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ABSTRACT

A number of new combinatorial designs are found as direct applications
of the theory of error-correcting codes. Results on the automorphism groups
of Hadamard matrices are presented. A simple proof of the well-known Mac-
Williams relations, together with a generalizaticn, is given. We have con-
structed the (24,12) extended code of Gulay over GF(2) in a particularly sim-
ple way. We prove that each of the seven 6; 2-15-36 designs ((v,k,\) designs)
arising from the difference sets of size 15 in the Abelian groups of order 36
has only the obvious group as automorphism group. Each of these designs gives
a Hadamard matrix of order 36.

We determine the covering radius for BCH codes of design distance 2 over
GF(q) for all odd prime powers q. We give two extensions of the Peterson-
Kasami-Lin result on necessary and sufficient conditions for an extensicn of
a cyclic code co be invariant under the affine group. Explicit factorizations
of xf-1 over the appropriate quadratic-number field for £=7, 11, 13, and 23
are given.
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PART NULLIUS
ERRATA FOR OUR 1966 REPORT

(Final Report, April 28, 1966, AF19(604) -8516)

Page
III-21 Add to equations (10) [and (11)] the statement "and ng lmil is
even for each i"

-1" _1
I11-31 line 15: For "i~i read "i- -1 "
I1I-34 Corollary 1, third line: For "... in R 1 + ..."

read "... in R, -1+ ..."

IV-3 line-5: For "extensive" read "extension"

-1 Reference [7]: Author's last name is Menon
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PART I

INTRODUCTICN

This document contains reports on the scientific work done from May 1,
1966, to April 28, 1967, under the contract named on the cover.

The major re-
sult is in Part II, "New 5-Designs,"”

where a number of new combinatorial de-
signs are foun¢ as direct applications of the theory of error-correcting codes.

Results on the automorphism groups of Hadamard matrices, some of which are

corollaries of the results of Part II, are presented in Parts III and IV. 1In

] Part V we set down A. M. Gleason's simple proof of the well-known MacWilliams
{ relations, together with his generalization of it and our own small point about
F generalizing this to GF(q) for q not prime. In Part VI we have constructed

the (24,12) extended code of Golay over GF(2) in a particularly simplzs way.

R

Part VII contains a proof that each of the seven 6; 2-15-36 designs {(V,k,))
designs) arising from the difference sets of size 15 in the Abelian groups
of order 36 has only the obvious group as automorphism group.

designs gives a Hadamard matrix of order 36.

Each of these

‘ Part VIII determines the covering radius for BCH codes of designs dis-

tance 2 over GF(gq) for all odd prime powers q. Part IX contains two exten-

: sions of the Peterson-Kasami-Lin result on necessary and sufficient conditions
3

f for an extension of a cyclic code tc be invariant under the affine grovz.

thaiid

Part X contains explicit factorizations of xﬁ-l over the appropriate quadratic-
number field for £=7, 11, 13, and 23.

Part XI is a corrected version of a ;
chapter of our 1965 Report under Contract No. AF19(604)-8516.

TR S

3 Authorship is as follows: E. F. Assmus, Jr. and H. F. Mattson, Jr.,

: arts I1I, III, and X; R. J. Turyn, Parts IV, VI, VII, VIII, and XI. Part V
] as taken from a letter of A. M. Gleason, was slightly edited by us and a

short paragraph was added at the end. Part IX is by Mattson and Turyn.
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PART II
NEW 5-DESIGNS
SECTION 1

INTRODUCTION

Tactical configurations and Hadamard matrices, studied for many years by
combinatorialists, and the newer subject called errcr-correcting codes, stud-
ied for leas than twenty years, have gome interesting interconnections. The

purpose of this report is to estabiish a number of new results arising there-
from.

Cur main result is the construction (via Theorem 4.2) of several new
5-designs on 24 and 48 points and the determination (Section 5) of their auto-
morphism groups as PSL2(23) and PSL2(47), respectively. A secondary result
(Section 5) is that PSLZ(Q) is the automorphism group of certain quadratic-
residue codes of length ¢+1 for all primes ¢ having (£-1) /2 prime and satisfy-
ing 23 < ¢ <4,079. (For £=23 we use [15] and 2 new 5-design on 24
points; the other cases are an immediate consequence of the Parker and Nikolai
search [22].) We have derived elsewhere [7) the consequence that for ¢ = -1

(mod 12), the Paley-Hadamard matrix of order ¢+l has PSL2(£) as automorphism
group for 2 as above.

The paper furnishes a setting for the two classical 5-designs and their
automorphism groups, the Mathieu groups Mlz and M24, in an infinite class of
designs and groups, the designs coming from the vectors of quedratic-residue
codes and the groups being the automorphism groups of these codes. The codes
are indexed by the prime £, and when ((-1) /2 is a prime greater than 5, a re-

sult of Ito [15] moreover, implies that the group is either PSL2(£) or is 5-fold
transitive.

We also estabiish:
1) The existence of two disjoint 5-decigns of each of the types

found of the smallest "club" size™ (Section 6) and the action
of PSLZ(Q) on each of these collertions.

= .
Some of these results were announced in [4].
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2) The existence of two infinite classes of 3-designs (Theorem
4.1 and Application (3) in Section 4). .

3) The optimality of "almost all" cyclic codes of a given prime
length (Section 2).

4) The nonvanishing of all subdeterminants of (ziJ), where z 1is
a primitive (-th root of 1 and the nonvanishing of all coeffi-
cients of all proper divisors of x* - 1 in characteristic 0
(Section 2).

We place in print the Gleason-Prange theorem, that PSLZ(Q) acts on every

quadratic-residue code (Section 3).

There seem to be few papers which construct designs from linear codes.
Paige {21] found Steiner systems in two codes, although he didn't call his
linear spaces "codes." We pursued in [3] the course he had started on, find-
ing for each Mathieu group M a code with M as automorphism group, for which
the code is a representation-space of smallest possible degree; Paige did
this for M23. We have written other papers on two kinds of Steiner sysvems
[4], [5], [6], all treated by the coding-thesoxy approach presented here.
Perhaps the first explicit conestruction of designs from codes was in Bose's
paper [8] on the corrections between error-correcting codes and confounding
and fractional replication in the design of experiments. Surprisingly, there
do not seem to be any others except a recent Codes - BIBD report [17], al-

though numerous strong implicit connections in the literature likely exist.

In [14] D. R. Hughes considers the problem of constructing t-designs in
relation to the problem of transitively extending groups. His quite differ-
ent methods yieid t-designs seemingly unrelated to those here, except that
the 5-design found there appearz here also, since it is intimately related to

the Mathieu group M, (see Section 6).

Acknowledgement. We are indebted to A.M. Gleason, Eugene Prange, and

Richard Turyn for many interesting discussions concerning this subject. 1In
particulcr, Theorem 3.1, on the automorphism groups of quadratic-residue
codes, was first proved by Gleason and Prange and our proof is an adaptation
of Prange's. Gleason was the first to observe the existence of gaps in the
weight-distribution, a fact crucial to the use of Theorem 4.2. We also thank
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*shn Thompson for pointing out to us that the Parker-Nikolai result implied
that the automorphism group of the (48,24) code in Section 4 had to be small.
Finally, we gratefully acknowledge the help of Nicedemo Ciccia, who wrote the
computer programs which suggested the existeznce of the 8; 5-12-48 design and
which helped determine the orbit structure of PSL, (47) on this design.

Definitions of Coding Terms. A code, a5 defined here in the linear case,

is a pair (A,S), where A is a k-dimensional vector space over a field F, and

S is a finite set of linear functionale from A to F such that they distinguish
the points of A, i.e., %, yeA and xf = yf for all feS implies x = y; this is
equivalent to saying that the functionals span the dual space of A, i.e.,

fgg Ker f=0. (We sometimes want to disallow two functional in S which are
scalar multiples of each other and at other times allow the functionals in

5 to appear with multiplicities.)

If x is in A, the weight of x is defined to be the number of £ in S such
that xf # 0, and the distance between x and y in A is the weight of x-y. Dis-

tance is translation-invariant.

A concrete realization of the code (A,S) is the set of all vectors

(xfl, cees xfn), XeA, obtained from an ordering fl’ ceay fn of S. It is a

subspace of F® = FX ...XF (n times), n being the cardinality of S. n is called
the length of the code. The weight of x is the number of non-0 coordinates in
a concrete realization of the code. This code is called an (n,k) code over F.
The minimum distance d from one code-vector to the rest is the same for each
starting point, so that the spheres of radius [Qél] about rhe code-vectors are

disjoint. 1In the rare case that these spheres exhaust F, the code is called

perfect.

A cyclic (m,k) code is one for which some cencrete realization is invaci-
ant under the permutation of coordinates sending coordinate i to i+l (modulo
n). Such codes can be regarded as ideals in the ring F[x]/(xn-l), where mul-
tiplication by (the residue class of) x 1s the cyclic shift. As such, they
are principal ideals generated by the divisors of x"-1 over F. Thus, if g(x)
divides xn-l, then all the multiples of g(x) in F[x] of degree less than n
constitute a set of representatives of (g(x))/(xn-l). g(x) is called the

generator polynomial of the code. The concrete code as n-tuples over F,
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furtherwore, is given recursively by the complementary divisor of g(x), by
which we mean that if gl(xb g(x) = x%-1, then the code ic the set of all
(ao, ceos an-l)’ aieF, such that

k
12"631“3 by =0 §=0,1, ..., n-1,

where gl(x) = boxk ERRAE bk' The reader who would like to see more discussion

of these points is referred to [23, Chapter 8] or |2, Section v2].

It is scmetimes convenient to construct cyclic codes as follows. Let K
be F(z) where z is a primitive a-th root of 1 over the field F. Set k = [K:F].
Let £ be any non-0 F-linear functional on K as vector space over F. Then de-
fine a set S of n coordinate functions fO’ cees fn_1 as x fi = (xzi)f, xeK,
i=0,1, ..., n-1. Then (K,S) is a cyclic (n,k) code ovver F. This code is
immediately seen to be recursive for the reverse of the minimal polynomial of
2 (i.e., that of z-l)over F, and it is not hard tc orove that the ideal gen-
erator polynomial is the complementary divisor. Tris construction yields only
the irreducible cyclic codes, theose given recursively by irreducible poly-

nomials; but all cyclic codes are direct sums of irreducible ones.

The orthogonal code to a given code is obtained as the subspace of o

orthogonal under the dot product with a given concrete realizatjon of the code.

The orthogonal of a cyclic code is cyclic.

The minimum distance of the code (A,S) over F is unchanged when we ex-

tend the coefficient field F to an overfield L by the temsor product [1].

The minimum non-0 weight in an (n,k) code (A.,S) is the minimum distance
and is equal to n-m+l, where m is the least integer such that every subset of
m coordinate functlons spans S. Since m is necessarily at least k, it follows
that

d<n-k+l, (1)

I1-4
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where d is the minimum distance. This bound has been generalized [11,29] to

k-1[, 1
n> % H——d" {1} (2)
i=0lL ¢
in the case F = GF(q).

The square-root bound for cyclic codes is the following: Suppose x"-1 =

(x-l)gl(x)gz(x) over F, where gl(x) and gz(x) both have degree (n-1)/2. Sup-
pose also that the codes A and B having gl(x) and gz(x), respectively, as
generator polynomials have the same minimum weight d (as we shall see iz often
the case). Furthermore, if the minimum weight vectors, as polynomwizis,

d e d £
o{x) = E;aix i and z:bix I ml(x), are not multiples of x-i, it follows that
i i
n-2 ... 4+ 1. This implies d° >n.
it is sometimes possible to choose fi = -eg {(mod n), and then we get d\d-1)

> n-1.

m(x)m,(x) is a scalar multiple of ol R

If A and B are (n,k) and {n,n-k) codes orthogonal to each other over
GF(q), and Ai’ Bi denote the number of vectors of A, B of weight i, then
MacWilliams has proved [20] that

n-y {n-i Kk-p v n-1i
ZAi )=q ZB,-( ), v=0,1, ..., n. (3)
o N\, 1=0 *\n-p

These MacWilliams identities are basic to our main result, Theorem 4.2.
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PART IIX
SECTION 2

OPTIMAL CODES

Mctivated by the inequality (1), we call an (n,k) code optimal if
d = n-k+l. The (n,1) code {(@, @ ..., d); @ € GF(q)} is optimal, and the
2
main result of this section is that "almost all" cyclic codes of prime length

are optimal.

Let ¢ be prime and consider all the cyclic codes of length ¢ over
GF(¢) = F. Since £ -1= (x—l)ﬂ over F, these codes, considered as ideals
in F[x]/(xﬂ- 1), are the ideals Ai = (x-l)i for i =0, 1, ..., ¢. Thus they
satisfy

() =ADA.D... >4, = (0)
o, 1;é % [

The dimension of Ai is g-i. The minimum weight in Ai is easy to deter-

12 i=1, ..., ¢2-1,
cycled so that the constant term is mot 0, then £'(x) is a vector in A

mine directly: If £(x) is 2 minimum-weight polynomial in A
i-1 with
weight 1 less than that of f(x). Therefore, if di denotes the mininum weight

in a,, we have
i
1= d04< d1 <... <d = £

since we have d0 = 1 and dﬂ-l = f by inspection. Therefore d

l, ..., ¢-1. We have proved

i = i+l for 1 = 0,

LEMMA. ‘ihe cyclic (£,k) codes of prime length ¢ over GF({) are
all optimal.

THEOREM 2.1. Let ¢ be prime and let z be a primitive ¢-th root of 1 over
the rational field Q. Let E be any subfieid of K = Q{z) and let A be a cyclic
(2,k) code over E. Then the minimum weight of A is £-k+l.

II-7
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Proof. The module consisting of all code-vectors of A with coordinates
in 0, the integers of E, has the same minimum weight that A has. The ideeal
0¢ is a power of a principal prime ideal, of O, of degree 1. If we reduce by
the residue-class map of this prime ideal we obtain a cyclic (£,k) code over
GF(¢), which, by our Lemma, has minimum weight ¢-k+l. If d denctes the mini-
mua weight of A, then d < £-k+l, in general; and we have just proved d > g-k+l,
since there are minimum weight code-vectors in the module not all coordinates
of which are in the principal prime ideal.

COROLLARY. Any proper divisor of xi- 1 over Q(z) has all coefficients

non~0.

REMARKS. 1. Enlarging the base field E preserves the optimality in view

of the result in Section 1 on tensor products.

2. This theorem furnishes a simple indirect procf of the fol-
lowing: Let r = [K:E]. Then every set of r distinct powers of z is lirearly
independent over E. We can even conclude from the present theorem that every

subdeterminant of the ¢ x ¢ detexminant (ziJ) is _nonvanishing. We do this by

first considering an arbitrary (£,k) cyclic code over K given recursively by

e e, \
(x-z 1) ces (x-z k}, 0 5;ei < £, the ei's distinct modulo ¢£. This code con-
sists of the space Kx ... xK (k times) and the ccordinate functions fj defined

by

gt ®)]
‘(cl, ceey ck)fj = ¢,z + .o topz

Cp vevs ckeK, j=0,1, ..., £-1. That is, it is the direct sum of the codes

e 2ei (!.Z--l)ei
) for 1 =1, ..., k. By Theorem 2.1 and the

(ci,ciz i,ciz s eees €42
preceding remark, this code has optimal minimum weight. Therefore every set
of k cocrdinate functions is linearly independent over K, But if for some k
choices cf j, say tl’ ceer s the determinant 'zeitj| vanished, then it would

follow that ft ) eees ft were linearly dependent over K.
1 k

I1-8
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THEOREM 2.2. Let ¢ be a prime. Then for all but a finlte number of
primes p, each cyclic code of length ¢ over GF(pi) is optimal (for all i).

Proof. A cyclic (£,k) code over GF(q) is optimal if and only if ever

k X k determinant in ((Jei), for i=1, ...k, and j=0, ..., ¢-1, is nonvanish-

e e
ing, where the code is defined recursively by (x-§ 1)...(x-§ k). Such deter-

mirants are the images under residue-class maps of the nonvanishing global
jei)

therefore, dividible by only a finite number of primes. QED.

determinants in (z These determinants are non-0 integers in K and are,

We have proved the following result for the linear case [1], and it has
also been proved more generally, in [27] and implicitly in [26], which note

a connection with latin squares. We omit the proof here.

THEOREM 2.3. If an (n,k) code over GF(q) is optimal, then q-1 > min
{k,n-k}. Furthermore, if 1 <k < n-i (i.e., if this minimum is at least 2),
then q-1 > maxfk,n-k}.

We note that the conclusion of this Thecrem is not sufficient to give an
optimal code. For example, one could extend the coefficient-field of any non-

optimal code.

II-9
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PART II

SECTION 3
ON AUTOMORPHISM GROUPS OF CODES

In this section we prove a basic result due to Gleason and Prange on the
automorphism group of an extended quadratic-residue code, to be defined. We

will then find some corollaries on weights in codes.

An invariance of a code {A,S) is a linear transformation ¢ of A onto A
such that for each f in S, ¢f = gg for some scalar o« (depending on f) and
some g in S. In terms of the concrete realization of the code, ¢ is a mono-
mial matrix which preserves the code-space. An invariance preserves the
weight of each code-vector. For example, the cyclic shift is am invariance

of a cyclic code.

The automorphism group of the code is the group of all invariances modulo

scalar multiplications. In this report we are mainly concermed with the per-
mutation aspects of the automorphism group, so we remark that the mapping
which sends each invariance to its underlying permutation is a homomorphism
of the invariance group which sends the scalar multiplications to the identity
permutation; therefore, we shall often speak of this or that permutation

group as being "contained in" the automorphism group of the code.

We now prove that the projective unimodular group PSLZ(E) is "contained
in" the automorphism group of the extended quadratic-residue codes, defined

below.

Let £ be an odd prime and let z be a primitive (-th root of unity over
the field Q of rational numbers. Let K = Q(z) be the cyclotomic field of all
{-th roots of 1 over Q. Then K/Q is a cyclic extension of degree (-1, and K
contains a unique subfield L of degree 2 over Q. L is, in fact, generated by
n = Z;zr, the sum being taken over the quadratic residues r modulo ¢, since
7 = TK/L(Z). The irreducible polynomial for 1 over Q is x2+ x + (1 4+ 0)/4,
where the sign is chosen to make (1 + £)/4 an integer. Thus‘L = Q(m),

“L

and the sign is that in ¢ = + 1 (mod 4). The polynomial L 1,

II-11
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which is irreducible over Q, splits into gl(x) gz(x),irreducibles of degree

(€-1)/2 over L. There are cyclic (£,(2+1)/2) codes over L denoted as follows:

A, recursive for gl(x), generated as ideal by (x-1) gz(x)a
A+, recursive for (x-1) gl(x), generated as ideal by gz(x); A 1.A+.

B and BT are defined by interchanging gl(x) and gz(x) above. These are

called global quadratic-residue codes, since

1) = TLbes), g0 = T focs

where R and R' are, respectively, the quadratic residues and nonresidues mod-
ulo £.

A and B have the same weight distributions (so do A% and B+), because
the permutation of coordinates sending i to si for each i =0, 1, ..., (-1

for any fixed quadratic nonresidue s modulo ¢ interchanges the two codes.

As Gleason and Prange [9], [25] observed in the finite case, these codes
can be embedded in spaces of ¢+l dimensions in a nice way which allows the
projective unimodular group to act. We now carry over Prarge's construction

to the present global situation.

We first embed the codes. The coordinate functions for At are the
fj: L X K - L defined by

(co,c)fi =cq + TK/L(czi) coeL, ceK,

i=0,1, ..., 2-1. Similarly for B, with z replaced by z° for some fixed
seR', A is the subcode of A% given by restricting the fi to 0 X K, i.e., by
setting ¢y = 0. A will embed as a subcode of A* so we define the embedding

for A+. We will introduce a new coordinate function

2-21
f =y £
© Yol
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for some y€L to be chosen so that the new code, called Aw’ will »e orthegonal

ot

to itself or to the corresponding new code B, for B . A00 andé Qw are called

extended quadratic-residue codes,

Observe that (co,c)ﬁw = yﬂco; letting fi and ﬁ; be the coordinate func-
tions for B with §$ = -y Z;fi, we get (cO,C)ﬁé = -yﬁco.

A is the subcode of AOo with "infinite" coordinate equal to 0.

Orthogonaiity depends on the congruence of £ modulo 4. The results are

summarized here before embedding:

¢ = -1 (mod 4) ¢ = +1 (mod 4)
Yot At =8t
g" = B* - = at

Thus, after embedding, we have

>
o
[

= -1 (mod 4)

(v -]
-
[l

= +1 (mod 4)

provided only that <1, 0 > = (1, 1, ..., 1; £y) is orthogonal to itself or

to the corresponding vector in Qw’ which is to say

1+ 272

i
(=]
~

"

-1 (mod 4)

(1)

1 - 0y?

]
o
1SS

1)

£ 41 (mod 4)

Thus y is determined up to sign as 1/VY + £, which is in L as it should be.

The invariance group of ﬁw obviously contains the cyclic shift 7 on the
"finite" fi(T fixes gn); similarly for B . It also contains the Galois auto-
morphisms P which send fi to fri’ i=90, ..., £-1; reR; these also fix qﬁ.

II-13

o o e v e - ——
>




§-7167-1

We now prove that a certain interchange of f0 and ﬁw is an invariance ¢
of éw; alsc, the permutation parts of o, Ti, and p. generate the (one-dimen-
sional) prcjective unimodular group over GF({¢). The same will hold for B
(The projective unimodular group, PSL2(2), is the group of all 2 X 2 matrices
over GF(g) with determinent 1 modulo the center(% i g) . Elements of this

group can be factored as follows:

AR I N

provided ¢ # 0.}

We define 0 as follows: As permutation on the coordinate functions ¢
sends fi to f-l/i (subscripts modulo £), interchanging fo and ﬁw' Signg are
introduced via the Legendre symbol; thus of; = € f-l/i’ vhere €, = (i/¢) i=1,

..+, #-1. We shall choose €, and € later, as + 1. Thus

@0, cees @) 33 gm)c = @0 B wevr € B 1155 eees € ao)

We must prove that with proper choice of €0 and €, O maps A°° onto itself and

also that this ¢ maps B00 onto itself.

Case 1: 2 = -1 {mcd 4). Since A°° =1,<1, 0 >(E)A, it suffices to show
<1,0> o ¢ Aoo and Ao C Aw. Thus <1,0> 0 = (1,1, ..., 1;8y)0 = (eoiy,

. A\, A
€19 «res €5 and therefore

<1, 0> d® = (€0 “1s +eos =13 €ge D)

since € e-l/i = (-1/2) = -1. This vector obviously cannot be in Aoo unless
eoe = -1, Thus we choose
0
€,= =€g = -€ (2)

II-14
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Now <1, 0 > 0 is in Aoo if and only if it annihilates ﬁw uader the usual dot-

¢-2
product. This means that we must find €yf + Z;ei- €vf = 0 as is indeed the
1

case; and also we need <1, 0> 0 | <0, ¢ > for all ceK.
also heve

That is, wc must

(eﬁy, ey ei’ ees} -e) . fr(c), ceny T(czi), e} 0) =0,

or

ely T(c) + szT(czr) - sg‘h'T 2®) = ety T(c) + (5-n")T(c) = 0,

where 71 = Z:zr(reR) and ' = Z;zs(seR‘), and we make use of the L-linearity

of T, which denotes the trace from K to L here. Thus 0 maps AOo onto Aw if

and only if € and y are chosen so that
ely+n -n' =20 (3)

Now from (1), (yﬂ)z = -, so £y = + -, aud 7-n' is also eithex V-T or

-/ -, su ¢ nust be taken as +l. The choice depends on the choice of notation

for gl(x) and gz(x). We chose z to be a root of g

1(x); thus # is the negative
(2-3)/2

of the coefficient of x in gl(x). Thus the choice of notation deter-

mines the sign of €y, and we are free to choose € =1 or ¢ = -1.

£ =

We now show that <0, ¢ >0 | A for all ceK. Now <0, ¢ >0 =

(0, cees eiT(cz—lli), vees -eT(c)) = (ao, Ays eee %n) is in A00 if and

. £-1
. . i, . ,
only if the polynomial Z:aix is a multiple of gl(x), since vy Z}ai =

o
y(n'-n)T(c) = €fy“T(c) = -€T(c), from (2; and (1). Now gl(x) is irreducible
and has z as a root; therefore <0, ¢ >0 € A00 if and only if the quantity
D(c) = 0 for zll ceX, where D(c¢c) is defined as

2-1 o
D(c) = E GiT(cz-l/l) z*

I7-15
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If 7 is any automorphism of K/Q, such that zT = zt, then

o) = el

as one can easily verify using T(c)” = ’i‘(cT). Since D is linear and z, 22,

... spen K/L, it suffices to prove D{z) = 0. Now,

-1 oy .
D{z) = Ze.’l‘(zl-lll)zl
i
£-1 oy s
- Zei er(].-l/l)zl
i=l 7 reR
- .Zei zr:-r/:i. + i
i,r

This is a polynomial in z of degree at most £-1 with integral cocefficients.
For each k =0, 1, ..., £-1 we find the coefficient of zk as Zzei where i
r,i
runs over the solutions of r-r/i + 1 = k (mod £). These i are the same as
those for which i2 + (r-k)i - r 2 0 (mod (). The polynomial x2 + (r-k)x - r
never has double roots in GF(€) since the constant term is in R!. Thus for
each value of k and r there are two distinct roots i and i'; one is in R, the
other in R'. Thus the polynomial in z is identically 0. This completes the
proof that ¢ maps Am onto itself.

PROPOSITION 3.1. If we embed A with ¥ and B with -y, then there iz a
choice of € = 1, given in (3}, such that ¢ maps each of Aw and Boo onto itself.
2+1

CAUTION. We have defined ¢ monomially on L""~, L X K is embed in

(+1

L in distinct ways as Ac0 and Beo' The linear transformations of L X K in-

duced by G are distinct.
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Case 2. € = +1 (mod 4). We must use y to embed A and -y to embed B in

1. We define ¢ as before and

order to make Q; %n in this case, where Eyz

find that <1, 0 > e A, if and only if € 1. We take

050
€ =€,= €_=+1 (4)

Now <1, 0 > 0 is in ﬁn if <1, 0 > o annihilates B and the vector
<1, 0 >; the former happens °‘f and only if, as before,

eyt - (n-n') = 0 (5)

Proceeding as in Case 1 we can verify that y and € are related by (5).

If we ask whether this same 0 maps %w onto itself, then the part relating
to < 1, 0 > goes through, since in (5) we replace y by -y and interchange
7 and '. The rest goes through too; the part involving D{c) is formally the

same. We have proved

PROPOSITION 3.2. If £ = +1 (mod 4) and we use y to embed A, -y to embed
B, then Aw and qn are orthogonal to each other and 0 maps each onto itself.

€ and y are chosen by (4) and (5).

We are equally interested in the finite codes obtained from A°o and %w
by mapping the integral submodules of these via the residue-~class maps of

primes in L lying over the rational prime p. These codes we denote by Ap

(or Bp); they are finite, extended quadratic residue codes of type ((+!,
(€+1)/2) over GF(q), where q = p or p2 depending on whether p is eor is not a
quadratic residue modulo €.

241)
2 )

{
In the rest of the report we often refer for short to "the" {e+1,
code over GF(p) (or p2), by which we mean the code Ap or Bp just defined;

because of their equivalence under a monomial transformation, it usually

does not matter which one we consider.

With Propositions 3.1 and 3.2 we have essentially proved

II-17
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THEOREM 3.1. The automorphism groups of the two extended quadratic-
residue codes A00 and Qn each contains a subgroup of which the permutation part

is precisely PSLz(R). The same statement holds for the finite codes Ap and Bp.

Proof. We have proved this in the global case. Formally the same proof
works in the finite case; or one can project the group generated by the invar-
iances P T, and 0 defined globally above (the permutations of which generate
PSLz(G) by the residue-class map, noting that all scalars involved in the

definitions of these invariances are +l.

COROLLARY. The minimum distance in A¥ is 1 less than that in A; the same
for the corresponding finite codes over any GF(q) for which (q/f) = +1. In

particular, the square-root bound holds for these codes.

A. M. Gleason has also proved Theorem 3.1 by means of induced representa-
tions, and M. Hall, Jr., has proved essentially this result, but stated for

Paley-Hadamard matrices [12, Theorem 2.1] for the case £ = -1 (mod 4).

When £ = -1 (mod 4) we can use the self-orthogonality of A°° and Qw to
get some results on the weight-distributions of these codes over GF{2) and
GF(3).

THEOREM 3.2 Let £ = -1 (mod 4). If (2/¢) = +1, then Az and B2 have all
weights divisible by 4. If (3/f) = +1, then A3 and B3 have all weights divi-
sible by 3.

Proof. We first remark that the set of cyclic shifts of any vector
(co,c) in A% spans the entire code At if o # 0. This is true because A% is
the direct sum of the irreducible cyclic code A and the "all-1" code
{a(l, veey 1) aeL}. This result therefore holds for A00 and hence for the
codes Ap'

When £ = 8N-1, 2 is in R, the set of quadratic-residues modulo £, and the
weight-4N vector a = (ai) with a;= 1 for ieR and i = w, c.ad with a, = 0 other-
wise, is in AZ’ Since Az is self-orthogonal, any two code-vectors must have
an even number of places with 1's in common; this implies that any sum of
shifts of a has weight divisible by 4. (A.M. Gleason was the first to observe
this.)

II-18
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In the GF(3) case the matter is very simple. Each vector

(ao, evs 8y 75 %w) is in particular orthogonal to itself, so

But the non-0 a's are +1, so their number must be a multiple of 3.

COROLLARY. The extended (24,12) quadratic-residue code over GF(3) has

minimum weight 9.

Proof. It is greater than 6 by the square-root bound and it is less than
12 by (2) of Section 1.

It is also true that the extended quadratic-residue codes over GF(4) for
{ = 8N+5 have all weights even. Moreover, 2, 3, and 4 are the only values of
q for which extended quadratic-residue codes can have "regular” gaps in their
weight distributions [30]; for q = 2 one might have all weights even or multi-
ples of 4, for q = 3 all weights may be multiples of 3, and for q = 4 all

weights may be even; but no larger divisors are possible.

The special cases of the above for £ =23, g =2 and £ = 11, q = 3 are
closely related to the Mathieu groups. For proofs that in the first case, the
automorphism group is M24, and in the second case, M12’ the reader should
consult [3].
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PART 11

SECTION 4

COMBINATORIAL DESIGNS ASSOCIATED WITH CERTAIN CYCLIC CODES

A tactical configuration of type A; t-d-n, or t-design, is a collection
QZ of d-subsets® of a given n-set S such that every t-subset of S is contained
in precisely A members of @ Here A is a positive integer; and 0 <t <d <n,
where if any equality obtains we call the design trivial. Balanced incomplete

block designs are 2-designs with restrictions on d and n; where A = 1 the

t-design is called a Steiner system; Steiner triple systems are 1; 2-3-n tac-

tical configurations; and projective spaces contain several 2-designs, for ex-

ample. Also, (v,k,\) configurations are special cases of A; 2-k-v designs.

The automorphism group of a t~design is the group of all permutations of
S which map each member of{%ﬁonto a member of Qﬂ.

For convenience we oftern call the members of Qaclubs or d-clubs. A

t-design is automatically a t'-design for t' < t. Also, the clubs of a given

A; t-d-n design containing a fixed point P of S form a (t-1)-design on S-P
vhen P is removed from these clubs. The new parameters are A; (t-1) — (d-1)
~ (n-1).

No one has discovered nontriviai t-designs for t larger than 5. Two es-
sentially unique 5-designs, the Steiner systems associated with the Mathieu
group M12 and M24, have been known for many years, however; and recently [3]
[14] two disjoint Steiner systems of these types were constructed, meaning
that 2; 5-6-12 and 2; 5-8-24 designs exist (see also Section 6). Aside from
these and such designs obtainable as certain orbits of M12 and M24 (see below),
which have been at least implicitly known for a long time, no other nontrivial
5-designs were known until recently. The main purpose of this section is to
derive all of the above designs, except perhaps for some of the "orbit-designs"
just mentioned. and several new 5-designs which are not "orbit-designs," by
means of coding theory. Another purpose is to exhibit two infinite classes
of 3-designs (Theorem 4.1 and Application (3)).

*
An x-set is a set of cardinality x.
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Such designs can arise from codes as follows. From a given code consider
the set of all vectors of a certain weight w. For each such vector consider
the set D of all coordinate places at which the vector is not 0. D is thus
said to hold a code-vector of weight w. For certain codes and certain values
of w, the collection of all such sets D forms a t-design for t as high as 5.
For example, we showed this for t = 5 for the minimum-weight vectors of the
finite extended quadratic-residue codes of type (24,12) over GF(2) and (12,6)
over GF(3) by direct special methods in [3]. 1Ia different terms this was also
done for the (23,12) and (11,6) codes for t = 4 by Paige [21]. We shall derive

these and all the other cases as applications of Theorem 4.2 below.
We begin with the following simple remark.

PROPOSITION. A code is optimal if and only if the minimal-weight vectors

yield a trivial design.

Proof. Suppose it is an (n,k) code of minimum weight d, such that every
d-subset of coordinate places holds a code-vector. We wish to prove that
d = n-k+l. Consider the subcode C spanned by the minimum-weight vectors:
the orthogonal code to C has every subset of d coordinate-functions linearly
dependent, but no subset of size d-1 with this property; it therefore has di-
mension d-1, so that C has dimension n - (d-1) < k. The reverse inequality
holds in general, by (1) of Section 2.

Conversely, if d = n-k+l, then every k coordinate functions are linearly
independent. Given a d-subset of coordinate functions, we consider the
n-d = k-1 functions of the complementary subset. The intersection of the ker-

nels of these is non-0; a non-0 vector in it must have weight d. QED.

The following result is an immediate consequence cf Theorem 3.1 and the
fact that the PSLZ(Q) is 2-fold transitive, in general, and 3-set transitive
when ¢ = 4N-1. Also, PGL,({) is 3-fold transitive and acts on A UB_.

THEOREM 4.1. The finite extended quadratic-residue codes of length £+1
yirld 2-designs for all { and 3-designs when { = -1(mod 4), from every weight-
class of code-vectors. Also, in all cases the union of Ap and Bp yields 3-de-

signs from each weight class.
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Remark. In view of the proposition above and Theorem 2.3, we have that

the minimum weight vectors in Ap always yield a nontrivial design (on which

PSL,( () acts) whenever g-1 <i£%l. {Recall that q = p or p2 depending on
whether p is a quadratic residue modulo ¢ or not.) In particular then, A2

yields a nontrivial design whenever ¢ > 5 and, of course, d §:£§l»

a
d(d-1) > ¢-1. The determination of d seems to be, in general, a difficult
problem.

Let A and B be linear orthogonal (n,k) and (n,n-k) codes over GF{q) with

minimum weights d and e. Let t be an integer less than d. Let v, be the

v + (q-2)
largest integer satisfying v, '{‘Q—E:i___] < d, and v the largest integer
w (q-2)

'——E:i—-—] < e, where, if q = 2, we take v, =W, = n. (Such

satisfying LA

a restriction ensures that two vectors of A with weight at most v, having

their non-0 coordinates in the same places must be scalar multiples of each
other.)

THEOREM 4.2. Suppose that the number of non-0 weights of B which are
less thar or equal to n-t is itself less than or equal to d-t. Then, for each
weight v with d §:v §:vo, the vectors of weight v in A yield a t-design, and
for each weight w with e g:w g:Min{n-t,wc}, the vectors of weight w in B yield

& t-design.

Before proving the above result we remark that for B we will in fact
show that for each weight w, with e <w < Min {n-t,wo}, the vectors of weight
w yield blocks the complements of which form a t-design. We will need the

following combinatorial

LEMMA. Suppose (S,gﬂ) is a t-design. Then, if T and T' are two t-sub-
<
k =

A

sets of S, and k an integer satisfying 0 t, we have that

|{pe & [ont| = k}l . I{Degb;|nnr'| - k}l.

That is, the number of subsets in Qﬁ striking a given t-subset precisely K
times is independent of the chosen t-subset,

I1-23
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Proof. For k=t the assertion is simply the condition that (S,Qﬂ; is a
t-design. Now we use induction downwards observing that for KC T, |K| = k,

we have that

n~k .-
x( )
|{De£ﬁ;KgD}| = ——%E%z = A
)

where (S{JD) has parameters A; t-d-n, and hence that

t
[{xD); ke, kTR = k}l = (k)ak .
Then an inclusion-exclusion argument yields the result.
COROLLARY. The complement of a t-design is a t-design.

(Here, if (S,Qﬁ) is a t-design, then its complement is (S,{S-D;Dsgﬂ}).
Of course, if n~d <t it is trivially so. Complementary t-designs have

parameters A; t-d-n and A'; t-(n-d)-n, wvhere N = A(n;d);(g)'

Proof of the Theorem. JIf T is a coordinate set with |T| = t we denote

by AT the code of length n-t obtained by neglecting the coordinates in T. We
denote by B01‘>T the code of length n-t obtained from the vectors in B which
have 0's at the coordinates in T by neglecting those coordinates. Clearly,
AT_L_BoéT. Since every n-d+l coordinate functionals of A span and t < d, AT
is an (n-t,k) code. Since the vectors of A are the relations on the func-
tionals of B and t < d, the functionals corresponding to the coordinates in T
0T is an (n-t,n-k-t) code. Thus, AT and BOéT

are orthogonal. Let 0 <'vl <v2 <... <Zvd_t §:n-t be the possible non-0

are linearly independent and B

weights less than or equal to n-t appearing ip B. Then the only non-0 weights

2
BO T

appearing in are among Vi, ..., Vg .. The minimum weight in AT is at

least d-t,
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The MacWilliams relations for AT and BOQT determine the number of vectors

of each of these weights uniquely in terms of n, t, q, and k via d-t equations

2: n-£-j n-t-k-p/n-t n-t
- Cu a0 ()
AR TR PR i u

p=0,1, ..., d-t-1, since the determinant of the coefficients is essentlally
Vandermonde. Since the weight distribution alone of a code deterrines that
of the orthogonal code, again from MacWilliams [20], the weight distributions

of AT and BOpT are independent of the particular t-subset, T, chosen.

We now turn to the assertion concerning the t-~designs which B yields.
Suppose v is a weight in B satisfying v §:w0, v §:n-t. If b and b' are two
vectors of B of weight v with their non-0 coordinates ac the same coordinate
set, then, since v é:wo, b' is a scalar multiple of b. Consider the collec-
tion (?L of coordinate v-subsets holding vectors of weight v in B. Let (5t
be the set of complements. By the Corollary to the Lemma, to show that (g;
is a t-design, it is enough to show that ' is. But, for a given t-set T,
the gugbar of subsets in (5” containing T is E%T times the number of vectors
in B~

t-subset, T, is chosen.

of weight v, and this number, by the above, is iadependent of which

The similar assertion for A is a bit more complicated to prove and we
must apply the full Lemma. We start with w = d, which certainly satisfies
W §'v0. As befure, any two vectors of A of weight w held by the same coordi-
nate~-set are scalar multiples of one another. Let ( be the collection of
coordinate w-subsets holding vectors of weight w in A The number of subsecs
in QD containing a given t-subset T is alT times the number of vectors of
weight d-t in A and this, again, is independent of which t-subset, T, is
chosen. We proceed by induction. So suppose we know the assertion of the
theorem for w' < w where w §:.0. With Qﬂw as before, we know that the number
of subsets in QZL containing a given t-subset, T, is E%T times the number of
vectors in AT of weight w-t which come from vectors of weight w in A. Now,

the total number of vectors of weight w-t in al is independent of T and it
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follows immediately from the Lemma and the induction assumption that the num-
T

ber of vectors of weight w-t in A" coming from vectors of weight less than w

in A is indeperdent of T. Thus, QZ; ylelds a t-design. This concludes the

proof of the Theorem.

Applications of the Theorem. (1) Suppose A is a perfect code over GF(q)

with minimum weight d. Then d is necessarily odd and the numter of non-0
weights in its orthogonal complement is at most éél [10,18]. Thus, we can
d+l

take t = =~ and the Theorem y‘elds t-designs. C£.[6,Theorem 1j.

MacWilliams [19] has shown that a necessary and sufficient condition for
A to be perfect is that its orthogonal complement have precisely (d-1) /2 non-0
weights. Our methods yield part of this result for GF(2), namely, that a
perfect linear code over GF(2) has at least (d-1)/2 distinct non-0 weights in
its orthogonal code: Let d = 2e+l. If there were fewer than e weights, the
Theorem would yield an (e+2) -design from the minimum-weight vectors of the
perfect code. In general there are (q-l)e+1(e:1»«efl)such vectors in the code,
because the parameters of the (e+l)-design are known (see [6]); this means
that for the (e+2)-design A would be (q-l)e e/(n-e-1). When q = 2, this can-
not be an integer unless n = d, implying that the code is {(0 cee 0),
(L 1--- 1)}, which does have exactly e distinct non-0 weights in its orthog-
onal code and which yields a trivial 1; t-n-n design for all t. This proof
cannot work in general, however, because the perfect (11,6) code over GF(3)
(see Section 4) having d = 5 yields a 3-design by the Theorem, but also yields
in fact a 4-design, a 1; 4-5-11 Steiner system.

(2) We now derive well-known 5-designs and several new 5-designs by ap-

plying Theorem 4.2 to certain extended quadratic-residue codes.

a) 5-designs on 12 points. Consider the (12,6) code over GF(3). This
code is self-orthogonal and has vectors of weights 0, 6, 9, and 12 only. Thus

for t = 5 there is only one non-0 weight less than 7 = 12-5, and d-t = 6-5 = 1.
Therefore, the Theorem yields a X; 5-6-12 design as the 6-subsets of coordi-
rate-places holding code-vectors. The weight-distribution shows now that

A = 1, because there are 4.66 weight-6 vectors and, for a %; t-d-n design ob-
n) N

¢ = ———(d), where N is the number of code-vec-
s g-1\t

tained in this way, we have A (
tors of weight d.
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For this code the weight-9 vectors also yield a design, but it is the
trivial design since all 9-subsets arise in this way. This follows simply
from the way PSL2(11) acts.

The 1; 5-6-12 design is the well-known Steiner system having the Mathieu
group M12 as automorphsim group; M12 is also the automorphism group of the
code [3, Section 4].

b) 5 designs on 24 points. Consider first the (24,12) code over GF(2).
This agein is self-orthogonal, with non-~0 weights 8, 12, 16, and 24. With
t = 5 we find three weights less than or equal to 24-5 = 19 and d-t = 3.

Therefore, since q = 2 we have 5-designs of 8-, 12-, and 16-subsets as follows:

1; 5 -8 - 24
48; 5 - 12 - 24
78; 5 - 16 - 24

These A's are calculated from the weight-distribution, which appears in

[23, p. 70]. Note that the first and third of these are complementary designs
and the second of these is self-complementary, because of the presence of the
all-1 vector in the code. Again, the 1; 5-8-24 design is the well-known
Steiner system having the Mathieu group M24 as automorphism group, and the
code also has M24 as automorphism group [3, Section 5].

Secondly, consider the (24,12) code over GF(3). It is self-orthogonal
with non-0 weights 9, 12, 15, 18, 21, and 24. TFor t = 5 there are four
weights below 19 and d-t = 4. Thus we get some new 5-designs from the 9-,
12-, and 15-subsets holding code-vectors, namely, the following:

6; 5-9 -24

©+3%; 5 -12 - 24

22.3.5.11.13; 5 - 15 - 24

The first and third of these are not complementary, but we deo not know whether

the second design is self-complementary. The automorphism group of the 6;
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5-9-24 design is not H24 but PSL2 (23) --hence the same for the code--az fact

which will be proved later.

c) 5-designs cn 48 points. The (48,24) code over GF(2) has 8 non-0
weights: 12, 16, 20, 24, 23, 32, 35, and 48. It is self-oxthogonal and

d = 12. Thus again d-5 is the number of weights less than or equal to 48-5,

so the Theorem applies. From the weight-:is_. ‘hution we find the following

parameters for the resulting designs:

23.

t4

12 - 48

($)]
!

3-5-7-13; 5 - 18 - 48

4

2%.7-17-19; 20 - 48

(3]}
|

3

2%.3-5°7-227; 24 - 48

(31]
[}

The code-vectors of weights 28, 32, and 36 form the S-designs complewentary
to the first three of these. The last is self-ccmplementary. We shall prove
later that the automorphism group of each of these designs and of the (48,24)
code is PSL2(47).

There are more 5-designs obtainable as the orbits of subsets of sets on
which 5-foid trzansitive groups act; but, as we have said, some of the above
5-desi,n. are not obtainable in this way. As an example of such a 5-design,
consider a 12-subset U of the 24 points on which H24 acts such that the sta-
bility subgroup in M24 of U is Ml2' Then the orbit of U under M24 is a 5-de-
sign on 24 points consisting of |M24i%1M12| 12-subsets; it is a 48; 5-12-24

design with M24 as automorphism group.

(3) Finally, we apply the theorem to the construction of 3-designs.

a) 3-designs on 14 points. Consider the (14,7) quadratic-residue code

over GF(4). Here Theorem 4.1 tells us only that each weight class yields
2-designs; Theorem 4.2, however, produces 3-designs. The non-0 weights that
appear are 6, 8, 12, 14. Since d-3 = 6-3 = 3 and there are 3 non-0 weights
less than or equal to 14-3 = 11, we obtain 3-designs from the weight 6 vectors

and the weight 8 vectors. The parameters are
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5, 3 ~6 - 14

2.3%.7; 3-8-14

b) 3-designs on Zk points, k odd. Finding designs and their parameters

via Theorom 4.2 depends on knowing the weight distributions of the code and

its orthogonal. Prange and Pless [24] have computed these distributions for
all the cyclic codes of length 31. For example, several (31,21) cyclic codes
over GF(2) yield the following designs and their complements (obtained by in-

troducing a new coordinate equal the sum of all the others):

A; 3 ~d- 32

4;
119;

1,464; 10
10,120; 12
32,760; 14
68,187; 16

(plus the complements of these).
The orthogonal code yields these designs:
2 -44 ; 3 -12 - 32
2 - 138; 3 - 16 - 32
2 -1 ; 3 -20 - 32
The designs of 16-clubs in beth collections are self-complementary, and
the designs of 12-clubs and 20-clubs from the orthogonal code are complements

of each other. Also, the last three designs are each the union of two dis-

joint 2-designs.

These designs on 32 points are the first of an infinite class of 3-de-

signs arising from 2 class of cyclic codes recently investigated by G. Solomon

[28] and T. Kasami [16]. For each odd k, there are several (Zk- 1,2k) cyclic
codes with the following (non-0) weight-distribution:

11-26
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weight w N = number of coude-vectors
gk-1 (2 1) (2%°1+ 1)

k-1 . o(k-1)/2 (k. 1) (k2. o(k-3) /2)
gkl _ o(k-1) /2 (25 1) (k-2 2(k-3)72)

One can show that the orthogonal code to any of these codes has minimum dis-
tance 5 (for it must be odd and at least 5; if 7 the code would be perfect!)
Using the MacWilliams relations one could calculate the weight-distribution
of the orthogonal and find the A's for the 3-designs cbtained by introducing,
as above, the new coordinate. For the (2k,2k+1) codes, the designs are of
type ZNW; 3-w-2k, with w and Nw as above.

(4) Examples for small n. Some 2- and 3-designs obtained from extended

quadratic-residue codes are presented in the following table, along with the
weight-distributions of the codes. Nw stands for the number of code-vectors
of weight w in the indicated (n,n/2) code over GF(q); the entry »; t in column

w means that the code-vectors of weight w for that code yield a A; t-w-n de-

sign.

W= 6 7 8 9 10 11 12 13 14
Nw 330 395 495 1320 990 396 168 n q
Ajt 10;3 21;3 42;3 12 4
NW 440 528 2640 2640 5544 2640 1192 12 5
At 10;3 21;3
Nw 182 156 364 364 546 364 182 0 28 14 3
Ast 15;2 18;2 56;2 172;2 135;2 110;2 trivial
Nw 102 153 153 102
At 10;2 28;2 18 2
aet 5;3 21;3

*These 3-designs are obtained from the union of the two disjoint quadratic-
residue codes, on which the 3-set transitive PGL2(17) acts.
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Other codes which might repay investigation are the {48,24) and (60,30),
both over GF(3). 1In order for Theorem 4.2 to produce a 5-design, the minimum
distances would have to be 15 and 18, respectively. The {72,36) code over
GF(3) has a vector of weight 18, so the Theorem gives no information on that
case; similarly, =cmputations by Prange rule out the (£+1,(¢+1) /2) codes over
GF(2) for 47 < £ <2088 TFor a 5-design over GF(2), d must be greater than
£/6, an unlikely result for large ¢.
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PART II

SECTION 5

AUTOMORPHISM GROUPS OF QUADRATIC-RESIDUE CODES AND 5-DESIGNS

Let ¢ be an odd prime, p a prime distinct from {, and A and B the two finite

(f+1, ﬁ%l) extended quadratic-residue codes over €¥(q) defined in Section 3,
where q = p or p depending on whether or not p is a quadratic residue modulo
. Let G be the automorphism group of A. We know that PSLZ(E) is "contained
in" G and that equality does not always obtain. This section will establish

equality in certain cases.

We know, in general, that PGL2(£) is not "contained in" G, since any ele-

ment of PGLZ(B) not in PSL2(E) will interchange A and B.

Let Gao be the stability group of o, i.e., G00 = {oeG; o(w) = w}. Qn is
a transitive permutation group on { letters; it contains the permutations of
the form x + axi+b where aeGF(C)x is a quadratic residue and b is an arbitrary
element of GF(f). Call the group of all such permutations H. Then G = PSL2(£)
if and only if G°0 = H. Moreover, the intersection of G“)with the full ax+b
group is always H since GﬂPcLz(c) = PSL,(0).

Now, given any transitive permutation group on ( letters, any nontrivial

normal subgroup is also transitive,

We shall also need the result that the subgroup H defined above has the
group of all 0:x »~ ax+b, for all a€GF(C)x and all beGF(({) as its normalizer
in the symmetric group on { letters. One proves this by examining ﬁ-l Z 7,
where 7 is in the normalizer and #(0) = 0, #(l) = 1, and Z in H sends x to

x+1.

It follows that a permutation group on { letters which contains H but
not the full "ax+b" group defined above is solvablas if aand only if it equals
H. To see this one looks at a composition series of the given group, K say,
K = Ko:DK1:D'-’:DKn:3{e}. Now K is a simple transitive Abelian group on £
letters, hence cyclic of order {. It is therefore permutation-isomorphic to

the group generated by Z above. Since < Z > is characteristic in the ax+b
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group and K.n is normal in Kn-l’ the latter is isomorphic to a subgroup of the
ax+b group. By induction so is K. Since K D H either K = H or (K:H) = 2
and K is the full ax+b group, a case ruled out by hypothesis. We now have

the following

THEOREM 5.1. If G properly "contains" PSLZ(E) then Qw is a nonsolvable

transitive perm:tation group on { letters. Moreover, if 551.2 7 and is prime,

then G properly "contains" PSL, () if and only if G is 5-fold transitive.

Proof. The first assertion follows from the above discussion. As for
the second, the 5-fold transitivity of G immediately implies GO PSL2(£); and
the reverse implication is an immediate consequence of the nonsolvability of

G, and a deep result of Ito's [15, p. 151].

Parker and Nikolai have demonstrated the nonexistence of nonsolvable
transitive permutation groups on £ letters for £ a prime such that £ ¢ 11, 23,
( §'4,079, and £%-]-'--prime. Therefore, we have

COROLLARY 1. For each Parker-Nikclai value of £, the codes A and B (for
each p) have PSLZ(() as automorphism group. In particular, the 5-designs on
48 points have PSL2(47) as automorphism group.

We remark that we first discovered that the group for £ = 47 is not
5-fold transitive by calculating and examining some of the weight-12 code-

vectors.

COROLLARY 2. The (24,12) codes A and B over GF{3) and the associated

5-designs on 24 points have PSL2(23) as automorphism group.

Proof. 1If the group were larger than PSL2(23), it would have to be the
Mathieu group Mé4, since that is the only 5-fold tramnsitive group on 24 letters
[13, p. 80]. M24 is the automorphism group of the 1; 5-8-24 design, and if it
also acted on the 6; 5-9-24 design asscciated with the minimum-weight vectors
of the present code, then the subgroup MO of M24 fixing each of 5 given points
would have to permute the 6 9-subsets of the new design containing those 5
points. Mb has order 48 and it has two orbits on the remaining 19 points:
one of length 3 and one of length 16. If we set down an incidence matrix of

6 rows and 24 columns for the 6 9-subsets mentioned above, then MO’ acting
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on the ¢olumns, permutes the rows of the matrix. Ignoring the first 5 columms
with all 1's, we find that each of the 3 columns in one orbit therefore has
the same number, say x, ot 1l's; similarly, each of the 16 other columns has y
1's. Therefore 3x +16y = 24: but this is not solvable in integers since

x < 6. Therefcre M24 cannot act on the 6; 5-9-24 design, and the group of the
latter is PSL2(23).

(One can see that Mo acts as tlaimed directly from the description of M24
in [31]; or, taking M24 as the sutomorphism group of the 5-8-24 Steiner system,
assuming only the 5-fold transitivity and the order of M24, one can prove that
only the identity of M24 can fix each of T points not contained in an 8-set of

the 1; 5-8-24 design. From this the action of Mo follows directly.)

These twe Corollaries allow us to prove [7] that PSL,({) is the auto-
morphism group of the Paley-Hadamard matrix of cvder (+1 when ((-1)/2 is prime,
£ = -1 (mod 12), and 23 < £ < 4,079. The reason for the condition [ = 12N -1
is that, since (3/f) = +1, we can regard the row-space of the matrix over

GF(3) as an extended quadratic-residue code.

One should remark that the 6; 5-9-24 design coming from the (24,12) ex-
tended quadratic-residue code over GF(3) is suggestive of the design arising
from a perfect code; a code is perfect if and only if the minimal weight vec-
tors yield a (q-l)e; (e+1l)-d-n design,* where d = 2e + 1; here we have X = 6

instead of 16, but otherwise the parameters are the same.

*Proved in [6].
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PART I1I
SECTION 6

DiISJOINT 5-DESIGNS

Esch of the foregoing 5-designs arises from a finite extended quadratic-

residue code. Since such codes occur in pairs, there are two 5-designs of

v g i =

each type; we ask whether they are disjoint. The answer is ooviously yes for
the designs arising from codes over GF(2), because the codes are disjoint ex-
cept for the all-1l vecter. The codes over GF(3) are disjoint but the problem

is that there are now two possible non-0 coefficients instead of only one;

this means that a given set of coordinate-places might hold a vector from each

code. We shall show, however, that this is not the case for the minimum-weight

vectors of the codes in question.

PROPOSITION. Let { and (£{-1)/2 be primes, and let the minimum distance d
in the finite extended quadratic-residue code of length {+1 be less than
(C-1)/2. Then the stability subgroup H in PSLZ(I) of a d-club has order h
dividing d and {+1; the orbits of H on the d-club are all of length k.

Proof. In PSLZ(ﬁ) the subgroup fixing 1 point has order £(f£-1)/2. That
fixing 2 points has order (£-1)/2. Since the latter is prime and any element
in the stability subgroup is the product of cycles of leng:ths at most d, such
an element cannot fix any points unless it is trivial. Therefore, H has only

the trivial stavility subgroup on any point of the d-club.

We shall apply this Proposition to some of the codes yielding 5-designs,
retaining the notations H and h.

1) The (24,12) code cver GF(3). Here d is known to be 9. The number of
$-clubs in the 6; 5-9-24 design is N = 8-11-23 and IPSL2(23)| = 3N. Therefore
H is nontrivial. Now it follows that h = 3, since 8 = gecd (9,24). Therefore

PSL2(23) is transitive on the 9-clubs of each of the two 5-designs, which means
that the 5-designs are disjoint or equal. That the 5-designs are disjoint
follows from the fact that we can produce two 9-clubs, one from each design,

meeting in T points, which is impossible for two 9-clubs from the same design

w0
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(because it would imply the existence of a non-0 code vector of weight at
most 7). The two 9-clubs arise from the code-polynomials (x-1)g(x) and its

reverse, (x-1)g*(x), where g(x) g#(x) = x22 + ... + 1 over GF(2).

2) The (12,6) code over GF(3). This case does not quite fit the Pro-

position, because d = 6 is larger than ((-1)/2 = 5. However, we shall deter-
mine h. The 1; 5-6-12 design has N = 11-12 6-clubs and IPSL2(11)| = 5-11-12.
First of all, |H Iz 3, and 11 does not divide lHI because every element has
order at most 6. Let us take H to be the stability group of the 6-club

{1, 3, 4, 5, 9, w} which arises from the obvious code-vector having 1 at each
of these coordinate-places, which are the quadratic residues and . The Galois
group, sending i to 3ni, mod 11, fixes this 6-club, and therefore 5 divides
{Hl. Now if 2 divided IH l, Sylow theory would guarantee at least 6 subgroups
of order 5 (since conjugation of (1 3 9 5 4) by (a b)(c d)(e £) would meve the
fixed point w; there cannot be an element of order 2 which fixes any of the 6
points), hence at least 24 elements of order 5. Similarly there would be at
least 5 elements of order 2, hence |H| > 30. Analogously, if 3 divided [H]

we would find |H| > 30. The only divisors of IPSLz(ll)I 51112 which are

possitle under the circumstances would be 60 and 30. 60 is impossible because

the Sylow 2-subgroup would have to be the Klein 4-group, since no elements of
order 4 could exist in H. But no two distinct elements cf the form (a b)(c d)
(e £) in 216 have ancther such as their product. Therefore, H would have to

be 30, but we have alrcady seen that such a group would have no room for ele-
ments of order 3. Therefore |H| = 5 and PSL2(11) is transitive on the 6-clubs
of the 1; 5-6-12 design. Proposition 3.1 tells us now that the two designs of
this type are disjoint or equal. To pcove disjointness we examine the generator
polynomials g(x) and the reverse g*(x), of degree 5. The weights of these are
at most 6, and if 6 then the infinite coordinate would have to be 0 (by Theorem
3.3), contradicting that x-1 does not divide either. Therefore each has weight
5 and gives a non-0 coordinate at . These are then *w~o different 6-clubs
meeting in 5 places, hence not members of *ix same 1; 5-6-12 design (Cf. [14;
p. 774]).
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Thus we have shown that each of the S-designs of Section 4 for the mini-
mum-weight vectors exist in disjoint pairs. This mesans in particular that

the union of the twc designs s 2 5-design with A doubled.”

A related question is that of the action PSL2(E) on the d-clubs, where d
is the minimum weight in che code. We have already shown that PSLZ(E) is
transitive on the d-clubs for £ = 11 and £ = 23 over GF(3). The question

naturally arises for the other two codes producing 5-designs.

Consider the (24, 12) code over GF(2). Here d = 8 and the number of
minimum-weight vectors is 759 = 3:11:23 = N. The order of PSL2(23) is 8N.
From the Proposition we know that H is nontrivial and has order dividing 8.
But IH{ > 8 by an orbit-count. Therefore |H| = 8 and PSL2(23) is transitive
on the 8-clubs of the two i; 5-8-24 Steiner systems.

The (48,24) code over GF{2) is harder to analyze. All we can tell from
what we have so far is that the order h of the stability-subgroup of a 12-c¢lub
satisfies h > 3 and h|12; PSL2(47) is transitive on the 12-clubs if and only
if h = 3, since there are N = 16-23-47 12-ciubs and IPSL2(47)| = 3N.

*
We announced this result for two 5-designs, those associated with the Mathieu
groups MlZ and M24; in [4].
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PART III1

ON THE AUTOMORPHISM GROUPS OF PALEY-HADAMARD MATRICES*

For a prime** of the form { = 4N-1, the Paley-Ha<. -..rd matrix of crder
£ + 1 is defined as the {{+1) X (€+1) matrix of :1's and -1l's with the first
row and first column a2ll 3+1l's; the second row is defined to be -1 at £ and at
the quadratic nonresidues modulo { ani +1 elsewhere. The columns are indexed
as («;0,1,2,...,(-1). The remaining € - 1 rows are defined to be the cyclic

shifrs of the "finite part"” of the second row.

The autcomorphism group of a Hadamard matrix is defined as the group of
(£+1) X (f£+1) monomial matrices {with entries 0, +l) modulo {iI}, I being the
identity, which acts on the right on the Hadamard matrix in such a way that
the result is the original Hadamard matrix except for a permutation of rows

and » possible change of sign of some rows.

A monomial matrix is of course the product of a diagonal matrix and a
permutation matrix. The mapring which sends each element of the above auto-
morphism group to the associated permutation matrix is an isomorphism, as one
can easily verify. Because we are concerned with the permutation gcoup which
is the image of this isomorphism, we shall speak of the automorphism group of

the matrix as being, or being contained in, this or that pe-mutaticn group.

It is known ([4],{1]) that when £ = 11. the automorphism group is the

Mathieu group M What we prove here is the following

12°
THEOREM. When { is a prime of the form 12}-1 with 6N-1 also prime and
23 < < 4,079, then the automorphism group G of the Paley-Hadamard matrix of

order { + 1 is the projective unimodular group PSLZ(E).
PSLZ(C) is the group of all 2 X 2 matrices with determinant 1, modulo

1(3 g),over GF(f). It is a 2-fold transitive permutaticn group on the pro-

jective line.

*
Presented at the Conference on Combinatorial Mathematics and its Applica-

ticns, University of North Carolina, Chapel Hill, North Carolina, April 10-
April 14, 1967.

**In fact £ could be a prime power.
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Proof of the Theorem. Hall [4] has proved that the automerphism group

of a Paley-Hadamard matrix contains PSLz(E). Consider the rfws of the matrix
to be vectors over GF(3). Their linear span is contained in a so-called ex-
tended (€+1 ,((+1)/2) quadratic-residue code over GF(3), of dimension (£+1)/2,
of which there are two, here called A and B. Let A be the row-space of the
matrix. Then G leaves A invariant. The group PSLZ(() acts on both codes to-
gether, and any element of PGLZ(E) not in PSLZ(C) maps A onto B and B onto A.
Alsn, ANB =0. ([3]},[8]) This motivates our choice of  so that (3/{) = +1;

otherwise the row-space has dimension (.

Case i. 23 < ( < 4,079. The subgroup of PSLZ(i) wh.:h fixes the "infi-
nite" coordinate of the code (or colummn of the Paizv-Hadamard matrix) is the
group sending x to a2 x +b for a,beGF(f) with a # 0. It is transitive on the
"finite" coordinates (columns). Nikolai and Parker [7] show, however, that
there are no transitive nonsolvable groups on { letters. Let Gw be the sub-
group of G fixing the column «. Then G00 is solvable, and by elementary argu-
ments one sees that G, is contained _.. the "ax + b" group, which sends x to
ax + b for all a,beGF(f£) with a # 0. But Goo contains the "a2 x +b" group,
and if Qw were equal to the ax +b group, then G would not leave A i;variant
but would contain elements mapping A onto B. Therefore Goo is the a~ x +b

group and G = PSLz(f).

Case 2. ( = 23, Here there is of course a nonsolvable group, namely
the Mathieu group M23, and hence there is the possibility that M24 could be
the automorphism group of the Paley-Hadamard matrix of order 24, since M23 is
contained in the 5-fold tramsitive group M24 as the stability subgroup of a
point. Furthermore, M24 is the only 5-fold transitive group on 24 letters
[5,p.80].

Ito [6] proves that if ( and ({-1)/2 are primes with { > 11, then a non-
solvable, transitive parmutation group on { letters is 4-fold tramsitive. It
follows from this result thac if G for £ = 23 is larger than PSL2(23), then
it is 5-fold transitive and therefore is M24. We now sketch a proof that M

24
is not the automorphism group.

*
The relation is equality but we only need the inclusion.
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Mé4 is best regarded as the automorphism group of a certain tactical con-
figuration, namely, a Steiner system of type 5-8-24. This configuration is a
collection D of 8-subsets of a set of 24 points such that every 5-subset of
the 24-set is contained in exactly one element of D. Witt [9] proved that
such a configuration is unique (up to action by the symmetric group 2324 on
the 24 points) and that the subgroup of 2324 which permutes the elements of
D among themselves is a 5-fold transitive group of order 48-24-23:22-21-20.
This group is, by definition, the sutomorphism group of the 5-8-24 Steiner

system; and, since Witt, this is the most commonly used definition of Méd.

For our proof we need some simple properties of Mé4. From the 5-fold
transitivity it follows that the subgroup G, of }&4 which fixes each of 5
points has order 48. We need to know the action of G0 on the remaining 19

points.

LEMMA. Go has two orbits--one of length 3 and one of length 16--on the

remaining 19 points.

Proof. The 5 fixed points of Go are contained in a unique 8-set belong-
ing to D. Therefore Go acts on the remaining 3 points X of the 8-set and on
the other 16 points Y. To see that these actions are transitive one can refer

to [9], where an explicit description of G, as 3 X 3 matrices over GF(4) act-

ing on the projective space of 21 points over GF(4) is given.

It is also possible to prove transitivity from the definition and proper-
ties of Mé4 listed above. One proves caat only the identity elemert of M24
can fix 7 points not contained ir. an 8-set belonging to D. (One sees this by
picking pairs of 5-subsets of the T points which meet in 3 points. These give
rise to pairs of 3-subsets outside the 7 meeting in 1 point, which must be
also fixed. Continuing, one gets all points fixed.) Then consider the sta-
bility subgroup G1 in Go of a peint from the 16-set Y. G1 must have order at

least 3, but no nontrivial element ¢ of G, can fix any more points., This

1

means, in particular, that o is a 3-cycle on the 3 points of X, and thus G0 is
. 3 . . . .

transitive on X. Moreover, 0  1is the identity on 9 points and therefore

03 = 1. Since now every nontrivial element of G1 has order 3, G1 must have

order ? since Go = 3-16. Therefore Go is transitive on Y also.

I1I-3
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We use this Lemma in the situation arising from the code generated by
the rows of the Paley-Hadamand matrix over GF(3). This code is the whole ex-
tended quadratic-residue code A of type (24,12) over GF(3), because the latter
is the sum of (1 1 1---1;1), o = 0, +1, and the irreducible (24,11) extended
quadratic-residue code. We have proved [2] that A has the following proper-

ties.

PROPOSITION. The minimum distance in A is 9; the 9-subsets of coordinate-
places of A holding minimum-weight code-vectors form a tactical configuration
of type 6; 5-9-24. (Thus every 5-subset is in precisely 6 of the given 9-sub-

sets.)

We use our Lemma to show that Mé4 cannot act or. this design, as it would
certainly do if it were the automorphism group of the matrix. Consider a
given 5-subset of the Z4-set. There are the two subsets X and Y, of cardi-
nalities 3 and 16, respectively, on which GO of the Lemma is transitive. The
6 different 9-subsets containing the given 5-subset of the new design have
6(9-5) = 24 points distributed with multiplicities among the remaining 19
points. Arrange them in a 6 X 19 incidence matrix. If M24 acts, then G0
acting on the columns must permute the 6 rows. By the Lemma, there are the
same number of these incidences, say x, in each of the three columns deter-
mined by X, and there are y in each column determined by Y. ‘lhis means

3x +16y = 24. but since x < 6 this is not solvable in integers. Therefore
M24 does not “ct on the 6; 5-9-24 design. Hence the automorphism group of

the code is PSL2(23), and the same for the Paley-Hadamard matrix.

As we sbowed in [1], the row space generated over GF(3) by the rows of
the Paiey-Hadamard matrix of order 12 yields the 5-6-12 Steiner system
{a "5-design") of which Ml2 is the automorphism group. Thus, for ovder 24 the
5-design remains but the group is no longer large. We do not yet know whether
the order 48 Paley-Hadamard matrix yields a 5-design, but there is a possi-
bility that it will.

Acknowledgment. Our interest and what knowledge we have of these mat-

ters owes much to continued conversations with A. M. Cleason and Richard Turyn.
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Added After the Conference. Oun the above result for £ = 23, M. Hall has in-

formed us that Gordon Keller has shown that M24 cannot act on any Hadamard

matrix of order 24.

In [10] is indicated, in effect, that the subgroup of G (for £ = 23)
which acts withcut any signs, thus fixing row o as well as columr «©, is the

"a® x + b" group; but it is not clear how to proceed from this subgroup to G
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PART IV

SOME REMAKKS ON AUTOMORPHISM GROUPS OF HADAMARD MATRICES

In this section we shall prove some assorted facts about the automorphism
groups of Hadamard matrices. An Hadamard matrix H has entries +1 and satis-
fies HH' = nI n = order of H, H' = transpose of H. (n=1,2 or 4t). A general-
ized Hadamard matrix has entries m-th roots of 1, m >> 2, and satisfies

HH* = nl, H* =H = complex conjugate of H'.

Two Hadamard matrices are equivalent if Hl = M1HM2, Mi monomial matrices,

i.e., Mi = PiDi’ with Pi permutation matrices and D, diagonal matrices (with

i
+1 or m-th roots on the diagonal). The group of automorphisms of H is the
set of pairs of monomial matrices Ml’ Mz such that MIHM2 = H, modulo the cen-
ter, the set of all (cI,cI). M1 determines M2 uniquely and vice versa, and

Pi determines Di’ modulo the center.

In [1], Hall remarks that there is only cne Hadamard matrix of order 12
up to equivalence (this is also easily checked for n = 1, 2, 4, 8; for n = 16
there are five such matrices). We shall first prove this fact, in such a way
that it will be obvious that the group of this matrix is exactly 5-fold tran-

sitive as a permutation group on the rows. We shall denote by HZ the matrix
+1 +1
+1 -1
Let H be any Hadamard matrix of order 1z, and pick out any 5 rows in

definite order. We shall reduce the matrix tc a canonical form, and these

five rows into the first five rows of our matrix.

It is clear that, if n > 2, any first three rows of an Hadamard matrix

can be reduced to the form

Iv-1
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by a suitable multiplication of the coiumns by +1 and permutation of the col-
: umns, (where + indicates 2 row of % plus ones). These three rcws are like

gZ) (H;n)

times), with the interpretation of + as a row of +1's of appropriate size.

the first three rows of H = Kronecker product of H2 with itself pn

We now note:

-

LEMMA. If the first 2" rows of H coincide with Hgm), them H is equiva-
lent to Hgm) or 2m+1 divides n = order of H.

Assume n >>2m, let t = nZ-m, and let (S .,Szm) = S be the vector of

17"
t 2t
ol [

sums of any row past the first 2. (Sl- %:xi, Sz- tgixi, etc., where

(xl,...,xn) is a row of the Hadamard matrix). Then the condition that this

row be orthogonal to the first 2™ rows implies
(m) _
S H2 =0

and since H2 is nonsingular S = 0, thus S1 = 0 and, therefore, t is even.

Returning to the matrix of order 12, the Lemma implies that we cannot

have four rows which reduce to

+ + + +
+ + - -
+ - + -
+ - - +

(where we have interchanged rows 2 and 3).

Consider any further row, and as before let Sl’ ve S4 be the sums of

three consecutive entries. Orthogonality to the first three rows implies

S, + S, +S, +S, =0

°1 2 3 4
S1 + 52 - 83 - S4 =0
S, - S, +S, -85S, =0

1 2 3 4

1v-2
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or Sl = "89 = '53 = 84. We have just noted that S1 = +3 1is impossible; thus
Si = +1 for all further rows.

Any further row looks like

—+ 4+ + == == — 4+

(after suitable change of sign and permutation of columns within the four
blocks of three each.) Thus, within each block of 3 cclumns, two rows have
dot product +3 or -1; therefore any pair coincides in exactly one block of 3.
We now reduce ocur matrix of order 12 by permuting the three blocks of four
columns so that the fourth and f£ifth rows coincide in the first block of 3
columns. This may involve changing the signs of the second and third rows.
Ncw permute the columns of the second, third, and fourth block so that the

first five rows take the form

+++ ——= + 4t ===
—+ 4+ + == +—== —4+
—++ —+— —+ = 4=t

The only column permutation that may be performed now is the interchange

of the second and third columns.

Each row past the third can be identified by a quadruple (i,j,k,¢) where
1 <1i, j, k, £ <3 and each denote the position within the block of three of
the "unusual” element (-1 if the sum of three is +1, +1 otherwise). We have

reduced the first three rows to the form

(1’1)3‘)1)

(1,2,2,2)
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PURNURE

The orthogonality conditiun stat.s that any two quadruples conincide in
exactly one position. It can be immediately verified that there are at most
9 such quadruples, and, given the first two, the 9 x 4 array can be constructed
in exactly two ways; we use the interchange of the first two columns to nor-
malize it to a unique array ((1,3,3,3) must be a fourth row, and (-,2,3.1)

; must occur: we require, e.g., that (2,2,3,1) occur rather than (3,2,3,1)).

We remark that the 9 x 4 array is the array constructed from a projective
plane of order 3 in a standard fashion: a projective plane of order 3 is
equivalent to a pair of orthogonal 3 » 3 latin squares, and such a pair is
equivalent to the 9 x 4 array. The arxray is constructed as the set of all

(i’j’xij’yij) 1<4, j €3, with ixij‘ , [yijl the two Latin squares.

We have now shown that any Hadamard matrix of order 12 can be reduced to
a unique form, and further that the automorphism group is exactly 5-fold tran-

sitive. It is known that such a group is unique, the Mathieu group M12 (see

[1D.

Since we have such a simple construction of the group M12’ it is tempting
to look for an Hadamard matrix of order 24 on which M24 acts. It follows
from the results of Assmus and Mattson that the Paley-Hadamard matrix con-
structed from the quadratic residues mod 23 admits only the obvious group of
automorphisms, PSL{2,23), (of order ruch smaller than the order of

24!

Mog4 = 107

- 48).
THEOREM. There is no generalized Hadamard matrix H with entries 24-th

roots of 1 on whose rows M24 acts faithfully.

Proof. M,, contains a 23 cycle. If a matrix H existed on whose rows
M24 acted faithfully, we could take a metrix equivalent to H such that the
given element of order 23 acted without signs, i.e., left the first row and
column fixed, and the elements of the first row and column could be reduced

to +1's.

The columns car be arranged so chat the action of the cycle is (1,2....,23)
on both tiie rows and the columns. Then if XyseeeXge denote the elements of

the second row, exclusive of the +1 in the first column, the ortbsgonality

relations state that
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23
- £ 3
1+ 1§1xixi+j =0 for j # 0

and, of course, Z:xixi = 23. These equations are clearly equivalent to

(zxici)(zxigﬁi) =24 ¢33 21, ¢ 21

or|2x§i!=2yg

We must also have 1 + z:xi = 0 to have the first row of the matrix orthogonal
to all the others.

Modulo 23, 2 generates the quadratic residues, whereas 3 is primitive :

(25 = 32, and thus 2 = 245 = 318). Therefore, the number 3 remains prime in !

Q(t), and 2 factors intc two prime ideals in Q({). Now the automorphism
o(x) =x, o(t) = (2, x in the field of 24-th roots of 1, will leave invariant
the prime ideals dividing 2 and 3 in the field of (23°24) -th roots of 1. Thus

Y i 21 s 4 +
leig =w Z:xig ) with w a root of 1, since w is an integer and

Izzxigi |= Izzxi§2i| = 2'V%; so le =1. Letw= wl§a with W, a 24-th root

i
of 1. Let A = Z:xig . Then

o(d) =wA

o2(8) = o(ww A = wg22 4

A=w," A

cll(A) - w{1§2047a 11

But since oLl is the identity, w}l = 1, and thus wy = 1.
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Thus Z:xigi-a is invariant under ¢, and if we replace each row by a
translate, (take a new form of our matrix) we can assume E:xici is invariant

under og.

Thus
inci _ Exiczi
o
L (rag™ %)t = 0

We have a relation with first coefficient zero, and since { is of degree

23 over the field of 24-th roots of 1, xzj = xj for all i. Therefore

i - r .
A= Z:xig =X+ XX W N = Z}g , 't ning over all the residues.

n+7n=-1, g = 6. l(xl- xo)n + (x_l- XO)ZI
implies 1 + Xq + 11(x1+ x_l) = 0, and thus Xq

246. The condition 1 + ),x,= 0

1]

-1, X) = <Xy

Thus

24 = 6{(}{1- )(%'1-1) + (x1+1) (§1+1)}

n
Do
>
+
—
%
H
1
=
'—l
S
3l\"
+
—————
F
’—I
1
Fd
H
N ——
3

1]
Do
Y-8
+
———
»
=
!
%
=
~——
—_——
=3
]
b
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Since n2 - 52 # 0, we must have Xy = ;1 which implies Xy = +l, and the
matrix reduces to the Paley-Hadamard matrix, which, however, does rot admit
M24 as a group of permucations of the rows. We have shown that any general-
ized Hadamard matrix with 24-th roots of 1 as entries which has a group of

automorphisms of order 23 is equivalent to the Paley-Hadamaré matrix.

There is another obvious Hadamard matrix of order 24, H2 X le (Kronecker
product, le the Hadamard matrix of order 12). We know that H2 X le caunot
admit M24 as a group of automorphisms. Hcwever, it does have a relatively
large group, and, by the Assmus-Mattson result, we can conclude that it is

not equivalent to the Paley-Hadamard matrix.

THEQOREM. Let Gi be the automorphism group of Ai’ Ai an Hadamard matrix,

i=1, 2. Then G, X G2 is included in the group of A

1 X A2.

1

Let N.AM, = A,
iii i

, i=1, 2. Then (Nl X Nz)(Al X AZ)(Ml X MZ) = \NlAlMl)
X (N2A2M2) = A1 X A2, so G1 X G2 is a subgroup of the automorphism group of
A, X A2 in a natural way. Since H2 has an automorphism group of order 4,

1
the automorphism group of H2 X H12 is of order >4 - %%L.

It is natural to ask whether Gl X G2 is actually the whole group of

automerphisms of A1 X A2. A counterexample is furnished by the matrix H2 X HZ:
the automorphism group of Hgn) is of order 22n(2n-1)(2n-“)'...°(2“-2n-1),

since with the first row fixed, the group is the group x - Axty, A a nonsingu-

lar transformation of the n-dimensional vector space over GF(2).
On the other hand, the group of a Kronecker product cannot be too large:

THEOREM. If A and B are Hadamaid macrices, the group of A X B cannot be

(2)

4-fold transitive on the rows unless AxB = H2

Take the matrices A and B so that the first two rows of each are

Iv-17
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Then &%B has four rows which look like Hézj; an autoxorphism which fixes

the first three of these clearly fixes the fourth.

In [1) Hall proved that the group PSL(2,q) is a subgroup of the group of
automorphisms of the Paley-lladamard watrix of order g+l obtained from the qu=-
dratic residues of GF(q), q = -1 (mod 4). If q = 1 {nod 4), there is also an
Hademard matrix of order 2(q+l) obtained from the quadratic residues of GF(q).
If S is the matrix of order g+l obtained from [x(ai- aj)l aieGF(q), x the
quadratic character, with a row and column o added, +1's in row and column «

except 0 at (o9, then

o . [
BE=i,XxI+TH XS T=|

THEOREM. The automorphism group of H includes 2, X PGLZ(q), (the

group of 2 X 2 matrices of determinant #0, modulo the diagonal mztrices).

As in [1], the transformations

¥ -tX

X ~ Xta

simultaneously on rows and columns leave S invariant, and also I since the

transformation is the same on rows and columns. The transformation
1
x -2 x(x)

on both rows and columns also leaves S invariant (x -% and change sign of

row x if x(x) = -1) since

x{(x) x( y)x(% - %) = x(y-x) = x(x-y)

as x(-1) = 1. Since we apply the same transformation to both rows and colums,

1v-8
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this also leaves I invariant. Finally, the transformation of interchanging

rows and columns, and changing the sign of column 1 and row 2 leaves H and
TH invariant.

The permutation ¥ — tx, with t # 0 not a square in GF{q), 2pplied to both

rows and columms, will leave I invariant and will charge the sign of all ele-
ments of S except those in row ancé column o« If now we wultipiy row and col-~

umn <« by -1, we leave I invariant and change S into -S. There is an auro-

morphism of H2 which takes THZ into -IHZ. This operation together with the
one on S described above, leaves invariant both H2 X I and Tﬂz x S, and is
thus an automorphism of H. Since the transformetions x — tx, X — X+a, X —

generate the group PGLz(q), the theorem is proved.

N ra
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PART V

A PRCOF OF THE MACWILLIAMS IDENTITIES

This chapter contains a proof by A. M. Glezson of the relation between
the weight-distributions of a code and its orthogonal code, first found by

MacWilliams in {1], and an extension of the result.

Let V be the vector space of dimension n over a field F, which for the
moment w take as GF(p). Let £ be a primitive p-th root of 1. We take f to

X:w(v),!n--w(v)

be.the function on V with £(v) = where w is the weight function.

Then we want to calculate

%(u) -y xw(v) Yu-w(v) §<u,v>
vev

where <u,v> is the ordinary dot product of u and v, a bilinear map of VXV

<u,v> ., . . . . .
& is well-defined siuce ép = 1. The sum is easiest if we sum

into F, and
one coordinate at a time: Define w(vi) = 0 or 1 according as v, = 0 or

(v = <Vys Vgs eees vn>). Then

Z XY(VI)+ cee + w(v )Y(l-w(vl))+ cee (l-w(vn))gulv1 +oeeatu v

ceesV
b6 RAL TARREAS

A
£(u)

wlv )

n 1 l-w(v.) u,v.
TT Z: X i £ i'i
i=1 Vs

/

Y

Now the inner sum is Y + (q-1) X it u, = 0 and

Y + (E +oeee + Ep'l) X = Y-X

A -
if ug # 0. ience, £(u) = (Y + (q-1) x)" W(u)(Y-X)w(u): Note q=p for now.
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The general Poisson summation formula is then

S £(v) =+%% Y £(u)

VEA u€B

where A is any subspace of V and B is its amnihilator subspace.

=0

A} vgz 1] j 3
[ -,
= Z (Y-X)w‘u) (Y + (g-1)X)" @ (u)
u€B
% i n-i
= -Z B, (Y-X)" (¥+(q-1)X)
1=0

This becomes

where Ai and Bi are the weight-distributions of A and B, respectively.

This simplified calcualation suggests the following more ambitious calcu-

lation. Let us get the joint distrinmution of all the different coefficiencts

o, %p-
of the vectors. Let f(v) =X~ X, ... Xp_1 where v has

o 1
o O's, @ 1's, 0y 2's, ..., . Then

05(v1)+ cee + ab(v

%(u) = ) X n)... x P p-

n a (V. V. «
=Tl ZX°(1)XOL1(1)...X*”1

i=1 \v. ©° 1 p-1
1

V-2
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Here the immer sum is
Xo + Xl §ui + XZ §2ui F oeee + p-1 E(p-l)ui = Y(u.)
so
£(u) = Y(O)a%(u) Y(l)ai(u) ... y(p-l)af'l(u)
Now if, for example, we take F = GF(3), and let Ai,j,k be the nmumber of

vectors in Awith i O's, j 1's, k 2's, then

v] iJj .k i 2.1 2 k
=+ LA, X Y Z =/)B. . X+Y+Z X Z
Y z i,k E 1,4,k (X+Y+2Z) " (X+0¥+0°Z)Y (X0 "Y+Z)
This form:1la becomes the MacWilliams formula all over again if we put Y =2

(which amounts to not distinguishing 1's from 2's; more generally,

X, =Xy = oo =X ).

To treat the genmeral case, when F = GF(q) for q = ps, just replace
<u,v> by T(u-v), where T is the trace from GF(pS) to GF(p) and u-'v is the

usual dot product.
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PART VI

A SIMPLE CONSTRUCTION OF THE BINARY GOLAY CODE

In this part we give a simple construction of the Golay binary (24,12)

code (see [1], [2]) starting from the Hamming code of length 8, without using

the guadratic residues mod 23. Thus, we give a straightforward construction

of the combinatorial configurations on 23 and 24 objects from the one on 7,
the projective plane of order 2.

The binary Hamming code H can be constructed from the rows of the inci-
dence matrix of the projective plane of order 2, with a coordinate at « defi-
ned by an overall parity check, and the vector 1 (all coordinates = 1). Thus

H is the sef of all vectors gotten from the cyclic shifts of the vector

(1,1,0,1,0,0,0) with s coordinate at © with value 1, the complements of these,

and the 0 and 1 vectors. H is a group; it is equivalent to the code consis-

ting of all vectors (z,z) and (z,z+1), with z of length 4 and even weight.

Let H' be the code obtainaed from H by reversing the order or the finite
cocrdinates; H' is equivalent tc H and H NH!' = {0,1}.

We now form the code of length 24 of all vectors of the form
(a+x, b+x, a+h+x) a,beH, xeH',

This code is 12-dimensional, since there is no nontrivial representation of
the 0 vector. Since H NH' = {0,1} and H,H' consist of vectors of weight
0,4,8, H+H' is the set of even weight vectors. If any of a,b, a+b, x are 0
or 1, it is clear that the above vector has weight 2> 8. We claim that the
minimum weight of the code is in fact 8. Denote the weight of w by |w|, and
let multiplication of vectors be the usual (x2= x for all x). Then

|utvl + 2]uv] = Ju| + |v}

la+x| + |b+x| + | a+bx]

= [a+b| + 2] (a+x)(b+x)] + | a+b+x]|

[x] + 2 {I(a+b)(1+x)| +!(a+x)(b+x)|}
[x] + 2|a+b + ab + x|.

i
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If a,b, a+b, x are all of weight 4, |abl = 2 and |a+b+ab| = 6, so that
| a+b+ab+x | 2 2, and the above vector has weight > 8.

The (23,11) code obtained by deleting one coordinate has minimum weight
7, and thus the spheres of radius 3 abiout the code vectors are disjoint. The
well-known equation

912 (1 +23 4 (23) + (23)): gl2+11 _ 523
2 3

shows that these spheres :cover the set of vectors of length 23, i.e., the
(23,11) code is close-packed. It therefore follows that given a vector v of
length 24, weight 5, there is a unique vector of weight 8 in the (24,12) code
at distance 3 from v. It is known that this 5-design, and therefore the
(24,12) code, are unique [3].

We remark that our above definition is equivalent to taking all vectors

(y, y+ay, y+az) wich v of even weight (length 8), aiGH, and y+a + azeﬂ'.
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PART VII

THE (36,15,6) DESIGNS

mnm—T

In [2] certain difference sets were defined in the two Abelian groups of
order 36 which do not have elements of order 9; a very similar set was defined
in the group S; X Sy in [1}]. It was shown in [2] that all the Abelian dif-

ference sets are equivalent to one of six difference sets. This statement is

incorrect: there is a seventh set. The designs defined by these difference

sets are studied here.

The difference sets in question ave defined as follows: let A3 be the i
Abelian group of type (3,3), thought o/ as the affine plane over GF(3). Take i
four lines of different slopes in A3, and associate one line with each element
of a group of order 4 (24 or K.4 = 22 X Zz). The difference set is the set of
all (6,x), 0 the identity in the group of order 4, xéLo, and all (i,x),
xeLi. The Li have at least a triple intersection, and by translation this
may be assumed to be the origin of A3. The automorphism group of A3 may then
be used to normalize the set further. The argument in [2] (Theorem 10) is
essentially correct, but the conclusion drawn is too strong. In K,4 X A3 the
argument shows that there are three inequivalent difference sets, Qi, Qé, Qé,
which correspond to the cases Li concurrent (at the origin of A3, by normali-
zation), O{Lo and 0€L3, respectively. In the case of Z4 X A3 we have the sets
Qs Qs Q3 which correspond to OELi all i, OdLo, 0(L3, respectively, but [2]
neglects the case Q4: OéL2 vhich is not equivalent to Q3, as is the case in
K.4 X A3; there is an automorphism ¢ such that o¢(1l) = 2 in K,, but of course
not in Z4. It is also clear that the multiplier group of Q4 consists of ex-
actly two elements, the identity and the autom~rphism X - -x in 24, aL2 = L2,

OLO = Lo’ O’Ll = L3 in A3.

We shall now study the (v,k,A) = (36,15,6) designs defined by these dif-
ference sets., We shall first show that the automorphisms of the designs,
i.e., the permutations 7 of the group elements which also permute the sets of
the form D + ¢, are just the obvious automorphisms: each 7 is of the form
Bt = BT + y, where 0,y are uniquely determined by 7, ¢ an automorphism of the
group, y an element of the group.
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Ye shall use i, j, m, n to denote elements of the group of order 4, x, vy,
z elements of A3, a, B elements of the group of order 36, 7 an automorphism
of the design defined by tha difference set D (one of the Q or Q! ), and 9

Let LY = line through 0 parallel to Li'

the complement of L° in A3 i =

LEMMA 1. If Dr = D then

1. (O,LO)T = (O,Lo)

2. (0,L+x)7 = (0,L +y)
3. (ix)T =D+ y

4. [(L,L;)7 = (j,Lj)

5. (LLy+x)7 = (j,LJ.+y)
€. (0,x)7 =0,y

Proof. DN(D+(i,x)) is the set (0 S NL_ $¥%) (i,LiFISO+x), and
(j,LJ.nLJ._,.J,x) j #0, i,when i # 0; Dﬂ(m(o X)) = (0,8, 8 +X)U(J,ujﬂLj+x)
for j # 0. TWO of the sets (J, L nL, +x) must be empty for x # 0 (only the
3

It is easy to see from this that DN(D+a) = DN(D+B), a#B, if and only
if @ and B8 belong to L:, o, B # 0. Therefore, if L: = (0,x1, -xl), D7=D im-

one with xeL is not empty)

plies 7 leaves the sets Dix; invariant or interchanges them, and (Df\D+x1)T

= DND¥x, = DﬂD-xl. Thus (o,s )r = (o,s ). The sets D + 0, x, and xa,/L:,

are the only sets D + @ such that |DﬂD+a ﬂDi-al 3 (|DﬂD+alﬂ D+ix| =

, which implies 3. The
intersection of these six sets is easily seen to be (0 L ), so that (0 L)7

= (0 L ), and this with (0 S )T = (0 So) implies 6. The triple intersections

*

for i # 0\ Thus 7 must permute the sets D+0x, x{L

Q

D 1Y D+x N D+y, x,ydLo, X # y are either empty or consist of (i’Li) if x,yeLI
(x=-y). Thus, since 7 permutes these sets, 7 permutes the triple intersec-

tions, which proves 4. Part 5 follows from the fact that 1f x,y dL

D+x ND+y = (O S +xr\S +y)U(i L +x) with y-x eLi (so L jFx = Li+y) Since the
sets D+x, xc(Lo are permuted by 7, and the sets (0 Lo+x) are also permuted by

7. it follows that the sets (i,Li+x) also are.
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LEMMA 2. If 7 is any automorpaism of the design, and (D+i0) 7 = D+jzi,
ther
1. (i,Lo)T = (j,L0+zi)

\

2. (i,L°+x)7 = (j,Lo+y)
3. (D+ix)7 = Dijy

4. (i+m,Lm)T = (n+j,Ln+zi)
5. (i+m,Lm+X)T = (n+j,Ln+y+zi)

Let TB denote translation by B: aTB = o#f for all @. Then TiTT T!

-jzi"
leaves D fixed, and 1-5 follow directly from the corresponding statements of

Lemma 1 applied to 7'.

The statements of Lemma 2 show that 7 defines a permutation T4 of the
group of order 4, such that (D+ix)7 = D+(ir4)y, and (ix) 71 = (174,2) for all
xeAs. Note that in4 and 5 n = (m+i)74-j.

LEMMA 3. Let 7 be any automorpnism of the design, and write (ix)7r = 174,
XT,. Then each Ty is a collineation from the i plane, the set of (i,x), to
the plane 174, A3.

This follows from Lemma 2.
LEMMA 4. Dr = D implies (D+ix) T =( D+ «174),(xro)).

Proof. Suppose first i # 0. Since Df\D+ixr\(0,A3) = (0,(L_i+x)(\so]
the sets D+ix are uniquely defined by their intersection with D[\(01A3):
this intersection is a pair of points which defines a line, which is parallel
to L_i for some 1. The point x is then deterriined uniquely by the fact that
these two points are on L_i+x and not on Lo. Thus, the fermula holds for
i # 0, since Dy = D, and thus (O,Aa)r = (0,A3) by Lemma 1. Now, to show the
formula holds for i=0, observe that D+xlﬁDéiylW(0,A3) =‘(0,So+xf\L_i+y) so
that we can recover x from D+xf\D+ier(O,A3) for all i#0. Since the formula
applies to the sets D+iy, i#0, it therefore applies also to the D+x.

I1-3
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L2MMA 5. Ix = N Dijy for j=#i, y-xeLi_j.

It is clear that ix is in the intersecticn of the nine sets above (and
the six secs D+ly, x-yeS ). If nze N D+jy then zeLq_j«z-y, for all y such ~hat
yeLi_ j-l»x, j#i. ¥Ye then must have n=i, as otherwise z belongs to the inter-
sectior of three parallel lines. But then z=x, since z-x belongs to two dif-
ferent lines through 0, (there are at least two L = Li-j through 0, m # 0).

LEMMA 6. D7 = D implies (j-i) Ty = 37ymivy-

There is, of course, nothing tc prove in case the group of order four is
K4, since then any permutation which preserves 0 is an isomorphism. We need

the lemma orly to show that 27, = 2, 2624.

Since ix = ND+jy, jAi, yeLi_j-!-x, we have (ix)7 = N(D+jy) 7 = D+(j-.—4,yro)

by Lemma 4, with jzi, yeLi_j-!-x. We know that (ixX)7 = 174,2 for some z. Ex-
amine the elements of the form i7, in N(D+jy) 7: (174,2)6n(D+jy)7 if and only

if zel + (yfo) for all jsz, yeLi_j-x-x. As before, we see that we must

174-:]74

%
*

_ But from Lemma 2, part 4, with i=-m, we scze that

O’Lm)T = {0,L_ (~m-.-4)+ ::_m), so that LI-,—O = Lf (_174), so we must have

-(j-1) Ty = 174-_']74, as asserted. (For i=j the lemma follows from Lemma 1.)

THEOREM. Any automorphism of one of the designs is just a trivial auto-
morphism (x7=a‘a+Bo, with o a multiplier).

This theorem destroys the hope that an interesting new permutation group
might arise as the automorphism group of one of these designs. It was shown

in the last annual report that at most two of the seven designs are isomecrphic.

If Dr = D+o, we may replace 7 by TT_a, and so we may assume D7 = D. Then

from Lemma 6, and Lemma 2, part 4, we have (O,L )-r = (O,L +Z )wit:h
m LT T, -

( D+m0) 7 Dimr,,2 = D+(n74,070) by Lemma 4; Dr = D implies 07 =0, and so

(O,L )T = (O,L ) Thus 7 must take a line L, not through 0 into itself,
m m7y o i
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since 070 = 0. But for each of the seven sets, the multiplier group is such
that L0 an¢ any line not through 0 will be preserved, and otherwise the Li can
be permuted arbitrarily. Thus, by following 7 by a multiplier as well, we

may assume that the lines Li are z.1 left invariant, (and in the case OeLi

for ali i, that che plane 0,A3 is left invariant). But then o is the identity,
and thus by Lemma 4 7 is the identity.
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PART VIII

THE COVERING RADIUS OF SCME BCH CODES

If we are given an arbitrary block code of block lengtk n the covering
radius is the maximum number of changes that must be made in a word of length
n in order to change it into a code word. Thus, for each word w of length n
we compute min|w-x| for x in the code, and the maximum of these is the cover-

ing radius of the coge.

Gorenstein, Peterson, and Zierler have shown that the covering radius of
the binary weight > 5 BCH codes is 3. We shall derive some facts about the
packing radius of some BCH ccdes with q odd.

The BCH codes over a field with q element have length qn-—l, and are de-
fined as the set of all vectors (vi) such that Zvia]i =0, j=1,.--,t with
o« a primitive element of GF qn). Of course for j = mq the equation

__,vioz:t'j = 0 follows from the equation Eviaim = 0. The maximum weight is

We note that the defining equations for the code could be written

x) = 0, x ranging over the distinct elements of GF {qn)*.

Ly
X

To correct a given vector v we try to find a vector v' such that v-v!
2
is in the code and v' has weight as small as possible. If v = (Vi)’
H
v! =(Vi) we let

Zv.alJ = §.,.
1 J
"y i3 .
Then we must have Z(vi— vi)a =0, 1 <j<t, sc that
Zv'.aiJ = 8§,
1 J

1 J _ s 1
We want Zvix:L = Sj wi.th Xy distinct, and as few vy # 0 as possible. We

note that we can drop the requirement of the Xy being distinet, since we
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t
could always group equal Xy and all the corresponding vs- We also note that,

if q = p°, S? = Spj’ as S.‘l = Evixi implies S_lj) = (Evixi)p = Zvixip.

For t = 1, the BCH code has weight 3 if q is even (we then get the
Hamming code), but weight 2 if q is odd. We can always correct by a weight
one vector in exactly q-1 ways: we must solve vx = S1 with veGF(q), and for
S1 # 0 there are gq-1 solutions. For t = 2 and q odd, we have the following

interesting observation.

THEOREM. If q is odd, n > 1, the BCH weignt > 3 code has covering radius
3 if n is even, 2 if n is odd, q > 3. The covering radius is 3 for q = 3.

Note that for q = 38, the weight is > 4.

We must solve

aX-i-bY=S1

aX" + bY =8

with Si arbitrary elements of GF(qM™) if the covering radius is to be 2. 1If

Sl¢0, take a = 1, b = ~1:

[\
[ "]
0| w
amnl [ S

X -Y¥Y =58 or X+Y-=

which can always be solved. Thus we can correct all the vectors, except those
lying in the BCH code for t = 1, by a weight 2 vector. |[We can correct by a
2

S

weight 1 vector if S.S, # 0 and L €GF(q) .
172 32
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If S1 = 0, we would have

eX + bY =0

aXz + sz = S2

or

P S2
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Sq

= a(ath)

- -
~ efc+l) ¢ =3

S

This equation can be solved in GF(qn) if and only if ETE%IT is a square,

and of course 82 need not be a square. In that case we try to make c(c+l)

also not a square. This is possible only when n is odd, since when n is even,
GF(qn) :)GF(qz), and GF(qz), being the unique field of degree 2 over GF(q), is
obtained by adjoining the square root of any nonsquare in GF(q).

However, for q = 3, 82 a square in GF(qn), c(c+l) = 0 or -1 for ceGF(q);

c(c+l) = 0 is impossible. For q = 3 and S1 = 0, S2 a square, we cannot solve

the equations in twe unknowns.

We can always solve in thiee unknowns by the

simple device of reducing to tne case S] # 0 by a weight 1 vecter, and then

correcting by a weight 2.
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PART iX

O4 THE PETERSON, ET AL. AFFINE-INVARIANCE THEOREM

Peterson [1l] has proved that extended BCH codes are invariant under the
affine group, and Kasami, Lin, and Peterson [2] found necessary and sufficient
conditions for an extended cyclic ccde to be affine-invariant. This report
gives two slight extensions of the latter result; namely, it shows that the
extension of the code is unique and that fewer computations are needed to

verify whether a given code is affine-invariant.

A cyclic codz of length qK-l over F = GF(q) can be regarded as the set C
of 21l functions h with values in F defined on the wultiplicative group KK of
K = GF(qX) satisfying

Zh(a)ai =0 iel (1)

(l'€}8<

for an index set I defined by the condition that Ci is a root of the generator
polvnomial g(x) of the code for a fixed primitive element § of K. Ia particu~
lar, we choose 1 tc be contained in 0, 1, ..., qk-Z. This statement is easily
verified if one thinks of h(a) as the j-th coordinate of a code-vector, where
o = §j.

That the code is cyclic is the same as saying that heC implies hBEC for
every ﬂeKK, where hﬁ(a) is defined as h(Br) fo:r each aek’.

We shall derive a set of necessary and sufficient conditions on the code
and on the definition of h at 0, i.e., on how to extend the codv, so that the
extended code 1s invariant under the affine group (x — ax+b) of K. That 1is,
we get a new "code" C' by extending each function h to K by assigning, in any
way at all, a value h(0), and we ask under what conditions on h(0) and the code

C we get affine invariance for C'.

We need only check for translation. Let BGKK. Then C' 1s affine-invari-
ant if and only if
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Z}h(a%ﬁ)ai =0 €I, BeK' \
aek’
I
and > (2)
n(B) = v°(0)

/
where hB(a) = h(a+B), aeK. condition {2) implies hBGC.

Mote that 0 cannot be in I if condition (2) hoids unless the ccde is the

0-code, for then we would have

h(0) = - ), h(a)
40,8

for all ﬁegx. This means h(B) = h{B') for all B, B'GK*, and thus h(e) = ¢
for all aeK. Nuw condition (1) implies ¢ = O.

Now condition (2) holds if and only if

Y h(a)(a-8) ' = 0, iel, 3518‘\
aeK

and > (3)
h(8) = K°(0)

Nute that the sum in condition (3) is now purposely over all « in K and that

the unwanted term h(B) does not enter. condition (3) is equivalent to

(gt Ly

. o )
(?)(-1)3( Zh(a)aJ)a'J =0 iel, BeX’

j=0\J aek

and > (4)

h(B) = b°(0).

I1X-2
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5

R

1f we set vy = (-1)3 z:h(a)aj, then condition (4) is equivalent to saying that
ek

the polyncmial

has each ﬁ-l in K as a root
i< qk -1,

and h{B) = hB(O)]. This means that, since

for j=0, 1, ..., 1, (%)

3) ¥; = 0, te1, and n(B) = ) (5)

J

and conversely.

The meaning of the binomial theorem 1s in particular that Y = Z:h(a).

aeK
Since (3) = 1 for all i€l, we find that condition {5) is equivalent to

Z;h(c) =0 for all heC!', )
ackK
(6)
and for each i1€I, every j in the range 0 < j <1 satisfies
either j€I or (;) = 0 (mod p) |

where q = ps for the prime p.

To see that condition (5) implies condition (6) notice that Yo = 0 is not
the condition that (€I, but that Yj = 0 for 0 < j <1 is the condition that

jel. For the converse, we need only to show that h(B) = hﬁ(O) for each BeK.
Now

hB(o) = - Zhﬁ(a) = - ) h{a+B} = h(B) - Y h(a+B) = h(8)
a#0 a#0 10734

We have proved the Kasami-Lin-Peterson theorem and have shown that this
definition of h(0) is the only definition that admits the affine group as
automorphisms.
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i
One can write (;) 511-(jm)(mod p), where i = E:impm and j = Z:jmpm with
m

0< im’jm < p; then Condition (6) becomes

Z:h(a) =0
oeK

(7)

and for each i€I, and j satisfying 0 <j <i, j <i for allm

. . m=— m

implies je€I.

It is possible to weaken the hypothesis of Condition (7) as follows. Let

{ be a primitive root of 1 of order qk - 1, and let the roots or the generator
polynomial g(x) be Ci, where 1 runs over a set I contained in {O, i, ..., qk-2}.
Since g(x) has coefficients in GF(q), I consists of a union of orbits under

multiplication by q (and reduction mod qk -1): I-= CllJ...lJCt.

LEMMA. From each orbit select one integer i'. Suppose that for each such
i' we have: 0 < j <i' implies (§') = (mod p) or j€I. Then the same is true
for each i€I; in other words, the cyclic code generated by g(x), when extended
as above, is invariant under the affine group if and only if Condition (7) holds

for one value of i from each orbit.

Proof. We use, of course, the well-known relation mentioned above:

(j) = Cg) .. C:)(mod p)

R n R n N+1 h
where i = Z:i p and j = Z:j p, with 0<1,j <p. (p = q J
o n g n = "n’’n

Notice that

we must reduce each integer under consideration mod qk - 1 to a value between
0 and qk - 2. Since qk =1 (mod qk - 1) we find that qi has, in our terms,
coefficients of its baze-p expansion which are a cyclic shift of those of i.

Now suppose i is any element of I and let i' be the element in the orbi%
of 1 satisfying the hypothesis of the Lemma. Let 0 < j < i and suppose
(;) # 0 (mod p). This means in 2’jn for every n. Multiply i by q" to move i
to i'. Let j' be the element in the orbit of j congruent to qmj. Then, since
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both the iq's and the jn's have been cyclically shifted by the same amount, we

have 9 < j' <1i!' and (;:) # 0 (mod p). Therefore j'€l, hence j<I.
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PART X

FACTORIZATION OF CYCLOTOMIC POLYNOMIALS OVER CERTAIN QUADRATIC NUMBER FIELDS

We calculated some factorizations which we record here.

If £ is a rational odd prime the polynomial X2 - 1 has a root fileld of

degree £-1 over the rational field Q. This field has a unique quadratic sub-

field I.=Q‘Vi£), where the sign is such that +£ = + 1 (mod 4). Let z be a

primitive f-th root of 1 over Q. The subfield L is also generated by 7, where

n = Z;zr, the sum over r in R, the set of all quadratic residues modulo £. 7

and its conjugate 7 are the roots of x2 + x + (1+£)/4; here the opposite sign

is chosen, so that the constant term is an integer. In particular, they sat-

isfy 7 + 7 = -1. The polynomials we wish to calculate are

gx) = JT (x-2°)  and (%) = J] (525

r€R r€R

where s is a fixed quadratic nonresidue mod £. Thus g(X) is the conjugate of
g(X).

To start with we observe that if £ = -1 (mod 4), then -1¢R and, therefore,
5x) = x(ED72 ¢

since the constant terms are (-1)(2-1)/2N(z) = -Nz and ost, N being the norm
from Q{z) to L. Since 1 = Nz . Nz® = (Nz)l+s = (Nz)!Z for every quadratic non-
residue s mod £, Nz must be 1 if £ > 3. 1In other words, the sum of all r in

R is divisible by £ if ¢ > 3. (This is true for any prime £ > 3.) And alter-
natively, the sum of all the elements in any multiplicative subgroup of GF(!Z)X

is 0, as the sum of all the roots of 1 of a given order in a field.
Next we have, setting m = (£-~1)/2,

g(X) = X° -9 R 1o |

g(x) = X" -9 N %-1
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-1 (mod 4). This already settles the case £=T7:

for the case £

i . 3 - \
a glZ) =X -1 2 57 %1 \
|
!
; g(x) = xS - 7 e n X-1 > £ =1,
- 2
(x-9)(x-) = x + x+ 2 ,

For higher values of £, we need to use such things as

R+R = i&%ll R! & 2;3 R(£=4v-1)

the meaning of which is explained in cur 1966 report, pages III-33 ff. We find

g(X) = X5 -7 X4 - X3 + Xz - (1sm)X-1
(¢ = 11)
(x-1)(x-7) = x° + x + 3
g(x) = x6 -7 Xs + 2x4 - (1+1))X3 + 2X2 - X+1 1
(2 = 13)
(x-1)(x-1) = X & x - 3 J
g(X) = X11 -1 X10 - (3+n)X9 - 4X8 + (n-3)X7 )
+ (20-1)%° - (27-)%° - (G-3)xt + 48
> (2 = 23)

+ (3+ﬁ)X2 + 7 X-1

7 - 2
x-n)(%-1) = x + x4+ 6 /
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PART X1

A THECREM OF GLEASON AND PIERCE*

The following is a slightly shorter proof of a theorem proved by J. Pierce
and A. Gleason. Only the second part of the proof is different. The question
is the existence of codes which are formzlly self-orthogonal, i.e., have the
same weight distribution as their orthogonal complements and in which the
vectors all have weight a multiple of the integer t. Examples of such codes
are the extended quadratic residue codes over GF(2) in which ail vectors have
weight a multiple of 4, the extended cyclic (13, 6) code over GF(4) in which
all vectors have even weight, the set of even weight vectors in any group code
over GF(2), and the extended quadratic residue codes for primes of the form
12k-1 over GF(3) with t = 3.

Let Ai’ Bi denote the number of vectors of weight i in a group code over

GF(q) and its orthogonal complement, respectively, and

oo o
a(x,y) = ZAi xty" B(x,y) = Z‘,Bi xt ytt

with n = code length, k = dimension of the group code. The MacWilliams iden-

tity states that
k
aly-x, y+(q-1) x) = q B(x,y)

or, in nonhomogeneous form, with x/y, = z,

(14 (0-) 0" o 2gy5 1) = Bz, D)

*This is a corrected version of Section VIII of our Report of April 28, 1965,
under Contract No. AF19(604)-8516.
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Thus, if the group code is formally self-orthogonal, we have
a(x,y) = B(x,y) and

/2

ofy-x, v + (g-1) x) = qV* a(x,y)

1f Ai = 0 unless i = kt, i.e., all the weights are multiples of t, then

a(x,y) = a(wx,y) if Wt = 1.

Let Tl’ T2 be the fractional linear transformations

T1(2) = gDz

Tz(z) wz

If a is the polynomial associated with a formally self-orthogonal code
with all vectors of weight a multiple of t, then T, T2 operate cn the "homo-
geneous" roots of a (we allow A = o with the usual conventions: «, B are
homogeneous polynomials and (a, b) is a root of & if bx - ay divides @. Since
a is a homogeneous polynomial, (a, b) is a root if and only if (sa, sb) is a
root for nonzero s, and thus the roots of & should be thought of as points of
the Riemann sphere); a(X, 1) = 0 implies o(T(A), 1) = 0 if T = T1 or T2 and

this holds for any T in the group G generated by T, and T,. Thus the set of

1 2
roots of « on the Riemann sphere is closed under G.

But if G is any group of fractional linear transformations and a finite
orbit contains three distinct points, G is finite. For the number of distinct
triples of points from the orbit is finite, and since a fractional linear

transformation leaving three points fixed is the identity, G is finite.

We conclude that the group G generated by T1 and T2 is finite for t # 2.
For then if XA is any root of @ not 0 or oo, Aw' are t distinct roots of a if w

is a primitive t-th root of 1. (If A = 0 or o, Tl(l) = T%E or 1, another root

of a.) If t = 2, Tl(z) = z only for z = :la%iii and Tl(z) = -z for z = * 1 .
1-q

X1-2
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The set of roots of a(x.y) can consist of two values only for A = + 1 , as
1-q
otherwise A, -, Tl(-l) will be distinct. Therefore, we must have
n/2

al(x,y) = c(y2 + (q-1) x2) with ¢ constant (and thus clearly 1). In fact,

b

the direct product of the code {(0,700}, 72 + 1 =0, with itself n/2 times has

this distribution and is self-orthogonal. Except in thie case, every element

of G must be of finite order since € is finite. T,T, = ——E:EEL~—-must be of
172 7 1+(g-1l)wz
finite order, i.e., some power of the matrix

- 1

(g-1)w 1

must be a scalar multiple of the identity matrix (the identity as a projective

transformation)., We assume that w # 1.

The eigenvalues X1 xz of TITZ satisfy the equation

x2 + (w-1) x -wqg =0

m

X X
If (Tsz)m = ¢I, we must have (;l) =1, i.e., ;l is a roet of 1. Then
2 2

b x2 + x2 Xy +X 2 2
Lo, At m ) | c(e)’

9 ¥ X1%y X%, wq

2 +

%Ix
|

is an algebraic integer, and q divides (w-l)z. But if w is a t-th root of 1,

1-w is a unit if t is not a prime power and (1-w)¢(t) = (p) if t = pJ (an
equation of ideals). Thus we must have ¢(t) = 1 or 2. If ¢(t) =1, t =2

and w = -1, Then % is an algebraic integer, and q = 2 or 4.

XI-3
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s finls

If ¢(t) =2, £t =2, 4, and 6. However, t = 6 is impossible, since if w

2
is a primitive 6-th vroot of 1 we siwould have - Lc%%)_ =q an algebraic integer,
2
which is impossible. If t = 3 and w is a cube root of 1, - {o-1) " = 3, and

W

thus we must have q@ = 3. Finally, if t = 4, we can let w = i: %must be an

integer, and q = 2. N

We thus have the possibilities

! ¢ | g
%
L 2 2,4
{
3 3
4 2
|

E45 it
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