y-mb-8, Z~2nh)]
oy

A e

D -
= ?[22"" ®, z-2h) -i:l(x. ¥ +1b+y, = —2ah) -Z ¥z Wb +ib-y, z-Znh)] )
nrc-® =e

oy ] 1 '
(3.186) :
When 7 = ¢, Equations (3.195) snd (3.196) sisplify tu give
c th [ &7
= =8 = E;ZZ {K(B 'x;, wb+s, z-20h) - W(B 'z, ab-s, z-20h)} +
L - -X

P z=d¢-~-d
+ -E{Z H(B“xt. ®, z~2nh) ~ i l(ﬁ“xt. Mb +1b, z-mh)}
= _ =%

z=GtH
- 2%(87'x,. 8, d, +d) , (3.197) 3
atiere the square bracxet notstion irdicates that, as in the case of an integrated =
function, the value for z = d, +d is to be subtracted from that for z=d,-d. A {i
few calculations for horizoatal models (d, = d) in two closed rectangular tunnels
b=2 and b =4h are found in Table 8 of Reference 3.33. A more elaborate method 7
of cosputation for closed rectangulsr tunnels is suggested by Sanders and Pounder in .
Section 3.4 of Reference 3.23. When the tail span is appreciable, an average value of 4
a, is required so that the correction to tail setting becomes é;
ds, = L S (yy 8(y/2y) ~ Do . (3.128) %
¥
s - 22 T S S . T M s o M SR B _ =
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Batchelor3-3%, following the method of Reference 3.32 for a centrally placed wing
(d = $h) in & closed rectangular tunnel (b/hR = 9/7), has devised a rough procedure for
estimating the incremental effect of superimposed fillets to form an octagonal tunnel.

. As sn slternstive estimate, the assumption of Equation (3.108) may be generalized, so
- 3 k that for octagoral tunnels Equation (3.194) is replaced approzimately by

J . v 3
4= S—C"—S, 1+ (—‘— /-— . (3.199)
3 U c \8 x vV C

: l y in which (SA/S')‘ correspords to the rectahgulsr tunnel. Tae parameter 8' for a

! : centrslly placed wing is identified with 80(0. 8) from Egqustions (3.102) to (3.104).

: For off-centre wings it is ahown in Reference 3,34 that the fillets have negligible
effect on the variation o 3C, 8'/c with the vertical location of the wing. Therefore
i . the resuit for closed rectangular tunnels from Reference 3.33°

Al : ©

3 8 77(ba + 8)
3 b | ,7d 2%
e . y = | -sin®— {3.200)
f . 168 {778 b , T{m +s5) 2 7d
d ! sinh® ——— + sin® —
L vy 2h h

provides the increment

i 2 7(tm +8) 2 7(be + )
; c b co _2!: na coth Y
z ! Su=8(0.5) = b 168 T(mts) 2? (bm + 3) md
T s ri4 8 L
siph? ———— +1 sinh? ——— + sin? —
) Z BE-0 h
= (b +£)
] 2 7rad p. ]
= m—— OS¢ (3.201)
16hs h o, T(tm +8) , 7d
cogh ¢ ———— - c08° —
B=-0© a

to spply to the valve of §,(0,s) Ifrom Equations (3.102) to (3.104) for uss in Equsti: .
(3.199). The quantity (3,/5.), may be evaluated as (3,/3,) ~ 1, where 3, and 3,
are defined in Equations (3.197) and (3.200). The factor +(bh/C) in Equation (2.199)
i is rather speculstive when x, iz large, snd indeed is not required in the limit «s
§ ~a when 5, = 8' whatever the tunnel section. However, it —ay be noted from tke
results in Table 3 of Reference 3.34 and Table 4 of Reference 3. that the fillets
sppear to have greater percentage influence ox wy at the tail than on w; at the
wing, so that the factor (bb/C) greater than unity is compatible.

. et Sl A S0 b SO SIS G fa- 4 S h“ Y SANINAN T Py

Several pepers have been published on tunnel-wall corrections for wing-body cosbina-
tions. Smith?-5? considers s circular body concentric with a closed circular tunmel,

* 8, = 33 from the bottom equation o p.4 of Reference 3.33, since the 11ft cosfficlent
k; = {01, wis used in the definitiom of 3Sy.
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represents the 1ifting wing by & borse-shoe vortex, and solves the two-dimensionsl
problem in the plane of the bound vortex x =0 subject to tangentiai flow at the two
circular boundaries. The resulting infinite sequence cf imsge vortices is shom to
give rise to an interference upwash that may be vp to twice as great as for the wing
alone. Gorgui®-5" gives closed expressions for the aseries in Raference 3.53 by a
method of conforaal transforsation and also derives analytical results when the circular
vody is symmetrically placed in any clesed rectangular tunnel. In most of his numerical
examples the interference upwash at the wing-body junction is practically twice what it
would have been in the absence of the body. Loos®:?? has treated the same problem for
a closed octagonal tunnel with an elegant approximation to the influence of the fillets,
and he points cut that the interference effects have to be interpreted as a principzl
ccrrection to 1ift in respect of the vortex pairs added within the body cn account of
the tunnel boundary. In consequence there is the excessive residual interference imwash
at the wing that would be likely to disturb the stalling characteristics of the model.
Baith and Gorgui conclude wrongly that their results cast considerable donbt op the
practice of applying the corrections, such as Equations (3.186) to (3.18S5) to msasure-
ments on wing-bady combinations. There may be uncertsinty as to the interfersnceé fiow
tield sassociated with body 1lift, but this merely requires s few point concentrations of
1ift distributed along the body and the uncertainty is purely one of represestation.
Proa knowledge of the interference field it is s retrograde step to treat the body in
isolatiop. The principal correction to 1ift in respect of the added vortex pairs is
illusory or at least highly undesirable. Instead the principal corrections Ax and
Ax, saould be applied, and tke difficalties of interpretation asy then be confined to

the wuch swsller residual interference upwash (w,;/U) - Ac in the presence of the
cosplete model.
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3.6.3 Isterference ca Sromad Effect

iy

The discussion of off-centre models towards the end of Section 3.4.1 includes s brief
reference to ground effect. Figure 3.11 shows some resclts from Reference 3.33 for
rniforaly losded wings in a closed duplex tunnel as the model is displaced towards the
floor of the tunnel. The priaary effect on the mean interference parameter (ao)n is
the increasing contribation from the principal imsge in the floor. when the floor is
used tc sinulate the gromnd, this effect ceases to be part of the wall interference
and the resaiader (So}n‘ 22l11s rapidly to zero as the model approaches the ground '
{(d = 0) and the otker imsges tend to cancel out. The effect is illustrated by the
removsl of the contridution from the principal image in Eguaticn (3.200). The remminder
represents the upwash interference parameter st the centre y =0 of the miforaly
losded ®ing with ground simulation

wy

. A(tm +8) B
2 § coth — “
5 _ b Sad sin? ﬂd x (3.2
" 153 | ms(s® +44%) ( 2 T(bm +s) ]
+ sin¢ ~—
as=-o h

.

Yo 0 5 :

which is seen to be O(d%) as d -0 . Typically, with d =0.25h in Pigure 3.il,
(SG)Ug is ssaller than (8 Ju by sn order of magnitude and is not required to great
sccuracy. Even for wings in the centre of oblong tunnels (h = 0.25b and h = Q.50b), ¥
Brown calculates small maximus values of '(so)n é, ) | ir Pigures 2 and 3 of
Reference 3.33 (0.013 and 0.005 respectively), so that it shonld be unnecessary ts
cocnsider elliptic spanwise loading shen d/h is fairly ssa]l.

A
\l
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Sanders3-55 hae derived s fairly simple expression for the mean upwash interference
along & uniformly loaded 1ifting-iine model in & clcsed rectangular turrel. The correc-
tion to incidence with ground sizulation is

SCL F8
’ Bay = = Bolyg - (3 203)

where

op? 7ot -2d) n(h 2d)

3 S b osi \2 2,2
2 See = 1(5p)g) +—L Ty e, (14
3 i Cedg 0’e’d=id 201 Sich (27mh/b) o ) 8mbo? "~ ¢ 1d°
1 and the firsi tere on the rigkt hand side is idectified with Equation (3.£3). Values
of (80)“ ave svailable in Tebles 5 and 5§ of Reference 3.33 wnich require the factor %,
and in Figure 3 of Referesice 3.55 where the ordinate is ten times too large. Some of
the results are collected in Figures 3.32 and 3.23 for the three shapes of tuanel,
k/b=0.25, .35 and 0.50. Figure 3.22 shows the effect of model span for two height
4 ' ratios d/b = 0.5 sad 0.2 , and Pigure 2. 23 shows the effect of aodel height for o =0
and 0.56. The series in Equatiom (3.203) only converges rapidly when (h-2d) is smsll,
but the altsrnative expression, derived in Equation (A-3) of Appendix A of Reference
1 3.55, is quite suitable for the smalier vaiues of d . Sanders alsc forsulates the
sidewash interference with siternative expressicns suitable for the two ranges of d.
The images of the bound vortex induce a velocity perallel to the tunnel axis, and the
average value of this stresm-velocity correcticn over the span of the wing is obtsined

.

AN
PP ASRAN

e € 5, _E EG E Pt [{{2ex-23) + (m+ ) 4
—— = = — o 2
v/ U C 8nPbo’ h—2d (n+2)

+ {(20h -28) + (2-)?b°H - 2{(2h -2¢)? + w27}F] . (3.209)

The slow convergence of this double series is discassed fully in Appendix A of Reference
3.55 where Equation (3.204) is reformulated for, computstion in the two casss ahen (2h~q)
or d i= sxall. The calculaticns for hk = 9.35b indicate that (»/S:L)e vg AR be

| : considerably larger than (Se).“ . Zquation (3.204) shows thsat €gg = O(d)  as the
nodel approaches the sisulated ;1 ound. Por the larger vaiaes of ¢, bowever, €og

can be guite as irportant as the usuel blockege corrections discussed in Chapter V.

But the cospressibility fsctor is only 3! a5 cowpared with S for soiid blocksge.

 0e e nesa Ot MAUBAMPR Y RN DIV ST - A it £ 1 M Sosmam

—v— e
.

boee

As ragards interference on ground effect at the tsil, the parascter &:t () is
given bty Ecuation (3.195) with the isst term omitted. Since ¥ is an even fnnction
of z, it follows that 5“: is unsitered if tbe vertical lecations of the wing and

b p e -

f;."' tail are interchanged. However, the interference at the wing i{s different in the two
SR cases, and so taerefore is the correction to tail selting

5 F : )

' Aat( = L &zt;(’) d(y/st) - Aa‘ . {3. 205)

Y il

>, f:.s .

i we I The evaluation of Aa, is discessed further in Reference 3.33.
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Irrespective of tunnel shape, the interference correctioss an ground effect sre
readfly dediaced from those for off-centre models. The rematk: on closed octsgonal
tunzels invelving Equations (3.199) and (3.291) may be helpful, but 1% is more strasght-
forward to estimate the correction to incidence as

TN SN Y ;@qg‘e@" g

sC
Ba, = -E!:A,(so)g , (3.208)
where )\R = (SO)U‘/[(80)0163'§=

EYTTRC YTV PP

is defined by Equation (3.203) for the basic rectangulsr turnel and the parsseter (80)‘
for cn cctagonal tunnel is found from the epproxicate Equation ¢3.107). When the crigi-
nal workizg sectior is circular, experiments orn ground effect reguire the insertion of
a grourd plate aad the twmnel is effectively of bipolar shape. The parameter (So)m
hay been derived for open and closed circular tusnels. In Section 12 of Reference 3. 14,
Boudo has given the general expression (5]) and tabulated results in Tadie IX in
particular cases sher the model 1ied alsng ths horizontzal dismeter of the oper: circular
bowriary. Albritton and Huder®-S¢ give an analyticel expression for the distribution
[8,¢r. s)l8 along the spea of a horse-slioe vortex in a closed circular tunael with
srcund plate. The rasults in Pigare 9 of Reference 3.56 for s = 6.62R and

0.11 < d/s < 0.41 correspond to the rsage 0.002 < (80),,' < 0.026 based on the area
of the complete circular section. Again (80}“ ie an order of megnitude smalier than
the contribution from the ground plate

¢ s? a2\
Tt 1ok, \1t57) = w0820z, (2 +d—2/) .

3.6.4 Nodels Spammirg Closed Tumnels

Ao tee ond = &

LTS

We shall cousider two investigations in which two-dimensicnsl models have been tested =
under conditious when wall interference is thresa-dimensional. The first configuration )
of ay unswept wing in & closed circular tunnel’-*? has alresdy been mentioned in Section
2.2.5 ang at the end of Section 3.4.3. The other configuration i{s of s swept ¥ing =pan-
ning a closed rectangclar tunnel®-57. In each casc the practical problea is to detecmine
whether pressure weasuresents at the centre section caa he corrected to two-diwersicasl
velues.

The analycis of Viacenti and Greham iz based on their sanipclrtior of Bquation (3.127)
with y =9 i Appendix A of Refersace 3.42. Hence

L, 1R +y} Rx

{1) -
wii(x6) = —=- + _
X ) 47 pUR !@: ,;(xz + gzy,z‘)
_{" S ("l’ﬂy&p’q‘.nyic(’/ﬂ)zpﬂ .20
.::‘.gna (e +1)1{2p.+1yiz2ag2(peqe) § ° .

wher2 u, = 1 i 120-2¢3 4¢3

* (2t + )7 Ja 1} (03?

< -0.899 ., -1.6W. -9.98, ~120.8 for f = 1.2,3,4.
H - T Tm
e e st A i PG S S A N 3 D o @f
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fince the spanwise loading is spproximately constaat, Ly is replaced by elements
1eUfi(xy) 82y %5, ip Bquation (3.207) and the total downwash along the centre line
becomes

vy

v T ixy j“ 4mpTdR

— I w{tHx~xy, 0) dygdx,

] s B8R

¢ 1xy| 208 +(x-x )2}
- K| X

0 8TR X~Xy

~15P! o \zo#
-ZZ 1B s age1) x-xy . : (5208
o8 e W(@EDI(2p+ 131 (2 +1)229¢ 1\ By N

special care has been taken with the integration scross ¥;=0 (Ref.3.42). In general
the integral aquation (3.208) would have to be gsolved for the chordwise load distribu-
tion I(x ") with w(x)/U corresponding to the cmmber liaz of the wing. But the
awroximtioa is mads that terms of crder [(x-~x,)/ZR}° and higher are negligible,

80 that only p =0 is retained and Ecustion (3.208) reduces to

e A L IR A oA M Y v T
| i

#(x) B re 1 / 2 u,o.
- e S 1 + NfL E 2{Q*1)
41rI° )

}
T dx
' % v x-x, A® \l &0 d(@+1(g+132°¢ N
! B f* 1 79(
0. 5719(x — xy)
=1 - dxy . 3.209
; 4,”1; y) X-X, BR? » ( )

To this aporoximation the wall interference is precisely that which would arise in 2
two-dimensional tunnel of height 1.686R. Wy & correspondiag treatment the interference
to the stream velocity is precisely tke solid blocksaze of the same model in a two-
dimensjional tunnei of height 1.558R. The interfereuce corrections are thus

3] I
: 0. 28“
Ba = ( > (Cpy, + 40y,
0.288c%C
- LL .
P gy, = - T s (3.2i0}
P
' Ac - 2 289c°Cy
Co L 16/°8* ] )
ML where C,, and Cy1 8re the local 1ift cuefficisat sad pitching ooment coeficient
54 f H about the quarter-chord axis snd thers are additional terms to account for blackage
o : effects in Rguations (51) and (52) 2f Reference 3.42.
e P The analysis for the swept wing spanning & rectanguisr tumnel in incompressible flow
: f" % is sore straightformard. Agein the spoawise loasding is txken to be unifors, but it ’s
11 - i represented simply by a bound vostex along the qusrter-chord line. Dannenbergs-%7
e i gives the interference upwash at the centre section in the form
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T et Lsdes wisin?A + (ab/b)? | {L tan?A + (m+1)? + (nb/b)2}E

mcos®A -1
{3 tan?A + (2-D)? + @)}
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As & resuli of the swept iifting line the interference velocity also has stresxwise
and sidewash components wnich are formulsted. The final correction to ipcidence at )
y=0 is

- 5l
14k,Cpp

Aa (3.212)

where k, =0.43° and k, =-0.084 for the sweepdack A = 45° .

Figares 3.24(a) and 3.24(b) show the uncorrected and corrected curves of Gy
against o from the respective investigations. In Reference 3.42 the corrections of
Equations (3.210) are applied with further allewance for solid blockage to measuremercts
on two sizes of model, ¢/R =0.71 and 1.25, in low-speed flow. The corrected
results in Pigure 3.24(a) collapse on to a single curve apart from uncertainties nsar |
maximum 1ift, and Vincenti and Grabam slso find satisfsctory sgreepent between the two
corrected curves of Cat against C,, . In Referemce 3.57 the experimentsl 1ift curve
is corrected by Equation (3.212) and compared with that for an unswept wing of the same
NACA 63,-012 aerofoil scction norsal to the leading edge with the s le sweep factor
cos A . The agreement in Figure 3.24(b) is remarkebly gocd, and the corrected experi-
ments in Reference 3.57 also give satisfactory comparisons with the pitchirg soment
and wake drag of the unswept aerofoil. Both configurations caan be justified ss mesns
cf estimating two-dimensional flow.

3.7 EXPERIMENTAL CONSIUERATIONS

Although the study of wind-tunnel wall interference arcse directly from experiment, !
it rapidly became a source of absorbing mathematical problems. In some respects the
ensuing theoretical developments have outstripped the neeils of many experimenters to
whon wall interference is one of several corrections to be applied; these sad other
factors set a limit to the sccuracy of the investigation. Moreover, there are types
of experiment in which the air flow is so complicated that oaly the principal inter-
ference corrections are likely to have significance. Flow separztion due to high
incidence, leading-edge sweepback, stroag shock waves or bluffness of the model occur
in mast programmes of wind-tunnel testing. Any one of these may cause serious viola-
tion of the linear assumptions implicit in tke preceding forculae. The remerks in
Section 3.7.1 concern the experimezntal evidence of wall interference at the stalling
incidence. Other aspects of separated flow fora the subiect of Chapter VII.

WY SRS
0 "t

Naturally the precision o¥ calculated interference parameters is far greater than
that of any experimental verification of the underlying theory. The avsilsble inforsa-
tion for closed amd apen tunnels is sumsarized in Sections 3.7.2 and 3.7.3 respectivsly.
Although much of ihe material is inconclusive, the results have some practical interest.
It i3 pertinent that, especially far open tunnels, there is more evidence of under-
estimation than cverestimation of interference effects. Neglect of streamline curvature
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is perhaps more prevalent than it should be. Simpls approximations cos r this and
other refinements, and there can be iittle justification for ignering them.

3.7.1 High Lift

There are sany factors to complicate wall interference cn wings at high 1ift. The
sttitude of the model may introduce off-centre effects due to vertical displacement.
If the chord of the wing is large, the wing and its principal image in a clesed roof
will represent a divergent passage snd so tend to cause flow separation from the upper
surface of the wing. The high 1ift »iXl increase the magnitude of spauwise variations
in interference upwash and the chordwise varisticn Enown as sireamline curvature. The
residual effects of these cn the stalling characteristics of the wing are usually
mnpredictable, but could bte iwmportant. Furthermore, the trailing-vortex systes may
suffer pronounced distortion at high incidence, and so may the boundary of >n open jet.
Al these uncertainties leave little confidence in the standard isterferemce corrections.

Glavert (Ref.3.1, p.38) gives & clear qualitative picture of the effect of spanwise
variation of interference upwesh on the siailing of 1ifZingz-line models of isrge span.
A wing of elliptical planforn, having a constant effective incidence throughout the
span, can bhe expected tc develop a tip stall in = closed tunnel and a root stall in an
opea tunnel. A rectacgnlar wing normally stalls at the root where the effective inci-
dence is greatest; in s ciosed tunpel the interferenmce upwash at the roct will often
ba less than the weighted mexn An so thst the corrected stalling incidence ia strictly
too high, add the reverse is true in an open tunnel. Conversely, with the correction
Hm , a highly tapered wing of large span in & closed tunnel should exhibit comservative
stalling characteristics, while fests in =n oper tunnel should be unduly optimiatic.

In the derivation of the interference corrections in Section 3.3.3 it is mentiocned
that the correction to incidence Ac is in a sense quite arbitrary. It is convenient
to choose it so that AC, =0 ; if scae other vaiue of Az were taken, the residuel
corrections would be different, but within the framework of linearized theory the
corrected asrodynaaic data would be c¢nsistent. Such considerations no louger apply
near the stall, acd the theory of wall interference is incapabie of determining the
effect of wall constraint on maximum 1ift. Therefore Bradfield, Clark and Fairthorne®-%°
carried out as experimental investigation of (Cylyay ©OF rectangular wings of varicus
sections in different sizes of tunnel. Their resuits in closed rectargular tunnels
satisfy the empirical negative cerrection

Y (> = ~0.76 S/b° : {(3.213)

) max
within $£0.005, but thaere is no systematic evidence of any corresponding correction in
an cpen circular tunnsl. Although Equatiocn (3.213) wmould sppear to be consistent with
the expected higher stalling incidence in m closed tunnel, a further serias of experi-
seats by Adagson, Piper and Brown®'3? on rectangular wings revealsd no evidence of

systematic wril interference on maximum 1ift. They suggest that, if full account of
weke blockage were takes in Reference 3.58, the correction fo 1Cplnay Would practic-
ally dissppear. Purthermore, tests in Reference 3.53 with off-centre models show little
effect on (CL)u‘ . Since wake blockage can usually be neglected in open tunnels
{Secticn 5.5.3), the results of Reference 3.58 for closed and open tunnels becoxmo
compatible,

. :
. '&.Q‘mu—» i Y T

3
. TR CIREMIESSSSETTR TS . e

. ”



ARV NUPY

169

A cunvincing quantitative study of the effect of spanwise variation of interference
ppwash has been published by Stewert (Ref.3.60; 1641), @ho considers a large lifting-
line model with elliptic spanwise loading in two closed circular tunnels. The inter-
ference upwash at the wing root on the tunnel axis

(w,/0) L
w T e——
7 e

is independent 9f o = s/R, and it is supposed that this incremental corsection has

been applied to the incidence. Stewart obtains the residual intertrerence at tre wing
tip .

sc, | 1 . 1 ‘
W, ), ~ (% /3y, = —2|—— {(1-0%)"F -1} -— 3.214
(D) ~ (/D) = — lw,, {(1-0% -~ (3.214)

which gives

('i/U)t et ('ilu)r

_ 0.047 and 0 207
50,/C

for o =0.77 and 0.93 respectively. In the two corresponding experiments on ac
elliptical planform of aspect ratio 5.88 the tip stail was observed carefully with
tufts to occur suddenly at corrected incidences o = 17.3° and 15.1° respectively.
Figure 3.25 shows ihe results and indicates how perfectly Equation (3.214) accounts
for the difference in stec:ling angle. It also illustrates two important conciusions,
that the correction to stalling angle is unlikely to be large unless o > 0.8 , and
that no deductions about (Colpax €8O b2 made; the larger observed (C)pay cOrTES-
ponds to the lower stalling angle. Scme additional information for a clcsed elliptical
tunnel (b/b = 1.37) is found in Reference 3.4C.

pavis and Sweberg®-%: have studied interference effects in an open circular tunael
by comparisons of full-scale tuanel and flight reasur<ments of meximum 1ift for s
coesplete aircraft. The experinrents are complicated by the large size of the aircraft

&nd the high (CLlgay = 1.99 obtained in flight =itk fiapz and lsadiang gesr extunded. .

with these retracted, (Clyax = 135 and 1.32 are deduced frcm tunnel and flight
respectively, when aliowance is made for Reynalds aumber and time rate of change of
incidence. 1In the landipng conditjon, however, the corresponding tunrel resuit

(CL)aax = 1.86 is as such o3 0. 19 beiow the valve in flight. HKalf this discrzpancy
hnas been explained by two unusual correcticns. The first is associated with a lsrge
spanwise variation in dynamic pressure ahesd of the uirscraft dae to = distorticn of
the circalar jet; weighted in accordance with the spanwise leading, tkis gives = large
negative correction tn thc dynsaic pressurs snd an increment of 0.05 in (CL)mu . A
second correction of A(CL)zax = 0.85 irs stated to arise from the negative camber
associated with streamline curvature; & corresponding increment of 0.33 elimingies the
s=all discrepeacy iz (€0 nex with flaps and landing gear retracted. Tae only fira
conclusion is that the ares ratio S/C of the planform fc the jet should be well
below 2.2, It would be realistic to impose restrictions S5/ < 0.10 for open tunnels,
3/C < §.158 for closed tunnels, ang never to assuze better sccuracy than 28.02 in
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3.7.2 CloseZ Tunnels

¥uck of the theory of wall interference in closed tunnels is nox accepted without
guesuLion. Nevertheless, experimental checks on the theoretical forsmulae for Ao and
ACD for wings of high aspect ratio are important in the historicsl development of the
subject. 1n Figures 11 and 12 of Reference 3.1, Glauert summerizes the experiments of
Cowley and Jones®-%? on & biplene mcdel of span 3 ft tested in closed square tunnels
of side 4 ft and 7 £t. glavert epplied the correctibns of Equation (2.6) with § -‘(80)8
to bring the 1ift end drag curves from the two tuamels into satisfactory agreesent He
aiso describes the results of experiments by Higgins!-¢? on three rectangular wings of
aspect ratio § (o0 € 0.6) at constant Reynolds number in a closed circular tunnel;
after trying several empirical corrections without sucgcess, Higgins concluded that the
thecretical formalae (5, = 0.125) gave the best correlation.

In later experiments the zmethod of amalysis is to §§tersine expirically the
corsections

Ax = § sC,/c

AC

1}
o
o
l"’sqvo
SN~
«Q

(3.215)
o =t

that reconcile the measurepents. { is instructive to coapare the results with the
theoretical values from Ecuations (3.85)., whence

ot

on
{

8,
(80) B ?_ —_—
\ 3,236 /1 (3.216)
3

D (50)3

J
where 51/80 is given in Figure 3.4 for rectessular tunnels. Three exszples are
taken for square tunnels.

Experizment Theory
Scurce c A

S 8 3 2

X D [« 4 h)

Reference 3.8, Case 1 3.40 4 0.140 | 0.140 ; 0.152 { 0.140
Reference 3.8, Case 1 0.60 6 0.142 | 0.125 ) 0.160 | 0. 147
Raference 3.64, Test 20 0.75 5 0.170 | 0.1,2 | 0.175 | G.158

In the last example the experimentel SD varied frox 0.15 to 0.19. The tabulated
results represent 2 reasonable confirmation of the theory.

The investigetion of Sivells and Deters3-*7 justifies the use of part-span models
in & closed circalar tunnel with a reflection plane. Pigure 3.15 illustrates the
redsction in 1ift interference when & haif-wing medel is used. The rolling moments
due tc aileron deflection &£ will slse have to be corrected to conditions of anti-
symretrical spenwise loading, as discussed briefly in Sectica 3.3.6.: Furtherx-re,
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if e psrt-span model is used, there will be a third correction tu allow for the change
in planform. In the example of Reference 3.47, sketched in Figure 3.26, thea’e correc-
tions are respectively

Ac; = -0.0816 C,

and factors 0.949 and 0.934, which ccabine to give & free-stream rolling moment
coefficient

(cl)? = 0.814 Cl

The success of this large correction is iilustraied in Pigure 3.26, where corrected
results (4) from the part-model test at & Reynoslds number Ry =8.9 x 10° are coa-
pared with the full curve sgainst & from experiments on a complete model at
R, = 4.7 x 10° . :

- .

Reference 3.4 sets out fo put wall interference and scale effact into perspective.
Table 58 {Ref. 3.4, p.45) illustrates hoz the two corrections say often oppose each
other when the tunnel boundary is closed. It may be typicel that tte wall interference
correcticns to merodynamic forces and moments due to incidence are as izpcrtant as
corrections to full-scale Reynolds ammber. On the other hand, the charzcteristics of
deflected control surfaces are likely to be influenced iess by wall interference thsan
by scale effect; the case of rolling moment on & part-span or half model is 2 notsble
exception. )

3.7.3 Open Tunuels

Because open tunnels were used extensively during the period in which the theory of
well int:rference was developed, more attention has been given to the experizentsl
verification of the theory for open and semi-closed tunneis than for completely closed
tunneis. Enight and Harris®-%S have tested three rectanguiar wings of sspect ratio 5
with span ratios o0 =0.45, 0.60 2nd 0.75 in four oper tunnls of circuliar, rect-
angular (b =h/2) and ovai section (b=h’2 and b =h with circuler sides). Their
analysis follows Equations (2.215) on the assumption that the results iu the circuiar
tucnel can be extrapolated {o zero interfereace. In the preseal theoretical analysis
Equetion (3.218) is used, but § /S, is now defined by Equation (3.31) with B8(?)/8(®)
irca Pigure 3.4. The compsrizons in Pigure 3.27(a) for the open circular tunnel sre
reasonably setisfectory. There is further experisental confirmation of the theoretical
1ift interference in open circular tunnels published by Tani and Taims?-%%; sn Pigure 3
cf Reference 3.€6 thsy make sllowsnce for stresalipe curvsture and obtain consistent
11€t and drag curves for three rectangular wings (o < 0.5, 9.5, 0.7) of aspect ratio 5.
The results of Refereace 3.65 are less convincing for the rectangular and oval sections,
btut experimentsliy -Sa tends to be iarger than -Sa and the difference indicates the
order of magnitude of the streamline-curvature corraction. Pigure 3.27(h) compares the
experimental resvits for the oval tunnel (b = h+/%) with calculations based on Equations
(3.216) and the spproxipate theory of Senuki snd Tani im Section IfI of Reference 3.35
for the particular open boundary.

The investigation of van Schifeztett3-® is particularly ipteresting. Not only does
ke give 2 satisfactory confirmation of the theorsticai interference parzmeters for aa
ojer square tunmel, but obtains experizental resalts that contradict the theory of
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Reference 3.6 for a square jet with solid side-walls (type (4) in Ssction 3.2.2) and 2
square jet with one solid horizontal boundary. The doubie achievemcut of dutecting
two theoretical errors by experimental means and correctirg both successfully deserves
special aention. Other results for semi-closed tuanels are found in the experiments
described by Tani and Taima in the gecond part of keference 3.€8 for & circular boundary
having s symmetrical closed portion below tbe medel. The related theory is discussed
briefly in t:-~ fourth paragraph of Section 3.4.3; Kondo hss applied his theory to the
experiments of Reference 3.66 and obtains very coasistent 1lift and drag curves in
Pigures 13(s) and 13(b) of Reference Z2.3i4 for three sizes of model and five amounts of
closed portion. Por O = 0.5 he confirms the eliminaticn of 1ift interferetce when
the lower 38.5% of tke circle is closed.

In Peference 3.87, Silverstein and Xatzoff descride tests oa rectsagular wings in a
full-scale open circular tunnel and in & 1/15-scale mGdel of the tunnel. The essumption
that the lree jet is of infinite length iz shown to be sdequate for the purpose of
obtaining interference upwash at the lifting line. Traverses cof downwash behind the
wings have confirmed that it is essenitial to consider the Zinite length of the opeén
tuonel iu relation to interference correctjons at a tail plane, ani qualitetive sgree-
zent is found with & theory of Weinig (Ref.3.68; 1936). The experiments in Reference .
3.67 led presumably to the theoretical developments in Reference 3.5, discussed in y
Section 3.2.3 and illuatrated in Pigure 3.6.

3
[V

4
v
LSRN

Pinally we consider tests on three equilateral delts wings (A = 2.31) by Jones and
Miles®-** in a low-speed open circular tumpel, to which were applied the simple correc-
tions in Egoation (3.6) with 80 = -0.125 . For each of the span ratios o = s/BR = 0.361,
0.500 snd 0.664 the interfererce corrections to incidence based on Eguation (3.35) are
now calculated from the foratla

e L E g ol

At 3,1} sC
Aa = (5)g [1 + ﬁf’}—ci (3.217)
/]

with 3,/8  =1.594 and A =1.25 interpolated from Table 3.III. The spplication of
this correction in place of the first of Equations (3.6) incresses the 1ift slope by
the spproximate factor

BRI ANMTIETAD I VIR ST Kot Ty omvens o avrsnes o

P = i sac“r(s) (1+04§n§E +0.125 (3.218) )
- -?727;["‘\ e ) o

which is calculated below with the experi: :atal Ec‘./'aa. =2.66 .

Model o sic | ~(S)g | @m P

1 ; A 0.361 0.072 0.1255 0.312 1.004
EH B 0.500 C. 138 0. 1267 0.453 1.013%
B & C 0.664 0.243 0. 1302 0.575 1.027

It is stated in Reference 3.69 that respective empirical factors 1.01 and 1.05 were
- spplied tc C, on the models B and £ to give consistent 1ift curves. Allowaace for
Is streamline curvature through the factor F 1is now seen to account for hal? the effect
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of these cmpirical factors. As regards drag, consideration is given to the remarke at
the 2nd of Saction 3.6.1 and we examine the conscquences of spplying the correction in
Equation (3.185),

PN 5 K AT

A, = Cha . (3.219)

at the higher values of C; when there is flow separation along the whole leading edge. :
When £his speculative correction is used in place of the second of Eqation® (3.6) for 3
1 the largest model C , the s0lid circles are obtained in place of the open circles in

Figure 3.28. Tke results for the three models are seen to be in acceptable agresment

while €, is fairly smsll, but the correction in Equation (3.219) reduces the scatter

‘ for C, > 0.4 . Unfortunately Ry = 0.59 x 10° is the highest Reynolds number at

- which all three models were tested over the full range of C, . The results in Figure

: 3.28 are far from conclusive, but they esre included as a warning that the standard

: correcticas to C, are too smsll shen lesding-edge vortices are present.

3.8 INDEX OF FORNMULAE AND DATA 5

The process of evaluating the interference velocity field depends primerily on the ;
tunnel section, but tbe requirements sre influenced greatly by the configuratiom of
the model, by the serodynsmic gquantities to be measured and above a1l by the sccuracy
of the experiments. When small ineccuracies can be tolerated, meny of the simpler
foruulae for interference parameters are most useful. These are grouped according to
tunnel section for various purposes in the first table btelow; although this includes
reference to the numerical data in ihe present tables snd figures, theres are important
sdditional scurces listed in Table 3.IV. 