
MEMORANDUM

RM-5290-ARPA
JULY 1967

PREPARED FOR:

ARPA ORDER NO. 189-1

DATALESS PROGRAMMING

R. M. Balzer

ADVANCED RESEARCH PROJECTS AGENCY

-------------~R~no~
SANTA MONICA· CAlifORNIA------

MEMORANDUM

RM-5290-ARPA
JULY 1967

ARPA ORDER NO. 189-1

DATALESS PROGRAMMING

This research is supported by the Advanced Rt>~arch Projects Agency under Contract
No. DAHC15 67 C 0141. Any views or conclusions contained in this Memorandum
should not he interpreted as representing the official opinion or policy of ARPA.

DISTRIBUTION STATEMENT
Distribution of this document is unlimited.

R. M. Balzer

---------------------~R~no~
17:!0 MAIN Sr. • S"HTA MONrCA. • CAlifORNIA • 90.C06 ------

o I

II

Published by The RAND Corporation

-iii-

PREFACE

This Memorandum presents the preliminary specifica­

tions of a new computer language designed to alleviate

the problems of having to choose a data representation

before coding a program. This study, part of the search

for techniques to facilitate the man-computer interface,

should be of particular interest to those concerned with

the choice of languages to provide a proper programming

environment for research and development applications.

-v-

SUMMARY

A programmer using existing programming languages

almost always encounters difficulties because he has to

choose a data representation before coding a problem.

The Dataless Programming System is designed to alleviate

these difficulties. A separation between the description

of a process to manipulate data (a program) and the de­

scription of the data being manipulated (the data repre­

sentation) is achieved by representing all data in a

syntactically identical form and treating it in a homo­

geneous manner. Various facilities--generators, bugs,

search expressions, and implied qualification of data

references--are provided to support this separation of

program from data representation.

The main body of this Memorandum describes the pre­

liminary specifications of the Dataless Programming Lan­

guage, a high-level algebraic language which is an ex­

tension of PL/1 and uses its syntax (with some exceptions).

Separate sections of the Memorandum discuss: specifying

hierarchical data references; maintaining the language's

two types of pointers; defining individual members of a

data collection; special features of the language; its

restricted implementation; expected advantages and dif­

ficulties. A final section provides two Dataless Pro­

gramming examples, with commentaries.

-vii-

ACKNOWLEDGMENTS

I am indebted to J. C. Shaw and Dr. Allen Newell for

their comments and suggestions on the topics contained in

this Memorandum.

-ix-

CONTENTS

PREFACE iii

SUMMARY v

ACKNOWLEDGMENTS . vii

Section
I. INTRODUCTION 1

II. NOTATION . 4

III. THE DATALESS PROGRAMMING LANGUAGE 7

IV. HIERARCHICAL DATA REFERENCES 19

V. MAINTAINING POINTERS IN A DYNAMIC
ENVIRONMENT . 25

VI. DATA DEFINITION . 27

VII. FURTHER LANGUAGE FEATURES • 30

VIII. IMPLEMENTATION . 31

IX. EXPECTED ADVANTAGES AND DIFFICULTIES 32

X. DATALESS PROGRAMMING EXAMPLES 35

REFERENCES . 43

-1-

I. INTRODUCTION

A programmer using existing programming languages

typically codes a problem by 1) defining it, then 2)

analyzing the processing requirements, and 3) on the basis

of these requirements, choosing a data representation, and

finally, 4) coding the problem. Almost always, difficulties

arise because necessary processing not envisioned in the

analysis phase makes the chosen data representation in­

appropriate because of a lack of space, efficiency, ease

of use or some combination of these. The decision is then

made to either live with these difficulties or change the

data representation. Unfortunately, changing the data

representation usually involves making extensive changes

to the code already written. Furthermore, there is no

assurance that this dilemma will not recur with the new

data representation.

The Dataless Programming System is designed to help

alleviate this problem. All data and function references

are expressed in a single canonical form, so that the

alteration of a data representation has no syntactic

effect on the program, but only affects the internal pro­

cessing associated with the data or function references-­

i.e., changing the data representation does not affect

the program's source statements. Unless the change in

the data representation causes a change in data values

(e.g., a change in precision), the values produced by the

program will be unaltered. (Naturally, the behavior of

the program in terms of efficiency, speed, and space re­

quired may be affected by any change in data representation.)

-2-

Hence, the data representation can be specified after the

program is written, and analysis of the problem definition

and code production can be integrated into a single phase.

The programmer should be able to construct his program in

terms of the logical processing required without regard

to either the representation of data or the method of

accessing and updating. This concept we call "Dataless

Programming."

Dataless Programming is more than a new language. It

conceives of a program as the specification of a set of

manipulations to be performed on a set of data values, and

that this specification should be independent of the form

in which these data values are represented. To achieve

such independence, there must be a set of declarations

that tell the programming system how to retrieve and store

data values from the particular representation being used.

The independence thus achieved will allow the programmer

1) to disregard, while specifying the program, the details of

data processing, memory space requirements, and matching of

data representation to the processing done on it; and 2) to

handle them, instead, during the data declaration phase.

The Dataless Programming Language is the embodiment

of the above concept. It will also help simplify the

construction and debugging of programs by providing high­

level data-handling and control facilities (insertion,

deletion, generators, bugs, search expressions, and im­

plied qualifications of data references) and a STATE­

statement (enabling a wide range of monitoring and tracing

facilities to be specified).

Throughout the design of the language, an effort has

been made to allow the programmer to express his intent

-3-

more clearly through new program statements rather than

in separate comments. That is, \ve have attempted to make

the purpose of commonly occurring statement groups more

apparent by combining them into an appropriately worded

statement. Examples of this effort are the FOR-clause,

search-expressions, and the extended IF-statement. The

programmer can also increase the program's self-documenta­

tion through the use of mnemonic names for data items which

are then defined as functions (as has been done in the

programming examples in Sec. X below).

-4-

II. NOTATION

The syntax of the Dataless Programming Language will

be described in PL/1 syntax notation,t the relevant parts

of which are:

1) A notation variable, the name of a general class

of elements in the programming language, which must consist

of:

a) Lower-case letters, decimal digits, and hyphens
and must begin with a letter.

b) A combination of lower-case and upper-case letters.

Examples:

There must be one portion in all lower-case letters
and one portion in all upper-case letters, and the
two portions must be separated by a hyphen.

a) "digit11 --Denotes the occurrence of a digit, which
may be 0 through 9 inclusive.

b) "specification"--Denotes the occurrence of the
notation variable named specification (explained
below, p. 15).

c) 11DO-statement"--Denotes the occurrence of a DO
statement. The upper-case letters are used for
emphasis.

2) A notation constant denotes the literal occurrence

of the characters represented. It consists either of all

capital letters or of a special character:

DECLARE identifier FIXED;

This denotes the literal occurrence of the word

DECLARE followed by the variable "identifier" followed in

tAs defined in Ref. 1, pp. 11-17.

-5-

turn by the literal occurrence of the word FIXED and the

semicolon.

3) The term "syntactical unit," used in subsequent

rules, is defined as one of the following:

or

a) a single variable or constant,

b) any collection of variables, constants, syntax­
language symbols, and reserved words surrounded
by braces or brackets.

4) Braces ([}) are used to denote grouping, and the
vertical stroke (\) indicates that a choice is to
be made:

identifier [FIXED I FLOAT}

The above example indicates that the variable "iden­

tifier" must be followed by the literal occurrence of

either the word FIXED or the word FLOAT.

5) Square brackets ([]) denote options. Anything

enclosed in brackets may appear one time or may not appear

at all:

CHARACTER'(length) [VARYING]

This denotes the literal occurrence of the word

CHARACTER followed by the variable "length" enclosed in

parentheses and optionally followed by the literal occur­

rence of the word VARYING.

6) Three dots (...)denote the occurrence of the

immediately preceding syntactical unit one or more times

in success ion :

-6-

[digit] ...

The variable, "digit," may or may not occur since it

is surrounded by brackets. If it does occur, it may be

repeated one or more times.

-7-

III. THE DATALESS PROGRAMMING LANGUAGE

The Dataless Programming Language is a high-level

algebraic language which is an extension of PL/1 and uses

PL/1 syntax, except as noted. The language is based on

a single canonical representation for all data and function

references. This form is:

{collection-name!

function-name} [(expression[, expression] ...)]

If the name identifies a function name, the expressions, if

any, are interpreted as parameters. If the name identifies

a collection name, the semantic interpretation is that

there exists a collection (or group) of data which has a

common, unique name (the collection name). This collection

has the property that, given a single integer index (com­

puted from the expression, called the index expression,

which follows the collection name), there exist algorithms

which use the value of this index to operate on the data

collection, performing the functions of accessing and up­

dating the datum selected and inserting or deleting a datum

from the collection. The system assumes that there exist

such algorithms, determining what they are not from the

form of the program's source statements but rather from

explicit declarations supplied with the program. Hence,

changing a collection from an array to a list does not

change the source statements but merely changes a data

declaration. Also, since function references are syntacti­

cally identical with data references, the user can change

-8-

a function reference to a data reference, or vice versa,

by merely changing a declaration.

Separating the data definition and its implied data­

handling routines from the common appearance of data or

function references in the source code provides the main

power of the language. This feature allows the user to

program in a top-down fashion in terms of the logical pieces

of information necessary for the required processing. Once

the user has completed this programming, he can determine,

for each collection, what data representation is suitable

for the processing involving that collection. He may also

decide that a piece of information should not be supplied

by a data reference on a collection, but should be supplied

by a function through a calculation or series of calcula­

tions on other information--either data or further function

references. The user may use the language's full power in

defining either a function or the data-handling routine for

his data representations, and so is able to program each

part of his problem in a top-down fashion.

Logically, since the data-handling routines operate

with a single index, the data representations are ordered

lists. The system allows the following data representations

(for which it provides the data-handling routines):

1) ARRAY

2) LIST (forward links only)

3) DOUBLE LIST (list with both forward and backward
links)

4) RING (forward links only)

5) DOUBLE RING (ring with both forward and backward
links)

-9-

6) STRUCTURE

7) structures of any of the above (e.g., arrays
of lists of structures).

In addition, any other ordered data representation

can be used by providing the necessary data-handling

algorithms. These algorithms can consist of a call to

an external procedure and can be written in any language

desired (including assembly language). Hence, within the

restriction of ordered data representations, the repre­

sentations allowed are completely open ended. This class

is large and significant, covering most currently used

representations. Clearly, however, some representations

(e.g., colored pictures) lie outside this class; and we

have no ideas on ways to incorporate these into the

Dataless Programming Language.

Since all data manipulations of a collection are per­

formed by the data-handling routines, these routines can

be altered to provide a powerful monitoring capability.

By suitably altering the update routine for a data col­

lection, the system can be notified any time a member of

that collection gets updated. Hence, the system can per­

form any desired action as a response to the occurrence

of a particular state of the program variable, i.e., it

can handle STATE-statements. The form for these STATE-

statements is:

{ON I WHENEVER} (boolean-expression) statement;

For implementation purposes, the boolean-expression

is restricted so that all variables which effect its truth

-10-

value must explicitly be part of the expression (enabling

the system to determine which variables require checking),

and the evaluation of the boolean-expression must not

change the value of any of these variables (and care should

be taken that it also does not change the value of any

other program variables which affect the behavior of the

program, so that its removal does not affect the program).

Whenever one of these explicitly named variables is updated,

the boolean-expression is evaluated and if true, the

associated statement is executed. As an example, if the

STATE-statement

ON (x y \ X z) CALL print;

occurred, the data updating routines for x, y, and z would

be altered so that this on-condition was checked whenever

either x, y, or z was updated. If the on-condition was

met, the indicated action would be performed. Thus, a

wide range of trace and/or debugging features can be

specified. Also, a variety of special case monitoring of

the program, which is non-debugging--but part of the desired

processing--can be incorporated in the language.

The language provides the following data-handling

statements (small single letters will be used to denote

data collection names):

1) DELETE region;

2) INSERT region [BEFORE \ AFTER} x (index-expression)

[AND MAKE CURRENT];

3) REPLACE region BY region;

4) ADD region TO x [AND MAKE CURRENT];

-11-

where a region is defined as

collection-name (index-expression)

[TO collection-name (index-expression)]

and specifies a contiguous inclusive set of collection

members (the collection names must be the same and the

indices in ascending order). (The AND :MAKE CURRENT option

is explained below in Sec. IV.) The REPLACE and ADD state­

ments are defined in terms of the INSERT and DELETE state­

ments. REPLACE is equivalent to DELETE followed by INSERT

BEFORE, and ADD is equivalent to INSERT AFTER the last

member of the collection. The above statements are defined

for all data representations allowed in the language; e.g.,

insertion into an array is defined as increasing by 1 the

index of all members with indices greater than or equal

to the value (i) of the inserted index, and the storing

of the value of the inserted datum as the new ith member

of the array. (The problems concerning the maintenance of

data collections and of pointers to members of these col­

lections are discussed in Sec. V below.)

Two facilities are provided for sequencing through a

data collection. The first is the FOR-clause which sequences

through a data collection searching for all members which

satisfy a specified condition and, as each one is found,

causes a single statement or a group of statements to be

executed. Thus, one cycle of an "iteration" is performed

for each member of the subset of the data collection which

satisfies the specified condition. This facility essen­

tially combines a DO-statement (to sequence through the

-12-

data collection) with an IF-statement inside the range

of the DO-statement to test the given condition.

The second sequencing facility: 1) sets up a search

through a data collection, in the same way as a FOR-clause;

2) searches for the first member of the data collection

which satisfies the given condition; and 3) causes a place­

marker to point to that member. This placemarker can be

used for processing the selected member. When the next

member of the sequence is desired, it is explicitly re­

quested, causing 1) the data collection to be searched for

the next member which satisfies the previously specified

condition, and 2) the setting of the placemarker to point

to the newly selected member. This facility generates,

upon request, the next member of a collection which satis­

fies a given condition. Hence, the facility is called a

"generator, 11 the statement which sets up the sequencing

a "GENERATE-statement, 11 and the placemarkers "generator­

variables. 11 The generator method of sequencing differs

considerably from the FOR-clause method in that 1) it is

not associated with a particular statement or group of

statements, and 2) is not automatic but occurs only on

request. The same code is not necessarily used to process

all members in the sequence, and the same code can be

used for different data-collection sequences. These

generators can operate independently of each other, and

more than one can be sequencing through a data collection

simultaneously (if two or more generators are sequencing

through a data collection, and the processing done in

connection with one of them alters the data collection,

the set of selected members of the other generator(s) may

-13-

also be altered, as the current state of the data set is

used in the determination of the next member to be selected.)

The FOR-clause is used to control the execution of a

single statement or group of statements for selected members

of a collection. Its syntax is:

FOR [ALL\ EACH\ EVERY} collection-name

[iterative-specification]

where an iterative-specification is defined as

[IN THE DOMAIN specification[, specification] ...]

[SUCH THAT (boolean-expression)]

and a specification has the form

expression-1 [TO expression-2][BY expression-}]

[WHILE (expression-4)]

The precise semantics of a specification are given in

the PL/1 specifications [1], but basically correspond to

the following: a region is specified (by expressions 1

and 2) through which an index is incremented in steps of

size expression 3; and the WHILE-clause specifies a con­

dition which, if not met, causes the termination of that

specification. Notice however that contrary to the DO­

clause, the index is not specified; it is not needed and

is supplied automatically by the system.

The FOR-clause is associated with a single statement

by inserting the FOR-clause before the statement's

-14-

terminating semicolon (e.g., x = y FOR ALL x SUCH THAT

(x < 5);), or with a group of statements by preceding the

statements by:

FOR-clause DO;

and following them by

END;

The FOR-clause causes execution of the associated

statement or group of statements for all members of the

collection in the specified domain for which the boolean­

expression is true. The iterative specification has the

same interpretation as in PL/1. If no iterative specifica­

tion is given, then all the members of the data collection,

taken in ascending order, are used as the domain.

Generators are used to give the programmer explicit

control of the sequencing through a data set. A new vari­

able type--generator-variable--is introduced for this

facility and is used to obtain the successive members of

the collection. These variables allow more than one

generator to be operating on a data collection at once,

and also allow one generator variable to sequence through

two or more different data collections during program

execution (but only one at a time). The syntax for gen­

erator statements is:

GENERATE THROUGH collection-name USING

generator-variable [AND MAKE CURRENT]

[iterative-specification];

-15-

This statement sets up the sequencing implied by the

iterative-specification as defined in the FOR-clause (or

a sequence of the successive members of the collection

taken in ascending order if the iterative-specification

is not specified) and establishes the generator-variable

as a synonym for the first member of the collection

selected by the sequence. (The AND MAKE CURRENT option

is explained below in Sec. IV.)

The programmer explicitly instigates iteration by

execution of the GET NEXT statement:

[GET] NEXT (generator-variable) [LANDI BUT DO NOT}

MAKE CURRENT]; [OTHERWISE statement]

This causes the generator-variable to become a synonym for

the next member of the collection selected by the GENERATOR­

statement. If no other members exist for the generator and

an OTHERWISE-statement (which can be a block or group) is

present, it is executed as an ON-unit.t If not, a new

tON-units and conditions are fully explained in Ref.
1, pp. 79-84, but basically consist of the following:
When such conditions as fixed point overflow, end of file,
or END_GENERATOR occur, the program execution is inter­
rupted. If an ON-unit has been specified to handle a
condition which has occurred, then it is executed. This
group of code can take corrective action and return to
the program, print out an error statement, or terminate
the program. If no ON-unit has been specified, the soft­
ware system takes some default action (usually terminating
the program). ON-units can be specified for any occurrence
of a condition or only for those occurrences related to a
specified set of variables. Thus the action taken can be
dependent on which variable was related to the occurrence
of the condition.

-16-

condition--the END GENERATOR condition--is raised and can

be handled by an appropriate ON-unit. The maintenance of

the correspondence between a generator-variable and a col­

lection member in a dynamic environment is explained in

Sec. V below.

Search-expressions cause a data collection to be

searched for a member which satisfies a condition. Either

this member or its index is the value of the expression.

The syntax of a search-expression, which can be used any­

where an expression can, is

[INDEX OF] numeric-specification collection-name

[IN THE DOMAIN specification] SUCH THAT

(boolean-expression)

where specification is defined as in the FOR-clause, and

numeric-specification has the format:

[FIRST I SECOND I LAST

(expression)} (ST

Examples:

lOTH

21ST

(x+3)RD

[decimal-integer

ND l RD I TH}}

The numeric-specification specifies a value i, and

h 1 f h h . . h . th b (t e va ue o t e searc express~on ~s t e ~ mem er or

the index of the ith member if INDEX OF is specified) of

-17-

the data collection which satisfies the boolean-expression

with the order of iteration specified by the iterative­

specification.

The statement following a statement containing a

search-expression can begin with the ke~vord OTHERWISE.

This statement is executed as an ON-unitt if and only if

a value can not be found for the search expression.

If the OTHERWISE option is not specified and the

search-expression does not produce a value, a new condi­

tion, SEARCH_FAILURE, is raised and can be handled by an

appropriate ON-unit.

Many times a search-expression is used only to find

out whether or not a member of a collection exists which

satisfies a certain condition. To make the intent of

this use of the search-expression more apparent, the syntax

of the IF-statement has been extended as follows:

IF [boolean-expression I THERE [[DOES I DO} NOT]

[EXIST I EXISTS} [A I AN l number I (expression)}

collection-name SUCH THAT (boolean-expression)}

THEN statement [ELSE statement]

The semantics of the IF-statement remain unchanged; i.e.,

the statement following the THEN is executed if and only

if the condition specified between the IF and the THEN is

true; and the statement following the ELSE, if present,

is executed if and only if the condition is false.

t
For a discussion of ON-units and conditions, see

Ref. 1, pp. 79-84.

-18-

Examples of the extended IF-statement are:

IF THERE EXISTS A y SUCH THAT (y < 10) THEN GO TO z;

IF THERE DO NOT EXIST 10 y SUCH THAT (y > 0)

THEN RETURN (0); ELSE RETURN (1);

-19-

IV. HIERARCHICAL DATA REFERENCES

For data representations which are hierarchical, ref­

erences to the elements can be fully specified by using

the following form, where n is the level of the element

being referenced:

Collection-name (index) OF collection-name 1 n n n-

(index n-l) OF ... OF collection-name 1 (index 1)

For example, consider a list, x, of arrays, y, where the

ith member of the jth array is referenced by

y (i) OF x (j)

This notation assures unambiguous data references but is:

notationally burdensome; restricts our reuse of the vari­

ables used in higher level indices; and necessitates

referencing through each level of the hierarchy. Instead,

it would be convenient to reference data relative to some

member of a collection. Once a user has decided to talk

about the jth member of the collection x, he would like

to be able to reference the ith member of collection y

by writing

y (i)

This facility is achieved by introducing a new state­

ment which allows the programmer to specify that a par­

ticular member of a collection is to be made a reference

-20-

point for further data specifications. This is called

making the member current. One (and only one) member of

each collection can be made current. The form of this

statement is:

~~KE collection-name (index-expression) CURRENT;

The specified member of the collection is made current.

Each FOR-clause saves the current member of the data

collection being iterated through, and each iteration of

the loop makes the newly selected member current. Normal

termination of the loop (the iteration has been completed)

causes the saved member to be made current again. If the

loop is terminated by a transfer (GO TO), the current

member remains current and the identity of the previous

current member is lost.

Whenever a reference is incompletely specified, the

system will supply the necessary current member (or members)

of the missing collection (or collections) to complete the

specification of the reference. This is done in the fol­

lowing way:

1) If the highest level collection in the reference
is not completely specified, the current member
of the collection at the next higher level is used
to complete this part of the specification. Thus,
in the previous example, a reference of "y(i)" will
cause the system to complete the specification by
supplying the current member of collection x.

2) If there are any missing collections which are
intermediate in level between the highest and
lmves t collection specified in the collection, the
index of the current member of those collections
is used as the index of those collections to com­
plete the specification. For example, given

-21-

a five-dimensional array (xl, x2, x3, x4, x5),
the reference "x4(2) OF xl(lO)" would be com­
pleted by the system and become "x4(2) OF
x3(CURRENT) OF x2(CURRENT) OF xl(lO)." (CURRENT
is a function whose value is the index of the
current member of the collection in whose index
expression the function reference appears.)

Notice that the above completed specification
is different from the reference "x4(2)" (which
would be completed by rule 2) above to "x4(2)
of x3"), and the current member of x3 does not
necessarily have to be a subpart of xl(lO).

Any data reference may require none, one, or both of

the above rules to be completed. For example, "x4(2) OF

x2(5)" requires both rules to be completed as 11x4(2) OF

x3(CURRENT) of x2(5) of xl". By use of these mechanisms,

data references can be specified relative to a base de­

termined by the current member of a data collection.

Generator-variables can also be used for relative data

specifications by specifying the generator-variable as

the relative base. For example, if "gen" were a generator­

variable sequencing through data collection x, then

11
(.) OF II ld f h . th b f h" h y 1 gen wou re er to t e 1 mem er o w 1c ever

member of x "gen" was set to. This method of hierarchical

references is similar to the use of "bugs" in L6 [2] and

to the concept of "current" in APL [3].

Since generator-variables can be set to an individual

member of a collection (e.g., "GENERATE THROUGH x USING

gen IN THE DO.MAIN 5;" causes "gen" to be set to the fifth

member of the collection x), the full power of the bug

concept of L6 is available. To make this use of generator­

variables easier, the following statement has been

introduced:

-22-

SET generator-variable TO collection-name (index-exp);

This causes the specified generator-variable to be set to

the specified member of the named collection (any attempt

to execute a GET NEXT statement for this generator variable

will raise the END_GENERATOR condition).

To extend the use of the current concept to generators,

options have been included which allow the programmer to

specify whether the members generated should or should not

be made current. In the GET NEXT-statement, he can specify

whether the members generated through the use of that par­

ticular GET NEXT-statement should be made current or not.

If neither option is specified, then the GENERATE-statement

is used for the determination. If the AND MAKE CURRENT

option is specified, the generator members will be made

current; otherwise, they will not.

Similarly, the programmer can specify in an INSERT or

ADD-statement that the inserted or added member is to be

made current. (If a region is inserted or added and the

AND MAKE CURRENT option is selected, the last member of

the inserted or added region is made current.)

To extend the programming facilities and/or for

notational cqnvenience, the following built-in functions

have been defined--where a collection-member-expression

can be a collection member reference, a search-expression,

a generator-variable, or a function reference which re­

turns a collection member as its value.

-23-

NEXT (collection-member-expression),

PREVIOUS (collection-member-expression), and

INDEX (collection-member-expression)--the value

of the function is the next or previous

member, respectively, of the collection

specified in the expression from the

specified member or the index of the

specified member of the collection. An

OTHERWISE-statement can follow a statement

including these functions. This statement

is executed if and only if the desired

member does not exist. If an OTHERWISE­

statement is not employed and the desired

member does not exist, the NO_NEXT,

NO_PREVIOUS, or NO INDEX condition is,

respectively, raised.

NUMBER (collection-name) returns the number of

members in the specified data collection.

LAST and CURRENT return, respectively, the

number of members in the specified col­

lection and the index of the current

member of the specified collection.

These functions can only be used inside

an index-expres~ion, and the collection

referenced is the one to which the index­

expression applies.

NEW [(collection-name)] a new member of the

specified collection is created; and, if

initial values have been specified, is

-24-

initialized. This function can only be used

in an ADD or INSERT-instructions; and if an

operand is not specified, a new member of the

collection being added to or inserted into is

created. This function together with the ADD

and INSERT-statement constitutes the collection­

building capability of the language.

-25-

V. 1'1AINTAINING POINTERS IN A DYNAMIC ENVIRON:MENT

There are two types of pointers in the Dataless

Programming Language: the generator-variables, and the

current member of each data collection. Both types

point at members of data collections, and these pointers

must be maintained while the data collections are altered.

There are two types of alterations which can affect

these pointers. The first is an insertion or deletion

from the data collection, causing a change in the loca­

tion of the members of that collection (an insertion or

deletion from an array has this effect). The second is

the deletion of a member being pointed to. These pointers

can be maintained by keeping a list for each data collec­

tion of all pointers which point to members in that data

collection. i.fhile moving or deleting a member (and its

submembers), the system can check for pointers which refer

to the affected members (and submembers), and take appro­

priate action. This action for movement is merely the

repositioning of the appropriate pointers so that they

point to the member's new location. In the case of

deletion, the action taken is more complex. First, the

affected pointers are set to a state called "undefined"

(all pointers--generator-variables and the current member

of all data collections--are initially set to this state),

which will cause any subsequent attempt to reference the

deleted member to raise the UNDEFINED POINTER condition

that can be handled by an appropriate ON-unit. Secondly,

internal pointers to the next and previous members of

the collection (if they exist) are associated with the

-26-

undefined pointer so that they can subsequently be used to

move to these members. (If these members do not exist, an

attempt to use these internal pointers will cause the

NO NEXT or NO PREVIOUS condition to be raised.) These

internal pointers are also maintained through any sub­

sequent alterations of the data collection.

-27-

VI. DATA DEFINITION

The individual members of a collection that are not

themselves collections can be any of the forms defined in

PL/1 for data elements. Arrays, lists, and rings are

defined by inserting the appropriate keyword (ARRAY, LIST,

DOUBLE LIST, RING, or DOUBLE RING) after the collection­

name in the PL/1 definition. Structures are defined as

in PL/1. Thus an array of lists of structures would be

defined as:

DECLARE

1 department (20) ARRAY,

2 people LIST,

3 name CHARACTER (20) VARYING,

3 man-number BINARY FIXED,

3 projects LIST CHARACTER (10);

For those data representations that cannot be defined

using the system-defined representations, the definition

is supplied by providing programs which handle the neces­

sary manipulations on the data representation. The form

of this definition is:

collection-name ACCESSED BY program 1;

UPDATE USING program 2;

INSERT USING program 3;

DELETE USING program 4;

-28-

The programs used in the data definition can contain

any of the features provided by the system. In addition,

they can include, where applicable, references to the

addresses of an operand and the contents of an address.

Two system functions are provided for this purpose:

ADDRESS (variable)

and

VALUE (location, form)

where location specifies where the desired value is, and

form specifies the transformation to be used to extract a

value from this location. Typical forms are (with the

IBM 360's in mind):

BF sign + 31 numeric bits;

~F sign + 15 numeric bits;

QBF sign + 7 numeric bits;

QL 8 numeric bits;

QB 8 logical bits.

These same forms could be specified in the left-hand side

of an assignment statement to indicate the form in which

a value should be stored:

y VALUE (ADDRESS (x) + 5,~F) +3;

the 16 bits at location (address (x) + 5)
are treated as a sign + 15 numeric bits
and are added to the number 3 and the re­
sult is stored in variable y

-29-

x-2 IN FORM BF =ADDRESS (y);

the location (address (y)) is stored in
location (x-2) in form BF

When the system passes collections as parameters to a

subroutine, it also passes the necessary data-handling

routines (either the standard system routine or the user's

routine) so that the subroutine can operate on any allow­

able data collection. Such routines are data-representation

independent, and libraries of them should provide a flexible

programming environment. One major problem not satisfac­

torily solved is finding a method that allows the user to

change the form of the variables of a collection (such as

from character strings to floating point numbers) and still

use the same subroutine to process both forms. Present

plans for handling this have the user:

1) declare those parameters which can be of dif­
ferent forms to be 1 FREE',

2) perform form checking on all operations involving
these FREE parameters,

3) utilize the correct routine to handle them
properly.

The user would also have to specify in the calling program

which parameters to the subroutine were FREE so that their

forms could also be passed.

-30-

VII. FURTHER LANGUAGE FEATURES

In defining the Dataless Programming Language, several

other features seemed desirable that were not currently

available in algebraic languages in general--and specifi­

cally not in PL/1. These features are included heret (al­

though they do not directly relate to the main goal of

separating data description from program description):

1) a source-level execute command which causes the
named statement or group of statements to be
executed, and allows the passing of parameters
for this execution;

2) a compare statement which stores the result of a
comparison in a cell associated with the label
of the compare statement, and which allows this
cell to be subsequently interrogated and, if
desired, modified;

3) the CASE function of LISP 1.5, which permits an
expression to determine which of a series of
expressions should be used as the value of the
function.

t
These and other features will be fully described in

a related publication.

-31-

VIII. IMPLEMENTATION

Present plans call for an implementation of the

Dataless Programming Language, in a restricted form,

through an editing program utilizing Leavenworth's Syntax

and Function Macros [4] (which puts the program into stan­

dard PL/1) plus a set of run-time routines. This method

will impose certain restrictions (e.g., lists and rings

must be implemented as arrays because the list processing

capability of PL/1 is not available) and will be detrimental

to program efficiency. But it will enable running pro­

grams written in Dataless Programming at a relatively

small cost. With experience, the language can be improved,

and plans made for a full implementation. Although most

of the capabilities of Dataless Programming can be achieved

by placing an editor between the programmer and the PL/1

compiler, this in no way alters the fact that Dataless Pro­

gramming provides a radically different view of the program­

ming environment than does PL/1.

-32-

IX. EXPECTED ADVANTAGES AND DIFFICULTIES

Programming should be simplified because it can be

constructed top-down in terms of the logical processing

required. The problem of data representation can be left

until this programming has been completed; thus, a more

rational decision can be made concerning an optimal repre­

sentation. Because of this separation, the programmer

should be able to think through his problem better.

The data-handling features incorporated to handle

all data homogeneously put the language into a more

canonical form, make it more mnemonic, improve its reada­

bility, and increase its self-documentation. This improved

readability will undoubtedly help reduce the number of pro­

gramming errors in the original program, and make finding

and correcting the remaining errors easier. All this,

in some sense, increases the "high-levelness!! of the

language.

Since Dataless Programming takes care of passing the

necessary data-handling routines to subroutines or func­

tions, libraries of routines which are data-representation

independent (within the basic ordered-list restriction

of the language) can be created for use in a general pro­

gramming environment.

Also, since data representations can be easily changed,

it is possible to determine experimentally which is best

for the given program--i.e., with reference to the Dataless

Programming system. Even so, this would provide one ob­

jective measure for different data representations from

which criteria might be generalized and developed for the

choice of representations.

-33-

The main difficulty with the system is the level of

efficiency. Inefficiencies come from two sources: 1) the

separation of the data-handling routines from the program

and from the homogeneous manner in which all data is

handled; 2) since data is treated homogeneously, the pro­

grammer cannot take advantage of the special properties of

one representation in writing a program without having al­

ready decided what representation will be chosen. Hopefully,

once the program is debugged there will be ways to remedy

some of the inefficiencies.

There are several other difficulties and shortcomings

of Dataless Programming, including the incomplete separation

of data description from program description, and the lack

of a method of extending the allowable set of data repre­

sentations beyond ordered lists. Also, the language is now

a hodgepodge of all the facilities considered desirable for

either their processing capabilities or convenience. As

such, it is not a smooth, polished, well-integrated system.

The essential considerations, however, are how easy

and natural is it to learn and program in the Dataless Pro­

gramming Language, and how much more powerful it is than

existing languages.

A few words about the similarities and differences

between Dataless Programming and COBOL: Both were designed

to produce readable programs, both have a variety of data­

handling capabilities, both use structures as a data repre­

sentation, and both have a separate data definition section.

The differences are, however, more significant~ While

COBOL is directed toward the description and processing of

files of external data, Dataless Programming is directed

-34-

toward the description and processing of internal data.

COBOL is designed for efficient business oriented applica­

tions, while Dataless Programming is designed for flexible

scientific oriented applications. Finally, while COBOL

provides facilities for processing only one type of col­

lection (arrays), Dataless Programming provides--and is

built around--a common set of facilities for processing

any data collection which can be represented as an ordered

set.

-35-

X. DATALESS PROGRA:Mt-UNG EXAMPLES

In the following examples, the problem statement is

followed by the uncommented program and by the set of com­

ments pertaining to the program. The numbers at the start

of each line of the programs are not part of the programs,

but are used to associate comments with statements. Notice

that almost all comments explain the functioning of the

language statements; little commentary is needed to explain

the processing--i.e., once the functioning of the various

language statements has been mastered, the program itself

becomes mnemonic because the intent of the programmer is

usually apparent from the language statements themselves.

The first example is a problem which appeared in the

article, "APL--A Language for Associative Data Handling in

PL/1" [3]. Since APL and Dataless Programming share many

similar features, the problem affords a means of comparison.

This example was also chosen because it illustrates many

of the facilities of Dataless Programming, including the

use of functions as if they were data, the automatic pas­

sing of the current member of a collection, the use of a

generator variable as a bug, and the use of search expres­

sions (with the OTHERWISE option), iteration statements,

and the collection-building facility.

The problem is to compute the starting and ending

dates for a set of jobs. The input data consists of a set

of entries, one for each job. Each entry consists of the

job's jobname and its duration, followed by a list of all

jobs that must be completed before this particular one can

be started. It is assumed that these data are in a form

suitable for PL/1 list-directed input.

1.

2. read:

-36-

ON ENDFILE GO TO compute;

GET LIST (ident);

3. locate: MAKE 1ST job SUCH THAT ident

4. OTHERWISE DO;

j obname CURRENT;

5. ADD NEW TO job AND MAKE CURRENT;

6. jobname = ident;

7. END;

8. GET LIST (duration);

9. SET present_job TO job;

10. read_predecessor: GET LIST (ident);

11. IF ident = 11 THEN GO TO read;

12. EXECUTE locate;

13. ADD INDEX (job) TO predecessor OF present_job;

14. GO TO read_predecessor;

15. compute:

16. FOR EA.CH job SUCH THAT (all_predecessors_finish_known

E finish_date_is_unknown) DO;

17. start_date = max_predecessor_finish + 1;

18. finish_date = start_date + duration;

19. GO TO compute;

20. END;

21. IF THERE EXISTS A job SUCH THAT finish_date_is_

unknown THEN

22. PRINT LIST ('incorrect data');

23. ELSE

24. PRINT LIST ('satisfactory run');

25. DECLARE

26. ALL_predecessors_finish_known BIT (1)

27. ACCESSED BY

-37-

28. IF THERE EXISTS A predecessor SUCH THAT

(finish_date_is_unknown (predecessor))

THEN RETURN (I 0 I B);

29. ELSE RETURN ('l'B);,

30. finish_date_is_unknown BIT (1)

31. ACCESSED BY

32. IF finish date= 0 THEN RETURN ('l'B);

33. ELSE RETURN ('O'B);,

34. max_predecessor_finish BINARY FIXED

35. ACCESSED BY

36. DO;

X O·
'

37.

38. X MAX (x, finish_date (predecessor)) FOR

EACH predecessor;

39.

40.

41.

42.

43.

44.

45.

1

END;,

job LIST,

2 jobname CHARACTER (20),

2 start date BINARY FIXED

2 finish date BINARY FIXED

2 duration BINARY FIXED,

2 predecessor LIST BINARY

46. DEClARE

47. ident CHARACTER (20),

48. present _job GENERATOR,

49. x BINARY FIXED;

COMMENTS

INITIAL (0)'

INITIAL (0),

FIXED;

1 Sets up an ON-unit that will cause transfer of con­
trol to the statement labeled "compute" when the
end of the input file has been reached.

-38-

2 A PL/1 input statement that causes the next value
in the input file to be assigned to the named vari­

able ident.

3 Find and make current the job that has a jobname
equal to the value of ident.

4-7 An OTHERWISE-clause. These statements are executed
if and only if the search in statement 3 failed, i.e.,
if there did not already exist a job that had a job­
name equal to the value of ident.

5 Creates and initializes a new job, adds it to the
list of jobs and makes it current.

6 The jobname of the newly-created job is set equal to
the value of ident.

8 The next value in the input file is assigned to the
named variable duration (the reference "duration" is
incomplete and is completed by using the current
member of data collection job, hence the duration of
the current job is the variable referred to).

9 The generator-variable present_job is set to refer

to the current job.

10 The next value in the input file is assigned to the

variable ident. This value is the name of a prede­
cessor of the current job.

11 Test for the end of the list of predecessors. If
the value of ident is NULL, the end of the list has
been reached and control is transferred to the
statement labeled read to process the entry of the

next job.

12 This is an additional feature that causes the
specified statement (the statement labeled locate
together with its associated OTHERWISE-clause, i.e.,

statements 3-7) to be executed, after which execution
continues with the next statement (statement 13).
This group of executed statements (3-7) makes current

the job whose name is the value of ident, and if
this job does not already exist, creates and ini­
tializes it.

13 The index of the job which is a predecessor of the
job referred to by present_job is added to the col­

lection of such predecessors.

-39-

14 Get another predecessor.

15 The input phase has been completed; calculate the
start and finish dates for the jobs.

16 Sequence through the collection of jobs, selecting

those which satisfy the given condition. (The con­
dition is specified in terms of two data items
defined in the data declaration.) Notice how the
details of finding the next job to be processed are

removed from the program and can be stated in terms

of the logical requirements of the process, i.e.,
to process a job the finish data of all its prede­
cessors must be known and its own finish date must
be unknown.

17 Calculate the start date of the current job (a job
selected by statement 16 above) by use of a data
item defined in the data declaration. Again,
notice how the processing has been expressed in
terms of the logical processing required.

18 The finish date of the current job is set equal to
the start date of this job plus its duration.

19 Begin the search again.

21-24 Test for the satisfactory completion of the program
and print conclusion. If any jobs have an unknown
finish date, then the data used in the program must

be incorrect.

25-29 Definition of all_predecessors_finish_known as a
function.

28 The collection of predecessors of the current job

is searched for one for which the finish date of
the job whose index is the value of predecessor is

unknown. If such a predecessor exists the finish
date of all the predecessors of the current job is
not known and the bit string 'O'B is return.

30-33 Definition of finish date is unknown as a function.

34-39 Definition of max_predecessor_finish as a function.

40-45 Definition of the structured collection named job.

46-49 Definition of the remaining variables.

-40-

The second example is a program that does a binary

search through a collection of character strings in as­

cending order for a match with an input string. If a

match is found, the index of the matching collection

member is returned. Otherwise, the input string is added

to the collection in the proper place and the index of

this new member is returned. This routine can be used to

build the ordered collection. Besides the restriction

that the collection must be an ascendingly ordered col­

lection of strings, the representation of the collection

is free. The routine is able to handle different repre­

sentations because the system passes the necessary data

handling functions along with the collection.

1. Binary_search: PROCEDURE (input_symbol, collection)

BINARY FIXED;

2. IF NUMBER (collection) = 0 THEN DO;

3. ADD input_symbol TO collection;

4. RETURN (1);

5. END;

6.

7.

8. test:

9.

increment = initial_increment;

:MAKE collection (2 ·-k increment) CURRENT;

COMPARE input_symbol AND collection;

IF= IN test THEN RETURN (INDEX (collection));

10. IF< IN test THEN MAKE collection (CURRENT-

increment) CURRENT;

11. ELSE MAKE collection (MIN (CURRENT + increment,

LAST)) CURRENT;

12. increment = increment /2;

13. IF increment > = 1 THEN GO TO test;

14. add-new-item:

15.

16.

17.

18.

19.

20.

21.

22.

23.

-41-

IF < IN test THEN INSERT input_symbol BEFORE

collection AND MAKE CURRENT;

ELSE INSERT input_syrnbol AFTER collection

AND MAKE CURRENT ;

RETURN (INDEX (collection));

DECLARE

initial increment BINARY FIXED ACCESSED BY DO;

increment = 2;

DO WHILE (increment < NUMBER (collection));

increment = increment ·-k 2;

END;

24. RETURN (increment/2);

25. END;,

26. collection CHARACTER (*) COLLECTION,

27. increment BINARY FIXED,

28. input_symbol CHARACTER(*);

29. END binary_search;

C01:1MENTS

1 The data handling routines for the collection named

"collection" are passed by the system to this routine.

2-5 If there are no members in the collection, the input

symbol is added to the collection and the index of

this new member is returned.

6 The value of increment is set to the value of

initial_increment, which is a data item defined in

the data declaration. Notice again how the details

of the processing necessary to find this value are

removed from the program.

7 The first guess of the binary search procedure is·

made current.

-42-

8 This statement is another additional feature. It
compares the values of input symbol and the current
member of the collection, and places the results
of this comparison in a cell that can be interrogated
as shown in lines 9, 10, and 15.

9 If the result of the comparison in the compare state­
ment labeled 'test' was equality (a match was found),
the boolean-expression in this IF statement is
satisfied and the index of the current member is
returned.

10 If the result of the comparison in the compare state­
ment labeled 'test' was that the first operand was
less than the second operand, the next guess is the
member whose index is (CURRENT-increment), and this
member is made current.

11 Otherwise, the next guess is the member whose index
is (CURRENT+ increment); but a check is made not to
go beyond the end of the collection, and this member
is made current.

12 The size of the increment is cut in half.

13 Keep searching if the size of the increment is non­
zero.

14 The search has been completed and the item has not
been found; add it to the collection and return its
index.

15 If the result of the last comparison in statement
'test' was that the input_symbol was less than the
current member of collection, insert the input_
symbol into the collection before the current member
and make the inserted member current.

16 Otherwise insert the input_symbol after the current
member of the collection and make the inserted
member current.

17 Return the index of the inserted member (which is
now current).

18-29 Declaration of the data items of the program.

19-25 Declaration of initial increment as a function.

-43-

REFERENCES

l. IBM Operating Systems /360 PL/1: Language Specifica­
tions, IBM Form C28-657l-3, IBM Corporation, White
Plains, New York, 1966.

2. Knm.vlton, K. C., "A Progrannner's Description of L
6

, 11

Communications of the ACM, Vol. 9, August 1966.

3. Dodd, George G., "APL--A Language for Associative Data
Handling in PL/1," AFIPS, Vol. 29, Proc. FJCC,
Spartan Books, Washington, D.C., 1966.

4. Leavenworth, B. M., "Syntax Macros and Extended Trans­
lation," Connnunications of the ACM, Vol. 9, No. 11,
November 1966.

5. Newell, A., Information Processing Language-V Manual,
Prentice-Hall, Englewood Cliffs, New Jersey, 1961.

6. Abrahms, P., et al., "The LISP 2 Programming Language
and System," AFIPS, Vol. 29, Proc. FJCC, Spartan
Books, Washington, D.C., 1966.

7. Shaw, J. C., JOSS: A Designer's View of an Experi­
mental On-Line Computing System, The RAND Corporation,
P-2922, August 1964.

8. "Revised Report on the Algorithmic Language ALGOL-60, 11

Communications of the ACM, Vol. 6, No. 1, 1963,
pp. 1-17.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

