BOILT BERANTEK AND NEWMAN INC

CONSULTI NG - D EVEL OPMENT 0 R ESEAPRCH

AFCRL-67-0458

THE BBN 94g LISP SYSTEM

Danlel G. Bobrow
D. Lucllle Darley
L. Peter Deutsch
Daniel L. Murphy
Warren Teltelman

Bolt Beranek and Newman Inc
50 Moulton Street
Camb~idge, Massachusetts 02138

AD656771

Contract No. AF11(628)-5065
Project No. 8668

Scientific Report No. 9

This research was sponsored by the Advanced Research Projects
Agency under ARPA Order No. 627, Amendment No. 2

15 July 1967
Distribution of thls document 1s unlimited. It may be released to the

Clearinghouse, Department of Commerce, for sale to the general public.

Contract Monlitor: Stanley R. Petrick
Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
: OFFICE OF AEROSPACE RESEARCH

RECEIVED .0RoRD, MASSACHUSETTS 51730] e Nre
AUG2 5 1967 AUG 2 1 1967
\;,thnu ED
CFSTI e

CAMBRIDGE NEW YORK CHICAGO LOS ANGEILES

Silalianl ailad

21

ey (D G U Sy ey ey ey Py TR Gy ey Py

- -

AFCRL-67-0458

THE BBN 94¢ LISP SYSTEM

Daniel G. Bobrow
D. Lucille Darley
L. Peter Deutsch
Daniel L. Murphy
Warren Teitelman i

Bolt Beranek and Newman Inc
50 Moulton Street
Cambridge, Massachusetts 02138

Contract No. AF19(628)-5065
Project No. £668

Scilentific Report No. 9

This research was sponsored by the Advanced Research Projects
Agency under ARPA Order No. 627, Amendment No. 2

15 July 1967

Distribution of this document 1s unlimited. It may be released to the
Ciearinghouse, Department of Commerce, for sale to the general public.

Data Scilences Laboratory

Contract Monitor: Stanley R. Petrick !
|3
Prepared for: i
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE CF AERCSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

IR TG R TR

ey @up CI G GO G BN =0
/

[vt b'
L]

. |

- ey r——

ABSTRACT

This report describes the LISP system implemented at BBN on the
SDS 94# Computer. This LISP is an upward compatible extension of
LISP 1.5 for the IBM 7090, with a number of new features which
make it work well as an on-line language. These new features
include tracing, and conditional breakpoints in functions for
debugging and a scphisticated LISP oriented editor. The BBN 94g
LISP SYSTEM has a large memory store (approximately 50,000 free
words) utilizing special paging techniques for a drum to provide
reasonable computation times. The system includes both an
interpreter, a fully compatible compiler, and an assembly language
facility for Inserting machine code subroutines.

-iii-

R

T e—

TABLEL OF CONTENTS
Page

SECTION I
INTRODUCTION ® 065 5600600 50 0600000000000 0000000008000 1

SECTION II
USING THE LISP SUBSYSTEM ON THE 94cc0veees 2

SECTION III
DATA TYPES AND THE ORGANIZATION OF
VIRTUAL MEMORY ® ® 5 06 06 5 0 5 5 00 00 00 00 00 0 000 00O 0 e 0o u

SECTION IV
FUNCTION TYPES ® 8 0 5460600050000 00000000000 00400000 12

SECTION V
PRIMITIVE FUNCTIONS AND PREDICATES ..eeeeeeeeess 16

SECTION VI
LIST MANIPULATION AND CONCATENATION ...ccseceeee 27

SECTION VviI
PROPERTY LIST FUNCTIONS ® 5 506 006 00 0005 0005 00 00 0000000 32

SECTION VIII
FUNCTION DEFINITION AND EVALUATION000000. 35

SECTION IX
THE LISI’ EDITOR ® 060 5068500000 06000000°5000006000000000 uo

o Lot it < | %

SECTION X

TABLE OF CONTENTS (cont.)

ATOM, ARRAY, AND STORAGE MANIPULATION 59

SECTION XI

FUNCTIONS WITH FUNCTIONAL ARGUMENTSe0esse.. 64

SECTION XII

VARIABLE BINDINGS AND PUSHDOWN LIST FUNCTIONS .. 68

SECTION XIII

ARITHMETIC FUNCTIONS © 0 0 80 00 0 0 8 0000 L s 72

SECTION XIV

INPUT/OUTPUT FUNCTIONS ® 08 0 0 0000 00000000 00000000 77

SECTION XV

ERROR HANDLING AND DEBUGGING FUNCTIONS 94

SECTION XVI

THE COMPILER AND LAP ® 0 2 8000 0000 00 00000000 ee e 107

INDEX TO FUNCTIONS

8 0 0 0 00 5 0 00 00808000 0NN LLL SR BNECOECEDRNTE 122

-Vl

e b owm Pww i

SECTION I
INTRODUCTION

LISP is a highly sophisticated list-processing language which 1is
being used extensively in artificial intelligence research. This
document describes the BBN 94¢ LICP system, which has a number of
unique features which make it a very good on-line interactive sys-
tem with a large 2rum memory. Ideally, a LISP system would have a
very fast, random-access memory. However, magnetic core memory
(the only large scale random-access memory available) is very ex-
pensive relative to serial memory devices such as magnetic drums
or discs. Since average access time to a word on a drum or disc
is many *imes slower than access to a word in a core remory, using
a drum as a simple extension of core memory would reduce consider-
ably the operating speed of such a system. We have developed spec-
ial pag. .ng technigques which allow utilization of a drum for stor-
age with a much sraller penalty in speed. These techniques are
described in detail in Bobrow and Murphy's "Structure of LISP Us-
ing Two-Level Storage," (Comm. ACM, March :967).

Although we have tried to be as clear and complete as possible,
this document is not designed to be an introduction to LISP.
Therefore, some parts may be clear only to people who have had
some experience with other LISP systems. A good introduction to
LISP is Clark Weisman, "LISP 1.5 Primer" (Dickenson Press 1967).
Although not completely accurate with respect to the BBN 948 LISP
system, the differences are small enough to be mastered by use of
this manualand on-line interaction. Other important references,
published by the MIT Press, are John McCarthy, LISP 1.5 Program-
mer's Manual and Berkeley and Bobrow (editors), The Programming
Language LISP, Its Operation and Applications.

£ |

oo ettt T

SECTION II
USING THE LISP SUBSYSTEM ON THE 947

In order to use LISP, you must have in your files a sysout file
of the basic system. This basic LISP system file, usually called
LISP, contains a binary image of LISP after it has been initial-
ized and loaded with the library. You do not need a copy of the
library if you have this file.

Call LISP by typing LIS; the system will respond P; then type .;
when LISP finally responds READY, and types +, you are talking to
the LISP supervisor, usually called evalquote. Then type the
following:

SYSIN (LISP)

After typing the above, the system will find and load the basic
svstem hinary file of this name from tape. When it has read 1it
in successfully, it will respond with a T, and the LISP super-
visor will again type +, indicating that it 1s listening to you
again.

When typing in to evalgquote, typing a control-Q will clear the
input line buffer erasing the entire line up to the last carriage
return. Typing control-A erases the last character typed in,
echoing a 4 and the erased character; it will not go beyond the
last carriage return. Pressing the RUBOUT button while in the
middle of a typein to the LISP executive, evalquote, will clear
the entire read buffer of everything back to the last +, and

LISF will again type «.

b4 j Oomd N 08 OB

— ems wuh UGN G GBS ONN OGN BN O W O A OND BN O OB OO

!
|
|
|
o |

The LISP read program counts parentheses, and echoes a carriage
return when &1 left and right parentheses balance. Left and
right brackets, "[" and "}", are super-parentneses. A right
bracket will close all open left parentheses up to the last open
left bracket; if there is no open left bracket, it will close the
entire expression. For example:

PRINT ((THIS IS A LISP SYSTEM FROM BBN (FOR THE 949)

will print the expression shown with enough right parentheses to
close all 1lists; that is, the "]" is ejuivalent, in this case, to
three right parentheses. Unpaired right parentheses are read as
NIL.

To exit from LISF, type:
LOGOUT ()

One can then execute any system commands, except those which
start another subsystem, and continue LISP using the system
CONTINUE command. This will revive the LISP system exactly as
you left it, except that all open files will be closed, and you
will be typing to evalquote, whether or not you executed the
logout at the top level.

\

st g PR

SECTION III

DATA TYPES AND THE ORGANIZATIO!l CF VIRTUAL MEMORY

LISP operates in a 21-bit address space, though only that portion o
currently in use actually exists on the drum. A portion of the
address space above that actually allocated for structures is

used for representation cf small integers, as described below.

All data storage 1s contained within this virtual memory,

including literal atoms, list structure, arrays and compiled code,
large integers, floating point numbers, and pushdown list storage.
This virtual memory is divided into pages of 256 words. References
to the virtual storage are made viga an ln-core map which supplies
the address of the required page if it 1= in core, or traps to a
supervisory routine 1f the page is not in core. This drum super-

visory routine selects an in-core page, writes it back on the
drum if 1t nas been changed, and reads the required page from the
drum. Closed subroutine references to an iln-core word through
the map take anproximately 40 microseconds. A reference to a
word not in core, which must be obtained from the drum, takes up
to 33 milliseconds, the drum maximum access time. It takes twilce
as long 1f a page must be written out on the drum before the
referenced page can te read in.

Type Determination of Pointers

The virtual memory 1is divided into a number of areas as shown 1n
Fig. 1. As can be seen from this map of storage, simple arith-
metic on the address of a pointer will determine its type. Ve
chose to allocate storage rather than provide in-core descrip-
tors of storage areas, because they would take up valuible in-core
space.

-y

T o e

et

#rry

oy b,

OCTAL
ADDRESS

-~ 10 000 000

SMALL INTEGERS @ - Y 230 000
2
& m
460 000 2 9
7 > o
LARGE INTEGERS I... 158000 T £
FLOATING POINT NUMBERS | 50 goq
HASH TABLE
4 ATOM PNAME POINTER
4 ATOM FN CELLS
4 ATOM PROP LISTS
VIRTUAL
MEMORY
(MAPPED TO
E 4 CONTRCL PDL 440 900
4+ PARAMETER PDL A5 66
4 PNAMF STRINGS
340 000
' LIST STRUCTURE
| COMPILED CODE
SORE R
“E"Onf NUMBER PDL
- p» e e o o o - = o @ o = = ﬂ
FIG. 1 MEMORY ALLOCATION Ii LISP

-5=

T ———————
|
|
|

ATOMS

Literal Atons

A literal atom is constructed from any string of characters not
interpretabls =s an integer or a floating point number. When a
string of characters representing a literal atom 1is read in, a
search 1s made to determine if an atcm with the same print-name
has been seern before. If so, a pointer to that atom is used for
the current atom. If not, a new atom 1s created. Thus, as in all
LISP systems, a literal atom has a unique representation.

Four cells (94F words) are associated with each literal atom.
These cells contaln pointers to the print-name of the atom, the
function which it identifies, its top level or global value, and
its prcperty list. Since pointers to atoms occur in only one
part of the address space, one can tell rrom a pointer (address)
whether or not it 1is pointing to a literal atom.

Instead of having the four cells assoclated with each atom on the
same page., each 1s put in a separate space in a position compu-
table from thc pointer to the atom.

Separating value cells and function cells, for example, is useful
because most users will not use the same name for a global
variable as they wiil for a function. Therefore, if the four
cells were brought 1n whenever any one weés asked for, it is

likely that the other three cells would never be referenced. Yet,
they use up room in core which could bte used for other storage.
Similar.y, the print-name pcinters assoclated with atoms are
needed during input and output, but rarely during a computation.
Therefore, during computation these cells are never in core.

cap of a lilteral a.c.. usually contains the top level binding of
vae atom. If the atom has not yet been bound, the value cell

-6-

it A

it

MRS S

T

E
£
%
£
]1
.:ﬁ
£
‘E_

— way AW) HN O N O o @D) O G o e S ap am

-

contains the speclal atom NOBIND. gdr of the atom is a pointer

to the atom property list, initially NIL. The PNAME cell contains
a pointer to a packed character table which contains the print.
name of the atom. The function cell contains NIl until a function
by that name is defined. One implication not immediately obvious
is that car[NIL] = NIL, and cdr[NIL] = NIL. These latter two
values are a significant convenience in programming.

Numerical Atoms

Integers

In LISP, most numerical atoms (numbers) do no. nave a unique re-
presentation; that is, a number of different pointers may reference
numbers with the same value. This implies that for comparison of
numbers, or for arithmetic operations, the values of the numbers
musc be obtained. The values of floating point n.mbers and large
integers are stored in a "full word" space. Pointers to these
values are used in list structure.

However, we utilize the fact that not all addresses in the virtual
address space of the drum can legitimately appear as pointers in
list structure. These "illegal" pointers are therefore used in
the context of 1ist structure to represent "small" integers
directly, offset by a constant.

The input format for an integer is any string of digivs, option-

ally preceded by a "+" or "-". Integers must have magnitude less
than 223. "Small" integers are those of magnitude below approxi-
mately 218 (an assembly parameter), A string of digits followed

by a "Q" will te interpreted as an cctal number.

Floating Point Numbers

Floating point numbers and operations are avallable in BBN LiSP.
They are stored in two contiguous 24 bit words in standard 94g
format, in full word space. When creating an atom with read,
ratom or pack, LISP will recognize as a floating point number a

string of digits containing a decimal point. The letter "E"
(exponent of 10; 1.e. yyExx=yy * loxx) will also serve to detig-
nate a flcating point number 1if preceded and followed by one or
more digits. The followlng are legal floating point input strings.

5. 5.0 5E0 S5E-3 5.2E46 .3

The floating point/string conversion, and the floating point
arithmetic are performed by the POP's and BRS's avallable in the
94g¢ system. Additional inrormation concerning conversion and
precision 1s avallable from the system documentation of these
routines.

The atom printing routine (used by grinl, prin2, prin3, unpack)
will call the system conversion routine when it encounters a

floating pcint datum. The output format is controlled by the
function fitrmt{n] described later.

G T s o o BE O T S D B o
e ensew Wy UME WD G B

Arrays

Arrays in BBN LISP have the following format.

* Length
Header Block W

Non-Pointer Area

Pointer Area

Relocation Information

Typical Array

The HEATER ELOCK is four celis long and contains:

Cell: # Length of entire array.

1 Relative address of first word of protected
pointers.

¢ Relative address of first word of relocation
information.

3 B if an integer or symbolic array-.
1 1f a floating point array.
Used as temporary storage in compliled code.

RO

An array may contaln both pointer and non-pointer data, separated
as shown. Pointer data 1s assumed to be one of the standard LISP
types, and the pointer data cells in all arrays are used as base
cells for tracing during gartage collection. The non-pointer
data, beginning in the fifth cell of the array, 1s of unrestricted
type, and will not be used as trace pointers during garbage
collection.

Relocation information contains the relative addresses of cells
in the array which are to be relocated when the array 1s used as
a ccmpiled function, and 1s placed in core memory.

Exampiles:

1, Complled code.

a. Machine instructions and unboxed numeric
literals are in the non-pointer area.

b. Other literals and varliable name pointers are
in the pointer area.

c. Relocation information area addresses all
machine instructions whose address is within
the same program, e.g., BRANCH instructions.

2. Array of lists.
All data would be in the pointer area; the other
areas would be of length d.

3. Array of unboxed numbers.
All data would be in the non-pointer area; tne
other areas would be of length 9.

-10-

it
- _.]

i
i}i

e |

[A

! List Structure

List Structure 1s created in 1ist space as shown in the memory
map. Lists can contain pointers to all data types. As can be
seen from the map, list space and array space grow toward each
other. The total space available is an assembly parameter.
Currently the space available is 96K (K=1024) SDS 940 2U4 bit
words, which if used all for 1list storage would provide 48K words
of free storage.

HTRTTA AT TS T)

yrrmy

tey i e b DO BEN ey P ey)

o T

*
| R]

-11-

TR T e
e eow

SECTION IV
FUNCTION TYPES .
There are basically eight function types in the BBN LISP System. ac

These eight types are characterized by three dichotomies. A
function may independently have:

1. 1its arguments evaluated or unevaluated,

2. a fixed number of arguments or an indefinite number of
arguments.

3. be defined by a LISP expression, or by machine code
(which may be permanent system code, or compiled
machine code).

Expressions used to define functions must start with either
LAMBDA, or NLAMBDA; indicating that the arguments of this func-
tion are to be evaluated, or not evaluated, respectively.
Following the LAMBDA or NLAMBDA may be any atom (except NIL) or
a 1list of atoms (possibly empty). If there is a list of atoms,
each atom in the 1list 1s the name of an argument for the function
defined by the expression. Arguments for the function will be
evaluated or unevaluated, as dictated by LAMBDA or NLAMBDA, and

\ired with these argument names. If an atom follows the LAMBDA
or NLAMBDA, this function has an indefinite number of arguments.
If 1t 1s an NLAMBDA expression, then the atom 1s paired to the
list of arguments (unevaluated) of the function; that 1s, to cdr
of the form in which this function name was car.

If a LAMBDA is f "“lowed by an atom, each of its arguments, n, will
be evaluated 1n urn and placed on the parameter push down list.
The atom following the LAMBDA 1s bound to the number of arguments
which have been evaluated. A built-in function arg[m] returns

-12-

I Fepurs 1« J- 10 L ey o S N 3 e . & = i

U L s

Bt @

e

e e

the value of the mth argument of this function from the push
down list. For m>n or mgo, it is undefined.

Functions defined by expressions can be compiled by the LISP com-
piler, as described in the section on the compiler and lap. They
may also be written directly in machine code and the LAP assembly
language if the lap conventions are followed to allow linkage to
LISP functions. Functions created both by the ccmpiler and lap
are referred to as compiled functions. Built-in system coded
functions are called subroutines. To determine the type of any
function fn, you can use the function fntyp[fn]. The value of
fntyp is one of the following 12 types:

EXFR CEXPR SUBR
EXPR* CEXPR* SUBR*
FEXPR CFEXPR FSUBR
FEXPR* CFEXPR#® FSUBR*

The types in the first column are all defined by expressions.

The * suffix indicates an indsfinite number of arguments (i.e. an
atom following the LAMBDA or NLAMBDA). Functions of types in the
first two rows evaluate their arguments. The types in the second
column are compiled versions of the types in the first column, as
indicated by the prefix C. 1In the third column are the parallel
types for built-in subroutines. The prefix F again indicates no
evaluation of arguments. Thus, for example, a CFEXPR* is a
compiled form of an NLAMBDA expression with an atom following

the NLAMBDA.

-13-

e

Ll T e

A standard feature of the BBN LISP system 1s that no error

occurs 1f a function 1s called with too many or too few arguments.
If a function 1s called with too many arguments, the extra argu-
ments are evaluated but ignored. If a function is called with
too few arguments, the unsupplied ones will be delivered as NIL.
This applies to both bullt-in and defined functions.

There 1s a function progn of an arbitrary number of arguments
which evaluates the arguments in order and returns the value of
the las% (i.e., 1t resembles and 1s an extension of prog2).

The conditional expression has been generalized so that instead
of doubhlets it accepts n+l-tuplets which will be interpreted in
the following manner:

(COND
(P1 E11 El2 E13)
(P2 E21 E22)
(P3)
(P4 E41))

will be taken as equivalent to (in LISP 1.5):

(COND
(P1 (PROGN El1 El12 E12*°
(P2 (PROGN E21 E22))
(P3 P3)
(P4 EN1)
(T NIL))

This is not exactly true, but only because P3 is not evaluated
a second time, 1f the value 1s needed 1n the third item in the

-1l=

— e WEE I W I N D S SN S AR B R W T WS o W e

wh
maettby o e e segee |

Ll
h
T}

second conditicnal expression. Thus, a list in a cond with only
a predicate and no following expressions causes the value of the
predicate itself t. be returned. Note also that NIL i1s returned
if all the predicates have value NIL. No error is invoked.

LAMBDA and NLAMBDA expressions also have implicit progn's; thus
for example

(LAMl;DA (V1 v2) (F1 V1) (F2 Vv2) NIL)
is interpreted as
(LAMBDA (V1 V2) (PROGN (F1 V1) (F2 Vv2) NIL))
The value of the last expression following LAMBDA (or NLAMBDA)

is returned as the value of the expression. In this example,
the function would always return NIL.

SECTION V n

PRIMITIVE FUNCTIONS AND PREDICATES

Primitive Functions

car[x] car gives the first element of a
l1st x, or the left element of a
dotted pair x. Nominally unde-
fined for literal atoms, it
usually zives the top level
binding (value) of a literal
atom x. For the usually undefined
case of a number, its value 1is
the number itself.

cdr(x] cdr gives the tail of a list (all
but tne first element). This 1s
also the right member of a dotted
pair. If x 1s a literal atom,
cdr[x] gives the property list
of x. Property lists are usually
NIL unless modified by the user.
If x 1s a number, cdr returns NIL.

caar[x] = car[car(x]] All 30 combinations of nested
cars and c¢drs up to 4 deep are

cadr[x] = car[cdr[x]] included in the system. Levels 1,
2 and 3 are subroutines; 4 is

cddddr(x] = compiled. All are compiled open

[edriecdr{cdr{cdr(x]])]]

by the compller.

-16-

T e, D e A

it e h e

s

%

cons(x;y]

cons(x;y]
1)

2)

3)

)

5;

The user
function:

conspage|

cons constructs a dotted pair of
xand y. If y 1s a 1list, x ve-
comes the first element of that
list. To minimize drum accesses
the following algorithm is used
for finding a page on which to
put the constructed LISP word.

is placed

on the page with y if y 1s a 1list and there is room;
otherwise -

on the page with x 1f x 1s a list and there 1is room;
otherwise

on the same page as the last cons if there is room;
otherwise

on a page in core if one 1s available with a specified
minimum of storage; otherwise

on any page with a specified minimum of storage.

The specified minimum is presently 20 LISP words in
both cases.

may effect the operation of cons with the following

x] causes the page cn which X re-
sldes to be used for alternative
3 above instead of the result of
the previous cors. If x is an
atom, alternative 4 or 5 will
be tcken.

-17-

i S A SRR A ORI RS LI et

consc..ntl]

rplacd{x;y]

rplacalx;y]

quote[x]

Returns the number o conses

since LISP started up.

This very dangerous SUBR places
in the decrement of the cell
pointed to by x the polnter y.
Thus it changes the internal 1list
sy, -ucture physically, as opposed
to cons which creates a new list
element. This is the only way
to get a circular list inside cf
LISP; that is by placing a
pointer to the beginning of a
list in a spot at rhe end of the

~ilst. Using this function care-

lessly 1s o.ae of the few ways to
real.y clubber the system. The
value of rplacd 1s Xx.

This SUBR is simi{ . to rplacd,
but it replaces the address
pointer of x with y. The .Lame
caveats which applied to using
rplacd apply to rplaca. The
value of rplaca is x. Rplaca
and rplacd of NIL are illegal.

This is a function that prevents
its argument from being evaluated.
Its value is x 1tself.

-18-

T T T

™

T

cond(x]

l

The argument for cond is a 1list.
Each element of the 1list is it-
self a list containing n > 1
items: the first 1s an expres.ion
whose value may be false or true
(that is NIL, or anything which
is not NIL); the rest may be any
expressions. This 1« the condi-
tional expressior in the LISP
system. The mearing of it 1is:

if the first element of the first
1list 1s true (not NIL), then the
following expressions are evalu-
ated. The value of the condi-
tional is the value of the last
expression in this sublist. If
there 1s only one element in the
n-tuplet, then the value of the
conditional is the value of this
element if it 1is not NIL.

This value of a conditional agrees
with that of LISP 1.5 for pairs

of items, but allows additional
flexibility. If the first ele-
ment of the first list 1s false
(=NIL), then the second sublist

is considered, etc. Thus, the
arguments are searched until a
first element of a list is found
which 1s not NIL. If none are
found, the value of the conditional
expression is NIL.

-19-

selectq[x;yi;yz;---;yn;z]

This very useful function 1is used
to select a sequence of instruc-
tions based on the value of 1its
first argument x. Each of the

Y4 is a list of the form

(53 €11 €23+ +81)

where 54 is the selection key.

If s; 1s an atom the value of x
is tested to see 1f it 1is eq %o
8; (not evaluated). If so, the

expressions e,,,...€,, are eval-

<1

uated 1n sequence, and the value
of the selectq 1s the value of
the last expression evaluated,
l.e. ey

If 84 1s a ilst, and if any ele-
ment of s, 1s eq to the value of
X, then e,, to g, 4 are evaluated
in turn as above.

If ¥4 1s not selected in one of
the two ways described then
L4 is tested, etc. until all
the y's have been tested. If
none 1s selected, the value of
the selectq is the value of z.
2 must be present.

-20=

—

progl[xl;xz;...;xn]

prog2lx;y]

progn[x;y;...;2]

-

An example of the form of a
selectg 1s:
(SELECTQ (CAR X)
(@ (PRINT FOO) (FIE X))
((A EIOU) (VOWEL X))
(Y (TRY-AGAIN X))
(COND((NULL X)NIL)
(T (QUOTE STOP))))
which has 3 cases, Q,(AE I 0O U)
and Y, and a default condition
which is a cond.

selectq compiles open, and is
therefore very fast; however it
will not work for lists, large
integers or floating point num-
bers since it uses a 24 bit open
compare (an open eq).

This functi.n evaluates its
arguments in order, that is, X
then x, etc. It returns the
value of its first argument x,.

Evaluates x, then y and returns

Y.

progn evaluates each of 1its
arguments in sequence, and re-
turns the value of its last
argument as 1its value. It 1s an
extension cf prog2.

~21-

prog[args;el;ez;...p

golx]

n

]

Thils feature allows the user to
write an ALGuUL-1like program con-
taining LISP statements to be
executed and 1is identical to the
prog in LISP 1.5. The first
argument 1s a list of program
veriables. The rest is a se-
quence of (non-atomic) state-
ments (expressions), and atomic
symbols used as labels fcr trans-
fer points. The value of a prog
is determined by the function
lreturn. If no return is exe-
cuted, the value of the prog is
not guaranteed, but will not give
an error.

g0 is the function used to cause
a transfer in prog. (GO A) will
cause the program to continue at
the label A.

A go can be used at an; level in
a prog. If a pgo is executed in
an interpreted function which is

not a prog, it will be execcuted
in the last interpreted prog
entered.

-P2=

return{x]

set(x;y]

setq(x;y]

setqalx;y]

A return is the normal end of a
prog. Its argument is evaluated
and is the value of the prog in
which it appears. If a return
i1s executed in an interpreted

fun.tion which is not a prog,
the return will be executed in
the last Interpreted prog entered.

This function sets the atom which
is the value of x, to the value
of y, and returns the value of y.

This FSUBR is identical to set,
except that the first argument
is not evaluated.

Example: If the value x is ¢,
and the value of y 1s b, then
set [x;y] would result in ¢
having value b, and b returned.
setq[x;y] would result in x
having value b, and b returned.
In both cases, the value of y
15 unaffected.

Identical to setq except that
neither arguient 1s evaluated.

-3

Predicates and Loglical Connectives

atom(x]

eq(x;y]

eqplx;y]

neq{x:y]

nill[]

nullx]

equal{x;y]

—i T Ak

atom[x]=T i1f x 1s an atom; NIL
otherwise.

The value of eq 1s T 1f x and y
are ldentical atoms, NIL other-
wise. Thils includes numbers, 1if
eq 1s called from an interpreted
function. It 1s not guaranteed
for floating point numbers and
large integers when used in a
compiled function, since 1t is

compiled open as a 24 bit compare.

Identical to eq, ~xcept that it
i1s complled closed, and hence
will work for all numbers in
compliled code.

The value of this function is T
if x is not eqp to y, and NIL
otherwise.

Defined as NIL

eq[x;NIL]

The value of this function is T
if x and y are equal, that is,
identical S-expressions, and NIL
otherwise, Identical here means
that they will print identically.

-2l -

b Sousd Sumd Baxm Y

4

sa

Lt

Y

and[xr...xn] Tnis functlon is an FSUBR and
can take an indefinite number of
arguments. Its value 1s the
value of its last arpument if

bt nm;mmmﬁwmmmmmm i

none of its arguments has value
NIL, and is NIL otherwise. Argu-
ments past the first null argu-
ment are not evaluated.

or[xl;...;xn] or is also an FSUBR and may have
an indefinite number of arpuments
(including 0). or has value NIL
if all of its arguments have
value NIL, otnerwise, it has the

value of 1its first non-null argu-

% v i

EintmriEt

ment. Arguments past this one

are not evaluated.

% not| x] Same as null
memb[x;y] This function determines if x is

a member of list y, i.e. if there
is an element of y eq to x. If
so 1t returns the portion of the

TR o T

list starting with that element.
If not it returns NIL.

P

Lt

member[x;y] Identical tc memb except that it
uses equal insteau of eq to check
membership of x in y.

il il - i Y it
— emp CED TS G G G OGN e e ap GEs BN o Gl R W N e

intersection(x,;y]

union{x;y]

This function returns with a list
whose elements were members cf
both lists x and y.

This function i5 entered with two
lists. It returns with a l1list
consisting of all elements
included on either of the twe
original lists. If the same

item 1s a member of both original
lists, it 1is included only once
on the new list.

-26-

BT R A T 4_ ml :mamﬂ%

WW

PR

Lt

oy oss WAF TN TN B GES Y W o

append(x;y]

nceac(x;y]

SECTION VI
LIST MANIPULATIGCN AND CONCATENATION

The value of list is a 1list of
the values of its arguments.

This function coples the top
level of 1list x and appends list
y to thls copy. The value is
the comblined 1list.

This function 1s similar to

append in effect, but it causes
this effect by actually modifying
the list structure x, and making
the last element in the list x
polnt to the 1list y. The valiue

of nconc is a pointer to the first
list x, but since this first list
has now been modified, it 1s a
pointer to the concatenated list.

-27-

RIS —

oo

tconeclx;p]

lconc{x;p]

attach(x;y]

This function provides an effri-

clent way for placlng an item x
at the end of a 1list. This list
is the first item on p, that is,
car{p); =drlp] 1s a pointer to

the last element in this list; x
i1s placea on the end of the list

by modifying this structure, and
X 1s placed on the list as an
item. The effect of this function
is equivalent to

nconcfcar{p]; List[x]], with cdrip]
updated to point to the last ele-
ment of the modified list.

This function 1s similar to tconc,
except that in tnis case x is a
list. An entire list willl be
tacked on the end of car(p], and
cdr(p] will be adjusted to be a
pointer to the last element of
this new combined list. Both
tconc and lconc work correctly
glven null arguments.

This functlion attaches the element
X on the front of the list y by
doing an rplaca and an rplacd.
This will not work correctly if

Y 1s an atom. Tnhus 1t is simllar
to cons, except that 1t modifles
the contents of the first element
of the non-null list y.

-28-~

gt

REPIR S

i —"

o

P

-ss sme G G55 G a2 0 D GW 2

i et

remove[x;1]

dremove(x;1]

copy[x]

reverse[1]

dreverse(l]

subst[x;y;z]

The function remove removes all
occurrences of x from list 1,
givirg a copy of x with all ele~
ments equal to x removed.

This function is identical to

remove, but actually modifies

the list 1 when removing x, and
returns x itself.

This function makes a copy of the
list x. The value of copy is the
(bcation of the) copied 1ist. All
levels of x are copied.

This 1s a runction to reverse the
top level of a list. Thus, using
reverse on

(A B (CD)) gives ((c D) B A)

Identical to reverse but dreverse
destroys the list 1 while reversing
by modifying pointers, and thus
does not use any additional
storage.

This function gives the result of
substituting the S-expression x
for all cccurrences of the atomic
symbol y in th- S-expression z.
It returns a copy of z with the
changes made.

-20.

dsubst[x;y;z]

sublis[x;y]

subpair(x;y:z]fl

Tast(x]

e . PO P S AP

Y A

am d,

Identical to subst, but physically
inserts a copy of x for y in z,
thus changing the 1list structure
Zz 1itself.

Here x 1s a list of pairs:
((ul.vl) (u2.v2) co (un.vn))

The value of sutlis{x;y] 1s the
result of substituting each v
for the corresponding u in y.
Copies the structure y with
changes.

Similar to sublls, except that
eiements on ¥ are substituted for
corresponding atoms on x in z.
New structure 1s created only 1f

neededy or if fl=T.

This function has as its velue a
polnter to the last cell in the

list x, anc returns NIL 1f x 1s

an atom. i.e. 1f x=(A B C) then
last [x] = (C)

-30-

“

ladbdield UL

ca WN am

nthl{x;n]

length(x]

The arguments of nth are a list x

and a positive integer n. Its
value 13 a list whose first ele-
ment 1s the nth element of list
Xx. Thus if n =], 1t returns
the list x itself. If n = 2,

it returns cdr{x]. If n = 3,

it returns cddr(x], etc.

If n =0 1t returns cons[NTL,x].

This functlon has as a value the
length of the list x. If x is
an atom, it returns #.

-31-

SECTION VII

putix;y;z]

rempropix;y]

prop{x;y;u]

PROPERTY LIST FUNCTIONS

This function puts on the pro-
perty list of x, the label y
fol)lowed by the property z. The
current value of z replaces any

previous value of z with label y

on this property 1list.

This function removes all occur-
rences of tne proper’y with label
y from the property list of Xx.

The functlon prop searches the
list x for an 1ltem that 1s equal
to y. If such an element 1is
found, the value or prep is the
rest of the list beglnning
immediately after that element.
Otherwise, the value 1is u[],
where u 1& a function of no argu-
Its effect is similar to

memb and member, and they

ments.

are

more efficient when usable.

PP S g I

H‘ H

—4

get(x;y.,

getplx;y]

deflist{x:p]

This function gets from the list
X the item after the atom y on
list x. If y is not on the 1list
X, this function returns NIL. For
example, get{(A B C D);B] = C.

This function gets the property
with label y from the property
list of x.
NOTE: Both getp and get may be
used on property lists. However,
since getp searches a list two at
a time, the latter allows one to
have the same object as both a
property and a value. e.g., if
the property 1list of x 1is
(PROP1 A PROP2 B A C)

then get(x;A] = PROP2,

but getp(x;A] = C.

This function 1s used to put
items on property lists. Its
first arpument x 1s a list of

two element lists. The first of
each 1s a name. The second ele-
ment is the value to be stored
after the property p on the pro-
perty list of the name. The
second argument p is the property
that iIs to be used.

[}
LWV
)

[}

add[x;y;z]

assoc(x;a)

sasscc[x;y;ul

This function adds the value z to
the list appearing under the

property y on the atom x. If x -
does not have a property ¥ the ac
effect is the same as .
put{x;y;1ist(z]].

If a is a 1list of dotted pairs,

then assoc will produce the first
pair whose first item 1s eq to x. If
such an item is not found, assoc
will return NIL.

The functicn sassoc searches y,
which is a 1list of dotted pairs,
for a palr whose first element is
equal to x. If such a pair is
found, the value of sassoc is this
pair. Odcherwise, the function u
of no argumencs 1s taken as the
value of sassoc.

-34-

Y

tmd ey SN Wy ey —f —,

getd(x]

putd(x;y]

putdg(x;y]

SECTION VIII

FUNCTION DEFINITION AND EVALUATION

This function gets the definition
of the function whose name 1s

the value of x. If x 1s not a
deiined function, the value of
getd(x] 1s NIL; i1f x is a machine
code function, the value is a

number.

putd places the value of y into
the f''nction cell of tue atom
which 1s the value of x. This

is the tasic way of defining
functions. putd 1s mnemonic for
put definition on x. The value of
putd 1s the definition (value of

y).

This function 1s similar to putd,
but both arguments are considered
quoted, and 1ts valiue 1s x.

-35-

e ———————

fntyp(fn]

define(x]

This function returns NIL if the
atom fn is not the name of a de-
fined function. If fn 1s a func-
tion, then fntyp returns one of
the following as defined in the
section on function types:

EXPR CEXPR SUBR

EXPR#* CEXPR* SUBR*
FEXPR CFEXPR FSUBR
FEXPR* CFEXPR* FSUBR*

The prefix F indicates unevalu-
ated arguments; the prefix g in-
dicates compiled code; and the

suffix * indicates an indefinite

number c¢f arguments.

The argument of define is a 1list.
Each element of the 1ist 1is it-
self a 1list containing two

or more items. In a two-item
list, the first item of each ele-
ment of the list is the name of a
function to be defined, and the
second item 1is the defining
LAMBDA or NLAMBDA expression. In
longer lists, the first item

is again the name of the function
to be defined. The second is the
LAMBDA 1ist of variables and the

-4 s Geml OE

remainder of tne lists are forms for
evaluation. As an example, consider
the following two equivalent

~36-

3

[|

ey Oy Gy PEay evy - pF—f

defineqlx;..

eval[x]

evala{x;a]

. 32]

expressions for defining the
function null.

1) (NULL (LAMBDA (X) (EQ X NIL)))
2) (NULL (X) (EQ X NIL))

define will not allow redefini-

tion of a SUBR or FSUEBR.

This FEXPR 1is closely related to
deiine. However, it can take an
indefinite number of arguments,
and it willl treat them literally
as if they were quoted. Each of
the arguments must be a 1list, of
the form described in define.
Using defineq instead of define
a.lows one to eliminate two palrs
of parentheses in writing func-
tions to be defined for loading
with the function load.

eval evaluates the expression x
and returns this value.

This 1s the regular eval from
7894 LISP. 1Its first argument is
a form which 1s evaluated by us-
ing the values obtained from a,

a list of dotted pairs. That is,
any varlables appearing free in
X, that also appear on a, will be
given the value indicated on a.

-37-

evalr(x;a]

e[x]

applylfn;args]

nargs{fn]

arglist{fn]

Same ac evala except with list a
reversed. Used by evala.

This FEXPR is defined as eval;
however, it is shorter and it re-
moves the necessity for the extra
pair of parentheses for the list
of arguments for eval. Thus,
when typing into evalquote one
can simply type e followed by
whatever one would type into eval
and have it evaluated.

apply applies the function fn to
the arguments args. 1i.e. the
arguments of fn, args, are not
evaluated but given to fn direct-

ly.

Returns NIL if fn is not a func-
tion, and the number of arsuments
of fn if it is. It returns 1 for
functions of tyne

EXPR*, FLEXPR¥, CEXPR¥, CFEXPR¥*,
CSUBR* and CFSUER¥*.

Returns with the list of arru-
ments of the function fn. Causes
an error if fn is a built-in

function or undefined.

-30-

el B

e d

1 __“‘

o

o] -

arg[n)

setarg[n;v]

This function works with s func-
tion of type EXPR*® or CEXPR*.
It returns argument n of that
function. Tt is undefined 1if
n<o or n>m where m is the number

of arguments bound.

Sets argument n of an EXPR*
function to v.

-39-

SECTION IX

THE LISP EDITOR

The LISP editor allows rapid, convenient modification of 1list
structures, Most often it is used to edit function definitions,
often while the function itself 1s running. It is another impor-
tant feature which allows good on-line interaction in the BBN-LISP
system,

Editor Language Structure

Let us take a concrete example of a list (not necessarily a func-
tion definition) to be edited. Suppose we are editing the follow-
ing incorrect definition of tue append function:

(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR)
(APPEND (CDR X Y)))))).

At any glven moment, the editor's attentlion is confined to a
single list (generally a subcomponent of the original list being
edited), which it will print when given the command P. To avoid
printing of confusing detail, sublists of sublists will be printed
simply as &. Thus:

%p
(LAMBDA (X) Y (COND & &)).

where ¥ indicates that thls line was typed by the user.

{0~

=
£
-
E
E
E

3
£
E

HTI: e ARG T

il g Rttt A et K ke G i bt e

Only the 1list on which attention is currently focused may be
changed. Commands thus fall naturally into four classes: moving
around the 1list strurture; making changes in the current 1list;
printing parts of the 1list belng edited; and entering and leaving
the editor.

Many commands use the convention that an integer designates a
sublist of the current list. For example, 1f an integer alone
is typed, attention 1s focused on the designated sublist of the
current list.

Thus:

*2
¥p
(X)

The converse command is the number @, which causes the current
list to revert to its former state. For example, starting again
with the 1ist at the beglinning ¢f the section:

%3 p

Y
*g p

(LAMBDA (X} Y (COND & &)).

Note the use of scveral commands on a single line. In BBN LISP,

a carriage return 1s printed automatically whenever a r.ight paren-
thesis is typed which causes the parenthesis level to become a
zero. Therefore, a non-atomic command is necessarily always the
last command on its line.

41—

Jat
‘...é.-. | e |

A A DA, O

In the remaining examples, ur.less mentionecd specifical’y, it is
assumed that the state of the edit 1s that which existed at the
end of the previous 2xample. As above, lines typed by the user
are prefixed with an asterisk.

Attention Commands

The two fundamental comrmmands for moving around the structure have
¢ eady been mentloned: a positive Integer n, to examine the gth
sublist, and @, to revert to the superlist. If n is a positive

th sublist of the current 1list

integer, then -n examinss the n
starting from the end and counting cackwards, i1.e. -1 examines

the last sublist of the current 1list.

A more drastic command is 4, which clears the editor's memury of
descent through the structure and reestablishes the t«p level of
the entire list structure belng edited as current. Thus:

®4 2 1+ P
(LAMBDA (X) Y (COND & &);.

? command similar to n i> (NTH n) which caused the list starting
with the nth sublist of the current list to become current. Thus:

®#(NTH 3)
#p
(Y (COND & &)).
!gp
LAMBDA (X) Y (CON» & &)).

~4o.

e,
s A Pl b e o vt i e b . i T e s i
et e 1 S e s mmd i

[P E———

pwomg

RN AN

[e | —y

Ry

(NTH -n) may also be used, with the expected result:

®¥(NTH -3)
%p ¢
1X) Y (COND & &))

The command (F e), where e is any S-expression, searches for an
instance of e in the current 1ist, and then acts 1like NTH, so

that for example:

*(F Y)
*p
(Y (COND & &.7.

A more thorough (and time-consuming) search is provided by (F e T)
which searches through the entire structure.

¥4 (F 2 T)
#p
(2)
lgp
((NUL %) 2)
2P
(COND (& Z) (T &))
g p

(LAMBDA (X) Y (COND & &)).

-43-

Ay

One more variation is provided by (F e n), which finds the nth
occurrence of e anywhere in the structi- :. The search is done
in printout order, so for example:

*4 (F X 1)
®p

(X)
%+ (F X 2)
%p

(X)
2P

(NUL X)
¥# (F X 3)
igp

(CDR X Y)

The argument e of the F commands need not be a literal S-expression.
The symbol & will match any element of a iist; the symbol -- as

the last element of a list to be searched for will match the rest
of any list. Thus:

®+(F (NUL &) T)
*p

{NUL X)

“t{F (CDR --) T)
*p

(CDR X Y)

%4(F (CDR &) T)
?

The question mark which followed t¢he last commard is tbhe cditor's
all-purpose error comment: 1t simply means something was wrong,

Ty i

Jr—_——

e

[

i

with the last command. The commands are simple enough that it
is rarely diffic 1t to ascertain the nature of the error. A

AR R e

it -t i 1 Hili
— aass W D DD BB SBN BBN BB M BN BB BB BB BEN B BN B

problem may arise if several commands were stacked on a single
line, since no indicaticn is given of which one caused the error:

in this case the state of the edit can always be dis~overed by
using P,

I

i

Three facilities are available for saving information relating to
the current state orf the edit and later retrieving it. At any
stage in the edit, a mark can be made and later returned to. The
commands are MARK, which marks the current state for fubure
reference: +, which returns to the last mark without destroying
it: and <+, which returns to the last mark and forgets 1it. For

LTI

e

examnnle:
¥4 4 2P
: ({NUL X) Z)
§ ¥MARK 4 (F CONS T)
, ¥p
(CONS (CAR) (APPEND &))
LTI
(LAMBDA (X) Y (COND & &))
g | s P
((NUL X) 2)
: PO

@

This last example demonstrates another facet of the error recovery
mechanism: to avoid further ccenfusion when an error occurs, all
commands on the line beyond the one which caused the error are
forgotten.

LT

L3

R 1TV e G

—45-

A more drastic marking facility is available if it 1s desired to
save the state of the edit in its entirety. Since chanres are -

made as they are typed in, theve is no simple way to undo part of .
an edit. However, the ccmmand COPY wili make a corny of the entire -
state of the edit, which mav be retrieved with RESTORE. This has
the effect of undoing all chanres made since COPY was piven, since
the copy 1s not affected by editing commands eiven after the corLy
was made. This facility is unlike MARK in that a second COPY
obliterates the list saved by the first. Furthermore, since
RESTORE retrieves the copied edit state and not a copy thereof,
subsequent RESTOREs will definitely not have the desired effect.

Frequently it is desired to move or copy a sublist from one place
in the structure beinpg edited to another. No command for perform-
ing this particular operation is provided. However, 1t is

possible to set a variable to the current list or a sublist thereof.
The I command adescribed below can then be used to treat this value
exactly as though 1t had been typed in literally. In particular,
the command (S v), where v is a variable name, sets v to the

current list. (S v #) may also be used. Thus:

%4+ (S EL2 2)
will result in setting the value of EL2 to the sublist (X).

Modification commands

Just as most general text editors contain INSERT, REPLACE, and
APPEND commands, the LISP editor provides facilities for these

three basic operations. To insert the S-exnressions e G

1" "&n
before sublist n of the current list, one simply plves the

command (-n ey +e- em), thus:

L6

#4 (F CAR T)
#p

(CAR®
#(-1 CRR)

P

(CRR CAR).

To replace the nth sublist with e,...e , one gives the command

(n el...em), for example:

%#+(F NUL T)
*p

(NUL X)
%¥(1 NULL IS)
*p

(NULL IS X).

And to append at the end of the current 1list, one writes
(N el...e), thus:

#(N THIS LIST)
*p
(NULL IS X THIS LIST).

Deletlons may te accomplished by using the replace operaticn with

no new S-expressions specified: to restore the 1list we have just
created to the state in which we presumably want it, we can say:

®(5)
®(y)
®(2)
*p
(NULL X).

Deletions should generally be made from back to front, since other-
wise the indices of later sublists will change as earlier ones

are deleted, e.z. the above sequence of commands given in front

to back order would have been

*(2)
*(3)
*(3).

Very often one wants to make a simple change in a list structure,
without wanting to kncw exactly how to trace down the structure
to the point where the emendation is to be made. The command

(R elez) replaces all occurrences of e, in the current list and
all its substructure by €s5- This 1s done using a variant of
subst called dsubst that runs faster, and physically renlaces the
0ld structure in the list by a copy of the new structure. For
example:

*(R ZY)
®y 2 P
((NUL X) Y)

The mechanism by which lists saved with the S command may be used,

among other things, is (I ¢ €y - en), which is equivalent to
([atom[c)+c; T+eval[c]] eval[gﬂ ce eval[en]). Thus for examrle,

-8~

i =i Gt DN EHE G

L B A T A e '”W!

— eces ey GHD GE IS B BB O GOY o P D O B BB By B =

s e et e

if EL2 has been set to (X) as per the sample above:
¥4 (I (CAR (QUOTE (F))) EL2 T)
*p
(X)

because the I command is equivalent to (F (X) T).

Structure changing commands

The commands presented in the last section do not allow convenient
alteration of the list structure itself, as opposed to components
thereof. Ccnsider, for example, the list (A B (C D E) F G). We
can remove the parenthesis around (C D E), which is the third
sublist, by (LO 3) (this stands for take Left paren Out). This
produces the list (A B C D E). LO simply deletes all elements of
the original 1list beyond the one specified. If we want to preserve
them, we could say (BO 3), take Both parentheses Out, which pro-
duces (A B CDEF G). Conversely, if we want to take the partial
list beginning at B and subordinate it one level, making

(A (B(CDE)FG)), we can say (LI 2), i.e. put a Left parenthe-
sis in before sublist 2 (and a matching right parenthesis at the
end of the 1ist). Again, if we want the matching right parenthe-
sis inserted somewhere other than at the end of the 1list (after
the F, for example), we can say (BI 2 4), out Both parentheses

In around elements 2 thrcugh 4, which results in the list

(A (B (CDE)F)GQG).

Two other operations of this sort are also possible. If we wanted
to bring only the D and E up to the level of the A B F G, and
leave (C) as a sublist, we can use (RI 3 1), namely move the Right
paren at the end of sublist 3 In to sublist 3 after sublist 1

-49-

-

T IR

(of sublist 3). This will produce (A B (C) DE F G). A related
operation is (RO 3), which means move the Right parentiiesis of
sublist 3 Out to the end of the 1ist, produecing (A B (C D E F G)).
Finally, if it is desired to move a right parenthesis only part-
way out, for example to produce (A B (C D E F) G), this can be
accomplished by (RO 3) followed by (RI 3 U4).

Printing commands

We have already encountered the command P, which prints the current
list showling only one level of nesting. To print a selected sub-
list in the same way without changing the state of the edit,

(P n) is used: for example,

L
(LAMBDA (X) Y (COND & &))
(P 2)
(x).

Furthermore, one may examine the nth sublist (or, if n=0, the
current 1list) to m levels of nesting by using (P n m). The con-
vention is that m=3 ylelds the usual format: several 1llustrations

are glven below:

(P g 1)

&
®(P g 2)

(LAMBDA & Y &)
*(P g 3)
(LAMBDA (X) Y (COND & &))
*(p 4 2)

(COND & &)
®(p 4 &)

(COND ((NUL X) Z) (T (CONS & &))).

-50-

. ST I

ST SN A S o~y L romin e . 1

Y

bt ey ey

.
Qrning

1w 0

Another command wnich is availlable for examining *he environment
during editing is (E e), which simply prints the value of e with-
out disturbinpg the state of the edit. This is done under errorset,
so that one can actually try to run the function which one is
editing. It should be mentioned that changes are made as soon as

they are typed in, so that the state of the definitlion of a func-
tion (which is what is usually being edited) is always exactly
what one expects. Also, the variable 1 contains the state of the
edit, with the current 1list being car{l]. Thus, (E (CAR L)) will
cause the current 1list to be printed by print.

FEdit Macros

In editing a set of functions, to make a consistent change in a num-
ber of places, one must give the same sequence of commands a number of
times. For example, to replace all occurrences of calls to

(FOO &) by calls to (FIE & T), (where & stands for any expression),
one would tvpe

4
(F FOO T)
(1 FIE)
(N T)

as many times as the replacement was necessary. To save this
typing, one can define an edit Macro, called RF for example, by

typing

(M RF ¢+ (F FOO T) (1 FIE) (N T))

-51-

10 0 SO bt 1 13

Then each time you type

RF

the sequence of commands, following the RF in the definition 1!'st,
will be executed. If RF were made the last command in the 1list,
the sequence would be repeated until FOO could not be found.

The simple ed .cros described above cannot be given any argu-
ments, and will always do exactly the same thing. One can also
define macros wi ich use parameters. For example, to define a
macro to switch two items in a 1list, onewuld type

(M SW (A B) (S SW1 A) (S Sw2 B) (I B SWl) (I A Sw2))

where the list of argument names (A B) immediately follows the
macro name, SW. To make this macro, SW switch items 2 and 7 in
a list, one would type

(SW 2 7)

This command would substitute 2 for A, and 7 for B, in the macro
definition following the argument list (A B); and then execute
that sequence of commands with the substituted values. In this
case, the sequence would be

(S SW1 2)
(S sSw2 7)
(T 7 ¢1)
(I 2 SW2)

Note that a macro with no parameters is called by typine an atom

-52-

—— own 0 G B

i

-

L - B B B L B

(its name): a macro with parameters must be called by using its
name as the first element of a list, followed by the values to be
substituted for the parameters & the macro.

All the edit Macro definitions can be found on a free variable
called EDITMACROS. This value can he edited by the editor, and
willi be the cumulative list of &all macros defined since the current
sysin was done. HNew definltions of macros supercede old ones.

This feature lets you easily expand the repertbire of edit commands,
and thus "prosram' the editor.

Using the editor

As presently interfaced to the outside world, the editor consists
of a basic function for editing S-expressiuns, edite, and three
special NLAMBDA functions for editing values, definitions, and
property lists, respectively editv, editf. and editp. Thus,

®*EDITF(APPEND)
EDIT

would be used to begin the edit which has been used as the example.
When editinp is complete, STOP or OK will cause edite to exit witch
the edited list as value. The three interface functions all re-

turn as value the atom being edited, and place the new value in the
appropriate place.

In fact, the work of the editor is done by two functions editcom
and editdefault. Editcom assumes the existence of a free variable

~53-

sttty crossms o oo bt

i o
Uit

I

e T PRI 11 HT BT T T

i

o TR

L, 1initialized to 1list of the list being edited; a free variable
Y, used to hnld the copy made by COPY, if any; and a fiee variable
M, to bold marks made by MARK. It accepts as its argument on
editing command and performs the appropriate transformation on
these three variables. Unrecognizable commards are passed to
editdefault, which is currently defined as A[[c];errorfcl]; the
edit is run by edite under an errorset.

A complete example, starting with the erroneous definition given
at the beglnning of Section IX and ending with the correct defini-
tion of append, is given below.

®*EDITF(APPEND)
EDIT
*(p 4 199)
(LAMBDA (X) ¥ (COND ((NUL X) Z) (T (CONS (CAR) (APPEND
{CDR X Y))))))
®(3)
B2 (X Y))
*p
(LAMBDA (X Y) (COND & &))
#(R NUL NULL)
#(R ZY)
#4(F CAR T)
#(N X)
®4+(F CONS T)
#3 (RI 2 2)
#p
(APPEND (CDR X) Y)
"+(P 4 149)
(LAMBDA (X Y) (COND ((NULL X) Y) (T (CONS (CAR X) (APPEND
(CDR X) Y)))))
*sTop
APPEND

-54-

.
Ftmame, 9

| S

In all fairmess, it should be admitted that in this perticular
instance it protatly woild have been faster to type the function
in again. However, LISP functions are typically three times as
big as append and have only one or two errors. It has been found,
after over a year of use at BBN and Berkeley, that the editor just
described does materially decrease the amount of time required

to produce working LISP programs.

A Summary of the Editor Commands

Atoms

n>0 Makes nth element te current level list

n<0 Makes nth element from end be current level list
n=0 Makes previous level be current level 1list

COPY Saves a copy of current work

RESTORE Restcres as current work earlier copy

P Prints current level list to depth 3

+ Makes current list be the top level 1list

MARK Marks tiis point

+ Makes current level be last marked list

+e Makes current level be last marked list and forgets mark

STOP or OK Exit from editor

Other atoms give an error indication of ? if not defined as an
Edit Macro. This can be changed by modifying the routine
editdefault, currently defined as

(LAMBDA (C) (ERROR C))

== i P S et Y 3 e e = = 3 poree > oo -

Lists

(1 €1 €500, ek) n>0 k>0

(n e

[

(N 2 seees ek)

(S name)
and
(S name #)

(S name n) nj»l

(R 01d new)

(P n m) n30

(F e)

(FerT)

(F e n) n3l

€osees ek) n<0 k31

Replace element n by the k elements
€)s+++, € . Deletes the nth ele-
ment 1f k=0

b Gued o Sy O

Inserts €)s+++5 & before nth ele-

ment an
£

Adds e, to e, at end of current

level 1ist i

Sets name to current level list
Sets name to nth element
Replaces all cccurrences of the
old item by new i.a current level

1ist

Prinls element n to depth m
(current 1ist 1f n=0)

Finds e at current level; "&"
matches any item,"--" matches any
remalninpg list

Finds e at any level

Finds nth occurrence of e any level

v N
St mames

-56-

e

(NTH n) n3»l

n<0

(I comme .- e .-

(E e)

(LO n)

(LI n)

(RO n)

(RI n m)

=3

.ek)

Makes nth element be first element
of current list

Makes nth element from the end be
the first element on the list

Evaluates €;:--&, and then performs
command as usual.

Command can be a numbter, N, R, F,
etc. If command is not atomic,

it is evaluated.

Evaluates and prints e

Removes left paren before element
n (and removes a right paren at
end of current list. If there are
no more right parens at end of
iist, elements left hanging

"drop off").

Inserts left paren before element
n, (and a corresponding right paren
at the end of “he list).

Removes right paren after element
n. It moves it to the end of the
current list.

Inserts right paren in element n
after element m. In element n, it
moves a right paren from the end
of element n which must have more
than m elements.

-57-

a o et v B e n i mm { ST

R S—

(BO n) Removes both left and right parens
around element n

(BI n m) Inserts both left arZ right parens,
Pasing a sublist at positior n
containing elements n to m inclusive.

(M name ¢, c2...cn) Defines name (an atom) as an Edit
Macro equivalent to the sequence
of commands €15 Coseees Che

All other 1lists cause errors, which print "?", See the statement

on editdefault above.

Edit commands are all interpreted in one function editcom which
accepts a single command as an argument. It and its subfunctions
assume a free variable I initialized to list of the list to be
edited; a free variable Y to hold a copy, if requested, and a

free variable M to hold any marks created. With these restrictions
editcom can be used as a subroutine (as it is in breakin,

described in the section on debugging aids). Edite does the
readirg from the teletype, transmits the commands to editcom,

and prints the "?" on errors. All errors and rubouts are caught

by the errorset in edite.

-58-

[peew—

SECTION X
ATOM, ARRAY, AND STORAGE MANIPULATION

pack(x] Tae argument x of pack must be a
1list of atoms. The value of pack
is a single atom whose print name
is a packed version of the print
names of all the atoms given in the
list. Thus:
pack[(A BC DEF G)] = ABCDEPG
pack[(] "." 3)] = 1.3 a floating

point number

unpack(x] The argument of unpack should be an
atom. The value of unpack 1s a list
which contains, in order, the char-
acters which make up the print name
of that atom.

cheon(x;Jj] Retu~ns & 1list of numbers represent-
ing characters in print name of X
which must be an atom.
J = NIL prinl representation
= T prin2 representation

-59~

gensym[]

oblist(;

reclaim(]

minfs{n]

geraglx]

This function of no argument gener-
ates a unique symbol of the form
Annnn, in which each of n's is
replaced by a digit. Thus, the
first one generated is A000l1, etc.
This 1s a way of generating new
atoms for various uses within the
system,

Creates a . lst of all atoms
currently in the system.

This function initlates a garbage
col'ection and returiis “ith the
number of available LIio? words in
free storage. 5See minfs. Atoms
with ..c property list, value or
function definition, and not us.
in any list are collected.

Sets the minimum amount of free
storage which will be maintained by
the garbage collector. If, after
automatic garbage ceollection, fewer
than n free words are present, (as
printed out by the garbage collector)
sufficient storage will be added to
raise the level to n.

If x=T garbage collector will print

a message when entered. If x=NIL no
message 1s printed. Previous setting
is returned. Initially set to T.

60~

[J—

logout[]

closer[a;x]

1ip(x]

openr(a]

loc[x]

vag{x]

allocate(n]

i
H
gl
,%‘

)
M
it
Hi

Deactivates users program and returns
thz user to the time-sharing syvstem
executive.

Stores x into location a. Both x
and a must be numbers.
a<2lu actual core location
a>21“ address in virtual
address space.

Unrestricted car >f X.

Value is number in a as defined
in closer.

Makes a number out orf x, 1.e.
returns the virtual address of X.

The inverse of loc. Unboxes num-
bers. An unboxed number n which
doesn't correspond to the address
of a 1ist structure or an atom is
printed #n e.g. array pointers.

Allocates an n word block in array
(binary program) space. Returns a
pointer to the address of the first
word allocated. Returns NIL if no
more array (binary program) space
is available.

-61-

T Ry SR T O L T P T

statisties(]

storage(]

Array Functions

Prints out statistics on number

of vraparounds of compiled ccde;
number of mapped stores; total
number of mapped references (car's,
cdr's, cons's, rplaca's, rplacd's,
getd's, etc.); total number of

drunr references.

Frints out current status of

storage including numoer of binary
program (array) words in use; number
of 113t words (two 94f words) in
use; number of 94f words available;
and number of words used up for
print names.

Arrays and compiled ccde are both allocated out of a common
Arrays of pointers and unboxed integers may be mani-
rulated by the following three functions:

array space.

array{n,p,v]

This function allocates a block of
n+4 949 words, of which the first

4 are header information. The next
o<n are cells which will contain
untoxed integers, and are initialized
to #. The last n-p>0 will contain
pointers initialized to v. If{ p is
NIL it is assumed equal to @ (i.e.,

a symbolic array). The value of

this function is an urbcxed number

62—

. , .
Wiremnr g [-

+

bvd e Gl Gug SN W e e

4 v
ey

L] Ll
& suonmared

eltfa;m]

setala;m;v,

arraysize(a)

which 1s the location of the array
in virtusl memory, and 1s called
an array =wointer.

Has as value the mth element of

the array pointed to by a. For
out or bound calls, i1f m<l or m>n,
where n is the length of the array
a, elt gives element 1 1f m<l, or
element n if m>n.

th element

Sets the value of the m
of a to v. On out-of-bounds
reference no store is made. The
value of this functicn i1s always
v. It 1s the users responsibility
to ensure that no pointers are
placed in the non-pointer area.
Any 1. that area will not be

traced during garbaze collection.

Returns the size of array g if a
is an array pointer.

There will be three parallel functiens, arrayf, eltf, and setaf

which will manipulate arrays of unhoxed floating point rumbers.

Until they are implemcated, only pointers to floating point
numbers can be stored 1n arrays. These will be useless until
open floating point arithmetic 1s avallable

-63-

o2 e

SECTION XI
FUNCTIONS WITH FINCTIONAL ARGUMENTS

As in all LISP 1.5 Syste..s, arguments can be passed which can then
be used as functions. Functions which use functional arguments
should use variables with obscure names to avoid conflict of vari-
able names with variables used free in a furnctional argument.
Taere is nc "FUNARG device" used in this system. All system func-
tins standardly us2 variable names consisting of the function
name concatenated with x or fn ete. A FUNARG device may be
implemented in the ‘future.

function{x] Similar to quote except that x is
the name or definitior of a fu:ction
usec as an argument; must be used
w!th all functional arguments.

map(x;fnl;fn2] If fn2 is NIL (i.e. not provided)
this function applies the function
fnl to successive talls of the 1°st
X. That 1is, first it computes
fnl(x], and then fnlledr[x]], evc.
until x is NIL; however, if fn2 is
provided, fn2([x] is used instead

of cdr[x] for the next call for fnl.
Thus 1if fn2 were cddr, alternate
elements of the list world be
skipped. If fn2 is a conditional

-6k §

expression, then the next element
to be lcoked at can be ceoniingent
on a computaticn.

mapc[x;fnl;fn2] Identical to map, except that
fnlicar[x]] is computed each time.
If fn2 is NIL, fnl is applied to
each element of the list x in tura.

mapcar[x;fnl;fn2] If frn2 is NIL, this function applies
the functlion fnl to each of the
elements of the list x. It creates
a new list which is a map of the
old 1list in the sense that each
element of the new list is the
value of anplylne fnl to the
correspondiner element of the old
list. If fn2 is provided, fn2[x]
is used instead of cdr[x] for each
succeeding computation with fnl.

maplist[x;fnl:fn2] This function comnutes successively
the same values that map computes;
it forms a new list consisting of
successive values of applications
of this function.

mapconc[x;fnl;fn2] Identical to mapcar except that it
does an nccence instead of a cons.

mapcon[x;fnl;fn2] Identical to maplist except that it
does an nconc instead of a cons.

-65-

S o e e e RTTIEE T A R R Nl N T X P AR At RGN 1, e - -5;‘

This next set of functions is a slight(y different extension of
the mapping functions usually found in LISP 1.5. They are all
defined by EXPR# type expressions, and make no recursive calls.
The first argument to each is a function fn of n arguments.
Following this first arrument should be n lists. The napping
function iterates down the 1ists by successive cdrs until any one
becomes empty and then rdurns the value specified. At each itera-

tion, fn is applied to these lists, as specified. For example,
the function

pair(x:y] could be defined as
maccar{ functionf[cons];x;y]

mac[rn;xl;xzz...;xn] Similar to map. Applies fn to

su !
cces ive cdr's of 51:£2;"';5n‘
Reurns NIL.

macc(rn:xlzxzz...;xn] Similar to mapc. Applies fn to
car's of successive cdr's of

Xy3X55.++3X,. Returns NIL.

maclist[fn;xl;xzz...:xn] Similar to maplist. Applies fn
to successive cdr's of
X)iXyi...5% . Returns a consed
list of these values.

maccar[fn:xl;xz;...:x

ni Similar to mapcar. Applies fn to
car's of successive cdr's of
51;52;"';5n‘ Returns a consed
list of these values.

-66~

i
8
i
|
I
I

=

l
H
§
3

PR

.
[—

ap

!

maccon[rn:xl;xz;...;xn]

macconc[fn;xl;xzz...;xn]

Similar to mapcon. Apnlies fn
+o successive cdr's of
X,3X,3.=3X_. Returns an nconced
£1°=2 n —_—
list of these values.

Similar to mapconc Apnlies fn
to car's of successive cdr's

of LS. CRRERR S Returns an
nconced list of these values.

-67-

SECTION XII

VARIABLE BINDINGS AND PUSHDOWN LIST FUNCTICNS

A number of schemes have been used in different versions of LISP
for storing the values of variables. These include:

1. Storing values on an assoclation list paired with the
variable names.

2. Storing values cn the property list of the atom which is
the name of the variable.

3. Storing values in a special value cell associated with
the atoin name, putting old values on the pushdown list,
and restoring these values when exiting from a function.

4, Storing values on the pushdown 1list.

The first three schemes all have the property that values are
scattered throughout list structure space, and, in general, in a
paging environment would require references to many pages to deter-
mine the value of a variable. This would be very undesirable in
our system. In order to avoia this scattering, and possible ex-
cessive drum references, we utilize a variation on the fourth
standard scheme, usually only used for transmitting values of
arguments to compiled functions; that 1s, we place these values
on the pushdown 1list. But sincr we use an interpreter as well as
a compller, the variable names must be kept. The pushdown list
thus contains palirs, each consisting of a variable name and its

-68~-

1‘wmzi

[T

¢ el

W i

[
Frmtiion

A S G

—-— ess wWND BN GEE G OO GO OB G G A o G 4 e i o e

value. The interpreter need only search down the nushdown list
Jor the binding (value) of a variable.

One advantage of thls scheme 1is that the current top of the
pushdown stack 1s usually 1n core, and thus, drum references are
rarely required. Free varlables work automatically in a way
similar to the associatior 1ist scheme.

An additional advantagz of this scheme is that it is completely
compatible with compiled functions which pick up their arguments
on the pushdown 1list from known positions, instead of doing a

search. To keep complete compatibility, our complled functions
put the names of thelr arguments on the pushdown list, although

they do not use them to reference variables. Thus, free varlables

can be used between compiled and interpreted functions with no
special declarations necessary. The names or. the pushdown list
are also very userul in debugging, for they provide a complete
symbolic backtrace in case of error. Thus, this technique, for

a small extra overhead, minimizes drum refe:ences, provides
symbolic debugpging information, and allows completely free mixing
of compiled and interpreted routines.

There are three pushdown lists used in BBN 94¢ LISP: the first
is called the parameter pushdown list, and contains pairs of
variable names and values, and temporary storage of pointers;
the secund is a number stack for temporary storage of unboxed
numbers; the third is called the control pushdown list, and con-
tains function returns and otner control information.

The following functions allow wmie to interrogate these pushdown
lists from inside another function. The functions, nthfnback,

evalv, setv, variables, and rename take an argument n which, if
positive, 1 the number of function calls which have been made -

-69-

i P Lal UM i

essentially the depth of nesting of functions from the top level.
If n is nexetive, it references back from the current call level.
The function nthfn returns as a value a positive number which is
the number of call levels from the top (consistent with that

needed by nthfnback, etc.).
interpreted as the nth preceding occurrence {i.e. counting back)
of the function named.

nthfnback(n]

nthfn(fn;n]

evalv(var;n]

setv(var; n; val]

variables(n]

rename(o0ld;

n-

new]

The argument n to nthfn (n>o) is

Returns the name of function called
at call level (position) n

Returns the position (number of
call levels from top) of the nth
occurrence back of function named
fn.

Returns the value of variable var
evaluated starting at pushdown list
position n

Sets the value of variable var
starting at pushdown position n
to value val

Returns 1list of variable names on
pushdown 1list at pushdown position
n

The variable nared 21d at level n
will be renamed new. The push-1list
cell containing the variable name
is changed.

-70~

— 4 =3 O N N

»

.
LRl

backtrace[n;m]

retfrom[n;v]

Returns from the function at
position n, with value V. Thus
an error[] under a nlsetq is
equivalent to a
retfrom[nthfn[nlsetq;1];NIL].

Prints out the untrace normally
associated with errors, starting
at position n, and going back
to position m (i.e. n>m). 1If
n=NIL; it is assumed equal to
current position; if meNIL; it
is assumed equal to 4.

-71-

{iH}

Y R T R A A e s e S T T A [A et ad

SECTION XIII

ARITHMETIC FUNCTIONS

Integer Arithmetic

The following functions all work on integers. When given floating
point numbers as arguments, these arguments are fixed (converted
to integers) before any operation is performed. Most of these
functions are compiled as open code.

plus[xl;xz;...;xn] Returns an integer X +X,+...+x,
minus[x] - X
differ~ence(x;v] This function has for its value

the numeric difference between its

arguments.
addi[x] x+ 1
subl[x] x -1
times[xl;xz;...:xn] Returnsan integer equal to the

product of XysXosee X

quotient[x;y] Greatest integer in quotient x/y

-72-

a - - :
PR J et e 4
BRI Lo T4 T, e I

remainder [x;y]

divide(x:y]

numberp(x]

greaterp(x;y]
lessp(x;y]
zerop(x]
minusp[x]

logand(x;...;z]

logor(x;...;2z]

logxor[xl;...;xn]

This function computes the number
theoretic remainder for fixed-
point numbers.

This function ylelds a dotted pair
whose first member 1s quotient([x:y]
and whose second member is
remainder(x;y].

T if x 1s a number; NIL otherwise.
This function works for floating
point numbers as well as integers.

T if x>y; NIL otherwise
T 1f x<y; NIL otherwise
T if - 1s zero; NIL otherwise

T 1f x 1s neratlve; NIL otherwise

This function takes the logical
and of all of its argument, and re-
turn this value as an integer.

This function takes the lopical
or of all of its arguments, and

return this value as an integer.

Logical exclusive or of x,,...,x.

-73-

= AT P e AN ¥ B gt gt

oot st ses:

kil

(AN TR

AR I RO 1Yy

i B | -

1shfn:s] Performs an aritlmetic left

shift of s» on n. Equivalent i

ton* S,

rsh(n;s] Performs an arithmetic shift of
s30 cn n. Equivalent to n * 275, -
abs(x] Returns absolute value of x. o5
i
!
g
i
i
" |

N 2 W e e i el ey e el S MRS e Ol BBM BB OO WP OB

Floating Point arithmetic

The floatling point arithmetic functions available in BBN LISP are
fplus, fminus, ftimes, fquotient, and fgtp. They will accept
mixed arguments, i.e. integer or floating point. Just as the

integer-type functions fix any floating arguments before perfor-
ming thelr computation, the floating-type functions float

any fixed arguments before performing a computation. Thus the
result of a floating point function 1s ~uaranteed to ve a floating
point number.

The functions specifically reiated to floating point are:

rgtplx;y] Floating greaterp; compares by
subtraction

rix[x] Returns integer part of x

fioat[x] Produces floating number

floatp[x] returns T if x is a floating

point number, NIL otherwise
fminus(x] Negative of x
fltfmt(x] Cutput format control; x is
defined as the time-sharing system

formatting of floating point output

fplusix, x5, 5%] Returns the sum of its arguments

-75-

— - e - R A ot R T T

F 71

a

LU En o i1 NIRRT

s Lhsie Kt L i i

fquotient[x;y] Returns x/y

rtfmer[xl;xz;...;xn] Product of its arguments
Equal and eqp will compare two floating point numbers for equality,
and will float an intege» to compure it to a floating point number.

Eq when compiled is an open 24 bit compare which usually won't
work for arithmevic comparisons. Equal uses eqp.

~T6~

TR i R — g SR e e A S il Bl s o L m

boed e umy eed oy g

i

ARRtIU LG R R G ORU R R bt

SECTION XIV

INPUT/CUTPUT FUNCTIONS

Opening and Closing Flles

BBN 94y LISP 1.69 allows the user to have any r '‘mber of files open
at a given time. Restrictlons in the time-sharirg system currently
limit this to a maximum of 2, however. A f. o is8 identified by

its LISP File Name.

The three basic file manipulation operations are:
infile{name;type]

used to open for input the file named Name, which must be of type
type (i.e., for binary, 2, or for symoolic, 3) if type

is not NIL. 1Its value is the name of the flle if it was opened
successfully, or NIL otherwise. The stand =4 input file is set
to name. T 1is the name of the teletype as an input (or output.
file.

outfile[name;type]
opens for cutput the file name, which 1is set to type type if type
is not NIL, and otherwise to type 3, symbolic. Its velue 1is the

name or NIL as for infile. It sets the standard output file to
name.

-77-

]

closef[x] Closes the named file. If x is
NIL, it attempts to close the
standard input file if other than
teletype. Failing that, it attempts
to close the standard output fille
If other than teletype. Failing
either, it returns NIL. If 1i:
closes any file, it returns the
name of that file. If it closes
either of the standard files, it
resets that standard file to teilie-

type.

openp{x] Returns NIL 1f x 1s not an open
file, returns x i1f x 1s an open
file.

At any given time one input and one output file are selected as
primary (the exact meaning ¢f this is given below). Normally
these are both T for teletype input and output. The primary
input file may be changed by

input[name]
which sets name to the primary input file. Its value is the name

of the old primary input file. Similarly, the primary output file
may be set with

output [name]

b=t =d ouml Gy G G =B

o

et Sun S e O N D O P S

4

b

{ it

BN S ey

which has the obvious effect. To read the current setting of the

primary input and output files

input[]

and

output{]

may be used.

Input/Output Transmission

Without exception, functions that actually read or write on files
may be given an additional argument which is the name of the file
on which the operation is to take place. If the additional argu-
ment is NIL, the primary file will be used.
The following functions perform output:

feed[n]
produces n carriage returns and line feeds:

prinl[a]
prints its argument.

prin2[a]
prints the expression a with double-cuote marks inserted where

required fer it to read back in properly; both prinl and prin2
print lists as well as atoms. Neither print a carriage return

-79-

prin3(a]

print{x]

terpri(]

spaces [n]

upon termination, both have value a.

Prints a using double quotes for
separation and break characters

specified by setbrk and setsepr

as described under ratom

Prints the S-expression X;
uses prin2; its value 1s x

Produces n spaces; its value is
NIL

Produces a carriage return and line
feed; 1ts value 1s NIL

If any print function is given an unboxed number n, it will print

TR TR W ARTY N TPV TR O 11| PR LT B)

it as #n with n in octal.

The print functions print, prinl, prin2, and prin3 are all effected

by a level parameter set by

printlevel(n]

Tre variable n3@ controls the number of unraired left parentheses
which will be printed before any list will be printed as &.

Suppose x = (A (B C (D (E F) G) H) K)

Then 1f n = 2, print{x] would print

(A (B C & H) K)

-80-

,(

i N\ x
e mi e ek >_‘.cm.1 e

i bed Ong OGN WD o

o—-g

A EEE S e oy

and if n = 3,

(A {CC (D & G) H) K)

and if n = 0, it prints as just

The value of printlevel{n] is the old parsmeter setting.

In order to change the lovel dynamically, while the system is
printing at you, you can type control-P followed by a number, 1i.e.
a string of digits,followed by a period. The print level will
immediately be set to this number for this printout. If the print

routine 1is currently deeper than the new level all unfinished lis.s

above that level will be terminated by "--)". Thus, if a circular
or long list of atoms, is being printed out, typing in

BCg,

will cause the 1ist to be terminated. After this printout, th-
level will be returned to its previous setting. Only printlevel
(not P®) changes the print level permanently.

character(n] This function outputs on the tele-
type a single character with octal

asclil representation (code) n. n
must be a number.

-81-

a1~ 3 SR R ALY mdiiie

‘@B‘W"W’ il

Input Functions

read(]

rdflx{x]

ratom[]

ratoms[a]

Reads one S-expression from the
current file

If x is NIL this function will try
to read one S-expression with
read[]; 1f no error occurred in
reading, it will return with list
of the S-expression that was read.
If an error occurs in reading, it
returns with NIL. If x is not NIL,
it will attempt to read an S-ex-
pression 2nd keep attempting to
read it until it gets one without
an error; each time 1t tries to
read an S-expression and gets an
erro>, it will print out x. In
this case it returns with the S-
expression itself (not list of the
S-expression).

Reads in one atom from the standard
file. Separation of atoms is
defined by the functions setsepr
and setbrk. {

Calls ratom repeatedly until atom a
is read. Returns a list of atoms
read not including a.

, .
[FES—

-82-

-
it |

£
3

. setseprix]
' setbrk(x]

L

i setseprcix]
. setbrke[x]

taP

Arruments should be octal numbers,

e.%g., 155q for carriage return.

Characters defined by setbrk will
delimit atoms and be return2d as
separate atoms themselves. Charac-
ters defined by setsepr will not be
returned and will serve only to
separate atoms. For example, to
make ratom read in ordinary format,
space (Oq), comma (1l4a), and
carriage return (155q) are separa-

tion characters, and left paren (1Cq),

right paren (llq), and period (16q)
are break characters. Thus

setsepr[0a 1llq 155a
setbrk[10q 1lla 160}

would set up these characteristics.
The value of setsenr and of setbrk
i{s NIL. Use chcon to find numeric
codes for characters. The tables
are initially set to this standard
LISP set of break and separator
characters.

Same as setsenr ecept that x is a
1ist of characters.

Same as setbrk excent that x is a

1ist of characters.

-83-

R o IS BRI st Sy e

e

- - DT R N D WY

ratest[x]

readce(]

Input/Outnut Control Function.

Performs two functions depending
on setting of X.

If x =T
which is:

ratest returns indicator

T if a separator was encountered
immediately pric~ to last atom

read by ratom.

NIL if there was no separator
between last two atoms returned

by ratom.

If x = NIL it returns an indicator
which is:

T if last atom returned by
ratom was a break character.

Reads the next character. Not
affected by setsepr and setbrk.

These functions perform a variety of operations on the state of

files.
ment to indicate a {ile.

clearbuf{]

Those marked with * do not take the optional extra argu-

Clears the input buffer of the file
(not particularly useful for any
file other than the teletype)

~54-

|
i
|
I
I

d

~hreotre ermrree

1 - &
‘mm& Bmoenue

]
-

>
Wy

tme GuUd QGE WD BN MW el b

lﬂ”l L]

,'mu.

b d

* radix(n;i]

% control[]j]

J = NIL

% linelengthln]

* position[]

Sets output radix co n and sign
indicator to 1. If 1 is T,
nerative numbers will print as sign
and 23 bit value (normal). If i

is NIL, all numbers print as 24 bit
unsigned integers Returns previous

setting.

Sets modes for reading with ratom
as follows:

Eliminates LISP'S normal 1line
buffering (and also eliminates
automatic detection of control-A
and control-Q as line-editing
characters on the TTY).

Restores 1line buffering (normal).

Eliminates the echo of the character
being deleted by control -A.

Restores the echo (normal).

Sets the length of the print line
for all files. The value is the
former setting of the line length.

Gives the character position on the
print line. No guarantees are made
about its meaningfulness if output
is being done intermittently to more
than one file.

-
E

® readpl]

Special Functions

sysout[name]

sysin{name]

rbinl{x]

wbin[w:x]

Gives T 1f there 1s something in
the input buffer (either the TSR
input buffer or LISP'S line buffer)
and NIL otherwise.

Pumps <he entire state of LISP on
the flle named. This name should
not specify a drum file, slnce mec.e
than 38K of information (the maxi-
mum for a sequential drum file)

will always be written. When the
LISP system 1s reassembled, old
sysout flles are no longer readabie.

Restores the state of LISP from a
sysout file. Sysin may only be
done once after entering LISP. 1If
it returns NIL. the file was not
found, or was no longer a valid
sysout file. Sysin will return T
iIf it was successful.

Reads one word from x, the specified

file. This function returns the
word as a number.

Writes one word, w, on file speci-
fied by x. W must be a number.

56

S) 8 WS W

4’

haiidad 120 Latataainiie

Files cpened for binary I-O should be closed by closef in the
usual way.

Symbolic File Input

load(x;p] load is a function which reads
successive S-exrressions from file
X and evaluates each as it 1s read.
If p=T, then load prints the value;
otherwise i1t does not. load
continues reading S~expressions anc
evaluating them, until it reads the
single atom STOP followed by a
carriage return, at which point it
returns the value NIL. Using load
is the standard way of getting

Futietiong I Loraven

IR o b Vi vy,

= SRR

AT, IR TP SIS OV SR N RS

prettydef[fns-lile;vars]

This function 1s used for the
creation of files containing sys-
tems of functions.

The arguments are interpreted as follows:

fne (first argument)

f.le (second argument)

BRI T T

If a 1ist, it 1s treated as a list
of function names. If fns 1s an
atom, it should have as a tinding
the 1list of functions for prettydef.
The functions on the 1ist are
prettyvrrinted surrounded by a
(DEFINEQ ...) so tha® they can be
loaded with lzad. In addition, a
SETQO will be wriiten which saves
the iist of functions on the named
atom, an.. a PRINT will be written
which informs the vser of the named
atom when the {ile is subsequently
loaded.

The name of the fil: on which the
outnut 1s to be written. The
folilowing options exist:
file=NIL
The standard output file 1is
used as determined by the
last setxting of output.
file=atom
The file atom 1s opened 1f not
already open, and becomes
the standard nutput file.

~858~

vars (third argument)

file=list
Car of the 1ist 1s assumed
to be the file rame and is
cvened if not already opern.
Trhe standard output file is
not changed in this case.

This option is used wnere there
are a number c¢f atoms having top
level bindings which the user
wishes to save on the output file.
The foliowing uptlions exist:

If vars 1s an atom, this atom 1s
evaluated and should yield a list
of atoms. For each atom in this
list, a SETQQ will be written which
will restore the top level binding
to the a“om when the file is loaded.
In addition, a SETQQ and PRINT are
written which save and print vars
as described above for fns. If

the list contains STOP as its last
element, endfile will be called on
the specified file, closing it as
described above.

If vars 1s a 1list, the 1list 1s
handled as above, except that the
SETQQ and PRINT saving the 1list
itself are not written.

-89-

As an additional option, if DATE is bound, "THIS FILE WRITTEN ON
date" will be printed when the file i3 loaded.

Examples:
PRETTYDEF((FOO1 F002) /F00/)

The iile /FOO/ is now open, regardless of whether it was onen
before. Furthermore, /FO0/ is the new output file.

PRETTYDEr ((FQO3 FOOU) (/FIE/))
The file /FIE/ is opened, if necessary, and FO03 and FOO4 are
written on it. /FIE/ is not closed. /F0O/ is still the output

file.

PRETTYDEF((FO05 F006))

FOO5 and FO06 are written on /F00/

PRETTYDEF((FCO7 F008) /FIE/ (STOP))

FOO7 and FOO8 are written on /FIE/ which is closed with a
STOP at the end. The ou“put file is now the teletype.

SET(FOO(FCO1 FO02 F003))
PRETTYDEF(FOO /F00/)

FOOl1, FO0O2, FOO3 are written on /F20/. Also written on the
file are (SETQQ FOO (FO01 FO02 F003))
and

(PRINT (QUOTE FO00)).

-90-

SET (FOOVAR (ZOT MUMBLE STOP))
SET (ZOT T)

SET(MUMBLE NIL))

PRETTYDEF(FOO /FUM/ FOOVAR)

The following are written on /FUM/: definitions of

FOO1, FO02, and F0O03;

(SETQQ FOO (FOO1 FOO2 F003)):

(SETQQ FOOVAR (ZOT MUMBLE STOP)); (SETQQ ZOT);
(SETQQ MUMBLE NIL); (PRINT (QUOTE F00));
(PRINT (QUOTE FOOVAR)); and STOP.

The file 1s closad.

As you might surmise, the most convenient way to use prettydef is
as follows: set a variable to the 1ist of the functions desired
in a particul:r file, say F0O, and another variable to a 1list of
variables to be set in that file, if any; prettydef will do the

rest. Then if you do

LOAD(/FUM/)

you will see

THIS FILE WAS CREATED ON 4-06 (1f you had sr: DATE)
FOO

FOOVAR
STOP
and the file will be loaded.

-91-

A FET et Py ot

clock[n]

time(x;n;g)

['

| S

for ns0 val.e of time of day
clock, 1.e., nunber of
seconds since midnight

for n=1 time of day user logged in e

for n=2 number of seconds of com- .
pute time since user
logged 1in

for n=3 time spent in garbage
collections

Time executes the computation x,

n number of times, and prints out
the number of conses, total time/n
if n#l and computation time per
iteration. Garbage collection

time is not included, 1.e., 1t is
subtracted out. If n 1s NIL, it is
set to 1. If g is T, garbage col-
lection time 1s also printed.

Example:

TIME ((CONS NIL NIL) 1000 T)
GARBAGE COLLECTION

2458 CELLS

1 CONSES

12/1000=0.12000E-01 SECONDS

GARBAGE COLLECTION TIME: 23 SECONDS
(NIL)

[

g ~
[-

-92-

TIME ((PRETTYDEF (QUOTE (F00))))
0 CONSES

9.0 SECONDS

(FOO)

N T) D an Al By =

-93-

T T T e O AP T AT IR AT e R AT

it di

T 26— - Tl T SRR L T R A

&

SECTION XV

ERROR HANDLING AND DEBUGGING FUNCTIONS

Error Handling

Errors in BBN LISP are dichotomized into two classes: H errors
for which the user can provide Help on the spot; and H errors,

for which no help is possible. H errors in the LISP system
normally cause a tranp to a routine which prints an error message
and unwinds the pushdown 1list. While unwinding the pushdown 1list,
LISP prints the functions which have been entered, and their argu-
ments. The most recently entered function is “rinted first, etc.
until the top level evalquote if reached. This printout can be
terminated by pressing RUBOUT; this will return you to the LISP
executive. See printlevel for a discussion of modifying the
printout without terminating it. The function

error(x] induces an H error. printing a
message X

An H error can be induced from the console by pressing the RUBOUT.

To prevent H errors from stopping all computation by unwinding to
the top level, the following functions can be used:

-94-

\
5
|

Il
Wi .

‘mwmu .

errorsetform; flag]

This function calls eval with the
value of form. 1If no error occurs
in evaluation, it returns with a
list containing one element, the
value of eval[form]. If an error
was encountered in the evaluation,
it returns NIL. Note that NIL can
only be returned if there was an
error. A value NIL is returned as
(NIL). The argument flag controls
the printing of error messages. If
flag=T, the error message 1s printed;
if flag=NIL it 1is not.

On an error the pushdown list is unwound to the errorset, but no
further. Printing the untrace of functions and arguments on un-
windirn, %o an errorset is controlled by esgag. If an error was
induced by a RUBOUT, a second RUBOUT seen by LISP within 3 seconds
will cause an immediate untrace past all errorsets.

esgag(g)

ersetq(x]

Sets the unwinding flag for error-
set to g, and returns old value.
If g=T an untrace will be printed
on an unwind to an errorset. If
g=NIL no untrace will be printed.
Initially set to NIL.

An FEXPR equivalent to errorset,
with the argument X quoted, and
flag=T,

-95-

R T e At .

with x quoted, and flag=NIL.

quit(x] Induces a "strong" error which
will unwind through errorsets to
the top level. It prints the
error message Xx. An untrace is
printed.

nlsetq[x] An FEXPR equivalent to errorset, l

reset(] Induces a "strong" error which -
will immediately return you to -
the top level with no untrace.

There are three types oj } errors which will allow the user to
fix the mistake, and let tne program continue. On these errors,
the system will call breakl, described below, through either of
two functions interrupt or faulteval. These Helpable errors are:

1) An unbound atom
This usually occurs when an atom has been misspelled or
not set at the top level, but may also occur because of
an error in syntax. When this occurs the system will
print the message

UNBOUND ATOM name

where name is the unbound atom, and
breakl will print

(name broken)

Then all the options of breakl are available which will

-96-

oz O o o

it et i A b T

f Y
T (il T kit i A TE i . Qi [ttt i & th LI B

2)

§
i
.

allow, for example, the user to set the atom, or return
a value without setting it, editing the function with
the error, etc.

Undefii.ed car of ferm
An H error is induced, and the system types

UNDEFINED CAR OF FORM atom

where atom is the one forwhich the error occurred. This
usually implies that the function has not yet been
defined, or that its name was mistyped. The user can
then define the function, or return a value etc. The
entire form is bound in breakl to a variable called
BRK1EXP.

Undefined function
If in compiled code, a function is called which is
undefined, the system will print
UNDEFINED FUNCTION function
and breakl will then print
(function BROKEN)
where function is the function not defined.
The user may define this function as a LAMBDA expression
with spread arguments only, if the function was also

undefined at compiled time. The arguments (up to 12 of
them) are bound in the interrupt routine to

-97-

o ot 55 S i P i - ’ - l

EETBIR 1 144

ARGl, ARG2,..., ARG12
and can be examined in the usual way in breakl.

Inducing H errors

In addition to these errors detected by the system, the user may
induce an H error by typing H® (H with the control button pressed).
At the next point a function 1s about to be entered, the system
will type

INTERRUPTED BEFORE function
and breakl will type
(function BROKEN)

At this point the user can examine the status of his computation,
by evaluating variables, or exploring the pushdown list with the
appropriate functions (as of course can be done in any entry to
breakl). The arguments are again bound to

ARGl, ARG2,..., ARGl2

As usual, in breakl the function call will be continued 1f the
user types OK or GO.

In all H errors, the function or atom in question will be bound to
the variable FUNCTION. The form which w’'l1l be evaluated on an
EVAL, GO, or OK is bound to BRK1EXP. The number of interrupts
which have been done before are bound to the variable INTERRUPT.
If a new H error occurs within g call levels of an H breakl, the

-98-

,.
Mrserse

LGt

|

S &% Ik G A A) A oy

GEE GEE O b i bvvd bed e S O

interrupt routine will not be eniered agaln; an H error will be
induced, and the user will be back in the earlier H interrupt.

If a (GO name) or (RETURN exp) 1s evaluated, breakl will be left
immediately and quietly, and these functions executed in the last
interpreted prog on the oushdown list. The user should avoid

redefining the functions favlteval and interrupt which are called

by the system on H-errors 1 and 2, and H~-error 3 and K® respectively.

To suppress &ll calls to these functions, the user should set the
free variable HELPFLAG to NIL.

Debugging Functions

There are three facilitles in the system for easily modifying
function definitions to allow a user to follow the flow of ~ontrol
and variable bindings in his programs. These three facilities
together are called the break package. ALl three redefine functions
in terms of a system function, breakl, described below. Trace
modifies a definition of a function fn so that whenever fn is
called, its argume.ts (or some other values specified by the user)
are printed. When the value of fn is found it is printed aiso.

Break modiflies the definitlon of fn so that i1f a break condition
(defined by the user) is satisfied, the process 1s halted tempo-
rarily on = call to fn. The user can then interrogate the state
of the machine, perform any computations, and continue or return
from the call.

Breakin allows the user to insert a breakpoint inside an expression

defining a function. When the breakpoint 1s hit, and if a break
condition (defined by the user) is satisfiec, a temporary halt
ocecurs and the user can agaln investigate the state of the
computation.

= L L e

el
i
il

WTTHILIL

D

H B

Breakl

The basic fu.ction of the break pacliage s breakl. It allows the
user to interrogate the state of the world and to affect the
course of the computation.

Once a function 1s broken, the user

may type in forms to eval and, under heavy errorset protection.
see the valuve of the computations. In addition, he has the
following options that are specifically recognized by breakl:

GO

OK

ERROR

RETURN form

ORI T U o e

Releases the break allowing the
computation tc proceed. When the
function is evaluated, its value
1s p.rainted.

Similar to GO except value 1is not
printed. When the function is
evaluated, Just the function nane
is printed.

Causes an error return from
breail (all other errors will
rnaintain the treak). This is

a useful way to get back to tha
preceding break.

Unwinds to the top - 1.e. it
evsaluates (RE3ET).

The value of form 1s returned as
the value of the function broken.

-100-

+
‘mmw A\l

E;
&
:
%
i
=
=
£
g
3
=
E
=
£
b
=
-
=
E
3
=
=
3
:
=
=
E
=
E
=
vl
3
s
E
E
E
=
E
E
=
.

EVAL

the furnetion 1s evaluated, a

message to this effect is printed

and the user can interrogate the

value which is stored or the a*nm

VALUE.

Whenever an error occurs inside of a break, either by RUBGUT, or
otherwise, the break 1s maintalned. Printing of the function

value is done (with a function bpnt#) to a depth of 4; therefore
circularities through the car al'e permissible.

Break

Break is an NLAMBDA which takes an;’ number of functions to be
broken. The functions may be of type EXPR, FEXPR, SUBR, etc.,
or even undefined. In the case of SUBRs, break will require the
names of the arguments and will ask for them on the teletype.
Break will usually establish unconditional breaks, i.e. the
function will aiways be broken. To set up a conditional break,
one can use a list instead of a function name in the call to
break. The first element of the 1ist should be the name of the
function, the second the break condition, and the third - if
present, a value to be printed. Thus

BREAK(FOO1 (F002 (GREATERP N 5) (CAR X))
(FOO1 F002)

will cause a break in F0O1 ~henever 1t 1s called, and a break in
FOO2 whenever it is called with N greater than 5. In the latter
case, (CAR X) will be printed, using bpntg.

-101-

TR Y - STV S GO ——

The computation proceeds but the
break 1s maintained so that after

o

T T RS-

In general, if the break condition (the second element of the list)
evaluates to T, the function will be broken, and the value of the
third element will be printed. If the break condition evaluates

to NIL, no break will occur. If the break condition evaluates

to (NIL), then the value of the third element and the value of the
function will be printed, but no break will occur. This 1is effect-
ively what happens in trace.

Trace

Trace is also an NLAMBDA which takes any number of functions to be
traced. In the normal mode of operation, the arguments of the
function will be bpntfed as well as the value. To print out other
values, 1list the function, followed by the values. Thus

TRACE(FO001 (F002 Y) (FO03 (CADR X)Z) (FOO4))
(FOO1 F002 FOO3 FOO4)

will cause FOOl to be traced, printing out all of its arguments,
FOO2 to be traced printing out Y, FOO3 to be traced printing
(CADR X) and Z, and FOGU4 to be traced printing out nothirg except
the name FOOU. 1In every case, the value of the function 1s also
printed. The features of trace are exemplified further by the
follcwing:

(1) The user can specify the values of interest to him in

addition to or instead of t.e arzuments of the funertion,
by writing a 1ist headed hy the function followed by
the values of interest, in place of just the function
name,

~-102-

Example:

TRACF.(FOO (FOO1 Y (CAR z)))
(FOO F001)

FOO(A B (C D))

FOO:

X=A «++ Arguments of FOO
Y=B

Z=(C D)

F0OO1:
Y=A
(CAR Z)=NIL

ete.

(2) The user can specify the level to which the arguments,
or values, are to be printed by writing (PN N XY 2 ...)
in the call to trace. N is taken to be 4 if not spe.i-
fled by this device.

(3) 1If an error occurs, or RUBOUT is p.essed, while a function

is being traced, a normal break occurs and, the user can
proceed from that point.

=103~

e e z # = o SR T T F IR e

Example:

TRACE(FACTORIAL)
FACTORIAL

FACTORIAL(2)
FACTORIAL:
N=2

FACTORIAL
N=1

FACTORIAL:

RUBOUT .+« RUBOUT pressed here

(FACTORIAL BROKEN)
N

0

VAL

FACTORIAL EVALUATED
FACTORIAL

1

0K

.+. break occurs

FACTORIAL ... exit from break

FACTORIAL = 1

FACTORIAL = 2
2

-104-

Breakin

The third way to use breakl is by means of breakin. Breakin
inserts a call to breakl inside of a function definition. In

other words, although 1t 1s impossible to break on eq, or quote,
because so many functicns use 1t, it 1s possible to break at the
point eq or quote 1s called from some other function.

Breakin 1s a function of four arsguments: FN WHERE, WHEN, and WHAT.
FN, WHEN, and WHAT play the same role as the three arguments shown
when break is called with a list instead or an atom, i.e. they
specify under what conditions a break should occur, and what is

to be printed. The second argument, WHERE, specifies where the
break 1s to be inserted.

WHERE can be either (BEFORE ...) (AFTER ...) (AROUND ...). ™..."
is used by the editor's find command to locate the cc. rect point.
Thus (BEFORE COND 3) will break befo.e the third COND, and

(AROUND (SETQ X --)) will break around the first place that X is
set. With the exception of labels ir. a top level PROG, you cannot
specify a BREAK AROUND, BEFORE, or AFTER an atom, because breakin
automatically chanpges the atom to (atom --) when calling the
editor. Thus, (BEFORE COND 3) is the same as (BEFORE (COND -=) 3).

The first time that breakin 1s called, 1t copies the function
definition. Subsequent times 1t merely searches for the appro-
priate location and smashes the function definition. If the loca-
tion is not found, breakin prints "?". If the function is a
machine code function or undefined, it 1s not possible to breakin-
3ide of 1it.

-105-

-

-

Unbreak

Unbreak restores functions modified by break, trace, or breakin
to their original state. It 1s possible to do multiple breaks, “t

traces or breakins in any combination without first performing .t
unbreak. Unbreak is an NLAMBDA which takes an indefinite -z

number of functions to be restored. The variable ALL is set to a
list of all functions broken. Unbreak[ALL] will restore ali func-
tions to their original state. Since unbreak[FO0] does not remove
FOO from the 1ist ALL, a subsequent unbreak[ALL] will cause

(FOO NOT BROKEN) to appear in the value of unbreak.

-106-

RO
diis gadig Lttt e Ll

s

bt ittialiiiions

T ST O T P i VP EI Ce
it it atiisiiialiuiti el i Bt gyl TRITRS t

i

il

M

e
i

SECTION XVI

THE COMPILER AND LAP

The Compiler

The compiler is a separate sysout file on the system tape, usually
called COMPILER. To use the compiler, copy your symbolic files
onto the drum, enter LISP and do a SYSIN (COMPILER). You can now
load your functions, thus defining them, and then use the function
compile; or you can compile directly from drum using rcompile. The
latter is recommended to avoid a clash of function names with the
compiler. The compiler compiles to a LAP2 code which can be
written out symbolically on the drum and loaded into any standard
system, using loadec.

compile[x] This will compile all the functions
on the list x

example: COMPILE((FOO FIE))
will compile FOO and FIE if they
are defined

rcompile[] This will compile from a drum
file whose name will be requested
at'ter the compset questions have
been answered

-107-

e

When elther of these functions has been called, they call a func-
tion compset which asks a number of questions. Those that can be
answered "yes" or "no" can be answered with YES, Y, or T for V&S,
and NO, N, or NIL for NO. The questions are:

(SETUP - TYPEOUT?)

This question should be answered YES only if you want to see the
LAP and LAP2 code produced by the compiler printed on the teletype.
If you answer 1 or 2 you wilil see the output of pass 1 or 2,
respectively of the compiler. Usually one should answer NO to
this question.

(STORE AND REDEFINE?)
This question should be usually answered NO, unless you want to
work with your functions within the compller system. If you
answer YES, you will be asked the question

(SAVE EXPRS?)

If you answer this YES, the exprs will be saved on the property
list of the function name. Otherwise they will be discarded.

(NO-SPREAD NLAMBDAS-)
If there are any NLAMBDA's with atomic argument lists called from
your functions to be compiled which are not defined, answer the

question with one of the following:

S Means Same llst &as now on the
free variable NLAMA

-108-

2))
TS W tl A

$—d

’
[EN oy

ey

L]

FLUTHTITTRY

AT TRT AT AR O I (T

(Rt b

LU IO < Qi Tl LU L Rl

P TR HI M T TS

N
8
I
I
1
I
|
1
I
I
1
}
'}
!
!
!
|
|
i

ACD (fnl;...;rn Add fn, to fn, to 1list saved on

NLAMA.

K

REMOVE (fn,;...;fn Remove functions from NLAMA

»)

EDIT The editor will be called and
you can edit the list of functions.

(fnl;...;fnk) Set NLAMA to the list of functions
NIL, N, NO Set NLAMA to NIL

Any other atom will cause a question mark to be printed and let
you answer again. Then compset will ask:

(SPREAD NLAMBDAS-)

Answer in the same way. The free variable used by the compiler
is called NLAMS this time.

(OUTPUT FILE)

This question is always asked. You should usually provide the
name of a drum file on which you wish to save the LAP2 code pene-
rated. If you answer T, TTY or TELETYPE, the listing will be
typed out on the teletype. If you answer N, NOTHING or WIL,
output will not be done. If the file named is already cpen, it
will continue to be used.

When the compiler is operating, it will normally oprint out the
name of the function compiling, a 1list of its bound variables
and a 1ist of its free variables. When compile returns, it prints

-100-~

£ e - T AT i SR AR S I =3 .
& &ﬁﬁ 50

-

HA Ao e

its 1list of the functions compiled. The value of rcompile is NIL.
Waen you have finished compiling all the functions you wish to
dump on one drum file, print NIL on that file and close the file

with closef(name].

The ccde dumped on the file can be loaded into any standard system
by using

loadc[file;fl -]

where 1f flag=T the names of the functions loaded will be printed.

Affecting the Compiled Code

There are three ways you can affect code compiled for you. You
can make a function fr compile open (as an open LAMBDA expression)
by putting the expression defining it (including the LAMBDA) on
the property 1list of fn after the flag MACRO, and adding fn to the
list which is the value of OPENFNS. Abs and memb are functions
currently compiled open. The effect is the same as if you had

-110-

-

-

s

Bosoms

[
[ZULUE |

"

P
i ¥

%* st

+

wrnn g

v g Pl e ed i e

W

-

b s

| ot

written the LAMBDA expression in place of fn wherever it appears
in a function being compiled. This saves the time necessary to

call a function (about a millisecond) at the price of more
compiled code generated.

By putting on the property list of fn under the flag MACRO an
expression starting with an atom other than LAMBDA, one can obtain
the usual MACRO feature of LISP. The atom which starts the list

is bound to cdr of the form in which fn appears. The expression
following the atom is evaluated, and the results of this evaluation
are compiled. List, mapc and map are compiled using this technique.
For example: list has on its property list the expression

(X (GLIST X)), where glist 1s defined as

(LAMBDA(L) (COND((NULL L)NIL) (T (LIST (QUOTE CONS) (CAR L)
(GLIST (CDR L))))))

If the value of the result of this evaluation is the atom,
INSTRUCTIONS, no code will be generated. It is then assumed the
evaluation was done for effect and the necessary code has been
added. Thils 1is a way of giving direct instructions to the compiler
if you understand it.

Finally, an expression following MACRO on the property list can
start with a 1list of atoms which are dummy variables for a substi-
tution MACRD. Each atom is paired with a corresponding ele..°nt
in the form containing fn. Then these elements are substituted
for thelr paired atoms in the expression following the list of
atoms, and this substituted expression is compiled. The functions

addl, subl, neq, zerop, lessp, minusp, difference, ersetq

and nlsetq

-111-

EE P SPPNET SRR e

[BRI AR Y

Ritgl L]

waE |

are all compiled onen using these substitution macros. For example, I
on tha preperty 1list of addl is the expression ((X)(PLUS X 1)). “

LAP and [A12

—4

The compller has two main passes. The first compiles irto a

fairly powerful macro language we cal) LAP; and this 1s expanded
intc a simple assembly lanruage called LAP2. The user can write o
code directly in LAP to be compiled for LISP. It can be prccessed

by the function e
lap[fn:v:free:m:~]

Where fn is a function name; v is its list of bound varlatles;
free is a list of variables used free; m is the maximum position
used on the pushdown 1list; tnd ¢ i3 the lode to be compiled. /¥
expects the fiag LAPFLG to be set to NIL, T, 1, or 2 to determine
printout ¢n none, all, first or second pass code respeciively.
The variavble STRF should be T or NIL, to store or not store the
definition. The variable SVFLG should rave value NIL (T only to
save expr's) and LCFIL should be set to tne name of 2m open file

on which the output ‘s to be placed. FTYP should have value EXPR.

The corde 1s a 1list of instructions, which are lists, and atoms

which are treated as labels. Instructions are 1ists with at least
two elements. The fi-st element, fn, can be an op code, a substi-
tution macro, a lambda macro, or a function macro. These LAP

macros are comrletely separate from the compiler macros. In the
first three cases, fn has on 1ts property list a oroperty UPD with

a value we will call mec. A functicn macro is the default case,

and a list of code to be used is computed by apply‘ng fn to cdr

of the instruction, and this new 1list 1s assembled. Useful function

-112-~

b v ONE OGN OB W P G

thwnmr@

&"wa"

"\m-‘ mn‘

’
gwernil

«

'
[s J

macros in the system will be described later.

If mc is a number, thenfn is an opcode of the 94@. The codes
defined at the moment, with their values, are listed at the end
of this section. |

Instructions containing these codes as first elements are dumped \
in symbolilc form and at load time are added to the second of the
instruction. If the third element is I, the index bit is set in

the instruction.

The substitution macros are those where me is a list wnlch starts
with a list of dummy variables for the macro. Corresronding ele-~
ments of the instruction are substituted for the variables .n the
macro which is cdr[me], and this new list of instructions is com-
piled, befor2 the next instruction on the original coue is compilled.
When mc¢ starts with LAMBDA, (a lambda macro) similarly to the
default case, a 1list of instructions 1s computed by applying mc

to cér of the Instruction. The substitution and lambda macros

ir the system are listed at the end of this section.

-113-

e - - s

i

AN I e | B

(LDV X)
(STV X)
(LDT)

(STT N)

(NSTT N)

(LQT ¥)
(LDN N)
(STN N)
(CLL L K U)

(CLLA L K U)
(RET)

(BE N B)
(BNE N B)
(BN B)
(BHN B)
(BA B)
(BNA B)
(BI B)
(B41 B)
(B1S B L)
(BNS B L)
(JUMP B)

The important ones of this group are: (where A indicates accumulator) o

Load variable X into A .-
Stores A . o X -

Load A from stack position N (a stack

-t

position is a pair of 94% words n>g)

Store A in stack nosition N and store ¢
in variable slot. This 1s important to

+h

prevert garbage collector foul ups.

Store A in stack position N, do not store
g. -
Load X quoted as a constant oz
Load an unboxed integer from position N

Store an unboxed integer in position N

Call functioa L with K/ args, and U/2

nositions used up on the pushlist through

last argument of function cailed

Calls a functional argument E a3 above

Standard return, only one per function

is usual

Branch to E_if A=N
Branch to if A#N
Branch to if A=iIL
Br_nch to it A#NIL

if A an atom
if A not atom
if A a number

Branch to
Branch to
Branch tc
Zranch to if A not number
granch to if A=L a quoted constant
Eranch to if A#L a guoted constant

granch to

Y e (ol jw i o (o o jw

-11h- -

1 AT vmuﬁwWTfﬂ“"W@?WWWW%MW@IQWWWfgmmmmmgmmmm__‘ TS

(CONSCLL N)

(CCALL OF :

Calling sequence for cons of element in
stack position N with contents of A.
Used with either op=CARCLL or

op=CDRCLL
to call car or cdr A.

The important function macros are:

(PRGREF OP B)

(BRANCH OP B)

(RELREF OP N)

(LITREF OP EXP)

(VREF OP X)

(STKREF OP N)

This must be used for all instructions
whose address B 1s a aumber relative to
the beginning of the code avd therefore
must be relocated on loading. In com-
buting B, remember that LAP inserts &
instructions at the beginning of your
code for initialization.

Must be used for all instructions which
reference a label (branch point) in the
code.

Used when N 1s relative to current
location.

Stores EXP in a 1ist of literals and
computes the address of the literal for
use in the compiled code. Used to pet
any literal quantity into the code.

Computes the position on the stack of
the variable named X.

Computes the actual address on stack
of position N.

For further information, consuit the document "An Annotated LISP
Compiler" by Bobrow, Murphy and Deutsch (forthcoming).

-115-

o = o AR S R et

MACROS for the compller

The following expression when loaced with the compller defines

all the MACROS used by the compiler.

¢(DEFLISTC(QUOTE(
C(LIST (X (GLIST X))
(ADD1 €<(X)
(PLUS X 1))
rSuB1 ((X)
(PLUS X =12
(NEQ (¥ Y)
(NOT CEQ X Y3))
C(ZEROP ((X)
(EQ X G
(LESS? (X YD
(GREATERP Y X))
CMINUSP €¢X)
(GREATERP 0 X))
(DIFFERENCE ((X Y)
(PLUS X CMINUS Y232
(ABS (LAMBDA (X)
(COND
((GREATERP 0 X)
C(MINUS X))
(T X3
(ERSETQ@ ¢(X)
(ERRORSET (QUOTE X
T
(MAP (X (LIST (SUBPAIR (QUOTE (MAPF MAPF2))
CLIST (CFNP (CADR X)) '
(COND
((CDDR XD
(CFNP (CADDR X))
(T (QUOTE CDR))>J)
(QUOTE (LAMBDA (MAPX)

(PROG NIL
LP (COND
CCNULL _MAPX)
(RETURNY?)

(MAPF MAPX)
(SETQ MAPX (MAPF2 MAPX))
(GO LP)
MM
(CAR X))

-116-~

(MAPC (X (LIST (SUBPAIR (QUOTE (MAPCF MAPCF2))

(LIST (CFNP (CADR X))
(COND
(C(CDDR X)
(CFNP C(CADDR X)))
(T (QUOTE CDRIXM
(QUOTE (LAMBUA (MAPCX)

(PROG NIL
LP (COND
C(CNULL MAPCX)

(RETURN))

(MAPCF (CAR MAPCX))
(SET@ MAPCX « 1APCF2 MAPCX))

(GO LP)
NN
(CAR X))
(MEMB (LAMBDA (X Y)
(PROG NIL
LP (RETURN (COND
(CATOM Y)
NIL)
(CEQ X (CAR Y))
Y?
(T (SETQ@ Y C(CDR Y))
(GO LPY)
M
(NLSETQ ¢(X)
(ERRORSET (QUOTE X)
NILYD))
(VAG (X (CEXPR (CAR X))
(COND
((EQ (CAADR CODE)
(QUOTE ENBOX))
(RPLACA (CDR CODEDY)

T T R e T T T T ey

(T (STORE (QUOTE (UNBOX?3)))

(QUOTE INSTRUCTIONSYY)
(LOC (X (CEXPR (CAR X))
CCOND
(C(EQ (CAADR CODE)
(GUOTE UN30X))
(RPLACA (CDR CODE))Y)
(T (BOX SP)))
(QUOTE INSTRUCTIONS))Y)
(ARG (X (CEXPR (LIST (QUOTE VAG)
(CAR X))
(STORE (LIST (QUOTE VREF)
(QUOTE SUB)
(COND
(ARGARG)

(T (FRROR (QUOTE (FUNCTION

(STORE (LIST (QUOTE ARGN)
ARGARG))
(QUOTE INSTRUCTIONS)))
))(QUOTE MACRO))
-117-

TG TR T R, S, o TR

*ARG® NOT LEGAL)>?)>))

Rl s

LAP MACROS

The following expression when loaded with the compiler defines
the substitution and lambda macros for Lap.

¢DEFLISTCQUOTE(

CCSP1 ¢CLV LF LT)
(LITREF LDA LV)
CLITREF LDX LF)
CLITREF LDB LT)
¢PRGREF VAL (PLUS ENTER PLITORG 1))))

CVST1 C(CPP LY W)
(LITREF LDA PP)
CLITREF LDB LV)
CPRGREF VAL (PLUS IPV PLITORG V))))

CBE C(N B)

CSTKREF SKE N)
CRELREF BRU 2)
CJUMP B)))

¢BNE CCN B)

CSTKREF SKE N)
CJUMP B)Y))

(LDV (LAMBDA ($)

CVREF (QUOTE LDA)
SN

¢STV C(LAMBDA (S)

CVREF (QUOTE STA)
S

(LDT (LAMBDA (S)
¢STKREF (QUOTE LDA)

$3

¢STT (LAMBDA (S)
(STKREF (QUOTE STA)

S

CNSTT CLAMBDA (S)

¢STKREF CQUOTE NSTA)
SHH)

CLQT (LAMBDA ¢X)
CLITREF (QUOTE LDA)

) X))

(LDN (LAMBDA (S)

(NREF CQUOTE LDA)
S

-118-

oo

s el G Gy i

Denmmg

o "

[
*

bond

i

(STN CLAMBDA (N)
(NREF CQUOTE STA)
N
(CLL (<L K U
(LITREF LDA U)
(LITREF LDB _K)
(LITREF CLLX L))
(CLLA (<L K W)
(LITREF LDA W
(LITREF LDB K)
(VREF CLLXA L)))
(ARGN €(CA)
(LSH 1)
(ARGSUB A)
(ADD PPPTR)
(CAXB 2)
(LDA @ I
(CBX 03
(ARGSUB (LAMBDA NIL

(LITREF (QUOTE ADD)

(PLUS =2 (VREE1 A)))))
(RET (NIL (VAL RETURN)))

(BN ((B)
(SKE SYSNIL)
(RELREF BRU 2)
(JUMP B)))
(BNN ((B)
CSKE SYSNIL)
CJUMP B)))
(BA €(B)
(SKG SYSTAT)
(RELREF BRU 2)
CJUMP B))),
(BNA ((B)
CSKG SYSTAT)
(JUMP B)))

-119-

S T e o O

bt e

Aottt

C(UNBOX ¢NIL (VAL UNBOX3))
CENBOX ((¢N)

(VAL ¢PLUS ENBOX N))))
(NEG ¢NIL cCna 2)))

(DVD ¢¢N Xx)

(RSH 23)

(DIV N X))
(DIVIDE ¢¢S)

(STTN S)

(SUAP @)

(ENBOX S)

(STKREF SXMA S)

(ENBOX S)

(STKREF XMA S)

(CONSCLL £)))

(BI ¢(B)

(SKG SYSNUM)

(RELREF BRU 2)

(JUMP B)))

(BNI ¢¢B)

(SKG SYSNUM)

(JUMP B)Y))
(BIS ¢¢(B L)..

CLITREF1 SKE L)

(RELREF BRU 2)

(JUMP B)))

(BNS ¢(B L)
(LITREF1 SKE L)
(JUMP B)Y))

CCONSCLL ¢ cn)

(CAB 0)

(STKREF LDA N)

(VAL ¢PLUS CONSCLL ¢TIMES N 23
¢CCALL c¢cop)

(VAL oP)

(LDX PPPTR)Y))

(CLLX cend

(VAL (PLUS xcLL NI
(CLLXA ¢C(N X)

(VAL (PLUS xcLL N X))
(SWAP ¢NIL ¢xap 23
(JUMP ¢¢B)

(PRGREF BRU (GBS B)Y)))
(MPY ccN X)

(MUL N X)

(LSH 23)))

)3 C(QUOTE 0rD))

Li%wll—-.'l““-

-120- 2

T

N

AR LALLM - LA | LA

TR

e Cl

iisubibtHistgs bR RGO ity it i e ol il

T AT ! it LA

PARE T L T AT

4 THTTmAETE e

ey S

OPCODES currently deflined for LAP

The following expression loaded with the compller defines the

Opcodes for Lap.

(DEFLIST(CQUOTE(

(LDA 7600000Q)

(STA

(NSTA 3500000Q)

(LDB
(STB
(LDX
(STX
(EAX
(XMA

(SXMA 6200000Q)

(ADD
(ADM
(MIN
(sus
(MUL
(DIV
(ETR
(MRG
(EOR
(CLA
(C'B
(CAB
(CBA
(XAB

350000002

75090000)
3600000Q)
7100090Q)
3700000Q)
7708200Q)
6200000Q)

55900000)
6300000Q)
6100000
5400000Q)
6400000Q)
£5200000)
1400000Q?
16000000)
1700004Q)
4600001Q)
4600002Q)
4600004Q)
4600010Q)
4620014Q)

(CAXB 4600440Q)

(CBX
(CNA
(BRU
¢(BRX
(BRM
(BRR
(SKE
(SKG
(SKM
(SKA

(SKB
(SKN

C(SKR
(RSH

(LRSH 6624000Q)

(RCY
(LSH
(LCY
(NOP
(EXU
(VAL
(BIO
(BRS

(CTRL 57200000Q)

4600020Q)
4601000Q)
160000Q)

4100000Q)
43000000Q)
5100000Q)
500000001
73000800Q)
7000000Q)
7200000Q)

5200000Q)
53050000)

60090900)
6600600Q)

662000600)
67097890Q)
67200000)
20000000
2300000Q)
2Q)
5760000007
57300000Q)

3)C(QUOTE OPD))

-121~

ST 3 ST O

=
g
g
:
E
E
E
%

UL

I

name of
function
abs

add

addl
allocate
and
append
apply

arg
argilist
array
arrayslze
assoc
atom
attach
backtrace
bontfd
break
breakin
breakl
car, cdr, (etc)
character
chcon
clearbuf
clock
closef

INDEX TO FUNCTIONS

-122-

description
page

T4
34
72
61
25
27
38
39
38
62
63
3
24
28
71
101
10:
1u5
100
16
81
59
84
92
78

name of
function

closer
complile
cond

cons
conscount
ccnspage
control
cony
define
defineq
deflist
difference
divide
dremove
dreverse
dsubst

e

editcom
editdefault
edite
editf
editp
editv

elt
endfile
€q

€gp

equal
error
errorset

description
page

61
107
19
17
18
17
85
29
36
37
33
72
73
29
29
30
38
53
53
53
53
53
53
63
87
24
24
24
94
95

RIS o 100t s

name of
function

ersetq
esgag
eval
evala
evalr
evalv
faulteval
feed

fguvp

fix

float
floatp
fltfmt
fminus
fntyp
fplus
fquotient
ftimes
function
gegag
gensym
get

getd

getp

go
greaterp
1lp
infile
input
interrupt

~124-

description
page

95
95
37
37
38
70
99
79
75
75
75
75
75
75
36
75
76
76
64
60
60
33
35
33
22
73
61
17
78
99

[W—

R

e gl

name of
function

intersecticon

lap
lap2
last
lcone
length
lessp
linelength
list
load
loade
loc
loganrd
logor
iogout
logxor
1sh

mac
mace
maccar
maccon
macconc
maclist
map
mapc
mapcar
mapcon
mapconc
maplist
memb

R

-125-

description
page

26

112
112

30
28
31
73
85
27
87

110

61

73
73
61
73
T4
66
66
66
67
67
66
64
65
65
65
65
65
25

v

I uwwuumwmmm-ru:mmummmmnnmwmmeumumm:mu%;;%ammmmmmsmmwm;rwxmwgggmwmtmulwuwmmmw

it

|

R

il

e

I s

name of
function

member
minfs
minus
minusp
nargs
nconc

neq

nill
nlsetq
not

nth

nthfn
nthfnback
null
numberp
oblist
openp
openr

or
outfile
output
pack

plus
position
prettydef
prettyprint
print
printlevel
prinl
prin2

-126-

description
page

25
60
72
73
38
27
24
24
96
25
31
70
70
24
73
60
78
61
25
7
78
59
72
85
88
67
80
80
79
79

-

a4

S

arastones

el

name of
function

prin3
preg
progn
progl
proge
pr.

put

putd
putdqg
quit
quote
quotient
radix
ratest
ratom
ratoms
rbin
rcompile
rdflx
read
readce
readp
reclaim
remainder
remove
remprop
rename
reset
retfrom
return

-127-

description
page

80
22
21
21
21
32
32
35
35
96
18
72
85
84
82
82
86
107
82
g2
84
86
60
73
29
32
70
96
71
23

e e

Ed
E3

name of
function

reverse
rplaca
rplaci
rsh
sassoc
selectn
set
seta
setarg
s2tbrk
setbrkec
setq
setqq
setsepr
setseprc
setv
spaces
statistics
storage
sublis
subpair
subst
subl
sysin
sysout
tcone
terpri
time
times
trace

-128-

description
page

29
18
18
T4
34
20
23
63
39
83
83
23
23
83
83
70
80
£2
62
30
30
29
72
86
bo
28
80
92
72
102

boed Sed Gwd e D i

L g

:-mwr'cnm‘

[

.

Eaae—

PRS-

Sl fes =l e

i

bR T L ea o

(1H

Hili

name of
function

unbreak
union
unpack
vag
varlables
wbin

zerop

descripiion
page

i0€

-129~

26
59
61
79
86
73

e S

B

iR o EE S = e

s
Agessni st

-y
|
Wt o msgarrts

Following is a 1ist of all atomr: with initialized top .
level values in the basic system and those values. g

blank space ’E'
space space *
t.ab tab T
conma R i o
eqsign = .
xeas =
f
nil nil
period
pluss

lpar

rpar

slash

t
ne e

3
ol
N

qmaik
xdol
xsqu

- 4 O T N\ N~ N e

xdqu
X1lbr
xrbr
xarr

> 4 o™

uparr
colen : !
xgreater
xlesser
xnum
xper
xamp

@ Re 23 = A V

xat "{

-130- J

tomd Sk Gwd i

et S st <o

LTS B C—

o
L g

s demd Tm -1

bomennet

Xxsem

xe sclaim

Xcr

bkslash

~-131-

3
!
carriage return

\

14 T 411

Unclassified

Security Classification

DOCUMENT CONTROL DATA-R& D W
(Security claaaitication of title, body ol abatruct and indexing annotation aiust be entered when the overall report i3 clasailied)
I. ORMGINATING ACTIVITY (Corparate author) 20, REFCIT SECURITY CLASSIFICATION
Bolt Berar=k and Newman Inc. Unclassified
50 Moulton Street 26, GRou®
Cambridge, Massachusetts 02138

3. REPORT TiTLE

THE BBN 942 LISP SYSTEM

4. DESCRIPTIVE NOTES (Type ol roport and, inclueive dates)
Interim Scientific Report
'S, AUTHORISI (Firet name, middle [nitlal, last name)
Daniel G. Bobrow, D. Lucille Darley, L. Peter Deutsch,
Daniel L. Murphy, Warren Teitelman

[¢. REPORT DATE 7a. TOTAL NO. OF PAGF S 76, NO. OF REFS
July 1967 131 0
'8a. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REFORT NUMBE R(S)
AF 16(€28)-5065 -~ ARPA Order BBN Report No. 1539
b. PROJECT NO. No.627 Scientific Report No. 9
8668 Amendment No. 2
DOD Element 6151;501}2 [T} SJ:‘,E.:@:;?"O'" NOS) (Any other numbaere that may be asaigned
4 DoD Subelement n/a AFCRL-67-0458

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

1. SUPPLEMENTARY NOTES frl,,is research was 12. SPONSORING MILITARY ACTIVITY

Force Cambridge Research
sponsored by the Advariced Projects £§§orat°§1es (CRBi ese
d

Agency g. G. Hanscom Fie
e

" 01730
13, A’.TRACY

Tﬁi& report describes the LISP system implemented at BBN on the
SDS 949 Computer. This LISP is an upward compatible extension of
LISP 1.5 for the IBM 7090, with a number of new features which
make it work well as an on-line language. These new features
include tracing, and conditional breakpoints in functions for
debugging and a sophisticated LISP oriented editor. The BBN 9uig
LISP SYSTEM pas a large memory store (approximately 50,000 free
words) utilizing special paging techniques for a drum to provide
reasonable computation times. The systcem includes both an
interpreter, a fully compatible compiler, and an assembly language
facllity for inserting machine code subroutines.

-

DD fof™ 1473 (PaseE 1)

S/N 0101-807-6811 Security Classification

A-1140%

o s e o

Unclassified

Secunity Ciassification

te ALY WORDS LINK A -t 't ® LINR €
moLE] wr | moue| vt | moLk | wr
LISP
List Prccessing Language
Paging Systems ‘
Drum Systems for List Structure
List Structures
Symbol Maripulation Language
u‘
] i
#0
DD °.,1473 teacx) Unclassified
S/N 0101-007-0021 SanmTEquﬂention A31409

