Technical Note 1967-37

Superconducting Transition Temperature and Electronic Structure in the Pseudobinaries Nb₃Al-Nb₃S and Nb₃Sn-Nb₃Sb

F. J. Bachner
J. B. Goodenough
H. C. Gatos

10 August 1967

Prepared under Electronic Systems Division Contract AF 19(628)-5167 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Lexington, Massachusetts
The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-5167.

This report may be reproduced to satisfy needs of U.S. Government agencies.

This document has been approved for public release and sale; its distribution is unlimited.
SUPERCONDUCTING TRANSITION TEMPERATURE
AND ELECTRONIC STRUCTURE
IN THE PSEUDOBINARIES Nb₃Al-Nb₃Sn and Nb₃Sn-Nb₃Sb

F. J. BACHNER
J. B. GOODENOUGH

Group 83

H. C. GATOS
Massachusetts Institute of Technology

TECHNICAL NOTE 1967-37

10 AUGUST 1967
ABSTRACT

The system Nb$_3$Al$_y$Sn$_{1-y}$ exhibits complete solid solubility, a positive Seebeck voltage that increases monotonically from 1.8 to over 12 μV/°K, and a superconducting transition temperature T_c that has a broad minimum of $T_c \approx 15.3$ °K at about $y = 0.5$. The pseudobinary Nb$_3$Sn$_{1-x}$Sb$_x$, on the other hand, contains two phases, each with the A15 structure, in the interval $0.3 < x < 0.8$. Whereas the Seebeck voltage of the low-Sb phase is positive and has a $T_c > 14$°K, the high Sb phase has a negative Seebeck voltage and is not superconducting above 4.2°K. These properties have been interpreted with the aid of a qualitative band-structure scheme. Thus, the rapid drop in T_c to below 4.2°K in the system Nb$_3$Sn$_{1-x}$Sb$_x$ is believed to be associated with the filling of the bonding, interchain d$_\pi$ bands of the Nb subarray.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office
CONTENTS

ABSTRACT iii
INTRODUCTION 1
EXPERIMENTAL 1
RESULTS AND DISCUSSION 3
 A. Experimental Results 3
 B. Qualitative Energy Band Scheme 7
 C. Discussion 11
APPENDIX 15
SUPERCONDUCTING TRANSITION TEMPERATURE AND ELECTRONIC STRUCTURE IN THE PSEUDOBINARIES Nb₃Al-Nb₃Sn and Nb₃Sn-Nb₃Sb

INTRODUCTION

Attempts to relate variations in superconducting transition temperatures to changes in the occupancy of electron energy bands is greatly hindered in intermetallic compounds by the lack of firm band energies. This problem is especially acute if one or more constituents is a transition metal. However, the possibility of correlating superconducting behavior with band occupancy is of fundamental importance, and the present study represents an attempt in that direction for the systems Nb₃AlₓSn₁₋ₓ and Nb₃Sn₁₋ₓSbₓ. The compound Nb₃Sn has the beta-tungsten structure (A15) and a superconducting transition temperature Tc = 18.2°K, which is the highest yet measured. Except for almost pure Nb₃Sb, all compositions have the A15 structure. The number of outer electrons per molecule increases monatomically from 18 for Nb₃Al to 19 for Nb₃Sn to 20 for Nb₃Sb.

In order to correlate the data with band occupancies, it would suffice to have only a qualitative energy-band scheme. Such a scheme is presented. It has relatively little ambiguity in the region of the Fermi energy, so that meaningful correlations are possible.

EXPERIMENTAL

All the compounds used in this investigation were made by powder metallurgical techniques from powders or filings of...
the elements. Niobium and tin powders (99.8 and 99.5 percent
pure respectively) and aluminum and antimony filings (ingot
purity - 99.999 for both elements) were used. In no case were
impurities in the starting materials found to have a significant
effect either on the formation of the desired compound or on
its properties. The elements were intimately mixed in the desired
proportions, cold pressed at 50,000 psi into ingots, and sintered
in purified argon at the desired temperatures. The Nb-Sn-Al
compounds were prepared at 1400°C and the Nb-Sn-Sb compounds at
1200°C. The same temperature was used for all the compounds
in a particular pseudobinary in order to minimize the effect of
transition temperature degradation due to the nontransition-
metal atom vaporizing with subsequent niobium-atom disorder.\(^{(1)}\)
This problem is especially acute in the compounds of composition
\[\text{Nb}_3\text{Al}_y\text{Sn}_{1-y}. \]

The Seebeck voltage was measured on ingots prepared as
described above. The measurements were made at room temperature
by establishing a temperature gradient of a few degrees across
the sample (32°C versus room temperature). The temperature and
potential differences from one side of the sample to the other
were measured by means of two iron-constantan thermocouples
placed in thermal and electrical contact with the sample. Even
though these measurements were made on porous ingots, the values
of Seebeck voltage reported are believed to be accurate to ± two
percent.
The superconducting transition temperature was measured by the self-inductance method described by Reed et al.\(^{(2)}\). For these measurements the oscillating coil, the sample, and the thermocouple were placed in intimate contact with a copper block (split to prevent the establishment of circular currents induced by the coil). This established a heat sink so that heat would not be conducted down the thermocouple wires from the bead—thus resulting in a thermocouple-bead temperature lower than the sample temperature. Both copper-constantan and copper-gold: 2.1\% cobalt thermocouples were employed. Calibration against samples of known transition temperature permitted an accuracy of \(\pm 0.1^\circ\text{K}\).

The lattice parameters were determined from -325 mesh powder in a 114.6 millimeter Debye-Sherer camera. Lattice parameters were calculated directly from measured line positions by Cohen's method programmed for the 7094 computer.

RESULTS AND DISCUSSION

A. Experimental Results

All the lattice parameters, Seebeck voltages and superconducting transition temperatures for the two pseudobinaries are presented in Figs. 1-6. In the system Nb\(_3\)Al\(_y\)Sn\(_{1-y}\), the lattice parameter (Fig. 1) of the Al5 phase shows a positive deviation from Vegard's law. The variation of the transition temperature in this system (Fig. 2) has a broad minimum at
Fig. 1. Lattice parameters versus composition in the pseudobinary $\text{Nb}_3(\text{Al}_y\text{Sn}_{1-y})$.

Fig. 2. Superconducting transition temperature versus composition in the pseudobinary $\text{Nb}_3(\text{Al}_y\text{Sn}_{1-y})$.
y ≈ 0.5 and a maximum of approximately 18.4°K at y = 0.1. This behavior has been previously reported by Reed et al. (2) and by Rothwarf (3). Because samples of high aluminum content were difficult to prepare free of the phase Nb₂Al when reacted at 1400°C, the accuracy of the Seebeck voltage was questionable, since the samples were two phase. Therefore, samples were prepared in the system Nb₄Al-Nb₄Sn, which also has the A15 structure across the entire pseudobinary, but is single phase when heat treated at 1400°C. The Seebeck voltage variation for both pseudobinaries is shown in Fig. 3. The similarity of the two curves is taken as a justification for the assumption that the Nb₂Al phase does not significantly perturb the measurement of Seebeck voltage on samples in which that phase is present.

The pseudobinary system Nb₃Sn₁₋ₓSbx, on the other hand, exhibits a miscibility gap at 1200°C within the interval 0.3 < x < 0.7, as can be seen from the lattice parameters plotted in Fig. 4. The two phases (designated α' and α'' for the tin-rich and antimony-rich, respectively) both have the A15 structure, but differ in lattice parameter. Although there is no comparable miscibility gap at 1400°C in the pseudobinary system Nb₃AlₙSn₁₋ₙ, there is evidence, from a broadening of the x-ray lines and a widening of the temperature range over which the superconducting transition occurs, of considerable clustering of the tin and aluminum atoms. Apparently there is a pronounced tendency for the nontransition-metal atoms to stabilize like atoms as nearest neighbors within their body-centered-cubic subarray.
Fig. 3. Seebeck voltage versus composition in the pseudobinaries \(\text{Nb}_3(\text{Al}_y\text{Sn}_{1-y}) \) and \(\text{Nb}_4(\text{Al}_y\text{Sn}_{1-y}) \).
From Fig. 5, the measurable superconducting transition temperatures \(T_\text{c} > 4.2^\circ\text{K} \) are clearly associated with the \(\alpha' \) phase. The fact that the transition temperature is not constant across the two-phase region is probably due to a sensitivity of \(T_\text{c} \) on the macroscopic dimensionality of the superconducting phase.

As seen in Fig. 6, the \(\alpha' \) phase has positive Seebeck voltages and the \(\alpha'' \) phase mostly negative Seebeck voltages. Within the miscibility gap, the measured value reflects weighted contributions from each phase. It appears that the change from positive to negative Seebeck voltages occurs within the \(\alpha'' \) phase, but close to the phase boundary.

B. Qualitative Energy Band Scheme

The cubic Al5 structure is formed by compounds having the nominal composition \(A_3B \), where \(A \) is a transition-metal atom of Group IVb, Vb, or VIb. Although the \(B \) atom may be a transition-metal atom, in this investigation it is \(\text{Al, Sn, or Sb} \). The \(B \) atoms form a body-centered-cubic (bcc) subarray, and the \(A \) atoms, which are \(\text{Nb atoms in this study} \), form three orthogonal chains within the three orthogonal faces of the bcc unit cell: there are two \(\text{Nb atoms on each face of the cube, i.e., a total of six \(\text{Nb atoms per unit cell}. \) The \(\text{Nb-Nb distance along the chains is} \ (a/2) < 2.65\AA, \) which is smaller than the nearest neighbor \(\text{Nb-Nb distance} \ \sqrt{3}a/2 = 2.86\AA \) in elemental, bcc niobium. The \(B \) atom is always more electronegative than the \(A \) atom, and Geller\(^\text{(4)}\) has noted that the individual atomic radii determined
Fig. 5. Superconducting transition temperature versus composition in the pseudobinary Nb$_3$(Sn$_{1-x}$Sb$_x$). For $x \geq 0.8$, any transition temperature is $< 4.2^\circ$K.

Fig. 6. Seebeck voltage versus composition in the pseudobinary Nb$_3$(Sn$_{1-x}$Sb$_x$).
from nearest-neighbor A-B separations are always the same for each atom regardless of their partners in the A15 structure.

Construction of a qualitative energy-band scheme can proceed as shown in Fig. 7. The left- and right-hand columns, respectively, correspond to the atomic energy levels at the Nb and the B atoms in the presence of crystalline fields. The electronegativity difference between the ions produces the relative stabilization $E_M - E_I$ for the B atoms, where E_M and E_I are the Madelung and ionization energies corresponding to the "effective" atomic charges. The constancy of the atomic radii in the A-B direction indicates that this electronegativity difference is large enough that the overlapping s and p orbitals of neighboring A and B atoms always form a filled valence band and an empty conduction band, which are labeled VB and CB in the figure. Each of these bands contains eight states per molecule, including the twofold spin degeneracy per spatial orbital. The energy gap between these bands is completely overlapped by a Nb-Nb sp band containing the remaining 16 sp states per molecule. Since this band is always partially filled, compounds with the A15 structure are always metallic.

The small Nb-Nb distance within the Nb-subarray chains indicates especially strong intrachain bonding and strong interchain bonding. If the z-axis is always taken along a chain, the $d_{\ell z} = d_{\ell z}^2$ orbitals are directed along the chain to form bonding and antibonding, intrachain d_{ℓ} and d_{ℓ}^* bands that are split from one another, since there are two Nb atoms per unit length along a chain. Similarly, the d_{yz}, d_{zx} orbitals overlap
Fig. 7. Schematic band structure for Nb₃Sb, with 20 outer electrons per molecule. The Nb-Nb sp band contains [3] states per molecule below the Fermi energy E_F. Each Nb orbital or left-hand column is weighted by [3] and each Sb orbital of right-hand column is weighted by [4], corresponding to the number of atoms per molecule. Each atomic orbital must also be weighted by [2] for spin degeneracy.
both within and between chains to form separated bonding and antibonding $d_π$ and $d^*_π$ bands. Finally there are nonbonding $d_{xy}^2 r^2-\gamma^2$ orbitals that form a very narrow, nonbonding band $d^+_δ^*$. There are a total of 9 bonding and 9 antibonding d states per molecule and of 12 nonbonding $d^+_δ$ states, including the spin degeneracy. The A15 structure is stabilized by a complete occupancy of the bonding d_σ band and a complete, or nearly complete, occupancy of the bonding $d_π$ band. This means that the Fermi level E_F falls between the top of the valence band VB and the bottom of the nonbonding $d^+_δ$ band. If the $d_π$ bands are filled in Nb$_3$Sb, which has 20 outer electrons per molecule, it means that there must be approximately three Nb-Nb sp states below the top of the bonding $d_π$ band.

C. Discussion

From the qualitative band model of Fig. 7, the density-of-states vs. energy curves ($N(E)$ vs E) for the various energy bands in the interval about E_F is schematically as shown in Fig. 8. It is possible to locate E_F approximately within this schematic diagram by means of the variation of the Seebeck voltage as a function of the electron:atom ratio in the systems Nb$_3$Al$_x$Sn$_{1-y}$ and Nb$_3$Sn$_{1-x}$Sb$_x$. From Figs. 3 and 6, the Seebeck voltage is seen to be positive for all values of y and for $x \leq 0.8$; to increase monatomically for all values of $x > 0.8$; to reach a broad maximum at $x \approx 0.2$; and to fall off rapidly at the $α''$ phase boundary $x \approx 0.8$, becoming negative for $x \geq 0.85$. It is reasonable to assume that this change from positive to negative Seebeck voltage
Fig. 8. Schematic density of states versus energy curves for Nb₃Sn. The Fermi energy for Nb₃Sb, corresponding to Fig. 7, is also indicated. The energies E_p and E_n are defined.
is associated with the passage of the Fermi energy through the top of the bonding \(d_{\pi} \) band. In the Appendix it is shown that for a rigid-band model, this interpretation requires that in \(\text{Nb}_3\text{Sn} \),

\[
\frac{[N(E_F)]_n}{[N(E_F)]_p} \sim 0.05
\]

\[
|\mu_n/\mu_p| = \frac{\tau_n m^*}{\tau_p m^*} \sim 1/3
\]

\[
E_p/E_n \sim 0.2
\]

where the subscripts \(n \) and \(p \) refer to the broad \(\text{Nb-Nb} \, sp \) band and to the narrow \(d_{\pi} \) band, respectively. The top of the \(d_{\pi} \) band is at \(E_F + E_p \), the bottom of the broad band at \(E_F - E_n \). The constraint on the mobility ratio \(\mu_n/\mu_p \) may be rationalized if the principal charge-carrier scattering mechanism is due to a jumping from one overlapping band to the other.

The Bardeen-Copper-Schrieffer (BCS) theory of the superconducting transition temperature \(T_c \) predicts a strong dependence of \(T_c \) on the product \(N(E_F)V \), where \(V \) is a measure of the strength of the electron-electron interactions responsible for electron-pair formation in the superconducting state. Even if the interaction energy \(V \) is not due to a phonon-mediated mechanism in transition-metal compounds \(^5,^6\), nevertheless the transition temperature should reflect the magnitude of the product \(N(E_F)V \).

Since \(V \) probably increases with \(N(E_F) \), it follows that the transition temperature has its maximum value where \(E_F \) is at a maximum in the \(N(E) \) vs. \(E \) curve. Figure 8 has therefore been constructed so
as to provide such a maximum at \(x \approx 0.2 \). This maximum presumably occurs near the top of the \(\Delta \) band, since \(T \) falls below \(4.2^\circ K \) and the Seebeck voltage becomes negative for \(x > 0.8 \).

In conclusion, it appears from our correlation of Seebeck voltage, superconducting transition temperature, and band model that the large transition temperatures in the alloys having \(\Delta \) structure are to be associated with a partially filled, narrow, bonding \(\Delta \) band. This band, although restricted to the Nb subarray, is both an intrachain and interchain band, so that it belongs to a three-dimensional array. Further, the fact that the bonding orbitals are nearly filled greatly reduces the possibility that band ferromagnetism can be a competitive alternative\(^7\).

REFERENCES

1. F. J. Bachner and H. C. Gatos, to be published.

APPENDIX

In order that the proposed band scheme be correct, it is necessary to account for the Seebeck voltages as a function of \(x \), where \(x \) is defined as either

\[
\text{Nb}_3\text{Al}_{1-x_1}\text{Sn}_{x_1}\quad \text{or} \quad \text{Nb}_3\text{Sn}_{1-x_2}\text{Sb}_{x_2}
\]

(1)

Since the niobium matrix is fixed for all \(x \), except for changes in lattice parameter, and since the Fermi energy \(E_F \) lies, according to the model, only within niobium-sublattice \(sp \) and \(d_\pi \) bands, a rigid two-band model is assumed for all \(x \). With a two-band model,

\[
\alpha = \frac{\sigma_n \alpha_n + \sigma_p \alpha_p}{\sigma_n + \sigma_p} = \frac{-\mu_n \alpha_n + \mu_p \alpha_p}{-\mu_n + \mu_p}
\]

(2)

where

\[
\mu_i \alpha_i = \gamma_i (k/e)(kT/E_i) \quad \text{and} \quad \gamma_i \sim (\pi^2/3) |\mu_i|
\]

(3)

The \(E_i \) are measured from the bottom of the broad electron band or the top of the narrow hole band, and for arbitrarily shaped bands

\[
E_n = g_n \gamma_n \quad \text{and} \quad E_p = g_p \gamma_p
\]

(4)
For parabolic bands, \(\nu \) and \(\pi \) each equal 2/3; for square bands \(\nu \) and \(\pi \) are each equal to one. Therefore

\[
\frac{2}{3} < \nu < 1 \text{ and } \frac{2}{3} < \pi < 1
\]

(5)

From the rigid-band model, we have

\[
p = p_a - x + \Delta n
\]

(6)

\[
n = p + a + x
\]

(7)

where \(p_a \) is the number of holes in \(\text{Nb}_3\text{Al} \) if \(x = x_1 \), in \(\text{Nb}_3\text{Sn} \) if \(x = x_2 \), and

\[
a = 1 \text{ where } x = x_1, \ a = 2 \text{ where } x = x_2
\]

(8)

\[
\Delta n = \int_0^X \left[\frac{[N(E_p)]_n}{[N(E_p)]_p} \right] dx \approx q_a x + q_1 x^2
\]

(9)

where \([N(E_p)]_i \) is the density of states of the \(i \)th band at the Fermi energy. Therefore Eqs. (6) and (7) become

\[
p = p_a (1 - y + qy^2)
\]

(10)

\[
n = (p_a + a) (1 + q_a y + qy^2)
\]

(11)
where we define

\[y = x(1-q_a)/p_a , \quad q = q_1 p_a/(1-q_a)^2 \] (12)

\[\tilde{q}_a \equiv [q_a/(1-q_a)] [p_a/(p_a + a)] \] ,

\[\tilde{q} \equiv q p_a/(p_a + a) \] (13)

Since \(1 > q_a > 0\) and \(q_1 > 0\), all the quantities \(q_1, \tilde{q}_a\) and \(\tilde{q}\) are positive. In fact,

\[q_a = ([N(E_F)]_n / [N(E_F)]_{p_a}) \] (14)

is very small (~0.01) where \(a = 1\), and is probably still <0.1 where \(a = 2\).

Substitution of Eqs. (10) and (11) into Eq. (4) gives to order \(y^2\),

\[E_n \approx E_{n a} \left[1 + \nu \tilde{q}_a y + [3\nu \tilde{q} + \frac{3}{2} \nu (\nu-1) \tilde{q}_a^2] y^2 \right] \] (15)

\[E_p \approx E_{p a} \left[1 - \pi y + [3\pi q + \frac{3}{2} \pi (\pi-1) y^2] \right] \] (16)

\[E_{n a} = q_n (p_a + a)^
u , \quad E_{p a} = q p a \pi \] (17)

This means that
\[N \equiv -n_\mu n + p_\mu p = A p_\mu p d_0 (1-R(1+(1-\nu)\tilde{q}a)y - [(3\nu-1)\tilde{q} + \frac{1}{2}\nu(\nu-1)\tilde{q}^2]y^2) + (1-(1-\pi)y
\]

\[-[(3\pi-1)q + \frac{1}{2}\pi(\pi-1)]y^2} \right) \]

where

\[
A \equiv k \frac{kT}{E_n a p a} \frac{\gamma_p E_n a}{d_0 p} \quad \text{and} \quad R \equiv \left(\frac{p_a + a}{p_a} \right) \frac{\gamma_n E_p a}{\gamma_p E_n a}
\]

Further,

\[
D \equiv -n_\mu n + p_\mu p = p_\mu p d_0 (1-\delta y + \bar{\delta}y^2)
\]

where we define

\[
d_0 \equiv (1 + r), \quad \delta \equiv (1 - r\tilde{q}_a)/(1 + r)
\]

\[
\bar{\delta} \equiv (q + r\tilde{q})/(1 + r), \quad r \equiv (|\mu_n|/\mu_p)(p_a + a)/p_a
\]

Therefore from Eqs. (2), (18) and (20) it follows that to order \(\chi^2 \)

\[
\alpha = N/D \approx \alpha_a + \alpha_1 y - \alpha_2 y^2
\]
where

\[\alpha_a / A = 1 - R \] \hspace{1cm} (24)

\[\alpha_1 / A = \delta (1 - R) + \tilde{q}_a (1 - \nu) - (1 - \pi) \] \hspace{1cm} (25)

\[\alpha_2 / A = \delta (1 - R) + (3\nu - 1)\tilde{q} + (3\pi - 1)q - \delta (\alpha_1 / A) \]
\[- \frac{1}{2}\nu (1 - \nu)\tilde{q}_a^2 - \frac{1}{2}\pi (1 - \pi) \] \hspace{1cm} (26)

In order to conform with experiment, it is necessary to have all \(\alpha_i > 0 \). For the case of parabolic bands \(\nu = \pi = 2/3 \), this imposes the following requirements:

\[R < 1, \delta (1 - R) > \frac{1}{3} (1 - \tilde{q}_a) \] \hspace{1cm} (27)

\[\delta (1 - R) + \tilde{q} + q > \delta \alpha_1 / A + \frac{1}{q} (1 + \tilde{q}_a^2) \] \hspace{1cm} (28)

From Eqs. (19) and (22),

\[R \approx r \frac{E_{pa}}{E_{na}} \] \hspace{1cm} (29)

\[r = \delta \left(\tau_{n_p^*} / \tau_{p_n^*} \right)_a \] \hspace{1cm} (30)

\[b_1 \approx (3/2) \quad \text{and} \quad b_2 \approx 3 \] \hspace{1cm} (31)
where b_1 and b_2 refer to a_1 and a_2, respectively. Although we expect $\frac{m^*}{m_n} \approx 10$, nevertheless we also expect $(\frac{\tau_n}{\tau_p})_a \sim q_a$, since electrons are primarily scattered by jumping from one band to the other. It follows that

$$q_a \sim 0.05, \ r \sim 1 \ \text{and} \ R \sim 0.2 \quad (32)$$

Thus the requirements of Eq. (27) are satisfied provided

$$\delta > 0.4 \ \text{or} \ r < 3/2 \quad (33)$$

which is self-consistent. Note that the constraint on r is not quite so stringent if $\pi > 2/3$, so that the assumption of parabolic bands is not critical. Further, given $r \approx 1$, we have

$$\delta \approx 1/2, \ \bar{\delta} \approx 3q_1/2, \ \bar{q} \approx \frac{1}{2}q_1, \ q \approx q_1$$

and Eq. (28) gives the requirement

$$q_1 > 0.06 \quad (34)$$

which is of the same order of magnitude as q_a. This does not appear to be a difficult constraint to satisfy, at least near the top of the d band.

We conclude that the observed dependence of Seebeck voltage on composition is compatible with our proposed band model.
The system Nb₃Al⁻ₓSbₓ₋₁ₙ₋₁₋ₓ exhibits complete solid solubility, a positive Seebeck voltage that increases monotonically from 1.8 to over 12μV/°K, and a superconducting transition temperature Tₓ that has a broad minimum of Tₓ ≈ 15.3°K at about y = 0.5. The pseudobinary Nb₃Snₓ₋₁₋ₓSbₓ₋₁₋ₓ₋₁ on the other hand, contains two phases, each with the A₁₅ structure, in the interval 0.3 < x < 0.8. Whereas the Seebeck voltage of the low-Sb phase is positive and has a Tₓ > 14°K, the high Sb phase has a negative Seebeck voltage and is not superconducting above 4.2°K. These properties have been interpreted with the aid of a qualitative band-structure scheme. Thus, the rapid drop in Tₓ below 4.2°K in the system Nb₃Snₓ₋₁₋ₓSbₓ₋₁₋ₓ₋₁ is believed to be associated with the filling of the bonding, interchain dₓ bands of the Nb subarray.