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ABSTRACT 

The military intelligence analyst must cope with uncertainty during his 

problem solving efforts. This uncertainty maps directly through the analysis 

and synthesis processes and affects his confidence in the output. A formal 

methodology for analysis can reduce some of these unfavorable effects while 

augmenting the analyst's problem solving capabilities. The role of plausible 

forms of logical, reasoning within intelligence analysis is reviewed, followed 

with an introduction of Bayes Theorem as a model for intelligence analysis. 

The conjecture is made that Bayes Theorem can also serve as the nucleus of 

a formal methodology. The application of Bayes Theorem to several types of 

problems is demonstrated. However, the implementation of such a model as 

the nucleus of a complete analysis methodology is hindered by several signifi¬ 

cant problems. Some of the prime hindering aspects are delineated and dis¬ 

cussed. 
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I. INTRODUCTION 

. . A great part of the information obtained 
in war is contradictory, a greater part is 
false, and by far the greatest part, some¬ 
what doubtful. " 

Karl von Clausewitz 

The material presented in this paper highlights a technique that could help 

the analyst integrate tenuous data with the existing intelligence. This technique 

is based on an aspect of probability theory (Bayes Theorem) which provides a 

vehicle for weighting evidence and updating existing opinion in light of new inputs. 

The basic rationale underlying this research1 has been essentially that 

1. Intelligence analysis and synthesis efforts are hindered 

by the gaps and noise that are present in the input, 

2. Intelligence analysts are fallible and often constrained 

by time and other limitations --they may not always extract 

the full measure of useful intelligence from these data--and 

3. Improved collection systems may not entirely eliminate these 

input problems. 

Therefore, it is necessary to continue to improve the intelligence capability to 

exploit data obtained by design or chance from sources of varying reliabilif r. 

This research program examines methods that tend to alleviate the problem of 

producing intelligence from data tha+ may be incomplete and not totally reliable. 

^his research program is sponsored by the Information Systems Branch of the 
Office of Naval Research under contract N0001 4-66-C0230. 

-1 



A. UTILITY OF A FORMAL METHODOLOGY IN INTELLIGENCE PRO¬ 
DUCTION 

Central to the theme of this report is the very simple concept that although 

events of the real world can be portrayed in black and white (e. g. , a submarine's 

pendant is 903 or it is not 903), knowledge of these events is often obtained 

from imperfect sources or is inferred from ancillary data; hence, the data base 

depicting these events can frequently be best described with shades of grey (e. g. , 

the submarine's pendant is possibly 903). The uncertainty of the information in 

the data base affects the degree of confidence that can be placed on conclusions 

derived from these data. 

There are two points that are advanced in this research effort. First, in 

the complex mental processes of data analysis and synthesis, it may be benefi¬ 

cial to make more explicit some of the judgments and inferences used in formu¬ 

lating the intelligence products. This "bookkeeping" aspect increases the like¬ 

lihood that the analyst will consistently evaluate, weigh and integrate all perti- 

ent evidence. Second, the complexity of the synthesis process suggests the need 

for utilizing an aid in integrating the reported data into au intelligence assess¬ 

ment. 

There is a mathematical method that can aid the analyst in distilling intelli¬ 

gence from imperfect data, discarding irrelevant information, and updating the 

existing assessment. This method is an adaptation of an existing inference mod¬ 

el (Bayesian Decision Model) and incorporates several desirable properties; 

e.g., it enables one to probe into such things as the inferences, assumptions, 

judgments and weightings that are used in evaluating input data and synthesizing 

a solution. Bayes Theorem is a vehicle for turning prior judgments into optimal 

posterior ones by employing probabilistic statements concerning information. 

Thus, if degrees of belief or levels of confidence in the reported information 

can be represented adequately in numerical notation (e. g. , only 30% confidence 

that the submarine's pendant is 903), then it is possible to exploit this formal 

mathematical method as an aid in intelligence analysis and synthesis. As data 

are integrated in intelligence processing efforts, the numerical expressions of 

data fidelity are also combined to yield a new indication of confidence in the 

resulting product. 
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Some of the advantages gained in utilizing such a formal methodology in 

intelligence production efforts include the following: 

1. The techniques couple the evaluated input data and the resulting 

products in an explicit manner. Each integrated item produces 

a corresponding change on the intelligence output thus reflecting 

both the utility and fidelity of each input datum. This provides 

the analyst with 

a. A diagnostic capability to examine and re-examine the 

rationale underlying his hypotheses. 

b. An indication of the plausibility of each alternative under 

examination at any point in time. Thus, if time pressures 

prematurely terminate his efforts, he can report the 

relative weights of each possible solution. 

2. The techniques provide a means for integrating the effects of both 

conflicting data as well as substantiating information. Since the 

importance of the conflicts can be coupled to the significance 

of their impact on the intelligence output, these techniques may 

be useful in minimizing the efforts necessary to resolve critical 

differences in the data base. 

3. There are indications that the techniques can synthesize the analyst's 

individual judgments better than man can. Furthermore, the mechani¬ 

cal nature of the synthesis methodology allows the analyst to ident¬ 

ify and integrate additional hypotheses during his analysis effort 

with very few additional assessments. 

4. These techniques, when coupled with on-line computer processing 

technology, offer the analyst a rapid, efficient method of (a) 

organizing his data base, (b) evaluating new inputs and (c) updating 

his products. 

Thus, a Bayesian-aided analyst can augment his intellectual efforts with an 

electronic bookkeeping capability that can also organize his quantified judgments 
in a process of data synthesis. 
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In addition to the Bayesian aid in intelligence production, it is reasonable 

to envision a comprehensive system providing other aids to the analyst in many 

phases of his production efforts. One of the first innovations to any processing 

system would be to utilize the computer's memory and its logically stimulated 

recall capability to store information and questions that the analyst should re¬ 

member when solving recurring problems. Thus, the system begins to take on 

the flavor of a self-organizing and adaptative system. There are now such 

branching innovations with feedback common in CAI (Computer-Assisted Instruc¬ 

tion). CAI techniques, such as dialogue and interrogation approaches, bring an 

important training capability to intelligence processing. With appropriate 

adaptation, the more experienced analysts receive the benefits of being remind¬ 

ed about various aspects of the problem they previously noted in similar efforts. 

Moreover, new analysts receive the benefits of the stored knowledge of the more 

experienced analysts, removing some of the mysticism that normally shrouds 

such processing for the novice. Thus, the novice could be alerted to the existence 

of various patterns of operation, noted in prior intelligence efforts, that share 

something in common with the problem at hand. 

Incorporating a display mechanism into the system could provide the analyst 

with a type of "electronic chalkboard" [Newman, 1966]. Research has indicated 

that the pictorial-verbal display apparently makes numerical data more tolerable 

Properly formatted displays allow people to tolerate and absorb much more in¬ 

formation than normally would be expected. The stage would then be set for the 

so-called step-display-look cycle jNewman, 1966j,fundamental to intelligence 

processing. The step is a unit action that the analyst wants taken by his com¬ 

puter, and could include numerical calculations, nonnumerical data manipulation, 

or simple updating or purging of information. After taking the step, the analyst 

displays the results and looks at them. The cycle is then complete and ready 

to be reinitiated. The most important phase is the look phase because the ana¬ 

lyst is not only absorbing the information, but is also contemplating his next step. 

This is the creative phase that exemplifies the extension of man's capability with 

a computer display system. By providing memory aids and extending the ma¬ 

nipulating, recording, and transformating capability of the analyst, his problem 

solving and decision making ability is greatly expanded. 
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Thus, a complete system can be formulated to augment the analyst's efforts 

inintelligence processing, analysis, and synthesis. The inclusion of sub- 

assemblies within the processor to facilitate information storage and retrieval, 

curve fitting and plotting calculations, simulation of real-world situations, 

graphic presentations of geographic areas, etc., would be a natural modular 

approach for extending the system in support of a complete analysis methodology. 

B. REPORT OVERVIEW 

This report starts with a discussion of the intelligence analyst (Chapter II) 

and his role in the production effort. The analyst is presented as a problem 

solder who could utilize the logical forms of reasoning if the uncertainty in the 

data could be quantified to some extent. Chapter III presents an intuitive form 

of plausible reasoning and illustrates how the uncertainty in the premises of a 

logical argument map through to the conclusions. This chapter introduces 

Bayes Theorem as a natural extension of the plausible form of logical reasoning. 

Following the introduction to Bayesian synthesis, the fourth chapter of this report 

discusses several types of problems that can be examined with this aid. These 

examples are hypothetical; their purpose is not to present a solution but, instead, 

to illustrate the range of problems that admit to this form of synthesis. While 

studies by HRB-Singer and others1 indicate that these mathematical techniques 

show promise, there is considerable research that must be completed before the 

true potential and limitations of these approaches will be understood. Chapter V 

discusses some of the problems hindering applications of Bayesian Techniques 

in intelligence. 

The appendices of this report separate several individual topics from the 

main text. Appendix A gives a derivation of Bayes Theorem and briefly presents 

what is known as the recursive version. Appendix B discusses one of several 

pilot studies in which Bayes Theorem was applied to a real world problem of 

data synthesis. In this study, an analyst's judgment about the data was synthe¬ 

sized by the analyst and, independently, by a computer program utilizing the 

recursive version of Bayes Theorem. The results are compared and briefly 

Jhese studies include the works of Edwards, Peterson, Philips and Hayes of 
the University of Michigan; Kaplan and Newman of SDC; Briggs, Schum. Goldstein 
and Southard of Ohio State University. Some of these studies will be discussed 
later in this paper. 
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discussed in this section. Appendix C touches upon the role of probabilistic 

¡intelligence outputs and command's decision process. Appendix D examines 

the particularly difficult problem of "noise" factors in an environment that exhibit 

characteristics that may be mistakenly identified as belonging to the object of 

interest. Data about these characteristics, when integrated into the intelligence 

effort, influence the intelligence assessment (whether it is formulated in a 

Bayesian manner or not). Appendix E presents some applications of digitized 

logic as a filter on the inputs to intelligence production efforts. This technique 

of filtering examines the consistency and redundancy which may exist among the 

input information. Moreover, the technique of digitized logic can be used to 

determine the validity of conclusions drawn from propostions of the intelligence 

assessments . 

-6- 
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II. INTELLIGENCE PRODUCTION 

The principal mission of the intelligence community is to be responsive to 

command's requirements for timely, evaluated information about the enemy (pres¬ 

ent or potential) -- to provide his location, strength, capability, vulnerability 

and intent. In order to satisfy these broad requirements, sophisticated and 

expansive systems have been established to provide, on a continuing basis, data 

from both directed and nondirected collection efforts. The various sources 

providing this material differ in capability; thus, the data vary in reliability and 

completeness of coverage. 

The production of intelligence from these data requires the combined re¬ 

sources of many agencies and organizations who examine a wide spectrum of 

intelligence interest areas each day. While there are both multifarious intelli¬ 

gence interests and a wide range of data sources, there are some fundamental 

aspects invariant among all production efforts. This chapter briefly discusses 

two of these, i. e. , 

1. The intelligence analyst 

2. Theprocess of data synthesis 

The mathematical techniques discussed in the following chapters of this 

paper offer promise as an improved capability to aid the analyst in his efforts 

to synthesize the apparently disconnected bits and pieces of input data. 

A THE INTELLIGENCE ANALYST 

One of the most critical of all components in any intelligence system is the 

man, e. g. , the experienced analyst who must screen, evaluate, and transform 

the input information into useful intelligence products. Figure 1 illustrates one 

viewpoint of this function. In this effort, the analyst may receive mixtures of 

raw and partially evaluated data from his prime sources as well as products and 

evaluated intelligence from other groups. The analyst screens these inputs to 

determine their pertinence to his interest areas. Because the collection and 

reporting efforts are not always complete and reliable, the analyst must fre¬ 

quently temper the superficial import of these data with judgments about the 
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reliability of the source and the credibility of the information. Data deemed 

pertinent to an interest area that cannot be rejected as invalid are integrated 

with the existing intelligence formulation. This integration of new inputs can 

revise the prior formulation in two ways, i. e. , 

3. It can change the scope of a postulated estimate. For example, the 

possible appearance of a new pendant may tend to revise the estimate 

on the number of submarines operating in a fleet area. The observa¬ 

tion of a series of tests may revise the estimate on the completion 

date of a new weapon system. 

2. It can affect the degree of confidence one has in a postulated hypothesis. 

For example, the analysis of a seismogram could reinforce the belief 

that a nation has commenced underground nuclear testing. The possible 

appearance of a new pendant may tend to lower the belief that a ship 

building program is being reduced. 

As more data are examined and integrated, the analyst's confidence in a tenta¬ 

tive assessment may be raised to the level where he is satisfied that the gathered 

evidence uniquely supports one conclusion and he reports this as a finished item 

of intelligence. 1 

In genera], the production of intelligence from collected data requires an 

intellectual effort encompassing both analysis (the breaking down of complex 

structures so as to discern their fundamental elements and relationships) and 

synthesis (the formulation of a whole from disconnected bits and pieces). Tra- 

ditionallv the intelligence community groups both of these processes under the 

general heading of intelligence analysis; thus the title "analyst." Both processes, 

however, are used in most production efforts. Sherman Kent [1965, p. 157], for 

example, cites the application of analysis in the early stages of strategic intelli¬ 

gence research1'. . . to discover which facets of (the problem) are of 

’Unfortunately, however, the pressures of time sometimes dictate that the 
analyst furnish his best estimate of the situation before he has put all the pieces 
together and has validated their fit in the intelligence picture. 
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actual importance to the U. S. and which of several lines of approach are most 

likely to be useful to its governmental consumers. " In the last stage of this 

formulation is the "establishment of one or more hypotheses as truer than ethers 

and statement of these hypotheses as the best present approximations of truth " 

This last stage is predominately a process of data synthesis. 

B. THE PROCESS OF DATA SYNTHESIS 

Intelligence production can be viewed as an effort to provide "solutions" to 

problems that are pertinent to our national interests.^ These problems may be 

extremely broad, e. g. , "what weapon systems will nation X have in the 1970- 

1980 time frame?" or they may be quite specific, e. g. , "what is the clearance 

of the railroad tunnel at location Y?" In many instances, a general intelligence 

problem may be decomposed into a series of smaller and more specific sub¬ 

problems. For example; the estimate of a nation's future weapon systems may 

be based, in part, on a knowledge of its present weapon systems, its re¬ 

search and development efforts, its evolving military tactics, etc. One role 

of the process of data synthesis is to suggest intelligence problems that should 

be explored (this may, in turn, aid in establishing collection requirements); 

another role of this intellectual effort is to determine which of several hypothe¬ 

sized solutions is most plausible. 

Role of Synthesis in Problem Formulating 

The intelligence community continually collects and examines data about 

events occurring in the real world. Some objectives of this surveillance are to 

(1 ) provide early warning of impending offensive actions, (2) provide command 

with timely information about the locations of mobile units of interest, (3) detect 

the development of new weapon capabilities, (4) identify emerging political, mili¬ 

tary or economic factors among groups of interest, etc. In this examination of 

these data, the analyst usually has a problem area identified and is seeking to 

It should be noted that one of the more challenging aspects of intelligence is the 
recognition and formulation of meaningful problems to be explored. The posing 
of an unimportant problem can consume the energies of people already hard- 
pressed with commitments. On the other hand, the failure to identify a sub¬ 
stantive problem can leave command unprepared for developing situations. 
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update his products. During these efforts, however, it is quite possible that 

an assembly of information may suggest a specific problem to be explored. For 

example, an analyst might assemble a series of disconnected items such as 

a. Country X is believed to be expanding its air defense systems. 

b. Country X has obtained a site in country Y. 

From these two items, the analyst might attach more significance to the site 

than if it had come to his attention alone. If the interest in the potential signif¬ 

icance of these items is high enough, these data may form the basis of a prob¬ 

lem to be explored, e. g. , "what is country X doing with the site in country Y?" 

Once sufficient data have been gathered that are pertinent to the problem, 

the analyst will usually formulate several possible hypotheses about the solution 

e. g. , country X is building (a) an early warning station, (b) an airfield, (c) a 

missile base, etc. This formulation is based on the analyst's examination of 

the data, his prior experiences and knowledge of the subject area. The hypothe¬ 

ses "fit" the data that have been assembled; their function is mainly that of es¬ 

tablishing more specific subproblems to solve: e. g. , instead of asking "what is 

country X doing in country Y, " the analyst can ask "is country X building an air¬ 

field at this site in country Y?" 

The hypothesis serves somewhat as a psychological 
pattern or stencil in permitting the needed facts to 
come to our attention and in excluding the irrelevant 
ones. The operation of the hypothesis may be likened 
to the 'stencil' we are carrying in mind as we look 
for a silver quarter that has been dropped in the yard. 
We walk about and glance over the ground. We 
actually 'see' or note little except objects that in 
some way resemble a quarter. Our drifting glance 
is fixed specifically by any small, round, bright objects; 
other things are usually ignored. In much the same 
way the hypothesis guides us to the relevant facts. 
We must be careful not to limit ourselves to one 
hypothesis, for if we do, the probability is high that 
we will exclude the very facts that would provide 
the key to the problem. Also, if we begin with only 
one hypothesis, we are likely to develop a liking for 
it and unconsciously to search only for those facts 
that will support it. We must avoid trying to establish 
any particular hypothesis. 

[Little, et.ai.( 1952, p. 184] 
-:11- 



In this process of data synthesis, the analyst attempts to fit various dis¬ 

connected items into a proper relationship and to discern the significance of the 

construction. The hypotheses that he poses represent possible solutions to 

problems of importance to intelligence. The integration of new, pertinent, dis¬ 

criminating data will affect the degree of confidence that the analyst holds for 

each possible solution; increasing his belief in one (or more) of these and de¬ 

creasing his belief in others. 

2. The Role of Syntheses in Problem Solving 

Once hypotheses have been established that exhaust the possible solutions 

of a problem, the processes of problem solving can continue by testing these 

hypotheses. One strategy in this approach is to earnestly attempt to discredit 

aJT of the hypotheses. The hypotheses surviving this test become stronger can¬ 

didates as possible solutions to the problem. Another strategy is to examine all 

supporting data to determine which of the possibilities are most credible. Both 

strategies are useful methods in problem solving and incorporate the processes 

of logical deduction and plausible induction. 

a. Deduction. Logical reasoning includes the derivation of conclusions by 

inference. The deductive process starts with premises and moves by inference 

to a conclusion. The premises may be facts, convictions, hypotheses, assump¬ 

tions, etc. ". . . the propositional rules transmit truth from premises to conclu¬ 

sions in any sound inference. If there is a deduction -- i. e. , a sound inference 

then it is impossible for all its premises to be true when its conclusion is 

false.'.' [Anderson et al. , 1962 , P. 79] 

One form of deductive arguments can be represented in the following struc¬ 

tures : 

If A, then B 
A 
B 

premises 

conclusion 
(1) 

If A, then B 
not B premises 

conclusion not A 
(2) 



where the symbols "A" and "B" represent sentences like ''the army is attack¬ 

ing" and "its supply lines are difficult to maintain,etc. Thus if it is known 

that all attacking armies have difficulty maintaining their supply lines, then the 

observation of an army in an attack permits one to conclude that the army is 

having difficulty maintaining its supply lines. Conversely, the knowledge that 

an army is not having difficulty maintaining its supply lines permits the conclu¬ 

sion that the army is not attacking. The reliability of conclusions reached by 

deductiondepends upon (1) the truth of the premises and (2) the validity of the 

inference. 

False conclusions can be drawn from true premises by fallacious reason¬ 
ing, e. g. , 

•if a submarine is "G" class, then it has a ballistic 
missile capability 
Submarine 958 has ballistic missiles 

Conclusion: Sub 958 is "G" class 

In this situation, there are several classes that have a ballistic missile capa¬ 

bility; thus, while all "G" class units are ballistic missile types, not all ballistic 

missile types are "G" class. 

^alse conclusions can also be derived by valid argument if the premises are not 
true, e. g. , 

if country X is constructing an airfield, then Smith will 
direct the project. 

Smith is not directing the project 

Conclusion: country X is not constructing an airfield. 

In this situation, it may be a fact that Smith is not directing the project. How¬ 

ever, if the premise 

"if country X is constructing an airfield, then Smith will 
direct the project" 
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is an unverified hypothesis; it may be possible that someone else will direct 

the project; hence.it could be possible that country X is building an airfield 

under the direction of some other engineer. 

One method of rejecting an hypothesis (H) is to pose it as the antecedent of 

a conditional statement and demonstrate that the consequent (C) is false, i. e. , 

If H, then C 
not C 

Conclusion: not H 

Thus, an analyst might form the hypothesis 

H = Country X is constructing an airfield. 

Now if he can construct a nontrivial true premise based on this hypothesis, he 

may be able to test the hypothesis. For example, assume the following premise 

to be true: 

If H (country X is constructing an airfield), 

then C (heavy construction equipment will be used). 

If the surveillance effort shows that heavy construction equipment will definitely 

not be used, then the analyst can reject this hypothesis. 

Unfortunately, the data available to intelligence are frequently not sufficient¬ 

ly reliable to determine if the premises are true. In the above illustration, for 

example, it may not be certain that al_l airfield construction utilizes heavy 

equipment. Also, in the matter of surveillance, the failure to observe the equip¬ 

ment may not mean that, it was not used, nor need it indicate that it won't be used 

at some future point in time. In general, there are at least three simple struc¬ 

tures that denote the varying points of uncertainty in the premises typical of 

intelligence, analysis, and synthesis efforts, These aie: 

1. Possibly if A. then B Exemplifying 
A 

Conclusion: ? 

-14- 
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2. It is true that A implies B 
possibly A uncertain input data 

Conclusion: ? 

3. Possibly if A, then B 

Dossibiy A both problems 

Conclusion: ? 

Intuitively, "BM exists as a plausible conclusion in each situation; however, the 

level of confidence in the truth of "B" certainly varies among the different cases. 

These situations represent examples of plausible deductive inferences. In the 

next chapter it will be shown that if it is possible to quantify the degree of one's 

belief in the premises, then it may be possible to derive a level of confidence 

for the conclusions derived by deductive reasoning. 

b. Induction. Another method of plausible reasoning is the inductive form 

[Polya, 1945] and is typified by the structure 

If A, then B 
B is true 

Conclusion: A is more credible 

where again, "A" and "B" represent sentences. Consider a previous example 

illustrating how one might test the hypothesis (H) that country X is constructing 

an airfield. In this test, the analyst postulated the premise 

If country X is constructing an airfield, then heavy construction 
equipment will be used. 

Assume this premise is true and suppose that the collection effort does in fact 

uncover the presence of heavy construction equipment at work on the site. This 

evidence does not in itself permit a reliable conclusion that H is true, i. e. , that 

country X is constructing an airfield. It does, however, tend to support the con¬ 

clusion. The degree of the support is dependent upon how many other plausible 

hypotheses have the same consequent. If, for example, heavy construction equip¬ 

ment is connected with all of the hypothesized solutions, then this item does not 

discriminate among the possibilities. On the other hand, if H is the only possible 
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hypothesis explaining the use of heavy equipment, then the hypothesis not only 

implies the consequent, but the consequent implies the hypothesis, i. e. , 

(If H, then C) and (If C, then H) 

Verification of C (heavy construction equipment is being used at the site) enables 

the establishment of both inductive and deductive structures: 

1. If H, then C 2. If C, then H 
C is true C is true 

H is more credible H is true 

Thus, in this special case, the hypothesis becomes quite credible; in fact, it is 

confirmed. In general, the verification of the consequent of a conditional state¬ 

ment whose antecedent is an hypothesis does not establish the truth of the hypothe¬ 

sis. This verification does, however, usually tend to support its plausibility. 

The extent of this support may range from equal support to all hypotheses to 

confirmation of the tested case. Polya [1945, p. 189] identifies the structure1 

If A, then B 
B is true 

A is more credible 

as the "heuristic syllogism" and offers that 

The conclusion of the heuristic syllogism differs 

from the premises in its logical nature; it is more 

vague, not so sharp, less fully expressed. This 

conclusion is comparable to a force, has direction 

and magnitude. It pushes us in a certain direction: 

'A' becomes more credible. The conclusion also 

has a certain strength. 'A' may become much more 

*It should be noted that the uncertainty of the premises of intelligence efforts 
also give rise to at least three inductive forms, i. e., 

1. Possibly if A, then B 2. If A, then B 3. Possibly if A, then B 
B is true B is possibly true B is possibly true 

? ? 
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credible, or just a little more credible. The conclu¬ 

sion is not fully expressed and is not fully 

supported by the premises. The direction is 

expressed and is implied by the premises, the 

magnitude is not. 

His later work [1954] incorporates applications of probability theory in examining 

the magnitude or degree of credibility added by the integration of new evidence. 

It is this line of attack that has captured the interests of many researchers. In 

many areas (e.g., Command and Control, Intelligence, Business Management, 

Medicine) decisions are frequently made under pressures of time and are often 

based on inconclusive data. An ability to identify which kinds of data offer the 

most discrimination in a problem enables one to examine the more fruitful evi¬ 

dence in the available time. An ability to examine the credibility of each alter¬ 

native enables one to weigh the likelihood of the choices against the consequences 

of the results. Thus, an ability to quantify the uncertainty of information can aid 

the analyst who must reach some conclusion(s) as to the significance of these 

data; it can aid the decision maker who incorporates these conclusions into his 

decision processes. 1 

Appendix C presents a discussion of the role of probabilistic intelligence 
assessments and the decision-making process. 

-17- 
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Hi. DEGREES OF BELIEF, PROBABILITY AND BAYES THEOREM 

There are frequently several transformations that take place between the 

occurrence of some event and the reporting of some aspect of the event. The 

first transformation takes place as some sensor records stimuli associated 

with the occurrence of the event. The second transformation takes place as 

these are interpreted; thus, an observer sighting an object may perceive size 

and shape, and report that he has sighted a tank at coordinate x, y. An 

intelligence analyst, receiving such a report, must determine how much of 

the material reflects the true state of the event; e.g., if the enemy is practicing 

deception, the characteristics observed may not typify the true state of affairs.1 

On the other hand, the characteristics may be true, but the observation and/or 

interpretation may be faulty; e. g. , the object may have been a personnel 

carrier. 

In the context of intelligence, data are unreliable if the analyst cannot be 

confident that they adequately reflect the true state of the real world. Data 

reliability is often a judgment that is based on parameters such as basic 

capability of the collection system, prior reliability of the source, credibility 

of the report, etc. It is, of course, possible that an analyst may believe an 

erroneous or false report and also that he may reject valid input. The uncer¬ 

tainty of intelligence collection and processing often does not immediately 

admit to extreme judgments (i. e. , the data are or are net reliable); but, 

instead, admit to different degrees of belief (i. e. , the data may be reliable or 

they probably are reliable, etc. ). 

In the previous chapter, a brief discussion of logical reasoning was pre¬ 

sented to demonstrate the power of deduction and the utility of plausible induc¬ 

tion. It was noted however, that both forms of reasoning encounter difficulty 

when the premises may not be true. The fact that the premises of intelligence 

inferences may not always be true does net preclude the useful application of 

logical, reasoning in intelligence. This fact does, however, suggest the need 

for additional techniques of reasoning that enable one to extract useful informa¬ 

tion from the assembled data. 

îpor example, tank mock-ups may be strategically placed to give the illusion 
that tanks are present. 



Ordinary logic seems to be inadequate by itself to cope 
with problems involving beliefs. In addition a theory 
of probability is required. Such a theory is defined 
here as a fixed method which, when combined with 
ordinary logic, enables one to draw deductions from 
a set of comparisons between beliefs and thereby to 
form new comparisons. [Good, 1950, p. 3] 

In his preface, Good defines probability as ". . . the logic (rather than the 

psychology) of degrees of belief and of their possible modification in the light 

of experience. " 

There are many schools of thought concerning the nature of a probability; 

two of these will be briefly discussed here. As noted above, one suggests that 

probabilities are subjective; that they are a measure of one's degree of rational 

belief about a particular action or state of nature. These probabilities are 

often referred to as personal probabilities. The other school views probabilities 

as being objective or measuring a ''relative frequency." Here probability is 

defined as the relative frequency with which members of a class exhibit a specified 

property. This relative frequency theory is especially suited to take account of 

probability judgments arising out of statistical investigations. Assignment of 

such a probability can only be on the basis of the evidence available to the person 

making the assignment and are frequently referred to as "counts." Both schools 

define that a probability ranges between 0 and 1, where "0" denotes impossibility 

and "1" denotes certainty. This paper will not discuss the merits of either 

school, but does suggest that both views offer utility in the production of intelli¬ 

gence. Under some circumstances, expert judgment may provide the most 

reasonable assessment of the situation. In other instances relative frequencies, 

derived from the data base, may serve as reasonable expressions of probability. 

Moreover, there may occur situations where a relative frequency offers a value 

as a guide for human judgment to accept, increase or lower for the situation at 

hand. 

For the moment, this paper will only distinguish between a "degree of 

belief and a probability" by notation. In the discussion which follows, "A, " 

B, etc. , denote statements which may be either true or false. The degree 

of belief in A is represented by b(A) and is a number between 0 and 1 
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(° < b(A) < l). Thus, if one believes that A is true, b(A) = 1 ; if one believes 

that A 1¾ false, b(A) = 0. Similarly, the probability of an event A is denoted 

as P (0 < P {a^ < 1). If the likelihood of event A is certain, p ^A^ = 1; if 

A cannot occur, P = 0. 

One contention of this paper is that a degree of belief may be usefully 

substituted for an unknown probability value at least as an aid in analysis. 

Cons.der, for example, an cld-fashioned riverboat poker game in which a 

traveler has been dealt a straight flush to the king. If the game is honest, 

the probability of his having the winning hand is exceedingly high (the odds 

against a Royal Flush being dealt is 649, 739 to 1). On the other hand, if his 

belief that the game may not be honest is also quite high, this belief should 

temper his willingness to stay in the game. 

A. QUANTIFYING THE DEGREE OF BELIEF IN CONCLUSIONS DRAWN 
FROM PLAUSIBLE IMPLICATIONS 

It has been frequently noted that the intelligence analyst encounters data 

in which he does not have 1 00%.confidence. He may draw conclusions from 

these data cn the basis of implications which also may not always be true; 

thus, his conclusions are uncertain. This section defines rules by which one 

can quantify one's degree of belief in the truth of conclusions which have been 

derived by plausible implication. The assumption is made that one can quantify 

one's belief in the premises of the argument, i. e. , that one can ascribe values 

to one's belief in the truth of statement "A and in the implication "if A, then 

B" (which will be symbolically written "A-^-B"). 

While the rules derived can actually be viewed as definitions and theorems 

in the context of probability theory, an attempt has been made to define them 

only by intuitive feelings about degrees of belief. They are rules, therefore, 

that have been derived in a pseudomathematical way, but which may, neverthe¬ 

less, have appeal and practical value. 

1. Derivation of the Theorem 

Let A, B, C, ... denote statements which are either true of false; 

and let A, B, C, . . . represent their negations. The following definitions are 

made : 
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a. b(A) is a number between 0 and 1 (0 < b(A) < 1), representing the 

degree of belief in the truth of A. 

b. If one believes that A is true, then b(A) = 1. 

c. If A!, A2( .An are mutually exclusive, in the sense that 

no two of these can be true simultaneously, then ^Aj or A2. . . or 

An^ = + b(A2) + ..,+ b(An) 

d. b(A-^B) is a number between 0 and 1 representing the degree of 

belief in the truth of B when A is true. 

By b. and c. it follows that b(A) + b(A) = 1 since A and A are mutually 

exclusive (they cannot be true simultaneously) and one of them must be true 

(A or A is true). Thus, b(A) = l-b(A). 

The question is, given b(A) and b(A-^B), how should one define b(B)? 

A suitable definition of b(B) will be postulated after specifying certain conditions 

that the definition should satisfy. These conditions are. 

a. First, if b(A) = 1, then b(B) = b(A-»B). This reasonably stems 

from definition d, for b(A-*B) is the degree of belief in the truth 

of B when A is true and the assumption that b(A) = 1 means that 

it is believed that A is true. 

b. Second, if b(A) = 0, then b(B) = b(A-^B). This is also reasonable 

because b(A)j 0 means. b(A) = 1 (i. e. , it is believed that A is 

false) and b(A-*B) is the degree of belief in the truth of B when 

A is false. 

c. Third, if 0 < b(A) < 1 (i. e. , the belief is that A is neither definitely 

true nor definitely false), then b(B) should reflect the possibility 

of B being true even if A is not true. That is, it is reasonable to 

expect the degrees of belief in both "A-—B" and "Ã-—B" to affect 

the degree of belief in B. In addition, if b(A-*>B) = 1 (B is always 

true if A is true), then b(B) should be at least as large as b(A). 
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The following definition satisfies the conditions a. -c. above: 

Dei- 1: MB) - b(A)-b(A-^B) + b(Ã)-b(Ã-^B) 

Note that when b(A) and b(A-^B) are given, also b(A) is known, but a value for 

b(A-^B) must be determined from the knowledge of the frequency with which B 

is true when A is false. If it is known that B can never be true without A being 

true, then b(A-^B) - 0 and the above equation reduces to b(B) = b(A)-b(A-^B). 

In the above definition it should also be noted that A and Ã can be 

viev/ed as two events which are mutually exclusive and either A or Ã must be 

true. The question now is: Suppose there are n different, mutually exclusive 

events A-, A?,.Ain conjunction with one of which the event B will occur 

the frequency of its occurrence depending on which of the A. is true. Assuming 

one can express at a given moment a degree of belief in each and a degree 

of belief in B given any one of the A., what is, at that moment, a reasonable 

degree of belief in B? 

By reasoning similar to that made in deriving Def. 1, the following 

definition is a natural generalization of Def. 1, and the latter becomes then a 

special case of it: 

Def^_2.: Given b(Ap and bfAj-^B), where A^ is any one of ri 

mutually exclusive events, one (and only one) of whicn must be true, the degree 

of belief in B is defined as 

b(B) = b(A1)*b(A1-^B) + b(A2)-b(A2-*B) +...+ b(A )• b(A—►B) 
n 1 n ' 

n 
or b(B) = 2 b(A.)b(A—►Bï. 

i = 1 1 1 

2. Di scussion and Examples 

In chapter II, three simple structures were presented that illustrated 

some points of possible uncertainty in deductive inferences of intelligence efforts. 

Using the notation introduced in this chapter, these structures collapse into one 

form, i. e. , 
23- 



A-►B 
A 

Conclusion: B 

where the confidence of the conclusion, "B, " is derivable from the belief in 

the premises "A-^B" and "A, " and the belief in the implication " If 

either premise is true, the confidence that rests in the conclusion is directly 

connected with the degree of belief in the uncertain premise, i. e. , 

(1) b(A-#*B) = 1 (2) b(A-^B) = U 
b(A) - U b(A) = 1 

b(B) > b(A) = U b(B) = b(A-^B) = U 

Where U is the value given to the belief in the uncertain premise. An example 

of the first situation is as follows: 

It is known that a foreign submarine is within 200 nm. 
of Oahu, Hawaii. 1 
It is believed that this unit is possibly of the Golf class. 
What is the likelihood that a ballistic missile system is 
within 200 nm. of Oahu? 

Assume that all G class submarines carry ballistic missiles. Let G denote 

"submarine of the G class"; and let B denote "ballistic missiles. " Hence, 

G-^B is true, i. e. , b(G-^B) = 1. Now, according to expression ( 1 ) above, 

b(B) > b(C). 

The belief in ballistic missiles is at least as great as the belief that the ob¬ 

served unit is a submarine of the G class since this class carries missiles. 

The belief in B may be greater than the belief in G, however, because other 

possible class assignments for the unit may also carry ballistic missiles. 

There are two aspects of the second situation that should be noted. 

The expression b(A—►B) may be uncertain for two different reasons. First, 

Examples used in this subsection have been fabricated using data currently 
reported in Jane1 s Fighting Ships. 
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"A" may often (but not always) imply !’B. n In this sense, there exists some 

probability for the occurrence of B given the occurrence of A. Second, it may 

be hypothesized that A implies B. Moreover, it may be that all observations to 

date have shown that fi may be inferred from the presence of A. However, the 

testing of this hypothesis may not have been conclusive, and there exists some 

uncertainty that the hypothesis is true. 

An example cf the second situation is as follows: 

It has been estimated that 10 "Z" class submarines 
have been fitted with a new weapon system; the re¬ 
maining 2 5 have not been modified. Given a positive 
identification of a unit as a Zulu, what is the likeli¬ 
hood that it carries the new weapon system? 

Let Z denote ;lunit is a submarine of the 'Z' class''; let W denote "unit has the 

new weapon system, " then 

b(Z—►W) = U 
b(Z) = 1 

b(W) = U 

If the contacted unit is considered equally likely to be any one of the 35 Zulus, 

10 
then b(W) = — or about 28%. 

35 

It is possible, of course, that both premises cf the simple, plausible 

deductive argument may be uncertain. Consider the following example: 

It is reported that 10 1 H" class submarines are 
currently operational. It is also believed that 
five of these boats are armed with the newer long- 
range ballistic missile found on both units of the 
"J" class. A submarine contact has been made 
and the unit is identified as being "H, " "J" or 
possibly 1 N" class. What is the likelihood that 
the contacted unit carries the new missile 
(designated M) ? 
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In this example, the belief that the contacted unit carries the new missile can 

be expressed as 

b(M) = b(H)b(H—►M) + b(J)b(J-*-M) + b(N)b(N-*-M) 

where 

b(H) + b(J) + b(N) = 1 

b(H—*>M) = U; an unknown value between "0" and "1. " 

b(J—►M) = 1 ; all units believed to carry M. 

b(N —►M) = 0; units do not carry missiles. 

Thus 

b(M) = b(H)b(H-^M) + b(J) 

Derivation of a value for b(M) necessitates quantifying the degree of belief in 

"H,11 "H—►M" and "J."1 This may be accomplished by directly estimating 

values for these factors, or they may be derived by weighing other data 

pertinent to the problem. Previous operational characteristics of the classes 

plus a knowledge of the locations of some of the units, could, for example, 

influence the analyst's expression of b(H) and b(J). 

B. BAYES THEOREM AND PROBABILISTIC INFORMATION PROCESSING 

Bayes Theorem is a relatively old aspect of probability theory that has 

received renewed attention over the past six years as a method of revising 

'it should be noted that while the "N" class units do not carry missiles, the 
factor b(N) does influence b(M). Since b(H) + b(J) = l-b(N), a high degree 
of belief that the contact is "N" class lowers the belief that it is "H" or "J, " 
hence, that it is armed with missiles. 
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opinion in the light of new evidence.1 A fundamental aspect of this rule stems 

from the concept of conditional probabilities. A conditional probability simply 

refers to the probability that an event of a certain class will have a given out¬ 

come under the condition that it belongs to a specified subclass of the whole 

class. A conditional probability is an expression concerning one action or 

state of nature, assuming another action or state of nature exists. Thus, it 

is meaningful to talk about the probability of event B occurring, assuming 

event A has occurred; the conventional notation for this expression is p {b/a} : 

moreover, the conditional probability p {b/a} is analogous to the plausible 

implication b(A—B). It will be shown that Bayes Theorem and the techniques 

of plausible implications are analagous; in fact, their main differences are 

found in the methods of application. 

1- Expression of the Theorem 

Placed m the context of intelligence analysis and synthesis, Bayes 

Theorem can be viewed as follows: 

Consider an intelligence problem being examined at 
some time T. Suppose that an analyst can postulate 
several mutually exclusive hypotheses that exhaust 
the possible solutions to this problem. It is quite 
possible that these alternative ’'solutions11 may not 
be considered to be equally likely; but, instead are 
given some preference weighting according to the 
background knowledge prior to T. 

Pertinent data examined after time T will have some 
impact on these prior weightings. In general, the 
extent of the impact will be dependent upon the utility 
of the data in discriminating among the alternative 
possible solutions. 

Let Sl S2, S3, .... Sn denote mutually exclusive hypotheses that exhaust 

the possible solutions to an intelligence problem. The following definitions are 
made : 

^his Theorem was 
posthumously in 
this Theorem. 

stated by the Reverend Thomas Bayes and published 
1763. Appendix A of this paper presents a derivation of 
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P {S.} is a number between 0 and 1 representing the prior 

probability that the ith solution is true in light of the intelligence 

prior to time T. 

D represents a new pertinent input datum examined after time T. 

P {D/Si} is the likelihood of obtaining "D" if the analyst assumes 

solution S. to be correct. 

M represents the re\:;ed opinion about solutions, after 

datum "D" has been integrated into the intelligence problem. 

Bayes Theorem can be expressed as- 

P <S./D 
P <D/S 1..,.P & d) 

The probability of obtaining the datum D is the total probability of 

obtaining D from all hypothesized solutions; i. e. , 

p {d} = p |d/s| P {$!} 

Thus, Bayes Theorem can be written 

+ ...+ PW P(Sn} • 

P <s ‘-/d} = -,,13 W P , • (2) 

P P{S,} + ... + P {D/Sn} p|sn} 

2. Discussion and Examples 

The utility of D in discriminating among the hypotheses is reflected in 

the variations among the likelihoods of obtaining D assumming each solution to 

be true. If the value P ^D/S^| is the same for all solutions, then D does not 

discriminate among the hypotheses; it is cancelled from the expression and 
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P {v15} = P {S} sonifying that D does not influence the prior, probability 

for S.. On the other hand, if this value ts zero for every case but P {d/S. j , 

P 
p < 
K }p fc} 
^i} ■ p{si} 

signifying that D designates a solution. 

It should also be noted that the value of P |d/sJ does nal reflect the 

relationship between an element and its characteristics; it reflects, instead, 

the likelihood of obtaining the data assumming the hypothesized solution to be 

true. This value, therefore, encompasses considerations of errors that may 

occur in collecting, processing and reporting information. Consider, for 

example, the following accuracy table for an hypothetical shape sensor: 

Real World 

Square 

Circle 

Sensor Output 

Square Circle 

80% 20% 

30% 70% 

The sensor, observing a square in the real world, correctly identifies the 

shape as a square 80% of the time and erroneously identifies it as a circle 20% 

of the time. Observing a circle in the real world, the sensor is correct 70% 

of the time and in error 30% of the time. Let "circle" and "square" represent 

the sensor's output. The following conditional probabilities reflect the data 

presented in the above table: 

P 

P 

D/Si} 

^"circle" j CIRCLE} 

^"circle" j SQUARE} 

P ^"square" | CIRCLE} 

P {"square" | SQUARE} 

. 70 

. 20 

. 30 

. 80 
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Another aspect of Bayes Theorem which is imporant to intelligence is 

that the application can be dynamic, facilitating the integration of a number of 

items into an assessment of a problem. Consider several items of information 

Dl’ D2.Dm- The new probability for the ith solution after D, has been 

integrated is P ^S./D, | . This value is now the best estimate for S. prior 

to the integration of other data (such aá Dz) and can be substituted for P js.j 

in Bayes Theorem. The impact of D2 on this new assessment of S is1 
i 

PW= p {V°.} 
P \D2/S,| p + ...+ P {D2/Sn| P 

This expression is known as the recursive version of Bayes Theorem and 

assumes that the data D,, D2.Dm are independent. Examples of this 

form will be presented in Chapter IV. 

3. Related Works 

Although Bayes Theorem as a model for intelligence processing has 

been advanced and utilized previously on other contracts at HRB-Singer, the 

stimulus which prompted its incorporation into an intelligence analysis metho¬ 

dology was research reported by Dr. Ward Edwards of the University of 

Michigan. Dr. Edwards, writing in 1963 on Command and Control Systems 

[Edwards, 1962; 1963] coined the acronym, PIP (for probabilistic information 

processor), a system which would combine human probability estimators with a 

Bayesian Processor. An example of one such system is shown in Figure 2. 

Prior to this, there had essentially been no elementary discussion highlighting 

the application of Bayesian statistics to military informition processing. Dr. 

Edwards gives the following reasons why a PIP concept has merit: 

a. The procedure is optimal for extracting as much certainty as 

possible from the available information. 

b. The system can accept and use with profit information so seriously 

fallible or degraded that it would be excluded or ignored in deter¬ 

ministic systems. 
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c. The technique permits novel allocation of the elements of prob¬ 

abilistic inference between men and machines which may be better 

than that possible in deterministic systems. 

However, two psychological propositions fundamental to the whole idea of PIP 

had to be establishec. : 

a. Men are effective transducers for probabilities. 

b. Men are sufficiently inferior to machines at translating their prob¬ 

ability estimates into conclusions about the truth of hypotheses. 

Again writing in 1966 about his own research and that of others [Edward 

et al., 1966], including Peterson, Philips, and Hayes of the University of Michigan; 

Kaplan and Newman of SDC; Briggs, Schum, Goldstein and Southard of Ohio State 

University, Dr. Edwards states that two crucial findings of the Man-and-Bayes 

Theorem experimentation to date are: 

a. Men are conservative estimators of posterior probabilities. 

b. A PIP technique processes information more sufficiently than its 

competitors. 

An expansion of these findings shows: 

a. Conservatism in estimating posterior probabilities diminishes with 

experience, but never is superior to the Bayesian Processor. The 

suboptimal behavior may be the result of intellectual, not motiva¬ 

tional deficiencies. Conservatism increases as the amount of 

revision required increases. 

b. The likelihood probability estimates improved with experience. 

Some persons were consistently optimistic while others were con¬ 

sistently pessimistic, but all that is necessary is that the behavior 

in making the judgments be reasonably consistent. For many 

situations a man can estimate closely related numbers called 

likelihood ratios, equally acceptable to Bayes Theorem. 

c. It maybe possible to improve performance in multihypothesis 

situations by reducing the number of hypotheses under active 

consideration as rapidly as the data permit. In addition, 
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providing the probability estimators with the output of Bayes 

Theorem after each datum was a hindrance rather than an aid. 

d. The people who make the probability judgments should not also 

be the final decision makers. The task of m-.king likelihood 

judgments or some comparable response mode is enough for 

them to dc, and they can be trained to be quite good at it. 

Edwards and his colleagues at the University of Michigan, Schum 

and his colleagues at Ohio State University, and Newman and his colleagues at 

SDC are continuing to experiment. 

Schum is looking at repeatable situations in which the set of possible 

observations is quite limited so that subjects can reasonably expect to accumu¬ 

late relevant relative frequencies linking data with hypotheses. [Edwards et al. 
1966]. 

Edwards is primarily concerned with vague verbal data and vague 

verbal hypotheses for which no hope of frequentistic information linking data 

with hypotheses exists. [Edwards et al.. 1966], 

Newman s research is related to those investigations of human 

problem solving or "thinking" in which the emphasis has been on the process 

rather than on the output or end product of a problem solving activity. [Newman 
et ah, 1966]. 

In summary for this section, the current research into problem 

solving methodologies has been predicated upon two assumptions. The first is 

that man can filter input uncertainty excellently, andin fact, can translate this 

uncertainty into appropriate indices. But man is not very good at integrating 

his filtered information into a cohesive output. The second is that; machines 

cannot filter input uncertainty very well but are excellent at combining 

numerical indices into some formal output. Therefore, the marriage of man 

and machine should produce a powerful problem solving system. However, 

one question remaining unanswered is whether an intelligence report should be 

only the best estimate of a solution (a decision) presented as a "conclusion, " 

or the actual list of potential solutions and their associated weights. The 
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eminent statistician, Dr. J. W. Tukey,.presents a very enlightening presentation 

of the differences between conclusions and decisions [Tukey, I960]. Further 

discussions on this topic and a method for incorporating intelligence outputs 

into a decision-making process are presented in Appendix C. 
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Iv- EXAMPLE applications of bayes theorem 
TO INTELLIGENCE PROBLEMS 

If Bayes Theorem is to be used as the basis of a model for emulating the 

synthesis phase in an intelligence producing process, it is important to examine 

its application to different types of intelligence problems. Examples will be 

presented in the following sections for three types of intelligence inputs-- 

qualitative characteristics, quantitative characteristics, and subjective indi- 
cators. 

Qualitative characteristics may be represented by discrete random 

variables. Examples would include color, the presence or absence of physical 

items, monitored parameters, etc. Errors of observation or transformations 

are incorporated into the appropriate probability density by a weighting scheme. 

Quantitative characteristics may be represented by continuous or approxi¬ 

mately continuous random variables. Examples would include length, width, 

height, weight, velocity, location, etc. All associated errors are incorporated 

within the appropriate probability density. 

Subjective indicators have associations with members of the solution set 

which are very loosely defined as well as being common to innumerous other 

states of nature outside the solution space. All associated confidence is incor¬ 

porated into an appropriate weighting. Data of this type, such as observation 

of key personnel at particular locations or allocation of combat units to geo¬ 

graphic areas, are usually employed to sharpen the solution selection. 

A. EXAMPLE OF QUALITATIVE CHARACTERISTICS SYNTHESIS 

Suppose it has been noted that the enemy is employing a new "Black Box1' 

component in the fire control subsystem of some of their tactical weapon systems. 

The scientific and technical intelligence efforts have concluded that, in fact, 

there are four distinctive types of boxes being utilized. The objective in this 

intelligence problem example is to identify which type of "Black Box" has been 

employed in the observed situation. In order to simplify the example, the 

term 'Black Box" will be taken literally; i. e. , the intelligence collection efforts 

will be directed towards the identification of a box having length, width, and 

height. Figure 3 illustrates the initial S & T intelligence description of the four 
box types. 
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DESCRI PTION 
BLACK BOXES 

1 DIMENSIONS 

2. CONTENTS 

3. EMPLOYMENT 

ESTIMATED DIMENSIONS 

i 
■*— 150 CM —► 

«- 30C CM 

A THINYPARTÍ>TIONA(:possÍBLYHAVHEATESHIELD)YFDÍHEADÍFFERFNTNRn¿N? IW° ELE,,ENTS SEPARATED BY 
THEIR CONFIGURATION AS FOLLOWS. EL° ' ™E 0IFFERENT B0X TYpES CAN BE IDENTIFIED BY 

BOX TYPE 3 
BOX TYPE 4 

¡"¡«¡"íVím'S! !i< !S SSEí¡[í!m,Sf°^¡¡ílS-s!SI^L‘¡;““¡p “s ,EE'' E!,“iUSHE" 

FIG. 3 DESCRIPTION OF BOX TYPES 



Assume aerial reconnaissance detected a new construction site (designated 

V-3) and photographed a Black Box component with a visible element, but the 

color and the shape of the element could not be determined. Assume also that 

a second aerial reconnaissance, employing a combined sensor platform incor¬ 

porating a highly reliable color sensor and a fairly reliable shape sensor over¬ 

flew the V-3 site. The Black Box was again detected, and the visible element 

reported to be a "DARK SQUARE. " Question; which Box Type was observed? 

The initial assumptions and inputs to the problem are these: 

) . The observed box is equally likely to be any of the four types. 

2. The observed element is one of two elements in the box. 

3. The color and shape sensors are detecting the same elements. 

4. The report is not totally reliable. 

The reliability of the color sensor is: 

SENSOR OUTPUT 
REAL 
WOR LD 

DARK 

LIGHT 

The table shows the discriminating capability of the sensor between the two 

colors. The data indicate that when the color sensor is actually viewing a 

DARK object, it will usually (95 times out of 100 total times) correctly report 

the object color as DARK. Sometimes (5 times out of 100 total times), however 

the sensor will erroneously report that the object color is LIGHT. Similarly, 

when the color sensor is actually viewing a LIGHT object, it will accurately re¬ 

port the color as LIGHT 90% of the time, but erroneously report the color as 

DARK ! 0% of the time. The reliability of the shape sensor is: 

SENSOR OUTPUT 
REAL -- 
WORLD SQUARE CIRCLE 

SQUARE 

CIRCLE 

80% 20% 

30% 70% 

DARK LIGHT 

95% 5% 

10% 90% 
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The combined platform reliability is therefore 

COMBINED SENSOR OUTPUT 

REAL 
WORLD 

DARK SQUARE 

DARK CIRCLE 

LIGHT SQUARE 

LIGHT CIRCLE 

The Bayesian formulation begins by assessing the prior probability of each 

solution, i. e. , P | ^ j ' Since one of the initial assumptions was that the 

observed box is equally likely to be any of the four types, the prior probabilities 

are 

DARK DARK LIGHT LIGHT 
SQUARE CIRCLE SQUARE CIRCLE 

76% 19% 4% 1% 

28. 5% 66. 5% 1.5% 3. 5% 

8% 2% 72% 18% 

3% 7% 27% 63% 

P {4 = P {s,} = P {s,} = P {s,} , i . 

The solution subscripts refer to the corresponding Box Type. 

The probability of reporting ‘'DARK SQUARE'1 conditional on each Box 

Type (i.e. , P |d/S.\ ) considers both the array of elements among the four 

Box Types and the reliability cf the collection system as depicted in the 

COMBINED SENSOR OUTPUT table. In general, tne probability that the com¬ 

bined sensor platform will report ‘ DARK SQUARE, " (given one of the Box 

Types) is equal to the following summation: 

P{D/Si| = P^Reporting "DARK SQUARE17Object"j"j1 • P jobject'^'/S j 

where the Object "j" can be DARK SQUARE, DARK CIRCLE, LIGHT SQUARE, 

or LIGHT CIRCLE. 

Actually this should be the conditional probability of Reporting "DARK SQUARE, 
given the^ Object "j" and Box Type be., P {Reporting "DARK SQUARE"/ 
Object j OS./ . but since the addition of Box Type "i" does not influence the 

value of the probability, the expression may be v/ritten and interperted as shown 
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Let "RDS" represent'fceporting DARK Square," then the probability of 

obtaining a report of "DARK SQUARE" if the combined sensor platform is 

viewing a component from Box Type 1 is: 

P{D/Sl}= P ^RDS/DARK SQUARE ^ • P ^DARK SQUARE/BOX TYPE l} + 

P ^RDS/DARK CIRCLE | • P^DARK CIRCLE/BOX TYPE l| + 

P ^RDS/LIGHT SQUARE^ : P <[lIGHTSQUARE/BOX TYPE 1 J> + 

p ^rds/lïght circi e|• p {light CIRCLE/BOX TYPE 1 } 

or p{d/S,} = (76%) (0) + (28. 5%) (1) + (8%) (0) + (3%) (0) = 28. 5%. I 

Similarly, 

p{d/S2} = (76%) (7) + (28. 5%) (0) + (8%) (0) +, (3%) (£) * 39. 5% j 

p {d/S3} = (76%) (0) + (28. 5%) (|) + (8%) (|) + (3%) (0) = 18. 25% 

p{d/S4} = (76%) (0) + (28. 5%) (0) + (8%) (1) + (3%) (0) = 8. 0% 

Applying Bayes Theorem to determine the probability that the unidentified 

box is Box Type 1 yields: 

p{s./n) = ^D/S-}- 4-) ’ - ' ' ■ 

2p{D/Si}.{p Si} 

p{s,/d}= (28. 5%) (I)/ ^(28.5%) (^) + (39.5%) (ÿ + (18.25%) ¿) + (8. 0%) 

p|s,/Dj= 7.125/23.5625 - 30.24%. 

Similarly, 

p{s2/d} = 9. 875/23, 5625 = 41.91% 

p{s3/d} = 4. 562 5/23. 5625 = 19. 36% 

p{s4/d} = 2.00/23.5625 = 8.49% 
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Because of the uncertainty attached to the input from the combined sensor 

platform, the data do not discriminate greatly among the four hypotheses, 

e. g. , 

Prior 
Probability P(Si/D) 

51 

52 

53 

S* 

2 5% 

2 5% 

2 5% 

2 5% 

30. 24% 

41.91% 

19. 36% 

8. 49% 

Had the data been 100% reliable, the report of "DARK SQUARE" would have 

yielded S2 as the solution. 

B. EXAMPLES OF QUANTITATIVE CHARACTERISTICS SYNTHESIS 

1. Discrete Prior and Posterior Distribution 

This example uses Bayes Theorem to discriminate among states of 

nature on the basis of quantitative observable characteristics whose errors 

are assumed to be normally distributed. The technique employed here involves 

tempering the a priori odds with an expression of likelihood to obtain a posteriori 

odds . 

Suppose it is known that there is an enemy submarine in a given area, 

and that there are four types of enemy subs. The problem, then, is to classify 

the sub as either type #.1, #2, #3, or #4. 

Assume that available intelligence information is summarized in the 

following table. 

Type of Sub No. of Subs of this Type Length Width Height 

#1 

#2 

#3 

#4 
_ 

20 

40 

60 

80 

300 

275 

305 

295 

30 

28 

32 

27 

17 

22 

19 

19 
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Now, in terms of the discussion above, the possible solutions are S!, S2, S3, and 

S4, where Si = Submarine of Type i. The a priori probabilities are given as 

PS "J 
] 

200 

3 - 

40 

200 

60 

lôô" 

80 
200 

= . 2 

= . 3 

= . 4 

Also, there is a set of characteristics cá =: length of type #i sub, c2i = width 

of type #i sub, and c3i = height of type #i sub. 

Assume now that there are two observers (sensors) Oj and (¾ who 

report observations Di 

300, 29,20 

dm d2i, d3j 295, 32, 18 and D2 = diz« d22, d32j 

, respectively. Further assume that the accuracy of these ob¬ 

servations is reflected by the following assignment1 of : cruz = 2 5, <r212 = 4, 

^31 = 1. ai2 = 100 o-^ 

Thus, 

fíD/Si) = (211)-3(800)-1 e 

16, and cr322 = 4. 

(295-300)2 (32-30)2 (18-17)2 (300-300)2 
+ —:- + -:- + 

25 

(29-30)2 (20-17)2 
+  —— + 

1 100 

16 

= (2ir)-J(800) -1 „ “2 : 6562 

= (211)-3(800)-1 (.07021) 

1(0/S2) = (211)-3(800)-1 (.00000) 

^he assignment of values to the o-^^s is not a set procedure. One way of 

assigning a value to o-^2 is t° construct (subjectively) the^point € prob(x^ > 

xp/cki^ = ’ 05, Thus> Cjçi = 300 and xp - 310> ‘’’kt = 1 645 = ^08* and hence 
0^= 36.97. 
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fU2/S3) = (2ir)"3 (SOO)'1 (. 03317) 

f(£/S4) = (Zir)"3 (800)-1 (.00865) 

I 

Combining these values with the prior probabilities yields 

P^iIaD/S!) = (2tt)-3 (800)-1 (. 007021) 

P {S2} f(D/S2) = (2tt)-3 (800)-1 (.000000) 

p{s3}f(D/S3) = (2^)-3 (800)-1 (.009951) 

P {^41^(-/84) = (2^)-3(800)-1 (.003460) 

and hence, 

4 
Z 
1 

(2tt)-3 (800)-1 (. 020432) . 

Therefore, the posterior distribution is 

. 344 

. 000 

p* 

P* 

{s) = : 

(¾} = r 

007021 
020432 

000000 
020432 

p»{s,} = 

P*{s,} = 

.009951 

.020432 

.003460 

.020432 

.487 

. 169 . 

For comparison purposes, the following table of prior and posterior prob¬ 

abilities is given. 
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Probability 

Type of Sub Prior Posterior 

#1 

#2 

#3 

#4 

. 1 

. 2 

. 3 

.4 

. 344 

. 000 

.487 

. 169 

This example used a discrete prior, and, of course, the final dis¬ 

tribution was also discrete. Although this type of problem is fairly common, 

many cases arise where the prior and posterior distributions are continuous. 

2. Continuous Prior and Posterior Distribution 

This example uses Bayes Theorem for updating a continuous probability 

distribution in the light of new data. How this differs from problems where 

these distributions are discrete will be evident in the example. 

Suppose an object is contacted (e. g., a submarine) and it is desired 

to determine its length, 10. It can be postulated that the length was somewhat 

around 100; that there was only a 1% chance that this length might be less than 

50, and likewise, that there was only a 1% chance that this length might be 

greater than 1 50. 

Assuming normality (which is often a good approximation), the 

prior feeling about 10 can be represented by a normal distribution with mean 

10* and variance tr2, where 10* and <r2 may be determined by solving the following 

equations : 

P {■ o < 50 } > 150 

This is equivalent to 

P P < Z > 
150-1o*I 

.01 

where Z is a random variable having a standard normal distribution which is 

well-tabulated and can be found in almost any statistics textbook. Resorting 

to the tables, 
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1 o*-50 150-Iq* 
= 2. 33, 

and solving for 10* and <r, or 10* = 100 and a = 21. 5. Thus, the prior distribu¬ 

tion of the length, i0, is 

P 

1 

-_I_ e' 2(21. 5)2 

(21.5)y7T 

(lo-lCO)2 

Suppose that a sensor is employed to measure the object. As is 

usually the case in practical applications, the sensor will not be perfect. In 

fact, assume that the length reported by the sensor is accompanied with error 

which is normally distributed with mean 0, and variance 9. (These numbers 

are chosen arbitrarily for illustrative purposes; however, for an actual applica¬ 

tion, the distribution of the sensor error can be determined by running the 

sensor under test conditions. ) 

If an observation X is reported, an analyst can determine the posterior 

distribution of 10 by applying Bayes Theorem; 

P 
p< 

[x/1„J 
p, 

(1° 

/1 x/l0i p *0 dlo 

For this example, the prior distribution P(l0) is given above, while 

Now, suppose the sensor reports a length of x = 90. The resulting posterior 

distribution is, then, 
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P(l0/x = 90) = 
p(x = 90/lo)p(lo} 

_ _ _ 

Jp(x = 90/lo)p(lo}dll 

Jq(90-\o)z —.— (io' 100)^ 

^7' (21. 5)V7t 

00 

îÆr 

18 
(90-lo)2 , ----(1,,-100)2 

1 e 2(zl-5)2 dl 
(21. 5)V7tt 

• 00 

1_ '2(8.8) ^o"90-2)2 

V^MsTi) 

That is, based on the observation of 

X = 90, the resulting posterior dis¬ 

tribution over 10 is normal with mean 

90. 2 and variance 8. 8. The 

diagram indicates the prior and 

posterior distributions over the 

length 10. 

Of course, if more observa¬ 

tions are made on the object, the 

posterior may be calculated by means 

of the recursi -e version of Bayes 

Theorem. 

C. EXAMPLE OF SUBJECTIVE INDICATORS SYNTHESIS 

This last example represents an application of discrete probabilities for 

discriminating among the states of nature on the basis of subjective indicators. 

The problem inputs are weighted, using average values from the Sherman Kent 

Chart (Figure 4) as. a technique for expressing "degrees of belief. " 

• I 
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AVERAGE 
VALUE 

100 

CHANGES 

FOR - AGAINST 

100 - 0 CERTAINTY NO ESTIMATE 

90 99 - 1 

85 - 15 
ALMOST CERTAIN. HIGHLY LIKELY 

70 
84 - 16 

5^ - 45 
PROBABLE LIKELY. PROBABLY. IE BELIEVE. . . . 

50 

51 - 49 

50 - 50 

49 - 51 

CHANCES JUST BETTER THAN EVEN. ON BALANCE. 

CHANCES ARE EVEN 

CHANCES JUST LESS THAN EVEN 

30 
45 - 55 

16 - 84 
IT IS DOUBTFUL IE 00UBT. IMPROBABLE UNLIKELY. PROBABLY NOT. 

10 
15 - 85 

1 - 99 
ALMOST CERTAINLY NOT HIGHLY UNLIKELY. CHANCES ARE SLIGHT. 

0 0 - 100 IMPOSSIBILITY NO ESTIMATE 

FIG. 4 SHERMAN KENT CHART 

Suppose that on the basis of information received to date, the analyst knows 

that some type of construction is going on in enemy territory at location L. 

Using this information, the analyst may establish hypotheses as to the possible 

types of construction which might be going on at location L. Suppose that the 

analyst uses average values of the Sherman Kent Chart to express his views 

about the construction, e. g. , 

1. Likely Airfield Construction 

2. Likely Submarine Pen Construction 

3. Slight Chance of Radar Site Construction 

4. Slight Chance of Missile Site Construction 

5. Other types of construction impossible. 
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Thus, the analyst is left with four alternative hypotheses, namely 

Si : Airfield Construction (weighted as .70) 

S2: Submarine Pen Construction (. 70) 

S3: Radar Site Construction (. 10) 

S4: Missile Site Construction (. 10) 

The weight (W^ for each hypotheses can be converted to values expressing a 

degree of belief, b (S^), by normalizing so that 

4 
2 b (Si) = 1. 
i=l 

This can be accomplished by defining the degree of belief in each hypothesis as 

21 W. 
1 

Thus, the degree of belief in Airfield Construction is expressed as 

b (Sj) 
. 70 

.70 + . 70 + . 10 + . 10 
.438. 

Similarly, 

b (S2) = .438 

b (S3) = . 062 

b (S4) = .06?. 

The analyst requests more data on location L, and in response to his request 

receives the following data: 
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Within the past month at location L 

Di: Prof. X has made at least two trips to location L. 

(Prof. X has some background in many areas of 

civil enginneering; however, he has extensive 

experience in the construction of submarine pens). 

D2: Naval Supply Company arrived at L. 

D3: 400 Laborers arrived at L. 

D4: 125th Heavy Equipment Batt. arrived at L. 

D5: Large Steel Shipment arrived at L. 

D6: 16th Finance Office sent a 25, 000 Ruble Bank Draft 
to location L. 

At this point, the analyst will not be able to use D3, D4, D5, or D6 to dis¬ 

criminate among Sj, S2, S3, and S4 and he may start a search to see if additional 

information on D3, D4, Dj, or may be uncovered. 

With respect to D1( however, the analyst (using the Sherman Kent Chart) 

may evaluate 

Di/Sj chances about even b(Di/Si) = . 5 

di/S2 highly likely b^/S;.) = . 9 

D1/S3 chances about even b(Di/S3) = . 5 

chances about even b^/Sj = .5. 

Also, for D2, the analyst may evaluate 

D2/Si likely bÍDü/S,) = .7 

dz/Se certain b(D2/S2) = .1 

D2/S3 likely b(D2/S3) = .7 

D2/S4 likely b(D2/S4) = .7 
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At this point in his analysis, the weightings of the four alternative hypotheses 
would be : 

MSi/DjD^oc b(Di/Si) bíDz/S!) biSj) ocr= . 35(. 438) 

b(S2/D,D2) oc = .90(.438) 

b(S3/D|D2) oc = . 35(. 062) 

b(S4/D1D2) oc = . 35(. 062) 

. 1526 

. 3924 

. 0217 

. 0217 

.. 5884 

b(S,/D,D2) 

b(S2/D,D2) 

b(S3/D,D2) 

b(S4/D,D2) 

. 259 

. 667 

. 037 

. 037. 

Now suppose that the search for further information on D3, D4, D5, 

turns up the information that: 
or D6 

The 16th Finance Office has to date (as far as is 
known) financed no missile sites, no radar sites, 
but has financed construction of some airfields 
and all sub pens. 

Thus, the data D3, D4, D5 still do not discriminate, 

evaluated by the analyst as follows: 
but the data now may be 

Dô/Si chances even biD^S^ = . 5 

d6/S2 almost certain b(D6/S2) = .9 

D6/S3 unlikely bpi/Ss) = .3 

D6/S4 unlikely b(Di/S4) = .3. 

Hence, finally 

b(Si/D1( D2, 03.04.05,06)^(06/5,)^8^0^2)= . 5(.259) = . 1295^(5,/0) = 

b(S2/^ 

b(S3/D 

b(S4/D 

)°c 

)oc 

)oc 

.9(.667) = .6003 

. 3(. 037) = .0111 

.3(. 037) = . OUI J 

b(S2/ß) = 

b(S3/fi) = 

b(S4/0) = 

. 172 

.798 

. 015 

. 015 

. 7520 
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If this is all the data the analyst can obtain, his best report would be his 

probability distribution over S1( S2> S3 and S4, or at least a report using the 

Sherman-Kent Chart. That is; 

Certain 
Construction 

Probable Sub Pen Construction 

Doubtful Airfield Construction 

Almost certainly not Radar Site Construction 

^Almost certainly not Missile Site Construction 
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V. PROBLEMS HINDERING APPLICATION 0F 
BAYES THEOREM IN INTET,T.Tr.TTMrTr 

There are atleast three significant problem areas that hinder application 

of Bayesian synthesis techniques in intelligence production efforts. These 
problem areas center upon the following: 

1. Establishment of meaningful hypotheses. 

2. Derivation of values for the expressions of belief or probability. 

3. Dependency relationships among the data. 

The first problem listed is not unique to a Bayesian approach to problem solving; 

it exists as a difficulty in present-day production efforts. The second and third 

problems, although they explicitly confront mathematical approaches to analyses 

and syntheses, are frequently implicit! in, the difficulty compounding non- 
numerical approaches. 

A. ESTABLISHMENT OF HYPOTHESES 

In problem solving efforts, die role of postulated hypotheses is to relate 

and explain data that have been assembled and are pertinent to the problem at 

hand. The assessment of subsequent data may indicate that some of these 

hypotheses (a) should be revised, (b) can be discarded; or it may occur thal 

(c) new hypotheses should be formed. A Bayesian approach to problem solving 

imposes some restrictions on the establishment of the hypothesized solutions. 
These restrictions are: 

1. The hypotheses must be mutually exclusive; i. e. , only aas of these 
can be correct. 

The hypotheses must be exhaustive; i. e., at least one of these must 
be correct. 
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Additionally (as in all problem solving efforts), the hypotheses should be non¬ 

trivial, and the analyst should be able to evaluate his data with respect to each 

possible solution.1 

Theoretically, it is very simple to satisfy the two restrictions; e.g., the 
analyst can postulate that 

51 = the hypothesis is correct 

52 = the hypothesis is not correct. 

Unfortunately, however, this dichotomous postulation complicates the process 

of data evaluation to the point where it is frequently the case that these assess¬ 

ments cannot be made. A good example of this problem is the difficulty in 

classifying a submerged contact as a "sub" or as a "non-sub. " The hypothesis 

non-sub encompasses objects such as whales, schools offish, wrecks, etc. 

This diversity of the population makes it difficult to assess the conditional 

probability 

p{d. I non-sub} 

where D. can be the interpreted output of various systems such as MAD; Jezebel, 

Julie, etc. The likelihood of a sub-like return from MAD given a metal wreck 

is not the same as the likelihood given a school of fish. Deriving a single, 

meaningful value for this conditional probabüity maybe impossible. 

One method of alleviating the problem of weighing data with respect to a 

complex hypothesis is to partition the hypothesis into a complete set of mutually 

exclusive sub-hypotheses , e.g., 

(NON-SUB) = (whales) or (schools of fish) or . . . 

It should be noted that the failure to include a possible solution in a set of 
hypotheses can bias the impact of the data in the synthesis process. In a 
Bayesian approach however, should a new plausible hypothesis come to light 
after a quantity of data have been integrated, the mechanical nature of the 8 

we'ivhHna ^bleSiithefaí!ÍySt t0 efficiently reassess the problem without re- 
weighting the collected data with respect to the original hypotheses 
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There are two problems that exist in this approach. First, there is the practical 

problem of having too many hypotheses. Since all data must be evaluated with 

respect to each possible solution, a problem having 25 items and 50 hypothesized 

solutions would require the derivation of 1, 250 conditional probabilities and 50 

prior probabilities. Second, there still exists the problem of completeness; 

i. e. , there may exist a possible solution that has escaped attention. One method 

of completing the set is to define a catch-all hypotheses such as "the solution 

is something other than what has been explicitly postulated." Although this 

does exhaust the possible solutions, it is difficult to derive meaningful values 

for the probability of obtaining the data given this hypothesis to be true. 

These problems exist in all approaches to problem solving; they are not 

unique tc the Bayesian approach. The extent that these difficulties hinder 

useful application of this mathematical synthesis technique may well be de¬ 

pendent upon the type of intelligence problems that are to be solved. Basic 

research is continuing to be directed at methodological problems that arise 

from improper establishment of hypotheses; however, test applications to real 

o- realistic problems of intelligence will most likely provide the greatest 

insight to the limitations imposed by this difficulty. 

B. DERIVATION OF NUMERICAL VALUES 

The application of Bayes Theorem (or the techniques of plausible inference) 

requires the numerical quantification of the probabilities of both the prior situa¬ 

tions and the relationships between input data and the potential solutions. In 

some circumstances, observational error may be derived by a »prcpriate 

testing of the sensor and can be used to determine the likelihood cf observing 

a characteristic under different circumstances. Combining such results with 

the real-world characteristic associations should produce a reasonable "physical 

probability." 1 In other instances, source reliability and data accuracy will be 

totally dependent upon human judgment or a "psychological probability." A 

key question, then is can the intelligence analyst express his degree of belief 

as a measurable probability? 

^ocd (1965, p. 6) discusses several types of probabilities, e.g., (1) physical-- 
an intrinsic property of the material world, (2) psychological--a degree of bel.ef 
and (3) subjective--consistent psychological probabilities . 
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In the preface to his monograph [1965], Good notes that 

The estimation of probabilities is of practical and 
philosophical interest, . . The difficulties become 
clear when it is realized that we estimate proba¬ 
bilities every minute of the day, at least implicitly, 
and that how we do this is unknown. When this 
problem is solved, a potential pathway to artificial 
intelligence will be cleared, apart from easier 
applications, such as to character recognition and 
medical diagnosis. 

Additionally many of the studies presented in the bibliography of this paper 

indicate that man can effectively produce reasonably consistent quantifications 

of his judgments as "subjective probabilities. " There are still, however, 

some basic questions concerning the meaning and .usage of these numerical 

expressions that must be explored. "Although controversy can be avoided in 

the mathematics of probability, it is unavoidable when the mathematics is 

applied to the outside world [Good, 1965, p. 9]. Is the value ".99," for 

example, sufficiently close to "1. 00" to accept such a weighted output as 

certain? Does one analyst's expression of belief as ". 85" have an equivalent 

meaning to another analyst? If an analyst cannot derive a meaningful value 

for an item how should the item be treated? 

My own view, following Keynes and Koopman, is that 
judgments of probability inequalities are possible but 
not judgments of exact probabilities; therefore, a 
Bayesian should have upper and lower betting proba¬ 
bilities [Good, 1965, p. 5]. 

The derivation of prior probabilities for the hypothesized solutions of a 

problem offer special challenge to the analyst. Past history, which often 

provides patterns useful in estimating prior probabilities, may not always 

serve as a model of today's events. In estimate intelligence, for example, 

the hypotheses may be predictions. Can techniques be developed to establish 

prior probabilities, for events that essentially have no history (e. g. , deter¬ 

mining the capabilities of a proposed weapon system)? 
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Circumstances are always changing, but humans 
have the facility of estimating the probabilities of 
many events that have never previously occurred 
Tneir sample is their past experience, and they ' 
must often make predictions without the benefit of 
an increased sample . . . 

Nevertheless, for the purpose of making decisions, 
we do manage to make approximate estimates of 
probabilities. How this is done is an interesting 
problem in psychology and in neurophysiology. It 
might, for example, be conjectured that neural 
circuits automatically use a maximum entropy 
estimation (see Chapter 9). The problem of 
estimating probabilities of events that have never 
occurred is philosophically interesting, and in my 
opinion, likely to be important for the design of 
ultraintelligence machines [Good, 1965, p. 4] 

It is reasonable to expect that a Bayesian approach to data synthesis may not 

enjoy equal utility for all areas and types of intelligence. In fact, one possible 

indication of utility might rest in some measure of difficulty one has in deriving 

meaningful probability values for the hypotheses and the data. 

Although there are some problems in expressing opinion as a precise or 

consistent numerical value, there are possible benefits that may overshadow 

these difficulties in utilizing Bayes Theorem as a method of data synthesis. 

One major benefit is that the method explicitly connects the evaluations of the 

inputs with a degree of confidence that can be placed upon the output solutions. This 

connection enables an analyst to re-examine his rationale underlying a conclusion 

drawn from the data. Moreover, if at a later date, other evidences are un¬ 

covered, these can be readily integrated with the existing material to provide 

a new assessment of the problem. 

C. DATA DEPENDENCIES 

In the theory and examples discussed up to this point, it has been explicitly 

assumed that the data are independent; that is, the observation of one item 

of data does not alter the likelihood of observing another item of data. If this 

is not true, the data are said to be dependent. For example, if a card is drawn 

from an ordinary deck of playing cards and is observed to be a red face card, 

the likelihood that it is the queen of spades decreases to zero. That is, the 

data red and spade1' are dependent. 
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In mathematical notation, two pieces of data Di and Dz are said to be indepen¬ 

dent in the light of a hypothesis (or solution) S if 

P D,, Dj/S = PÍD,/sJp|D2/sj. 

Otherwise, D, and Dz are said to be dependent. 

In general, if there are n possible solutions S,.Sn, Bayes Theorem 

states that 

f PÍO,, D2/s |pjs j 
PjS./D,, D2j = _j_J) I 

P|D- ^/si|p[si| 

If D, and D2 are independent, Bayes Theorem may be written in recursive fo 

as 
rm 

PS/D,, D2 
J 

where 

PS/D, 
J 

z P D2/S.Jpjs./D, 

=plD»/siiphj 

z p[d,/s. s. 

However, if the data are not independent, the use of the recursive version 

of Bayes Theorem may lead to erroneous conclusions. 

For example, suppose in an 

exercise "enemy" ships fly a black 

triangular flag half of the time and 

a white square flag the rest of the 

time, while "friendly" ships fly a 

black square flag half of the time 

and a white triangular flag the re- 
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Assume that an unidentified ship is sighted, and it is desired that the ship be 

classified as friend or foe. 

Let Ü! denote the presence of a white flag 

D2 denote the presence of a triangular flag 

Sj denote that the unidentified ship is an enemy ship 

S2 denote that the unidentified ship is a friendly ship. 

Thus, the appropriate probabilities are 

p (Ol/Sij = P [d,/S,] = . 5 

P {d,/S,J = P {d2/S2} = .5. 

However, 

p[Di>Dz/Si} = 0/ pfoj/s,} p[d2/s,} 

p{di.d2/s2) = 1/ p(d¡/s2] p{d2/s2.} 

Thus, Dj and D2 are dependent. 

Assume that it is thought equally likely, a priori, that the unidentified ship 

is friend or foe. That is, P {s,} = P {s2} = . 5. If the recursive version of 

Bayes Theorem is used, the resulting posterior probabilities would be calculate 
as follows : 

P (S./D,) = p (Dl/Sl) PÍS,)_ = (. 5) (, 5) 

PfD./S.J P{S,} + P {0,/3,) P {$,)’(. 5) (.5) + (. 5) (.5) 

P (3,/0,) = p (Pl/S;) P {3,) _ = (.5) (.5) 

p {D./S.) P {3,) + P {0,/3,) P {3,) (. 5) (. 5) + (. 5) (. 5) 

and hence, 

pfSj/Dj, Dzj = F(D2/Si) p(si/Di)__ = (.5) (.5) _ 

P{D*/S:} PfS^D,} + P(b2/S2} P{SZ/DX} (. 5) (. 5) + (. 5) (. 5) " 
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p(s2/D,,D2] = PÍtySz) p(s2/Di)_ . (.5) (.5) 

p(d2/S,) P(S,/D,J + P{D2/S2) p{s2/D,} (. 5) (. 5) + (. 5) (. 5) ' 

That is, based on the data Ü! and D2, it appears that nothing was gained, since 

the posterior probabilities are the same as the prior probabilities. 

This is an incorrect conclusion, of course, since it is obvious that the 

data Di and D2 may arise only if the unidentified ship is a friendly one. Thus, 

S2 must be the true solution. The nonrecursive form of Bayes Theorem would 

have provided the correct answer since 

P{Si/D„D2) = 
PfPl. D2/S,} P{S,}_ (0) (. 5) 

P(D„D2/S1) P{S,) + P{D„ D2/S2} P{S2) = (0) (.5) + (1) (.5) = 0 

p(s2/d„d2) 
P(Dlt D2/S2j P(S2)_ _ (1) ( 5) 

b{d„D2/S,} p(s,}+ p(d,,D2/S2) p(s2) ' (0) (. 5) + (1) {. 5) 

Of course, this example is very elementary, and the dependencies may be 

handled by tabulation of the joint conditional probabilities. However, for larger 

and more realistic problems, determining the existence of dependencies and 

effectively dealing with them may be a difficult task, and will usually be re¬ 

solved by using human judgments. In general, a mathematical model which 

provides exhaustive consideration of all data dependencies may imply an 

extremely large investment of computer time and of the analyst's time and 

labor (especially if subjective estimates are used) with perhaps only a margina] 

increase in accuracy. Instead, it might be advisable to balance any investment 

in overcoming dependencies with the corresponding expected gain in accuracy. 

It is quite possible that erroneously assuming independence may provide a 

workable model which provides an approximation good enough for most practical 

applications. 
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VI. SUMMARY 

A basic contention expressed in this report is that a formal synthesis 

methodology could improve intelligence production efforts. Formal logic, the 

methodology of sound reasoning, can serve as a guide for intelligence processing 

but is limited as an aid to the analyst because of the uncertainty of the data and 

the relationships that are used in intelligence problem solving. Plausible 

reasoning, on the other hand, can be used as a vehicle for mapping the effects 

of this uncertainty onto the conclusions derived from the assembled data. The 

techniques of plausible implication are introduced as a method of quantifying 

conclusions derived by deductive inference. Bayes Theorem is presented as 

a practical dynamic method of synthesizing probabilistic information pertinent 

to the hypotheses of intelligence. 

The adaptation of Bayes Theorem as an intelligence information processing 

model provides a systematic analysis methodology that generates an ordered, 

weighted list of postulated solutions. A well structured data base should be 

achieved as a by-product of the efficient assessment of relationships between 

problem inputs and solution. In addition, a shorthand mathematical notation 

is developed which, if properly catalogued, provides a method for keeping 

track of any current problem solving effort. This same tally can also be 

viewed as a permanent historical record which, when appropriately stored and 

retrieved, generates a review of any analysis effort. Such records can also be 

employed to identify the discriminating contribution of specific inputs to any 

particular problem, thus providing a basis for assessing the input requirements 

of an intelligence area, or evaluating the various collection systems. 

This entire capability is mainly predicated upon the ability to quantify the 

analyst's knowledge. Extensive research and testing,both in the areas of 

measurement theory and probabilistic processing of information, have indicated 

that a numerical quantification approximating a subjective probability (i. e. , a 

consistent probability that obeys the axioms of probability theory) can be teased 

from an individual, or individuals. However, it is net now possible to identify 

which methods can be best employed by different groups working on different 
problems. 
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The objective of the continuing research effort is to identify the contribution 

that this analysis methodology brings to a particular intelligence area compared 

with existing operating procedures. The research will investigate the utility of 

different aids that enable the analyst to express his knowledge and judgments in 

forms compatible with the mathematical techniques discussed in this report. 

Moreover, the continuing research effort will explore aspects of data handling, 

problem solving, patterning, etc. , that may lend themselves to the establishment 

of a complete methodology for intelligence problem solving. 
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APPENDIX A 

BAYES THEOREM 

There are many presentations of Bayes Theorem in literature today. The 

following one is not presented under the guise of being unique, but rather to pro 

vide a convenient reference for readers of this report. This particular form 

is what some authors designate as NEW BAYES. 

For the sake of clarity and ease of presentation, consider the situation of 

two events where the first event is the known existence of a particular sub¬ 

marine SS-1Z, and the second event is the observation of a forward deck gun 

on an unidentified submarine. The problem is to identify the unknown sub¬ 

marine by the inference that the observation may imply that the unknown sub¬ 

marine is in truth the particular submarine SS-12. However, the fact is also 

recognized that the observation of a forward deck gun would be common to 

other submarines, and also, although not germane to our problem, that the 

submarine SS-12 may be sighted without the observation of the forward deck eun 

Let 

S - The particular submarine, SS-12 

S = All other operational submarines 

D - The observation 

D = The observation 

of a forward deck gun, and 

of no forward deck gun. 

The diagram consolidates these 

assumptions. The letter S with the 

associated circular area represent 

the event S or the submarine SS-12; 

the letter D with the associated 

circular area represent the event 

D or the observation of the forward 

deck gun on the unidentified sub¬ 

marine; and the letter U with the 

associated rectangular area re¬ 

present the extreme boundaries 
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for the problem or its universe. In this situation, U is the set of all 

operational submarines. 

Two letters written together such as AB are read as "A and B" and in the 

diagram represent specific areas or the assumptions of our problem. These 

areas are identified as 

DS —The area representing some other particular submarine(s) 

existing with the observation of no forward deck gun. 

DS--The area representing some other particular submarine(s) 

existing with the observation of a forward deck gun. 

DS-- The area representing the particular submarineSS-lZexisting 

with the observation of no forward deck gun. 

DS--The area representing the particular submarineSS-lZexisting 

with the observation of a forward deck gun. 

It is this last area, known as the intersection of the events D and S, that is of 

interest. 

An acceptable assumption is that the probability of the intersection of two 

events D and S is the same as the probability of the intersection of the same two 

events designated as S and D; or 

p (ds) = p (sd) . 

The multiplication rule for probabilities states that 

P (DS) = P {D/S} • p{s} for P (s) / 0 and likewise 

P (so) = P {S/D} • p(d) for P (b) / 0. 

The terms P {d/s} and p{s/b) are conditional probabilities,which simply 

mean that assuming the one event to the right of the vertical line has occurred, 

this is the probability of the other event occurring* 

The term p{s/d} represents the desired output of the problem; that is, 

given the observation of a forward deck gun on the unidentified submarine, what 
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is the probability of the unidentified submarine being the SS-12. Therefore, 

equating the relationships yields 

p{s/d) • p(d} = p(d/s} • p{s) . 

Providing now that P {d} / 0 and P {s} / 0, 

P (S/D} = p(d/s) • p(s) and P (s/d) = 1.-P (s/d). ^ 
T(d) 

The universe of this problem was bounded so that S and S are mutually ex- 

lusive and exhaustive; i. e. , P (ss}= 0 and the p{sUS^ = 1. This means that the 

probability of S and S existing together is zero or cannot occur since the unidenti¬ 

fied submarine is either the SS-12 or some other submarine, but not both; and the 

probability of either S or S occurring is one, or that likewise the unidentified 

submarine is either SS-12 or some other particular submarine. Consequently, 

it follows that D can only occur in connection with S alone or S alone. Therefore, 

the probability of D is 

p (d) = p (ds) + p (ds) . 

Again applying the multiplicative rule of probability, 

p (d) = p (d/s) • p (s) + p (d/s) • p(s) . 

Now the desired output can be shown to be 

p(s/d} = p(d/s}- p(s}/[p (d/s) . p(s) + p(d/s}- p(s}] 

which is Bayes Theorem applied to the simple case of a single event S and its 

negation S. 

Consider now identifying N mutually exclusive and exhaustive submarines in 

place of S. That is, rather than simply state that it is some other submarine, 

*It should be noted that all probabilities are really conditional although not writ¬ 
ten as such. The P values are conditional on all information about S before 
D is learned. 
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assemble a list of candidates, even if it must be all submarines ever built. 

Againthe phrase mutually exclusive and exhaustive simply means that only one 

of the submarines in the list can be the unidentified one and that the unidentified 

submarine is truly one of the submarines contained in the list. Then the formula 

becomes 

with Z^pJs./dJ = 1. and 

sïp[si] =1 

The subscript'^" indicates which submarine from the list of candidates is being 

considered. The summation sign, 2 , merely indicates thatthe denominator which 

before contained the sum of only two products -- P [d/s] ‘ .P[S P ' PlSJ 

--now is the sum of all n products — P p/sj • P[ S1j + P (D/Sz ]' + 

P{D/Sn] • P[Sn]- 

Consider now the arrival of many pieces of input. In such cases, the poste¬ 

rior estimate P fs./D for the first piece of information becomes the prior esti¬ 

mate P [S.] for the second piece of information. The posterior for the second 

piece of information is then 

p(s./D2}= p(D2/S.}. P(Si/Di) 

Z p{d2/S.}. P^i/Di) 

Generally the equation is written as 

p{VDj)= P(D/Si>- p(si> 

Ep(D/S.}- P(Si) 
1 J 

J 
J 
J 
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This equation is known as the recursive version of Bayes Theorem and assumes 

independence among data. 

The probabilities incorporated into Bayes Theorem may be any combination 

of discrete and continuous, objective or subjsctive probabilities. Thus,the prior 

might be discrete (the probability of submarineSS-12 being one of say ten sub¬ 

marines under consideration maybe 0. 1) and the input continuous (the length of 

the unidentified submarine is between 150 and 165 feet with a best estimate at 

155) or vice versa. For a more detailed presentation of the various facets of 

Bayesian Statistics, see Weit, ,[1966]. 
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APPENDIX B 

A BASIC STUDY OF THE APPLICATION OF BAYESIAN ANALYSIS 

TO AN INTELLIGENCE PROBLEM AREA 

In addition to theoretical calculations, some basic pilot studies were con¬ 

ducted in order to explore the application of one approach of Bayesian Analysis 

to the intelligence analysis-synthesis process. This appendix presents (1) the 

rationale, (2) the methodology and (1) observations on some results of these 

studies . 

If an intelligence problem area is well defined and the data normally 

associated with the area are well structured, it is possible to assemble this 

information into an analysis table such that the column headings represent 

solutions under consideration and the row headings represent the known 

associated problem inputs. A portion of such a characteristics matrix could 

be represented as. 

s4 S5 S6 S8 S9 
where the nature of the association 

between the characteristics and the 

solutions are given in the intersecting 

cells. The solutions could be very 

distinct items such as the specific 

submarines SSN" 578 Seawolf, 

SSN- 57 8 Skate, SSN - 586 Triton, 

SSN- 649 Sunfish, etc. Alternatively, 

the solutions could represent classes 

of items where individual members 

are not identified. For example, the solutions could represent specific classes 

of the Douglas Skyhawk such as A4A, A4B, A4C, A4E, etc. , without regard for 

individual members (in this case 165, 542, 6 38, 500,, respectively). 

The problem inputs represent individual items whose historical files have 

identified an association with the various solutions. Examples would include 

the presence or absence of colors, characteristic shapes, physical items, 

monitored parameters, etc. These examples would be representative of quali¬ 

tative characteristics or inputs analogous to discrete random variables. 



Inputs such as length, width, height, velocity, location, etc., would be repre¬ 

sentative of quantitative characteristics or inputs analogous to continuous or 

approximately continuous random variables. These types of inputs would best 

be acknowledged by entering an expected value in each of the cells. 

A characteristic matrix that simply acknowledges the existence of an 

association between a particular characteristic and a particular solution may 

not, however, provide the analyst with the type of information he desires. In 

fact, if the analyst interprets such acknowledgments as 0-1 relationships 

(l. e. , the solution either has or does not have the characteristic), then the 

utility of such a matrix may be deceptive. There are, in general, three prob¬ 

lems hindering the utility of a 1-0 characteristic matrix. These arc 

1. 

2. 

3. 

Some characteristics are temporal; they may exist only under certain 

circumstances or they may periodically change. 

If the solutions represent a setor class of units, some characteristics 

may not exist for all members of the class. 

The fact that a solution exhibits a characteristic doesn't mean that it 

will be reported. Similarly, the absence of a characteristic does not 

mean that one may not be mistakenly reported.1 

.90 -- .75 .30 .60 5 
A much more useful matrix can 

be created if the contents of the 

cells denote the history of re¬ 

ported data associated with each 

solution. For example, this dia¬ 

gram indicates that the characteristic has been reported more often with S1( 

followed by S3, S5, S4, and never with S2. 2 Incorporating appropriate considera¬ 

tions, such as the reliability of the collecting system, etc., a matrix containing 

‘The faüure to observe an existing characteristic is an example of a TYPE I or 

example ^ 'hacactecS’an 

be noted the contents of the cell indicate the frequency with which 
data are reported given the solution to be true. It does not indicate the fre 

quency With which those solutions are true given the reportedTIta. 
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probabilistic statements concerning the expected relationships between inputs 

and solutions are created, not just acknowledgements between characteristics 
and solutions. 

With these observations in mind,some basic studies were performed at 

HRB -Singer to examine the application of a Bayesian analysis technique to a 

quasi-invariant intelligence problem area. This effort represented the applica¬ 

tion of discrete probability distributions for discriminating among the states of 

nature on the basis of qualitative characteristics. A senior analyst with exten¬ 

sive experience in the selected area participated in the study. The procedure 

utilized was selected because the problem was well defined and the data were 

well structured. This procedure was as follows:1 

First, a c haï acte r is tic s matrix was constructed for the problem area. 

The column headings represented each member of the solution set while the row 

headings represented each piece of data that has been an input to this problem 

area. A portion of the matrix is shown as follows: 

ship is not only acknowledged, 

when the relationship does 

2. 

program 

using the 

The values in each cell represent 

the conditional probability p(D/S) 

and were obtained from the analyst 

either as frequency counts from 

his historical files, or as his own 

expression of judgment; i. e. , "If I 

assume that S6 is the true solution, 

what are the chances of observing 

D4 as an input?" Thus, the relation 

but is actually weighted to account for those times 

not always exist. 

Next, selected inputs were presented to the analyst while a computer 

mathematically combined the selected inputs into output estimates 

recursive version of Bayes Theorem and the values from the 

‘As discovered later, this procedure is very similar to the scenario development 
technique employed by W. Edwards, et aE_, when testing the PIP concept. 
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characteristics matrix. It should be emphasized that the analyst and the com¬ 

puter received the same inputs. Also, theoretically both the analyst and the 

computers weighed the inputs identically since the computer incorporated the 

values developed by the analyst for the characteristic matrix. Thus, any dif¬ 

ferences in their outputs should reflect only differences in the integrating 

methodologies. 

3. Finally, the outputs from the analyst and the computer were compared. 

For example, the analyst was given twelve pieces of information and asked to 

give his solution. Sometimes he was also asked to give a ranked intermediate 

solution listing after receiving only part of the information. Sometimes the 

analyst was asked to estimate his confidence by numerical quantification in the 

ranked solution listing by "betting" up to $100 on each member of the solution 

set. These numbers were then normalized. Although these weightings may 

not be totally interpretable, it was felt that they would provide seme insight into 

the rankings. At the same time, the computer, starting with the input that all 

solutions were equally likely, calculated a solution set using the values from 

the characteristics matrix for the same twelve pieces of information. The 

intermediate probabilities distributed over the solution set after considering 

each input were calculated in addition to the final output; only a discussion of 

some of the observations will be given here. A typical result is given in 

Figure 5. The upper part of the figure shows a comparison of some intermediate 

and the final outputs of the analyst with his confidence and the computer output. 

The lower portion represents the confidence plot for solution S4 only. 

The first series of studies incorporated several assumptions based on the 

analyst s statements that proved to be incorrect. For example, the analyst 

stated that he assumed any solution of the 14-member set was equally likely of 

being the true state of nature prior to his receiving any data. However, upon 

additional questioning this proved to be false and the prior probabilities were 

changed accordingly. The impact of the correction on some solutions is shown 

in the following example. 
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FIG. 5 SOLUTION #4 OF PILOT TEST 
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Computer Output For 
"Equally Likely" 

Su 62.24% 

Sg 37.74% 

Computer Output For 
"Weighted Prior" 

S, 78.45% 

Su 21. 53% 

In this example the solution set ranking flip-flopped. In others the net result 

was a change in weights but not in ranking. However, the combination of this 

updated prior and other changes was sufficient to generate other flip-flops. 

This updated prior weighting was checked several times and found to be con¬ 

sistent. 

Another assumption was that the analyst only considered positive inputs, 

that is, information he received, not the lack of certain inputs. Again this 

proved false as shown in the following case. 

Computer Output For 
"Positive Inputs" 

S6 97.52% 

SM 2;06% 

S5 0.41% 

Computer Output For 
"Lack of D," 

S6 83. 37% 

Su 15.73% 

S5 0. 89% 

At first, the change might not seem too drastic. But again this change in 

association with other changes, caused a complete re-ranking of the solution 

set. Perhaps more dramatic was the situation for a certain subset of the 

solution set. 

Computer Output For 
"Positive Inputs" 

55 73.45% 

56 16.13% 

Sj 6.17% 

SM 3.00% 

S2'. 0.69% 

53 0. 50% 

54 0.02% 

Computer Output For 
Addition of 

"Seven Lacking Inputs" 

55 44.85% 

¾ 38. 59% 

56 6.67% 

Su 4.70% 

S2 4..37% 

S, 0.78% 

Computer Output For 
Addition Of 

"Three More Lacking 
Inputs" 

Sï 99.99% 
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As the reader can see, the increased number of lacking inputs strongly changes 

the output. The problem here, of course, is whether or not these inputs were 

truly not there or just not observed or reported. It does demonstrate once 

again, however, that "negative" input also has utility. 

One important difference noted between computer generated solution weights 

and those directly estimated by the analyst was the effect of individual items on 

the assessment. In the following example,the analyst reconsidered some of the 

solutions that he had previously eliminated after examining datum D22. The 

Bayesian processer integrated this item with all previous items, producing 

quite different results. 

AFTER RECEIVING 4 INPUTS AFTER CONSIDERING THE 
NEXT INPUT, D22 

Analyst Computer Analyst Computer 

S9 

Su 

Another initial assumption of this particular approach that proved slightly 

erroneous was the belief in an invariant situation. For example, although the 

analyst utilized frequency counts from his historical files, the specific time 

period was very important. The relationship between say, Du/S7 may be 10% 

over a five year period, but only 1% over the last year. Therefore, a forecasting 

method emphasizing the more recent information or some other stepwise heurisLie 

search pattern to facilitate such decisions would seem to be in order. The 

amount of noise that this condition added to these studies was not immediately 

attainable. 
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Two types of dependency problems existed. The first involved certain 

solutions that could be the true state of nature with D¡ or D2 or D3 but not with 
Dj and D2 and D3. For example: 

Si S, 

D23 5% 1% 

D27 10% 40% 

Daz 75% 90% 

The discriminating capability of these inputs between Sj andSg is essentially nil 

for these three pieces of data so that the only output difference would be the 

prior weighting ratio. However, would actually exist only with D23 or D27 or 

D32, but never with all three. So S8 would be the unique solution if all three 

inputs were received. Therefore, this must be handled by some different tech¬ 

nique. The other type was what might be described as quasi-twins or a con¬ 

catenate relationship, . i. e., if solution 8, then also solution 10 is in contèntion. 

This type of situation may only be unique to this problem area. A third type of 

dependency problem-the combinatorial type --was not specifically pinpointed. 

The implicit assumptions made explicit were particularly impressive. For 

example, a disagreement in solution was quickly resolved after the analyst 

noted that he questioned one of,'the inputs. 

ANALYST 

S, 46.23% 

S10 37.63% 

Su 16.13% 

COMPUTER 

Sg 78.45% 

Su 21.53% 

COMPUTER AFTER CORRECTION 
_OR INPUT_ 

Sg 75.59% 

S10 20.67% 

S„ 3.73% 

The numerical values perhaps should reflect to some extent a weighted amount 

of disbelief the analyst has created. This type of problem can create havoc in 

analysis as soon as the validity of an input is questioned. Therefore, some 

scheme must be provided to allow for reassessment of the p^/Sj) as required. 
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One thing that was not resolved is the effect of a "new" solution on the data 

input and the ability to identify a new solution on the basis of its input. For 

example, would a seemingly random selection of inputs generate sufficient 

contrast to stimulate the thought of a new solution previously not considered? 

In reality, the situation of two or more unidentified solutions occurring 

simultaneously was not considered either. Some strategy of pattern checking 

would be necessary to patrol these situations. 

There were several runs that could not be resolved even after interrogation. 

Whether these constituted simply combinatorial dependency problems --unique 

patterns to this particular analyst--or something more complex was not fully 

recoverable. Because the total amount of information for the problem area 

was purposely not incorporated, and because the analyst seemed to demonstrate 

several inconsistent results when the same problems were represented from 

time to time, these could not be fully resolved. 

There is a need to monitor the computer operation. If two solutions are 

under consideration and the discrimination between them generated by a piece 

of input is .1% versus .01%, the former may very well go to 99.99%. However, 

the analyst should be warned of the reason for such a drastic change if the 

characteristic matrix is fixed in a machine since it would appear that the par¬ 

ticular piece of information is rare for both. 

Two aspects of synthesis were quite obvious. A solution with unique inputs 

was quickly isolated by both the analyst and the machine. 

Obviously, any input combination 

with D42 and D47 pinpointed Si2. In 

addition, a very common solution 

was consistently identified, although 

the uniqueness was not as obvious 

until all inputs were set forth within 

a reduced matrix. The computer consistently identified these solutions with less 

information than the analyst. A simple example of such a problem would be 

1 [ 
V 
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S1 S2 S3 S4 S5 S6 S14 

PRIOR WEIGHTS: 2.4'i 0.24¾ 1. 2% 21.64' 6 01% 2.4% 1. 2% 

INPUTS: 0, 

D2 

°3 

D22 

50¾ 

20¾ 

40¾ 

50¾ 

20¾ 

40¾ 

65¾ 
60¾ 

75¾ 

80% 

75% 

80% 
80% 

80% 

75% 

90% 

40% 

70% 

50% 

70% 

50% 

65% 
60% 

75% 

OUTPUTS: CUMULATIVE 

AFTER 0, 

D2 

°3 

D22 

4.48', 

1. 28¾ 

0.63¾ 

0.44% 

0.12% 

0.06% 

2.91% 

2.51% 

2.33% 

64.72% 

69.69% 

69.11% 

83.92% 

17.97% 

19.35% 

21.59% 
13.11% 

6.28% 
4.50% 

3.91% 

2.96% 

2.91% 

2.51% 

2.33% 

Generally, increasing the number of inputs still will not lessen the obvious 

answer because of the systematic presentation within the matrix. Atypical 

inputs naturally generated the greatest confusion, particularly when a solu¬ 

tion represented a hybrid. 

The analyst's solutions seemed tobe consistently conservative, as pre¬ 

dicted by other reported research and shown in the following examples. 

AFTER 17 INPUTS 

Analyst Computer 

Sjo-4 3% 

S8 -30% 

Su -27% 

Sjo-99.02% 

S8 - 0.97% 

AFTER 11 INPUTS 

Analyst 

S4 - 80% 

S6-20% 

Computer 

S4-99.19% 

S6- 0.80% 

AFTER 4 INPUTS 

Analyst 

54- 60% 

55- 27% 

56- 13% 

Compute r 

54- 83.92% 
55- l 3. 11% 

56- 2.96% 

Again the absolute values of the analyst's weights are not fully understood 

but should provide an indication of his confidence in the selected solution 

set. 

The fact that many of the relationships are invariant and that the computer 

quickly moved in on them should be an indication that a technique of searching 

for inputs that would generate contradictions may be more in order. Thus, 

the analyst function would be properly shifted towards analysis to insure that 

the maximum amount of information had been made available. Of course, the 

computer role could be expanded in many other ways to further facilitate this 

analysis function. 
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APPENDIX C 

THE ROLE OF PROBABILISTIC INTELLIGENCE OUTPUTS 
AND LOSS FUNCTIONS 

At the end of Chapter III, the question was raised whether intelligence out¬ 

puts should be decisions in the disguise of "conclusions,1/ or simply presented 

as inputs to a decision process. Since intelligence outputs can be categorized 

as decisions or conclusions, the question is raised as to the differences between 

these concepts. In developing the definitions, the writer will quote liberally 

from Dr. J. W. Tukey's paper "Conclusions vs. Decisions, " (Tukey, I960). 

A conclusion is a statement which is to be accepted as applicable to the con¬ 

ditions of an observation unless and until unusually strong evidence to the con¬ 

trary arises. Conclusions are established with careful regard to evidence, but 

without regard to consequences of specific actions in specific circumstances. 

Thus, conclusions are withheld until adequate evidence has accumulated. 

The definition of a conclusion has three crucial parts; two explicit and the 

third implicit. First, it emphasizes "acceptance" in the original, strong sense 

of the word. The conclusion is accepted,, and taken into the body of knowledge , 

not just into a guidebook of advice for immediate action. Secondly, the defini¬ 

tion speaks of "unusually strong evidence." This implies that only a small per¬ 

centage of all conclusions will, in due course, be upset. Finally, it does imply 

the possibility of later rejection. A conclusion is something of lasting value 

extracted from the data; but it is to be of lasting value, not necessarily of ever¬ 

lasting value. 

Hence, conclusions mustbe reached cautiously, firmly, not too soon, but not 

too late. They must be judged by their long-run effects, by their "truth, " not 

by specific consequences of specific actions. 

Decisions, on the other hand, are more nearly of the form "let us decide to 

act for the present as if, rather than "we accept. " The distinction is important 

and too often neglected. The restrictions "act. . . as if " and "for the present" 

convey two separate and important ideas, ideas which serve to distinguish con¬ 

clusions from decisions. 

When it is stated to "act as if A is greater than B, " no judgments as to the 
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"truth" or "certainty beyond a reasonable doubt" is made of the statement "A is 

greater than B. " When i, is stated "for the present. " the decisiol mTer it 

re errmg only to the particular situation under consideration at present. During 

decision-making processing, he is weighing both the evidence concerning the 

.rita“rÍtí.0f A and 5 and alS° the Pr0bab1' —O—es in the presen, 
situation of various actions. Finally he decides fta, the particular course of 
etion which would be appropriate if A t i 
^ ,, PP P te A were truly greater than B is the most 
reasonable one to adopt in the specific situation that faces him The 

in ofher situations of acting as if A is truly greater ^ n^r 

assumptions”108* ^ deCiSi°n b* ‘—V aware of .ese 

:: ::r— 
r::::11:;;:::::;?; "who is ^“ -»m jpri:; 0n 

Procesé;: wu, „:d b I ,n, mOSt CaSeS the intelli8en“ * Bayesian 
i » , Smg e s<)lutlon »Uh a posterior probability equal to one 

tive probabért ' ^ ^ regarded 35 3 Certain,y: but her, there will be a poéi- 
anal t h CÍated With SeV"al of *ha solutions. The intelligence 
nalys, may be tempted to report a solution as true if the probability of tha, 

o ution .. greater than a„ the o.er soiutions. However, this approach lly 

ser.ous error as the following example will demonstrate 

~r rr;:r:rr   -^ 
Intelligence might be tempted to iespond with the report: 

"Evidence to date indicates tha, the target V-3 is prob- 

ably defended by at least one AAA unit. " 

This statement does not convey as much 

associated probability estimates could b 

of the tactical situation. 

useful information as it could. The 

e combined with Command's assessment 
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Suppose Command has the following information at its disposal and seeks to 

maximize the chances of a successful mission. 

1. It is possible to draft a flight plan and ECM usage plan 

that could effectively counter the use of AAA or SAM, but 

NOT both. 

2. If AAA is countered and V-3 is defended by AAA, the estimated 

probability of a successful mission is . 80. 

3. If SAM is countered and V-3 is defended by SAM, the estimated 

probability of a successful mission is . 90. 

4. If, however, AAA is countered when SAM is the defensive 

system, the probability of success is only . 10. 

5. If, on the other hand, SAM is countered when AAA is the 

defensive system, the probability of success is .60. 

This information can be conveniently assembled in matrix form as the decision 

maker utility table, loss table, or loss function. For example, 

REAL-WORLD 
SITUATION 

AAA defense 

SAM defense 

The cell values represent the probable consequences in the present situation for 

two actions -- counter AAA or counter SAM. The decision maker can now incor 

porate his knowledge (the posterior probabilities) concerning the relative merits 

of AAA and SAM to derive the chances of a successful mission. 

If the action to counter AAA is made, the probability of success is 

(.8)(.76) + (.1)(. 24) 

or .632. Likewise, if the action to counter SAM is made, the probability of 

success is 

ACTION 

Counter AAA Counter SAM 

00
 

1_
 

.6 

. 1 .9 
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(-6)(.76) + (.9)(.24) 

or .67,2. Therefore, to maximize the chances of a successful mission, the plan¬ 

ners should assume the target is defended by SAM and act accordingly; i. e. , 

"act as if SAM defense is greater than AAA defense lor the present situation. " 

The decision is really the opposite of the one that would have been indicated 

from the first output. This fact indicates that in order to make a decision, not 

only the probability of occurrence of each solution is needed, but also the expect¬ 

ed loss or gain for each of the possible actions that might be taken. Since an 

analyst could not have possession of all the required utility tables, loss functions 

and their applications will not be discussed further since this is not within the 

scope of an intelligence analyst's job. Instead, the analyst should supply the best 

estimate of the probabilities of each solution. 
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APPENDIX D 

MODIFICATIONS TO BAYES THEOREM TO COPE 

WITH INPUT UNCERTAINTY 

The intelligence effort is directed toward the determination of an unknown state 

of nature when one assumes that it is one of n possible solutions Sp . . Sn. In 

order to attack the problem by a Bayesian formulation, it is necessary that in 

addition to a prior probability distribution existing ever the Sj/s, there are k 

characteristics Cj. . . Cfc and conditional probability distributions connecting 

the Cj's and the Si's. These characteristics may be one of two types, depending 

on whether or not observation of the characteristics gives rise to a discrete or 

continuous random variable. 

The former type, which can be labeled as a "discrete characteristic, " is 

such that it may be observed in one of a possible number of states. For 

example, the characteristic "color" may have as states "red", "blue", "white", 

and "black1.1, assuming these are the only colors that the true solution may 

possibly admit. Another example of a discrete characteristic is, if considering 

submarines, "snorkel", where there maybe only two possible states, namely 

"presence of snorkel" and "absence of snorkel". 

The other type of characteristic, labeled as a "continuous charac¬ 

teristic", is such that it maybe observed over a continuous spectrum. Examples 

of such characteristics are lengths, widths, and heights cf objects. In some 

cases, a continuous characteristic may be used as an approximation when the 

characteristic is really discrete. Thus, if the characteristic is the number of 

men in a particular regiment of enemy forces, no great error is introduced by 

assuming that this characteristic is a continuous one. 

Despite the type of characteristic Cj, if its value or state is known, the 

new or posterior probability distribution may be calculated. However, in 

many cases the exact value or state is not known, and although an observation 

Dj of Cj has been made, a degree of uncertainty still exists as to the exact 

value or state of Cj. This uncertainty may be caused by an error of observation 

or transformation. Such errors may occur at the source by the sensor or 

during the transmission of the data to the analyst. Another source of uncertainty 
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may be created when an input is generated within the environment, but not by 

the unknown state of nature. The uncertainty generated by these types of inputs 

may be accounted for by considering the probability distribution of the errors, 

which may be derived subjectively or with the aid of empirical results. 

The Continuous Case 

Since, in many cases, when dealing with continuous characteristics, one can 

expect the distribution of measurement errors to be normally distributed (at 

least approximately), the normal distribution will serve as a model of error 

in the continuous case. An example of how such an error model may be used 

was presented in Chapter IV. As another example, consider only two possible 

solutions, S, and S2. Furthermore, assume that both solutions are equally 

likely, a_£riori, and that a posterior probability assignment will be calculated 

with the aid of an observation of length. The following table summarizes the 
problem: 

P (Si) =.5 S! 

P{S2} =.5 S2 

Thus, an observation without error would of necessity be either 50 ft. or 60 ft. , 

and no other values. However, when error is present in the observation, any 

value becomes possible, although it would be reasonable to assume that the 

observed value D would be closer to 50 or 60 ft. thanto,say, 1000 ft. In general, 

it is reasonable to assume that D will be distributed according to a normal dis¬ 

tribution,with population mean equal to the true length of the object being ob¬ 

served. What would be unknown, of course, would be the variance. Assuming 

that this may be determined, either from test situations or from subjective 

estimates, the posterior distribution over S, and S2 may be calculated taking 

into consideration the inherent uncertainty in the observation D. 

If it were known, for instance, that the error in the measuring device being 

used had a variance of 5, then the corresponding probability distribution for the 

observation D would be 

Length 

~50 ft. 

60 ft. 
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where C denotes the true length of the object being observed. In the example 

under consideration, C may be one of two possible values, either 50 or 60. 

Suppose now, that an observation D = 53 were reported. Using Bayes 

Theorem, the desired posterior probabilities maybe calculated as follows: 

P (S[/D=53l = ilD=53/S->Pfi}_ 

p {0=53/5!} P (Sy) +P (d=53/S2) p {s2} 

and 

P {VD=53} = ^.:.53/s*)p(s>>_ 

p{D=53/S,}p{S,} +p(d=53/S!)P(s2} 

Since 

P 
1 -fõ (53-50)2 

Víõ^ 
1 -.9 .406570 

and 

/ 

p{d=53/S2) 
1 - jL (53-60)2 

v^e 
1 -4.9 .007447 

it follows that the posterior distribution over $! and S2 is 

P{S1/D=53} = _-406570^) 

.406570(1/2) + .007447 (1/2) 

and 



P {Sz/D- 53} 
007447(1/2) 

. 406570(1/2) + .007447(1/2) 
02. 

It should again be noted that this posterior distribution takes into account the 

uncertainty of the observation D = 53. 

The Discrete Case 

In general, for a problem dealing with discrete characteristics, it 

assumed that the following are given: 
is 

1. 

2. 

3. 

4. 

5. 

n possible solutions S,.Sn 

Ana priori probability distribution over .Sn 

k characteristics Cj, .... 

Each characteristic C; may be observed in one of k: possible states r- 
r J , J '■'jm 

f°r . n; j = l. k, and m=l.k. The probabilities Pjc jm/Si 

are known. 

Thus, if it is definitely known that the unknown solution has a characteristic in 

a given state, the posterior distribution over .Sn may be calculated. 

However, many times the exact state c of characteristic C. is not known, 
J 

although some collateral information about it exists. For example, consider 

the characteristic of "color", having possible states of cji. cj6 which 

might be, say, red, white, blue, green, yellow, and orange. If, of ten ob¬ 

servers looking at an object, eight report the color red, that is, the state cj,, 

and two report the color orange, that is, the state cj6, it is obvious that observa¬ 

tional error exists (assuming the observed object possesses only one color). 

Based on the report D only, it would be reasonable to assign 

P(cji/D) = .8 

P(cjm/D) = 0 for m = 2, 3, 4, 5 

P(cj6/D) = .2. 
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In order to arrive at a posterior distribution P,^) over Sj, . . . , S 

Dodson [I96I] suggests the formula 

6 
P,(3,) = £ P(Si/cjm) P(cjm/D). 

m= 1 J 

Although this may seem to be an intuitively satisfying procedure, it may lead 

to incorrect results. This is because the knowledge and information on which 

the prior distribution over the S^s was based may or may not influence the 

report D. What Dodson tacitly assumes is that this prior knowledge is taken 

into account when the report is made. This becomes evident if one considers 

the knowledge, K, on which the prior probability assignments are made. In 

symbols, the posterior probability which needs to be computed is P(S./DK). 

This may be written as 1 

PiSj/DK) = P(SiCjm/DK) = ^ PfyCjr^R) P(c.m/DK). 

Since the report does not alter the probability of Si if c. is known 

p<Si/CjmDK) = P(Si/cjmK). Thus, Jm 

6 
P(S./DK) = ^^(Si/c-mK) P(cjm/DK) 

This explicit inclusion of the information K into the probability formulas 

stresses the fact that Dodson's P(cjm/D) is, in fact, P(cjm/DK) and does 

indeed depend upon this prior knowledge. As is often the case, however, the 

observation is made without the use of this prior knowledge, and thus, the 

probability which results is P(c. /D), per se, and not P(c. /DK) 

To illustrate this point, assume that there exists an unknown S which is 

either Sj or S2, and for which the existing prior distribution is P^) = . 9 and 

p(S2) - . 1. Further assume that based on characteristic C1( having the two 
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States Cjj and c12, the conditional probabilities PÍCjj/Sj), P^j/S^, Pic^/Sj), 

and P(cj2/S2), are 1,0,0, and 1, respectively. Note that the prior knowledge is 

implicit in these probability assignments. Summarizing in tabular form yields 

Suppose now that an observer files a report in which he states that, based on his 

observation, he couldn't tell whether Cj were in state Cjj or state ci¿, and thus 

felt that there was about a 50-50 chance that characteristic Cj was in state Cj t. 

That is, based on this report D, PÍCjj/D) = . 5 and P(cj yo) = .5. Hence, 

since P(Sj/ci i ) = p(s2/ci2) = 1 and P(Sj/ci2) = P(S2/cM) = 0, Dodson's 

method would give 

Pj (S, ) = L P(Sj/clm) P(clm/D) = K.5) + 0(.5) = .5 

2 
Pj (S2) = 2 P(S2/clm) P(clm/D) = 0(.5) + 1(.5) = .5 

which indicates a large shift in the probability distribution. However, it seems 

realistic to assume that in light of the report which adds nothing to existing 

knowledge, the distribuHon over Sj and S2 should remain the same, i. e. , should 

stay at PÍS,) = . 9 and P(S2) = 

It is evident in this case that the probabilities P(cl ,/D) and P(c12/D) were 

not calculated with respect to the prior knowledge K. Since the probabilities 

involving the S's and c's w.ere, however, the marginal probability P(clm) is 

actually the probability P(clrn/K). What is needed is to combine P(cim/R) ancl 

Picjm/K) in order to arrive at the probability P(cim/DK). In general, there is 
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no way to do this. However, if it may be assumedthat the probabilities P(cim/D) 

arise as a result of an implicit uniform prior (sometimes referred to as a prior 

of ignorance), this prior is P(clm ) = — for m = 1,..., n^ Hence, based on 

this uniform prior, the probabilities P(D/clm) may be calculated by the formula 

P(D/clm) = P(clm/D)P(D) = ni P( Ci m/D) P( D). 

P(clm) 

Now, these probabilities represent the chance of obtaining the given report if 

characteristic 1 is truly in state clrn. Thus, the additional information obtained 

from the prior knowledge K is negligible, because the overwhelming impact 

arises from the knowledge that Ci is in state cim. An excellent approximation 

should then be given by P(D/clrnK) = P(D/clm) = n^c^/DjPÍD). 

The probability P(S!/DK) may be written as 

P(Si/DK) = S P(Si/clmDK)P(clm/DK). 
m=l 

Now, it may be assumed that 

P(Si/clmDK) = P(Sj/clmK), 

since if clm is known to be the true state of C1( then any report about Ci will not 

alter the associated probability distribution. Also, one may write 

P(clm/DK) = P(D/clmK)P(clm/K) , 

P(D/K) 

ni 
where P(D/K) = S P(D/clmK)P(clm/K). 

m= 1 

Thu s^ P(Si/DK) 
ni 
S 
m=l 

P(Si/clmK)P(D/clmK)P(clrn/K). 

P(D/K) 
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Applying this procedure to the problem discussed above yields 

P(D/cuK) = 2(. 5)P(D) = P(D) 

and 

P(D/c12L) = 2(. 5)P(D) = P(D). 

Thus, 

PiSj/DK) = 9) _ 

1 ' P(D)‘ (. 9) + 1 ' P(D). (. 1 ) = -9 

and P(S2/DK) = ~ ^ 1 ) _ 

1- P(D)- (. 9) + 1- P(D)- (. 1) = ’ 1 • 

That is, the resulting posterior agrees with the one which appears most 

satisfying intuitively. 

In general, it would seem wise to examine the procedure used to arrive at 

the reported probabilities P(cj r i/D). If it may be assumed that the report D 

takes into consideration the available prior knowledge, Dodson's approach will 

provide the best probability assignment, while if it may be assumed that the re¬ 

port D is based only on the observation with an explicit or implicit uniform prior 

over the clm'S( then the procedure suggested above appears to provide the best 

probability assignment. 

Noise Factors in the Environment 

In the discussion up to this point, it has been assumed that observations 

were made only on the true unknown. This is sometimes not the case, because 

one may observe something he thinks may be associated with the unknown but 

which actually is not. For example, an observer may think he observes a sub¬ 

marine when he is actually looking at a whale. 

mus, in order to consider a case such as this, assume that it is known that 

either S1( S2, .. . , or Sn is in a given environment, and it is desired to know which 

S. is present. In order to do this, of course, observations are taken on the un- 
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known state of nature. Suppose, however, that in addition to the unknown state 

of nature there is something else which may be observed instead. This some¬ 

thing else will be designated as a "noise factor" and will be denoted by N. In 

general, N will exhibit, or be capable of exhibiting, some or all of the character¬ 

istics of the S.'s. If the proportion of times N will be present can be determined, 

and also the frequency with which certain characteristics will be exhibited, then 

the effect of this noise factor may be taken into account. 

Assume that the noise factor is independent of any of the S.'s, and consider 

the hypotheses H , i=l, . . . , n, where H. denotes the event that solution S. is 
1 i i 

present, although it may be accompanied by a noise factor. Thus, the problem 

becomes one of obtaining a posterior probability distribution over the H.'s. Now, 

based on these assumptions, the prior distribution over the H.'s may be com¬ 

puted from the prior distribution of N and the S.'s. That is, 

P(H.) = P(S.N or S.Ñ) = P(S.) . 

Hence, the distribution over the H.'s is equivalent to the distribution over the 

S.'s. Now, the probability of an observed characteristic C. in state c. given 
1 J jm 6 

hypothesis H. is 

^jnA1 = PÍCjn/NSiPM + P(cj[n/NS.)F(N). 

Hence, given that Cjm is observed, the posterior probability of any H. may be 

computed as: 

P(H./c. )= ' r jm' J_ 

2 P(c /H )P(H ) 
i=l Jm 1 1 

As an example, consider a box containing six bags of type 1 and four of type 2, 

where type 1 bags contain nine red balls and one blue ball , and type 2 bags con¬ 

tain two red balls and eight blue balls. Assume that a bag is chosen at random 

from the box and its contents are dumped into another box. To complicate mat- 
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ter«, a coin is tossed and if heads results,an additional five red and five blue 

balls are placed in this box, while if tails results, no extra balls are added. 

Thus, the possible introduction of these ten balls is essentially the noise factor 

N. 

The corresponding characteristics matrix is 

cn 

c 12 

where p(S,) = .6, P(S2) = .4, and P(N) = . 5. Of course, S, denotes a bag of type 

1, S2 denotes a bag of type 2, N denotes the presence of five additional balls of 

each color, cn denotes the color red, c12 denotes the color blue, and each entry 

in the table is a probability of the type p (cu/Si), etc. 

Suppose the procedure outlined above is followed. That is, one of the ten 

bags in the original box is chosen at random and its contents dumped into a sec¬ 

ond box. Further, a coin is flipped and the additional ten balls are placed in the 

second box if the toss results in heads (of course, assuming one does not know 

the outcome of this toss). Suppose that a person is presented with the second 

box, and draws one ball from it. If this ball should happen to be blue, what can 

one say about the posterior probability distribution over the hypotheses Hj and 

H2? That is, what are the chances, having observed the blue ball, that it was 

bag type 1, as opposed to bag type 2, that had its contents dumped into the box? 

The probabilities obtained from the characteristics matrix arc 

P(cn/S1)= . 9, P(ci2/S1)=.l 

P (cn/S2) = .2, P(ci2/S2)=.8 

P (cn/N) = .5, P(c12/N) = .5 

P(Si) = .6, P(S2) = .4, P(N) =.5. 

St S2 N 

.9 . 2 . 5 

. 1 . 8 

ID
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Since the observation was a blue ball, i. e. , characteristic C, was observed in 

state c12, the probabilities P(c,2/NS,) and P(c12/NS2) are required. When N is 

present with Sj, there are 14 red balls and 6 blue balls. 

Thus, 

6_ 
= 14+6 = . 3 

Likewise, 

P(ci2/NS2) = = .65 

Therefore, 

p(c12/Hi) = .3(.5) + .1(.5) =.200 

P(ci2/H2) = .65(. 5) + .8(.5) = .725 

and the resulting posterior distribution over Hj and H2 is 

pm /c \ - - -200^6) 
X' I2^ " . 200(.6) + .725(. 4) = * 293 

P(H \ • 725(- 4) 
P(Hz/Cl2) - . 200(.6)+ .725(.T) = ' 707 

It should be noted that if the presence of the noise factor had not been taken into 

account, the resulting posterior distribution would have been 

P(ci2/Si)P(Si) 
P(H,/c12)= - --.. 

2 

2 Pic^/S.JPiS.) 

•¿(•6) 
= .1(.6) + .8(.4) 158 



P(H2/c12) = .842. 

In any event, ignoring noise factors will result in an incorrect posterior 

distribution. Thus, if it is possible that noise factors may occur, this should 

be taken into account when computing the posterior distribution. 



H R B - S I N G E R I N C 

APPENDIX E 

THE APPLICATION OF DIGITIZED LOGIC TO NONNUMERICAL 

PROBLEMS IN INTELLIGENCE ANALYSIS 

A computational technique, referred to in this paper as "digitized logic, " 

makes possible an attack on certain nonnumerical problems which may arise 

in intelligence analysis and which would be difficult, if not impossible, to solve 

by intuitive "logical" thinking. 

This technique can be applied in conjunction with a Bayesian formulation 

and could be useful in examining the date for logical consistency, 

redundancy, and to determine the validity of conclusion drawn from the informa¬ 

tion. The foundations of the method lie in that part of mathematical logic known 

as "the Boolean algebra of propositions." 

In a sense, the application of this mathematical theory to the problems that 

will be discussed is not new. What is. new about this approach is that the tech¬ 

nique uses sentences in a digitized form and can be structured for computer 

processing. The computerizable application of Boolean algebra to nonnumerical 

problems such as might arise in intelligence analysis was first described by 

Robert S. Ledley* in a number of research papers which have appeared in the 

last eight years. [Ledley, 1954; Ledley, et al.. 19b0]. While the same methods 

have been applied with success in some fields, it seems that up to now they have 

not been tried, on any appreciable scale, as aids in solving problems in intelli¬ 

gence analysis. 

Foundations of the Computational Method 

In the following discussion, A,B,C, ...denote sentences about each of which 

it is meaningful to say that the content is either true or false. One can refer to 

A, B, C, . . . as "elementary elements" which shall be combined to form "com¬ 

bined elements" according to the following rules: 

1 President of the National Biomedical Research Foundation. Formerly consultant 
mathematician to the National Bureau of Standards and on the staff of George 
Washington University. 
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A + B, (read "A or B"), is true if and only if A is true, or B is true, or 

both a re true. 

A • B, (read "A and B"), is true if and only if A is true and B is true. 

A, (read not A"), is true if and only if A is false. 

A*>B, (read "if A (hen B"), is false if and only if A is true and B is 

false. Otherwise A ♦■B is true. 

Thus, the sentences A, B, C ... can be combined by the operations + ,-,-, 

-►and the truth value of the "combined element" is determined by the above 

rules according to the truth values of the elementary elements. Both the 

elementary and combined elements shall be referred to as "propositions." 

By definition, the proposition X is equivalent to the proposition Y, written, 

X-Y, if and only if X and Y have the same truth value for any assignment of 

truth values to the elementary elements. Note that some propositions are 

always true, jegardless of the truth value of the elementary elements. For 

example, XJ-X is always true, for any proposition X. Similarly, the pro¬ 

position X-X is always false. Whether or not two propositions are equivalent 

can be verified by constructing a truth table. 

X 0 1 0 1 

Y 0 0 1 1 

X-^Y 1 0 1 1 

T + Y 1 0 1 1 

ALL POSSIBLE 
ASSIGNMENTS OF 
TRUTH VALUES 
FOR THE PAIR 
X,Y. 

For example, letting 0 stand 

for "false" and 1 for "true," the 

following truth table (left) shows the 

equivalence of the propositions 

"X -►Y" and "X + Y:" 

To see the motivation for the 

use of the implication arrow 

in the proposition X -►Y, note 

the colloquial use of implications in English: when one says "X implies Y" or, 

meaning the same thing, "Y can be inferred from X" or "Y is implied true by 

X, one means that if X is true, then Y is true; and the case "X true, Y false" 

cannot occur. However, one should note that if Y is true, X may or not be true 

and still the assertion "X implies Y" is true, as long as the truth of Y can be 

inferred from the truth of X. 
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In applications, one is interested in the set of propositions generated by a 

finite number of elementary elements. For the sake of simplicity, consider the 

set of all propositions that can be formed from two elements A and B. Two such 

propositions are called distinct if and only if they are not equivalent. Consider 

the proposition A + B. Letting 0 stare for "false" and 1 for "true, " the truth 

values for A + B can be displayed by the following truth table: 

The columns of the first two rows 

of the table correspond to the four 

possible cases, or assignments of 

truth values to A and to B The 

four digits in the third row repre¬ 

sent the truth value of A + B corre¬ 

sponding to each case. The two sequences of zeros and ones corresponding to A 

and to B are called a "basis," and the sequence of zeros and ones in the third row 

is called the "designation number" of A + B with respect to this basis. There 

are as many bases as there are ways of ordering the columns in the table. In 

this paper, however, designation numbers will always be discussed with respect 

to the basis shown in the table because of its visual simplicitv. Thus, for 4 

elementary elements A, B, C,D, the basis would be 

A 0 1 0 ) 

B 0 0 1 1 

A + B 0 1 ! 1 

A 0101 0101 0101 

B 0011 0011 0011 

c oooo mi oooo 

d oooo oooo mi 

0101 

0011 

1111 

1111. 

The designation number of any proposition can be written down, using the 

following rules of logical addition, multiplication and inversion: 1 + 1 = 1, 1 + 0 = 1, 

0+1-1, 0+0-0,1-1 = 1, 1-0=0, 0-1 = 0, 0-0 = 0:1 = 0, 0=1. Thus, assuming 

only 2 elementary elements, the designation number of A-B is 0001, that of A+A 

is 1111 and of A- A is 0000. Furthermore, it can be shown that to any such se¬ 

quence of zeros and ones, there corresponds a proposition formed from A and B 

with this sequence as its designation number. There are systematic procedures 

for searching combinations of the elementary elements and their negations to 

produce propositions in various canonical forms whose designation number is 
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the given sequence. Recalling the meaning of equivalence of two propositions, 

one sees that there'are 24 = 16 distinct propositions that can be formed from 

two elementary elements. 

Consider now what it means, in terms of designation numbers, to say that 

"Y is implied true by X." For each case that X is true Y must be true and, 

therefore, one can assert, that Y is implied true by X if and only if the designa¬ 

tion number of Y has a 1 in at least the same positions as that of X. 

Before turning to an example, it is necessary to introduce the notion of re¬ 

dundancy. If F1( F2,. F is a set of propositions, then any one F 
n x 

is called redundant if it is implied true by the truth of any one or more of the 

other propositions in the set. It should be clear how one can interpret this 

condition in terms of the designation numbers. 

An Example Concerning Submarines 

It is assumed that an intelligence agency has compiled the following informa¬ 

tion about Soviet submarines of the oceangoing type: (The "S-type missiles" 

referred to in the report are hypothetical and can be considered as referring to 

a new type of missile which is known to have been recentiy developed. ) 

1. A conventionally powered medium range sub does not carry S-type 

missiles . 

2. An S-type missile-carrying sub is either of the H class or not of the 

H class but has long range. 

3. A conventionally powered sub is not of the H class. 

4. If a sub is not of the H class and either has medium range or is con¬ 

ventionally powered, then it does not carry S-type missiles. 

5. A long range sub carrying S-type missiles is of the H class. 

It is assumed, furthermore, that the information comprising the report has 

come from fairly, though not completely, reliable sources. The method of 

digitized logic described in the preceding sections will be used to investigate (1) 

logical consistency of the five statements, (2) redundancy, and (3) validity of 

conclusions. By this method the report can be analyzed in such a way as to obtain 

the maximum amount of information from it. 
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It is known that an oceangoing submarine can be considered as either having 

medium range or long range, but not both. Similarly, it is either conventionally 

powered or nuclear powered, but not both. Furthermore, a submarine is either 

of the H class or not of the H class and it either carries S-type missiles or does 

not carry S-type missiles. With this in mind, the following elementary elements 

are introduced: 

M = the sub has medium range 

H = the sub is of the H class 

S = the sub is carrying S-type missiles 

C = the sub is conventionally powered. 

The negations of the elementary elements are 

M = the sub has long range 

H = the sub is not of the H class 

S = the sub is not carrying S-type missiles 

C - the sub is nuclear powered. 

The following table, showing the basis as well as the designation numbers of the 

negations of the elementary elements, is constructed: 

M 0101 0101 

H 0011 0011 

S 0000 1111 

C 0000 0000 

M 1010 1010 

H 1100 1100 

s mi oooo 

c nn nn 

0101 0101 

oon oon 

oooo nn 

nn nn 

1010 1010 

1100 1100 

1111 oooo 

oooo oooo 
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The five statements comprising the report are now written in symbolic form 

and their designation numbers are found. 

1. C-M-^S 

2. S-*-H + H-M 

3. C -*»H 

4. H-(M+C)-*>S 

5. 

C-M + S 

S + (H+H- M) 

C + H 

H- (M+C) + S = H 

ZFS + H = M + S 

: 1111 

: 1111 

: nil 

(M+C) + S : 1111 

H :1111 

mi mi loio 

ion mi ion 

nn noo noo 

ion nn oon 

oui nn 0111 

If = the ith proposition above, then 

"F. = FrF2-F3-F4. F5 : 1111 0011 1100 0000. 

By examining the designation number of ttF., which has 1's in eight positions, 

one can conclude that the five statements are logically consistent, since there 

is at least one assignment of truth values to the elementary elements (in fact, 

there are eight assignments) for which ttF. is true. If this were not the case, 

that is, if the designation number of ttF. consisted only of zeros, then it would 

not be possible to accept all the statements as true, and one would conclude that 

they are logically inconsistent. 

By examining the designation numbers one sees readily that Fz is implied 

true by F4 (since the designation number of F2 has 1's in at least the same 

positions as that of F4), and Fj is implied true by F4-F3. Thus, F3 and F2 are 

redundant if F3, F4 and Fs are true. The report, therefore, reduces to the 

statements 3.,4., and 5. Accepting these statements as true, and denoting 

them by F3, F4, F5 respectively, the report is equivalent to the assertion that 

F3.F4-F5 is true. The designation number of F3. F4-F5 is 1111 0011 1100 0000 

which, of course, is the designation number of ttF.. 

The most general conclusion that can be drawn, in the sense that every other 

valid conclusion is a statement that is implied true by it, is obtained by finding 

a proposition in a relatively simple form which is equivalent to F3- F4- F5, i. e. , 

which has the same designation number as F3-F4-F5. As was previously 
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mentioned, this can be done in a systematic way, and the details of the method 

can be foundjn Ledley ^54; I960]. . It can be checked that the prop- 

sition C* (S+H* S) + C-H-S is equivalent to F3.F4.F5, and thus it can be con¬ 

cluded that a sub is either (nuclear and either carries S-type missiles and is 

of the H class or does not carry S-type missiles) or (it is conventionally 

powered and not of the H class and does not carry S-type missiles). 

Any asserted conclusion in terms of the elementary elements and their 

negations can be checked automatically for validity. It is understood that a 

conclusion is valid, if it is a statement that is implied true by Fj- F4. Fs. For 

example, the assertion "It is not possible for a sub to be conventionally 

powered and carry S-type missiles" is a valid conclusion. The validity 

follows from the fact that the proposition £• S is implied true by Fj' F4. F5, as 

can be seen by examining the designation numbers: 

c-s : 1111 mi mi oooo 

F3.F4.F5 : nil 0011 1100 0000. 

On the other hand, the assertion "Every nuclear powered sub is of the H 

class is not a valid conclusion, since H is not implied true by (F3. F4* FsJ.'C, 

as can be seen from the designation numbers: 

H : 0011 0011 0011 0011 

(F3. F4. Fjj-'C : 1111 0011 0000 0000. 

Conclusions 

A computational technique based on the Boolean algebra of propositions and 

utilizing sentences in a digitized form has been described in the preceding 

sections. This technique makes possible a rigorous analysis of certain "logical" 

problems which might arise in the analysis and evaluation of intelligence and 

military reports. It can also be useful in the initial stages of Bayesian analysis, 

by providing a means for mechanically checking input information for logical 

consistency and for determining the set of possible solutions to the given problem 

When applied in this way, one can consider the technique of digitized logic as 

being incorporated within intelligence analysis in a similar way as it is employed 

in computer aided medical diagnosis [Ledley, et al.. I960], 
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The diagram below shows how the technique of digitized logic might be 

applied to the first of the two principal steps involved in analyzing a problem 

via Bayes Theorem. 

COMPUTER 

That is, the application of Bayesian analysis presupposes that (a) information 

(data) has been collected that is logically consistent and (b) on the basis of the 

collected data, a set of possible solutions has been determined with the property 

that one and only one of the possible solutions is the true solution. It is these 

two aspects of the analysis procedure to which the method of digitized logic 

might profitably be applied. 

It should be emphasized, however, that certain conditions must be satisfied 

in order to computerize this initial aspect of the Bayesian analysis procedure. 

The problem must be such, to put it broadly, that all possible relevant outcomes 

must be defined and stored in the computer memory. This means, specifically, 

that all data that might be entered as input information to the problem must be 

categorized and stored, as well as all possible solutions that would conceivably 

be considered. The elementary elements for the problem would be defined 

during this initial phase. Next, the pertinent relationships between combinations 

of data items and possible solutions must be stored. From these would be 
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determined a set of propositions in terms of the elementary elements which 

would be accepted as true for the analysis. When the input data are entered, 

the logical consistency of it with the stored true propositions would be checked, 

and a list of valid conclusions in the form of possible solutions would be 

generated by an algorithm based on the theoretical considerations described 
in the preceding sections. 
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