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ABSTRACT

The author's 1958 multi-commodity flow algorithm
is reproduced, together with historical and
technical comments.



"A Primal-Dual Multi-Commodity Flow Algorithm,'" ORC 66-24

Introduction

Recently, renewed interest has developed in constructing special solution
algorithms for multi-commodity network flow problems. The classic reference is
that of Ford and Fulkerson (84)(F)+ ; at about the same time, the author presented
an independent proposal in a thesis report (P) which received only limited
distribution. Because the same idea -- constructing a loop-arc incidence matrix —-
was basic to both proposals, this portion of the thesis was never submitted for
publication.

However, the increasing number of recent papers in this area (DD) (Y)(A)
suggests that there might be interest in giving wider circulation to the original
algorithm, particularly as certain "folklore" of that period keeps on being
rediscovered.

Thus, the main part of this report is an exact reproduction of Chapter IV
and Appendix C of (P). Although some of the terminology and explanations are now
outdated, it seemed preferable to reprodﬁce the original version, adding historical

comments and interpretation, rather than attempting a revision.

Historical Remarks

From 1955-1958, a group of faculty (D. N. Arden, D. A. Huffman, S. J. Mason,
W. K. Linvill) and students (J. B. Dennis, the author, and others) at the Massachusetts

Institute of Technology became interested in the pioneering research on network flow

+Numbers refer to the original bibliography in (P), reproduced at the end of
this report; letters refer to supplementary references which follow.
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J. B, Dennis and D. R. Fulkerson have graciously reviewed this section. However,
since a history must of necessity be a personal viewpoint, only the author is
responsible for omissions or errors of fact.



problems being done at the RAND Corporation by Dantzig, Ford, Fulkerson, Robacker,
and others (See (6)(15)(22)(27) (28)(30)(31)(32) (34)(51) (52) (74) (75) (84)). At first,
our interest was in computational results as they might apply to multi-stage
transportation models and computer codes which were being constructed under a
grant-in-aid from the Union Carbide Corporation (47). However, as various
theoretical results and algorithms (such as the max-flow, min-cut theorem (15)(22),
the labelling methods for maximal flow (28)(29)(34), and the Hungarian method

(59) (60) applied to transportation problems (29)(30)) became available, a Signal
Nets Seminar was organized in 1956 to discuss these topics and stimulate research.
The author can recall Professor D. N. Arden demonstrating how the labelling
techniques for optimal flow could be carried out directly "on the network,"
instead of in a matrix formulation (31) using Orden's transhipment device (69).
Professor S. J. Mason constructed a diode, current - and voltage-source analogue to
the optimal flow problem, thus relating networks with capacity-restricted flow to
electrical networks; I believe he should be credited with the first use of the
complementary-slackness (voltage-current) diagram in the United States, although
Sunaga and Iri(Z) also recognized the patrallelism and later used these diagrams
effectively (0), as did Dennis (C)(D) and the author (P). The fact that the

Ford-Fulkerson algorithm was a cheapest (incremental) flow-augmenting procedure,

whereas the simplex procedures, (such as the stepping-stone method), were cost-

saving flow-rerouting methods, was also known to this group.

From this seminar came much interest in the area of network models and,
ultimately, two theses (P) and (C). The author became interested in making two
different extensions to the simpler network flow models: adding multipliers to
the arcs, and allowing simultaneous (multi-commodity) flows. The first topic was

stimulated by a paper of Markowitz (64), and the second by the communication models



of Kalaba and Juncosa (51)(52); helpful discussions took place at the RAND Conference
on Computational Aspects of Linear Programming, Santa Monica, August, 1956.
Research progress on these two extensions was reported in a series of
unpublished papers (46), and at two meetings of the Operations Research Society
of America (48)(Q). Due to the limited understanding of the nature of linear
programs at that time, every new solution algorithm or model variant appeared
unrelated to previous work, and progress was uneven. For example, the author
originally made a false conjecture on the integrality of multi-commodity network
flow solutions, which was cleared up by a counterexample of D. R. Fulkerson and
R. E. Kalaba. However, by Fall, 1957, the author was successfully solving
multi-commodity and gain problems by hand; what was lacking was a solid theoretical
foundation for these procedures.
This foundation was provided by the results of further research at the
RAND Corporation -- the primal-dual algorithm of Dantzig, Ford, and Fulkerson
(20), which generalized the transportation algorithm of (31) to arbitrary linear
programs. By specializing this general method back to the gain and multi-commodity
flow models, it became obvious that the essential subroutine was one of maximal-
flow in a restricted subnetwork, and that further effort should be directed to
finding efficient maximal-flow procedures. For networks with gains, the idea of
carrying along products of the gains in the labelling procedure to find a flow-
absorbing loop was developed by the author in March 1958. The realization that a
general linear programming subroutine would have to be used for multi-commodity
flows, and the idea of using a loop-arc incidence matrix to simplify this computation
was conceived in April 1958. The final form of both algorithms was presented at

the Boston Meeting of ORSA in May 1958 (Q), and the thesis (P) appeared in June 1958.



In their 1954 paper (28), Ford and Fulkerson used a loop-arc incidence
matrix to describe single commodity maximum flows problem; they also formulated
the multi-commodity problem, and showed that the min-cut, max-flow theorem did
not generalize in a simple way. As a result of research during 1957-1958, they
proposed a multi-commodity algorithm based on (what would now be called) a
"decomposition' approach, rather than a '"primal-dual" one. The method
was described to the author at the Boston Meeting and the research paper (84)(F)
appeared shortly thereafter with a dateline of March 1958. As mentioned above,
since the loop-arc incidence formulation was central to both papers, the author's
algorithm was never submitted for publication, although the work on networks with
gains later appeared in revised form in (R).

The other product of the research effort at M.I.T. was a thesis by J. B.
Dennis, which appeared in book form (C). Here the possibilities of using electrical
analogues to construct algorithms for ordinary flow problems, as well as for
general linear and quadratic programs, were exploited in great detail. Considering
its timeliness, it is surprising how little known are Dennis's methods; for example,
he made the first extended use of the complementary-slackness diagram to explain
algorithms, and developed the essentials of an isolated-component ("black-box")
approach, which is related to the out-of-kilter method (E). A further description
of this work may be found in (U).

Since that time, many different people have contributed to the literature on
multi-commodity problems, and it is difficult to put their work into a proper
historical context because of their diversity. For example, we have the continued
work of Haley (I, J, K, L) on the multi-index transportation problem; the primal-
dual formulation of "bundle" constraints by Matthys (V); a "distributed-algorithm"

roposal of Dennis (D); and a ''nonlinear exchange" method of Sakarovitch (Y).
prop g



" Tomlin (DD)and Bradley (A) related the multi-commodity proposal of Ford and Fulkerson
(84) to the decomposition method of Dantzig and Wolfe (B), but apparently were not
aware of the strong historical connection between the two methods. Finally, in a
slightly different direction, we have the undirected arc 'communication network"

problems, with the interesting 'bi-flow"

algorithm of Hu (M), and various results
of Hakimi (H), Hu (N), Tang (AA,BB,CC), Rothschild and Whinston (W, X) , etc..
The problem of synthesis has been tackled by Gomory and Hu (G).

Given that 10 years -have elapsed since the first multi-commodity proposals
were made, it is surprising that no definitive paper has yet appeared. To the
author's knowledge, no explicit multi-commodity computer codes are currently
available, problems of this type usually being solved by a general simplex routine,
or by a decomposition code; thus no experimental statistics on the efficiency of

various proposals is available. Even the nature of the rational solution to

multi-commodity problems is not yet well understood (S).

Technical Remarks

The_original_;hesis report (P) consisted of four chapters; with appendices
containing proofs and various computational remarks. Chapter 2 was on "on-the-network"
description of the Ford-Fulkerson algorithm (31), with emphasis on the physical
interpretation described earlier; Chapter 3 was presented in expanded and revised
form in (R). TFor this report Chapter 4, Appendix C, and the Bibliography have
been reproduced.

Most of the algorithm could, of course, be rewritten in a simpler and more
condensed form in light of current knowledge about linear programs. For example,
the assumption of nonnegative costs and zero lower bounds is not at all essential

to the algorithm. In circulation form, the maximal flow subroutine can be explained



solely in terms of loop flows; the "Direct-Flow" phase then becomes an incremental
change in some uncoupled loop flow variables. It is also easy to imagine various
combinations of the Ford-Fulkerson proposal with this one, say, by using their
min-cost pricing-out procedure to add entries to the loop-arc incidence matrix.

In fact, using the COMPLEX approach (U), it is now possible to produce a
multi-commodity algorithm which would start with an arbitrary solution, and work on
the network in an "out-of-kilter" manner; as always, the key subroutine is an
incremental maximal flow problem in a restricted subnetwork.

The remaining problem, then, is not a conceptual or procedural one, but is
one of computational efficiency. Simple network flow problems are efficient
because of the serial manner in which labelling and flow augmentation is carried
out. On the other hand, the multi~commodity problems have grave difficulties
in that many such labellings must be made at each iteration, or a full-size
inverse must be carried along. Even proper representation of multi-commodity
network topology presents special problems in data storage and linkage.

It is the author's hope that reproduction of this algorithm will stimulate
work on the computational aspects of the multi-commodity problem, and perhaps

discourage further development of algorithmic variations.



(The Primal-Dual Algorithm)

Chapter. IV. Multi-Commodity Flow

1. Introduction to Multi-Commodity Flow

The last two chapters have considered flow of identical items through
a network, or by using gains, the flow of different items' in different parts
of & network. In dstermining the optimal routing pattern, each output
pranch didn't care which input furnished the flow, since all flows satisfied
the output requirements.

However, the assumption of & single kind of flow becomes impossible
when several different flows are available, and the input-output require-
ments are different for each type. For example, in any communication network,
the flow of letters, telephone calls, etc. is a multi-commodity flow, since
each message has a unique origin and ultimate destination. Another example
is that of a soup canner who has plants producing and storing certain
varieties, but Whose customers want product mixes of all the various soups.

The reason that the different kinds of flows interfere with one
another in a multi-commodity network is that they may share the same branch
-- i.e., & common warshouse, the same relaying center, etc. Thus the

imitations of a branch's total carrying capacity may impose & mutual flow
capacity restriction on all the flows through fhe branch; clearly tnere

may still be individual flow capacities for the different kinds oi flow

through a network.
As bofore, it is assumed that the disutility of establisning flow
is directly proportionul to the amount of flow in each branch; but, it is
now possible for the per-unit costs of the different kinds of flows to be
different, even in a "shared" branch. An exaiple is the routing of different

priority messages through the same communications net, where it is possible



to assign different numerical utility values to the different priorities.
Figure IV.1 illustrates the idealized branch that will be considered in form-
ulating an algorithm for multi-commodity flow. If certain types of flow are
forbidden (by policy restrictions, physical limitations, etc.) to traverse
certain branches in the multi-commodity network, then one may make the
corresponding individual capacities zero.

Conservation of flow (for each type of flow individually) is still
assumed to hold at the nodes; in other words, only the topology of the
network and the mutual flow capacity are shared in common. If all of the
mutual constraints were removed, then one could separate L distinct images
of the network (one for each flow type), and solve each one individually.

Conceptually, it is easier to visualize the algorithm if one assumes
that this "separation into layers" is actually made, es in Figure IV.3. By
introducing additional feeder bra;ches, one can introduce all of the flow
et the common source 0, and remove it at the common sink R; the placement
and individual capacities of the feeder branches within each "layer" assure
the proper production and consumption of each type of flow. Aside from
these feeder branches, each layer is a replica of the original network,

What about the mutual capacity restriction, Mij? This constraint now
introduces a coupling between flows in the different layers such that the

sum of flows on topologically similar branches is limited. This feature

will introduce complications into any optimal flow algorithm for a multi-
commodity network.

A problem of transporting several products simultaneously was first
proposed by Schell (79); Charnes and Cooper have formulated a warehousing
problem with different commodities (8). Kalaba and Juncosa (51)(52) first

considered the problem of routing communication messages by linsar programming;
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Robacker (75) produced & non-constructive min-cut, max-flow theorem for
multi-commodity flows. In these references, solution was indicated by
using the revised simplex method.

Ford end Fulkerson have recently (84) proposed a computation for
maximizing multi-commodity flows which also uses the idea of an incidence
matrix (see Section 3). Their treatment uses this formulation within the
simplex method, with several applications of the "least-cost route” algor-
ithm to de%ermine the new chain from source to sink to enter the basis.
Labelling is not used to find the cheins, and thus none of the "easy part”

(Section 4) of the maximal-flow subroutine is done first.

2. Multi~Commodity Flow and Linear Programming

The optimization problem £o be considered is:

What routing of each type of flow will minimize the

total cost of all flows, and satisfy the individual

end mutual restrictions, for given inputs and outputs

of each flow type?
Assuming that there are L different types of flow, whose flow through branch
(1,3) is denoted by x%) (k = 1,2,...L), and that eppropriate feeder branches
distribute the fiowicorrectly (as in Figure IV.3), one obtains the following

primal and dual formulations to the multi-commodity flow problem:
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PRIMAL DUAL .
S 0,8 _ N (1) (k)
uinG = 2. Cij % (2.1) | Max € = QVp=Vp) - /o Mj5'U035 0 (2.3)
i,J,k 1:Jvk
=
(k)_ x(x)y = )
zjl(xij - xai. ) =0 (2.2) £ MijUij
(k) (k)
:jéé (XOj = on.) = +Q ng) P vgk) b 5 Ug_l';) - Uij < Cgl;j) (2‘4)
;E; (Xéﬁ) B ng)) = -Q ng) unrestricted
(k) _ (k) (x) ~
%y =M L L
Y () o
kaxgj =Yy Uij)io
X420

where ng), Mgg), Mij' end Q are given, non-Fegative constants.

The constraint matrix for the multi-commodity network is shown in
Figure IV.2. It consists of flow sub-matrices (F) (see Figure 111.2), for
each type of flow, coupled together by unit matrices (U) which represent
the mutual flow restrictions in topologically similar branches. As will be
seen, the algorithm actually works for coupling between any subset of the
branches in any simple flow network; in this case the coupling matrices U
would be arbitrary matrices with zeroes and ones.

The simple structure of the dual is Petained for each brench and each
type of flow, excegt.for the coupling term, Uij' which must be the same for

2ll branches sharihg the same mutual restriction. Since this mutual slack

potential Uij.may not be non-zero unless the mutual restriction is saturated
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one would expect that the early solution stages to & “loosely coupled"

problem would be the same as L simple flow problems solved simultaneously.

One may more easily see what happens by considering the complementeary

slackness conditions;

If ng) V(k) < C(k) + U13\ , (Uij~z 0)(U§§) = 0) (2.58)
then xgg) =0

1e V<) - vl < o) (U35 = 0)(u{¥) = 0) (2. 5b)
then 0 < xgl];) < mn(Mgk), i - zxgllg)

1e vik) vgk) : c§§)+ Uy, (U > o)(Ugﬁ)a ) (2.5¢)
then x(g) = u - ;;z E%)

§7%
A U%) >0 (vi(.k) V(k) ) C(k) ¥ U(k) * Uiy (Uy53>20)  (2.54)

If Uij

k
>0 (and for at least one kEL (Vg ) - ng) C(k) + U,

then Xgﬁ) = M§§)

- 13’
U§§) =0)  (2.56)

The last conditions (2.5e) are of particular interest, since they .

represent a new typo of complementary slackness. If a mutual slack poten=-

tial is greater than zero, and several branches sharing that potential are

active, it is possible to change the individual flows, provided that one

increases flow in one layer, while decreasing it in another; in other words,

individual flows may change when Uij > 0, provided that one "trades off" the

mutual capacity restriction. This novel feature will introduce a new

procedure into the maxiral-flow subroutine where moré complicated trade-

off possibilities must be handled.
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It may help to visualize the role of the mutual slack potential if
one considers the electrical analogue. To incorporate mutual restrictions
into the model considered previously, one must add 1:1 "D.C. transformers"
into each branch in each layer of the network sharing the same common
restriction; the secondaries of each transformer are connected in parallel
across & diode=-current-source loop which limits the total flow of all the
secondaries (and hence the primaries) to Mij units. In the case that all
the flow from the current source is backed up, & common potential would

appear across the diodes, and in every branch sharing the common restriction.

3. Maximal Flow in a Multi-Commodity Network

The most important part of the optimization algorithm to be described
is & maximal flow subroutine, which will find the maximum increase in flow
in a restricted multi-commodity network.

In the case of simple networks, and flow with gains, it has been
seen that this subroutine invclves a labelling procedure which traces out
paths which can absorb more flow from the source. To the extent that
mutual capeacity restrictions do not affect-the optimal choice of a route
for a particular type of flow, one may e;pect the maximal flow subroutine
for many flows also to be a labelling method.

On the other hand, if this problem were solved using the primal-dual
method, this subroutine could be as general as solving a linear programming
problem by the revised simplex method; this might be expscted in the case
that the mutual capacity restrictions were extremely tight. Nevertheless,
one would hope that the flow part of the problem -- the conservation

equations -- would still give a simpler approach to the problem than

attempting to solve the subroutine by the simplex method.
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In the maximal flow subroutine to be described in Section 5, emphasis
is first placed on doing as much of the "easy" increasing of flow as is
possible; in many cases, and especially duriné the early cycles 'of the
optimization elgorithm, this partial procedure is all that is needed. Then,
if necessary, the second part of the subroutine is used for the "l.p.-like"
part of the increase in flow, where mutual capacity must be exchanged
between different types of flow.

Therefore, in the first part (the Direct Flow Phase), one considers
only the changes in the variables that would be made in a simple flow
problem. Starting from any feasible flow pattern, one investigates all
active branches which can individually have their flow increased. If a
chain of these branches is found from source to sink, then one can increase
the direct flow. This Phase is repeated until all such increases have been
made.

In the second part of the subroutine (the Exchange Flow Phase), one
attempts to increase flow into the network by exchanging some of the mut;al
capacity restrictions between the different layers. Since one can envisage
an exchange involving many layers and different mutually saturated branches,
this exchange could be quite complex; in general, a linear programming |
problem does result. However, the procedure to be described reduces the
problem as much as possible before resorting to the simplex methéd; in any
case, one needs to use this part of the procedure only infrequently during
the solution of a problem, and the resulting linear programming problem
condenses the restricted primal problem so as to consider only the meaniampful.
chenges in the flow.

The main feature of the exchange flow phase is that a table is con=
structed, which is essentially an incidence matrix, showing how forward

chains (which increase totel flow in the network), backward chains
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(which decrease total flow), and loops (which leave total flow unchanged)
are "incident" upon the various mutual restrictions of branches wﬁich have
positive mutual slack potentials. This incidence matrix defines a set of
equalities which restrict the changes to be made in the flows in chains and
loops in the various layers of the network so that the mutual restrictions
are still met. The procedure to be described uses this table to eliminate
all possibilities of exchange wnich are cleérly not advantageous (if no
forward chains exist, for instance). If elimination does not simplify the
problem (it usually does), then one must solve a small linear programming
problem, which determines the increases in flow in the chains and loops
which maximize the total flow increase into the network, subject to the
"exchange of mutual restriction" condition. The limiting factor on this
increase is usually the saturation or emptying of some branch, so that the
table to be described also carries along these additional restrictions.

An example should clarify the use of the incidence table (Step 6).

Consider Figure IV.4, which shows the skeleton of a network which might be
encountered in a maximal-flow subroutine for a multi-commodity network.

Each row represents some chain or loop of branches whose flow may be changed;
the heavy branches are those which are éutually saturated; those branches
which share the same mutual flow capacity are in the same column -- for
example, branch (ij)3 is in loop (:) and chainr(:>o The arrows on the light
portions of each chain or loop indicate the direction in which flow may be
increased. Assuming that the source is to the left 6f the diagram, rows
(:),(:), and (:) represent forward cheins, row (:) represents a backward
chain, and (:) and (:>'are loops. With respect to "incidence™, it can be

seen that an increase in flow through chain (:) would (a) increase total

flow, (b) tend to increase the mutual sum of flow in branches (ij)2 and
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end (ij)4, and (c) would tend to decreass the mutual sum of flows through
brench (ij)s. Similar statements hold for the other rows.
If one denotes the increase in the flow in configuration r

(r =1,2,...6) by 5} then the appropriate capacity exchange equations read:

S - Oy =0
"8yt gt 8y mdg 5 =0
-2 * &4 =0 : (3.1)
*62"_. -85+ S5 =0

-8 * 6, -84t 05 -85 =0

$q + S, -85 =0

Because of effect of the various increases.in flow in the different config-
urations one would like to maximize the total increase in flow into the
network, which is 51 = 63 + 5& +‘56° 'B& the elimination procedure of the
subroutine, however, o‘ne finds that 51 = 52 = 63 = 64 = 56 = %65 is
the only possible solution. Other constraints not shown actually iimit

the flow,

4. Discussion of the Optimal Flow Algorithm for Multi-Commodity Networks

Hhving~discussed the §alien§ ideas of the maximal-flow subroutine,
we consider the basic features of the optimal flow algorithm. Many of its
steps are the same as those discussed in previous chapters, so only the
" differences will be emphasized hers.

With different commodities flowing, we must add to our terminology
in order to completely describe the state of each branch. Using the layer
formulation to separate the different commodities, a branch carrying no
flow (of & single typé)‘is sald to be empty; if the flow is at its upper

bound, the branch is individually saturated; and if several branches,
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sharing the same mutual cepacity restriction, have the sum of their flows
equal to this upper bound, then one speaks of the branches as mutually
saturated. For convenience in the algorithm it is assumed that a branch is
not individually and mutually saturated at the same time. This is not &
loss of generality, since one can separsate any such branch into two branches
in series, and thus resolve any ambiguity.

Using the dual inequalities, one can again describe an individual

branch as inactive, active, and overactive, depending on the slackness or

tightness of the constraints (2.4). One new state is needed, however, to
describe the set of branches for which the mutual slack potential, Usj» 18

positive; these branches may be described as coupled. The complementary
slackness conditions (2.5) become:

If an individual branch is inective, it is empty.

If an individual branch is active and uncoupled, it may
have any feasible flow.

If an individual branch is overactive, it is individually
saturated.

If a group of branches is coupled, at least one of the
branches is active, and the group is mutually saturated.

The last condition provides the iﬁteresting possibility that the
mutual capacity restriction may be "exchanged" between coupled branches in
order to increase total flow into the network, provided that the branches
are kept mutually saturated; a systematic procedure for doing this wes
d;scribed in the last section. Ooccasiénallyy the optimal flow algorithm
detects a change of state calleé "decoupling", when the mutual slack poten-
tial is decreased to zero from soms positive valus.

The algorithm to be presented in Section 6 proceeds in much the same

way as the other network solutions. The first step starts the procedure by

finding a set of feasible potentials. Since all of the unit costs are
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assumed non-negative, setting all of the potentials equal to zero gives a
feasible dual; or, one may find the least-cost path from source to sink
through the network of Figure IV.3, and use the resulting potentials to get
started.

The second step identifies Set A as the set of indices of overactive
branches, Set B as the set of indices of coupled branches, set C as the set
of active (coupled or uncoupled)
branches, and Set D as the union of all these sets. The complemeni of Set
D is, of course, the set of indices of inactive branches. The algorithm
tnen identifiss a rest;icted network, in which all inactive branches are
to be kept empty, all overacﬁive branches are to be kept ipdividually sat-
uratéd, and all coupled branches are to be kept mutually saturated. The
last condition provides a great deal of latitude.

The restricted primel problem then requires one to maximize flow
into the restricted network, keeping as many of the usual restrictions
satisfied as possible. As before, one can arrange matters so thut only the
input (and output) flow requirement is not meé; one can again think of' the
primal problem as using feasible potentials and complementary slaciness to
guide the restricted primal's attemptAto reduce infeasibility in the flows.

In Step (3), the maximel flow procedure of Section 5 is used to
solve the restricted primal and its dual. This subroutine first explores

~

all active, uncoupled branches using the simple labelling procedure of /
Chapter II o if these is a "direct" way to send more {'low from source
to sink thruugh any layer; it procecds to establish as nuch of this flow as
is possible. T[hen the active, coupled branches are added, and oqe considers
how to change the flow in coupled branches so as'to keep them mutually

saturated, yet provide new paths of active branches to increase tne total

flow through the network. One constructs an incidence table by using some
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very simple labelling techniques to find all cheins and loops of acthive
branches; the table then describes the effect of an increase in flow along

& chain or loop upon a mutual restriction. Because the sum of such flow
changes for a group of coupled branches must be zero, certain logical impos-
sibilities may be eliminated immediately. In general, however, one may be
required to solve a small linear programming problem.

In Step (4), one notes that if the -input flow is the desired value
Q, the algorithm is finished, since one has feasible flows and potentials,
end the conditions of complementary slackness are satisfied.

If the total input to the network is still too small, Step (5) looks
for a way to change the potentials so that they remain feasible, yet increase
the dual functional, and add at least one new active, hncoupled branch to
the restricted network.

As in Chapter III, it is not easy to describe the relative changes
in potential which ocecur at this step. The difficulty is not due to gains
in the dual equations but because the mutual slack pctentials are common %o

the dual restrictions of each group of coupled branches. The way to

correctly evaluate these potential changes is to use ths solutions to the

.

dual of the restricted primal problem. This dual provides a set of poten-

(k)

tial increments o2 Ogg), and Oij such that

ng) _ ogk) _ (k)

Oij Oij_<_0

for all non-inactive'branches, with equality holding for non-empty branches.
The source potential increment, o,, is fixed at +1, so that all potential
chanzes are expressed relative to an increase in the potential, Vos the
other node potential increments, q§k), are unrestricted. The individual
potential increment, 01? » is non-negative for branches which are not over-

active, and is zero if a branch is not individually saturated. The mutual
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slack potential increment, Oij’ is non-negative for groups of branches which
are not coupled, and is zero if the group of branches is not mutually satur-
ated.

With these relative changes in the potentials established, one then
argues that it must be possible to increase the source potential by a finits
emount &, without violating the feasibility of the potentials (see Appendix
D). The conditions on the potential increments assure one that active, non-
empty, unsaturated {either way) branches remain in the same state; empty
active branches may become inactive; individually saturated active branches
mey be overactive; and mutually saturated active branches may becoms coupled
-~ all without violating potential feasibility, or disturbing the comple-
mentary slackness with the flows, for any value of \O .

The 1limit on the increase of the source potential comes from three
possible changes of state:

(1) An inactive branch becomes active. ("break-down")

(2) An overloaded branch becomes active. ("easing~off")
s (3) A group of active coupled branches decouples.
If none of these possibilities is present, the problem is infeasible, and
is detected in Step (6) of the elgorithm. Otherwise, one repeats the
algorithm with the new feasible potentials, and a different restricted
network with at least one mew active, uncoupled branch. One also finds that
the dual functional had a strict increase om the last cycle, and that the
previous set of optimal flows is feasible in the new restricted primal
problem.

The arguments for optimality are the same as those presented in

Chapters II and III. One proves the maximal-flow subroutine by

defining rules to generate the potential increments (Step 15, Section §),
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noting that they solve the dual to the restricted primal (Appendix C) end
obey the correct complementary slackness conditions. One thus proves that
the restricted primal actually finds the maximal possible increase in flow
into the network.

The reader is once more urged to reinterpret the mathematical state-
ments of the following sections in terms of what is happening to the flows
and potentiasls in the actual network. The flow-maximizing subroutine is
complicated only because of the mutual coupling; the optimization algorithm
is merely finding incremencinlly more costly ways of routing various types
of flow through the network, until the desired input is reached in a finite

number of steps or infeasibility is discovered.

5. The Maximal Flow Subroutine for Multi-Commodity Networks

The maximal flow subroutine is:
(1) Start with any set of flows, X (J)’ satlsfylng the restricted

primal problem (6.2) and (6.3). "efficient™ set is the
optiml solution of the precedlng cycle of the algorithm.

Direct Flow Phase

(2) Label source with A4 = (/F, = + %0/).
(3) Consider any node ik previously leubelled with
&k) (hk Vi F(k) / + or =)

and any other node jk not previously labelled.

(a) 1If (ijk & CN\B) and ?j) < Mﬁ‘;) }—7 X(k) < M 5)

lubel jk with

xgk) = (/75 = man(e () () - 1),

Mij-l X)) /4 )

keL-



(k)
ji

K) _ (. () R . (k)
lg ) (ik / Ej Min (ng), in )/ )

(v) If (jik € CNB) and (X%.’ > 0), label jk with:

(¢) Otherwise, do not label node jk.

(4) If node R is labelled, go to Step (5), otherwise repeat Step
(3), until R is labelled, or, no new labels are defined. In
the latter case, go to Step (6).

(6) Node E has been labelled with a positive FR in the label, and
the flow into the network may be increased by a "direct flow"
of this amount. .
Starti?g at R, trace the labels back to the origin, adding Fp
to Kl% if the following label is encountered en route:

Ae) = (i / ng) /+)

or subtracting Fp from ng) if the following label is met:
A = e/ #(R) /)

When the source is reached the flow into the network has been

increased by Fp, and at least one branch has saturated or
emptied. Erase all labels and repeat Step (2).

Exchange Flow Phase

{(6) No new nodes can be labelled, and node R is not labelled. No
direct flow cen be sent from source to sink, unless an
"exchange" in mutual flow capacity can be made between coupled
branches. s W

Add to the brenches ijk and jik € C()}B previously
considered, all ijk and jik € CN\B, as additional candidates
for labelling. If there are no ijk € C[]B, this phase is
completed; go to Step (14).

The next few steps will consider a labelling procedure
to establish chains and loops in all layers; an incidence
table will be constructed, which describes the incidence of
permissible chains and loops on the ij € B, as well as on the
other branches which make up the chains and loops. Figure
IV.5 illustrates the form of the table; the chains and loops
(indexed by r = 1,2,...) form the rows of the table. One
column, headed F, will describe the possible increase in flow
due to exchange. The set of headings over that portion of the
table marked E are the set of all ij € B. The set of columns
maerked LY, are headed by ijk € C. The set of columns marked
L- are headed by jik € C.
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All ijk such that

ij € B F ijk € C jik € ¢
1
2
. + -
: B, i3 Iy Le,isc T

Form of Incidence Table

-

Figure IV.5

Establish "forward chains" from 0 to R.
(a) Label source with Ay = (//+).

(b) Consider any node ik previously labelled with

ng) = (hk // + or - or Ex+ or Ex-)

and any other node “jk. Nodes may be labelled any
number of times (except that looping situations are
to be avoided in (7) and (8), and each new label may
be continued according to the following rules:

(i) If (ijk € CN1B) and (x( e M(k))

and ( 2. x(k) < M,
KEL

N = G g/ )
(i) If (jik € CNB) and (x§§) > 0)

NSRNCYE

13)

(ii1) ijk € ¢NB
(k)
A

(ik // Ext)

(iv) jik e c(IB
ak)

(ix // Ex-)

(v) Otherwise, do not label.

(¢) Repeat (b) until no new nodes are labelled. If node R
is labelled (at least once), go to (d). If R is not
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a)

(e

labelled, go to (e).

For each label on R, establish a new row (say, r) in the
incidence table, and determine the set of branches wnich
form a particular path from O to R by following any set
of labels backwards. Note that if there are several
ways to describe a connected network of chains, any
description will suffice - provided that one avoids -
loops. For each labelling of:

.Type (7bi) set L;,ijk equal to +1
Type (7bii) set L;,jik equal to -1
. Type (7biii) set L:,ijk and Er,ij equal to +1
Type (7biv) set L;,ijk and E. ;5 equal to -1

Set f,. equal to +1
Zrase the labels thus followed, and repeat for each label
on R, until all such forward cheins are entered in the

table. Go to Step (3).

No increase in flow is possiole; zo to Step (14/.

(8) Zstablisn "backward cnains" Irom x to V. depeat Step (7),

oxcept sturt at node & and attem§€ to label- node 0. The
entries in the incidence table are the same as in Step (7),
except that fr = =] for each backward chain in the table.

(9) Establish "forward loops" eround coupled branches.

(a)

(c)

(a)

(e)

For some (k) € L, start at node jk of a branch with
ijk € CNB, and label as in Step (7) attempting to
relabel this node via node ik and branch ijk, except
do not label the socurce or sink.

If node jk is not relabelled via branch ijk, repeat (a)
for all different kéL. If no relabelling occurs, go
to (e).

If node jk is relabelled via branch ijk, establish a new
row in the incidence table, with entriss the same as in
Step (7), except that =10,

Raopeat the labelling procedure () to find all such
loope from 3tk to tk.

Repeat (a) for another ijk &€ C/\B, until all such r
mutually saturated branches have been examined.

\10, Zstablish all "backward lcops" around mutually saturated
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(12)
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branches. Repeat Step (9), except begin at node ik and attempt
to relabel the same node via node jk, labelling backwards
across branch ijk. The entries are the same as in Step (9).

The complete incidence table of (chains and loops) on (mutually)
saturated branches) and (flow limiting branches) has been
constructed, with at least one positive fr’ In order to find
an increase in flow by exchange, it is in general necessary to
solve a linear programming problem, with non-negative ér
variables defined for each row.

First, the problem is reduced as much as possible by
examining the entries E. ;4. Reference should be made to
Figure IV.5.

(a) If all entries in & column of E are zero, eliminate
that column.

(b) If all entries in a column of E are non-negative, (or
all non-positive), eliminate all rows with the positive
(or negative) entries, setting the corresponding &, = O,
and finally eliminating the column.

(¢) 1If one entry (in row rj, say) is *e (e = 1,2,...), and
the only other non-zero in the same column of E (in row
ry, say) is -ne (n = 1,2,...), then ¢ L 2 Add
n times the entries in row ry to the en%ries of ro in the
same column (for all columnSJ, store in row ro and
eliminate row ry, and the column which had the two
opposite sign entries. .

(d) Similarly for the two non-zero entries (-e) and (+ne).
(ej Repeat (a) through (e) until:

either (i) There are no rows left. Set all

Sy = 0. Go to Step (14).

or (ii) There is no positive entry under F.
Set all &,. = 0. Go to Step (14).

or (iii) There is one row with all zero entries
in E and a positive entry in F. Go to
Step (12a).

(iv) There are two or more rows with arbitrary

entries in E, and at least one positive
entry under F, Go to Step (12b).

The reduction of the incidence table in (11) did not indicate
that.e non-zero solution was not possible, In what follows,
it is assumed that the reduced incidence table is being used;
the symbols are the same as Figure IV.5, however.

(a) If there is only one row, ri, with all zero entries in
E, and fr, positive, set:
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L=o0 T1,1ijk

and the other tgr follow from the reduction procedure.
Go to Step (13).

{bJ If there are two or more rows with arbitrary entries
- in E and one or more entry in F is positive, it is
necessary to solve a small linear programming problem.

(i) First reduce the constraints associated with L'

(i1)

and L™ as much as possible. For every set of
columns in L' which has only one entry different
from zero, and for which all members of the set
have this entry in the same row (say, ry),
eliminate all columns in the set except the one
which would give the minimum if calculated by
(5.1a). Similarly, for L=, eliminate redundant
constraints which operate only on one and the
sane & r1ls by dropping only those for which
(5.1b) is not & minimum in the set.

Solve the following linear programming problem

X 7
Maximize Z £.6, (5.2)
all r
subject to .
N
Ly B 356, =0 (5.3a)
all r -
E , I g‘) Sp % Min (. -L xgk)g
all r M ke M
(x) k
M3 S -x§j)) (5.3b)

~
Z L7 (k)ér > (-ng)) (5.3c)

all r T°%9

§.20 (5.3d)



(13)

(14)

the solution to this problem gives the
solution to all § ., from the reduction
procedure. If all §r are zero, go to Step
(14). If not go to Step (13).

Not all Sr are zero in the optimal solution to (13) and
(14); for each non-zero result, the flow in that chain or loop
can be increased by élq(in the direction labelled), such that
the net result of all such increases (as labelled) will be to
keep the restricted primel satisfied, and increase tne net
flow into the network.

The chenge on the flow variables is m?d as follows:
For ijk in the 2&op or chain r, increass Xl§ by &, if jk is

labelled
A < ik /7 + or Bt

or decrease Xg§) by ér if jk is labelled

7\gk) = (ik // = or Ex-)

Another way to think of the resulting change to be made in the
flow variables is: {take the original incidence table and

the {column vector) of optimal &, 5 and form the dot product
with each column of the original incidence table in I' and L=,
and add the result to the variable which has the same index
ijk as the column.

The resulting increase in total flow into the network is
the expression (4.2). There is no need to repeat the direct
flow phase of this subroutine, since no new ijk € C (B have
been defined. Proceed to Step (15).

Either there are no ij € C(\B,: or no additional .bxchange’
labelling can be made, or no increase in flow via Mexchange"
is possible; set all £ = 0. '

The restricted primal has been solved, and the maximum
possible flow in the restriected network is the same as for
the last cycle. o

It is now necessary to find the dual variables to the
restricted primal.

Dual Variable Definition Phase

(15)

One now defines the dual restricted variables ng), ng),
and Oy 4 In what follows, it is assumed that the flow does
not acﬁieve both its individual flow capacity restriction,
and its mutual flow capacity restriction, simultaneously.
This is equivalent to separating each branch for which this
occurs into two series branches, and is done merely for
simplicity in some of the rules presented below. Purthermore,
it is assumed that parallel branches are similarly trans-
formed.

First, examine the optimal solution of the linear
program (5.2) and (5.3). If one found (via Step (14)) that

29
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all &_ =0, one can still imagine that this solution was
found the difficult way, by solving a linear programming
problem.

In the progrem, equalities (5.3a) reduce (drastically)
the ellowed set of solutions; at optimality,,it"is one
(or more) of the inequalities (6.3b) and (&.3c¢c) which determines
the actual bound on (13).
- The solution to the dual of (6.2) and (6.3) is a set of Bjj
such that :

y_\ Br,iPi5 2 fr - Br ' (5.4)

1338

and equality holas if &, > 0; ﬁr equals zero unless this
chein or loop haa a branch which is saturated or emptied
during the exchange flow, in which case it is non-negative.
For example, for a chain from O to R with &, > 0 which did
not saturate or empty, (5.4) reads

2

where the sum is positive if ij is traversed in the forward
direction, negative if traversea from j to 1.
For a loop, the sum is equal to zero, etc.

"Define a special subset of the nodes as follows, and
denote them by the product notation IK:

Proceed with the labelling of steps (7)(8)(9) and (10),
after optimality is reached, even though such labels do not
"complete" chains or loops. The set of all labelled nodes
is defined as IK (with some possible additions, described
later), In other words:

(1) Nodes O and R and ik end jk 3 ij € B are in IK.
(i1) If ik ¢ IK, then jk ¢ IK if (x) (x)
either (a) {ijk-e 2AB)N(X{y’ <Mj3’)

NS X <y
kEL

or (b) (jik ¢ crwi)(\(xgﬁ) > 0)
or {(¢) ijk & CNB '

Define the dual variables by means of the following rules.

Rule A. Set Oy = +1, and Og = 0.
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Rule B. If ijk € IIK

i s AR . (k). (k) o (k)
end ijk ¢ C()B, Oij oij 0; o3 Oj
and ijk c(\B O35 = By ogllg) = 0; ogk) = ogk) = 035

That this set of rules can be applied consistently
may be seen by examining all possible conflicting situations.

For ijk € CNB, the rules are consistent since no chain
from 0 to R, or conf'licting loop composed of only this type
of branch is generated by the algorithm.

For "forward chains" joining O to R with non-zero
chenges in flow, (5.4) guarantees that

7
2;1013':*1

and the rule is compatible since all ng) can be uniquely

defined by following the chain from O to R. This procedure

is also unique if several such chains have branches in common,

since the incidence table took &ll such chains into account.
For "backward chains" joining R to O, with non-zero

(5.4) guarantees that

Zi 2R

and the rule is compatible for the same reasons.
For loops in either direction around some mutually
saturated branch, with 5. >0, (5.4) guarantees that

N
Lo

61-,

Y06i5=0

and the rule is compatible, with the bgk)udetermined to within
an additive constant; however, if the loop is part of a
complete or incomplete chain of ijk ¢ IIK connecting any
previously defined node variables, this redundancy will be
removed, and the node variables are uniquely definec. This
procedure works even for loops and chains which have branches
in common, since the incidence table assures a compatible
set for all chains and loops. :

For chains and loops which were "broken" during the
optimization, (5.4) states that

K ‘
zixi-oij-z 0; +1, -1 (loop; forward,
4 backward chain)
and thus the rule cen be satisfied for the remaining "pieces"
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of the chain or loop, with

k) o glk) _ (k) _ (k)

gg) %79 ij " %3 =9
for the branch which emptied, or Fék) = 0 and (say) Ggg) >0
for the branch which saturated, etc. Any incomplete chains
or loops may be considered as "broken", and the above argu-
ment applied.

For solutions with all 5 one may not have actually
used the linear program, and dual varlables 03 4 would not be
defined. In this case, one must "do it yourseif", and solve
the following set of simultaneous equations:

2
E. 15013 2 fr all r (5.5)

ijEB

with equality holding for those "completed" chains and loops
with non-zero flows.

This solution always exists, since one could always solve
the linear programming problem (5.2) and (5.3). The rule
continues to hold, ard thus the dual variables can be uniquely
computed for all nodes in IK, and all branches in IIK.

Rule C.
For
(ijx & ¢NIIK) E%i Eﬁ) = 5)
set
) 033 = max (o(k).'o) and ogg) = Q

Furthermore, if ng) > 0, set o(k) = O(k) - Oij» add the node
Jk to IK and continue with the iabelllng of new nodes( 1K,
defining new variables with Rule B. Otherwise, set o = 0,
( ) ThlS rule defines a consistent set of O.. an J ( )
"stopping" at the branch with greates% p031t1ve oi
and contlnuing the labeill?v on other branches ij if the flow
is non-zero. If all the o} k) are negative, the labelling
continugs on all bra ?es w1th non-i 50 flow. This insures
that P§ = 0 for X? > 0, and Pij’ = 0 otherwise.

Rule D. For

(ijk & c(\IIK)[](x(k) §§)
t ,
se (ﬁ) &3 fpiee (o(k), 0) Cjj =0

and if O§ ) is negative, set o(k) = o(k), add node jk to the
set IK and- continue with the lgbelllng of new nodes i }K,
defining new variables with Rule B. Otherwise, set Oj = 0.



set.

This rule insures that o{<) > 0 and P{%) = 0 ror this
Note that there are no such branches in IIK.

Rule E. For ijk € A, set

of%) = ofk) - of) %y 7 O

for all branches for which both node potentials were
previously defined. If not, set undefined potentials
equal to zero and then u?e this rulse.

i

This rule makes @) g) = 0 for this set.

Rule F. For ell other nodes and branches,

o) = o) - o) 2 g g

Step (15) is completed.

6. The Optimal Flow Algorithm for Multi-Commodity Networks

The algorithm to be described has the following program:

Begin —p> 1.
P 2.

3.

Optimal

Solution¥ ; 4.

~.5.

Problem
Infeasible @ 6.

Step (1)

Select en initial feasible solution to the dual problem.
In terms of the feasible dual, define a restricted
primal problem, and a set of the primal varisbles which
can be chenged.
Solve the restricted primal problem by meximizing flow
into the restricted primal network, in two steps:
(a) Maximize flow which can be sent directly
through each layer.
(b) Maximize flow which can be sent by "exchenging"
mutual capacity between layers. )
If the flow input to the network is equal to Q, the
optimal solution is obtained.
Otherwise, use the solution to (3) to define changes in
the dual variables which form & new feasible solution
to the dual problem; repeat Step (2), until
No such changes can be made, and the flow input is not
Q, and the problem is infeasible.

To begin with, select a dual feasible solut;on, such as the
least-cost route from source to sink, or, set all dual wvariables
equal to zeros

33
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Step (2)

From Step (1), or from the output of Step (5), define the
following sets:

A= (ijk & NNL | U(k) > 0) (6.1a)
B=(ij e |Ujy>0) (6.1b)
¢ = (ijc e tn | (v . vik) L ufl) _u, - e
(U(k) = o)ﬂ(U 520)) (6.1c)
and
p = AlUsUc (6.1d)

Define the following restricted primal problem:

Maximize FO (6.2)
subject to constraints:

Z (x(k) Xg]i‘)) =0 ik € NL (6.3a)
JEN

Z( (o) X(k)) S (6.3b)
KEL

Y (X(k) - X(k)) 3 -Q (6.3c)
kL

x(k) < M](_k) . ijk € NNL (6.3d)

% (k) My ij e NN (6.3e)

g .

x@’?) >0 ijk € NNL (6.3f)

x(k) =0 ijk € D (6.3¢g)

(k) Mglg) ijk € A (6.3n)

- xﬁ) - M ij e B (6.31)

The dual to (6.2) and (6.3), called the dual restricted problem is:

~ 7/
Minimize :El (k) gg) ;ZJ M; <0, . (6.4)

1 kENNL B ijeny 0

subject to constraints:



k) _ o(k) _ olk) T
ofk) - olk) - o}¥) - 050 ijk € D (6.58)
O, = *1 (6.5b)
Gi;g) unrestricted (6.5¢)
ogg) >0 ijk € DONE (6.54)
035 >0 ij € DNB (6.50)
Step (3)

Solve (6.2) and (6.3) by using the maximal flow subroutine
deseribed in Section 5. The result is a set of flows, satisfying
the restricted primal and a set of dual restricted variables,
satisfying (6.4) and (6.5).

Step (4)

If F_=Q, the algorithm is terminated, with the set of ng)
just defied as the optimal solution to (2.1) and (2.2), and thd
dual feasible defined at the beginning of this cycle being the
optimal solution to (2.3) and (2.4).

If Fy <Q, go to Step (5).

Step (5)

In terms of the solution to the dual restricted problem in
Step (3), define a new set of dual feasible wariables by:

/
vik) = y{k) + Polk)

ik € NL (6.62)
U§§)/=.U§§) . EDU§§) ik & NNL (6.6b)
Uij/“= gy * anij ij € NN (6.6c)
with
(Sl 0) (o)
15keD ng) _ ogk) - 0§§) - 035 ;i?igA t;E%) ]
min ( Uiy ) (6.64)
ijeB 04 4

for all ijk such that the denominators

the denominators

are positive,

%

are positive.
+00.

If none of

Repeat Step (2) with the new dual variables defined by this

step if © is fini

te.

35
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Step (6)
If © =+ 00, terminate the algorithm, since no feasible
solution to (2.1) and (2.2) exists, and the dual set (2.3) and
(2,4) is unbounded.
By comparison with Chapters II and III, it is seen that the optimal
flow algprithm is quite similar to those developed for simple networks,

and unetworks with gain. The principle difference is in the maximal flow

subroutine. The proof may be found in Appendix D.

7. Alternate Formulations

It should be apparent thet nothing in the formulation of this
algorithm (except notation) depends upon the "layer" concept of separating
components which are mutually constrained. For thié reason, it is poséible
to solve problems in which the coupling involves any arbitrary subset of
branches in a network. For example, in a "bottleneck operation" in a large
distribution system, the sum of flows in a large‘group 6f branches maym
represent the total flow through the bottleneck -- especially if it is not

convenient to merge the flows to restrict this total.

8. Comunication Message Routing

As an interesting application of multi-commodity networks, consider
the following interoffice trunking problem, due to R.E. Kalaba and
M.L. Juncosa (51)(52): '
Let iil denote the known number of trunmks needed between station
i and station J, in order to handle all communications between the
two stetions. Furthermore, ©5 is the knowﬁ capacity (in number

of channels) available between stations i and j. How should one
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make up the trunks out of the existing channels in order to:
(a) maximize the number of completed interoffice trunks?
(b) find that solution, emong those generated by (a),
- which additionally uses the minimal number of
channels?
Because the channels are assumed bi-directional, one must introduce
branches (i,j) and (j,i) between stations, and constrain the sum of their
flows to be less than ©5 4° Then, one "separates" the network into a layer

[

for each receiving station; the trunking demands, s are introduced as

853
a capacity on the input to the ith station in the jth-layer, and the
output from the jth layer comes entirely from the jth station, and is
limited to ; 8y §° The mutual eapacity constraints involve two branches
from each layer.

With this multi-cormodity synthesis of the communication network,
problem (&) is just a maximal-flow problem, which may be solved by the

subroutine of Section 5. Problem (b) is & minimal«cost problem in which

the per-unit cost of each branch in the origin&l network is unity.
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Appendix C. Proof of the Optimal Flow Algzorithm for Multi-Commodity Ketworks

Proof of the Maximal Flow Subroutine

The essential part of the algorithm is the maximal-flow subroutine
which solves (IV.6.2)(IV.6.3) and (IV.5.4)(IV.56.5). e shall prove that
this procedure provides an optimal solution by showing that the constraints
to both the restricted primal and its dual are satisfied, and that the
principle of complementary slackness holds. This, incidentally, will also
show the equality of the functionals, and provide & new "max-flow, min-cut"
theorem for multi-commodity networks.

The direct flow phase of the subroutine presents nothing new or
unusual. Some remarks on the exchange flow phase are in order, however.

The incidence table introduced in Step (6) of the :subroutine merely
describes the effect of an increase in flow (in a certain direction along a
chain or loop of branches in a certain subset of the network) on:

(1) the mutual capacity restrictions (E),
(ii) increase of flow into the network (f),
(iii) saturating (L") or emptying (L) & brench in the chain or loop.

Thus, before reduction, all elements in the incidence table are zero, or
plus or minus one.

The reason for the choice of the subset described in Step (7v), is
that equations (IV.6.3g) and (IV.8.3h) prohibit any changes in branches in
A and D. By eliminating all direct chains of branches in CNE from O to R in
the direct flow phase, all chains or loops described in the incidence table
will contain at least one mutually saturated branch. Direct shains of branches in
CNE from R to 0 without any mutually saturated branches are without valus,
and never need be examined.

The reduction procedure, Step (11) of the subroutine, is superfluous,
since one could let the linear program do all the work. However, from a
computational standpoint, it is worthwhile to eliminate these possibilities
which could never give an increase in flow.

For example, Step (lla) states that & certain set of mutuaily satur-
ated branches are not affected by any proposed changes in flow, and may
therefore be eliminated.

Step (11b) states that is, for somse ij ¢ B, all proposed increases
in flow will tend to over=- or under-shoot the mutual restriction, then no
compensating arrangement can be made to keep the restriction exactly
satisfied, and one can set the proposed changes in flow in %these chains
and loops equal to zero. (Recall that all proposed changes in flow are ~
non-negative ( ér > 0); a decrease in flow would be expressed by a
labell;ng in the reverse direction, and a separate entry in the incidence
table.
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Steps (llc) and (11d) state that if one has an equality:
eérl -netgrz =0

or S
-eérl 1'. ne ry ° 0

then Srl = n'érg and onse variable may be eliminated in terms of the other.

The vondition that there be at least one non-negative entry under F
requires that there be at least one way of inefeasing flow into the network
with the proposed changes. The reduction procedure on the constraints
merely eliminates redundant ones.

More complicated reduction and elimination procedures could probably
be made, but are not worth the trouble, in the author's opinion. The
procedures presented can be easily programmed, and will detect most simple
exchange situations; 4f a general linear program is still left after
reduction, chances are that the optimal exchange is a subtle one, indeed.

Lemma I. If ijk € DA = BUC, then 0(¥) > 0.

1]
For ij. € B, G§§)

= 0, by Rule B.

For ijk € C and x%) < LLE‘J‘) ogg) = 0, Rules B and F.
(k) _ (k) (x)
and Xij = Mij K oij > 0, Rule D.

(k) _ (k) (x) -
Lemma II. If xij < Mii » then oij 0.

No cgg) is non-zero, unless the flow is individually saturated.

Lemma III. If ij € B, then 035 >0

The only non-zero 03 j in this set is defined in Rule C as non-negative.

Lemma IV. If ng) = Mlj' then o35 = 0.
kel

No 0jj is non-zero, unless the flow is mutually saturated.

Lewns V. If 1% ¢ D, thon oK) - ofK) _ o(]-k) - of¥) - g, <0

For ijk € A pgg) 0 Rule E

"

For ij € B pfk) = o Rule B
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(x
For ijk € C Xij) non-zero, non-saturated (either kind)
Fﬁg) =0 Rule B
(k)

Xj;  saturated (either kind)

Fﬁg) =0 Rule C or D
ng) zero,o(k) - ng) < Oj;otherwise, a different
labelling would have been made.

(k) k) -
Lemma VI, If Xij > 0, then fbgj) = 0.

In Lemma V, the only cases for which this is not true are for zero
flow, end hence if ijk & D, the Lemma is proved. But by (IV.ing), flow
must be zero if ijk € D.

Lemma VII. The subrcutine solves the restricted primal problem and its dual,

The primal constraints are always satisfied, since it is assumed that
they are satisfied at this cycle in the algorithm, and a Lemma in the next
section will show that it is feasible in the next cycle.

Dual constraints (10a) are satisfied, by Lemmas I, III, and V.

Also, the principle of complementary slackness holds, by Lemmas II,
IV, and VI. Therefore, by the fundamental theorem of linear programming,
an optimal solution to both the restricted primal problem and its dual have
been found, and furthermore..ec.....

Lomme VIUI. F =Z u{) ofs) +2Mij o1 5
13k i3

By the fundemental theorem, the two functionals are equal when the
optimal solution is reached.

This statement is the equivalent of the "max-flow, min-cut" theorem
for simple networks. DNote thet the cut must intercept all of the individually
saturated branches, and one of the mutually saturated branches for each ij.

Proof of the Algorithm

Given that the subroutine works correctly, we must now prove that the
algorithm solves (IV.2.1)(IV.2.2) and (IV.2.3)(IV.2.4).

In the following Lemmas, unprimed symbols refer to a given cycle of
the algorithm, primed symbols refer to the succeeding one. It is assumed
that the restricted primal constraints are feasible on this cycle, and we

'will show that it is feasible on the next cycle, .showing (by induction) that

it is feasible always.

Since we show that the dual constraints are always satisfied, and that
the dual functional increases for every cycle, the optimal solution is
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reached in & finite number of cycles of the algorithm.

/ /
k k
Lemma IX. If v(k), %) and Uy 5 satisfy the dual (4), so do v§ ), §J), Uij.
The new dual variables are given by (IV.6.6).
) (k
(1) Dual inequality (IV.2.4a) states that Zﬁk) - vgk)- u§j)- Uy < c%?)
4
Y

= L.H.S.
By (IV.5.6), |
(L.5.5.) = (L.H.5.) + 199(1‘)
If equality holds, ijk & D, and p(k) < 0 (Lemma V), so that
the inequality holds in the new cycie for any non-negative ©.

If (IV.2.42) is a strict inequality, the inequality will hold
in the new cycle for

0 -:-Qf O
whera
B 5w c%} - (L.H.S.)
A3 0 A

or = +®, if all p‘l‘)g 0.

(ii) Dual inequality (IV 2. 4b) states that U(k) > 0.

(k)

(x)

If Uj5 =0, then ijk &€ CUBUD. For ijk & ¢UB, ojy’ >0 (Lemme I).

For ijk € D o( ) . = 0, and no change occurs.

Henqe the inequality holds in the new cycle for any non-negative '8.

1¢ 0{5) > 0, then (IV.2.4b) will hold in the new cycle for

0<pP = 92
where
otE)
n 1
B, ~ o’"<0{ l{};j}

or +0 if all @(k)>.o.
(iii) Dual 1nequa11ty (IV 2.4¢) states Uy J

If Uy ij = 0, then ijk.e CUAUD. For ijk € CUA 0j3 >0

RienoomIEIE 13 =
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For ijk € D, 0y

Hence the inequality holds in the new cycle for any non-
negative © .

= 0, and no change occurs.

If Uy >0, then (IV.2.4c) will hold in the new cycle for

0<9 <6,
where
U. =
f92 = min {-—lil-
o.<0 i
ij
or +p0 if all @ij > 0.

Since the algorithm picks 9= min (©;,©,,95) in Step (11d), the dual
remains satisfied in every cycle.

i)
1,1

Lemms X. If ijk ¢ 4! x{¥) -

If ijk was in fk)the subroutine l? yes X( ) unchanged. Otherwise, it
must have been that Ui’ was zero, and 03 > 0, which oceurs for indiv-
idually saturated branches

k) -
X:(Lj - M

Lomme XI. If i3 & B/

k- i3

If ij was in B, the subroutine leaves the sum unchanged. Otherwise,
it must have been that U, was zero, and O; 5 > 0, which occurs only for
mutually saturated branchgs -

Lemma XII. If ijk € D, X(k)

If ijk was in D the subroutine leaves X( ) g
it must have been that (IV.2.4e) was &an equallty, and P13
occurs only for zero flow.

unchan e?. Otherwise,
< 0, which

Lemms. XIIXI. The constraint set (IV.6.3) is feasible for the mew c¢ycle,

and the previous X§§) may be used as an initial solution in the new

restricted primal.

Constraints (IV.g.3a)(IV.8.3b)(IV.6.3c)(IV.5.3d)(IV.B.3e) and (IvV.s.3f)
are always satisfied in the slgorithm. Lemmas X, X1, and XII show that
(1v.8.3g) (IV.6.3h) and (IV.B.3i) are feasible for the new cycle, and the
§ubroutine does not violate this feasibility.

Lemma XIV. An optimal solution to the restricted primal with a maximal
flow Fy provides & new feasible solution to the dual problem, with a striect

increase in the dual functional equal to ©(Q - Fgy).
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The difference between the new and the old functional is:

(k) (x)
B0y - )7 My off - D74 05 5)
bjx L]
which by Lemma VIII is equal to

which is strietly positive.

Lemme XV. When® = + 00, the problem is infeasible; when Q - Fpy is zero,

the algorithm terminates with the optimal solution.

The first result follows from the duality theorem, since we have an
unbounded increase in the dual functional,

The second result follows from the fact that the primal and dual
restrictions have been satisfied simultaneously, end the two functionals
are equal for,

If (L.H.S.) < cgg) , X§1§) 15

and by some algebraic manipulation, one can show thet the functionals are
indeed, equal. ‘

Optimality follows from the fundamentel theorem of linear programmings.
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