Repart 2460	NAVAL SHIP RESEARCH AND DEVELOPMENT GENTER
Leput	
	ANNAPOLIS DIVISION - ANNAPOLIS, MARYLAND 21402
Tests	9
	Correlations Between Flexural and
Fatigue	Direct Stress Low-Cycle Fatigue Tests
1	Correlations Between Flexural and Direct Stress Low-Cycle Fatigue Tests OB By
cycl	9
Low-Cycle	M. R. Gross and E. J. Czyryca
	A
Stress	
Direct	
	This document has been approved for
and	public release and sale; its distribu- tion is unlimited.
ral	
Flexu	
twee	MARINE ENGINEERING LABORATORY
n Be	RESEARCH AND DEVELC PAENT REPORT
Correlation Between	RECEIVED
rrel	AUG 2 5 1967
COD	CFSTI CFSTI
	August 1967 Report 2460

i

ABSTRACT

Flexural and direct stress low-cycle fatigue results for six materials are compared. The materials are HY-100 and HY-140 steels, Monel-400, cast and wrought 70-30 cupronickel, and Ni-Al bronze. It is concluded that the two methods of test give equivalent results within the life range investigated when correlated on a total strain range basis. Correlations based on nominal stress are not as good because of differences between the cyclic stress-strain relationships for the two types of tests.

ADMINISTRATIVE INFORMATION

This investigation was conducted under Sub-project S-F020 01 01, Task 0856, Fatigue of Metals, on Assignment 86 108.

ACKNOWLEDGMENT

The cooperation and assistance of Messrs. S. S. Manson and M. H. Hirschberg of NASA, Lewis Research Center, Cleveland, Ohio, in conducting the direct stress fatigue tests are gratefully acknowledged.

ŧ

2.00

- 128-

m.

TABLE OF CONTENTS

ľ

ABSTRACT	i
ADMINISTRATIVE INFORMATION	ii
ACKNOWLEDGMENT	ii
INTRODUCTION	1
MATERIALS	2
METHOD OF TEST	2
RESULTS AND DISCUSSION	5
CONCLUSIONS	é
LIST OF FIGURES	-
Figure 1 - MEL Flexual Fatigure Specimen	
Figure 2 - NASA Direct Stress Fatigue Specimen	
Figure 3 - Fatigue Results for HY-100 Steel	
Figure 4 - Fatigue Results for HY-140 Steel	
Figure 5 - Fatigue Results for Monel-400	
Figure 6 - Fatigue Results for Wrought 70-30 Cupronickel	
Figure 7 - Fatigue Results for Cast 70-30 Cupronickel	
Figure 8 - Facigue Results for Cast Ni-Al Bronze	
Figure 9 - Cyclic Stress-Strain Relationships for HY-100	
Steel	
DISTRIBUTION LIST	

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

CORRELATIONS BETWEEN FLEXURAL AND DIRECT STRESS LOW-CYCLE FATIGUE TEST3

> By M. R. Gross and E. J. Czyryca

INTRODUCTION

A high precentage of the fatigue data developed in laboratory tests is obtained under cyclic bending (flexural) conditions. The advantages of flexural testing lie in its simplicity and minimal equipment costs.

When MEL initiated low-cycle fatigue studies several years ago, the Lehigh-type flexural fatigue specimen was selected as being best suited for our needs. The selection was based on the following considerations;

• The rectangular shape of the specimen is more representative of shell plating than is a round-type specimen.

• High stresses and strains can be developed in flexure specimens with simple and 'nexpensive equipment.

The flexure specimen is not subject to misalignment and buckling.

Background data were available for the Lehigh specimen on boiler and pressure vessel steels.

The main objection to flexural testing is that the stress is not uniform throughout the cross section and thus is not amenable to rigorous stress analysis. Of particular concern is the finite fatigue life region wherein specimen failure may entail partial plastic deformation in the test section. Accordingly, it has been assumed by some designers that low-cycle fatigue data derived from flexure tests are of questionable value and that direct stress (axial loading) results are to be preferred, if not mandatory.

1

The purpose of this investigation is to compare the lowcycle fatigue results obtained from flexure tests conducted at MEL with direct stress test results obtained by NASA, Lewis Research Center, on the same materials.

MATERIALS

Six materials of interest to the Navy were selected for comparative testing. The chemical composition and mechanical properties of the materials selected are shown in the following tabulation.

METHOD OF TEST

The flexure specimen used in the MEL tests is shown in Figure 1. The short end of the specimen is held stationary while the long end is flexed between electrical or mechanical stops by a hydraulic piston. One or more strain gages (0.25-inch gage length) are attached to the minimum test section to record the longitudinal strain.

All of the flexural fatigue tests were conducted in air and were of the completely reversed type (mean deflection ≈ 0). The cycle rate was either 1 or 5 cpm. The specimens were cycled until stress-strain conditions stabilized (approximately 10 cycles), at which time the load versus strain diagram was recorded. The total moment range (ΔM) and total strain range ($\Delta \varepsilon_t$) were obtained from these diagrams and used to calculate the nominal reversed stress and the reversed pseudoelastic stress as follows:

$$S_R = \frac{\Delta Mc}{2I}$$
(1)

where

ŧ

 S_{R} = nominal reversed stress, psi

- I = moment of inertia of minimum cross section, inches to the fourth power
- c = distance from neutral axis to outermost fiber at minimum cross section, in.

Chemical Composition and Mechanical Properties of Materials

	MEL															1echa	ELON :1	Mechanical Properties	ties
	Mate	(i		•		•					YS	_	5	RED of	
1 N	Leil .	Con-	į			10	I Gm 1C	Chemical Composition,	11800	7				20110	0. 29 TS			Area	Area E X 10
T	1000	UDT YTH	-		~		-		1	2	2	"		ACHEL 281 481	191	YST	2	e e	bs 7
iry- 100 Steel	200	OET	51.0	0 45	0.326	0.15 0 45 0.326 0.009 0.27	0.22	2.97 1.64 0.43 Bal	1.64	0.43	Bal	ł	ŧ	ı	114	114 127	ŝ	20	8
iry - 140 Steel	HZQ	GVT	0.10	62.0	ç.00.0	0.10 0.73 0.005 0.005 0.23	0.23	1EB 20.0 72.0 0.3	0.57	ود.0	lra	I	ł	v 0.07	561 241	361	50	65	ጽ
Mone1-400	7 20	IIR ANN. 0.17	21.0		0.007	I	0.19	61.49 61.0	1	•	1.03	1.03 37.56	0.02	sn 0.87	53	.	<i>L</i> [†]	62	9¢
70. 50 Cupronickel	Tind	HR ANN.	•	0.94	2	ı	1	3.8	ı	1	0 61	0 61 68.55	,	2n 0.24	8	64	61	20	55
70- ¥) Cupronickel	SMQ	Cast	1	1.25	ł	1	16.0	14.06 1.6.0	1	1	0.51	0.51 66.82	I	Cb 0.47	8	8	55	\$t}	18
N1-A1 Bronze	0X0	Cast	,	0.66	;	•	ı	5.17	ı	1	3.71	3.71 80.08 10.34	10. 74	ı	8	26	15	17	18
GeT - Juenched and tempered YS - Yield stree HR ANN - Hot rolled and annealed TS - Tensile sti Bal - Balance Hat - Thousand bounds per square inch RED - Reduction	t roll	tempered ed and an nds per s	d nneal	ed the	TS - TTS - ELONG	<u>YS - Yield strength</u> TS - Tensile strength ELONG - Eiongation RED - Reduction	strei e str ngati	ength on]	1]	Ţ]]	1		

*Abbreviations used in this text are from the GPO Style Marual, 1967, unless otherwise noted.

ť

~ --- 4

$$S_{PE} = \frac{\Delta \varepsilon_{tE}}{2}$$
(2)

where

 S_{PE} = reversed pseudoelastic stress, psi

E = modulus of elasticity, psi

The criterion for failure in the flexural tests was the development of one or more surface cracks 1/8 to 3/16 inch in length.

The direct stress fatigue specimen used in the NASA tests is shown in Figure 2. All of the tests were conducted in air and were of the completely reversed type (mean strain ≈ 0). The total applied diametral strain range ($\Delta \varepsilon^d$) was maintained practically constant throughout the test by periodic optical strain measurements. On the basis of these measurements, the reversing microswitches which controlled the motion of die platens were readjusted to compensate for any changes caused by strain softening or strain hardening. Continuous load recordings were taken during the early part of the test and periodically thereafter. Specimen life was defined as the number of cycles (N_f) causing separation of the test section.

The total applied diametral strange range was converted to the total longitudinal strain range $(\Delta \varepsilon^{\ell})$ by means of the following relationship:

$$\Delta \varepsilon^{\boldsymbol{l}} = \frac{\Delta \mathbf{P}}{\mathbf{A}\mathbf{E}} \left(\mathbf{1} - 2\boldsymbol{\mu} \right) + 2\Delta \varepsilon^{\mathbf{d}}$$

where

 ΔP = total load range at 1/2 N_f, 1b

A = cross-sectional area at minimum section, square inches

E = modulus of elasticity, psi

μ = Poisson's ratio

The total load range (ΔP) at half-life and the total longitudinal strain range were used to calculate the nominal reversed stress and reversed pseudoelastic stress as follows:

$$s_{R} = \frac{\Delta P}{2A} \qquad \dots (4)$$

and

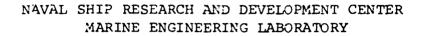
$$S_{\rm PE} = \frac{\Delta \varepsilon \, l_{\rm E}}{2} \qquad \dots \dots (5)$$

RESULTS AND DISCUSSION

The results of the MEL and NASA fatigue tests are plotted and compared in Figures 3 through 8. The upper curves in each graph show the relationship between nominal reversed stresses, S_R (Equations (1) and (4)), and number of cycles to failure. The lower curves show the reversed pseudoelastic stress, S_{PE} (Equations (2) and (5)), relationships. Except for the HY-100 steel, the correlation between flexure and direct stress results based on S_{PE} is exceedingly good, and perhaps even fortuitous, considering the differences in test procedures and failure criteria. Examination of the specimen fractures and related test data did not reveal any assignable cause for the differences observed in HY-100 steel. Noteworthy, however, is the fact that the flexure results in this case are the more conservative of the two.

Correlations based on $S_{\tilde{R}}$ generally showed distinct differences in behavior. The reason for this becomes apparent when the cyclic stress-strain relationships, such as shown in Figure 9, are considered. It has been demonstrated by MEL and others that total strain range is a controlling factor in determining the low-cycle fatigue life of a material. Accordingly, for a given fatigue life (total strain range) the required flexural stress will be higher than the required direct stress when linear elastic stress conditions are exceeded.

CONCLUSIONS


.

1

;

.

It is concluded that the flexural fatigue tests as performed by MEL and the direct stress fatigue tests as performed by NASA will give equivalent results within the life range investigated when correlated on a total strain-range (pseudoelastic stress) basis. Correlations based on nominal stress are not as good because of differences between the cyclic stress-strain relationships for the two types of tests.

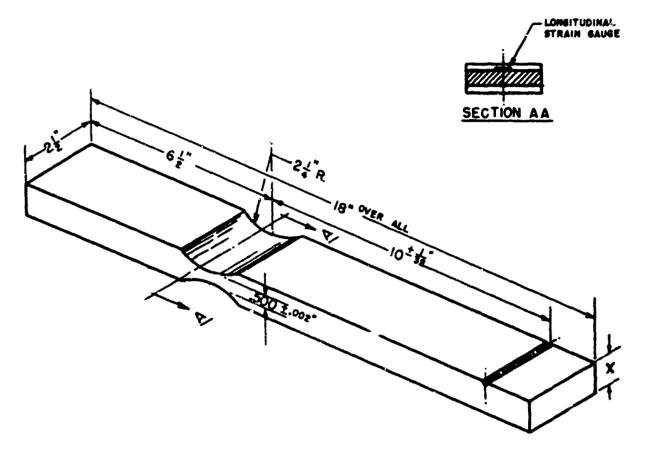
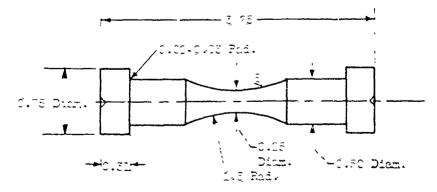
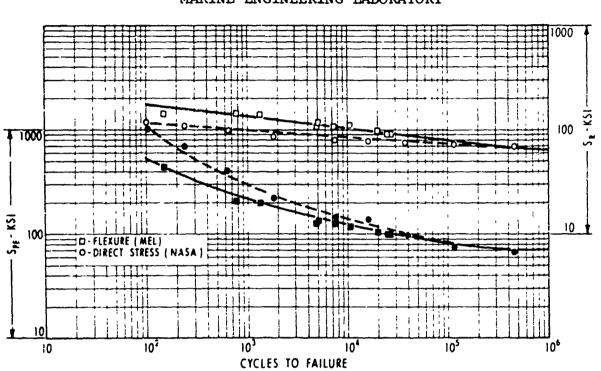



Figure 1 - MEL Flexural Fatigue Specimen



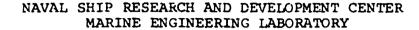
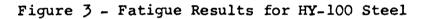

NASA Drawing

Figure 2 - NASA Direct Stress Fatigue Specimen

- ---4

ľ

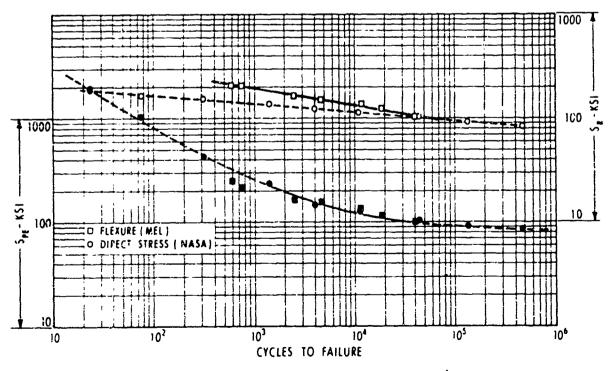
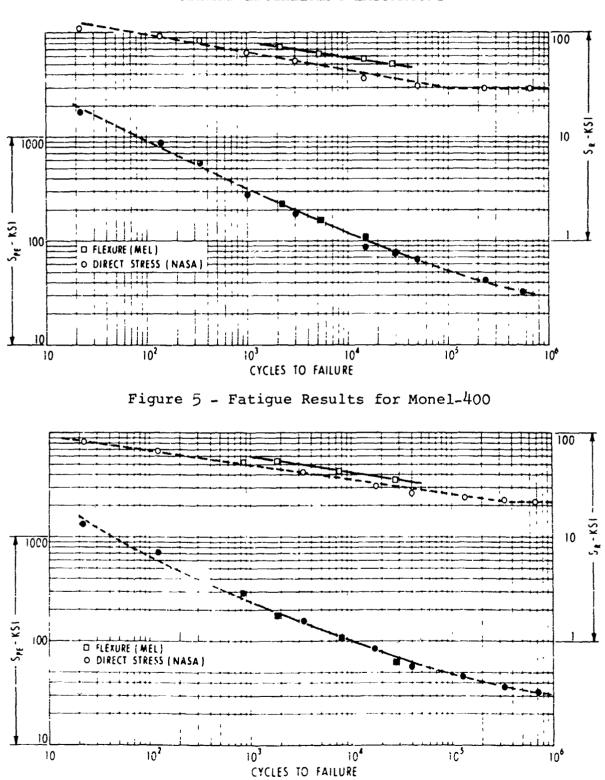

1

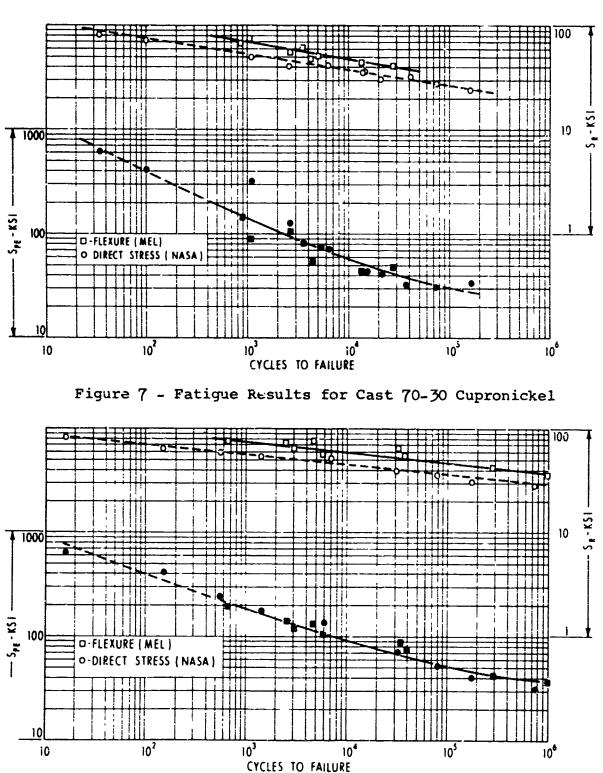
internet

1

UNDER EXTERN

ż


Figure 4 - Fatigue Results for HY-140 Steel

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER MARINE ENGINEERING LABORATORY

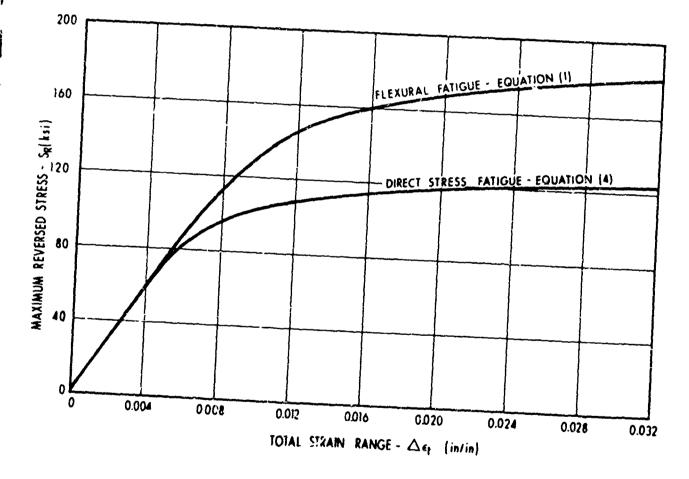
Figure 6 - Fatigue Results for Wrought 70-30 Cupronickel

ť

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER MARINE ENGINEERING LABORATORY

1.00

يد اراد ارزارهم


Figure 8 - Fatigue Results for Cast Ni-Al Bronze

••

a stifter of

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

MARINE ENGINEERING LABORATORY

Cyclic Stress-Strain Relationships for HY-100 Steel

F

Security Classification UNCLASSIFIED			ويستغذين المتري في حفظ الترجي الخص الترجي				
DOCUMENT CONT							
Security classification of title, body of abstract and indexing in 1. ORIGINATING ACTIVITY (Corporate author)	mnelation must be a		CURITY CLASSIFICATION				
Annapolis Division	UNCLASSIFIED						
Naval Research and Development C							
Annapolis, Maryland 21402							
	Dimost Ct		· Curala Estima				
Correlation Between Flexural and Tests	Direct St	Tess Lov	v-cycle rallque				
10808							
4 DESCRIPTIVE NOTES (Type of report and inclusive detes)							
S AUTHOR(S) (First name, middle initial, last name)							
M. R. Gross and E. J. Czyryca							
. REPORT DATE	TE. TOTAL NO O	PAGES	76 NO OF REFS				
August 1967	13		0				
PR. CONTRACT OR GRANT NO	Se. DRIGINATOR'S	REPORT NUME)ER(S)				
5. PROJECT NO S-F020 01 01	2460						
Task 0856							
	Assignment 86 108						
10. DISTRIBUTION STATEMENT							
This document has been approved f	or public	release	and sale; its				
distribution is unlimited.	•		· · · · ·				
11 SUPPLEMENTALY NOTES	12 SPONSORING						
TO DUPPLEMENTATE NOTED	12 SPONSORING	ALLITARY ACT.	VITY				
	NAVSEC						
	NAVSEC						
Flexural and direct stress 1	ow.cvcle t	Fatime :	results for six				
materials are; compared. The mate	-	-					
Monel-400, cast and wrought 70-30			-				
It is concluded that the two meth	-						
within the life range investigate		-	_				
range basis. Correlations based			-				
because of differences between th	-	stress-s	ciain relacion-				
ships for the two types of tests.							
	(Authors)						
	(
DD FORM 1473 (PAGE 1)							
			ASSIFIED				
5/N 0101-807-6801		Samuelle	f lakast calca				

ŧ

Security Classification UNCLASSIFIED						-
14 KEY WORDS	LIN			к	_ IN	
	ROLE	**	HOLE	**	ROLE	**
Fatigue tests Low-cycle fatigue Total strain range Nominal stress Flexural stress test Direct stress test Correlation						« c
DD 1 NOV 1473 (BACK)		UNCI	ASSI			

Security Classification INCLASSIFIE

DD 1 NOV ... 1473 (BACK (PAGE 2)

UNCLASSIFIED Security Classification

.

ſ