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ABSTRACT

A number of new combinatorial designs are found as direct applications
of the theory of error-correcting codes. Results on the automorphism groups
of Hadamard matrices are presented. A simple proof of the well-known Mac-
Williams relations, together with a generalizaticn, is given. We have con-
structed the (24,12) extended code of Golay over GF(2) in a particularly sim-
ple way. We prove that each of the seven 6; 2-15-36 designs ((v,k,X) designs)
arising from the difference sets of size 15 in the Abelian groups of order 36
has only the obvious group as automorphism group. Each of these designs gives
a Hadamard matrix of order 36.

We determine the covering radius for BCH codes of design distance 2 over
GF(q) for all odd prime powers q. We give two extensions of the Peterson-
Kasami-Lin result on necessary and sufficient conditions for an extension of
a cyclic code to be invariant under the affine group. Explicit factorizations
of x1-1 over the appropriate quadratic-number field for k=7, 11, 13, and 23
are given.
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:1I  PART NULLIUS

ERRATA FOR OUR 1966 REPORT

(Final Report, April 28, 1966, AFl9(604)-8516)

Page

111-21 Add to equations (10) (and (1 )] the statement "and ni Imil is

even for each i"
-1" . _-1l,,

111-31 line 15: For "i-i read "i- -i

111-34 Corollary 1, third line: For "... in R 1 +
read "... in R, -i .I."

IV-3 line-5: For "extensive" read "extension"

IV-7 Reference [7]: Author's last name is Menon
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PART I

INTRODUCTION

This document contains reports on the scientific work done from May 1,

1966, to April 28, 1967, under the contract named on the cover. The major re-

suit is in Part II, "New 5-Designs," where a number of new combinatorial de-

signs are fount, as direct applications of the theory of error-correcting codes.

Results on the automorphism groups of Hadamard matrices, some of which are

corollaries o:Z the results of Part II, are presented in Parts III and IV. In

Part V we set down A. M. Gleason's simple proof of the well-known MacWilliams

relations, together with his generalization of it and our own small point about

generalizing this to GF(q) for q not prime. In Part VI we have constructed

the (24,12) extended code of Golay over GF(2) in a particularly simple way.

Part VII contains a proof that each of the seven 6; 2-15-36 designs ((v,k,x)

designs) arising from the difference sets of size 15 in the Abelian groups

of order 36 has only the obvious group as automorphism group. Each or these

designs gives a Hadamard matrix of order 36.

Part VIII determines the covering radius for BCH codes of designs dis-

tance 2 over GF(q) for all odd prime powers q. Part IX contains two exten-

sions of the Peterson-Kasami-Lin result on necessary and sufficient conditions

for an extension of a cyclic code to be invariant under the affine grov'p.

Part X contains explicit factorizations of x -i over the appropriate quadratic-

number field for k=7, 11, 13, and 23. Part XI is a corrected version of a

chapter of our 1965 Report under Contract No. AF19(604)-8516.

Authorship is as follows: E. F. Assmus, Jr. and H. F. Mattson, Jr.,

Parts II, III, and X; R. J. Turyn, Parts IV, VI, VII, VIII, and XI. Part V

as taken from a letter of A. M. Gleason, was slightly edited by us and a

short paragraph was added at the end. Part IX is by Mattson and Turyn.
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PART II

NEW 5-DESIGNS

SECTION I

INTRODUCTION

Tactic&l configurations and Hadamard matrices, studied for many years by

combinatorialists, and the newer subject called error-correcting codes, stud-

ied for less than twenty years, have some interesting interconnections. The

purpose of this report is to establish a number of new results arising there-

from.

Our main result is the construction (via Theorem 4.2) of several new

5-designs on 24 and 48 points and the determination (Section 5) of their auto-

morphism groups as PSL2 (23) and PSL2(47), respectively. A secondary result

(Section 5) is that PSL2 (J) is the automorphism group of certain quadratic-

residue codes of length k+l for all primes 2 having (f-l)/2 prime and satisfy-

ing 23 < I < 4,079. (For k=23 we use [15] and a new 5-design on 24

points; the other cases are an immediate consequence of the Parker and Nikolai

search [22].) We have derived elsewhere [7] the consequence that for 2 -1

(mod 12), the Paley-Hadamard matrix of order 2+1 has PSL 2 (f) as automorphism

group for k as above.

The paper furnishes a setting for the two classical. 5-designs and their

automorphism groups, the Mathieu groups MI2 and M24 , in an infinite class of

designs and groups, the designs coming from the vectors of quE.dratic-residue

codes and the groups being the automorphism groups of these codes. The codes

are indexed by the prime 2, and when (f-l)/2 is a prime greater than 5, a re-

sult of Ito [15] moreover, implies that the group is either PSL 2( ) or is 5-fold

transitive.

We also establish:

1) The existence of two disjoint 5-designs of each of the types
found of the smallest "club" size* (Section 6) and the action
of PSL,(2) on each of these collertions.

4Some of these results were announced in [4].

II-1
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2) The existence of two infinite classes of 3-designs (Theorem
4, 1 and Application (3) in Section 4).

3) The optimality of "almost all" cyclic codes of a given prime
length (Section 2).

4) The nonvanishing of all subdeterminants of (ziJ), where z is
a primitive 1-th root of I and the nonvanishing of all coeffi-
cients of all proper divisors of xf - I in characteristic 0
(Section 2).

We place in print the Gleason-Prange theorem, that PSL2 (2) acts on every

quadratic-residue code (Section 3).

There seem to be few papers which construct designs from linear codes.

Paige [21] found Steiner systems in two codes, although he didn't call his

linear spaces "codes." We pursued in [3] the course he had started on, find-

ing for each Mathieu group M a code with M as automorphism group, for which

the code is a representation-space of smallest possible degree; Paige did

this for M23. We have written other papers on two kinds of Steiner systems

[4], [5], [6], all treated by the coding-theory approach presented here.

Perhaps the first explicit construction of designs from codes was in Bose's

paper [8] on the corrections between error-correcting codes and confounding

and fractional replication in the design of experiments. Surprisingly, there

do not seem to be any others except a recent Codes - BIBD report [11], al-

though numerous strong implicit connections in the literature likely exist.

In [14] D. R. Hughes considers the problem of constructing t-designs in

relation to the problem of transitively extending groups. His quite differ-

ent methods yield t-designs seemingly unrelated to those here, except that

the 5-design found there appearL here also, since it is intimately related to

the Mathieu group MI2 (see Section 6).

Acknowledgement. We are indebted to A.M. Gleason, Eugene Prange, and

Richard Turyn for many interesting discussions concerning this subject. In

particulLr, Theorem 3.1, on the automorphism groups of quadratic-residue

codes, was first proved by Gleason and Prange and our proof is an adaptation

of Prange's. Gleason was Lhe first to observe the existence of gaps in the

weight-distribution, a fact crucial to the use of Theorem 4.2. We also thank
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7hn Thompson for pointing out to us that the Parker-Nikolai result implied

that the automorphism group of the (48,24) code in Section 4 had to be small.

Finally, we gratefully acknowledge the help of Nicodemo Ciccia, who wrote the

computer programs which suggested the existence of the 8; 5-12-48 design and

which helped determine the orbit structure of PSL2 (47) on this design.

Definitions of Coding Terms. A code, as defined here in the linear case,

is a pair (A,S), where A is a k-dimensional vector space over a field F, and

S is a finite set of linear functionals from A to F such that they distinguish

the points of A, i.e., x, yEA and xf = yf for all fES implies x = y; this is

equivalent to saying that the functionals span the dual space of A, i.e.,

n Ker f=O. (We sometimes want to disallow two functional in S which are
fES
scalar multiples of each other and at other times allow the functionals in
S to appear with multiplicities.)

If x is in A, the weight of x is defined to be the number of f in S such

that xf * 0, and the distance between x and y in A is the weight of x-y. Dis-

tance is translation-invariant.

A concrete realization of the code (A,S) is the set of all vectors
xf I ,  ., xfn), xEA, obtained from an ordering fl -) fn of S. It is a

n =
subspace of F = Fx ...xF (n times), n being the cardinality of S. n is called

the length of the code. The weight of x is the number of non-0 coordinates in

a concrete realization of the code. This code is called an (n,k) code over F.

The minimum distance d from one code-vector to the rest is the same for each
( rd-listarting point, so that the spheres of radius [-i about Lhe code-vectors are

ndisjoint. In the rare case that these spheres exhaust F , the code is called

perfect.

A cyclic (n,k) code is one for which some concrete realization is invp.ci-

ant under the permutation of coordinates sending coordinate i to i+l (modulo

n). Such codes can be regarded as ideals in the ring F[x]/(xn-i), where mul-

tiplication by (the residue class of) x is the cyclic shift. As sucn, they

are principal ideals generated by the divisors of xn-i over F. Thus, if g(x)

divides xn -, then all the multiples of g(x) in F[x] of degree less than n

constitute a set of representatives of (g(x))/(xn-l). g(x) is called the

generator polynomial of the code. The concrete code as n-tuples over F,

11-3
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furthermore, is given recursively by the complementary divisor of g(x), by

which we mean that if g,(x) g(x) = xn-l, ther. the code is the set of all

(ao, ..., an-l) , aiEF, such that

k

_aij bk-i 0 j = 0, 1, ... , n-1,
i-o

k
were g(x bx +- + b. The reader who would like to see more discussion

of these points is referred to [23, Chapter 8] or [2, Section IV2].

It is sometimes convenient to construct cyclic codes as follows. Let K

be F(z) where z is a primitive n-th root of 1 over the field F. Set k = [K:F].

Let f be any non-0 F-linear functional on K as vector space over F. Then de-

fine a set S of n coordinate functions f 0 , " . n-I as x f. = (xzi) f, xEK,

i = 0, 1, ... , n-l. Then (K,S) is a cyclic (n,k) code over F. This code is

immediately seen to be recursive for the reverse of the minimal polynomial of

z (i.e., that of z-l)over F, and it is not hard to arove that the ideal gen-

erator polynomial is the complementary divisor. This construction yields only

the irreducible cyclic codes, those given recursively by irreducible poly-

nomials; but all cyclic codes are direct sums of irreducible ones.

The orthogonal code to a given code is obtained 
as the subspace of Fn

orthogonal under the dot product with a given concrete realization of the code.

The orthogonal of a cyclic code is cyclic.

The minimum distance of the code (A,S) over F is unchanged when we ex-

tend the coefficient field F to an overfield L by the tensor product [1].

The minimum non-0 weight in an (n,k) code (A:S) is the minimum distance

and is equal to n-m+l, where m is the least integer such that every subset of

m coordinate functions spans S. Since m is necessarily at least k, it follows

that

d <n -k + 1, (1)

11-4
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where d is the minimum distance. This bound has been generalized [11,29] to

k-l[i -
__ i dO[ -1 

(2)
i=0

in the case F = GF(q).

The square-root bound for cyclic codes is the following: Suppose xn-l =

(x-l)g1(x)g2(x) over F, where gl(x) and g2(x) both have degree (n-l)/2. Sup-

pose also that the codes A and B having gl(x) and g2 (x), respectively, as

generator polynomials have the same minimum weight d (as we shall see is often

the case). Furthermore, if the minimum weight vectors, as polynowInals,
d ei d fi

m(x) = aix and ,bix m(x), are not multiples of x-i, it follows that

n-l n-2 2
m(x)m1 (x) is a scalar multiple of x + x + --- + 1. This implies d > n.

It is sometimes possible to choose fi = -e. (mod n), and then we get dkd-l)

> n-I.

If A and B are (n,k) and (n,n-k) codes orthogonal to each other over

GF(q), and A, Bi denote the number of vectors of A, B of weight i, then

MacWilliams has proved [20] that

n-v in-i k-v v in-i\

I= qk Z B i) v 0, 1, n. (3)

These MacWilliams identities are basic to our mair result, Theorem 4.2.

K11-5
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PART TT

SECTION 2

OPTIMAL CODES

Motivated by the inequality (1), we call an (nk) code o2timal if

d = n-k+l. The (n,l) code 1(a, a ... , a); a e GF(q)I is optimal, and the

main result of this section is that "almost all" cyclic codes of prime length
are optimal.

Let [ be prime and consider all the cyclic codes of length j over
GF(2) = F. Since xk - I = (x-l)2 over F, these codes, considered as ideals

in F[x]/(xf- 1), are the ideals Ai = (x-l)i for i = 0, 1, ... , Thus they

satisfy

(1) = A DA D... DAk = (0)

The dimension of A. is 2-i. The minimum weight in Ai is easy to deter-

mine directly: If f(x) is a minimum-weight polynomial in Ai, i=l, ... , f-1,

cycled so that the constant term is not 0, then f'(x) is a vector in Ai-l with

weight I less than that of f(x). Therefore, if di denotes the minirmum weight

in Ai, we have

1 = d0 < d1 < ... <d _1 =

since we have d0 = I and d2_ = 2 by inspection. Therefore di = i+l for i = 0,

I, ... , 2-1. We have proved

LEMMA. The cyclic (2,k) codes of prime length f over GF(2) are

all optimal.

THEOREM 2.1. Let k be prime and let z be a primitive f-th root of I over

the rational field Q. Let E be any subfield of K = Q(z) and let A be a cyclic

(f,k) code over E. Then the mini-mam weight of A is f-k+l.

11-7
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Proof. The module consisting of all code-vectors of A with coordinates

in V, the integers of E, has the same minimum weight that A has. The ideal

0 is a power of a principal prime ideal, of 0, of degree 1. If we reduce by

the residue-class map of this prime ideal we obtain a cyclic (1,k) code over

GF(f), which, by our Lemma, has minimum weight 2-k+l. If d denotes the mini-
mum weight of A, then d < 2-k+l, in general; and we have just proved d > 1-k+l,
since there are minimum weight code-vectors in the module not all coordinates

of which are in the principal prime ideal.

COROLLARY. Any proper divisor of x - 1 over Q(z) has all coefficients

non-0.

REMARKS. I. Enlarging the base field E preserves the optimality in view

of the result in Section I on tensor products.

2. This theorem furnishes a simple indirect proof of the fol-

lowing: Let r = [K:E]. Then every set of r distinct powers of z is linearly

*independent over E. We can even conclude from the present theorem that every

subdeterminant of the P x 2 determinant (ij ) is nonvanishing. We do this by

first considering an arbitrary (2,k) cyclic code over K given recursively by

(x- .. ), 0 < ei < f, the ei s distinct modulo 2. This code con-

sists of the space Kx ... xK (k times) and the coordinate functions f. defined3
by

(Cl, ... , ck)fj = Clz e l j + ... + c kze 0

cI .... ckEK, j = 0, 1, ..., f-I. That is, it is the direct sum of the codes

( i  2e i  (2-l) ei\

(Ci,ciz ei,ciz 2, ... , ciz ) for i = 1, ... , k. By Theorem 2.1 and the

preceding remark, this code has optimal minimum weight. Therefore every set

of k coordinate functions is linearly independent over K. But if for some k

choices cf J, say t, .. , k the determinant 1 eitj vanished, then it would

follow that ftl, ... , ft were linearly dependent over K.

1 k

11-8
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THEOREM 2.2. Let f be a prime. Then for all but a finite number of

primes p, each cyclic code of length A over GF(pi) is optimal (for all i). V

Proof. A cyclic (f,k) code over GF(q) is optimal if and only if ever

k x k determinant in (CJei), for 1=I, ... k, and j=O, ... , f-1, is nonvanish-

ing, where the code is defined recursively by (X-Cel)... (x-Cek). Such deter-

minants are the images under residue-class maps of the nonvanishing global

determinants in (zJei). These determinants are non-0 integers in K and are,

therefore, dividible by only a finite number of primes. QED.

We have proved the following result for the linear case [1], and it has

also been proved more generally, in [27] and implicitly in [26], which note

a connection with latin squares. We omit the proof here.

THEOREM 2.3. If an (n,k) code over GF(q) is optimal, then q- > min

Ik,n-kl. Furthermore, if I <k <n-i (i.e., if this minimum is at least 2),

then q-1 > maxjk,n-kj.

We note that the conclusion of this Theorem is not sufficient to give an

optimal code. For example, one could extend the coefficient-field of any non-

optimal code.

11-9
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PART II

SECTION 3

ON AUTOMORPHISM GROUPS OF CODES

In this section we prove a basic result due to Gleason and Prange on the

automorphism group of an extended quadratic-residue code, to be defined. We

will then find some corollaries on weights in codes.

An invariance of a code (A,S) is a linear transformation a of A onto A

such that for each f in S. af = ag for some scalar a (depending on f) and

some g in S. In terms of the concrete realization of the code, a is a mono-

mial matrix which preserves the code-space. An invariance preserves the

weight of each code-vector. For example, the cyclic shift is an invariance

of a cyclic code.

The automorphism group of the code is the group of all invariances modulo

scalar multiplications. In this report we are mainly concerned with the per-

mutation aspects of the automorphism group, so we remark that the mapping

which sends each invariance to its underlying permutation is a homomorphism

of the invariance group which sends the scalar multiplications to the identity

permutation; therefore, we shall often speak of this or that permutation

group as being "contained in" the automorphism group of the code.

We now prove that the projective unimodular group PSL 2 (f) is "contained

in" the automorphism group of the extended quadratic-residue codes, defined

below.

Let f be an odd prime and let z be a primitive C-th root of unity over

the field Q of rational numbers. Let K = Q(z) be the cyclotomic field of all

f-th roots of I over Q. Then K/Q is a cyclic extension of degree C-1, and K

contains a unique subfield L of degree 2 over Q. L is, in fact, generated by

= Z zr, the sum being taken over the quadratic residues r modulo C, since
2

= TK/L(z). The irreducible polynomial for n over Q is x + x + ( )/4,

where the sign is chosen to make (1 + f)/4 an integer. Thus L =Q +-

and the sign is that in I + 1 (mod 4). The polynomial x + ... + 1,

II-ii
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which is irreducible over Q, splits into g1(x) g2(x),irreducibles of degree

(C-1)/2 over L. There are cyclic (f,(+l)/2) codes over L denoted as follows:

A, recursive for gl(x), generated as ideal by (x-1) g2(x).

A+ recursive for (x-l) gl(x), generated as ideal by g2(x); A I A
A I'

B and B+ are defined by interchanging gl(x) and g2(x) above. These are

called global quadratic-residue codes, since

gl(x) = 9Tz, g2 (x) = Tr (x-zs)
rER scR'

where R and R' are, respectively, the quadratic residues and nonresidues mod-

ulo f.

A and B have the same weight distributions (so do A+ and B+), because

the permutation of coordinates sending i to si for each i = 0, 1, ... ,

for any fixed quadratic nonresidue s modulo e interchanges the two codes.

As Gleason and Prange [9], [25] observed in the finite case, these codes

can be embedded in spaces of +1 dimensions in a nice way which allows the

projective unimodular group to act. We now carry over Prange's construction

to the present global situation.
We firt embed the codes. The coordinate functions for A+ are the

f.: L X K - L defined by
3

(c0 'c) fi = CO + TK/L (c z i )  c0 L, cEK,

i = 0, 1, ..., 2-1. Similarly for B, with z replaced by zs for some fixed
sER'. A is the subcode of A+ given by restricting the f. to 0 X K, i.e., by

setting c0 = 0. A will embed as a subcode of A+ so we define the embedding

for A+. We will introduce a new coordinate function

10 -I
7 cf i_

111i=O

;' 11-12
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for some yEL to be chosen so that the new code, called AO, will be orthogonal i
to itself or to the corresponding new code B for 8+ . Ao and , are called

extended quadratic-residue codes,

Observe that (c 0 ,c)f = -Yc0; letting f! and fP be the coordinate func-

tions for BO with f y f i. we get (Co, Cf' -yfc

A is the subcode of A with "infinite" coordinate equal to 0.Co
Orthogonality depends on the congruence of f modulo 4. The results are

summarized here before embedding:

- -1 (mod 4) +1 (mod 4)

A= A+  A= B
S. + S. +

B =B B =A

Thus, after embedding, we have

A f =- -1 (mod 4)
I A I

B f= +1 (mod 4)

provided only that < 1, 0 > = (1, 1, ..., 1; fy) is orthogonal to itself or

to the corresponding vector in BCo, which is to say

21 + Py2 = 0 f E -1 (mod 4)
(1)

21 - Py = 0 k =+1 (mod 4)

Thus y is determined up to sign as I/+--, which is in L as it should be.

The invariance group of A obviously contains the cyclic shift T on the"o
"finite" f fixes Co); similarly for B 0. It also contains the Galois auto-

morphisms pr' which send fi to fri i = 0, ... , f-1; rR; these also fix foo.

11-13
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We now prove that a certain interchange of f0 and f Ois an invariance a

of A ; also, the permutation parts of a, r i, and pr generate the (one-dimen-

sional) projective un±_modular group over GF(R). The same will hold for B.

(The projective unimodular gruPSL2(f), is th ru fall 2 x 2 matrices

over GF(Q) with determinant 1 modulo the center . . Elements of this

group can be factored as follows:

! (: lc=dl (0 alC) (0l1 0 \0 1Ic)

provided c 0,)

We define o as follows: As permutation on the coordinate functions a

sends fi to f-Ili (subscripts modulo 2), interchanging f0 and feO. Signs are

introduced via the Legendre symbol; thus afi = Ei f-/i' where Ec = (i/2) i=l,

.-l. We shall choose e and Eo later, as + 1. Thus

(ao, ... , a, 1 ; a.)o' = ( o0 ... , i a /i.1 ... , % a0)

We must prove that with proper choice of e0 and %, a maps A onto itself and

also that this a maps B00 onto itself.

Case : -L (mod 4). Since A C , < 1, 0 >QA, it suffices to show

<1,0> a E A., and Aa C A O. Thus <1,0> - (1,1, ... , l;ky)u = (Ekiy,

c, C*OO); and therefore

< 1, 0 > a (. -1, ... , -1; E 0-Y

since EE_'l-i/i = (-1/) = -1. This vector obviously cannot be in Ao0 unless

E = -1. Thus we choose

C= -C = -C (2)
CO 0(2

11-14
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Now < 1, 0 > a is in A if and only if it annihilates A under the usual dot-

product. This means that we must find Eyf + c, " Eyf = 0 as is indeed the
1

case; and also we need < 1, 0 > aj < 0, c > for all cEK. That is, -c must

also have

C ... , 6i, ... ; -E) (T(c), T (cz) ... ; o) = 0,

or

E~ Tc)+ T (czs) = E-y T(c) + (r,-iq)T(c) = 0,

where 7 = zr(rER) and ?7' = zS(sER), and we make use of the L-linearity

of T, which denotes the trace from K to L here. Thus a maps A onto A if

and only if E and y are chosen so that

S+ 7 - 7'= 0 (3)

Now from (1), (Y) = -2, so 2Z = + \P, aLad q-7' is also either \T- o

P, su a must be taken as +1, The choice depends on the ch1oice of notation

for gl(x) and g2 (x). We chose z to be a root of gl(x); thus ,, is the negative

of the coefficient of x(f - 3)/2 in gl(x). Thus the choice of notation deter-

mines the sign of Ey, and we are free to choose c = I or c = -1.

We now show that < 0, c > a I A for all cEK. Now < 0, c > =

(0, ... , CiT(cz I/i), .. , -ET(c))= (a 0 , a,, ... ; a) is in A., if and

f-1
only if the polynomial aixi is a multiple of gl(x), since y , =

0

Y(n=-)T(c) = y2 T(c) = -eT(c), from (2i and (1). Now gl(x) is irreducible

and has z as a root; therefore < 0, c > a E A if and only if the quantity

D(c) = 0 for all cCK, where D(c) is defined as

D(c) = EiT(cz-I/i) z
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If 7 is any automorphism of K/Q, such that z = z , then

D(c)' = E D(c - )

as one can easily verify using T(c)' = Tc). Since D is linear and z,

span KIL, it suffices to prove D(z) = 0. Now,

( -1
D(z) = ZE.iL zl ,

-1

= E. zr(l-/izi

C. r-r/i + i

i,r

This is a polynomial in z of degree at utost f-1 with integral coefficients.

For each k = 0, 1, ..., f-1 we find the coeffiient of z as c. where
r,1

runs over the solutions of r-r/i + i E k (mod f). These i are the same as

those for which i2 + (r-k)i - r n 0 (mod (). The polynomial x2 + (r-k)x - r

never has double roots in GF(f) since the constant term is in R'. Thus for

each value of k and r there are two distinct roots i and i'; one is in R, the

other in R'. Thus the polynomial in z is identically 0. This completes the

proof that a maps A onto itself.

PROPOSITION 3.1. If we embed A with y and B with -y, then there iz a

choice of E = +1, given in (3), such that a maps each of A and B onto itself.

CAUTION. We have defined a monomially on L + I . L X K is embed in

L(+I in distinct ways as A00 and B . The linear transformations of L X K in-
duced by a are distinct.
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Case 2. C K +1 (mod 4). We must use y to embed A and -y to embed B in

order to make A-L = B in this case, where 2 = 1. We define a as before and
co 0o0'=1

2
find that < 1, 0 > aBE A if and only if E0c = 1. We take

0  = ± (4)

Now < 1, 0 > a is in A if < 1, 0 > a annihilates B and the vector00
< 1, 0 >; the former happens If and only if, as before,

EY( - (-1) = 0 (5)

Proceeding as in Case 1 we can verify that y and E are related by (5).

If we ask whether this same a maps B onto itself, then the part relating

to < 1, 0 > goes through, since in (5) we replace y by -y and interchange

n and 7'. The rest goes through too; the part involving D(c) is formally the

same. We have proved

PROPOSITION 3.2. If f : +1 (mod 4) and we use y to embed A, -y to embed

B, then A and B are orthogonal to each other and a maps each onto itself.

E and y are chosen by (4) and (5).

We are equally interested in the finite codes obtained from A and B

by mapping the integral submodules of these via the residue-class maps of

primes in L lying over the rational prime p. These codes we denote by Ap

(or B ); they are finite, extended quadratic residue codes of type (+ ,
p 2

(C+1)/2) over GF(q), where q = p or p depending on whether p is or is not a

quadratic residue modulo C.

In the rest of the report we often refer for short to "the" Q+I, 2,

code over GF(p) (or p ), by which we mean the code A or B just defined;
p p

because of their equivalence under a monomial transformation, it usually

does not matter which one we consider.

With Propositions 3.1 and 3.2 we have essentially proved

II-17 "
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jTHEOREM 3.1. The automorphism groups of the two extended quadratic-

residue codes A and B each contains a subgroup of which the permutation part
coO

is precisely PSY). The same statement holds for the finite codes A and B .

Proof. We have proved this in the global case. Formally the same proof

works in the finite case; or one can project the group generated by the invar-

iances pr' rT, and a defined globally above (the permutations of which generate

PSL2(e) by the residue-class map, noting that all scalars involved in the

definitions of these invariances are +I.

COROLLARY. The minimum distance in A+ is 1 less than that in A; the same

for the corresponding finite codes over any GF(q) for which (q/E) = +I. In

particular, the square-root bound holds for these codes.

A. M. Gleason has also proved Theorem 3.1 by means of induced representa-

tions, and M. Hall, Jr., has proved essentially this result, but stated for

Paley-Hadamard matrices [12, Theorem 2.1] for the case f -1 (mod 4).
When 2 = -1 (mod 4) we can use the self-orthogonality of A and B to

get some results on the weight-distributions of these codes over GF(2) and

GF(3).

THEOREM 3.2 Let f : -1 (mod 4). If (2/f) = +1, then A2 and B2 have all

weights divisible by 4. If (3/f) = +1, then A3 and B3 have all weights divi-

sible by 3.

Proof. We first remark that the set of cyclic shifts of any vector

(c0 ,c) in A
+ spans the entire code A+ if c0c # 0. This is true because A+ is

the direct sum of the irreducible cyclic code A and the "all-l" code

{a(l, ..., 1); acL}. This result therefore holds for A0 and hence for the

codes A
p

When f = 8N-1, 2 is in R, the set of quadratic-residues modulo 2, and the

weight-4N vector a = (a) with ai= 1 for iER and i = co, ;id with a. = 0 other-

wise, is in A2 . Since A2 is self-orthogonal, any two code-vectors must have

an even number of places with l's in common; this implies that any sum of

shifts of a has weight divisible by 4. (A.M. Gleason was the first to observe

this.)

11-18
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In the GF(3) case the matter is very simple. Each vector

(a0, ... , ae_l; a0) is in particular orthogonal to itself, so

f-i
2

a + a i = 0
0

But the non-0 a's are +1, so their number must be a multiple of 3.

COROLLARY. The extended (24,12) quadratic-residue code over GF(3) has

minimum weight 9.

Proof. It is greater than 6 by the square-root bound and it is less than

12 by (2) of Section 1.

It is also true that the extended quadratic-residue codes over GF(4) for

= 8N+5 have all weights even. Moreover, 2, 3, and 4 are the only values of

q for which extended quadratic-residue codes can have "regular" gaps in their

weight distributions [30]; for q = 2 one might have all weights even or multi-

ples of 4, for q = 3 all weights may be multiples of 3, and for q = 4 all

weights may be even; but no larger divisors are possible.

The special cases of the above for f = 23, q = 2 and f = 11, q = 3 are

closely related to the Mathieu groups. For proofs that in the first case, the

automorphism group is 124, and in the second case, M12 , the reader should

consult [3].
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PART II

SECTION 4

COMBINATORIAL DESIGNS ASSOCIATED WITH CERTAIN CYCLIC CODES

A tactical configuration of type X; t-d-n, or t-design, is a collection

of d-subsets* of a given n-.set S such that every t-subset of S is contained

in precisely X members of !. Here X is a positive integer; and 0 < t < d < n,

where if any equality obtains we call the design trivial. Balanced incomplete

block designs are 2-designs with restrictions on d and n; where X = I the

t-design is called a Steiner system; Steiner triple systems are 1; 2-3-n tac-

tical configurations; and projective spaces contain several 2-designs, for ex-

ample. Also, (v,k,X) configurations are special cases of X; 2-k-v designs.

The automorphism group of a t-design is the group of all permutations of

S which map each member of .)jonto a member of

For convenience we often call the members of .)clubs or d-clubs. A

t-design is automatically a t'-design for t' < t. Also, the clubs of a given

X; t-d-n design containing a fixed point P of S form a (t-l)-design on S-P

when P is removed from these clubs. The new parameters are X; (t-l) - (d-l)

- (n-l) .

No one has discovered nontrivia! t-designs for t larger than 5. Two es-

sentially unique 5-designs, the Steiner systems associated with the Mathieu

group M1 2 and M2 4 , have been known for many years, however; and recently [3]

[14] two disjoint Steiner systems of these types were constructed, meaning

that 2; 5-6-12 and 2; 5-8-24 designs exist (see also Section 6). Aside from

these and such designs obtainable as certain orbits of MI2 and M24 (see below),

which have been at least implicitly known for a long time, no other nontrivial

5-designs were known until recently. The main purpose of this section is to

derive all of the above designs, except perhaps for some of the "orbit-designs"

just mentioned. and several new 5-designs which are not "orbit-designs," by

means of coding theory. Another purpose is to exhibit two infinite classes

of 3-designs (Theorem 4.1 and Application (3)).

*An x-set is a set of cardinality x.
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II Such designs can arise from codes as follows. From a given code consider

the set of all vectors of a certain weight w. For each such vector consider

the set D of all coordinate places at which the vector is not 0. D is thus

said to hold a code-vector of weight w. For certain codes and certain values

of w, the collection of all such sets D forms a t-design for t as high as 5.

For example, we showed this for t = 5 for the minimum-weight vectors of the

finite extended quadratic-residue codes of type (24,12) over GF(2) and (12,6)

over GF(3) by direct special methods in [3]. In different terms this was also

done for the (23,12) and (11,6) codes for t = 4 by Paige [21]. We shall derive

these and all the other cases as applications of Theorem 4.2 below.

We begin with the following simple remark.

PROPOSITION. A code is optimal if and only if the minimal-weight vectors

yield a trivial design.

Proof. Suppose it is an (n,k) code of minimum weight d, such that every

d-subset of coordinate places holds a code-vector. We wish to prove that

d = n-k+l. Consider the subcode C spanned by the minimum-weight vectors:

the orthogonal code to C has every subset of d coordinate-functions linearly

dependent, but no subset of size d-l with this property; it therefore has di-

mension d-l, so that C has dimension n - (d-l) < k. The reverse inequality

holds in general, by (I) of Section 2.

Conversely, if d = n-k+l, then every k coordinate functions are linearly

independent. Given a d-subset of coordinate functions, we consider the

n-d = k-i functions of the complementary subset. The intersection of the ker-

nels of these is non-0; a non-0 vector in it must have weight d. QED.

The following result is an immediate consequence cf Theorem 3.1 and the

fact that the PSL 2(2) is 2-fold transitive, in general, and 3-set transitive

when k = 4N-1. Also, PGL 2(f) is 3-fold transitive and acts on A U B .

THEOREM 4.1. The finite extended quadratic-residue codes of length 1+1

yield 2-designs for all C and 3-designs when 2 a -l(mod 4), from every weight-

class of code-vectors. Also, in all cases the union of A and B yields 3-de-P p

signs from each weight class.
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Remark. In view of the proposition above and Theorem 2.3, we have that

the minimum weight vectors in A always yield a nontrivial design (on whichp

1'SL2(C) acts) whenever q-1 <2L--. (Recall that q = p or p depending on

whether p is a quadratic residue modulo C or not.) In particular then, A2

yields a nontrivial design whenever P > 5 and, of course, d 
<-f+,

d(d-!) > (-I. The determination of d seems to be, in general, a difficult

problem.

Let A and B be linear orthogonal (n~k) and (n,n-k) codes over GF(q) with

minimum weights d and e. Let t be an integer less than d. Let v0 be the

[Vo0+ (q-2)]

largest integer satisfying v° - v ) < d, and w the largest integer

satisfying w0 _ Ioq-2] <e, where, if q = 2, we take v = w = n. (Sucho q-1 0 0

a restriction ensures that two vectors of A with weight at most v having

their non-0 coordinates in the same places must be scalar multiples of each

other.)

THEOREM 4.2. Suppose that the number of non-0 weights of B which are

less than or equal to n-t is itself less than or equal to d-t. Then, for each

weight v with d = v = v , the vectors of weight v in A yield a t-design, and

for eachweightw with < in lntw, the vectors of weight w in B yield

a t-design.

Before proving the above result we remark that for B we will in fact

show that for each weight w, with e < w < Min n-t,wj, the vectors of weight

w yield blocks the complements of which form a t-design. We will need the

following combinatorial

LE MA. Suppose (S,Q)) is a t-design. Then, if T and T' are two t-sub-

sets of S, and k an integer satisfying 0 . k t, we have that

IDeQ-IDnT k = DEV;IDnT kI

That is, the number of subsets in @ striking a given t-subset precisely K

times is independent of the chosen t-subset.
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Proof. For k=t the assertion is simply the condition that (S,V,') is a

t-design. Now we use induction downwards observing that for K- T, IKI = k,

we have that

DIq) KC D (t__ =X

where (S,(J)) has parameters X; t-d-n, and hence that

JKD);K CD, K C:T, IKI =kj =(t)X,

Then an inclusion-exclusion argument yields the result.

COROLLARY. The complement of a t-design is a t-design.

(Here, if (S,g/) is a t-design, then its complement is (S,{S-D;DE(P}).

Of course, if n-d < t it is trivially so.) Complementary t-designs have

parameters X; t-d-n and X'; t-(n-d) -n, where X1 = X t- t "

Proof of the Theorem. If T is a coordinate set with ITI = t we denote

by AT the code of length n-t obtained by neglecting the coordinates in T. We

denote by B OT the code of length n-t obtained from the vectors in B which

have O's at the coordinates in T by neglecting those coordinates. Clearly,

A TI BO OT . Since every n-d+l coordinate functionals of A span and t < d, A
T

is an (n-t,k) code. Since the vectors of A are the relations on the func-

tionals of B and t < d, the functionals corresponding to the coordinates in T

are linearly independent and B O -)T is an (n-t,n-k-t) code. Thus, AT and B0 4
<

are orthogonal. Let 0 <v I <v 2 < ... <Vd-t = n-t be the possible non-0

weights less than or equal to n-t appearing in B. Then the only non-0 weights
0 a)T Tappearing in B are among Vl, ... , vd t . The minimum weight in A is at

least d-t.
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T onT
The MacWilliams relations for A and B determine the number of vectors

of each of these weights uniquely in terms of n, t, q, and k via d-t equations

n- t-Jxj = qn-t-k-g(n-t) 
_ (n-t)

= 0, 1, ..., d-t-l, since the determinant of the coefficients is essentially

Vandermonde. Since the weight distribution alone of a code deter-ines that

of the orthogonal code, again from MacWilliams [20], the weight distributions

of AT and B OPTare independent of the particular t-subset, T, chosen.

We now turn to the assertion concerning the t-designs which B yields.

Suppose v is a weight in B satisfying v = w0, v = n-t. If b and b' are two

vectors of B of weight v with their non-0 coordinates ac the same coordinate

set, then, since v := w0, b' is a scalar multiple of b. Consider the collec-
tion of coordinate v-subsets holding vectors of weight v in B. Let 6'

elV v
be the set of complements. By the Corollary to the Lemma, to show that 6v

is a t-design, it is enough to show that (l' is. But, for a given t-set T,vi
the number of subsets in ' containing T is --L times the number of vectors

O0,T Cv q-1
in B of weight v, and this number, by the above, is iadependent of which

t-subset, T, is chosen.

The similar assertion for A is a bit more complicated to prove and we

must apply the full Lemma. We start with w = d, which certainly satisfies

w < vO. As before, any two vectors of A of weight w held by the same coordi-

nate-set are scalar multiples of one another. Let be t.e collection of

coordinate w-subsets holding vectors of weight w in A. The number of subsecs

in containing a given t-subset T is -L- times the number of vectors of
(bwT q-1

weight d-t in A and this, again, is independent of which t-subset, T, is

chosen. We proceed by induction. So suppose we know the assertion of the
theorem for w' < w where w 5 With J) as before, we know that the number

theorem0 forw wI< hr
of subsets in containing a given t-subset, T, is times the number of

T IVq-
vectors in A of weight w-t which come from vectors of weight w in A. Now,

the total number of vectors of weight w-t in AT is independent of T and it
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follows immediately from the Lemma and the induction assumption that the num-
t T

F ber of vectors of weight w-t in A coming from vectors of weight less than w

in A is independent of T. Thus, w yields a t-design. This concludes the

proof of the Theorem.

Applications of the Theorem. (i) Suppose A is a perfect code over GF(q)

with minimum weight d. Then d is necessarill odd and the number of non-0

weights in its orthogonal complement is at most ---21 [10,18]. Thus, we can
d+1

take t =-2 and the Theorem y~elds t-designs. Cf.[6,Theorem 1].

MacWilliams [19] has shown that a necessary and sufficient condition for

A to be perfect is that its orthogonal complement have precisely (d-l)/2 non-0

weights. Our methods yield part of this result for F(2), namely, that a

perfect linear code over GF(2) has at least (d-l)/2 distinct non-0 weights in

its orthogonal code: Let d = 2e+l. If there were fewer than e weights, the

Theorem would yield an (e+2)-design from the minimum-weight vectors of the

perfect code. In general therp are (q-l) e+I e+I) such vectors in the code,

because the parameters of the (e+l)-design are known (see [6]); this means

that for the (e+2)-design X would be (q-l)e e/(n-e-l). When q = 2, this can-

not be an integer unless n = d, implying that the code is {(0 ... 0),

(I I "." I)), which does have exactly e distinct non-0 weights in its orthog-

onal code and which yields a trivial 1; t-n-n design for all t. This proof

cannot work in general, however, because the perfect (11,6) code over GF(3)

(see Section 4) having d = 5 yields a 3-design by the Theorem, but also yields

in fact a 4-design, a 1; 4-5-11 Steiner system.

(2) We now derive well-known 5-designs and several new 5-designs by ap-

plying Theorem 4.2 to certain extended quadratic-residue codes.

a) 5-designs on 12 points. Consider the (12,6) code over GF(3). This

code is self-orthogonal and has vectors of weights 0, 6, 9, and 12 only. Thus

for t = 5 there is only one non-0 weight less than 7 = 12-5, and d-t = 6-5 = 1.

Therefore, the Theorem yields a X; 5-6-12 design as the 6-subsets of coordi-

rate-places holding code-vectors. The weight-distribution shows now that

X = i, because there are 4.66 weight-6 vectors and, for a .; t-d-n design ob-

tained in this way, we have X = -1 't where N is the number of code-vec-

tors of weight d.
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For this code the weight-9 vectors also yield a design, but it is the

trivial design since all 9-subsets arise in this way. This follows simply

from the way PSL2(11) acts. #

The 1; 5-6-12 design is the well-known Steiner system having the Mathieu

group M12 as automorphsim group; M12 is also the automorphism group of the

code [3, Section 4].

b) 5 designs on 24 points. Consider first the (24,12) code over GF(2).

This again is self-orthogonal, with non-0 weights 8, 12, 16, and 24. With

t = 5 we find three weights less than or equal to 24-5 = 19 and d-t = 3.

Therefore, since q = 2 we have 5-designs of 8-, 12-, and 16-subsets as follows:

1; 5 - 8 -24

48; 5 - 12 -24

78; 5 - 16 -24

These X's are calculated from the weight-distribution, which appears in

[23, p. 70]. Note that the first and third of these are complementary designs

and the second of these is self-complementary, because of the presence of the

all-I vector in the code. Again, the 1; 5-8-24 design is the well-known

Steiner system having the Mathieu group M24 as automorphism group, and the

code also has M24 as automorphism group [3, Section 5].

Secondly, consider the (24,12) code over GF(3). It is self-orthogonal

with non-0 weights 9, 12, 15, 18, 21, and 24. For t = 5 there are four

weights below 19 and d-t = 4. Thus we get some new 5-designs from the 9-,

12-, and 15-subsets holding code-vectors, namely, the following:

6; 5 - 9 -24

26 . 32; 5 - 12 -24

22.3.5.11.13; 5 - 15 - 24

The first and third of these are not complementary, but we do not know whether

the second design is self-complementary. The automorphism group of the 6;
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5-9-24 design is not 124 but PSL2 (23)--hence the same for the code--a fact

which will be proved later.

c) 5-designs on 48 points. The (48,24) code over GF(2) has 8 non-0

weights: 12, 16, 20, 24, 28, 32, 36, and 48. It is self-othogonal and

d = 12. Thus again d-5 is the number of weights less than or equal to 48-5,

so the Theorem applies. From the weight-,:.x_ 9nution we find the following

parameters for the resulting designs:

2; 5 -12 - 48

3-5-7-13; 5 - 16 - 48

4.
2 717-19; 5 - 20 - 48

32 .3-5"7-227; 5 - 24 - 48

The code-vectors of weights 28, 32, and 36 form the 5-designs complementary

to the first three of these. The last is self-ccmplementary. We shall prove

later that the automorphism group of each of these designs and of the (48,24)

code is PSL2 (47).

There are more 5-designs obtainable as the orbits of subsets of sets on

which 5-foid transitive groups act; but, as we have said, some of the above

5-des ,:. are not obtainable in this way. As an example of such a 5-design,

consider a 12-subset U of the 24 points on which M24 acts such that the sta-

bility subgroup in M24 of U is MI2. Then the orbit of U under M24 is a 5-de-

sign on 24 points consisting of IM24 171MI 2 1 12-subsets; it is a 48; 5-12-24

design with M24 as automorphism group.

(3) Finally, we apply the theorem to the construction of 3-designs.

a) 3-designs on 14 points. Consider the (14,7) quadratic-residue code

over GF(4). Here Theorem 4.1 tells us only that each weight class yields

2-designs; Theorem 4.2, however, produces 3-designs. The non-0 weights that

appear are 6, 8, 12. 14. Since d-3 = 6-3 = 3 and there are 3 non-0 weights

less than or equal to 14-3 = 11, we obtain 3-designs from the weight 6 vectors

and the weight 8 vectors. The parameters are
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5; 3 - 6 - 14

2-32 7; 3 - 8 - 14

b) 3-designs on 2k points, k odd. Finding designs and their parameters

via T'heorem 4.2 depends on knowing the weight distributions of the code and

its orthogonal. Prange and Pless [24] have computed these distributions for

all the cyclic codes of length 31. For example, several (31,21) cyclic codes

over GF(2) yield the following designs and their complements (obtained by in-

troducing a new coordinate equal the sum of all the others):

X; 3 - d- 32

4; 6

119; 8

1,464; 10

10,120; 12

32,760; 14

68;187; 16

(plus the complements of these).

The orthogonal code yields these designs:

2 44 ; 3 - 12 - .32

2 •13-5; 3 - 16 - 32

2 76 ; 3 - 20 - 32

The designs of 16-clubs in both collections are self-complementary, and

the designs of 12-clubs and 20-clubs from the orthogonal code are complements

of each other. Also, the last three designs are each the union of two dis-

joint 2-designs.

These designs on 32 points are the first of an infinite class of 3-de-

signs arising from a class of cyclic codes recently investigated by G. Solomon

[28] and T. Kasaml [16]. For each odd k, there are several (2k_ 1,2k) cyclic

codes with the following (non-0) weight-distribution:
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weight w N = number of code-vectors

2k-l 2 (k-i)/2 ( 2 k 1)( 2 k -2 2 (k-3)/2)

2k-I . (k-l)/2 2k_ I2k-2+ 2(k-3)/21

One can show that the orthogonal code to any of these codes has minimum dis-

tance 5 (for it must be odd and at least 5; if 7 the code would be perfect!)

Using the MacWilliams relations one could calculate the weight-distribution

of the orthogonal and find the X's for the 3-designs obtained by introducing,

$ as above, the new coordinate. For the (2k,2k+l) codes, the designs are of

type 2N; 3 -w- 2 k, with w and N as above.w w

(4) Examples for small n. Some 2- and 3-designs obtained from extended

quadratic-residue codes are presented in the following table, along with the

weight-distributions of the codes. N stands for the number of code-vectors~w

of weight w in the indicated (n,n/2) code over GF(q); the entry ; t in column

w means that the code-vectors of weight w for that code yield a X,; t-w-n de-

sign.

w= 6 7 8 9 10 11 12 13 14

Nw  330 396 495 1320 990 396 168 n qwq

A;t 10;3 21;3 42;3 12 4

N 440 528 2640 2640 5544 2640 1192 12 5w
/k 10;3 21;3

N 182 156 364 364 546 364 182 0 28 14
2X;t 15;2 18;2 56;2 72;2 135;2 110;2 trivial

N 102 153 153 102
w

X;t 10;2 28;2 18 2

X;t 5;3 21;3

j *These 3-designs are obtained from the union of the two disjoint quadratic-

residue codes, on which the 3-set transitive PGL 2 (17) acts.
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Other codes which might repay investigation are the (48,24) and (60,30),

both over GF(3). In order for Theorem 4.2 to produce a 5-design, the minimum

distances would have to be 15 and 18, respectively. The (72.36) code over

GF(3) has a vector of weight 18, so the Theorem gives no information on that

case; similarly, ---=putations by Prange rule out the (f+I,(2+I)/2) codes over

GF(2) for 47 < k < 200 For a 5-design over GF(2), d must be greater than

f/6, an unlikely result for large 2.
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PART II

SECTION 5

AUTOMORPHISM GROUPS OF QUADRATIC-RESIDUE CODES AND 5-DESIGNS

Let f be an odd prime, p a prime distinct from f, and A and B the two finite

(+i, Li1extended quadratic-residue codes over (-F(q) defined in Section 3,
where q = p or p depending on whether or not p is a quadratic residue modulo
f. Let G be the automorphism group of A. We know that PSL2 () is "contained

in" G and that equality does not always obtain. This section will establish

equality in certain cases.

We know, in general, that PGL2 (f) is not "contained in" G, since any ele-

ment of PGL2 (f) not in PSL 2 (f) will interchange A and B.
Let G be the stability group of co, i.e., Gco = I EG; a(co) = co Gcc is

a transitive permutation group on ( letters; it contains the permutations of

the form x t- ax+b where aEGF(() is a quadratic residue and b is an arbitrary

element of GF(C). Call the group of all such permutations H. Then G = PSL 2()

if and only if G = H. Moreover, the intersection of G with the full ax+bcO o

group is always H since GfPGL2 (C) = PSL2().

Now, given any transitive permutation group on C letters, any nontrivial

normal subgroup is also transitive.

ie shall also need the result that the subgro-up H defined above has the

group of all u:x &- ax+b, for all aEGF(() and all bEGF(C) as its normalizer

in the symmetric group on f letters. One proves this by examining g- Z -,

where 1 is in the normalizer and -T(0) = 0, g(l) = 1, and Z in H sends x to

x+l.

It follows that a permutation group on C letters which contains H but

not the full "ax+b" group defined above is solvable if and only if it equals

H. To see this one looks at a composition series of the given group, K say,

K = K0=KI .-')KD el. Now K is a simple transitive Abelian group on k

letters, hence cyclic of order C. It is therefore permutation-isomorphic to

the group generated by Z above. Since < Z > is characteristic in the ax+b
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group and K is normal in Kn, the latter is isomorphic to a subgroup of thG
4 Vn n-i

ax+b group. By induction so is K. Since K _D H either K = H or (K:H) = 2

and K is the full ax+b group, a case ruled out by hypothesis. We now have

the following

THEOREM 5.1. If G properly "contains" PSL2 (f) then G is a nonsolvable

transitive permutation group on f letters. Moreover, if ±i. > 7 and is prime,2 -

then G properly "contains" PSL 2() if and only if G is 5-fold transitive.

Proof. The first assertion follows from the above discussion. As for

the second, the 5-fold transitivity of G immediately implies GD PSL 2 (f); and

the reverse implication is an immediate consequence of the nonsolvability of

G and a deep result of Ito's [15, p. 151].

Parker and Nikolai have demonstrated the nonexistence of nonsolvable

transitive permutation groups on f letters for f a prime such that f - 11, 23,

f !$ 4,079, and - -prime. Therefore, we have

COROLLARY I. For each Parker-Nikolai value of f, the codes A and B (for

each p) have PSL 2 (f) as automorphism group. In particular, the 5-designs on

48 points have PSL 2 (47) as automorphism group.

We remark that we first discovered that the group for f = 47 is not

5-fold transitive by calculating and examining some of the weight-12 code-

vectors.

COROLLARY 2. The (24,12) codes A and B over GF(3) and the associated

5-designs on 24 points have PSL2 (23) as automorphism group.

Proof. If the groap were larger than PSL2 (23), it would have to be the

Mathieu group M24' since that is the only 5-fold transitive group on 24 letters

[13, p. 80]. M24 is the automorphism group of the 1; 5-8-24 design, and if it

also acted on the 6; 5-9-24 design asscciated with the minimum-weight vectors

of the present code, then the subgroup M0 of M24 fixing each of 5 given points

would have to permute the 6 9-subsets of the new design containing those 5

points. M0 has order 48 and it has two orbits on the remaining 19 points:

one of length 3 and one of length 16. If we set down an incidence matrix of

6 rows and 24 columns for the 6 9-subsets mentioned above, then MO) acting

11-34



S-7167-1

• on the columns, permutes the rows of the matrix. Ignoring the first 5 columns

with all l's, we find tm.at each of the 3 columns in one orbit therefore has

the same number, say x, of l's; similarly, each of the 16 other columns has y

l's. Therefore 3x +16y = 24: but this is not solvable in integers since

x < 6. Therefore M24 cannot a,'t on the 6; 5-9-24 design, and the group of the

latter is PSL (23).2

(One can see that M0 acts as laimed directly from he description of '4

in [31]; or, taking M24 as the automorphism group of the 5-8-241 Steiner system,

assuming only the 5-fold transitivity and the order of 'M, one can prove that

only the identity of M24 can fix each of 7 points not contained in an 8-set of

the 1; 5-8-24 design. From this the action of M0 follows directly.)

These two Corollaries allow us to prove [7] that PSL2( ) is the auto-

morphism group of the Paley-Hadamard matrix of order f+l when (C-1)/2 is prime,

f E -1 (mod 12), and 23 < f < 4,079. The reason for the condition C = 12N -1

is that, since (3/f) = +1, we can regard the row-space of the matrix over

GF(3) as an extended quadratic-residue code.

One should remark that the 6; 5-9-24 design coming from the (24,12) ex-

tended quadratic-residue code over GF(3) is suggestive of the design arising

from a perfect code; a code is perfect if and only if the minimal weight vec-

tors yield a (q-1)e; (e+l)-d-n design,* where d = 2e + 1; here we have X = 6

instead of 16, but otherwise the parameters are the same.

Proved in [6].
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PART II

SECTION 6

DISJOINT 5-DESIGNS

Each of the foregoing 5-designs arises from a finite extended quadratic-

residue code. Since such codes occur in pairs, there are two 5-designs of

each type; we ask whether they are disjoint. The answer is obviously yes for

the designs arising from codes over GF(2), because the codes are disjoint ex-

cept for the all-I vector. The codes over GF(3) are disjoint but the problem

is that there are now two possible non-O coefficients instead of only one;

this means that a given set of coordinate-places might hold a vector from each

code. We shall show, however, that this is not the case for the minimum-weight

vectors of the codes in question.

PROPOSITION. Let f and (f-l)/2 be primes, and let the minimum distance d

in the finite extended quadratic-residue code of length f+1 be less than

(C-1)/2. Then the stability subgroup H in PSL2 () of a d-club has order h

dividing d a:nd f+l; the orbits of H on the d-club are all of length h.

Proof. In PSL2 (f) the subgroup fixing I point has order f((-I)/2. That

fixing 2 points has order (f-i)/2. Since the latter is prime and any element

in the stability subgroup is the product of cycles of lengths at most d, such

an element cannot fix any points unless it is trivial. Therefore, H has only

the trivial stauility subgroup on any point of the d-club.

We shall apply this Proposition to some of the codes yielding 5-designs,

retaining the notations H and h.

1) The (24,12) code over GF(3). Here d is known to be 9. The number of

9-clubs in the 6; 5-9-24 design is N = 8.11"23 and IPSL 2 (23) I = 3N. Therefore

H is nontrivial. Now it follows that h = 3, since 3 = gcd (9,24). Therefore

PSL2 (23) is transitive on the 9-clubs of each of the two 5-designs, which means

that the 5-designs are disjoint or equal. That the 5-designs are disjoint

follows from the fact that we can produce two 9-clubs, one from each design,

meeting in 7 points, which is impossible for two 9-clubs from the same design
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(because it would imply the existence of a non-0 code vector of weight at

most 7). The two 9-clubs arise from the code-polynomials (x-l)g(x) and its

reverse, (x-l)g*(x), where g(x) g*(x) x22 + ... + 1 over GF(3).

* 2) The (12,6) code over GF(3). This case does not quite fit the Pro-

position, because d = 6 is larger than (C-1)/2 = 5. However, we shall deter-

mine h. The 1; 5-6-12 design has N = 11-12 6-clubs and IPSL 2 (ll)1 = 5"11"12.

First of all, IH I> 5, and 11 does not divide IHI because every element has

order at most 6. Let us take H to be the stability group of the 6-club

{, 3, 4, 5, 9, co which arises from the obvious code-vector having 1 aL each

of these coordinate-places, which are the quadratic residues and co. The Galois

group, sending i to 3 i, mod 11, fixes this 6-club, and therefore 5 divides
H1. Now if 2 divided IH 1, Sylow theory would guarantee at least 6 subgroups

of order 5 (since conjugation of (1 3 9 5 4) by (a b)(c d)(e f) would move the

fixed point co; there cannot be an element of order 2 which fixes any of the 6

points), hence at least 24 elements of order 5. Similarly there would be at

least 5 elements of order 2, hence IH 30. Analogously, if 3 divided IHI

we would find IHI > 30. The only divisors of IPSL2 (ll)1 = 5-11"12 which are

possible under the circumstances would be 60 and 30. 60 is impossible because

the Sylow 2-subgroup would have to be the Klein 4-group, since no elements of

order 4 could exist in H. But no two distinct elements of the form (a b)(c d)

(e f) in 6 have ancther such as their product. Therefore, H would have to

be 30, but we have alrLady seen that such a group would have no room for ele-

ments of order 3. Therefore IHI = 5 and PSL2 (11) is transitive on the 6-clubs

of the 1; 5-6-12 design. Proposition 3.1 tells us now that the two designs of

this type are disjoint or equal. To p:ove disjointness we examine the generator

polynomials g(x) and the reverse g*(x), of degree 5. The weights of these are

at most 6, and if 6 then the infinite coordinate would have to be 0 (by Theorem

3.3), contradicting that x-1 does not divide either. Therefore each has weight

5 and gives a non-0 coordinate at oo. These are then t-o different 6-clubs

meeting in 5 places, hence not members of Qh- same 1, 5-6-12 design (Cf. [14;

p. 774]).
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Thus we have shown that each of the 5-designs of Section 4 for the mini-

mum-weight vectors exist in disjoint pairs. This means in particular that

the union of the two designs 4,s a 5-design with X doubled.

A related question is that of the action PSL2( ) on the d-clubs, where d

is the minimum weight in Zhe coee. We have already shown that PSL 2 ) is

transitive on the d-clubs for f = 11 and f = 23 over GF(3). The question

naturally arises for the other two codes producing 5-designs.

Consider the (24, 12) code over GF(2). Here d = 8 and the number of

minimum-weight vectors is 759 = 3-11-23 = N. The order of PSL 2 (23) is 8N.

From the Proposition we know that H is nontrivial and has order dividing 8.

But IHI 8 by an orbit-count. Therefore IHI = 8 and PSL 2 (23) is transitive

on the 8-clubs of the two 1; 5-8-24 Steiner systems.

The (48,24) code over GF(2) is harder to analyze. All we can tell from

what we have so far is that the order h of the stability-subgroup of a 12-club

satisfies h > 3 and h112; PSL2 (47) is transitive on the 12-clubs if and only

if h = 3, since there are N = 16.23-47 12-clubs and IPSL 2 (47)I = 3N.

We announced this result for two 5-designs, those associated with the Mathieu
groups MI2 and M in [4].
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PART III

ON THE AUTOMORPHISM GROUPS OF PALEY-HADAM.RD MATRICES

*.

For a prime of the form £ = 4N-1, the Paley-Ha> .:_rd matrix of order

I + I is defined as the ("+l) X (f+l) matrix of +1's and -l's with the first

row and first column all +1's; the second row is defined to be -1 at 0 and at

the quadratic nonresidues modulo C an. +1 elsewhere. The columns are indexed

as (co;0,l,2,...,C-i). The remaining - I rows are defined to be the cyclic

shifts of the "finite part" of the second row.

The automorphism group of a Hadamard matrix i; defined as the group of

(f+l) X (1+1) monomial matrices (with entries 0, +L) modulo I±I}, I being the

identity, which acts on the right on the Hadamard matrix in such a way that

the result is the original Hadamard matrix except for a permutation of rows

and P possible change of sign of some rows.

A monomial matrix is of course the product of a diagonal matrix and a

permutation matrix. The mapr~ng which sends each element of the above auto-

morphism group to the associated permutation maErix is an isomorphism, as one

can easily verify. Because we are concerned with the permutation group which

is the image of this isomorphism, we shall speak of the auromorphism group of

the matrix as being, or being contained in, this or that pe-mucati-n group.

It is known ([4],[l]) that when £ = 1. the automorphism group is the
Mathieu group MI2. What we prove here is the following

THEOREM. When C is a prime of the form 12N-1 with 6N-1 also prime and

23 < C < 4,079, then the automorphism group G of the Paley-Hadamard matrix of

order C L 1 is the projective unimodular group PSL 2 (f).

PSL2 (() is the group of all 2 X 2 matrices with determinant 1, modulo

± 0) ,over GF(C). It is a 2-fold transitive permutation group on the pro-

jective line.

Presented at the Conference on Combinatorial Mathematics and its Applica-
tions, University of North Carolina, Chapel Hill, North Carolina, April 10-
April 14, 1967.

In fact f could be a prime power.
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Proof of the Theorem. Hall [4] has proved that the automorphism group

of a Paley-Hadamard matrix contains PSL 2(C). Consider the rows of the matrix

to be vectors over GF(3). Their linear span is contained in a so-called ex-

tended ((+1 ,((+1)/2) quadratic-residue code over GF(3), of dimension (f+i)/2,

of which there are two, here called A and B. Let A be the row-space of the

matrix. Then G leaves A invariant. The group PSL2 (C) acts on both codes to-

gether, and any element of PGL2(C) not in PSL2(f) maps A onto B and B onto A.

Also, A n B = 0. ([3],[8]) This motivates our choice of ( so that (3/Q = +1;

otherwise the row-space has dimension C.

Case i. 23 < ( < 4,079. The subgroup of PSL2 (C) which fixes the "infi-

nite" coordinate of the code (or column of the Paihy-Hadamard matrix) is the
2

group sending x to a x +b for a,bEGF(f) with a E 0. It is transitive on the

"finite" coordinates (columns). Nikolai and Parker [7] show, however, that

there are no transitive nonsolvable groups on f letters. Let G be the sub-

group of G fixing the column c. Then G is solvable, and by elementary argu-

ments one sees that G is contained -,, the "ax + V group, which sends x to

ax + b for all a.bEGF(f) with a - 0. But G contains the "a2 x +b" group,

and if G were equal to the ax +b group, then G would not leave A invariantCo2

but would contain elements mapping A onto B. Therefore G is the a x +b

group and G = PSL2 ().

Case 2. C = 23. Here there is of course a nonsolvable group, namely

the Mathieu group 23' and hence there is the possibility that M24 could be

the automorphism group of the Paley-Hadamard matrix of order 24, since M23 is

contained in the 5-fold transitive group M24 as the stability subgroup of a

point. Furthermore, M2 4 is the only 5-fold transitive group on 24 letters

[5,p.80].

Ito [6] proves that if f and (C-1)/2 are primes with f > 11, then a non-

solvable, transitive permutation group on f letters is 4-fold transitive. It

follows from this result thac if G for f = 23 is larger than PSL2 (23), then

it is 5-fold transitive and therefore is M2 We now sketch a proof that4' M24

is not the automorphism group.

The relation is equality but we only need the inclusion.
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M2 4 is best regarded as the automorphism group of a certain tactical con-

figuration, namely, a Steiner system of type 5-8-24. This configuration is a

collection D of 8-subsets of a set of 24 points such that every 5-subset of

the 24-set is contained in exactly one element of D. Witt [91 proved that

such a configuration is unique (up to action by the synmetric group 24 on
244

* ~~the 24 points) and that the subgroup of .' wic emue2heeeenso
D among themselves is a 5-fold transitive group of order 48"24"23"22-21"20.

This group is, by definition, the automorphism group of the 5-8-24 Steiner

system; and, since Witt, this is the most commonly used definition of

For our proof we need some simple properties of 24" From the 5-fold

transitivity it follows that the subgroup Go of 24 which fixes each of 5

points has order 48. We need to know the action of G on the remaining 19
0

points.

LEMMA. G has two orbits--one of length 3 and one of length 16--on the
0

remaining 19 points.

Proof. The 5 fixed points of G are contained in a unique 8-set belong-

ing to D. Therefore G acts on the remaining 3 points X of the 8-set and on

the other 16 points Y. To see that these actions are transitive one can refer

to [9], where an explicit description of G as 3 X 3 matrices over GF(4) act-

ing on the projective space of 21 points over GF(4) is given.

It is also possible to prove transitivity from the definition and proper-

ties of N4 listed above. One proves -hat only the identity element of 14

can fix 7 points not contained ir. an 8-set belonging to D. (One sees this by

picking pairs of 5-subsets of the 7 points which meet in 3 points. These give

rise to pairs of 3-subsets outside the 7 meeting in 1 point, which must be

also fixed. Continuing, one gets all points fixed.) Then consider the sta-

bility subgroup GI in Go of a point from the 16-set Y. GI must have order at

least 3, but no nontrivial element a of G can fix any more points. This

means, in particular, that a is a 3-cycle on the 3 points of X, and thus G is

transitive on X. Moreover, a 3 is the identity on 9 points and therefore
3a = 1. Since now every nontrivial element of G has order 3, G1 must have

order ? since G = 3.16. Therefore G0 is transitive on Y also.
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We use this Lemma in the situation arising from the code generated by

the rows of the Paley-Hadamand matrix over GF(3). This code is the whole ex-

tended quadratic-residue code A of type (24,12) over GF(3), because the latter

is the sum of a(l 1 1- ";1), a = 0, +1, and the irreducible (24,11) extended

quadratic-residue code. We have proved [2] that A has the following proper-

ties.

PROPOSITION. The minimum distance in A is 9; the 9-subsets of coordinate-

places of A holding minimum-weight code-vectors form a tactical configuration

of type 6; 5-9-24. (Thus every 5-subset is in precisely 6 of the given 9-sub-

sets.)

We use our Lemma to show that M24 cannot act or this design, as it would

certainly do if it were the automorphism group of the matrix. Consider a

given 5-subset of the 24-set. There are the two subsets X and Y, of cardi-

nalities 3 and 16, respectively, on which G0 of the Lemma is transitive. The

6 different 9-subsets containing the given 5-subset of the new design have

6(9-5) = 24 points distributed with multiplicities among the remaining 19

points. Arrange them in a 6 X 19 incidence matrix. If 4 acts, then Go

acting on the columns must permute the 6 rows. By the Lemma, there are the

same number of these incidences, say x, in each of the three columns deter-

mined by X, and there are y in each column determined by Y. lhis means

3x +16y = 24, but since x < 6 this is not solvable in integers. Therefore

N2 4 does not -ct on the 6; 5-9-24 design. Hence the automorphism group of

the code is PSL2(23), and the same for the Paley-Hadamard matrix.

As we showed in [1], the row space generated over GF(3) by the rows of

the Paley-Hadamard matrix of order 12 yields the 5-6-12 Steiner system

(a "5-design") of which Ml2 is the automorphism group. Thus, for oi'der 24 the

5-design remains but the group is no longer large. We do not yet know whether

the order 48 Paley-Hadamard matrix yields a 5-design, but there is a possi-

bility that it will.

Acknowledgment. Our interest and what knowledge we have of these mat-

ters owes much to continued conversations with A. M. Gleason and Richard Turyn.
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Added After the Conference. On the above result for f = 23, M. Hall has in-

formed us that Gordon Keller has shown that M24 cannot act on any Hadamard

matrix of order 24.

In [10] is indicated, in effect, that the subgroup of G (for 2 = 23)

which acts without any signs, thus fixing row co as well as column co, is the
,,2
a x + b" group; but it is not clear how to proceed from this subgroup to G .
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PART IV

SOME REMARKS ON AUTOMORPHISM GROUPS OF HADAMARD MATRICES

in this section we shall prove some assorted facts about the automorphism

groups of Hadamard matrices. An Hadamard matrix H has entries +1 and satis-

fies RH' = nI n = order of H, H' = transpose of H. (n=1,2 or 4t). A general-

ized Hadamard matrix has entries m-th roots of I, m > 2, and satisfies

HH = nI, H* = H' = complex conjugate of H'.

Two Hadamard matrices are equivalent if HI = MI HM2 Mi monomial matrices,

i.e., Mi = P iDi with Pi permutation matrices and D, diagonal matrices (with

+1 or m-th roots on the diagonal). The group of automorphisms of H is the

set of pairs of monomial matrices Ml, M2 such that MIHM 2 = H, modulo the cen-

ter, the set of all (cI,cI). M I determines M 2 uniquely and vice versa, and

Pi determines D, modulo the center.

In [1], Hall remarks that there is only one Hadamard matrix of order 12

up to equivalence (this is also easily checked for n = 1, 2, 4, 8; for n = 16

there are five such matrices). We shall first prove this fact, in such a way

that it will be obvious that the group of this matrix is exactly 5-fold tran-

sitive as a permutation group on the rows. We shall denote by H2 the matrix

+: :i
Let H be any Hadamard matrix of order 12, and pick out any 5 rows in

definite order. We shall reduce the matrix to a canonical form, and these

five rows into the first five rows of our matrix.

It is clear that, if n > 2, any first three rows of an Hadamard matrix

can be reduced to the form

+ + + +

+ + -

+ - + -
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by a suitable multiplication of the columns by ±1 and permutation of the col-

umns, (where + indicates a row of plus ones). These three rows are like

the first three rows of .(2) (H n) Kronecker product of H2 with itself n2 rh 2h
times), with the interpretation of + as a row of +1's of appropriate size.

We now note:

LE-NNA. If the first 2m rows of H coincide with H2m), them H is equiva-

lent to H(M) or 2 m+  divides n = order of H.
2

Assume n > 2m, let t = n2-m, and let (SI,...,S2m) = S be the vector of

t 2t
7 sums of any row past the first 2m. SI= x S= ,xi, etc.., where

1 t+1

(xl,...,xn) is a row of the Hadamard matrix). Then the condition that this

row be orthogonal to the first 2m rows implies

S H(m) = 0

and since H2 is nonsingular S = 0, thus S1 = 0 and, therefore, t is even.

Returning to the matrix of order 12, the Lemma implies that we cannot

have four rows which reduce to

+ + + +

+ + - .

+ - + -

+ - -_ +

(where we have interchanged rows 2 and 3).

Consider any further row, and as before let S1, - S4 be the sums of

three consecutive entries. Orthogonality to the first three rows implies

S1 + S2 + 83 + S4 =0

SI + S2 - S 53  = 0

S I S 2 + S3 - 4  0
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or SI = -S2 = -S3 = S We have just noted that S, +3 is impossible; thus-
Si -+1 for all further rows.

Any further row looks like

-++ +--- +- -++

(after suitable change of sign and permutation of columns within the four

blocks of three each.) Thus, within each block of 3 columns, two rows have

dot product +3 or -1; therefore any pair coincides in exactly one block of 3.

We now reduce our matrix of irder 12 by permuting the three blocks of four

columns so that the fourth and fifth rows coincide in the first block of 3

columns. This may involve changing the signs of the second and third rows.

Now permute the columns of the second, third, and fourth block so that the

first five rows take the form

+ + + + + + ++ +++

+ ++ + + +

-l++++ +

-++ +-- + ++

-+ + -+- .-- + -+-

The only column permutation that may be performed now is the interchange

of the second and third columns.

Each row past the third can be identified by a quadruple (i,j,k,k) where

I < i, j, k. f < 3 and each denote the position witnin the block of three of

the "unusual" el=ment (-I if the sum of three is +1, +1 otherwise). We have

reduced the first three rows to the form

(1,1,1 1)

(1,2,2,2)
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The orthogonality condition stats that any two quadruples conincide in

exactly one position. It can be immediately verified thac there are at most

9 such quadruples, and, given the first two, the 9 x 4 array can be constructed

in exactly two ways; we use the interchange of the first two columns to nor-

malize it to a unique array ((1,3,3,3) must be a fourth row, and (-,2,3.1)

must occur: we require, e.g., that (2,2,3,1) occur rather than (3,2,3,1)).

We remark that the 9 x 4 array is the array constructed from a projective

plane of order 3 in a standard fashion: a projective plane of order 3 is

equivalent to a pair of orthogonal 3 x 3 Latin squares, and such a pair is

equivalent to the 9 x 4 array. The array is constructed as the set of al?

(ij,xij,Yij) 1 <i, j _ 3, with 'x ij, [YiJ I the two Latin squar.es.

We have now shown that any HaJamard matrix of order 12 can be reduced to

a unique form, and further that the automorphism group is exactly 5-fold tran-

sitive. It is known that such a group is unique, the Mathieu group M12 (see
[1]).

Since we have such a simple construction of the group M1 2, it is tempting

to look for an Hadamard matrix of order 24 on which M24 acts. It follows

from the results of Assmus and Mattson that the Paley-Hadanmard matrix con-

structed from the quadratic residues mod 23 admits only the obvious group of

automorphisms, PSL(2,23), (of order much smaller than the order of

2 -4-' * 4 8
M2 4

THEOREM. There is no generalized Hadamard matrix H with entries 24-th

roots of I on whose rows M24 acts faithfully.

Proof. M24 contains a 23 cycle. If a matrix H existed on whose rows

M24 acted faithfully, we could take a metrix equivalent to H such that the

given element of order 23 acted without signs, i.e., left the first row and

column fixed, and the elements of the first row and column could be reduced

to +1's.

The columns can be arranged so chat the action of the cycle is (1,2....,23)

on both Llie rows and Lbe columns. Then if xl,....x 23 denote the elements of

the second row, exclusive of the +1 in the first column, the ortbogonality

relations state that
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23
1 + x ixi+j =0 for j * 0

and, of course, 7xix = 23. These equations are clearly equivalent to

23,
=,- 24 =2 , C

or I ExiCiI2 V6

We must also have I + jx i = 0 to have the first row of the matrix orthogonal

to all the others.

Modulo 23, 2 generates the quadratic residues, whereas 3 is primitive

(2' = 32, and thus 2 = 245 = 318) Therefore, the number 3 remains prime in

Q(C), and 2 factors into two prime ideals in Q(C). Now the automorphism

U(x) = x, U(O) = C 2 x in the field of 24-th roots of i, will leave invariant

the prime ideals dividing 2 and 3 in the field of (23"24)-th roots of I. Thus

xi i = w( "xi 2i) with w a root of 1, since w is an integer and

x2= x  i, so Iwi = I. Let w .1 S with wl a 24-th root

of 1. Let A = Exic . Then

a(A) = w A

S2(A) = a(w)w A = w2C2a+a A

Ill(A)  11C2047a A w11 A=W(A) =w=

But since ail is the identity, w 1 = 1, and thus w1 = 1.

i
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a(A) 2 A

1, o'( aA) = -2a+a A = -a A

x i-a
Thus Z i is invariant under a, and if we replace each row by a

translate, (take a new form of our matrix) we can assume Zxi i is invariant

under a.

Thus

;xi = 21

or

2(X2j- xj)Ci = 0

We have a relation with first coefficient zero, and since C is of degree

23 over the field of 24-th roots of i, x = for all 4. Therefore

A = i = X + xlr7 + X 7 =7 r i ning over all the residues.

+ = -i, 6. j(Xl- x0 ) + (x.l- xO)nI = 2f. The condition I + xi= 0

implies I + x0 + ll(X1 + x 1 ) = 0, and thus x0 = -1, x = -x-l

Thus

24 := 6{(x-l)(x-l -) + x1 x1+

+( +l rI

r 24 + (l-Xl 1) + X I

iV 2 + ( xx)2 )I
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2 _-2
Since 2 - 7 # 0, we must have xI = x1 which implies x, = +1, and the

matrix redues to the PaLey-Hadsmard matrix, which, however, does not admit

M24 as a group of permucations of the rows. We have shown that any general-

ized Hadamard matrix with 24-th roots of 1 as entries which has a group of

automorphisms of order 23 is equivalent to the Paley-Hadamard matrix.

There is another obvious Hadamard matrix of order 24, H2 X H1 2 (Kronecker

product, HI2 the Hadamard matrix of order 12). We know that H2 X HI2 cannot

admit M24 as a group of automorphisms. Hcwever, it does have a relatively

large group, and, by the Assmus-Mattson result, we can conclude that it is

not equivalent to the Paley-Hadamard matrix.

THEOREM. Let Gi be the automorphism group of Ai, Ai an Hadamard matrix,

i = 1, 2. Then GI x G2 is included in the group of A1 x A2.

Let N.A.M i = Ai. i = 1, 2. Then (N1 X N2 )(A, x A2 )(MI X M2) = jNIAI l)

x IN2 A2 M2 ) = A1 X A2 , so G X G is a subgroup of the automorphism group of

A x A2 in a natural way. Since H2 has an automorphism group of order 4,

the automorphism group of H2 X H 2 is of order _> 4 12!

It is natural to ask whether GXI G2 is actually the whole group of

automorphisms of A1 X A2* A counterexample is furnished by the matrix H2 x H2:

the automorphism group of H(n) is of order 2 2n( 2 n-i ) (2 n - 2 )... ( 2 n_ 2 n-l)

since with the first row fixed, the group is the group x - Ax+y, A a nonsingu-

lar transformation of the n-dimensional vector space over GF(2).

On the other hand, the group of a Kronecker product cannot be too large:

THEOREM. If A and B are Hadamaid macrices, the group of A x B cannot be

4-fold transitive on the rows unless AxB = ( 2 )

Take the matrices A and B so that the first two rows of each are

+ +

+ -
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(2)Then A-Y.B has foar ro-ws which look like 2 ; an automorphism which fixes

the first three of these clearly fixes the fourth.

In [1] Hall proved that the group PSL(2,q) is a subgroup of the group of

automorphisms of the Paley-!adamard matrix of order q+l obtained from the qI-

dratic residues of GF(q), q a -1 (mod 4). If q 1 (mod 4), there is also an

Ha.amard matrix of order 2(q+l) obtained from the quadratic residues of GF(q).

If S is the matrix of order q-1 obtained from X(ai - a. ) atEGF(q), X the

quadrari character, with a row and column c added, +'s in row and column c

except 0 at (wj, then

H = "l X I + TH2 
X S T = - 1

THEOREM. The autamorphism group of H includes Z2 X PGL2( q), (the

group of 2 X 2 matrices of determinant -0, modulo the diagonal matrices).

As in [i], the transformations

x -X+a

simultaneously on rows and columns leave S invariant, and also I since the

transformation is the same on rows and columns. The transformation

x -1 x(x)

on both rows and columns also leaves S invariant x- and change sign of

row X if X(x) = -1) since

X(x) X(Y) X - -1)= X(y-x) = X(x-Y)x y

as X(-)= 1. Since we apply the same transformation to both rows and colums,
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this also leaves I invariant. Finally, the transformation of interchanging

rows and columns, and changing the sign of column I and row 2 leaves H and

TH invariant.

The permutation x - tx, with t # 0 not a square in GF(q), applied to both

rows and columns, will leave I invariant and will change the sign of all ele-

ments of S except those in row and column r. If now we multiply row and col-

umn c by -1, we leave I invariant and change S into -S. There is an auto-

morphism of H2 which takes TH2 into -7H2. This operation together with the

one on S described above, leaves invariant both H. x i and TH 2 x S, and is I

thus an automorphism of H. Since the transformations x - tx, x - x+a, x ---
x

generate the group PGL2(q), the theorem is proved.
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4I ,- PART V

A PROOF OF THE 'MCWILLAMS IDENTITIES

This chapter contains a proof by A. M. Gleason of the relation between

the weight-distributions of a code and its orthogonal code, first found by

MacWilliams in (1], and an extension of the result.

Let V be the vector space of dimension n over a field F, which for the

moment w take as GF(p). Let be a primitive p-th root of 1. We take f to

be. the function on V with f(v) = Xw(v)v n-w(v) where w is the weight function.

Then we want to calculate

=) = x (v ) Yu-w(v) (uv>
vEV

where <uv> is the ordinary dot product of u and v, a bilinear map of VXV

into F, and (<u,v> is well-defined since 4P = 1. The sum is easiest if we sum

one coordinate at a time: Define w(vi = 0 or 1 according as v. =0 or

(v = <v I, v2 , ... , V>). Then

A w(vl)+ ... + W(v )y(i-W(V)+ .. + (l-w(v) u1vI + ...+UnVn
()X y
Vl,V2, . .,vn

= w x (v ) 1lw(v.) uiv

i=l V.

Now the inner sum is Y + (q-1) X it u. 0 and

y + ( + ... + 4P-1) X = Y-X

^Ax n-w~u) ~uif u. 0 0. ilence, f(u) = (Y + (q-l) X)-x)W(U)) Note q=p for now.
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The general Poisson summation formula is then

f _) IA I A

uJ f(v) A f(u)

where A is any subspace of V and B is its annihilator subspace. This becomes

IVI 7, eq(v) yn-w(v) v!![.
I I IAI A. XJ yn-j

x'A n-=0 3

= (Y-X) w (u) (Y + (q-1)
uCB

n Bi(Y-X)i (Y+(q-l)X)
i _o

where A. and B. are the weight-distributions of A and B, respectively.
1. 1

This simplified calcalation suggests the following more ambitious calcu-

lation. Let us get the joint distrinution of all the different coefficients

of the vectors. Let f(v) = X0 x where v has

a0 O's, c I's a2 2's ...... Then

A a 0 (vl) + . + ao (vn) ap -1 1t v I )+ ... + a P i(vn) ulvl+...+unvn
f(u) X°  "" pI
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Here the inner sum is

u. 2u i  (p-!)ui

Sx 1  x + 2  P.. -1  1 =Y(u,)

so

Au ^ a (u) ai(u) )P l(u)
f(u) = Y(O) Y(l) ... Y(p-

N%7 if, for example, we take F = GF(3), and let Ai_.,k be the number of

vectors in A with i O's, j l's, k 2's, then

lV1 Xi yj Zk B (X22 i (Xky2z)j (X+2y+0) k

IA - Ai,j,k = B k(X+YZ)

This formula becomes the MacWilliams formula all over again if we put Y = Z

(which amounts to not distinguishing l's from 2's; more generally,

X1 = X2 = ... = Xp_,)-

To treat the general case, when F = GF(q) for q = pS, just replace

<u,v> by T(u.v), where T is the trace from GF(p s ) to GF(p) and u-v is the

usual dot product.
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PART VI

A SIMPLE CONSTRUCTION OF THE BINARY GOLAY CODE

In this part we give a simple construction of the Golay binary (24,12)

code (see [1], [2]) starting from the Hamming code of length 8, without using

the quadratic residues mod 23. Thus, we give a straightforward construction

of the combinatorial configurations on 23 and 24 objects from the one on 7,

the projective plane of order 2.

The binary Hamming code H can be constructed from the rows of the inci-

dence matrix of the projective plane of order 2, with a coordinate at co defi-

ned by an overall parity check, and the vector I (all coordinates = 1). Thus

H is the set of all vectors gotten from the cyclic shifts of the vector

(1,1,0,1,0,0,0) with n coordinate at - with value 1, the complements of these,

and the 0 and 1 vectors. -H is a group; it is equivalent to the code consis-

ting of all vectors (z,z) and (z,z+l), with z of length 4 and even weight.

Let H' be the code obtained from H by reversing the order oi the finite

coordinates; H? is equivalent tc H and H n H' = {ol}.

We now form the code of length 24 of all vectors of the form

(a+x, b+x, a+h+x) a,bEH, xEH'.

This code is 12-dimensional, since there is no nontrivial representation of

the 0 vector. Since H 0 H' = {0,l1 and H,H' consist of vectors of weight

0,4,8, H+H' is the set of even weight vectors. If any of a~.b, a+b, x are 0

or 1, it is clear that the above vector has weight > 8. We claim that the

minimum weight of the code is in fact 8. Denote the weight of w by Iwl, and

let multiplication of vectors be the usual (x2= x for all x). Then

lu+vl + 2luv = lul + lvi

la+xl + I b+xl + I a+b+xl

S= a+bl + 21(a+x)(b+x)l + Ja+b+xJ

x I + 2 {(a+b) (l+x)I + (a+x)(b+x)

= lxi + 21a+b + ab + xl.
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If a,b, a+b, x are all of weight 4, labj = 2 and ja+b+abj = 6, so that

la+b+ab+xl 2, and the above vector has weight > 8.

The (23,11) code obtained by deleting one coordinate has minimum weight

7, and thus the spheres of radius 3 about the code vectors are disjoint. The

well-known equation

212 (1 + 23 + (23) + (23N) 212+11 223

shows that these spheres :over the set of vectors of length 23, i.e., the

(23,11) code is close-packed. It therefore follows that given a vector v of

length 24, weight 5, there is a unique vector of weight 8 in the (24,12) code

at distance 3 from v. It is known that this 5-design, and therefore the

(24,12) code, are unique [3].

We remark that our above definition is equivalent to taking all vectors

(y, y+al, y+a2 ) with y of even weight (length 8), aiEH, and y+aI+ a2 EH'.
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PART VII

THE (36,15,6) DESIGNS

In [2] certain difference sets were defined in the two Abelian groups of

order 36 which do not have elements of order 9; a very similar set was defined

in the group S3 X S3 in [1]. It was sho-m in [2] that all the Abelian dif-

ference sets are equivalent to one of six difference sets. This statement is

incorrect: there is a seventh set. The designs defined by these difference

sets are studied here.

The difference sets in question 4re defined as follows: let A3 be the

Abelian group of type (3,3), thought o.: as the affine plane over GF(3). Take

four lines of different slopes in A3, and associate one line with each element
of a group of order4 Z4 or K4 = Z2 X Z2)- The difference set is the set of

all (O,x), 0 the identity in the group of order 4, xlLo, and all (i,x),

xEL i. The Li have at least a triple intersection, and by translation this

may be assumed to be the origin of A3. The automorphism group of A3 may then

be used to normalize the set further. The argument in [2] (Theorem 10) is

essentially correct, but the conclusion drawn is too strong. In K4 x A3 the

argument shows that there are three inequivalent difference sets, Q Q

which correspond to the cases Li concurrent (at the origin of A3, by normali-

zation), 0UL0 and OUL3, respectively. In the case of Z4 x A3 we have the sets

QI Q2 ' Q3 which correspond to 0ELi all i, OLo, O L3 , respectively, but [2]

neglects the case Q4 : OL 2 which is not equivalent to Q3 , as is the case in

K4 x A3 ; there is an automorphism a such that a(l) = 2 in K4 , but of course

not in Z4. It is also clear that the multiplier group of Q4 consists of ex-

actly two elements, the identity and the automnr phism x - -x in Z4, aL2 = L2 ,

aL° =L, aL1 = L3 in A 3 .

We shall now study the (v,k,X) = (36,15,6) designs defined by these dif-

ference sets. We shall first show that the automorphisms of the designs,

i.e., the permutations T of the group elements which also permute the sets of

the form D + a, are just the obvious automorphisms: each T is of the form

Or = P3r + y, where u,y are uniquely determined by T, a an automorphism of the

group, y an element of the group.
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J Re shall use i, j, m, n to denote elements of the group of order 4, x, y,

z elements of A3, a, A elements of the group of order 36, T an automorphism
of the design defined by the difference set D (one oi the Q I or and S

the complement of L in A Let Li = line through 0 parallel to L..
0 3e o

LEMMA i. If Dr= D then

1. (0,L)r =(0,L)

2. (O,Lo+x) r = (O,L+y

3. (D4x)T =D + y

4. (i,L) IT (jL)

5. (iLejxyr = (ji2Lj+y)

C. (O,x) r = O,y

Proof. Dn(D+(i,x)) is the set (0,So0,L_i+x), (iL'nSo+x)' and

(j,L fnLji+x) j # 0, i,when i # 0; Dn (D+(o,x)) = (0,Sof So+X)U(jLL3+x)

for j # 0. Two of the sets (j, L. nL.+x) must be empty for x 0 0 (only the

one with xEL* is not empty).

It is easy to see from this that Dn(D+a) = Dn(D+P), a/O3, if and only

if a and 0 belong to L*, L, 3 # 0. Therefore, if L* = (0,xl, -xl), DT=D im-

plies 7 leaves the sets D+xI invariant or interchanges them, and (D nD+xl)T

= DADFx I = DA D-xI . Thus (0,So)T = (0,So). The sets D + 0, x, and xWL*,
V 1 0

are the only sets D + a such that JDnD+a IfD+a = 3 (IDAD+anD+ix I = 2

* for i o 0). Thus 7 must permute the sets D-Ox, xL L, which implies 3. The

intersection of these six sets is easily seen to be (0,Lo), so that (0,Lo)T

= (0,L), and this with (0,So) T = (0,S ) implies 6. The triple intersections

D)D+x nD+y, x,yjL*, x y are either empty or consist of (i,Li) if x,yELi

(x=-y). Thus, since r permutes these sets, 7 permutes the triple intersec-

tions, which proves 4. Part 5 follows from the fact that if x,y JL ,

D+xnD+y = (0,So+xnSo+y)tJ(i,Li+x) with y-x eLl (so Li+x = Li+y). Since the

sets D+x, xjL* are permuted by r, and the sets (0,Lo+x) are also permuted by

Tr. it follows that the sets (i,Li+x) also are.
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LEMMA 2. If T is any automorphism of the design, and (D+O) T =D+jz i ,*

then

1. 1i,LO) -T (ji_.L 0 +z )

2. (i,L0+x)T = (iL 0+y

3. (D+ix) T = D+jy

4. (i+m, Lm)T = (n+j.Ln+Zi)

5. (i+m,L Lm+X) = (n+j,Ln +Y+zi

Let T denoue translation by p: cdT = a~p for all a. Then TirTi= T1

leaves D fixed, and 1-5 follow directly from the corresponding statements of

Lemma 1 applied to r'.

The statements of Lemma 2 show that r defines a permutation - of the
.4

group of order 4, such that (D+ix)T = D+(iT4 )y, and (ix) r =(ir 4 z) for all

xEA3 . Note that in 4 and 5 n = (m+i)T 4 -j.

LEMMA 3. Let T be any automorphism of the design, and write (ix) r =i7 4 ,

xT i. Then each Ti is a collineation from the i plane, the set of (i,x), to

the plane 1 4 , A3 .

This follows from Lemma 2.

LEMMA 4. DT = D implies (D+ix) 7 D+ ((1 4),(-0)).

Proof. Suppose first i o 0. Since DAD+ixn(0,A 3 ) (,(L_i+x)nS o )

the sets D+ix are uniquely defined by their intersection with D 0(01A 3 ):

this intersection is a pair of points which defines a line, which is parallel

to L-i for some i. The point x is then determined uniquely by the fact that

these two points are on L .+x and not on L . Thus, the formula holds for

i 0 0, since D7 = D, and thus (0,A 3 )r = (0,A 3 ) by Lemma 1. Now, to show the

formula holds for i=0, observe that D+x ND+iy n(O,A 3 ) =,(0,So+XnL_4 +Y) so

that we can recover x from D+x nD+iy n (0,A 3 ) for all i 0. Since the formula

applies to the sets D+iy, io0, it therefore applies also to the D+x.
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~i

j LEDZA 5. ix = f D+jy for j.±, y-xEL,- .

Ir is clear that ix is in the intersection of the nine sets above land

!t the six sets D+iy, x-yS ). If nzEnD.jy then zEL .+y, for all y such -hat

YELi +X, j i. We then must have n=i, as otherwise z belongs to the inter-

section of three parallel lines. But then z--x, since z-x belongs to two dif-

ferent lines through 0, (there are at least two L = Li-i through 0, m 1 0).

LEM M 6. Di- = D implies (j-i)7 4 = j>4-i4 .

There is, of course, nothing to prove in case the group of order four is

K4, since then any permutation which preserves 0 is an isomorphism. We need

the lema only to show that 274 = 2, 2EZ4 .

Since ix = OD+jy, jii, yELi. +x, we have (ix)r . O(D+jy)7 = Di(j'r 4 ,yo)

by Lemma 4, with jEi, yEL. +x. We know that (ix)7 = ir 4 ,z for some z. Ex-

amine the elements of the form i- 4 in Nf(D+jy) r: (ii-4 ,z)En(D+jy)-r if and only

if zL+ (Y- 0 for all j#, yEL i -j+ x . As before: we see that we must

have Li_j To= Li74_i. 4 . But from Lemma 2, part 4, with i=-m, we see that
( * *

(0,L7 = TL(m)+ Z_), so that Lit O = L_(i) so we must have

-(j-i)T 4 = i-4 -ji-4 , as asserted. (For i=j the lemma follows from Lemma 1.)

THEOREM. Any automorphism of one of the designs is just a trivial auto-

morphism (xi-=aU+P0 , with a a uqiltiplier).

This theorem destroys the hope that an interesting new permutation group

might arise as the automorphism group of one of these designs. It was shown

in the last annual report that at most two of the seven designs are isomorphic.

If DT = D+a, we may replace 7- by rTaC and so we may assume DT = D. Then

from Lemma 6, and Lemma 2, part 4, we have (0,Lm)T = (0,LmT4+Z-. )with

(D+mO)i- = D+m-4 ,Zm = D+(nr4,' 0 ro) by Lemma 4; DT = D implies OTo = 0, and so

= (0,L ). Thus r must take a line Li not through 0 into itself,
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since 07 = 0. But for each of the seven sets, the multiplier group is such

that L0 anC any line not through 0 will be preserved, and otherwise the Li can

be permuted arbitrarily. Thus, by following T by a multiplier as well, we

may assume that the lines Li are &l left invariant, (and in the case OeLi

for all i, that the plane O,A3 is left invariant). But then 7 is the identity,

and thus by Lemna 4 r is the identity.
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PART VIII

THE COVERING RADIUS OF SOME BCH CODES

If we are given an arbitrary block code of block length n the covering

radius is the maximum number of changes that must be made in a word of length

n in order to change it into a code word. Thus, for each word w of length n

we compute minlw-xl for x in the code, and the maximum of these is the cover-

ing radius of the code.

Gorenstein, Peterson, and Zierler have shown that the covering radius of

the binary weight > 5 BCH codes is 3. We shall derive some facts about the

packing radius of some BCH codes with a odd.

nThe BCH codes over a field with q element have length q -l, and are de-

fined as the set of all vectors (vi) such that £via i = 0, j = 1,.-,t with

a a primitive element of GF(qn). Of course for j = mq the equation

Jvi = 0 follows from the equation via i m = 0. The maximum weight is

> t + 1.

We note that the defining equations for the code could be written

ZvxX = 0, x ranging over the distinct elements of GF(qn).
x

To correct a given vector v we try to find a vector v' such that v-v'

is in the code and v' has weight as small as possible. If v = (vi),

v' =(vj)we let

vi s
v ')i =i 0, iS , cta

Then we must have Z (vi- v' iJ = 0 1 < j < t, s c that

-t vaij S

We want ,vix= S with x distinct, and as few vi * 0 as possible. We
j i

note that we can drop the requirement of the xi being distinct, since we
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could always group equal xi, and all the corresponding vi . We also note that,

if q =p S s j- asS v xJ implies S=I~ (3ix) = vi.

For t = i, the BCH code has weight 3 if q is even (we then get the

Hamming code), but weight 2 if q is odd. We can always correct by a weight

one vector in exactly q-1 ways: we must solve vx = SI with vEGF(q), and for

SI  0 there are q-1 solutions. For t = 2 and q odd, we have the following

interesting observation.

THEOREM. If q is odd, n > I, the BCH weight > 3 code has covering radius

3 if n is even, 2 if n is odd, q > 3. The covering radius is 3 for q = 3.

Note that for q = the weight is > 4.

We must solve

aX + bY = S

aX + bY2 = S2

with S. arbitrary elements of GF(qn) if the covering radius is to be 2. If

S 0, take a =, b = -1:

X -y-SI

X _2 = 2  or X + Y =I

which can always be solved. Thus we can correct all the vectors, except those

lying in the BCH code for t = i, by a weight 2 vector. (We can correct by a

2

weight I vector if S S2 *0 and I EGF(q).
2
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if S 0, we wo"ld have

eX + bY=a

ax2 + bY2 = 2

or

(a + b)X2 S2

2 2 S 2  a- a(a+b) - c(c+l) b

This equation can be solved in GF(qn ) if and only if ) is a square,

and of course S2 need not be a square. In that case we try to make c(c+l)

also not a square. This is possible only when n is odd, since when n is even,

GF(qn) D GF(q2 ), and GF(q2 ), being the unique field of degree 2 over GF(q), is

obtained by adjoining the square root of any nonsquare in GF(q).

However, for q = 3, S2 a square in GF(qn), c(c+l) = 0 or -1 fcr cEGF(q);

c(c+l) = 0 is impossible. For q = 3 and SI = 0, S2 a square, we cannot solve

the equations in two unknowns. We can always solve in thiee unknowns by the

simple device of reducing to tne case S1 3 0 by a weight 1 vector, and then

correcting by a weight 2.
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PART 1X

OR THE PETERSON, ET AL. AFFINE-INVARIANCE THEOREM

Peterson [1] has proved that extended BCH codes are invariant under the

affine group, and Kasami, Lin, and Peterson [2] found necessary and sufficient

conditions for an extended cyclic code to be affine-invariant. This report

gives two slight extensions of the latter result; namely, it shows that the

extension of the code is unique and that fewer computations are needed to

verify whether a given code is affine-invariant.
k

A cyclic cod:: of length q -i over F = GF(q) can be regarded as the set C

of all functions h with values in F defined on the multiplicative group e of

K = GF(qk) satisfying

h(a))i = 0 iEl (1)

for an index set I defined by the condition that Ci is a root of the generator

polynomial g(x) of the code for a fixed primitive element of K. In Darticu-

lar, we choose I tr, be contained in 0, 1, ..., qk-2. This statement is easily

verified if one thinks of h(a) as the j-th coordinate of a code-vector, where

a= 0.

That the code is cyclic is the same as saying that hcC implies h EC for

every 3KEI, where h (a) is defined as h(3a) for each aEe.

We shall derive a set of necessary and sufficient conditions on the code

and on the definition of h at 0, i.e., on how to extend the codo, so that the

extended code is invariant under the affine group (x - ax+b) of K. That is,

we get a new "code" C' by extending each function h to K by assigning, in any

way at all, a value h(0), and we ask under what conditions on h(0) and the code

C we get affine invariance for C'.

We need only check for translation. Let Ae . Then C' is affine-invari-

ant if and only if
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Sh(a+P) a 0 jEl,

and (2)

h(3) = hP(0)

where h = h(a+), aEK. condition (2) implies hPEC.

Note that 0 cannot be in I if condition (2) holds unless the code is the

0-code, for then we would have

h(0) -(a)a#0,13

for all Pce . This means h(g) = h(P') for all P, O'EI, and thus h(a) = c

for all aEK. Nuw condition (1) implies c = 0.

Now condition (2) holds if and only if

=0, iEI, e

aEK

and (3)

h(P3) = ho(O)

Note that the sum in condition (3) is now purposely over all a in K and that

the unwanted term h(P) does not enter. condition (3) is equivalent to

Y() 1 i(h, ~iP iEI, PEL"

and (4)

h(P3) = ho(0).
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If we set y- (-i) Zh(a)&, then. condition (4) is equivalent to saying that
aJK

the polynomial

( i) 'Y i

has each in K as a root and h() - h . This means that, since
i <qk -1,

for j=O, 1, ... , i, ( ) y = 0, ieI, and h(1) h'(0) (5)

and conversely.

The meaning of the binomial theorem is in particular that y= h(c).
a-EK

Since 1 1 for all iEI, we find that condition (5) is equivalent to

h(c) = 0 for all hcC',
aEK

(6)

and for each iEI, every j in the range 0 < j < i satisfies

either jEI or (1) = 0 (mod p)

where q = pS for the prime p.

To see that condition (5) implies condition (6) notice that y0 = 0 is not

the condition that OEI, but that yj = 0 for 0 < j < i is the conJition that

jEI. For ihe converse, we need only to show that h(3) = ho(O) for each PEK.

Now

h(0) = - Zho(a) Zh(a-A) = h(P)- Zh(+)= h(!8)

00 c0 cYEK

We have proved the Kasami-Lin-Peterson theorem and have shown that this

definition of h(0) is the only definition that admits the affine group as

automorphisms.
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One can write -- m mod p where i = m ap with

0 < im < p; then Condition (6) becomes

h(a) = 0
acEK

(7)

and for each iEI, and j satisfying 0 <j <i, j < i for all m
implies jEl. - m

It is possible to weaken the hypothesis of Condition (7) as follows. Let
k

be a primitive root of 1 of order q - 1, and let the roots of the generator

polynomial g(x) be where i runs over a set I contained in {O, i, ..., qk_21.

Since g(x) has coefficients in GF(q), I consists of a union of orbits under
kmultiplication by q (and reduction mod q _ 1): I = C U UCt

LEMMA. From each orbit select one integer i'. Suppose that for each such
i' we have: 0 < j < i' implies i) M (mod p) or jEI. Then the same is true

for each icI; in other words, the cyclic code generated by g(x), when extended

as above, is invariant under the affine group if and only if Condition (7) holds

for one value of i from each orbit.

Proof. We use, of course, the well-known relation mentioned above:

(i.)) (m p)

0 N
where i = p ~ a-Ld j ='j pn, with 0 < i ,j < p. (P = qL) Notice that

n n n n k0 0 k
we must reduce each integer under consideration mod q - I to a value between

0 and qk _ 2. Since qk = I (mod qk _ 1) we find that qi has, in our terms,

coefficients of its baze-p expansion which are a cyclic shift of those of i.

Now suppose i is any element of I and let i' be the element in the orbit

of i satisfying the hypothesis of the Lemma. Let 0 < j < i and suppose
0 (od p). This means i > j for every n. Multiply i by qm to move i

mo. mn n-n to
to it. Let j' be the element in the orbit of j congruent to q j. Then, since
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both the in's and the j n's have been cyclically shifted by the same amount, we

have 0 <j' <I' and , 0 (mod p). Therefore J'EI? hence j6l.
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PART X

FACTORIZATION OF CYCLOTMHIC POLYNOMIALS OVER CERTAIN QUADRATIC NUMBER FIELDS

We calculated some factorizations which we record here. r
If f is a rational odd prime the polynomial X - I has a root field of

degree -l over the rational field Q. This field has a unique quadratic sub-

field L =Q(,,), where the sign is such that +f + 1 (mod 4). Let z be a

primitive t-th root of 1 over Q. The subfield L is also generated by n, where

.n = Z Zr the sum over r in R, the set of all quadratic residues modulo 2. 72
and its conjugate 7 are the roots of x + x + (1+)14; here the opposite sign

is chosen, so that the constant term is an integer. In particular, they sat-

isfy n + 1 = -1. The polynomials we wish to calculate are

g(X) = T (X-z r) and g(X) -j (X-zsr)
rER rER

where s is a fixed quadratic nonresidue mod k. Thus g(X) is the conjugate of
g(X).

To start with we observe that if k a -.1 (mod 4), then -10R and, therefore,

~()= x ~'
gM =-X~-l)2 Z (X_ ) /N

since the constant terms are (-l) .1) 2N(z) = -Nz and -Nzs, N being the norm
s +s ffrom Q(z) to L. Since 1 = Nz • Nzs = (Nz) = (Nz) for every quadratic non-

residue s mod 2, Nz must be 1 if 2 > 3. In other words, the sum of all r in

R is divisible by 2 if 2 > 3. (This is true for any prime 2 > 3.) And alter-

natively, the sum of all the elements in any multiplicative subgroup 
of GF(2) ×

is 0, as the sum of all the roots of I of a given order in a field.

Next we have, setting m = (f-l)/2,

g(X) n n m -l + ... + X-1

i(x) = - i x -1 + + X-1

X-1

1.'



S-7167-1

for the case 1 -1 (mod 4). This already settles the case f=7:

g(X) =X 3 - x 2 + x-1

g(x) =X - X2 + X-I = 7.
2

(x-71)(x-iI) = x 2 + x + 2

For higher values of 2, we need to use such things as

R+R = (+L R' t -- R(f=4v-1)4 4

the meaning of which is explained in our 1966 report, pages I-33 ff. We find

i 4 x 3  x2 (9 0-
g(X) =x - X- +X -(l-i-)X-(

2
(x-n)(x-ni) =x + x + 3

g(X) X6 -X 5 +2X 4 - (,+ )X3 +2X 2 - X+lI (= 13)

(x-n)(x-5) = 2 +x - 3

g(X) = X n X 0 - (3+71)X 9 - 4X + (-M)7

6 - 5 4 3+ (2r1-!)X - (271-1)X - (7-3)X + 4X

(2 : 23)

+ (3+)x 2 + x-1

I - 2(x-n)(x-I) : x + x + 6
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PART XI

A THEOREM OF GLEASON AND PIERCE

The following is a slightly shorter proof of a theorem proved by J. Pierce

and A. Gleason. Only the second part of the proof is different. The question

is the existence of codes which are formally self-orthogonal, i.e., have the

same weight distribution as their orthogonal complements and in which the

vectors all have weight a multiple of the integer t. Examples of such codes

are the extended quadratic residue codes over GF(2) in which all vectors have

weight a multiple of 4, the extended cyclic (13, 6) code over GF(4) in which

all vectors have even weight, the set of even weight vectors in any group code

over GF(2), and the extended quadratic residue codes for primes of the form

12k-l over GF(3) with t = 3.

Let Ai., B. denote the number of vectors of weight i in a group code over

GF(q) and its orthogonal complement, respectively, and

xi yn-i 1(~) n-1
a(x,y) Ax P(Xy) = ZB i x' y

with n = code length, k = dimension of the group code. The MacWilliams iden-

tity states that

a(y-x, y+(q-l) x) = qk P(x,y)

or, in nonhomogeneous form, with x/y, =Z,

n 1-z I (,i

(I + (q-l) x) n a l+(-l)z' P(z, 1)

This is a corrected version of Section VIII of our Report of April 28, 1965,
under Contract No. AF19(604)-8516.
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Thus, if the group code is formally self-orthogonal, we have

a(x,y) = P(x,y) and

a(y-x, y + (q-l) x) = qn/2 a(x,y)

If A. = 0 unless i = kt, i.e., all the weights are multiples of t, then
a(x,y) = a(ax,y) if W = 1.

Let T, T2 be the fractional linear transformations

l-z

IZ l+(q-l)z

T2 (z) =Wz

If a is the polynomial associated with a formally self-orthogonal code

with all vectors of weight a multiple of t, then T, T2 operate cn the "homo-

geneous" roots of cr (we allow X = co with the usual conventions: a, 9 are

homogeneous polynomials and (a, b) is a root of a if bx - ay divides a. Since

a is a homogeneous polynomial, (a, b) is a root if and only if (sa, sb) is a

root for nonzero s, and thus the roots of a should be thought of as points of

the Riemann sphere); a(X, 1) = 0 implies a(T(X), 1) = 0 if T = T1 or T2 and

this holds for any T in the group G generated by TI and T Thus the set of

roots of a on the Riemann sphere is closed under G.

But if G is any group of fractional linear transformations and a finite

orbit contains three distinct points, G is finite. For the number of distinct

triples of points from the orbit is finite, and since a fractional linear

transformation leaving three points fixed is the identity, G is finite.

We conclude that the group G generated by T and T2 is finite for t * 2.
iiFor then if X is any root of a not 0 or oo, Xw are t distinct roots of a if w

is a primitive t-th root of 1. (If X =0 or co, TI(X) q1-- or 1, another root

of a.) If t = 2, TI(z) = z only for z - ±_ I and Tl(z) =-z for z =+ I
q-1 II
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The set of roots of a(x.y) can consist of two values only for X = + -- , as

otherwise X, -X, TI(-4) will be distinct. Therefore, we must have
a~ x~ y c~ y ( q - ) x 2 )n / 2

Y(x,) A= c(y2 + (1) x2 with c constant (and thus clearly 1). In fact,

the direct product of the code (a,a)j, Y2 + 1 = 0, with itself n/2 times has

this distribution and is self-orthogonal. Except in this case, every element

of G must be of finite order since C is finite. TIT2  l z must be of1 l2 1(q-l)wz ms eo
finite order, i.e., some power of the matrix

must be a scalar multiple of the identity matrix (the identity as a projective

transformation). We assume that 0) * 1.

The eigenvalues xI x2 of T T2 satisfy the equation

2
x + (c-1) x - Oq = 0

( / m

If TIT 2  = cI, we must have = 1, i.e., 2 is a root of 1. Then

2 x2  2

xI + 2  x2  + 2 (x1 +x2 ) -,__)_
x2  x1  XlX2  X 2  co q

is an algebraic integer, and q divides (o-1) 2. But if wo is a t-th root of 1,

1-wo is a unit if t is not a prime power and (I-w))(t) = (p) if t = pJ (an

equation of ideals). Thus we must have 0(t) = 1 or 2. If 0(t) = 1, t = 2

and co = -1. Then 4 is an algebraic integer, and q = 2 or 4.
q
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If O(t) = 2, t = 3; 4, and 6. However, t = 6 is impossible, since if W

is a primitive 6-th root of 1 we shOUld have - (-l) 1- = -an algebraic integer,
ON q (W-)2

which is impossible. If t = 3 and w is a cube root of 1, - 3, and
2

thus we must have q = 3. Finally, if t = 4, we can let w = i: -,nust be an1i integer, and q = 2.
We this have the possibilities

t q

2 2,4

3 3

4 2

II
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