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SUMMARY

The paper presents a theoretical analysis of the time variation of

strain gradients in a tensile specimen of rate-dependent material, the analysis

being based on the assumption that the strain rate in the material is a func-

tion of the local values of stress and strain. The theory is used to deter-

mine the criterion for the growth of t'tr~in rrmdients, and it is shown that

for a given material there exists a region of the strpss-str•ain plane in which

these g-radients increase indefinitely with time. The theory is applied to

materials with specific types of rate-dependence, and the results are related

to experimental data obtained at constant rates nf strain.
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""q-'V10 IL.".• ..



ACKNOWLEDGEMENTS

The author has pleasure in acknowledging stimulating discussions with

several of his colleagues in the Division of Engineering, Brown University,

Providence, Rhode Island, during his tenure of a Visiting Professorship. The

work was partially supported by the Advanced Research Projects Agency under

the Materials Research Program.

.iv s..



I. INTRODUCTION

It is well-known that in a static tension test non-uniform plastic flow

occurs when the maximum load is reached, at which point the 'geometrical

softening' of the specimen due to reduction of cross-sectional area becomes

equal to the rate of work hardening. This condition is easily defined for a

material with a rate-independent stress-strain relation, but cannot be applied

to a rate-dependent material, which has no well-defined work-hardening rate.

Experimental data concerning the effect of strain rate on the fracture

elongation of materials ame confusing, since in some tests the elongation is found

to increase at high rates while in others it is found to decrease. The fracture

elongation is determined partly by the strain at which necking starts (the

necking strain), and partly by the speed with which the neck forms during

continued extension of the specimen. It is believed that both of these

factors depend, in general, on the rate sensitivity of the material.

The purpose of the present paper is to put forward a theoretical

analysis of the development of non-uniform plastic flow in tensile tests

of rate-dependent materials, to discuss the implications of this analysis,

and to relate these implications to the results of experiments on partic-

ular materials.
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II. THE DEVELOPMENT OF STRAIN GRADIENTS IN A TENSION SPECIMEN

We consider a tension specimen of initial cross-sectional area A 0

which is assumed to be a function of the Lagrangian coordinate x, measured

along the axis of the specimen; the variations in A are assumed small.0

The specimen is subjected to an axial force T, which increases in an

arbitrary manner with time t. The cross-sectional area at time t is A(x,t),

and the (engineering) strain is c(x,t).

The rate-dependence of the specimen material is assumed to be

governed by the equation

9p = g(a,e•), (l)

where £ is the plastic strain. This equation is expected from dislocation

theory, since the plastic strain rate is determined by the density and

mean velocity of moving dislocations, each of which is, to a first approx-

imation at least, related to the instantaneous stress and plastic strain.

Equation (1) is similar in form to equations which have been postulated

in theoretical studies of plastic wave propagation in rate-dependent

materials (Sokolovsky 1948, Malvern 1951).

Since the onset of plastic instability in ductile materials occurs

at strains which are large compared to elastic strains, the latter will

be neglected and (1) rewritten as

g(a,E). (2)

It should be noted that in (1) and (2) a is the true local stress T/A.

Since elastic strains are neglected, the volumetric strain is zero, which
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requires that

A(I+e) = A 0 , (3)

and hence (2) may be written

S:g[1Y-- (l+C),E].(4 S(4)

0

The strain gradient at (x,t) is defined by

X 1 ac (5)

l+e ax

so that

DE- =(6)
at I+E ax (1+0)2 ax

Substituting (4) into (6), we obtain

aX 1 T aE T(I+E) dAo] + j DE

Bt !+E A Dx A2 dx Ix ae (1+0)2 ax
0

or

+ PX = Q, (7)

where

p E _ (8)

l+C aE I÷E aa

and
dA

1÷e aa A dx
0

It follows from (7) that jxj increases indefinitely with t unless P > 0, i.e.

+ " (10)
ac li-+c aa l-C (0
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The inequality (10) is satisfied in some region of the (a,c)

plane, which thus defines the conditions under which the strain distrib-

ution along the specimen remains approximately uniform as straining con-

tinues.

It may be more convenient to rewrite (10) in terms of the nominal

or engineering stress an = T/A° a/(l+c). Thus (2) becomes

so that

1 ag1  (12)
30 0 aa 1+C 3aa

•o •n @o IE•n

and

9g 1 g un +g l = a 'gl _ (g1

-Ba BC 8C 2 7(1- + " (13)n (l+0) n

Substituting (12) and (13) into (10) we obtain the condition for stability

in the form

ag 1
-- < -- .(14)

aE 1+E

If the material has a static stress-strain curve, it is given

by equating ý to zero in (2) or (11). Along this curve, di = 0, giving

a ~= -q. i&(5
aE- - (15)

where q = (aa/ac)j=0 , the true static work-hardening rate. Similarly from
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(11) we obtain

S= -q • '(16)
n

where ql (Ean /ac),=O the nominal static work-hardening rate.

Equating i to'zero in (10), and combining with (15), gives

q > a/(l+c) (17)

assuming that 3g/3a > 0.

The point on the static stress-strain curve at which q = o/(l+E)

is given by Considere's construction; thus the deformation remains stable

up to this point. Similarly, combining (11) and (16) gives, for € 0,

q > 0, (18)

assuming that ag1/3an > 0.

The condition (18) shows that for vanishing strain rate, the deform-

ation remains stable up to the point of maximum load, in accordance with

the usual simple treatment for rate-independent materials.
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III. APPLICATION USING THE 'OVERSTRESS' HYPOTHESIS

Following Sokolovsky (1948) and Malvern (1951) we may assume that

the strain rate depends only on the 'overstress', that is the amount by

which the stress exceeds the static value for the same strain. Defining

the overstress in terms of true stresses, we may then write

g(Aa) = g[-f(0)], (19)

where a = f(c) defines the true static stress-strain curve.

It follows from (19) that

a- = -g'(Aa)f'(c), (20)

and

g' (AG), (21)aa

where the primes denote differentiation of f and g with respect to their

arguments.

Substituting (20) and (21) into (8) and (9) gives

P : [f'(c) - i• g'(Ao) + (22)

and
dA

Q a g'(Aa). (23)
A (l+e) dx

Thus, assuming that g'(Ao) > 0, the condition for stability of deformation

is

(l+c)f'(c) > a - ý/g'(Aa). (24)
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If the overstress is defined in terms of nominal stresses, we write

= g 1 (AO) n g1 [c1fn-f(c)]1 (25)

where an = f (e) defines the nominal static stress-strain curve. The

stability condition (14) becomes

! I

(l+c)f 1 (C) > - 9/g 1 (AOn). (26)

This indicates that the necking strain in a dynamic test is greater than

that in a static test, assuming that g1 (A n) > 0.

The condition (24) can also be expressed in terms of a andn
! I

fl(i), by using the relations f(E) = (l+e)f (e) and f (c) = (l+e)f (C) + f1 ().

We thus obtain

(l+E)fl(c) > Ac - ý/(l+E)g'(Ao). (27)
1 n

It follows from (27) that the dynamic necking strain is less than

the static value if g,(Aa) > g(Ac)/Aa, that is, if the strain rate increases

more rapidly than the overstress.

It would appear that (19) is a physically more realistic assumption

than (25), since the latter implies that for a given true overstress the

strain rate decreases with increasing strain. In fact, because of the

increasing dislocation density, it is more likely that the strain rate

will increase with increasing strain, at a given true overstress. Such an

increase would reduce the necking strain below the value given by (27);

for example, if we assume that the strain rate is given by (1+c)F(Ao), we
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obtain, instead of (27), the stability condition

(I+c)fI(e) > AOn. (28)

(28) indicates that the dynamic necking strain is always less than the

static value.
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IV. APPROXIMATION OF f(e) AND g(Ao) BY POWER FUNCTIONS

For certain materials, it may be possible to use the empirical ex-

pressions

f(c) = kEn (29)

and

g(no) = C(Aa)p, (30)

to represent the mechanical behavior, k,n,C, and p being constants for a

given material. Equation (30) was proposed by Cowper and Symonds (1957),

who showed that with p = 5 it could represent the results of Manjoine (1944)

for the lower yield stress of mild steel. Marsh and Campbell (1963) showed

that (30) is also applicable, as a first approximation at least, in the

strain hardening region.

The nominal stress-strain curve corresponding to (29) is

an = f (e) = k cn/(l+), (31)

and substituting (30) and (31) into (27) we obtain as the condition for

stability of deformation

a (,fnp_ - 1) kCn (32)
n E 1+c p-l-

Figure 1 shows the static stress-strain curve (31), for n = 1/4;

also plotted in Fig. 1 are lines giving the boundaries of the stable region,

defined by (32), for various values of p. It is seen that for p > 1, the

necking strain is smaller under dynamic loading than the value for static

loading.
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In general, the static necking strain for a material obeying (31)

is given by

e = n/(l-n). (33)s

If, at the instant when necking begins in a dynamic test, the stress is

r times the static value at the same strain, the necking strain given by

(32) is

Ed = np/[r(p-l) - (np-I)]. (34)

Comparison of (33) and (34) shows that the effect of raising the

strain rate is to reduce the necking strain in the ratio

R = Cd/Cs = (l-N)/(r-N), (35)

where

N = (np-l)/(p-l). (36)

Figure 2 shows R plotted against the fractional increase of stress,

(r-l), for various values of N. Equation (35) may be solved for r and

used to determine the boundary of the stable region in terms of N and the

static stress-strain curve; this gives

= fl(Ed )[N + (l-N)c/£d] (37)

or

O n= (C/Cd)fl(Cd) (38)

where

c NCd + (1-N)h. (39)
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If N and f (e) are known, a simple graphical construction may be

employed to construct the boundary curve, as shown in Fig. 3. For any

given strain ed corresponding to a point P on the static stress-strain

curve, a point R on the boundary MN is given as follows. The value of

e is first found by dividing the distance between Cd and c in the ratio
5

1-N : N; then the line OP is drawn and produced to meet the line e = C

at Q; the point R is then given by drawing a line a = constant through
n

Q to meet the line C Ed.
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V. DISCUSSION AND COMPARISON WITH EXPERIMENTS

It follows from (7) that in the stable region of the (a,c) plane,

where P > 0, the strain gradient A is at any given instant tending

asymptotically towards a value which depends on the initial nonuniformity

of the specimen. The rate at which X tends towards this value is deter-

mined largely by the first derivatives of the function g(a,e). Thus a

strongly rate-dependent material, in which these derivatives are small,

will show a less rapid movement towards the limiting value; that is, the

stability of such a material is weaker than that of a weakly rate-dependent

material. The same argument shows that in the unstable region, the instab-

ility is less marked for the highly rate-dependent material. To some extent,

this tendency will offset the effect of a reduction in the necking strain

as the flow stress is raised, since only in highly rate-dependent materials

is the flow stress likely to be raised considerably.

An attempt may be made to relate certain experimental data to the

theoretical results derived in Section 4. Stress-strain curves were obtained

by Campbell and Cooper (1966) for a low-carbon steel at approximately con-
-i

stant strain rates of 0.001, 0.22, 2, 55 and 106 sec , and these curves

are plotted in Fig. 4.

In order to apply the results of Section 4, the constants in (29)

and (30) must first be determined. We take curve E in Fig. 4 as defining

the static nominal stress-strain curve, and this gives the necking strain

as E = 0.25; hence from (33) n = 0.2. The constant k is adjusted to give

the observed static ultimate tensile stress. Equation (31) may then be

used to calculate values of 0 at given values of C; values so calculatedn
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are shown by filled circles in Fig. 4, and it is seen that they are in

good agreement with the experimental curve, for e > 0.1.

To determine p, values of log (Aa) are plotted against log 9 in

Fig. 5; these values correspond to a constant strain of 0.22, this being

the estimated mean necking strain in the four dynamic tests. It is seen

from Fig. 5 that the rate dependence is adequately approximated by the power

law (30): the deviation of the four points from the straight line drawn

corresponds to errors of less than '3% in the measured stresses. The slope

of the line gives p = 4.85, but in view of the small number of points avail-

able, p will be taken as 5; this coincides with the value adopted by Cowper

and Symonds (1957) for mild steel.

Substituting n = 0.2, p = 5 into (36) gives N = 0, and hence from

(38) and (39), the boundary of the stable region is given by

a = (Es/Ed)fl(Ed). (40)

Figure 4 shows the curve MN defined by (40). In order to compare

this curve with the dynamic test data, it is necessary to determine the

value of the slope do n/de at which necking starts in a dynamic test. To

do this, we write (19) in the form

a = f(c) + i(•), (41)

where , is the inverse of the function g.

Differentiation of (41) gives

do (42)P(=f'E) + IV '(ý),42
dg C
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where W' = dL/dc.

Substituting (42) into the stability condition (24) we obtain

do a > (43)
dc l+c (1+£)g'(Ao) '

which becomes, in terms of the nominal stress a n

do
d~n €•'(•) - _ _(44)d-•- > E(÷£ (1+E) 2g (Ao)

Taking g to be given by (30), the last term in (44) may be

written as -AOn/p(l+e); this quantity then defines the slope do /d£
n n

when necking starts in a dynamic test at constant strain rate. For p = 5

and values of Aon corresponding to the curves of Fig. 4, the slope

-,A&n/P(l+c) is very small; it may therefore be sufficiently accurately

determined by using approximate values of Ao and c. The point at whichn

a dynamic stress-strain curve has this slope cannot be obtained very

accurately, because of the small curvature; however, the points obtained,

shown by open circles in Fig. 4, show reasonable agreement with the theor-

etical curve MN, with the exception of the point on the curve D. This curve

is somewhat anomalous in general: it lies below curve E at strains of about

7% but not at high strains as do curves A, B and C. The reason for these

anomalies is unknown.

It may be seen in Fig. 4 that at the highest rates of strain

the nominal stress is greater during the Luders elongation than it is at

larger strains. However, the present theory is not applicable during the

Luders elongation, since the strain cannot then be assumed to be uniform
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across any given cross-section of the specimen.

Another type of investigation to which the present theory may be

related is that in which rate-dependent materials show very large extensions

when tested in tension at high temperatures. The work of Backofen et al. (1964)

has shown that a near-eutectoid Zn-Al alloy is capable of extensions of more

than 1000% without rupturing, at temperatures in the region of 250 0 C. The

rate sensitivity of the alloy was measured and found to be very large, and the

observed "superplasticity" was attributed to this.

The static yield stress of the superplastic alloy was shown to be

negligible, the flow stress being given by the equation

= m, (45)

where K and m are constants.

Thus in (19), f(e) = 0, g(Aa) = Baa, with B K K/m, a M-

(22) and (23) then become

p = (l-a)Baa = (l-a) (46)

and

Q Bo' idA i dA

i+e A dx l+e A dx (47)
0 0

It follows from (46) that the deformation will be stable if a < 1,

i.e. m > 1. Backofen et al.showed that, for the alloy they tested, the value

of m varied with strain rate and temperature, reaching values in the region of

0.5 under conditions in which superplasticity was observed. According to (46),

the deformation should be unstable when m = 0.5, a = 2; however, the rate at

TEO"-TTIlk A I.T

L T72.3Y

A~t~r~7 '? Y. :
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which the strain gradients increase will be very low under these conditions.

As an example, consider a constant strain rate test and assume that

(1/A0 )dA/dx = -j, a constant. Then substituting (46) and (47) into (7) we

obtain

-t (a-) = 1--; (48)
at T+C A LZ

Integrating (48) and assuming that A = 0 at t = 0, we obtain

S----[(l+c)- 1 
- 1] (49)

a-i

Equation (49) has been used to obtain the curves of Fig. 6, in

which A1/ is plotted as a function of strain for various values of a.

Adopting the value A/p = 10 as defining a measurable amount of necking,

it is seen that if a = 2 this condition is only reached at a strain of 500%;

in contrast, taking a 10 as typical of a non-superplastic material (Backofen

et al. 1964), we find that the condition A/p = 10 is reached at a strain of

about 29%.

The above calculations are based on the assumption that the strain

rate is constant everywhere, though this condition cannot be realized when

significant necking has occurred. The results show nevertheless that when

a is not much greater than unity large extensions are possible without

appreciable strain gradients, if p is small; when a is considerably greater

than unity, however, large strain gradients will occur at moderate strains.

For example, taking the variation in A to be 0.1% along the initial specimeno

gauge length to, so that p£o = 0.001, we find that for a = 2 the strain varies

only from 497 to 503% when its mean value is 500%; for a = 20, however, when

the mean strain is only 30% the variation in strain is from about 20 to 40%.
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CAPTIONS TO FIGURES

1. Stable and unstable plastic flow in a material obeying the constitutive

relation 9 = C(a-k 1"/4)p.

2. Reduction of necking strain due to rate effect in a material obeying the

relation • C(a-ken)p.

3. Graphical construction giving the stability boundary for a material

obeying the relation ý = C(a-kcn)p.

4. Experimental dynamic stress-strain curves for mild steel, showing derived

stability boundary MN.

5. Logarithmic plot of overstress against strain rate at 22% strain, for

mild steel.

6. Curves derived from equation (50), showing the increase of strain gradient

X with increase in strain, for a material obeying equation (46).
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