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ABSTRACT 

The author's 1958 multi-commodity flow algorithm 
is reproduced, together with historical and 
technical comments. 



"A Primal-Dual Multi-Commodity Flow Algorithm," ORC 66-24 

Introduction ';   ■ •^ ■ " . , 

Recently, renewed interest has developed in constructing special solution 

algorithms for multi-commodity network flow problems.  The classic reference is 

that of Ford and Fulkerson (84)(F)  ; at about the same time, the author presented 

an independent proposal in a thesis report (p) which received only limited 

distribution.  Because the same idea — constructing a loop-arc incidence matrix — 

was basic to both proposals, this portion of the thesis was never submitted for 

publication. 

However, the increasing number of recent papers in this area (DD)(Y)(A) 

suggests that there might be interest in giving wider circulation to the original 

algorithm, particularly as certain "folklore" of that period keeps on being 

rediscovered. 

Thus, the main part of this report is an exact reproduction of Chapter IV 

and Appendix C of (P).  Although some of the terminology and explanations are now 

outdated, it seemed preferable to reproduce the original version, adding historical 

comments and interpretation, rather than attempting a revision. 

tt     ■■■"■■..-.■■ ■ ■ 
Historical Remarks ,. ,.•-,., 

.- ■- From 1955-1958, a group of faculty (D. N. Arden, D. A. Huffman, S. J. Mason, 

W. K. Linvill) and students (J. B. Dennis, the author, and others) at the Massachusetts 

Institute of Technology became interested in the pioneering research on network flow 

Numbers refer to the original bibliography in (p), reproduced at the end of 
this report; letters refer to supplementary references which follow. 

J. B. Dennis and D. \i.   I'ulkerson have; graciously reviewed this section.  However, 
since a history must of necessity be a personal viewpoint, only the author is 
responsible for  omissions or errors of fact. 
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problems being done at the RAND Corporation by Dantzig, Ford, Fulkerson, Robacker, 

and others (See (6) (15) (22) (27) (28) (30) (31) (32) (34) (51) (52) (74) (75) (84)) . At first, 

our interest was in computational results as they might apply to multi-stage 

transportation models and computer codes which were being constructed under a 

grant-in-aid from the Union Carbide Corporation (47).  However, as various 

theoretical results and algorithms (such as the max-flow, min-cut theorem (15)(22), 

the labelling methods for maximal flow (28)(29)(34), and the Hungarian method 

(59)(60) applied to transportation problems (29)(30)) became available, a Signal 

Nets Seminar was organized in 1956 to discuss these topics and stimulate research. 

The author can recall Professor D. N. Arden demonstrating how the labelling 

techniques for optimal flow could be carried out directly "on the network," 

instead of in a matrix formulation (31) using Orden's transhipment device (69). 

Professor S. J. Mason constructed a diode, current - and voltage-source analogue to 

the optimal flow problem, thus relating networks with capacity-restricted flow to 

electrical networks; I believe he should be credited with the first use of the 

complementary-slackness (voltage-current) diagram in the United States, although 

Sunaga and Iri(Z) also recognized the parallelism and later used these diagrams 

effectively (0), as did Dennis (C)(D) and the author (P).  The fact that the 

Ford-Fulkerson algorithm was a cheapest (incremental) flow-augmenting procedure, 

whereas the simplex procedures, (such as the stepping-stone method), were cost- 

saving flow-rerouting methods, was also known to this group. 

From this seminar came much interest in the area of network models and, 

ultimately, two theses (P) and (C).  The author became interested in making two 

different extensions to the simpler network flow models:  adding multipliers to 

the arcs, and allowing simultaneous (multi-commodity) flows.  The first topic was 

stimulated by a paper of Markowitz (64), and the second by the communication models 



of Kalaba and Juncosa (51)(52); helpful discussions took place at the RAND Conference 

on Computational Aspects of Linear Programming, Santa Monica, August, 1956. 

Research progress on these two extensions was reported in a series of 

unpublished papers (46), and at two meetings of the Operations Research Society 

of America (48)(Q).  Due to the limited understanding of the nature of linear 

programs at that time, every new solution algorithm or model variant appeared 

unrelated to previous work, and progress was uneven.  For example, the author 

originally made a false conjecture on the integrality of multi-commodity network 

flow solutions, which was cleared up by a counterexample of D. R. Fulkerson and 

R. E. Kalaba.  However, by Fall, 1957, the author was successfully solving  " 

multi-commodity and gain problems by hand; what was lacking was a solid theoretical 

foundation for these procedures.    '  ' ' 

" ' ' This foundation was provided by the results of further research at the 

RAND Corporation — the primal-dual algorithm of Dantzig, Ford, and Fulkerson  • 

(20), which generalized the transportation algorithm of (31) to arbitrary linear 

programs.  By specializing this general method back to the gain and multi-commodity 

flow models, it became obvious that the essential subroutine was one of maximal- 

flow in a restricted subnetwork, and that further effort should be directed to 

finding efficient maximal-flow procedures.  For networks with gains, the idea of 

carrying along products of the gains in the labelling procedure to find a flow- 

absorbing loop was developed by the author in March 1958.  The realization that a 

general linear programming subroutine would have to be used for multi-commodity 

flows, and the idea of using a loop-arc incidence matrix to simplify this computation 

was conceived in April 1958.  The final form of both algorithms was presented at 

the Boston Meeting of ORSA in May 1958 (Q), and the thesis (p) appeared in June 1958. 
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In their 1954 paper (28), Ford and Fulkerson used a loop-arc incidence 

matrix to describe single commodity maximum flows problem; they also formulated 

the multi-commodity problem, and showed that the min-cut, max-flow theorem did 

not generalize in a simple way.  As a result of research during 1957-1958, they 

proposed a multi-commodity algorithm based on (what would now be called) a 

"decomposition" approach, rather than a "primal-dual" one.  The method 

was described to the author at the Boston Meeting and the research paper (84) (F) 

appeared shortly thereafter with a dateline of March 1958.  As mentioned above, 

since the loop-arc incidence formulation was central to both papers, the author's 

algorithm was never submitted for publication, although the work on networks with 

gains later appeared in revised form in (R) . 

The other product of the research effort at M.I.T. was a thesis by J. B. 

Dennis, which appeared in book form (C).  Here the possibilities of using electrical 

analogues to construct algorithms for ordinary flow problems, as well as for 

general linear and quadratic programs, were exploited in great detail.  Considering 

its timeliness, it is surprising how little known are Dennis's methods; for example, 

he made the first extended use of the complementary-slackness diagram to explain 

algorithms, and developed the essentials of an isolated-component ("black-box") 

approach, which is related to the out-of-kilter method (E) .  A further description 

of this work may be found in (u).   , ■ 

Since that time, many different people have contributed to the literature on 

multi-commodity problems, and it is difficult to put their work into a proper 

historical context because of their diversity.  For example, we have the continued 

work of Haley (I, J,  K, L) on the multi-index transportation problem; the primal- 

dual formulation of "bundle" constraints by Matthys (v); a "distributed-algorithm" 

proposal of Dennis (D); and a "nonlinear exchange" method of Sakarovitch (Y). 



Tomlin (DD)and Bradley (A) related the multi-commodity proposal of Ford and Fulkerson 

(84) to the decomposition method of Dantzig and Wolfe (B), but apparently were not 

aware of the strong historical connection between the two methods.  Finally, in a 

slightly different direction, we have the undirected arc "communication network" 

problems, with the interesting "bi-flow" algorithm of Hu (M), and various results 

of Hakimi (H), Hu (N), Tang (AA,BB,CC), Rothschild and Whinston (W, X) ,  etc.. , 

The problem of synthesis has been tackled by Gomory and Hu (G) . ■    ;, 

Given that 10 years have elapsed since the first multi-commodity proposals 

were  made, it is surprising that no definitive paper has yet appeared.  To the 

author's knowledge, no explicit multi-commodity computer codes are currently 

available, problems of this type usually being solved by a general simplex routine, 

or by a decomposition code; thus no experimental statistics on the efficiency of 

various proposals is available.  Even the nature of the rational solution to 

multi-commodity problems is not yet well understood (S) . ' ^ ^ ;: ,, ,., - . 

Technical Remarks 

The original thesis report (P) consisted of four chapters, with appendices 

containing proofs and various computational remarks.  Chapter 2 was on "on-the-network" 

description of the Ford-Fulkerson algorithm (31), with emphasis on the physical 

interpretation described earlier; Chapter 3 was presented in expanded and revised 

form in (R).  For this report Chapter 4, Appendix C, and the Bibliography have 

been reproduced. .    ■ , 

Most of the algorithm could, of course, be rewritten in a simpler and more 

condensed form in light of current knowledge about linear programs.  For example, 

the assumption of nonnegative costs and zero lower bounds is not at all essential 

to the algorithm.  In circulation form, the maximal flow subroutine can be explained 



solely in terms of loop flows; the "Direct-Flow" phase then becomes an incremental 

change in some uncoupled loop flow variables.  It is also easy to imagine various 

combinations of the Ford-Fulkerson proposal with this one, say, by using their 

min-cost pricing-out procedure to add entries to the loop-arc incidence matrix. 

In fact, using the COMPLEX approach (u), it is now possible to produce a 

multi-commodity algorithm which would start with an arbitrary solution, and work on 

the network in an "out-of-kilter" manner; as always, the key subroutine is an 

incremental maximal flow problem in a restricted subnetwork. 

The remaining problem, then, is not a conceptual or procedural one, but is 

one of computational efficiency.  Simple network flow problems are efficient 

because of the serial manner in which labelling and flow augmentation is carried . 

out.  On the other hand, the multi-commodity problems have grave difficulties 

in that many such labellings must be made at each iteration, or a full-size 

inverse must be carried along.  Even proper representation of multi-commodity 

network topology presents special problems in data storage and linkage. 

It is the author's hope that reproduction of this algorithm will stimulate 

work on the computational aspects of the multi-commodity problem, and perhaps 

discourage further development of algorithmic variations. 



(The Primal-Dual Algorithm) 

Chapter IV.  Multi-Commodity Flow 

1.  Introduction to Multi;-Commodity Flow  ■ " ^ 

The last tvro chapters have considered flow of identical items through 

a network, or by using gains, the flow of different items' in different parts 

of a network.  In determining the optimal routing pattern, each output 

branch didn't care which input furnished the flow, since all flows satisfied 

the output requirements. 

However, the assumption of a single kind of flow becomes impossible 

when several different flows are available, and the input-output require- 

ments are different for each type.  For example, in any communication network, 

the flow of letters, telephone calls, etc.  is a multi-commodity flow, since 

each message has a unique origin and ultimate destination.  Another example 

is that of a soup canner who has plants producing and storing certain 

varieties, but whose customers want product mixes of all the various soups. 

The reason that the different kinds of flows interfere with one 

another in a multi-commodity network is that ■&iey may share the same branch 

-- i.e., a common warehouse, the same relaying center, etc.  Thus the 

limitations of a branch's total carrying capacity may impose a mutual flow 

capacity restriction on all the flows through the brancii; clearly tnere 

may still be individual flow capacities for the different kinas of flov^ 

• through a network. 

As brtt'uro, it ifl aysumod that tho disutility of eitablisning flov/ . 

la directly proportional to tlie aiaount of flow in each branch; but, it is 

aow possible for the per-unit costs of the different kinds of flows to be 

different, even in a "shared" branch.  An example is the routing of different 

priority messages through the same communications net, where it is possible 



to assign different numerical utility values to the different priorities. 

Figure IV.1 illustrates the idealized branch that will be considered in form- 

ulating an algorithm for multi-commodity flov/.  If certain types of flow are 

forbidden (by policy restrictions, physical limitations, etc.) to traverse 

certain branches in the multi-commodity network, then one may make the 

corresponding individual capacities zero. 

Conservation of flow (for each type of flow individually) is still 

assumed to hold at the nodesj in other words, only the topology of the 

network and the mutual flow capacity are shared in common.  If all of the 

mutual constraints v/ere removed, then one could separate L distinct images 

of the network (one for each flow type), and solve each one individually. 

Conceptually, it is easier to visualize the algorithm if one assumes 

that this "separation into layers" is actually made, as in Figure -IV.3.  By 

introducing additional feeder branches, one can introduce all of the flow 

at the common source 0, and remove it at the common sink R; the placement 

and individual capacities of the feeder branches within each "layer" assure 

the proper production and consumption of each type of flow.  Aside from 

these feeder branches, each layer is a replica of the original network. 

What about the mutual capacity restriction, M^-;?  This constraint now 

introduces a coupling between flows in the different layers such that the 

sum of flows on topologically similar branches is limited.  This feature 

will introduce complications into any optimal flow algorithm for a multi- 

commodity network. - 

A problem of transporting several products simultaneously was first 

proposed by Schell (79); Charnes and Cooper have formulated a warehousing 

problem vdth different commodities (8).  Kalaba and Juncosa (5l)(52) first 

considered the problem of routing communication messages by linear programming; 
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Robacker (75) produced a non-constructive min-cut, max-flow theorem for 

multi-coiraiiGdity flows.  In these references, solution was indicated by 

using the revised simplex method. 

Ford and FvAlkerson have recently (84) proposed a computation for 

maximizing multi-commodity flows which also uses the idea of an incidence 

matrix (see Section 3).  Their treatment uses this formulation within the 

simplex method, with several applications of the "least-cost route" algor- 

ithm to determine the new chain from source to sink to enter the basis. 

Labelling isnot used to find the chains, and thus none of the "easy part" 

(Section 4) of the maximal-flow subroutine is done first. 

2^  Mul'Ei-Commoaity Flow and Linear Programming 

The optimization problem £o be considered is: 

What routing of each type of flow will minimize the 
total cost of all flows, and satisfy the individual 

• - '    and mutual restrictions, for given inputs and outputs 
of each flow type? 

Assuming that there are L different types of flow, whose flow through branch 

(i,j) is denoted by X^-s  (k = 1,2,...L), and that appropriate feeder branches 

distribute the flow correctly (as in Figure IV.3), one obtains the following 

primal and dual formulations to the multi-commodity flow problem; 
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PRIMAL DUAL » 

(2.1) Max C 
i.J.k 

J 

(2.2) ;    -g-iA, 
<^      Ck)      (k) 

vW- vW . 45) . u,, , ci^) 

S(4^4^') = -* (k) V^      unrestricted 

4f=4f 4^';o- 

k 
„(5)>o;   :• 

X,j>0 

(2.3) 

where C> .', M> .•', ^i-;* ^^^  Q S-J^Q given, non-negative constants. 

The constraint matrix for the multi-commodity network is shown in 

Figure IV. 2.  It consists of flow sub-matrices (F) (see Figure III. 2), for 

each type of flow, coupled together by unit matrices (U) which represent 

the mutual flow restrictions in topologically similar branches.  As will be 

seen, the algorithm actually works for coupling between any subset of the 

branches in any simple flow network; in this case the coupling matrices U 

would be arbitrary matrices with zeroes and ones. 

The simple structure of the dual is ^©tained' for each branch and each 

type of flow, except for the coupling term, U^^-?, which must be the same for 

all branches sharing the same mutual restriction.  Since this mutual slack 

potential U. ..may not be non-zero unless the mutual restriction is saturated 
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one would expect that the early solution stages to a "loosely coupled" 

problem would be the same as L simple flow problems solved simultaneously. 

One may more easily see what happens by considering the complementary 

slackness conditions; 

If v[^^ - v(k) < c[k) + Ui^;     (U.j > 0)(U^5^ - 0)        (2.5a) 

then X)^^  =0 

If v[^>  - V(k)  = C[f (V,.  = o)(u(5)   = 0) (2.5b) 

then 0 <x[j^  <min(4j^  M. .  -   5I4j^) ■•      - 

If v[k)   . v^^)   = c[f ^ U.^ (Uij > 0)(u(^) =.  Gj (2.5c) 

r(k)  = M      _  V v(^) then xn    = M. .  -   /, xY. 

■-.      .If V\f > 0       (V(k)   . v(^^  = Ci^^  ^ 45)  . Ui^)     (U, . > 0) (2.5d) 

then Xi^)  = 45) : '-. 

If U^j > 0     (and for at  least one kSL (V^       - V\^^  =■ C^y  + U. .; 

U^^^ = 0)   (2.5e) 

-,:■/':'■   ^'''''^4f = %j ;... : 

The last conditions (2.5e) are of particular interest, since they, 

represent a new type of complementary slackness.  If a mutual slack poten- 

tial is greater than zero, and several branches sharing th^it potential are 

active, it is possible to change the individual flows, provided that one 

increases flow in one layer, while decreasing it in another; in other words, 

individual flows may change when U^ . > 0, provided that one "trades off" the 

mutual capacity restriction.  This novel feature will introduce a new 

procedure into the maxinB-l-flow subroutine where more complicated trade- 

off possibilities must be handled. 
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It may help to visualize the role of the mutual slack potential if 

one considers the electrical analogue.  To incorporate mutual restrictions 

into the model considered previously, one must add 1:1 "D.C. transformers" 

into each branch in each layer of the network sharing the same common 

restriction; the secondaries of each transformer are connected in parallel 

across a diode-current-source loop which limits the total flow of all the 

secondaries (and hence the primaries) to M. . units.  In the case that all 

the flow from the current source is backed up, a common potential would 

appear across the diodes, and in every branch sharing the common restriction. 

3.  Maximal Flow in a Multi-Commodity Network 

The most important part of the optimization algorithm to be described 

is a maximal flow subroutine, vjhich v;ill find the maximum increase in flow 

in a restricted multi-commodity netv/ork. ■ " ■ , 

In the case of simple networks, and flow with gains, it has been 

seen that this subroutine involves a labelling procedure which traces out 

paths which can absorb more flovi  from the source.  To the extent that 

mutual capacity restrictions do not affect the optimal dioice of a route 

for a particular type of flow, one may expect the maximal flow subroutine 

for many flows also to be a labelling method. 

On the other hand, if this problem were solved using the primal-dual 

method, this subroutine could be as general as solving a linear programming 

problem by the revised simplex method; this might be expected in the case 

that the mutual capacity restrictions were extremely tight.  Nevertheless, 

one would hope that the flow part of the problem — the conservation 

equations — would still give a simpler approach to the problem than 

attempting to solve the subroutine by the simplex method. 
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In the maximal flow subroutine to be described in Section 5, emphasis 

is first placed on doing as much of the "easy" increasing of flow as is 

possiblej in many cases, and especially during the early cycles of the 

optimization algprithmj this partial procedure is all that is needed.  Then, 

if necessaryt the second part of the subroutine is used for the "1.p.-like" 

part of ti^e increase in flowj where mutual capacity must be exchanged 

betv/een different types of flow,       ' ,   -  ; 

Therefore, in the first part (the Direct Flow Phase), one considers 

only the changes in the variables that would be made in a simple flow 

problem.  Starting from any feasible flow pattern, one investigates all 

active branches which can individually have their flow increased.  If a 

chain of these branches is found from source to sink, then one can increase . 

the direct flow.  This Phase is repeated until all such increases have been 

made.       . ... ■ ' - -. 

In the second part of the subroutine (the Exchange Flow Phase), one 

attempts to increase flow into the network by exchanging some of the mutual 

capacity restrictions between the different layers.  Since one can envisage 

an exchange involving many layers and different mutually saturated branches, 

this exchsmge could be quite complex; in general, a linear programming 

problem does result.  However, the procedure to be described reduces the 

problem as much as possible before resorting to the simplex methodj in any 

case, one needs to use this part of the procedure only infrequently during 

the solution of a problem, and the resulting linear programming problem 

oonden.ses the restricted primal problem so as to TOneidor only the meaniagful 

changes in the flow.   .       ■      ■ ; ,~ 

The main i'eature of tiie exchange flow phase is that a table is con- 

structed, which is essentially an incidence matrix, showing how forward 

chains (which increase total flow in the netvrork), backward chains 
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(which decrease total flow), and loops (which leave total flow unchanged) 

are "incident" upon the various mutual restrictions of branches vMch have 

positive mutual slack potentials.  This incidence matrix defines a set of 

equalities -which restrict the changes to be made in the flows in chains and 

loops in the various layers of the network so that the mutual restrictions 

are still met.  The procedure to be described uses this table to eliminate 

all possibilities of exchamge which are clearly not advantageous (if no 

forward chains exist, for instance).  If elimination does not simplify the 

problem (it usually does), then one must solve a small linear programming 

problem, which determines the increases in flow in the chains and loops 

which maximize the total flow increase into the network, subject to the 

"exchange of mutual restriction" condition.  The limiting factor on this 

increase is usually the saturation or emptying of some branch, so that the 

table to be described also carries along these additional restrictions. 

An example should clarify the use of the incidence table (Step 6). 

Consider Figure IV.4, v/hich shows the skeleton of a network ■v^hich might be 

encountered in a maximal-flow subroutine for a multi-commodity network. 

Each row represents some chain or loop of branches whose flow may be changed; 

the heavy branches are those which are mutually saturated; those "branches 

which share the same mutual flow capacity are in the same column — for 

examples branch (ij)„ is in loop (2) and chain (Z^o     The arrows on the light 

portions of each chain or loop indicate the direction in which flow may be 

increased.  Assuming that the source is to the left of the diagram, rows 

(r),(4), and (s) represent forvmrd chains, row (z)  represents a backward 

chain, and (2^ and (^ are loops.  With respect to "incidence", it can be 

seen that an increase in flow through chain (V) would (a) increase total 

flow, (b) tend to increase the mutual sum of flow in branches (ij)2 a-n.d 
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Example of Exchange Flow Phase of Maximal Flow 
Subroutine for Multi-Commodity Flow 

Figure IV.4 
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and (ij)^, and (c) would tend to decrease the mutual sum of flows through 

branch (ij)c«  Similar statements hold for the other rows. 

If one denotes the increase in the flow in configuration r     '• 

(r = 1,2,.. .6; by ^    then the appropriate capacity exchange equations read: 

^1     -^3     ,        =0 

-$2 "" -^3 =0     1 (3.1) 

*^2 \:     .  -^5" ^6 = 0 

^1        "^3        -^5        =0     : :.   / ."    •. 

Because of effect of tlie various increases^in flow in the different config- 

xorations one would like to maximize the total increase in flow into the 

network, which is  5 - S3 + S^  "^ cSg"  By the elimination procedure of the 

subroutine, however, one finds that S    = ^^o = «5, = 6. = <5c = i rC is 
1    c •J    4        2 o 

the only possible solution.  Other constraints not shown actually limit 

the flov/. 

4.  Discussion of the Optimal Flow Algorithm for Multi-Commodity Networks 

Having discussed the salient ideas of the maximal-flow subroutine, 

we consider the basic features of the optimal flow algorithm.  Many of its 

steps are the same as those discussed in previous chapters, so only the 

differences will be emphasized here. 

With different commodities flowing, we must add to our terminology 

in order to completely describe the state of each branch.  Using the layer 

formulation to separate the different commodities, a branch carrying no 

flow (of a single type) is said to be empty; if the flow is at its upper 

bound, the branch is individually saturated; and if several branches. 
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sharing the same mutual capacity restriction, have the sum of their flov/s 

equal to this upper bound, then one speaks of the branches as mutually 

saturated.  For convenience in the algorithm it is assumed that a branch is 

not individually and mutually saturated at the same time.  This is not a 

loss of generality, since one can separate any such branch into two branches 

in series, and ttius resolve any ambiguity. 

Using the dual inequalities, one can again describe an individual 

branch as inactive, active, and overactive, depending on the slackness or 

tightness of the constraints (2.4).  One new state is needed, hov/ever, to 

describe the set of branches for which the mutual slack potential, Uj^j, is 

positive; these branches may be described as coupled.  The complementary 

slackness conditions (2.5J become: •   . : , ,>,■   :■ , 

,-      If an individual branch is inactive, it is empty.  -.  ■'• 

If an individual branch is active and uncoupled, it may 
have any feasible flow. 

If an individual branch is overactive, it is individually 
:       saturated. 

If a group of branches is coupled, at least one of the 
branches is active, and the group is mutually saturated. 

Tfee last condition provides the interesting possibility that the 

mutual capacity restriction may be "exchanged" between coupled branches in 

order to increase total flow into the network, provided that the branches 

are kept mutually saturated; a systematic procedure for doing this was 

described in the last section.  Oocasionallyy the optimal flow algorithm 

detects a change of state called "decoupling", when the mutual slack poten- 

tial is decreased to zero from some positive value. 

The algorithm to be presented in Section 6 proceeds in much the same 

way as the other network solutions. The first step starts the procedure by 

finding a set of feasible potentials.  Since all of the unit costs are    - 
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assumed non-negative, setting all of the potentials equal to zero gives a 

feasible dual; or, one may find the least-cost path from source to sink 

through the netv/ork of Figure IV. 3, and use the resulting potentials to get 

started. , ,  . 

• ■'■•..   The second step identifies Set A as the set of indices of overactive 

branches. Set B as the set of indices of coupled branches, set C as the set 
of active (coupled or uncoupled) 
branches, and Set D as the union of all these sets.  The complement of Set 

D is, of course, the set of indices of inactive branches.  The algoritrun 

then identifies a restricted netvrork, in which all inactive brancnes are 

to be kept empty, all overactive branches are to be kept individually sat- 

urated, and all coupled branches are to be kept mutually saturated.  The 

last condition provides a great deal of latitude. '        :■.: .  ' 

The restricted primal problem then requires one to maximize flow 

into the restricted network, keeping as many of the usual restrictions 

satisfied as possible.  As before, one can arrange matters so that only the 

input (and output) flow requireiaent is not met; one can again think of the 

primal problem as using feasible potentials and complementary slacimess to 

guide the restricted primal's attempt to reduce infeasibility in the flows. 

In Step (3), the maximal flow procedure of Section 5 is used to 

solve the restricted primal and its dual.  This subroutine first explores 

all active, uncoupled branches using t?ia simple labelling procedure of  - 

Chapter II to see if these is a "direct" way to send more flow from source 

to sink thruugli any layer; it proceods to establish as much of tnis flow as 

is possible.  Then the active, coupled branches are added, and one considers 

how to change the flow in coupled branches so as to keep them mutually 

saturated, yet provide new paths of active branches to increase the total 

flow through the netv/ork.  One constructs an incidence table by using some 
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very siiaple labelling techniques to find all chains and loops of active    ■• 

branches; the table than describes tiie effect of an increase in flow along 

a chain or loop upon a mutual restriction.  Because the sum of such flow 

changes for a group of coupled branches must be zero, certain logical impos- 

sibilities may be eliminated immediately.  In general, however, one may be 

required to solve a small linear programming problem.    '■ . 

In Step (4), one notes that if the input flow is the desired value 

Q, the algorithm is finished, since one has feasible flows and potentials, 

and the conditions of complementary slackness are satisfied. 

■ '     If tl-ie total input to the network is still too small. Step (5) looks 

for a way to change the potentials so that they remain feasible, yet increase 

the dual functional, and add at least one new active, uncoupled branch to 

the restricted network. ..■..-■   ■.'.-■ 

As in Chapter III, it is not easy to describe the relative changes 

in potential which occur at this step.  The difficulty is not due to gains . 

in the dual equations but because the mutual slack potentials are common to 

the dual restrictions of each group of coupled branches.  The way to      ■ ' 

correctly evaluate these potential changes is to use the solutions to the 

dual of the restricted primal problem.  This dual provides a set of poten- 

tial increments 0£ ■', '^x\   '   ^^^ ^^i-i such that    ■ ' 

for all non-inactive branches, with equality holding for non-empty branches. 

The source potential increment, a„, is fixed at +1, so that all potential 

changes are expressed relative to an increase in the potential, VQ; the    ■■ 

(k) other node potential increments, a>  , are unrestricted.  The individual 

(k) 
potential increment, aj_ ^ , is non-negative for branches which are not over- 

active, and is zero if a branch is not individually saturated.  The mutual 
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slack potential increment, o^., is non-negative for groups of branches which 

are not coupled, and is zero if the group of branches is not mutually satur- 

ated. 

With these relative changes in the potentials established, one then 

argues that it must be possible to increase the source potential by a finite 

amount "l9, without violating the feasibility of the potentials (see Appendix 

D).  The conditions on the potential increments assure one that active, non- 

empty, unsaturated (either way) branches remain in the same state; empty 

active branches may become inactive; individually saturated active branches 

may be overactive; and mutually saturated active branches may become coupled 

— all without violating potential feasibility, or disturbing the comple- 

mentary slackness with the flows, for any value of-,9 ■> 

The limit on the increase of the source potential comes from three 

possible changes of state: ■ 

(1) An inactive branch becomes active, ("break-down") 

(2) An overloaded branch becomes active.  ("easing-off") 
or, 

(3) A group of active coupled branches decouples. 

If none of these possibilities is present, the problem is infeasible, and 

is detected in Step (s) of the algprithm.  Otherv^rise, one repeats the 

algorithm with the new feasible potentials, and a different restricted 

network with at least one new active, uncoupled branch.  One also finds that 

the dual functional had a strict increase on the last cycle, and that the 

previous set of optimal flows is feasible in the new restricted primal 

problem. 

The arguments for optimality are the same as those presented in 

Chapters II and III.  One proves the maximal-flow subroutine by  ' . 

defining rules to generate the potential increments (Step 15, Section 5), 
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noting that they solve the dual to the restricted primal (Appendix C) and 

obey the correct complementary slackness conditions.  One thus proves that 

the restricted primal actually finds the maximal possible increase in flow 

into the network. 

The reader is once more urged to reinterpret the mathematical state- 

ments of the following sections in terms of what is happening to the flows 

and potentials in the actual network.  The flow-maximizing subroutine is 

complicated only because of the mutual coupling} the optimization algorithm 

is merely finding increiacntn.lly more costly ways of routing various types 

of flow through the network, until the desired input is reached in a finite 

number of steps or infeasibility is discovered.        ,      . 

5*  The Maximal Flow Subroutine for Multi-Commodity Networks 

The maximal flow subroutine is: 

(k) (l)  Start with any set of flows, Xl^j , satisfying the restri 
primal problem (6.2) and (6.3).  An "efficient" set is t 

Lcted 
the 

optimal solution of the preceding cycle of the algorithm. 

Direct Flow Phase    ^ 

(2) Label source with ?< Q =  (/F = + ^/)' 

(s) Consider any node ik previously labelled with 

7V[^) =(hk/F^^^ /+ or -)    - 

. ' ■.  and any other node jk not previously labelled. 

(a)  If (ijk e cna) and {l)^.^  < MJ^^ and ( / , x' 
; ■ ■,   _ : .^ "^ keLj 

, : label Jk wlthj ,.-.   , , -   ,.. 

X^^) = (ik/F^^^ = min(Fi^); MA"^) -X^^); 

^^      kSL ^ 
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(b) If (jik S CflB) and (X^^'' > O), label jk v;ith: 

--    A$^^ = (ik / E(^^ = Min (F(k); xf^h / - ) 

(c) Otherwise, do not label node jk. 

(4) If node R is labelled, go to Step (5), otherwise repeat Step 
(3), until R is labelled, or, no new labels are defined. In 
the latter case, go to Step (6). 

(5) Node R has been labelled with a positive F-^ in the label, and 
the flow into the network may be increased by a "direct flow" 
of this amount. 
Starting at R, trace the labels back to the origin, adding Fj^ 
to Xj^^' if the following label is encountered en route: 

A(^) = (ik/F(^) /M  , 
fk") or subtracting Fg from J^\^     if the following label is met: 

When the source is reached the flow into the network has been 
increased by F|j, and at least one branch has saturated or 
emptied. Erase all labels and repeat Step (2). 

Exchange Flow Phase * 

(S) No new nodes can be labelled, and node R is not labelled.  No 
direct flow can be sent from source to sink, unless an 
"exchange" in mutual flow capacity can be made between coupled 
branches. _ 

Add to the branches ijk and jik £ COB previously 
considered, all ijk and jik e COB, as additional candidates 
for labelling.  If there are no ijk £ COB, this phase is 
completed} go to Step (14). 

The next few steps will consider a labelling procedure 
to establish chains and loops in all layers; an incidence 
table will be constructed, which describes the incidence of 
permissible chains and loops on the ij £ B, as well as on the 
other branches which make up the chains and loops.  Figure 
IV.5 illustrates the form of the tablej the chains and loops 
(indexed by r = 1,2,...) form the rows of the table.  One 
column, headed F, will describe the possible increase in flow 
due to exchange.  The set of headings over that portion of the 
table marked E are the set of all ij £ B.  The set of columns 
marked L'*', are headed by ijk £ C.  The set of columns marked 
L~ are headed by jik £ C. 
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All ijk such that 

All chains 
and loops 
defined in 
(7)(8)(9) 
and (lO) 

ij e B F ijk e c jik e c 

1 
2 -( ' 
• 
• 
r 
• 
• 

E     . . ^r ^r.ijk r.ijk 

Form of Incidence Table 

Figure IV.5 

(7)  Establish "forward chains" from 0 to R. 

.      (a) Label source with AQ = (/A). 

(b)  Consider any node ik previously labelled with 

XCk) = (hk// + or - or Ex+ or Ex-) 

and any other node -jk-. Nodes may be labelled any 
number of times (except that looping situations are 
to be avoided in (7) and (S), and each new label may 
be continued according to the following rules: 

(i)   If (ijk e COB) and {xyy < li^^)    . 

and ( S 4^^  <MiJ ' 
kSL ^-^      -J     ■ 

(ii) If (jik e CflB) and (X^^^ > O) 

(k) A' 

(iii) ijk S COB 

(ik // - ) 

\f^  = (ik // ExO 

(iv)  jik £ CDB   :■■   . 

\^^^   = (ik//Ex-) 

(v)  Otherwise, do not label. 

(c) fiepeat (b) until no new nodes are labelled.  If node R 
is labelled (at least once), go to (d).  If R is not ~ 
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labelled, go to (e). 

(d) For each label on R, establish a new row (say, r) in the 
incidence table, and determine the set of branches v.nich 
form a particular path from 0 to R by following any set 
of labels backwards.  Note that if there are several 
ways to describe a connected network of chains, any 
description will suffice - provided that one avoids : 
loops.  For each labelling of: 

.Type (7bi)  set     ^r.iik equal to +1 

Type (Tbii)  set     ^r.jik equal to -1 

. Type (Tbiii) set Lr.iik ^"^ '^r,ii ®q^^l "to "^1 

Type (7biv)  set L^^^j]^ and E^.ji equal to -1 

Set fj, equal to +1 

3rase the labels thus followed, and repeat for each label 
on R, until all such forward cnains are entered in the 
table.  Go to Step (8;. 

(e/  No increase in flow is possiole; go to btep (14,/. 

^8) ^stablisn "bacKwara cnains" from £ -co 0.  repeat i3tep (7), 
except start at node £ and attempt to label; node 0.  The 
entries in the incidence table are the same as in~Step (?), 
except that f = -1 for each backward chain in the table. 

(S) Establish "forward loops" around coupled brancnes. 

(a) For some (k) £ L, start at node jk of a branch with 
ijk £ cr\B, and label as in Step (?) attempting to 
relabel this node via node ik and branch ijk, except 
do not label the source or sink. 

(b) If node jk is not relabelled via branch ijk, repeat (a) 
for all different kSL.  If no relabelling occurs, go 
to (e). 

(o)  If node jk is relabelled via branch ijk, establish a new 
row in the incidence table, with entries the same as in 
Step (7), except that f^. = 0. 

(d) Kopaivt. the Inbol I iii.i'-. prooodure (o) to find all such 
loopo Vrom  .)k U>  ik. 

(e) Repeat (a) for another ijk S.  Cf\B,  .until all such r 
mutually saturated branches have been examined. 

(lO)  i?stablish all "backwurd loops" around mutually saturated 
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branches.  Repeat Step (9), except begin at node ik and attempt 
to relabel the same node via node jk, labelling backwards 
across branch ijk.  The entries are the same as in Step (9). 

(11)  The complete incidence table of (chains and loops) on (mutually) 
saturated branches) and (flov/ limiting branches) has been 
constructed, with at least one positive f^,.  In order to find 
an increase in flow by exchange, it is in general necessary to 
solve a linear programming problem, v/ith non-negative £^ 
variables defined for each rov/. 

First, the problem is reduced as much as possible by 
examining the entries Ej.^j_j. Reference should be made to 
Figure IV.5. 

(a) If all entries in a column of E are zero, eliminate 
that column. 

(b) If all entries in a column of E are non-negative, (or 
all non-positive), eliminate all rows with the positive 
(or negative) entries, setting the corresponding (Jr = 0, 

;     and finally eliminating the column. 

v ,   (°^  ^f °"® entry (in row ri, say) is +e (e = 1,2,...). and 
the only other non-zero in the same column of E (in row 
i'2'   'Say) is -ne (n = 1,2,...), then c$ p, = n cJ g-  Add 
n times the entries in row rj^ to the entries o? ro in the 

same column (for all column"s7, store in row rg ani" 
eliminate row r^^, and the column which had the two 
opposite sign entries.      .  •' 

(d) Similarly for the two non-zero entries (-e) and (■'"ne). 

(e) Repeat (a) through (e) until: 

either (i) There are no rows left.  Set all 
6r = 0.  Go to Step (14). 

or   (ii) There is ho positive entry under F. 
Set all Sj. =  0.  Go to Step (14). 

or  (iii) There is one row v;ith all zero entries 
■' ,' ■' . in E and a positive entry in F.  Go to 

Step (12a). 
(iv) There are two or more rov/s with arbitrary 

-      entries in E, and at least one positive 
entry under F^     Go to Step (l2b). 

(12)  The reduction of the incidence table in (ll) did not indicate 
thfl.t_a non-zero solution was not possible.  In what follows, 

■ ' it is assumed that the reduced incidence table is being used; 
the symbols are the same as Figure IV.5, however. 

(a)  If there is only one row, r]^, with all zero entries in 
E, and fj.-]^ positive, set: 
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Min 
L > 0 

6, _ Min 

'"l  L/0,L-/0 

Min 
L < 0 

(M.. - y x^^^-1/^) -x^^) 

(k) 

(5.1a) 

(5.1b) 

and the other o^ follow from the reduction procedure. 
Go to Step (13). 

(bi  If there are two or more rows with arbitrary entries 
in E and one or more entry in F is positive, it is 
necessary to solve a small linear programming problem. 

(i)  First reduce the constraints associated wdth L 
and L~ as much as possible.  For every set of 

:        columns in L which has only one entry different 
from zero, and for which all members of the set 
have this entry in the same row (say, r-^), 
eliminate all columns in the set except the one 
which would give the minimum if calculated by 
(5.la).  Similarly, for L", eliminate redundant 
constraints v/hich operate only on one and the 
same 6 j-l* by dropping only those for which 
(5.lb) is not a minimum in the set. 

(ii)  Solve the following linear programming problem 

Maximize 
all r 

^rS': (5.2) 

subject to 

all r 

.11 r ""'^^      "" ~ ^^      keL ^^ 

- (k) 

M. 

(k)- 

^^^ .x(k)) 

f^/;,^3'ir;C-45') 

(5.3a) 

(5.3b) 

(5.3c) 

6^>o (5.3d) 
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the solution to this problem gives the 
solution to all S j.,   from the reduction    " ■ 
procedure.  If all f ^  are zero, go to Step 
(14).  If not go to Step (l3). 

(13) Not all Sj. are zero in the optimal solution to (l3) and 
(14); for each non-zero result,, the flow in that chain or loop 
can be increased by ^ j, (in the direction labelled), such that 
the net result of all such increases (as labelled) will be to 
keep the restricted primal satisfied, and increase the net 
flow into the netv/orko 

The change on the flow variables is mde as follows: 
For ijk in the Seop or chain r, increase X>^^ by X  if ik is 
labelled     , , ^     ^ 

f^y^  = (ik // + or Ex+) 

or decrease X^^' by 6^ if jk is labelled .^• 

X^^^ = (ik^/ = or Ex.)        . , ■ 

Another way to think of the resulting change to be made in the 
flow variables iss  Itake the original incidence table and 
the ^coluim vector) of optimal S^ ^   and form the dot product 
with each column of the original incidence table in L"*" and L", 
and add the result to the variable which has the same index 
ijk as the column. 

The resulting increase in total flow into the network is 
the expression (4.2).  There is no need to repeat the direct 
flow phase of this subroutine,, since no new Fjk £ C QB have 
been defined.  Proceed to Step {lb). 

(14) Either there are no ij £ COB,; or no additional Exchange 
labelling can be made, or no increase -in flow via "exchange" 
is possible; set all ^^  = 0. ° , 

The restricted primal has been solved, and the maximum 
possible flovr in the restricted netv/ork is the same as for 
the last cycle. 

It is now necessary to find the dual variables to the 
restricted primalo 

Dual Variable Definition Phase 

(15)  One now defines the dual restricted variables o>^\ a^^^, 
and o^y     In what follows, it is assumed that the flow does 
not achieve both its individual flow capacity restriction, 
and its mutual flow capacity restriction, simultaneously. 
This is equivalent to separating each branch for which this 
occurs into two series branches, and is done merely for 
simplicity in some of the rules presented belov^o  Furthermore, 
it is assumed that parallel branches are similarly trans- 
formed. 

First, examine the optimal solution of the linear 
program (5.2) and (5.3).  If one found (via Step (l4)) that 
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all O  ~ Oi one can still imagine that this solution was 
found the difficult way, by solving a linear pro^rairuTiing 
problem. 

In the program, equalities (5.3a) reduce (drastically) 
the allov/od set of solutions; at optimality, , if is one        ;; 
(or morej of the inequalities (6.3bJ and (6.3c) which dotermines 
the actual bound on (13). 

' . The solution to the dual of (6.2) and (6.3) is a set of p^j 
such that ,  .  .  ■ . 

:-J ^r,ijPij > iV - Pr ^5-4) 

and equality holas if O^ > 0; j3  equals zero unless this 
chain or loop haa a branch which is saturated or emptied 
during the exchange flow, in ^ich case it is non-negative. 
For example, for a chain from 0 to R with 6 j. > 0 which did 
not saturate or empty, (5.4) reads 

S 1 Pi.1 = •'I 

where the sum is positive if ij is traversed in the forward 
direction, negative if traversea from j to i. 

For a loop, the sura is equal to zero, etc 

'Define a special subset of the nodes as follov;s, and 
denote them by the product notation IK: 

i'roceed with the labelling of steps (7)(8)(9) and (lO), 
after optimality is reached, even though such labels do not 
''complete" chains or loops.  The set of all labelled nodes 
is defined as IK (with some possible additions, deacribed 
later)s  In other words' - 

(i)  Nodes 0 and R and ik and jk 3 ij £ B are in IK. 
(ii)  If ik £ IK, then jk £ IK_if  ^ «.    , 

either (a) (ijke v3nB)n(X^y <M^^>) 

ncS 45^ < M^^) 
kSL  *^     -^ 

.(k) 
■ .   ■:  or (b) (jik £ CnBjn(4j > °^ / 

' ■ or (c) ijk £ CpB  ,   ' ,;:,' ',' 

Define the dual variables by means of the follov/ing rules. 

Rule A.  Set OQ = +1, and OR = 0. 



31 

Rule 3.  If ijk £ UK ■.. 

and ijk i COB, a^.  =  a^j^ = 0; oi*^) '^r 
and ijk COB    Oij = ?.y,  o[f = 0; o^> 

- "^ ^ '- °ij 

That this set of rules cem be applied consistently 
may be seen by examining all possible conflicting situations. 

For ijk S COB, the rules are consistent since no chain 
from 0 to R, or conflicting loop composed of only this type 
of branch is generated by the algorithm. 

For "forward chains" joining 0 to R with non-zero 
changes in flovi,   (5.4) guarantees that 

s + a-• = +1 

(k) and the rule is compatible since all 0> ' can be uniquely 
defined by follov\fing the chain from 0 to R.  This procedure 
is also unique if several such chains have branches in common, 
since the incidence table took all such chains into account. ■ 

For "backv.-ard chains" joining R to 0, with non-zero (Sj-, 
(5.4) guarantees that 

°ij = -1 L:- 
and the rule is compatible for the same reasons. 

For loops in either direction around some mutually 
saturated branch, with ^j, > 0, (5.4) guarantees that 

(v) 
and the rule is compatible, with the a^*" determined to within 
an additive constant; hov/ever, if the loop is part of a 
complete or incomplete chain of ijk i  IJK connecting any 
previously defined node variables, this redundancy will be 
removed, and the node variables are uniquely defineo.  This 
procedure works even for loops and chains which have branches 
in common, since the incidence table assures a compatible 
set for all chains and loops. 

For chains and loops which were "broken" during the 
optimization, (5.4) states that 

^+ O^j > 0; +1, -1    (loop; forward, 
• ' ■   '    •, backv/ard chain) 
and thus the rule can be satisfied for the remaining "pieces" 
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of the chain or loop, with 

for the branch which emptied, or P\^     = 0  and (say) a^-     > 0 
for the branch which saturated, etc  Any incomplete chains 
or loops may be considered as "broken", and the above argu- 
ment applied. 

For solutions with all o  = 0, one may not have actually 
used the linear program, and dual variables a^A  would not be 
defined.  In this case, one must "do it yourself", and solve 
the following set of simultaneous equations: 

with equality holding for those "completed" chains and loops 
with non-zero flows. 

This solution always exists, since one could alwiys solve 
the linear programming problem (5.2) and (5.3).  The rule 
continues to hold, and thus the dual variables can be uniquely 
computed for all nodes in IK, and all branches in ilK. 

Rule C. 

set 

For   

(ijke cnnK)n( Zl  xj^^ = M..) 

Oii = max (o5^\ 0)  and 0^^ 
-^  kSL  ^ -^ 

0 

Furthermore, if XYy  > 0, set a.       = aV^^   ' '^iy   ^^'^  ^^® ^°'^^ 
jk to IK and continue with the labelling of new nodes,in IK, 
defining new variables with Rule B.  Otherwise, set a!- ' = 0. 

/, ■> This rule defines a consistent set of a. . and      f,\ 
Oj  by "stopping" at the branch ivith greatest positive o± 
and continuing the labellanp, on other branches ij if the flow 
is non-zero.  If all the o^^y  are negative, the labelling 
continues on all branches with non-zero flow.  This insures 
that Piy   = 0 for x[y  >  0, and pyy  <0 otherwise. 

Rule D.  For ■ •: ■■ 

(ijk£ cniiK)n(x?^^ = M[^^ ■      /; 

set 

3    10 

^j  - iuaA \U£ - , u)      Oi j o\.^  = max (oY^K   O)    Oii = 0 

and if a^ ' is negative, set ay-'   =  a£  , add node jk to the 
set IK and continue with the labelling of new nodes in IK, 
defining new variables with Rule B.  Otherwise, set ON^ = 0. 
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This rule insures that a>^'' > 0 and P\Y   " 0 ^°^  ^hi s 
set.  Note that there are no such branches in UK. 

Rule £. For ijk £ A, set 

o[f  = a(k) . a^^) 
^iO=° 

for all branches for which both node potentials were 
previously defined.  If not, set undefined potentials 
equal to zero and then use this rule. 

This rule makes pW   =  0 for this set. 

Rule F.  For all other nodes and branches, 

oF = of-') = oW - a,, = 0 

Step (is) is completed. 

End of Maximal-Flow Subroutine 

6.  The Optimal Flow Algorithm for Multi-Commodity Networks 

The algorithm to be described has the follovdng program: 

Begin e>- 1. 
- 2. 

3. 

Optimal 
Solution'*^- 

Problem 
Infeasible**" 

•4. 

5. 

-6. 

Select an initial feasible solution to the dual problem. 
In terms of the feasible dual, define a restricted 
primal problem, and a set of the primal variables which 
can be changed. 
Solve the restricted primal problem by maximizing flow 
into the restricted primal network, in two steps: 

(a) Maximize flow which can be sent directly 
through each layer. 

(b) Maximize flow which can be sent by "exchanging" 
mutual capacity between layers. 

If the flow input to the network is equal to Q, the 
optimal solution is obtained. 
Otherwise, use the solution to (3) to define changes in 
the dual variables which form a new feasible solution 
to the dual problem; repeat Step (2), until 
No such changes can be made, and the flow input is not 
Q, and the problem is infeasible. 

Step (l) 

To begin with, select a dual feasible solution, such as the 
least-cost route from source to sink, or, set all dual variables 
equal to zero. 
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Step (2) 

From Step (l), or from the output of Step (s), define the 
following sets: 

A = (ijk e NNL I \jyy > O)   ^ • 

B  =  (ij    e NN I Ui^ > 0  ) 

C =  (ijk £ NNL I  (v[^^   - v(^)   - y[f   - U^j  =  c[^bn 

(uW = 0)0 (u.. >0)  ) 

and 
D = AUBUC :        ' 

Define the following restricted primal problem; 

Maximize F, 0 

subject to constraints: 

jEN 
S(45^ -x(^))=o 
jEN J 

ik e NL 

kSL 
^Rj 

X x(^'  < M, 
kSL 

x(^) > 0 

xW = M(^) 

£xW 
kSL    ^J 

M. . 

ijk e NNL 

ij  e NN 

ijk S NNL 

ijk £ D 

ijk e A 

ij £ B 

6.1a) 

6.1b) 

6.1c) 

6.Id) 

6.2) 

6.3a) 

6.3b) 

6.3c) 

6.3d) 

6.3e) 

6.3f) 

6.3g) 

6.3h) 

6.3i) 

The dual to (6.2) and (6.3), called the dual restricted problem,is; 

Minimize  2A      M^^^a^V"*"  2ix M. -a, , (6.4) 
ijk£ML 

subject to constraints: 

ij£NN 
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,(k) _ 
0 

.(k) . 
ij 

a(^) > 0 

•^ii :5 °     ijk e D 

(k)     .. • X j a.V unrestricted 

ijk e DPlA 

ij e DHB 

(6.5a) 

(6.5b) 

(6.5c) 

(6.5d) 

(6.5e) 

Step (5) 

Solve (6.2) and (6.3) by using the maximal flow subroutine 
described in Section 5.  The result is a set of flov;s, satisfying 
the restricted primal and a set of dual restricted variables, 
satisfying (6.4) and (6.5). 

Step (4) 

(k) If F = Q, the algorithm is terminated, with the set of X. . 
.'. just defined as the optimal solution to (2.1) and (2.2), and the 

dual feasible defined at the beginning of this cycle being the 
..^■.: optimal solution to (2.3) and (2.4). 

If FQ < Q, go to Step (5). 

Step (5) 

In terms of the solution to the dual restricted problem in 
Step "(3), define a new set of dual feasible variables by: 

-V '•- .:>    ■     v[^^ = v^^^ + 'da^^'>        :        ik e NL 

10 

^io -= "y ^ ij 

ijk e NNL 

ij e NN 

(6.6a) 

(6.6b) 

(6.6c) 

with 

19 min 

min_ 
iJkSD 

min 

; mm 
ijkSA 

(6.6d) 

for all ijk such that the denominators are positive.  If none of 
the denominators are positive, ^ = +CO . 

Repeat Step (2) with the new dual variables defined by this 
step if 19 is finite. 
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Step (6) 

If -0= + CO, terminate the algorithm, since no feasible 
solution to (2.1) and (2.2) exists, and the dual set (2.3) and 
(2.4) is unbounded. 

By comparison with Chapters II and III, it is seen that the optimal 

flow algorithm is quite similar to those developed for simple networks, 

and networks with gain.  The principle difference is in the maximal flow 

subroutine. The proof may be found in Appendix D. 

7« Alternate Formulations 

It should be apparent that nothing in the formulation of this 

algorithm (except notation) depends upon the "layer" concept of separating 

components which are mutually constrained.  For this reason, it is possible 

to solve problems in which the coupling involves any arbitrary subset of 

branches in a network. For example, in a "bottleneck operation" in a large 

distribution system, the sum of flows in a large group of branches may 

represent the total flov/^ through the bottleneck — especially if it is not 

convenient to merge the flows to restrict this total. 

3.  CompuRJcation Message Routing .  ■ ' 

As an interesting application of multi-commodity netvforks, consider 

the following interoffice trunking problem, due to R.E. Kalaba and 

M.L. Juncosa (5l)(52): 

Let a.^ denote the known number of trunks needed between station 

i_ and station j_, in order to handle all communications between the 

two stations.  Furthermore, 0^ ^ is the known capacity (in number 

of channels) available between stations i_ and j_.  How should one 
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make up the trunks out of the existing channels in order to: 

(a) maximize the number of completed interoffice trunks? 

(b) find that solution, among those generated by (a), 
- which additionally uses the minimal number of 

channels? 

Because the channels are assumed bi-directional, one must introduce 

bremches (i,j) and (j,i) between stations, and constrain the sum of their 

flows to be less than c. ..  Then, one "separates" the network into a layer 

for each receiving station; the trunking demands, &..,  are introduced as 

a capacity on the input to the i_th station in the j^th'layer, and the 

output from the jth layer comes entirely from the j_th station, and is 

limited to 2 a^..  The mutual oapaetty constraints involve two branches 

from each layer. ^■'-''•. :^',..'. v.'^ ■.;_,•;'::•;. :' ■ ^^.,/ 

■.;    With this multi-commodity synthesis of the communication network, 

problem (a) is just a maximal-flow problem, which may be solved by the 

subroutine of Section 5. Problem (b) is a minimal-cost problem in which 

the per-unit cost of each branch in the original network is unity. 
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Appendix C.  Proof of the Optimal Flow Algorithm for Multi-Commodity Ketv/orks 

Proof of the Ifaximal Flow Subroutine 

The essential part of the algorithm is the maximal-flow subroutine 
which solves (IV. 6. 2)(IV. S. 3) and (IV, £,4)(IV. 6. 5) .  »Ve shall prove that 
this procedure provides an optimal solution by showing that the constraints 
to both the restricted primal and its dual are satisfied, ajid that the 
principle of complementary slackness holds.  This, incidentally, will also 
show the equality of the functionals, and provide a new "max-flov/, min-cut" 
theorem for multi-coimnodity networks. 

The direct flow phase of the subroutine presents nothing new or 
unusual.  Some remarks on the exchange flow phase are in order, however. 

The incidence table introduced in Step (6) of the .subroutine merely 
describes the effect of an increase in flow (in a certain direction along a 
chain or loop of branches in a certain subset of the network) on: 

(i) the mutual capacity restrictions (E), 
(ii) increase of flow into the network (f), 

(iii) saturating (L ) or emptying (L~) a branch in the chain or loop. 

Thus, before reduction, all elements in the incidence table are zero, or 
plus or minus one. 

The reason for the choice of the subset described in Step (7b), is 
that aquations (lV.6.3g) and (lV.6.3h) prohibit any changes in branches in 
A and D.  By eliminating all direct chains of branches in CrYB  from 0 to'R in 
the direct flow phase, all chains or loops described in the incidence table 
will contain at least one mutually saturated branch.  Direct chains of branches in 
CDB from R to 0 without any mutually saturated branches are without value, 
and never need be examined. 

The reduction procedure. Step (ll) of the subroutine, is superfluous, 
since one could let the linear program do all the work.  Hov/ever, from a 
computational standpoint* it is worthwhile to eliminate these possibilities 
which could never give an increase in flow. 

For oxample. Step (lla) states that a certain set of mutually satur- 
ated branches are not affected by any proposed changes in flow, and may 
therefore be eliminated. 

Step (lib) states that is, for some ij £ B, all proposed increases 
in flow will tend to over- or under-shoot the mutual restriction, then no 
compensating arrangement can be made to keep the restriction exactly 
satisfied, and one can set the proposed changes in flow in these chains 
and loops equal to zero.  (Recall that all proposed changes in flow are    > 
non-negative ( <§ > 0)j a decrease in flov/ would be expressed by a 
labelling in the reverse direction, and a separate entry in the incidence 
table.) 
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Steps (lie) and (lid) state that if one has an equality: 

eO ri - ne S^^  = 0 

OP 

then Oj^^  = n O^ and one variable may be eliminated in tems of the other. 

The Tjondition that there bs at least one non-negative entry under F 
requires that there be at least one way of increasing flow into the network 
with the proposed changes.  The reduction procedure on the constraints 
merely eliminates redundant ones. 

More complicated reduction and elimination procedures could probably 
be made, but are not vrorth the trouble, in the author's opinion.  The 
procedures presented can be easily programmed, and will detect most simple 
exchange situations; df a general linear program is still left after 
reduction, chances are that the optimal exchange is a subtle one, indeed. 

Lemma I.  If ijk e DOA = BUC, then a^j > 0.    . 

For ij. e B. a>j-* = 0, by Eule B. 

For ijk e C and j[^^ < ^),   a[^^ = 0, Rules B and F. 

and 4j^ = ^^.   O^^y > 0, Rule D. 

Lemma II.  If x[^^ < M^?^\ then a(^^ =0. 

No a>j^ is non-zero, unless the flow is individually saturated. 

Lemma III.  If ij S B, then a^j > 0 

The only non-zero a^^  in this set is defined in Rule C as non-negative. 

V  (k) 
Lomma IV.  If ^ X>^' < M^., then aij =0. 

kSL  

No Oij is non-zero, unless the flow is mutually saturated. 

Lemma V.  If ijk £ D. then p[^^   = o[^^   - p^.^^ . pM   - Oj ^ < 0 

For ijk £ A /O(^)  = Q g^^g g 

For ij  £ B /OW   = o Rule B 
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(k) 
For ijk e C      Xj^j   non-zero, non-saturated (either kind) 

.(k) 

pyy  = 0 Rule B 

Xji^j        saturated (either kind) 

PYy  = 0 Rule C or D 

X>j''  zero^aV'^' - ayJ < Ojotherwise, a different 
labelling would have been made. 

Lemma VI.  If x[y > 0,   then p(H) = 0. 

In Lemma V, the only cases for which this is not true are for zero 
flow, and hence if ijk_e D, the Lemma is proved.  But by (IV. &3g), flow 
must be zero if ijk £ D. 

Lemma VII.  The subroutine solves the restricted primal problem and its dual» 

The primal constraints are always satisfied, since it is assumed that 
they are satisfied at this cycle in the algorithm, and a Lemma in the next 
section will show that it is feasible in the next cycle. 

Dual constraints (lOa) are satisfied, by Lemmas I, III, and V. 

Also, the principle of complementary slackness holds, by Lemmas il, 
IV, and VI.  Therefore, by the fundamental theorem of linear programming, 
an optimal solution to both the restricted primal problem and its dual have 
been found, and furthennore  . 

Lemma VIII.  P = /_, M$^) avO  +/v M. . a^ ^ '  i 

~ ~"      ^^^ ^j ■ 

By the fundamental theorem, the two functionals are equal when the 
optimal solution is reached. 

This statement is the equivalent of the "max-flow, min-out" theorem 
for simple networks.  Mote thtit tlie cut must intercept all of the individually 
saturated branches, and one of the mutually saturated branches for each ij. 

Proof of the Algorithm 

Given that the subroutine works correctly, we must now prove that the 
algorithm solves (IV.2.l)(lV.2. 2) and (IV.2.3)(lV.2.4). 

In the following Lemmas, unprimed symbols refer to a given cycle of 
the algorithm, primed symbols refer to the succeeding one.  It is assumed 
that the restricted primal constraints are feasible on this cycle, and we 
will show that it is feasible on the next cycle,.showing (by induction) that 
it is feasible always. 

Since we show that the dual constraints are always satisfied, and that 
the dual fiinctional increases for every cycle, the optimal solution is 
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reached in a finite number of cycles of the algorithm. 

Lemma IX.  If w]^\   U>y and U^. satisfy the dual (4), so do V^ \   U>j\ U^y 

The nevf dual variables are given by (IV.6.6). 

(i) Dual inequality (IV. 2.4a) states that V^^^ - V>^'^- U>y- U^^ < c[^^ 

L. H. S. 

By (IV.Q.6), 

(L.H.S./= (L.H.S.) + 'Sp[^^ 

If equality holds, ijk £ D, and P^^' <  0 (Lemma V), so that 
the inequality holds in the new cycle for any non-negative "0. 
If (IV.2.4a) is a strict inequality, the inequality will hold 
in the new cycle for 

(L.H.S.) 

or = +00, if all z3!?)< 0. 

(ii) Dual inequality (lV.2.4b) states that U>^' > 0. 

If U^^ = 0, then ijk e CUBUD.  For ijk £ C UB, o^y > 0 (Lemma l), 

-      (k) For ijk £ D,  a^^    = 0,   and no change occurs. 

i ., Hence  the inequality holds  in the new cycle  for any non-negative "Q , 

If U>y  > 0,   then (lV.2.4b) will hold in the new cycle for 

where . •     ..     -   .■ .•_ 

or +00   if all (g7!^>.o. .     .- 
i^--       ■     —-■ ^   ^ ■'■■'■.■;■ 

(iii)     Dual  inequality (IV.2.49)   states U. .  >0 

If Uij = 0,  then,ijk-£ C(JAUD.     For ijk £ C[JA.  a^^ >0 
(Lemma III). 
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'''-        For ijk e D, O^A  = 0, and no change occurs. 

Hence the  inequality holds in the new cycle for any non- 
negative "0 . 

If U^^ > 0, then (IV.2.4c) will hold in the new cycle for 

0 < 9 < "Og 

where 

or +00 if all (0. . > o. 

Since the algorithm picks l9= min ('&i.'£^2'  3^ ^^ ^^®P (lid), the dual 
remains satisfied in every cycle. 

/  (k)    (k) 
Lemma X.  If ijk i A, X>^ = M> -^ 

(k) 
If ijk was in f,-,the subroutine leaves X]^j' unchanged.  Otherwise, it 

must have been that \j\y  was zero, and a\y  >  0, which occurs for indiv- 
idually saturated branches. 

Lemma XI.  If ij 3 sf J x[^^ = Mj. 

If ij was in B, the subroutine leaves the sum unchanged.  Otherwise, 
; h 

mutually 
it must have been that U^^ was zero, and o^^  > 0, which occurs only for 
mutually saturated branches. 

-/ (k) 
Lemma XII.  If ijk e D, X> ^ =0 

- '     (k) 
If ijk was in D the subroutine leaves X>y unchanged.  Otherwise, 

it must have been that (IV. 2.4E) ^«as an equality, and /Oij'' < 0, which 
occurs only for zero flow. 

Lemma XIII.  The constraint set (IV.6.5) is feasible for the new cycle, 

and the previous X>^) may be used as an initial solution in the new 

restricted primal. 

Constraints (IV.Q.3a)(lV.6.3b)(lV.6.3c)(lV.5.3d)(lV.6.3e) and (lV.6.3f) 
are always satisfied in the elgorithm.  Lemmas X, Xi, and XII show that 
(lV.6.3g) (lV.S.3h) and (IV.B.3i) are feasible for the new cycle, and the 
subroutine does not violate this feasibility. 

Lemma XIV.  An optimal solution to the restricted primal with a maximal 
flow FQ provides a new feasible solution to the dual problem, with a strict 

increase in the dual functional equal to ^•(Q - FQ^* 
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The difference between the new and the old functional iss 

which by Lemma VIII is equal to 

which is strictly positive. 

Lemma XV.  Vlihen "© = + 06 j, the problem is infeasible| when Q - PQ is zeros 

the algorithm terminates with "the optimal solution. 

The first result follows from the duality theorem, since we have an 
unbounded increase in the dual functional. 

The second result follows from the fact that the primal and dual 
restrictions have been satisfied simultaneously, and the two functionals 
are equal for. 

If (LoH.S.) < 4j^   ,  x[^^ = 0 

and by some algebraic manipulation, one can show that the functionals are 
indeed, equal. 

Optimality follows from the fundamental theorem of linear programming. 
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