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PREFACE

This report is written in fulfillment of the requirements of U.S. Navy
Contract NOw 66-032kc. The contract is a "level of effort" type, and the
objectives are covered by the following work statement, taken from the contract.

"Develop and verify an accurate, general, and rapid method of calculating
axially symmetric and two-dimensional turbulent boundary-layer flows. The
specific phases of the work are as follows:

(a) Semi-empirical expressions will be developed for the turbulent trans-
port properties, such as eddy viscosity, for use in solution of the flow
equations.

(b) Solutions of the complete partial differential equations will be ob-
tained for incompressible flow, covering problems of flow in water and in air.

(c) Solutions will also be obtained for compressible flow, applicable to
air.

(d) Illustrative applications of the method will be performed to provide
information on velocity profiles, boundary-layer thickness, skin friction and
heat transfer.

(e) Accuracy will be checked by solution of a variety of flow problems
and comparison with experimental data."

Under this type of contract, when the due date arrives, accomplishments
are reported whether the ultimate goals have been reached or not. In the
present case, as might be expected, the studies are not complete., The problem
of incompressible flow has been rather well explored, although more remains to
be done. The results have been surprisingly good. The equations governing
compressible flow have all been programmed and the method is working, but time
was available to calculate only a few cases of flat-plate flow, with and without
heat transfer. Much more work remains to be done, and the gratifying results
for incompressible flow supply a firm foundation for continuation, which should
follow. The present method has been programicd on the IBM 7094 unler the num-
ber STEB. The program can be obtained by qualified requcsters from "Commander,
Naval Ordnance Laboratory, White Oak, (Code 330), via Commander, Naval Ordnance
Systems Command (Code ORD-035)".

The authors .nd their company wish to express gratitude for the support
supplied by the U.S. Navy. Without it, it is unlikely the work would ever have

been accomplished.




1.0 SUMMARY

This report presents a numerical solution of turbulent boundary-layer
equations for both compressible and incompressible flows. An eddy viscosity
concept is used to eliminate the Reynolds shear-stress term, and an eddy-
conductivity concept is used to eliminate the time mean of the product of
fluctuating velocity and temperature. The turbulent boundary layer is regarded
as a composite layer consisting of inner and outer regions, and a separate
expression for eddy viscosity is used in each region. The ratio of eddy-
viscosity to eddy conductivity is assumed to be constant. An implicit finite-
difference method is used in the solution of both momentum and energy equations

after they are linearized.

A variety of flows have been computed by this method, and comparisons
with experimental data and various correlations have been very encouraging.
The results described in this report do not represent a finished development
but on.Ly what has already been accomplished by using one particular formula-
tion of eddy viscosity and constant turbulent Prandtl number.
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4.0 PRINCIPAL NOTATION

local skin-friction coefficient, eq.(6.113)

average skin-friction coefficient

specific heat at constant pressure

local shear-stress coefficient for laminar flow, eq.(6.114)
local shear-stress coefficient for turbulent flow, ~q.(6.115)

ey s viscosity-density parameter

Pee 5*
equilibrium boundary-layer parameter, - %E
W

dimensionless stream function, eq.(6.46)

dimensionless total-enthalpy ratic, eq.(6.54), where applicable
defect-shape factor, eq.(6.122)

specific enthalpy

total enthalpy, h + %ua or shape factor, eq.(6.121), where applicable
variable-grid-system parameter

mixing length

reference body length

Mach number

pressure

Prandtl number

local heat-transfer rate per unit area

radial distance from axis of revolution

radius of body of revolution

Reynolds number, uex/ve

Reynolds numoc’s ueO/Ve

Stanton number, eq.(6.118)
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transverse-curvature term, eq.(6.42), where applicable 8

absolute temperature !
x-component of velocity ‘
friction velocity, \,:;7;‘ |
y-component of wvelocity

distance along surface measured from leading edge or from
stagnation point

distance normal to x

angle between normal to the surface y and the radius r , fig. 4
dimensionless velocity-gradient term, egq.(6.53).

intermittency factor, eq.(6.26), or convergence criterion,

where applicable

boundary-layer thickness

defect-displacement thickness, eq.(6.123)

eddy viscosity '
transformed y-coordinate

womentum thickness, eq.(6.111)

thermal conductivity

dynamic viscosity

kinematic viscosity

transformed x-coordinate

density

shear stress

perturbation quantity, f — fo

stream function

vorticity




— - R m—ERTIATT —_— -

-10-
SUBSCRIPTS
¢ evaluated at the switching point of the boundary layer
e evaluated at outer edge of boundary layer
L] evaluated at wall
00 evaluated at free-stream or reference conditions
Primes on f denote differentiation with respect to 1
|
1




5.0 INTRODUCTION

The boundary-layer concept, first introduced in 1904 by Prandtl, divides
the flow past a body into two regions: an inviscid region, governed by the
Euler equations of motion, and a thin viscous region in the neighborhood of the
body, governed by the boundary-layer equations. ~ror laminar flow, the existence
of a known relationship between the shear stress and the velocity gradient
completes a set of partial differential equations, and exact solution of the
boundary-layer equations is mathematically possible. Highly accurate solutions
exist for some simple flows, such as similar flows, which are especially impor-
tant. With the advent of highe-speed computers, quite satisfactory results for
a variety of general flows have been obtained.

For turbulent flows, on the other hand, because of the limited understand-
ing of the turbulent process, the exact solutions of the boundary-layer equa-
tions are not possible. The usual boundary-layer equations for such flows con=-
tain a term involving the time mean of the product of two fluctuating velocities,
which is known as the turbulent shear stress, and a term involving the time
mean of the product of a fluctuating velocity and a fluctuating temperature.

At the present, these terms have not been rigorously related to the mean velocity
and mean temperature distributions. Thus, exact solutions of the boundary-layer
equations for turbulent flows are not possible. In order to proceed at all,

the solutions must depend on some empirical information. Even then the solution
of boundary-layer equations is not easy. For this reason, most of the work on
turbulent flows has been centered on empirical correlations together with inte-
gral methods. In general, the approaches followed in these methods vary widely.
In one approach, for example, Head's method [1], the boundary-layer parameters
are obtained by solving the momentum integral equation with two empirical ex-
pressions called auxiliary equations. These equations consist of an expression
for local skin-friction coefficient (cf) and an expressior. for shape factor (H).
In another approach, for example, Truckenbrodt's method [2], the boundary-layer
parameters are obtained by solving both the momentum and energy integral equa-
tions by using an empirical expression for the dissipation integral and by
introducing further approximations in the solution. These methods were recently
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reviewed by Thompson [3] for two-dimensional incompressibie turbulent flows
and were found to give widely differing and often inaccurate results.

A more fundamental approach to the solution of turbulent boundary layers
is to regard the turbulent boundary layer as & composite layer and to charac-
terize it by inner and outer regions (see figure 1). The existence of two

g

Ug -
OUTER REGION
v
8
INNER REGION
¥ =
LAMINAR * SUBLAYER v

Figure 1.-A turbulent-boundary-layer velocity profile.

regions is due to the different response to shear and pressure grtdient by the
fluid near the wall. The inner region, whose thickness is approximately 0.1 to
0.2 8, depends primarily on the wall shear stress and fluid viscosity. The
mean velocity distribution in this region responds rapidly to changes in these
wall conditions because the eddies in this region are very small. The mean
velocity distribution may be described by the sco-called "law of the wall":

U - @ (/)

This relation was originally obtained by Prandtl from a mixing-length
concept [4]. In addition, if an expression for eddy viscosity is introduced

in the inner region, it can be shown that eddy viscosity in this region varies
almost linearly with distance.
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In the case of a smooth wall, the inner region contains a layer, commonly
called the laminar sublayer, adjacent to the wall, where the flow is primarily
viscous and the mean velocity increases linearly with distance from the wall.
The thickness of this layer is of the order of 0.001 to 0.0l &.

The outer region, on the other hand, contains 80 to 90 percent of the
boundary layer thickness. The flow in this region is independent of the fluid
viscosity, but is dependent on the wall shear stress, and it is highly affected
by conditions in the free stream such as streamwise pressure gradient. The
mean velocity distribution is conveniently described by the so-called "velocity-
defect law":

u =u
— = %(y/8)

u

The flow in the outer region shows some similarity to wake flow. Near the
outer edge, it has an intermittent character. The turbulence is characterized
ty large eddies. The response of the mean velocity distribution to changes in
its determining conditions is much slower than that of the inner region. In
addition, an eddy vis-cosity, if introduced, shows a nearly constant value across
the region. For example, as suggested by Clauser [5),the eddy viscosity for
the so-called"equilibrium"” boundary layers is

k 5
€ = 2Que

where k, was empirically determined to be 0.018.

The approach in which the turbulant bcundary layer is regarded as a com=-
posite layer consisting of inner and outer regions was followed in[6] and [ 7]
for incompressible flows. In both references, the Reynolds shear-stress term
was eliminated through the use of an eddy-viscosity concept. The main differ-
ence between the two approaches is the expression used for eddy viscosity in
each region. Another difference is the transformation used to stretch the co-
ordinate normal to the flow direction to reduce the variation of the boundary-
layer thickness and to remove the singularity at the leading edge or at the
stagnation point. A third difference is the method used to solve the boundary-
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layer equations. In reference [7] the momentum equation was solved in its non-
linear form by an integration technique; in reference [6] the momentum equation

was solved in a linearized form.

The approach used in this report is the one used in reference [7]. Again
the Reynolds shear-stress term in the momentum equation is eliminated through the
use of an eddy-viscosity concept, and a separate expression Ior eddy viscosity

is used in each region. (see figure 2). However, this cime the expressions are

\ UTER LAW

Figure 2.- Eddy-viscosity distribution across a boundary layer.

slightly modified, tc account for the compressibility effect. In addition,
the time mean of the product of a fluctuating velocity and a fluctuating
temperature in the energy equation is eliminated through the use of an eddy-
conductivity concept and is introduced into the energy equation through the

definition of turbulent Prandtl number:

Cc €

As an initial step, the turbulent Prandtl rumber is assumed to be constant.
Note that the present framework is peneral and that it can handle widely vary-

ing eddy-viscosity and turbulent Prandtl number formulations.




The method used to solve the boundary-layer equations here is different 4
from the one used in previous studies [7 through 13]. Again the streamwise
derivatives in both momentum and energy equations are replaced by finite
differences. However, unlike the previous studies, in this study the momentum
equation is solved in a linearized form, and the previous integration tech-
nique is replaced by an implicit finite-difference technique. A variety of
flows has been computed by this method, and comparisons with experimental data
and various established correlations are made. The results presented in this
report do not represent a finished development, but are only the results ob-
tained so far by one particular eddy-vic:osity and constant turbulent Prandtl
number formulation, in fact the first one tried.
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6.0 DESCRIPTION OF METHOD OF SOLUTION
6.1 Equations of the Compressible Turbulent Boundary layer
The governing equations describing the flow about two-dimensional and

axisymmetric bodies at high Reynolds numbers and constant pressure within the
boundary layer are [11]:

CONTINUITY

% . %{% (o w) + & (5 v)}= 0 (6.1)
MOMENTUM

p%+pu%+pv%=—%+-i—k£—/\r}(u% (6.2)
ENERGY

ProuPro P L LMoLy p (6

where k = 0 for two-dimensional flow and k =1 for axisymmetric flow.

The basic notation and scheme of coordinates are shown in figure 3,
where u_ is a reference velocity and ue(x) is the velocity Just outside
the boundary layer. The term He, which is a constant, is the total enthalpy
outside the boundary layer. Local enthalpy outside the boundary layer, namely,
he, is given by

}{=h+£u2
e e 2 e

The coordinates are a curvilinear system in which x is distance along the
surface measured from the stagnation point or leading edge. The dimension y
is measured normal to the surface, Within the boundary layer, the

velocity components in the x- and y-directions are u and v, respectively.
The body radius is L




st P i
R e

Figure 3.-Boundary layer on a body of revolution. Coordinate system.

In these equations, the transverse-curveture terms, which are of second
order, are retained because of their importance in preanicting bouwndary-layer
growth on long slender bodies such as certain missiles or at the tail of a
streamlined body of revolution.

The equations (6.1), (6.2), and (6.3) apply tc turbulent as well as to
laminar flows, providing the dependent variables = velocity, density, and
enthalpy — are replaced by their inctantaneous values for turbulent flow.

The procedure is due to O.Reynolds. With instantaneous values, (6.1), (6.2),
and (6.3) become

dp
=+ ]Léa? (o) + & (rkpivi)} = 0 (6.4)
r
du du du, dp. : du
i i i i 1 9 k i
S AU VS A A S A (6.5}

3 OH OH dH du,
i i i1 d kjp i 1 i

0. + p,u, + o,V = —— r +u(l =) u } (6.6)
19t Pitiax T Py T Tk JLP:& Pr’ "1 dy

e

s
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Let the instantaneous values be denoted by their average and fluctuating

values, as follows:

u+ u' v

+ v =p + p!
1 g VT Y by =pP™#P

u

(6.7)

= ] + ?
P, =P+P Ho=H+H

Introducing the first three expressions defined by (6.7) into (6.4) and
averaging with respect to time gives

é%rk(pu+p'_w')+ga;rk(pwr+ p'v') = 0 (6.8)

By time average is meant, for example,
t

-1
us=g fui(t+'r)d'r
0

with t large compared with the time scale of the turbulent motions. For

the fluctuating values, say u', the average value, u'_', is
t

fu'd1=0

0

=
]

I
3 Lo

The momentum equation for steady compressible turbulent flow can be obtained as
follows. Multiplying (6.4) by u,, (6.5) by r, and adding the resulting
equations gives

d, 3

k o i k d , k
UTE A i T (rpjus) + uy 5o (rievy)

i
dp du,
=--!'kdx—:l +%(rku%§) (6.9a)
which can be written as
d dp; d , k
a—(r piuu)+5;(r oiviui)=—rF*y(r MS;—) (6.9v)

Introducing the first four expressions defined by (6.7) into (6.9b), averaging

with respect to time, and using (6.8) gives




—_ Ju — bu__d _A d k 2 —— 2
(o u+ o'u')5;+(DV+ D'V')'av— -Rd.x —rks;r(pu'+up'v'+p'u' )
19 k{ P —_— }
==t r{ s -pviut —vptut —p'viu’ (6.10)
% Y

The energy equation for compressible turbulent flow can be obteined in
a similar way. Multiplying (6.4) by H,, (6.6) by r, and adding the resulting
equations gives

d O,  ,  OH

H Ba? (rk"i“i) *H 5 (rk"i"i) t rk"i“i'Yi ML
oH N
=§?rk{-PLr #Hx(l--l};)ui'gi} (6.11a)

which can be written as
JH du
2 (o)) + & (o)) - & ot we -, ok |
(6.11b)

Introducing the expressions defined by (6.7) into (6.11b), averaginr with
respect to time, and using (6.8) gives

(pu+ ) S+ (ove o) oL S TH + u B + P H)
r

+-%5%rkg“§§—pW+ u(l-:};)u%—vp'ﬁ'—p'v'ﬂj}

(6.12)

Since for flows at high Reynolds number the boundary layer is assumed to
be thin and the terms such as p, u, H, and x are assumed to be of the order
of 1 and v, y of the order of &, some of the correlation terms involving
u', v', p', and H' in (5.8), (6.10), and (6.12) can be neglected. The

double correlation terms such as p*'u', u'H',p'H!, and p'v' are of the order

of & at most, and the triple correlation terms such as p'v'u' and p'v'H!
are of the order of 82 at most. When these simplifications are introduced
into (6.8), (6.10), and (6.12) and the predominant terms of the same order of

o




magnitude are retained, the resulting equations are of the same form as those

of laminar flow except for the terms p'W', — pu'2, — p VY'u', and — pv'H'. In
addition, if the pressure fluctuations within the boundary layer are considered,
then another term, nanely, — 3% p ﬁ?, should be included on the left-hand

side of (6.10). For flow conditions away from separation, the terms =— p u'?
and - o v-'7, known as Reynolds normal stresses, are small and will be neglected.
Hence, with all these simplifications, the governing equations for the compres-
sible turbulent boundary layer become:

CONTINUITY
6 k \ B k TR
5 (rPu+ e [r (p v+ o'v')] =0 (6.13)
MOMENTUM
puBr v B, L2 [k, )] (6.14)
r
ENERGY
S ARl A e O I A
r
(6.15)

where the term - p u'v', known as the Reynolds shear stress, is eliminated
through the use of Boussinesq's eddy-viscosity (€) concept and the term
— p v'H' is eliminated through the use of an eddy-conductivity ()‘T) concept.

-pt-x'_vT-e% (6.16)
—— )‘T OH
-p V'H' = -3; o (6.17)
(o] €
(6.18)

,_3-'?
4

Ir ( )w denotes wall, the boundary conditions to be considered are:

MOMENTUM
u(x, 0) = 0
v(x, 0) =0 or v(x, 0) = v, (mass transfer)
lim u(x, y) = ue(x)
y -

e o s ki e frag . i i it




ENERGY
H(x, 0) =H, or S (x 0) = (&) /5,208)
lim H(x, y) = H_(x) (6.20b)

y s ®
6.2 Formulation of Eddy Viscosity and Turbulent Prandtl Number

In order to solve the comprv.ssible turbulent boundary-layer equations
given in the last section, it 3s necessary to use expressions for eddy vis-
cosity and turbulent Prandtl number. The eldy-viscosity formulation that will
be used in this study is the same as the one used for incompressible flow in
a previous study [7). This formulation has worked well for incompressible flow
and hence it was decided to extend it, with small modifications, to compressible
flow. In this formulation, the boundary layer is regarded as a composite layer
characterized by inner and outer regions. In the inner region, an eddy vis-
cocity based on Prandtl's mixingelength theory is used; in the outer region, a
nearly constant eddy viscosity is used. It is exactly constant when the flow
is incompressible and without heat transfer. An intermittency factor is applied
to this basic "outer viscosity".

6¢2,.. Viscosity in the inner region.
In the inner region, the eddy viscosity is represented by Prandtl's formula
based on the mixing-length theory; that is,

1

€, = p 12 l%' (6.21)
where £, the mixing length, is given by ¢ = kly. However, to account for
the viscous sublayer close to the wall, a modified expression for (£ 1is used

in (6.21). This modification, suggested by Van Driest [14] and developed by
consideration of a Stokes-type flow, is

¢ =k y(1 = exp(= y/A)] (6.22)

Substituting this expression for £ into (6.21) gives




22a

e =P ki yoIL = exp(- y/A)]2 I%I (6.23)

This expression, as it stands, applies to incompressible flows. The
quantity p is a constant, kl = 0.4, and A 1is a constant for a given stream-
wise location in the boundary layer, defined as 26v(p/1w)l/ ¥, Equation (6.23)
shows that as y increases, the exponential term disappears, leaving Prandtl's
form, na.mei.y, equation (6.21). It also shows that, for y -0, €; should
vary 85 Yy . The latter conclusion is in contrast to the behavior of eddy-
viscosity expressions proposed by Townsend [15] and Reichardt [16], which show
that ¢, should vary as P On the other hand, (6.23) has the same behavior
close to thehwa.ll as Deissler's eddy-viscosity expression [17]; that is, €
varies as y a.sh y 0. An analysis given in Appendix A indicates that €
should vary as y as y =+0.

Equation (6.23) can also be applied to compressible flows if p is taken
to be a variable and if the exponential term is modified to account for the
heat transfer in the sublayer. A logical generalization is to consider a
Stokes-type flow in which the fluid has a variable viscosity. An analysis
given in Appendix B indicates that the eddy-viscosity formula for the inner
region should now be

1
2 2
_ .22 _ o Y 21 ] du
€, =PK Y ol exp-l \—; > A} IB?I (6.24)

where A = 26vw(pw/1w)l/2 and Vv is the mean value of Vv obtained by averaging
(6.24) over some arbitrary distance, perhaps the sublayer. As an initial step,
the ratio of v"_/\T is assumed to be unity. At high wall temperatures, the
exponential term will decay rmuch more slowly with y. For example, on a wall
with a temperature of 0°F at sca level, A‘\/: = 2,25 x 107", on a wall with
a temperature of 3000°F at 50,000 feet, A-\/x_w‘ = 5,46 x 10'3, or more than

20 times as large.

6.2,2 Viscosity in the outer region.
In the work on incompressible flcws, the form for eddy viscosity in the

outer region suggested by Clauser [5] was used; that is,




e, = ko ueB* (6.25)

where the constant k, is taken to be 0.0168, the value given in [18]. The
same formule is used for compressible flow, except that p is a variable;
that is, p = p(x, y). Equation (6.25) is modified by an intermittency
factor 7 that was obtained by Klebanoff [19]. It is given by

7:

o] | o

1 —erfs (% ~-.78)] (6.26)

where & 1is the thickness of the boundary layer. This formula was deduced
from measurements of an incompressible flow, and, for want of anything better,
it is also used for compressible flow. With (6.26), the eddy-viscosity formula
for the outer region becomes

€, = Pk, u Bl y (6.27)

o}
6.2.3 Definition of inner and outer regions.

The constraint used to define the end of the inner region and the be-
ginning of the outer region is the continuity of the eddy viscosity. It can be
seen from (6.24) and (6.27) that, at a given position along the body, € in-
creases with y and € remains constant over practically the whole boundary

layer. Hence, from the wall outward, the expression for inner eddy viscosity

applies until
€, = ¢ (6.28)

or, in terms of the distance from the wall, inner and outer regions thus can be
defined as

2
€ =0 ki y2[1 = exp{- (v“/\7)1/2 %}] |§§| 0Osysy,  (6.29)
€, = P kyu, 5 y y.sysb (6.30)

where y_  is determined by (6.28).

.
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6.2.4 Turbulent Prandtl number.

The turbulent Prandtl number is & measure of the ratio of eddy viscesity
to eddy conductivity, that is, the ratio of the transport of momentum to the
transport of heat. Since the flow in the outer region shows some similarity

to a wake flow, one may argue that a more realistic formulation of turbulent
Prandtl number requires a separate expression in each region, as in eddy-vis-
cosity formulation. The fact that in boundarylayers the ratio of eddy con-
ductivity to eddy viscosity is smaller than in free turbulence permits one to
conclude that the lowering of this ratio is due to the influence of the wall
[20]. Consequently, if the ratio of eddy conductivity to eddy viscosity is
lowered by the effect of the wall, it follows that this ratio decreases with
decreasing wall distance and increases with increasing wall distance. It
appears that at large wall distance this ratio approaches the value 2, that is,
the same value observed for free turbulence. On the other hand, no experimental
results have been obtained on the minimum value of this ratio in the immediate
neighborhood of the wall. For these reascns, as an initial step the turbulent
Prandtl number is assumed to be & constant and equal to unity.

6.3 Transformation of Boundary-layer Equations

Before (6.13), (6.14), and (6.15) can be solved, by a method to be des-
cribed later, it is convenient to transform them to a coordinate system that
removes the singularity at x = 0 and stretches the coordinate normal to the
flow direction, as is usually done in laminar flow. First, the equations are
placed in an almost two-dimensional form by the Probstein and Elliot transfor-
mation [21].

PROBSTEIN-ELLIOT TRANSFORMATION

R )2
dx=< = ) dx (6.31)

k
dy = r—L;l_x)- dy (6.32)

where ro(x) is specified by the body shape and r(x, y) is given by (see
figure L)
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Figure 4.-Coordinates for axially symmetric body.

r(x, y) = ro(x) +y cos a (6.33)

Then from (6.31) and (6.32),

k.2
3w 3% B v 3 [ z
5 % x8?=(TO) 5+ E S (6.34)
3 d ¥ e a
yy=g§§§ —L_ (6.35)

Define a stream function v that satisfies the continuity equation (6.15),
namely,

% = rkp u (6-3&.)
g_t =K o
- = = r (p v + p_v) (6-56b)
Iet ; = % '(T =1 ; =V
pive = 0'7 € = ¢ Pr,, = Pr Sel
T T




Now if in the barred plane the continuity equation (6.13) is written as

A—_(pl-l.)"'%(p;"' p'v?) = 0 (6.38)
Ax dy
then the stream function ¥ that satisfies this equation is
i LT N (o7 + ) (6.39)
dy x
g Therefore. if the relations defined by (6.34), (6.35) (6.37) and (6.39) are
3 used, (6.36a) and (6.36b) become
— K — =
pu=Ld =Lk<_£_é§ - 0¥ (6.408)
ro Y dy dy
= __L % ___L -1> 6.40b
pv+ p'v rk §§ K ( )

By substituting from (6.40) into (6.14) and using the relations given by
(6.34), (6.35), and (6.39), the following Probstein-Elliott transformed

momentum equation is obtained:

WD LN _WD l_i _2+_
wa\Pyx/ xo >

Tl
1+ t)%Ku(1 + m )357(0 a; )]

(6.41)

where t is the transverse-curvature term defired as

= -‘;{— cos a (6.42)
0
by using the relationship between r(x, y) and ro(x) given by (6.33).
Note that in (6.41) the cddy-viscosity term has a bar. This is necessary
because ¢ is not & scalar funct’on (e.g., like p) and must be transformed
by (6.31) and (6.32).

Similarly, the energy equation (6.15) may be transformed into the form




=B

dx Ox l-’rT a_y.-
3y d 13y |
2208} e

by using (6.40), (6.34), (6.35), and (6.39). Equations (6.41) and (6.43)

have the desired two-dimensional form.

Next, the Levy-Lees transformation [22] is introduced, in order to put
(6.41) and (6.43) into a still more convenient form.

LEVY-LEES TRANSFORMATION

df = pu u dx (6.44)
P u, _ AT

dn = — dy U5
(28)*/

A dimensionless stream function f is re.ated to ; as follows:

1/2

v = (28)’r(s, n) (6.46)

With (6.44), (6.45), and (6.46), the partial-derivative operators in the new

coordinate system (§, 1) become

Lol B o) £
:_; =‘(’_2‘:_<;1/2 2 (6.48)
A . e (& - g_{.> (6.49)
L (o) o (6.%0)

=}
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where the prime on f denotes the derivative with respect to 1. Introducing
the transformations from (6.47) through (6.50) into (6.41) and (6.43) and
using Euler's equation, namely,

+ =
dp peue due 0

to replace the dp/dx-term in (6.41) yields the transforme? momentum and energy
equations for the compressible turbulent boundary layer.

MOMENTUM
o ]
[(l +‘t~)2kc(l + E ) f"] + ff" + B

% - (f')e] - 2;[f' g—‘; - .}‘g‘ ]

(6.51)
ENERGY > '
r = u
[eon™ef{u I Yo g a-gmr}] re -
T’ €
= 28| ' g% -g% g' ] (6.52)
where
du
.2k _e
B u, 3t (6.53)
H
g = Te (6-51‘)
and C = p
pe“e

The prime on g denotes the derivative with respect to 10, and the sign ~
indicates that the quantity is transformed by (6.44) and (6.45). For example,
the transformed transverse-curvature term in (6.51) and (6.52) is given by

~ LcosQ (2§)l/2 " pL ;
Ay (p/P) = dn (6.55)
(o] pe e r
0
In (6.51) and (6.52) the relationship between the quantities in the trans-
formed plane and those in the physical plane is given by (6.31), (6.32),
(6.44), and (6.45) — what might be called & Probstein-Elliot-levy-lees trans-

formation.
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PROBSTEIN-ELLIOT-LEVY-LEES TRANSFORMATION

s = peueue(r};/L)g dx (6.56)
_ P ue rk 6
dn—El/ery ( -57)

It can be seen from (6.51) and (6.52) that setting k = O reduces them to two-
dimensional form. On the other hand, for axisymmetric flow with no transverse-
curvature (TVC) effect, k =1 and t =0, which indicates that the ratio of

r to r is unity.

The boundary conditions of (6.51) and (6.52) can now be transformed. From
(6.48) and (6.50),

uo=ou e (6.58)
and from (6.40b), (6.47), and (6.46),
¢
PV
2(8 0) = = == j ww L 3§
’ (2;)1/20 Deueue rz

since at the wall u =0, p'v! =0, and r = ro.'l'he length L is taken equal to
unity for two-dimensional and for zxisymmetric flow with no TVC-effect. Then
in the §, n-plane the boundary conditions given by (6.19) become

E oV
1 1 ww -
(¢, 0) =f =0 or f =— —— —_ d¢ (mass transfer)
’ v v (22)1/2 O\/ rl; Patele © )
« 98
£'(¢, 0) =0 (6.59b)
lim (g, n) =1 (6.%9¢)
N ®

Similarly, from the definition of g, namely, g = H/He, the boundary con-
ditions given by (6.20) become

H
z(8,0) = _H_w - 8, or {;:,(!, 0) - 3,", (6.608)
e
lim g(¢, n) =1 (6.60b)
LR ded

B 2




6.4 Transformation of Eddy-Viscosity Equations

The eddy-viscosity term appearing in the momentum equ-iion (6.51) is a
function of flow=-field quantities and must be transforued. The turbulent
Prandtl number, on the other hand, is assumed to be a constant and therefore

is not transformed.

Using (6.35), (6.40a),(6.48), (6.50), and the transformation given by (6.57)

transforms the expression for the inner eddy viscositr given by (6.2L4) to

22, M2y e 1 N
€i=(p/0e) k1(2§) r " ‘\fT N dﬂ) l - GXP‘_(—) D",/O
0 r
1}
(28) /2 k £ 1 . 2
.l uw ] /pe/p:l;—d"}]
0
(6.61)

Using (6.58), the relation given by (6.57), and the definition of dis-
placement thickness, namely,

v | pu e [ 1
o=/ Q- peue)dy gy o“/ N (pg/p = £')dn (6.62)
0

transforms the expression for the outer eddy-viscosity given by (6.27) to

P 1/2 /Yl Pe 1 = rh'oe 1 -> } J
€O=0.008h 5 (2§) Lil —erf SK\J TTdn \j p——kdq - 0.78
e 5 r o r
00
j —l; (o /p = £1)dn (6.63)
s h

6.5 Fluid Properties

Fluid properties that appear in the momentum and ecnergy equations are

density (o), viscosity (u), specific heat at constant pressurv (cp), and ther-

mal conductivity (A). The la‘ .er appears in the cnergy equation through the
laminar Prandtl number, Pr, defined as




Pr = —£ (6.64)

These fluid properties, which are assumed to be functions of temperature only,
are given by the following formulas [23] for air:

5

eo(T) =) AT (6.65)
i=0
5 .

w(T) L Ai+lTl (6.66)
i=0

NT) = ule, + £ R) (6.67)

where R = 1T16 lb{.-ft/lbm-deg R and the A's are different for cp and u.
By means of (6.05), specific enthalpy can be expressed in the form

6
n(T) = L AiTi (6.68)
i1

This relation is necessary because, once a solution of the energy equation is
obtained, the temperatures are required in the calculation of the new fluid
properties. The coefficients of these polynomials are given in Table I.

In addition to the relations given by (6.65) through (6.68) it is also
necessary to have the relation of density to temperature. This can be obtained
from the equation of state and from the assumption that static pressure re-

mains constant within the boundary layer.

e (6.69)
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6.6 Overall Method of Solution

In previous studies[7 through 13] the method used to solve the momentum
and the energy equations was based on ideas originated by Hartree and Womersley
{24]. It consists of replacing the &-derivatives by finite-difference relations
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while retaining the n-derivatives. In this way, a partial differential equation
at a given §-location is reduced to an ordinary differential equation that can
then be solved by various integration techniques or by finite-difference tech-
niques, in either nonlinear or linear form. In the previous studies, this ap-
proach is used quite successfully in the solution of the equations of both in-
compressible and compressible boundary layers by an integration technique.

The momentum equation is solved in its nonlinear form.

When the same method is extended to the solution of the equations of the
incompressible turbulent boundary layer, the two chief disadvantages of the
method become quite pronounced. First, computation time is too long. This is
due to the greater thickness of the turbulent boundary layer and to the much
greater variation in the transformed velocity gradient of the turbulent boundary
layer. For example, for a laminar boundary layer the transformed boundary-
layer thickness, W’ is about 6, and the transformed velocity gradient at the
wall, x‘;", varies between O and 2. On the other hand, for a turbulent boundary
layer the transformed toundary-layer thickness may be 130 or more, and the
transformed velocity gradient at the wall may vary between O and 30 or more.
The old shooting method, which is based on the cut-and-try technique, thus has
& much bigger range to search in meeting the boundary conditions. Second,
accuracy is reduced when small step sizes are used in the streamwise direction.
This is a serious problem, because short steps are essential near separation

or in any region in which changes in the outer flow take place rapidly.

To overcome both of these disadvantages, the momentum equation is lineariz:d
and the integration method is replaced by an implicit finite-diff:rence method
containing a variable grid in the n-direction. The previous technique of re-
placing the &-derivatives by finite-difference relations is retained. Solution
of the resulting algebraic equations in both momentum and energy equations is
obtained by the Choleski matrix method [25].
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6.6.1 Solution of the momentum equation.

6.6.1.1 Finite-difference representation of t-derivatives. With three-

point-finite-difference formulas for the f-derivatives at ¢ = gn (€.51)

becomes
]

[(1 + ¢ (1 + §>r"] +£ 1"+ B[——ES - (r')2] - (6.70)

n

= ' ' ' ' _ e
= 2§n[fn ( 150+ Aofn gt Aifn-2‘> e (51fn * Rt At >J

vhere the coefficients Al, A2, and A3 are as follows:
For three points:

AT f e (6.71a)

n n-1 n n-2
!n =&
-2
A, = - 2 (6.T1b)
N O L C )

A %~ b

e O N | TR

n

;) (6.T1c)

ne=-

At ¢ = {n’ the quantities Al, A2, and A5 are known, and the quantities

having the subscripts n-1 and n-2 are known functions of % from solutions

obtained at the two previous stations. Thus, at ¢ = gn, (6.50) is an ordinary

differential equation in 7. There is nc problem of starting the solution,
because the terms with t-derivatives disappear since ¢ = O. At the next sta-
tion, gl, the three-point formules are replaced by two-point formulas; at all

stations farther downstream the three-point formulas are used.

For two points:

1 1 ;
A, = et A, = - A, =0 (6.72)
1Ty - e T T

£.0.1.2 Lincarjzation of momentum equation. As is stands, (6.70) is an

ordinary nonlinear differential equation of third order, and with boundary
conditions given by (6.%9) it is difficult to solve. In [7 through 13) this
equation is solved juite satisfs-torily for laminar and incompressible turbu-

lent boundary-layer flows in its nonlinear form; here it is solved in a lincar
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form in order to speed up the computations and to be able to take smaller step
sizes in the streamwise direction.

Two different linearization techniques were used to linearize (6.70). The
first one is based on the quasi-linearization technique [26]. If (6.70) is
written in the form

S(f’ 3 P AL o L LS §) =0 (6'75)

and expanded in a Taylor series around a known solution designated by subscript
O,
SQL §L ga
— Tee . fEYY e . o8 | ]
g =8,"% (f la ) f"')+ (£ £ )\ f"} + (r fo)< r*

/3)
- JTh
+ (f ro)\%@O + higher order terms (6.74)
the following quasi-linearized equation is obtained:
' + F o't + E o' + E = o
E\9 o 5" + E9 = Eg (6.75)
where @'s are the perturbation quantities defined as
Q)=f—fo, ®'=f'-f('), etCo
Note that in previous studies, @'s are used to denote translated stream
function f's and should not be confused with the perturbation terms that are
denoted by @'s in this study. The latter are used for what are commonly called

€'s, because ¢€'s have already been used to denote eddy-viscosity terms.

The coefficients E, are given by

J
B =+ DX (s L) (6. T6a)
132 = [(1 + T:')ek Co(l + -‘; )O]' + L+ 2;(Alfo+ A2fn-1+ Ajrn_e) (6. 76L)
I~:3 w - e[r(; B+ g(2Alrc') AL L+ Abf;l_?)] (6.76c)

PRFERRpees ~
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Ey = £8' (L+284) (6.76a)

~

= - )k E tee T2k E H _
35 ==(1+1t) Co(l e )ofo (1 + t) Co(l = )o] TS i1 e

= B [(p,/0), = (£2)%] = 26[£3(A 22 + Ayt2 | + Agt? )

- f;'(Alfo +ASL L+ A3fn_2)] (6.76e)
When (6.75) is solved by the finite-difference method to be described later,
successive iterations on f;" cause oscillations in f: and convergence is
not obtained: On the other hand, (6.75) shows no oscillations in f, for
laminar flow. For the latter case the convergence is fast (quadratic), and the
results are very satisfactory. However, unlike the old shooting method used in
previous studies, this method gives results that indicate that much finer
spacing in the streamwise direction is necessary to obtain results comparable
to those of the old shooting method. That is to be expected, since with finer
spacing the difference between the calculated and assumed solutions (t‘o and its

derivatives) decreases.

The second technique used to linearize (6.70) is in principle similar to
the one used in the energy equation in previous studies (see [11],for example).
In this case, certain terms that make the equation nonlinear are assumed to be

known from previous iterations, that is,

*

Since the previous studies have indicated that the greatest error usually
appears in t‘;" , 8gain successive values of f: are used 1or the convergence
criterion; that is,

™ -
W, W

Q+l Q

<7

where 7 1is a prescribed value and Q denotes the iteration number.
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{(1 + e (1 + 5 )or"] N B[(oe/o)o - f;,f'] = (6.7T7) »

L} L} L} ] — | B )
2‘lfo(“lf AT P AT 5) = N (R TR AT ot Aafn-e)]

The subscript o denotes that the function is obtained from a previous itera-
tion. For simplicity, the subscript n is dropped. Equation (6.7T7) can be
expressed in the same form as (6. 75), where again the @'s are the perturbation

quantities defined as before. However, the coefficients E, now are given by

J
E =1+ 1)K c_(1+ E ),
E, [(1 + D c (14 g )o]' ‘1
Ey = = Bf} — 24fA) = — £} (B+ 2¢ Al‘, (6.78)
E, = 2t £!'A
Eg = = Blo /o), + 2CITS(A L0 | + Asf] o)= £0 (AL, + AT o))
S e B

Again, when (6.75) with the coefficients defined by (6.T8) is solved by
the same finite-difference method as before, oscillations in f;" continue
and convergence is not obtained. On the other hand, the results for laminar
flow indicate that even though the convergence rate of this linearization method
is not as rapid as the other one, this linearization methods shows much less
sensitivity to streamwise spacing and the results are as accurate as the other
one. Furthermore, when a 3-point mean of the eddy-viscosity expression appear-
ing in (6.78) is taken in the n-direction and a 2-point mean of the coefficients
given by (6.7T8) is taken in the ¢-direction, oscillations in f;" stop and ex-

cellent convergence on f;" is obtained.

6.6.1.3 Variable-grid spacing in the 7-direction. From a computational
aspect, a turbulent boundary layer presents a much more difficult problem of

calculation than a laminar boundary layer. Consider, for example, an




incompressible turbulent flow. The skin-friction is appreciably greater than
it is for laminar flow. This means that /dy is greater. To maintain com-
puting accuracy when du/dy is large, short steps in y must be taken; when
it is small, longer steps can be taken. Therefore, near the wall the steps

in a turbulent boundary layer must be shorter than they are in a laminar layer

under similar conditions. In the outer region, the expression for the eddy

viscosity can be written as (see 6.27)
B —2 - 0.0168 (ofo,) R (6.19)
He e’ g*
where R , 1is defined as peueb*/“e and 7 1is assumed to be unity. Since
R, myseasily exceed 10,000, eo/ue may easily exceed 100. This part of the
bgundnry layer then behaves like that of a highly viscous flow (o0il, for example),
and the t‘hickness of this part becomes very great. On the whole, the turbulent
Loundary layer is something like a cold oil flowing past a hcated wall. Thus
it can be seen that the turbulent boundary layer is characterized by great thick-
ness; but, in spite of that, the steps near the wall must be shorter than for
laminar flow. As a result, if steps of constant fn-spacing are used, far more
are required than are necessary to solve a laminar layer, nor will ordinary

s.~'ing improve the situation.

A possible solution of this problem is to devise a simple variable-step
system that has short steps near the wall, which lengthen with distance from

the wall. A promising idea, illustrated in figure 5,is a grid whose spacing
A is such that the ratio of lengths of any two adjacent intervals is a constant;

that is, h, =K .

following formula:

The distunce to the i-th grid line is given by the

i
= K - =
qi = hl\K___l> i = O, l’ 2, j, seoe N (6.&)

There are two parameters: hl’ the length of the first step, and K, the ratio
of two successive steps. A number of useful relations for this system can be

derived, but the following is of particular interest:

K = % (6.81)
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Figure S.- Finite-difference variable-grid system in the n-direction.

Suppose the boundary layer has a thickness N, = 100. Assume that an error
analysis shows that h, must be 0.1, but that it also shows that hi(= h,)
could be 2, What is K? It is

_lOO-O.l _ ° _
TR X R

and 157 steps are required for the traverse. At a constant step length of 0.1,

which is based on the wall accuracy requirements, 1000 steps would be required.
In the usual problem; the value of K lies between 1.0l and 1.02, Figure 5
accurately represents the spacing for K = 1.07, a grossly large value. The spa-
cing in the $-direction is arbitrary.

0a6.1.4 Method of solution. An implicit finite-difference technique is
used to solve (6.75). Figure 6 shows the finite-difference molecule selected.
The variable-grid differentiation formulas for this molecule, as well as for a
3-paint molecule that is used in the energy equation,are de~ived for the Lagrange

interpolation formula and are given in Appendix C (see also [27]). By using
the first-, second-, and third-derivative formulas at point (n, 1), (6.75) can
be written as follows:
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* (n: i+2)

b (n) i+1)

— (ns i)
(n-2,1) (n-1,1)

(n’ i'l)

(n, i-2)
o=

¢

Figure 8.- Finite-difterence molecule for the momentum equation at (n, i).

ot Gy Bt @y ¥ MG ol | L 25 35 ) e RS2 (6.82)

i-21 27 1

- E E
2 2 30
+ |6ey K—Kzal) + 2§h Ka, (1 - Ka, - ) -thi_ Ka] (6.83a)

g E
) - e 2 — Ka — KnoeiC— b
G, = R 6(al+ K 1(2 K?al)+ 2 El hi-?_K(al Kal Khl—xz K2al+ K al)
E E
) L
+ 2 h° Ka (K+ Ka.—a —1)+———] (6.83b)
E, 1-27 1 1 1 E\Bgh,
2P6(&-K2-K2a )+2E—2h Ka (lC?—a—l)+Ezh2 KhaeJ (6.83c)
R | 1 ! 1 E 1-27 1 '
B, | E E
2 -K - 2 3 (ke — 8 — 212 K
5 6K(1 - K nl) +2 E h K (m1 a, 1) + E, hy K al] (6.83d)
%
(6.83%)
ERh _,
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- B_|6( +K-K2)+2E—2h K(a—Ka-lCe)-Ezh2 K’a ] (6.83¢)
By = Bglol8, E M2t By E, "1-2% d

The eddy-viscosity expressions appearing in the coefficients E5 and Eh at
(n, i) are taken as the 3-point means of the eddy-viscosity expressions in the

n-direction; that is,

y - L
(e. ) 3 te €i+l] (6.84)
This averaging process was introduced in order to stop the oscillations in f:

and cause the iterations to converge.

For each point (n, i) at station i, an algebraic equation of the form of
(6.82) is written, yielding N — 3 algebraic equations with N unknowns. The
other three equations are obtained by considering the following finite-differ-
ence molecule at (n, N-1) (sce figure T) and by the boundary conditions given
by (6.59).

‘ 1 (n, N)

e ® (n: N‘l)
n |(n-2, N-1) (n-1, N-1)

(n) N'2)

(n, N-3)

(n’ N'b)

¢

Figure 7.- Finite-difference molecule for the momentum equation at (n, N-1).

By using the variable-grid differentiation formulas at point (n, N-1), (6.75)
can be written as follows:

WY Proa®ver b Onea®vee t T ®es Y M ®es T ey (6.85)
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where B 5 E !
Fh-l RN [6(& + Kh + K-k )+ 2-— hN hK(a a + xa K?a + K?a —-K 8- K')
=1 %
E E
PP A 4 ]
+ K'(a.a.— K a_a a.— Ka. ) + o———m (6.86a)
E, Byii B, s T e ass i s iKY BE N,
G -—BL 6(a.+Ka—K3)+2E§ K(a.a - Ka -Ka)
N-1 TR (P B B N-u(%1%

=

_ Ef hﬁ_u(xhalag)] (6.86b)

A B“— [6(a f ROz = =y la-Kay, —K0)-2 = h.;i_h(K5a2)](6.86c)

B E E
My.y = _%l. [61((9.1 + K=K+ 2 ﬁ hN_uK3(a.l— Ka- ) - ﬁf hﬁ_hl{6al](6.86d)
>
M1 T ER R (6.86¢)
Ea T
Ry.p = Bg| 6l Ko+ K) + 2 52 hNe(xaa+1€a+xa)+Ethx ] (6.86¢)

By using the first-derivative variable-grid differentiation formula at point
(n, 0), the boundary condition given by (6.59b) can be written as follows:

P+ F95 + 6o, + Lg = Ny (6.87)
where
By
Fl = ? &18.3 (6.88a)
B
G, = fnf a8 (6.88b)
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I = —Eg a.8.8
1 Rl 1255
al
Ni -'ﬁz-(ala2+ ala5+ a2a3+ a.la.aa})fw - [Il(fo)l +
Gl(fo) + F1 (fo)3+ (fo)h]

B, = Bpges

The term fw is

transfer.

given by (6.59a).

(6.88¢)

(6.884)

(6.88e)

It is equal to zero when there is no mass

Similarly, by using the first-derivative variable-grid differentiation

formula at point (n, N), the boundary condition given by (6.59c) can be written

as follows:
QN +

where

My =

.

' “?v-uRN

RN = Bs(KBalaea + K&a a_+ K5a a_+ K6a a

Fy®y-r Onveot Enfy-st vy = Ny

S e e sl

(Fy (e )yt Sy ) yoat By Dyst Ty(E )yt (£0)y)

3

)
X ala.ea.3

273

173

172

(£.89)

(6.90a)

(6.90b)

(6.90c)

(6.904)

(6.90e)

(6.90f)
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At station n, (6.82), (6.85), (6.87), and (6.89)form a system of N linear
simultaneous algebraic equations with N unknowns that can be represented by
a matrix equation of the form A ¢ = N,

The Choleski method [25) is used to solve (6.91). The matrix A is expressed
as the product of a lower triangular matrix L and an upper triangular matrix

U; that is
™ 1T r n
X
X
X X X
[A] = SO & « e e

> X >
T T

| - a - R
1, 6 F 1 ? Ny
12 G2 F2 1 P N2
; My I3 Gy Fy P Ny
' M O G R 1 “ N,
3
My-z Iyes Gyos Fyos 1 -3 Ny-s
Mo Inoo Oyop Fyoo 2 -2 Ny-o
Mi-1 In-1y Ohep Py 2 MN-1 Ny-o1
W Iy G K 1 Ay By
(6.91)

(L.92




so that (6.91) becomes

LU®=N (6.93)
If (6.93) is written in the form

LY

"
=

(6.94)

where

Uo=1Y (6.95)

then the method of solution is apparent. The two triangular matrices L and
U are found from (6.92), the column matrix Y from (6.94%), and the column
matrix ¢ from (6.95).

6.0.2 Solution of the energy equation.

6.6.2.1 Finite-difference representation of &-derivatives. The method

of solution of the energy equation is similar to that of the momentum equation.
Apain the &-derivatives are replaced by finite differences that are defined
by (6.T1). Thus (6.52) is written as

(Pe*)t + (R) e + (P5) g = (P,) (6.96)
where t“ ~efficients Pj are given by
P - (2 + Ty % (1 + 5% (6.97a)
oy
Py= '+ 28(A L+ AL )+ AL ) (6.97v)
PLi= = 2E i A (6.97c)
P, =28 £ (A A.p )—V(1+?)2kci(1-l—)r'f"'
bom s 2Pl T P3bnep [ Fr

H
e

(6.974d)
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6.6.2.2 Method of solution. Again, an implicit finite-difference method
is used to so.ve the energy equation. Figure 8 shows the finite-difference

molecule selected.

r (n) i+1)

(n, i)

(n-2, 1) (a1, 1)

(n, i-1)

Figure 8.- Finite-difference molecule for the energy equation at (n, i).

By using the firstederivative 3-point \..:able-grid finite-difference formula
at point (n, i), (6.96):an be written as follows:

Bg4p * 5i8; * We, 5% i=1,2, 35¢ee, N=1 (6.8
where
1 2 2
S; = § |Pgt PoAN (1 =K) + AN, ) 11\1}((1 + K)(P); ; + AL = K)P)
+ A5(1 + 1()(Pl)i+l }] (6.99a)
Al '
W= s [}si_liLAlK(2 + K)(P)), ;= AK(1L = K)P + A5K(Pl)i+l} - PeK]
(6.99b)
Py,
Zi = T (6.99C)
J o)
v, = Ajhi_l[hi_l-kAlK(Pl)i_f A2(1 - K)Pl+ A3(1 + 2K)(Pl)i+lj +P,
(6.994)
PN ~L-M . - - 1
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Again, for simrlicity, the subscript n is dropped. In solving (6.98), values
of f and its derivatives determined from the previous solution of the momen-

tum equation and fluid properties determined from the previous solution of the

energy equation are used. Details of the iterative procedures for solving both
momentum and energy equations are given in Section 6.6.3. With these proce-

dures, (6.98) is linear and g 1is the only unknown.

For each point (n, i), at station i an algebraic cquation of the form
of (6.98) is written, yielding N-1 algebraic equations with N-1 unknowns.
The function g at N is known from (6.60b), and g at the wall is known from cne
form of (6.00a), depending on whether the temperatur: or the heat transfer is
specified at the wall.

Case 1: By is known.
For i =1, (6.98) becomes

+S +Weg =2 (6.100a.)

< R |
and, since g is known, it can be written as

+s Z-Weg =2, (6.100b)
Er ¥ 918 T HTNME T4 »100b

Case 2: ¢ is known.

]
w

For this case 6y is unknown, but since a& is known, g, can be ex-
pressed in terms of g& and gi's by using (6.100a) and the first-derivative
variable-grid differentiation formula at point (n, 0).

gy = =h|B (2 + K)g, + By(1+ K)g, + B3g2] (6.101)

Thus, by eliminating g from (6.100a) and (6.101) and rearranging,the following

equation is obtained:
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. WB,(1+K) -8 8 (2+K) - W5y + Z,hB (2 + K) L
& WB, - B (2 + K] & hIWE - B2+ K] 1

(6.102)

The system of equations given by (6.98) is also represented by a matrix
! equation similar to (6.91), and

P 17 1 e -

¥*

5 1 &) 2y
W, 5 1 €> Zs
LB A €3 23

. . L] . .

= (6.103)

Wyo Syo t EN-2 N2

Wne1 Sn-1 eN-1 Iy~ t ]
- | u L}

is solved by the Choleski method described in Section €.6.1.4, In the first
row of (6.103), the asterisks on the coefficients S1 and Zl indicate that
they are dete:mined by*the boundary conditions at the wall. When 6y is
specified, S, and *zl are defined by the coefficients of (6.100b), and when

*
g& is specified, Sl and Zl are defined by the coefficients of (6.102).

6.6.%, Outline of procedure for solving momentum and energy equations simul=~

taneously at § = ‘n'

The general method of solving the momentum and energy equations at station

n is described in Sections 6.6.1.4 and 6.6.2.2, respectively. The procedure

for solving both of these equations at station 1n is discussed in this section. N
Consider the case when the program is solving the momentum and energy equations

at station n. Values of f and g and their derivatives at all previous

stations will be known. In addition, the fluid properties are known up to

station n. Calculations start from the momentum equation. Before the momen-

tum equation can be solved, it is necessa:y to establish the inner and outer

regions. Since the eddy-viscosity expressions contain terms like f" and 6*,

these two regions are not known until a solution of the momentum equation is

generated. Thus an iteration process is necessary. For the first iteration,
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5 and " are .btained from the final solution at station n-1, and inner

and outer regions are established by (6.28). With this information, the system
of equations represented by (6.91) is solved by using the fluid properties from
the n-1 station and f and its derivatives from the n-2, n-1 stations. Once
(6.91) is solved, new values of f are obtained from ¢'s and f's. The first
derivative of f is subsequently calculated from the values of f, the second
derivatives from the values o. f', and the third derivatives from the differene
tial equation, (6.75). A solution at station n for one iteration is then
defined as the averages of the calculated values of f and its derivatives

and previous values of f &and its derivatives; that is, the values of f and

its derivatives are obtained from

& 1
= é- l(fo)Q + (fO)Q+l J’ e = 5 L(f(;)Q + (fC'))Q"’l], etCo’

where Q is an iteration number. This is necessary to stop the oscillations

in f;.

After a solution of the momentum equation is obtained in this manner, the
values of f s and their derivatives from this solution are used to solve the
cnergy equation. Again, the fluid properties from station n-l are used.
Once (6.103) is solved, fluid properties are obtained for that particular solu-
tion Ly converting the total enthalpy to static temperaturc, and inner and
outer regions for the next solution of the momentum equation are established.
The conversion of enthalpies to temperatures is necessary because the fluid
properties riven by (6.65), (6.66), (6.67), and (6.69) are expressed as func-
tions of temperaturc. The procedure of calculating temperatures from the
enthalpies is as follows: From the steady-state energy equation, the total
enthalpy H 1is

H=h+zu (6.104)

By using the definition of  and the transformation given by (6.58), equa-
tion (6.104) can be written us

h =g H, —%ui(f')? (6.105)

L i ﬁ'm

- o s




Since g is known from the solution of the energy equation, f' is known from
the solution of the momentum equation, and He and u, are given, the right-
hand side of (6.105) is known. Equation (6.105) is effectively a sixth-degree
polynomial given by (6.68). Rewriting (6.105) and denoting it by F gives
= - l 2ip1)2 =
F=h-gH +Zulf )T = F(T) (6.106)
The Newton-Raphson method is used to solve (6.106). An initial temperature,

Tl’ is obtained from the perfect-gas relationship; that is,

1 | 2, \2
Tl = -g g He - % ue(f') ] (6.107)

3

2
where Cp fer air is 6.035 x 10” ft“/sec-deg R. A new temperature then is

calcu'"’ 1 by the formula
F(Tl)

1

(6.108)

where F' is the derivative of F with respect to T. Once T2 is obtained,
the same procedure can be repeated and new values of T can be obtained until
the difference between the ccnsecutive values of T 1is less than 7y, where 7

is a small number.

Once the temperature at each point within the boundary layer is known, the
fluid properties are calculated from (6.65), (6.60), (6.67) and (6.69).With these
newly calculated fluid properties and with the values of 5 and f" from the
previous solutioun of romenium equation, inner and outer regions are established
and the momentum equation and the energy equation are solved in succession.

An iteration procedure based on the convergence of f; is followed. The itera-

tion process continues until either
1" 11
|(e0gunm (20| < 7

or

max
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where 7 is a prescribed welue ard Q denotes the iteration number. A
typical value of Q is 6. Once either of these conditions is satisfied, the
program proceeds to the next station. Figure 9 shows the flow diagram at

station n.

-
Calculate fluid properties Solve Momentum Solve Energy
and establish inner, outer Equation —1 Equation
regions from Sta(n — 1) I
r— e . T — T T T— r
| | Calculate new fluid |
properties based on the o] Solve Momentum o Solve Energy |
| | last iteration and establish Equation Equation |
| | inner and outer regions |
| '
g S
Repeat this cycle until
"
(£) =) |<7 or Q=
Wi v Q‘m.'.ix

Then proceed to station (n + 1).

Figure 9.- Flow-diagram for solving the boundary-layer equations at station n, §=§,.

As the calculations proceed downstream, the boundary-layer thickness in-
creases. Since at station n the initial values of f and its derivatives
are obtained from station n-l, it is necessary to make an assumption for these
values for 1> (m)n-l’ where (TL)n-l is the transformed boundary-layer
thickness at station n-1. For this reason, at station n the values of f
and its der.vatives are obtained from station n-1 up to 1= (’L)n-l' For

i i = - +
n>(n,),_y» f is obtained from f = [n (W)1*
to be unity, and f" and f£''! are assumed to be zero (see figure 10). The

_1(7L)], f' is assumed

i o%




e e et

latter assumption is permissible, since f" and f''' approach zero as
n-=1,.

edge of the
boundary layer

: [['L:'n a {TL:II'.-:I. * fh-lllrh}]’ ol PR LIRS & P -

pn > ( rh\n-l

Ff [{‘I}I'I- {FL}D*J.. rn'l'['fh”, " _:' e T L J

_r, r‘l I"'l, r’l'l

l - rn_lf"]_'.'. o=, e r‘.lfij LI f’:l:!f"hlli

(),
.
i & ()

()

£et ndy £ s () £t < gt (n), £ s ptrr(n)

r r, rl f!l feee

n- gn

Figure 10.- Diagram showing the method of generating the initial coefticients of the momentum equation
at station n.

6.6.4 Starting the solution at the leading edge or at the stagnation point,
§ =0

At & = 0, the t-dependent terms disappear in both the momentum and energy
equations. Hence the coefficients of (6.75) given by (6.78) and the coefficients
of (6.96) given by (6.97) do not contain &-dependent terms. In addition, the

flow at this zero-station is assumed to be laminar, because the eddy-viscosity

and turbulent-Prandtl-nunber terms are zero.

The procedure of solution requires that the momentum equation be solved
first, but to do so requires values of the fluid properties as well as the
initial values of f and its derivatives denoted by the subscript o. The
latter values are obtained by the old shooting method of previous studies

[7 through 13j. The fluid properties are obtained by assuming & linear tempera-
ture profile of the form

-3
]

a + by
which becomes

L=}
"

T+ (T =T )—‘ql.- (6.109)
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ty assuming T(o) = T T(7,) = T,

After the first solution of the momentum equation is obtained by (6.91),

new values of f and its derivatives, together with the fluid properties ob-

tained by a linear temperature -ariation, are used to solve the energy equa-

tion. Again, once (6.103) is solved, fluid properties are obtained for that

particular solution by eonverting the total enthalpy to static temperature.

These fluid properties are used for the next solution of the momentum equation.

Figure 11 shows the flow diagram at ¢ = O.

Calculate an initial
velocity profile by
the o0ld shooting method

ot g e i -

Assume a Calculate | {so1ve Solve Calculate l
linear ol fluid Momentum | |Fnergy o] fluid |
termnerature properties Equation Equation properties |
profile | |
[ L — J |

|

QY V.

Repeat this cycle until

SO

or Qs G,

Then proceed to station 1.

<7

Figure 11.- Flow diagram for solving the boundary-layer equations at §= 0.




6.7 Boundary-layer Parameters

Once the profiles of f and g and their derivatives are determined at
any ¢-station, the boundary-layer parameters, such as displacement thickness,
momentum thickness, local shear-stress coefficient, local skin-friction co-
efficient, local heat-transfer rate, Stanton number, as well as the law-of-the
wall coordinates, velocity-defect coordinates, and other parameters of interest,

can be calculated. Some of th.se parameters are given by the following equa-

tions.

Displacement thickness:

@

o k
6" = [ (B (- By (6.1108)
0

0 e e
or, in terms of ¢, n=coordinates,

o1 e 7k
5 = = o J ( el £')dn (6.1100b)
!‘0 e e 0

Momentum thickness:

_OOLKPL - 4
e-/( ) (1 T)dy (6.111a)

r p.u
o] ejde e
0

or, in terms of ¢§, n-coordinates,

Loeyf? [
Bl J fr (1 - f') dn (6,111b)
P u
r e e
o) 0
Shear stress at the wall:
Ty T My (3\1/3}')“ (6.112a)
or, in terms of ¢, n-coordinates
k 2 ]
wpr u f
T, = LAl °l/2e L (6.112b)
L(2¢)
i xM . e - AN et L
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Local skin-friction coefficient:
T
W
2 pe e
or, in terms of ¢§, n-coordinates,
_ 1/2 Yo Py .
¢, = (2/8) T 5, M £y (6.113b)

Local shear-stress coefficient for laminar flow, not necessarily at the wall

L
L (6.114a)
Ty, 1 0 u2
2 'ee
or, in terms of §, 7n-coordinates,
1/2 e P '
c. = (2/e)° = w2 (6.114b)
1 ) o)
L e
Local shear-stress coefficient for turbulent flow:
L ET4 ]
c, =-83Y (6.11%)
1T b Y s u2
2 ee
or, in terms of §, n-coordinates,
k
1l/2
o = (2P & g (6.115b)
Tp L o)
e
Total shear-stress coefficient:
1/2 rk P "
c =c +ec =(2/8) s (b + €)f (6.116)
total L T e

Equation (6.116) reduces to (6.113b) at the wall since € = 0 at y = O.

Heat-transfer rate at the wall:

A
- q, = = (3n/3y), (6.117a)

Py
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or, in terms of ¢, n-coordinates,
k

o - To pw“wueHe
VI et S N
Stanton number:
"
8t = "e“e(He — "w) (6.118a)

or, in terms of §, n-coordinates,

k
To P By By .
(6.118
Lo, Pr ()20 - g ) Hew)

8t =

The law-of-the-wall c~ordinates:

% - (2/cf)1/2f' (6.119a)
* (¢c )1/2L d -
. p: | -i-}; (p,/p)dT (6.119b)

0

The velocity=-defect coordinate:

S - /e 1) (6.120)
u

*
Once 5, 6, and c ¢ 8re calculated, some of the other boundary-layer para-
meters such as chape factor H, defect-shape factor G, and defect-displacement
thickness A can be calculated from the following relations:

Shape factor:
*
H=25% /o (6.121)

Defect-shape factor:

00 - o .Y = ;2"
.. /By T VU ] Tsu, -u T o 1\ ¢
= ( m y — i) &TF, (6.122)
0 0 u f

u
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Defect-displacement thickness:

A= / % -u>dy-K—

mn—-

L g

(6.123)
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7.0 COMPARISON OF CALCUIATED AND EXPERIMENTAL RESULTS

The ultimate test of any numerical calculation technique is a comparison
of calculations with exact solutions and with experiments. However, when no
exact solutions are possible, as, for example, in turbulent flows, all that
can be done is to compare the calculations with experiments. For this reason,
& variety of both incompressible and compressible turbulent flows are calcu-
lated by the present method, and comparisons with experiments are made. The
results presented in this report do not represent a finished development, but
are only what has been obtained so far by one particular formulation of eddy
viscosity and turbulent Prandtl number.

In the present method, the solution begins at the leading edge or at the
stagnation point, where ¢§ = 0, and proceeds downstream. At station ¢ = 0,
the flow is laminar, and it becomes turbulent at any specified station where
¢ > 0. In principle, a calculation can be started in the middle of a flow
field, provided that information is available to be used as an input from up-
stream positions in the flow. In some of the experiments, a specific portion
of the flow was instrumented. This is referred to as the test section.
Details of the flow field upstream of the test section were not reported, and
hence it was necessary to add, in effect, an initial length (usually a flat
plate) to the test section. This length was selected to match as well as
possible the calculated boundary-layer parameters, such as © and H, with
the experimental values at the beginning of the test section. For each test
case, details of the matching procedure are discussed separately.

The computer program of the present method has a capacity of 500 points
in the n-direction. There is no restriction of the number of stations in the
¢-direction. For a turbulent boundary layer, the transformed boundary-layer
thickness may be 130 or more, and the transformed velocity gradient at the wall
may vary between O and 30 or more. Since & variable-grid system is being used
in the n-direction and smaller spacing is necessary in the inner region, which
occuplies approximately 10 to 15 percent of the whole boundary layer, it is con-
venient to have a table of variable-grid parameters such as Table II. For the

cases that have been calculated so far, an initial 7-spacing of hl = 0.01
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TABLE II

VALUES OF VARIABLE-GRID PARAMETERS FOR DIFFERENT
n, VALUES (N # 500 POINTS)

o hl = 0,001 hl = 0,01
. hedge S heclge

30 1.01196 0.355 1.00595 0.187
65 1.01384 0.888 1.00807 0.530

100 1,01487 1,466 1.00920 0.922
130 1.01553 2.019 1.00991 1.305
150 1.01583 2.338 1.01023 1.529

200 1.01650 3,248 1.01096 2.178

was found to be satisfactory for the range of f;', between O and 10. For
values of f"; greater than 10, it was found to be necessary to use & much
smaller spacing, n; = 0.001, close to the wall.

In calculating the cases for both compressible and incompressible flows,
it is necessary to transform the x, y-coordinates to §,n-coordinates. For
flows with pressure gradients, it is also necessary to calculate the pressure-
gradient term B, defined by (6.53). The ¢&- and n-coordinates are given by
(6.56) and (6.57), respectively, and reduce to

b4

g - foeueuedx (7.1)
0
= /y ( d (1.2
1 (—257—— | (e/p, )dy )

for two-dimensional flows. The due/dg-term in B is calculated from the

given velocity distribution u, versus ¢ by using a D-point Lagrange deriva-
tive formula
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e n nel °n-1 ne n+l e+l

e A L= S 1 (7.ka)
n-1 = T = B8 = E )

2‘n - ‘n+l- gn-l

A - (T.Rb

n OO P R 3 )
b b

R T (W WY (LT ) (7.he)

For compressible flows, the fluid properties at the edge of the boundary
layer, which are inpute to the computer program, are determined by the test
conditions. On the other hand, for incompressible flows, the fluid properties
are determined at standard temperature and pressure.

T.1 Incompressible Flows

The test cases for which comparisons are calculated by the present method
consist of a variety of flows of widely different character: flat-plate,

~flat-plate with mass transfer (blowing and suction) » equilibrium flows in both

favorable and adverse pressure gradients, nonequilibrium flows in adverse

pressure gradients, separating boundary layers, and recovering boundary layers.

T.1.1 Flat-plate flows.

Flat-plate flow offers an excellent opportunity to compare the calculated
results with experimental results as well as with well-esta.blisﬁed correlations
such as the law of the wall and the defect law. A flat-plate flow was calcu-

lated for a Reynolds number of 107 per foot, by assuming the following values
of the flow parameters:

= 0.38 x 10'61bf-sec/ft2

u =
p = 0,237 x 10'21bf-sec2/ftl‘
u = 1600 ft/sec.



The value of u, was selected merely as a matter of convenience., For this
case, the relations given by (7.1) and (7.2) reduce to

E=puop u, X (7.5)
ou

respectively. From a previous study, [7], the boundary-layer thickness was
estimated, and the approximate value of " at each §-station was determined.
By calculating & and 7, from (7.5) and (7.6), respectively, a flat-plate
flow was calculated up to & Reynolds number of 1 x 109 At station 1, at

=5 x th, the flow was specified to be turbulent. The calculated value
o) Ro at Re = 1.05 x 10° was identical to the corresponding value of Ry
in Table II of [28] The initial spacing, h 1 ves 0.001 8a.rxd K was 1,01487,
Even though the calculations showed that for Rex> 5 x 10~ the valve of "
should have been about 130, the maximum value of 1, was taken to be 100,
because of the computer-capacity limit. Approximately 70 stations in the
8=direction were used. The time per station was approximately 10 seconds.
The results of the calculations are presented in Figures 12a through 12j.

Figure 12e shows & comparison of local skin-friction coefficients calcu-
lated by the present method and those calculated by the Prandtl-Schlichting
formula [29],

cs =(2 loglORex - 0.65)-2'3 (1.7

as well as experimental values and Coles' line [28]. The experimental values
are taken from [28]. The agreement between Coles' line and experiment is very
good. At very high Reynolds number, about 7 x 108, the calculated values of
Cp begin to deviate slightly from Coles! line. This is believed to be due to
the smaller value of N3 ratner than 130, a smaller value of 1,» namely 100,
was used, in order not to exceed the computer capacity. Figure 12b shows a
comparison of calculated shape-factor values with experimental and with those
given by Coles' line. In figures 12c and 12d the velocity profiles are plotted
in law-of-the-wall coordinates. Figure 12c shows a comparison of calculated
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results with experimental and with those given by the universal logarithmic

velocity »

S oL
u* 5075 loglo v + 5.10

at Rax = 106 and J.O' '. Figure 12d shows & comparison of calculated results

with those given by Coles' line. In figures 12e and 12f the velocity profiles
are plotted in velocity-defect coordinates. Figure l2e shows a comparison of
calculated results with experimental and with those given by the logarithmic
velocity distribution[28]
U, mu e -~
- 2.80 = 5.75 log, (k.05 o) (7.9)

at Rex = 106 and 107. Figure 12f shows a comparison of calculated results

with those given by Coles' line. Figure 12g shows & comparison of calculatcd
and experimental sublayer profiles. The experimental data are Klebanoff's
data at Rey = T7,000 taken from [28]. The agreement of results in figures
12c, 12e, and 12g with experiment is remarkable,in that the calculated values
agree with the experimental values point by point.

The argument of the logarithmic term in (7.9) is sometimes written in
*
terms of y/A, since from (6.123) and from the definition of u

ue
el (7.10)
u

It can also be written in terms of y/b. Use of the latter presents the
difficulty of dealing with an ill-defined outer edge of the boundary layer.
On the other hand, A/& = 3.6 [30] for constant-pressure profiles. For flat-
plate flows, ® 1is therefore related to the defect-displacement thickness A
by Ja)

5 = i—z
and can be written in tersm of ¢ £ and 5* as
5*
5 = 0.392837 (7.11)
ocf
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Figures 12h and 121 show comparisons of calculated and experimental [19]
shear-stress distributions and mean-velocity distributions at Reb =T.7Tx 10,
u*/ue = 0,037, The definition of 8 given by (7.11) is used for the houndary-
layer thickness in plotting the calculated results. The shear-stress coeffi-
cients given by (6.114) and (6.115) reduce to

(/)2 g (7.12a)

c = (2/8)1/2 ¢ o (7.12b)
T

respectively. The agreement of the velocity profiles is nearly perfect. The
shear-stress distribution is also very good except near the edge. This is
probably due to the ill-defined definition of & in (6.26), which needs to be
reconsidered. For example, 8 should perhaps be based on the point where

u s 0,995, Figure 12j shows a comparison of calculated eddy=-viscosity distri-
butions across & boundary layer with values calculated from both Klebanoff's
and Townsend's data. The calculated experimental values are taken from [31].
The results indicate that the calculated eddy-viscosity values are in close
agreement in the inner region and are in poor agreement in the outer region.

These results for a flat plate demonstrate that the computing program
has the capacity to handle Reynolds numbers greater than those occurring on
any existing or contemplated aircraft, as well as on most ships.

Js1.2 Flat-plate flow with mass transfer.

The present method is readily applied to flows with surface blowing or
suction. Mass transfer at the wall is handled by the boundary condition
(6.59a), which reduces to .

0 t € EO
fw = 4 vw(g - go) (7'13)
- —'——7 £t > ¢
| ® ue(EE)l 2 °

for uniform, incompressible, two-dimensional flow. In (7.13), §o represents
the distance from the leading edge without mass transfer.
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Ts1.2.1 Uniform blowing (Mickley and Davis). The experimental data used for
comparison with a calculated flow with uniform hlowing were obtained by Mickley
and Davis [32]. Two blowing rates, Vw/“e = 0,001 and 0.002, were studied.

A flat-plate flow was calculated for a Reynolds number of 3.125 x lo5 per ft

by using the values of 4 and p that were used in Section 7.1l.1, with

ue = 50 ft/aec. Thus, an effective length that matched the momentum thickness
at the station where blowing began was determined. On the basis of this infor-
mation, (now & is known), f, was calculated.

The results are shown in figures 13a, 13b, and 1l3c. Figure 13a shows a
comparison of calculated and experimental momentum thickness and local skin-
friction coefficient for each blowing rate. The other two figures show com=-
parisons of calculated and experimental velocity profiles. Figure 13b shows
the calcuiated and experimental). values for vw/ue = 0,001 at x = 38.42 inches
and 83.55 inches, and figure 13c shows the calculated and experimental values
for vw/ue = 0.002 at the same stations. The agreement between the calculated
results and experimental data as shown by the figures is very good.

Tol.2.2 Uniform suction (Tennekes). Experimental data obtained by Tennekes,
[33] and [34], were used for comparison with & calculated flow with uniform
suction. Two suction rates, v w/ue = ~=0,00312 and - 0.001#29, were studied.
A flat plate was calculated fo. & Reynolds number of 8.13 x 10° per ft by
using the values of p and p that were used before, with u, = 130 ft/sec.
Again, as with blowing, an effective length was determined that matched the
momentum thickness at the point where suction began. On the basis of this
information, f w es calculated.

Figure lba shows the calculated values of local skin-friction coefficient
and momentum thickness, together with the experimental date deduced from the
momentum equation, for both suction rates. Figure 1llb shows the velocity-pro-
file comparisons for vw/ue = - 0.00312 at x = 1.25 feet and 2.55 feet, anc
figure llic shows the wvelocity-profile comparisons for vw/ue = - 0,00429 at
x = 0.594 feet and 2.575 feet. The agreement between calculations and experi-

ment is very good.
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To1.3 Equilibrium flows in both favorable and adverse pressure gradients.
All the previous examples were constant pressure flows. The applicability

of any general method depends on the accuracy of the results it gives for a
wide variety of flow conditions; hence it must be tested on flows with pressure
gradients. Indeed, this is a prerequisite for the important problem of pre-

dicting tnrbulent-boundary-layer separation. Because of the interest in equi-
librium flows that are characterized by

5 4
E = — Sp = constant
Tw dx

cnlculations were made for several equilibrium flows. Note that for two-di-
mensional, incompressible flows with pressure gradients the g$-coordinate is
determined from (7.1), which reduces to

X

E = upjuedx'

0

and the f-coordinate is the same as (7.6). The following sections give com-
parisons of calculated and experimental results for such flows.

7.1.3.1 Equilibrivm flow in a favorable pressure gradient (Herring en:
Norbury). Herring and Norbury [35] experimentally investigated two equilihriwn
flows characterized by E's of = 0.35 and — 0.53. The former flow was .alcil-
lated by the present method. A free-stream velocity at the entrrnce tc the
test section of T2 ft/sec and a Reynolds number of 4.5 x 10‘j were the {.ow
conditions used. Figure 15 shows the velocity distribution (obtained vy trial
and error) used to match the momentum thickness at the initial poir+ of tie
expecrimental data, namely, at x = 2 feet. Note that with this eff:chive
length added, the experimental lengths are translated 4.37 feet.

Figure l6a shows & comparison of calculated and experimentn’ momel bum
thickness and shape-factor parameters, together with the experiLental wmwliocity
distribution, and figures 16b and 16c show comparisons of calrwatec aund exe
perimental velocity profiles at x = 2 and 3 feet and 4 and & fcet, re-pec-
tively. The agreement with experiment is wvery good, and th: calcwlaten vuli.es
of velocity profiles correspond to experimental values poiit ty point.

R ————
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Figure 15.- Velocity distribution used to match the momentum thickness for the experimental data of
Herring and Norbury.

7.1.3.2 Equilibrium flow in an adverse pressure gradient (Clauser). In
reference [30], Clauser experimentally obtained two equilibrium flows corre-

sponding to two different pressure distributions, sometimes designated as
P.D.1l and P.D.2, each having & nearly constant value of E. The former flow
was calculated by the present method. A free-stream velocity of 28.3 ft/sec
at the beginning of the flow and a Reynolds number of 1.8 x 10° per ft were
the flow conditions used. Figure 17 shows the velocity distribution used to
match the defect-shape factor, G, of the experimental data, which is reported
to be 10.3. The defect-shape factor was used rather than the momentum thick-
ness, ©, because the momentum thickness was.not reported explicitly in [30].

Figure 18a shows a comparison of calculated and experimental shape-factor
and local skin-friction coefficient parameters, together with the experimental
velocity distribution taken from faired velocity distributions given in [30].
Figure 18b shows a comparison of calculated and experimental velocity profiles,
and figure 18c shows a comparison of calculated and experimental velocity
profiles in the defect-law coordinates, both at x = 200 inches and 375 inches.
The agreement is remarkably good.
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Figure 17.- Velocity distributions used to match the defect-shape factor for the experimental data of
Clauser’s P.D.1.

7.1.3.3 Equilibrium flow recovering to a constant pressure flow (Bradshaw
and Ferriss). An important class of boundary layer flows comprises those that

have been perturbed in some manner and are then allowed to recover to some
equilibrium condition. As an example of this kind of flow, the boundary
layer measured by Bradshaw and Ferriss[36] was considered. A portion of this
flow has an external velocity distribution given by ueo< x-o'255 from x =0

to x = 47 inches and is followed by a zero pressure gradient from 60 inches

n

to x = 95 inches. A reference velocity of 110 ft/sec and a Reynolds number of
6.85 x 10° per ft were the flow conditions used. Figure 19 shows the wvelocity
distribution used to match the boundary-layer parameters at x = 23 inches.
Note that when an effective length is added, the experimental lengths are

translated by 2 feet.

Figure 20a shows comparisons of calculated and experimental momentum-
thickness, shape-factor, and local skin-friction parameters, together with the
experimental velocity distribution. Figure 20b shows a comparison of calcu-
lated and experimental velocity profiles at 47, Tl and 95 inches. Even though
the agreement in momentum thickness is excellent, except for the first station
(x = 23 inches); the results are not as good as in the other flows. This is
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Figure 18.- Velocity distribution used to match the momentum thickness for the experimental data of
Bradshaw and Ferriss.

probably due to the inaccuracy of matching the initial boundary-layer para-
meters at x = 23 inches. Generally, several trial-and-error runs (sometimes
considerably more) are necessary to match the initial boundary-layer parameters,
which are usually momentum thickness and shape factor. At least one accurate
matching of one of th:se parameters, for example, momentum thickness, is neces-
sary before one can check the calculated results with experiment. This is
especially true in an equilibiium boundary layer for which the shape factor is
nearly constant and, vnlike the shape factor of a nonequilibrium flow, it does

not adjust itself. With the velocity distribution shown in figure 19, the

calculated and experimental values are

calculated experimental
6 (inches) 0.216 0.200
H 1.637 1.667
cp 0.96 x 1077 1.45 x 107
E 10 5.14

There is also the possibility that the disagreement was caused by the calcula-
tion of B, which was computed by the formulas given in Section 7.0. Since B

involves the derivatives of velocity, which are inputs to the computer program,
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any slight irregularities in velocity distribution cause inaccuracies in the
B-values. In general, whereas some small irregularities in the calculations

of P do not appreciably alter the results, for flows that are near separatinn,
as this one is, irregularities in B are highly undesirable. For this reason,
it is necessary to calculate the values of B and then fair the results. In
order to improve the results further calculations should be made.

T.1.4 Nonequilibrium and separating flows.

From & practical standpoint, nonequilibrium and separating flows are
perhaps the most important flows, since they are often encountered in the
design of diffusers and lifting surfaces. For this reason, three separate
flows with turbulent separation were considered. The following sections give

comparisons of these flows with experimental flows.

7.1.4.1 Favorable and adverse pressure gradients on an airfoil-like body
(Schubauer and Klebanoff). In reference [37), Schubauer and Klebanoff experi-

mentally obtained a flow characterized by an initial favorable gradient followed
by an adverse gradient and separation. The body is two-dimensional and has a
sharp nose. It is at a slight angle of attack, which produces a pressure peak
at the leading edge that causes transition. Separation is reported to have
taken place at 25.7 feet from the leading edge. A reference velocity of

160 ft/sec (velocity at 17.5 ft from the leading edge) and a Reynolds number

of 1 x lO6 per ft were the flow conditions used. A flat-plate flow was used

to match the momentum thickness of the experimental data at x = 1 foot.

The results are shown in figures 2la, 21b, and 21lc. Figure 2la shows the
experimental velocity distribution and comparison of calculated and experimen-
tal momentum-thickness, shape-factor and local skin-friction parameters. The
other two figures show comparisons of calculated and experimental wvelocity
profiles. Figure 21b shows the calculated and experimental values at x = U
feet (in fevorable pressure gradient) and at x = 14.5 feet (nearly constant-
pressure tlow). Figure 2lc shows the calculated and experimental values at
x = 20 and 22 feet (both in adverse-pressure-gradient flow and conditions

close to separation). The calculated parameters, with the exception of skin-
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friction*, are in excellent agreement with the experimental data except near
separation. The present method predicts separation at x = 25 feet. (Flow is
said to be separated at the last station before the one at which f; becomes
negative; when f;" becomes negative, the calculations are stopped.)

Z.l.h.2 Adverse pressure gradient on & body of revolution (Moses). Another

example of & nonequilibrium boundary layer with adverse pressure gradient is
& flow studied by Moses [38], which was used as & basis of comparison. The

pressure distribution designated P.D.2 was considered. The results reported
are for the cylindrical section only. Because the body studied is & cylinder
of constant diameter, it is not a test of the method for axisymmetric flow,

since with the first theory and with the present transformations, the flow is
two-dimeasional. The experimental separation point was at about 28.8 inches.

A free-stream velocity of 35.3 ft/sec at the beginning of the flow and a
Reynolds number of 2.2 x lO‘j per ft were the flow conditions used. Figure 22
shows the velocity distribution (obtained by trial and error) used to match
the momentum thickness &t the initial point of the experimental data, nemely,

x = 0.

39 9.1 ——== EXPERIMENT
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Figure 22.- Velocity distribution used to match the momentum thickness for the experimental data of
Moses' P.D.2.

*
Personal communication with Klebanoff indicated the experimental wvalues of

these quantities to be in error.



Note that when an effective length is added, the experimental lengths are
translated by 9.1 feet.

Figure 23a shows comparisons of calculated and experimental momentum-
thickness, shape-factor, and local skin-friction parameters, together with
the experimental velocity distribution. Also shown in this figure are the
two separation points determined by the present method. The calculated re-
sults are based on two values of 7 in the convergence criterion for f;',,
namely,

|f&+l' fc'il <7

The results indicated by the solid line in figure 23a are those that are ob-
tained by specifying 7 to be 0.0l, and the results indicated by the dotted
line are those that are obtained by specifying 7 to be 0.C0l. Except near
the separation point, the calculated results are identical and are in excellent
agreement with the experimental values. According to the present method, sepa-
ration based on 7 = 0.001 is indicated at x = 27.5 inches, and separation
based on 7 = 0.0l is indicated at x =29 inches. Figure 23b shows a compari-
son of calculated (7 = 0.001) and experimental velocity profiles at 11, 20,

26, and 29 inches. Again, except near separation, the calculated results are
in excellent agreement with experiment. Figure 23c shows a comparison of
calculated (y = 0.001) and experimental turbulent shear-stress distributions

at 11, 20, and 24 inches. The agreement is fair.

7.1.4.3 Adverse pressure gradient on an airfoil (Von Doenhoff and Tetervin).

A further example of a nonequilibrium boundary layer with adverse pressure
gradient is the NACA 65(216)- 222 airfoil tested by von Doenhoff and Tetervin
[39]. The pressure distribution at an angle of attack of 10.1° and a chord
Reynolds number of 2.64 x 106 was considered. The experimental separation
point was at about 55-percent chord. A free-stream velocity of 211 f‘t/sec at the
beginning of the flow and a Reynolds number of 1l.315 x 106 per ft were the flow
conditions used. A flat-plate flow was used to match the momertum thickness

of the experimental data at T7.5-percent chord, rather than the leading edge as
the origin. This was necessary, since the boundary layer was tripped at T7.5-
percent chord.




The results are shown in figures 2ha, 24kb, 2bc, and 24d. Figure 2ka
shows the experimental velocity distribution and comparisons of calculated
and experimental momentum-thickness, shape-factor, and local skin-friction
parameters. The other three figures show comparisons of calculated and ex-
perimental velocity profiles up to the separation point, namely, at 55-percent
chord. In figure 2ka, the calculated momentum thickness values are in good
agreement with the experimental values. However, the agreement is poor for
the shape-factor values. This is somewhat surprising, because the calculated
velocity profiles are in good agreement with experiment (for example, at 25-
percent chord). Since the shape factor is the ratio of displacement thickness
to momentum thickness, a better correlation in H-values would normally be
expected. The calculated velocity profiles begin to deviate considerably from
the experimental values near separation. Figure 24d shows the calculated
velocity profiles at 50- and 5h-percent chord with the separation profile at
55-percent chord. The present method predicts separation at 54,5-percent

chord, which is in excellent agreemeni with the experimental separation point.
7.2 Compressible Flows

The test cases for which comparisons are calculated by the present method
consist of flat-plate flows with and without heat transfer. Only a few test
cases were calculated, mostly because of the difficulties experienced in
obtaining convergence of the numerical solution of the momentum equation. As
a result, most of the time was devoted to attempts to stop the oscillations and
obtain convergence. In fact, at present the numerical method for compressible
flow still needs to be refined. The calculations for compressible flow use
5.point averages of the coefficients defined by (6.78) in the n-direction.
This scheme was initially used to stop the oscillations, and because of the
limited time the computer program was not refined. That is, the averaging
process in the n-direction was not confined only to the eddy-viscosity terms,

as it was in the incompressible flows.

7.2.1 Flat-plate flow with adiabatic wall.

Three separate sets of experimental data were used to test the present
method for a fiat-plate flow with adiabatic wall conditions. The first set of
experimental data are those of Spivack [LO] at M, = 2.8. The measurements




were made on the flat wall of a two-dimensional nozzle. The flow was calcu-

lated for a Reynolds number of 2 x 107 per f't, by assuming the following

values of the flow parameters:

Mg = 0.376 x lO-6lbf-sec/ﬁ;2
b, = 0.234 x 10-2lbf-sec2/fth
u, = 3170 ft/sec

Te = 530 deg R

H = 8.2 x 10°8t2 /sec?

The value of u, was calculated from the definition of M,
|
u, = 49,1 Me VTe

and the total enthalpy, He, was calculated from

For this case, the transformed x- and y-coordinates are given by the relations
(7.1) and (7.2), respectively. ;

Figures 25 and 25b show the calculated local skin-friction parameters and
experimental values that were obtained from the momentum equation, namely,

Cc

de =
x 2

The parameters are plotted against Reynoclds number based on length, Rex, in
figure 25 and on Reynolds number based on momentum thickness, Ree, in figure
25b. The agreement is very good in both cases.

The second set of experimental data are those of Chapman and Kester [41]
at Me = 0.81, 2.5, and 3.6. The experimental setup consisted of a cylindrical
model with air flowing axially at the outer surface of the model. The experi=-

mental skin-friction values were obtained by a direct measurement of total
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force on the cylinder. The flow was calculated by assuming the following

values of the flow parameters:

g = 0.376 x 10'61bf-sec/ft2
b, = 0.23 x 10'2lbf-se02/fth
T_ = 530 deg R

The values of ue and He for each Mach number were calculated in the same

way as in the preceding case.

Figure 26 shows a comparison of calculated and experimental average skin-
friction coefficients at the three Mach numbers. The agreement is excellent
for Mg= 0.81, but only fair at Mg = 2.5 and 3.6.

The third set of experimental data are those of Matting et al [42] at
Me = 0.20, 2.95, and 4.2, The measurements were made on the flat wall of a

two-dimensional nozzle. The calculations used the values of the flow parameters

tabulated below.

6 2
Me gy X 10 P X 10 Te
lbf-sec lbf-sec2
— T deg R
ft ft
0. 20 0.3/6 0.23k 530
2.95 0.179 0.55 219
L, 6o 0.110 0.93 132

The values of ue and He for each Mach number were calculated in the same

way as in the preceding cases.

Figure 27 shows comparisons of calculated and experimental local skine
friction coefficients at the three Mach numbers. The agreement for Me = 0.20
is excellent, but tor the other two Mach numbers is only fair. Comparisons of
calculated and experimental boundary-layer Mach number profiles and velocity

profiles for Me = 2.95 and Rey = 31 x lO6 are shown in figure 28a and for



Me = 4,2 and Rex = 69 x 106 in Figure 28b. The agreement in velocity profiles

is better tran the agreement in Mach number profiles. However, in both cases
the agreement is only fair.

7.2.2 Flat-plate flow with heat transfer.

Only one set of experimental data, those of Pappas [43], was used for a
flat-plate flow with heat transfer. The test Mach number used in the compari-

son is 1.69. The experimental skin-friction values were obtained from the
momentum equation. Two different ratios of wall temperature to edge tempera-

ture, namely Tw/Te or g, were considered. The calculations used the follow-
ing values of the flow parameters:

u, = 0.376 x 10'6J.bf-sec/1‘:t2
P, = 0.234 x lC-elbf-sece/ftb'
T =530 deg R

The values of u, and He were calculated in the same way as in Section T.2.l.

Figure 29 shows comparisons of calculated and experimental average skin-
friction coefficients for & = 1.70 and 1.61. Figure 30 shows comparisons
of calculated and experimental local Stanton numhers for the same gw-values.
The agreement in both cases is fair. Figure 31 shows a comparison of skin-
friction variation with Mach number. The ratios of local compressible skin-
friction values to incompressible values, namely c f/c ¢ » Were calculated at

several Mach numbers and compared to some experimental résults. The agreement
seems to be satisfactory.
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8.0 CONCLUDING STATEMENTS

A numerical solution of the turbulent-boundary layer equations based on
an eddy-viscosity concept ocnd an eddy-conductivity concept are presented. The
numeri:al method used to solve the boundary layer equations differs from the
one used in a previous study [7] under contract NOw 64-0352c. In reference
[7], the validity of using an eddy-viscosity concept in solving the equations
of the incompressible turbulent boundary layer was explored. The momentum
equation was solved in its nonlinear form by the old shooting method of pre-
vious studies of laminar flows [8 through 13]. The shooting method had proved
itself in accuracy and reliability for laminar flows, and it was therefore
preferred to other numerical methods, which are usually based on linearized
solutions. The previous study [7] indicated that the eddy-viscosity concept,
when used with an accurate technique for solving the boundary-layer equations,
was capable of predicting results that were in good agreement with experiment
and many of the characteristic features of the turbulent boundary layer. The
main ¢ ‘ections to that method were long computing times and restrictions on
the step sizes in the streamwise direction. In the former case, for example,
& typical test case consisting of about 25 stations in the x-direction took
approximately one hour on the IBM 7094 computer. That amounted to about 2
minutes per station. The numerical method used in that study alsn had the
disadvantage that very short steps in the streamwise direction — which are

essential near separation = could not be taken.

For these reasons, when the efforts were extended to the solution of the
equations of the compressible turbulent toundary layer, it was necessary to
use a different numerical method. Almost the same eddy-viscosity formulation
as in [7] was used, except for small modifications to account for the compressi-
bility effects. The results indicate that the present method is very fast. A
typical computation time for incompressible flows on the IBM 7094 computer is
approximately 10 seconds per station, which means that the present method is at
least 10 times as fast as the old method. A typical computation time for com-
pressible flows, on the other hand, is about 15 seconds per station. In addi-
tion to having very short computing times, the present method has no restric-

tions on the step sizes in the streamwise direction; that is, step sizes can



be as small as necessary.

Various incompressible and compressible turbulent flows are cal-ulated
by the present method, and comparisons with experiments are made. The results
for incompressible flows are, in general, very good, and so far the results
for compressible flow are encouraging. More test cases need to be run for
both flows, especially for compressible turbulent flows. The results presen-

ted do not represent a finished development, but are only what has been ob-
tained by one particular formulation of eddy viscosity and turbulent Prandtl

number.
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9.0 TECHNOLOGICAL FORECAST
9.1 Problem

A method of calculating velocity and temperature profiles, skin friction,
displacement thickness, momentum thickness, heat transfer, and the separation
point of the turbulent boundary layers is presented. Accurate calculation of
these quantities can be extremely beneficial to the design of ships, turbo-
machinery, heat exchangers, lifting surfaces, and all types of aerospace

vehicles.

9.2 State of the Art, Solution, and Forecast
{See Section 5.0 of this report].

9.3 Suggestions and Implications

The present method uses eddy-viscosity and eddy-conductivity concepts in
obtaining a numerical solution of the turbulent-boundary-layer equations. The
method of solution has the advantage of being applicable to both laminar and
turbulent flows. Since most flows have a laminar portion in the vicinity of
a stagnation point or leading edge (for example, on an airfoil at high Reynolds
numbers), such an advantage is particularly useful. The present method uti-
lizes the upstream history as the calculations proceed downstream. At any
station, a laminar profile can be obtained by merely setting the eddy-viscosity
term in (6.51) equal to zero.

The present method also has the advantage that various formulations of
eddy viscosity or turbulent Prandtl number can be used with very little change
in the basic method. Since the results presented in this report are obtaincd
by one particular formulation of eddy viscosity and turbulent Prandtl number,
such an advantage may be very useful in improving the results for both income

pressible — where the results are very good except near separation — and com-

*
This section of the report is included in response to the requirements

of the contract.



pressible flows. For example, in the outer region, the present method uses

an eddy-viscosity relation modified by an intermittency factor y to describe

the turbulent shear transport. This relation, suggested by Clauser [5] for
equilibrium boundary layers, is given by (6.27)
*
€, = P k2ue5 Y

where k., 1is a constant of proportionality. For equilibrium boundary layers

2
this constant is 0.018 [5]. In both incompressible and cuupressible studies
here,however, this constant was taken to be 0.0168, the value given in [18].
In this way, (6.27) was also extended to nonequilibrium boundary layers. In

order to improve the results near separation, it is quite possible that the

velocity and length scales, namely u_ and 6*, in (6.27) may need to be
changed. According to a recent study [44], it appears that when different
length and velocity scales are used in normalizing the eddy-viscosity formula
for the outer rcgion, somewhat "ess variation in eddy viscosity from station
to station is obtained than when (6.27) is used. The results of these calcu=-
lations for the experimental data in [44] are summarized in Table III, which
presents the maximum and minimum values for four different normalizations of
eddy viscosity. The first is used in this report and evidently is the worst
of the lot.

TABLE III, EDDY VISCOSITY VARIATIONS

€ € € €
* * ¥ a— “x_
u b u b u e u e
e e
Maximum value 0.028 0.79 0.039 1.4
Minimum value 0.0048 0.26 0.014 0.57
Max/Min 5.83 3,04 2.8 2.75

Another modification of the outer eddy-viscosity relation, which may im-
prove the results, is the use of a mixing length concept, as in the inner
region. Escudier and Spalding [45] have recently studied the distribution of
mixing length in the turbulent boundary layers. The results indicate that for
the outer region of the boundary layer the mixing length is constant and is
equal to 0.075 .



The results for compressible flows indicate that it is also necessary

to make improvements in the formulatinn of the turbulent Prandtl number. Even
though the velocity profiles agree quite well with experiment, the temperature
profiles show considerable deviation from experimental values for compressible
flows, especially close to the wall. These results suggest that it is neces-

sary to use a separate expression for turbulent Prandtl number in each region

and that the initial assumption of a constant turbulent Prandtl number is not

very satisfactory, since the variation of turbulent Prandtl number, especially
close to the wall, is considerable. Figure 32 shows turbulent Prandtl numbers
of boundary layers on a cooled plate [46]. This figure supports the necessity
of expressing turbulent Prandtl number separately in each region.

3.0
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Figure 32.- Turbulent Prandtl numbers of boundary layers on a cooled flat plate, Ma_~ 5.1, (Te -Tw)/ Te ™ 0.35.
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In summary, it can be said that because the results have been so en-
couraging, the work should be continued along these lines.

O e e

.
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APPENDIX A
BEHAVIOR OF THE EDDY VISCOSITY VERY CLOSE TO THE WALL

The inner region of a turbulent boundary layer contains a layer, commonly
called the sublayer, adjacent to the wall, where the flow is primarily viscous,
since all velocities, including turbulence fluctuations, become zero at thLc wall.
This region is not uniform either with respect to time or with respect to dis-
tance along; the wall. In the region y > 61, where 5! is the sublayer thick-
ness, the effect of viscosity in the flow decreases gradually with increasing dis-
tance from the wall until it finally becomes negligibly small. Beyond this
point the flow is completely turbulent. The intermediate region, where the flow
is neither completely viscous nor completely turbulent, is called the transition

region [31].

In describing the behavior of the eddy viscosity wvery close to the wall,
N
one can use the above model and can show that € should vary as y @as y =0

provided disturbances in the bounlary layer are two-dimensional and periodic.

Since

—u'_v'=%g$ (A1)

and if Ju/dy is assumed to be constant in the viscous subl'.ser (this corre-
sponds to a linear velccity distribution), it is only necessary to show that

—u'v', which is proportional to ¢, should vary as y as y = 0.

Consider a two-dimensional incompressible mean flow and a likewise two=-
dimensional disturbance. Assume that the mean velocity U depends only on Yy,
that is, U = U(y), as in parallel flows. It is also necessary to assume that
the pressure in the main flow depends on x as well as on y, because the

pressure gradient JOP/dx maintains the flow. It can be shown that under these

*
The flow in the boundary layer can also be regarded as a good approximation
cf parallel flow, because the dependence of the wvelocity U in the main flow

on the x-coordinate is very much smaller then the dependence on y {29 ].
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conditions the Navier-Stokes equations and the continuity equation can be
written as [29]

g:-’+ug:—'+v'gg-+i—‘§;=vvzu' (A2)
o g v
g).(uL:fg;_' - 0 (AL)

where the primes denote the fluctuations. By differentiatirg (A2) with re-
spect to y and (A3) with respect to x and subtracting the two equations,
the fluctuating pressure term, p', can be eliminated. The resulting expression
can be written as

dw dw 2

2

2 du _
dy
where w, is the vorticity component perpendicular to the plane of motion.
It is defined by

_ov' !
®% "™ TS 86)
Next introduce a stream function representing a disturbance of the form

ia(x - ct) (A7)

v(x, ¥, t) =oly) e

. . . . . 2n .

where @ is the amplitude, a 1is a real quantity defined by B L, A is
the wavelength, L 1is a characteristic length, and ¢ 1is a complex number de=-

fined by a propagation velocity c. and an amplification factcr s that is,
c=c_ +1ic,
5 i

Now, very close to the wall (y - 0), where U and v' are very small, eq.(A5)

may be writter as:
dw 2
qu.v V?cuz* v-z—gz (A8)
y



Since

ar = Y gry)etxtiet) (A9)

v == Qe oo gy)etet) (a10)

the vorticity coniponent ® can be written as

w =-— (¢" - d2 (P)eia(x-crt)= - T(y)eia(x-cr:t)

(A11)

by using (A6). Substituting the expression for w, in (A11) into (A8) and
simplifying gives

=k =~ T=0 (A12)
The solution of (Al2) is

gl 'Vicxcr/v y -i \/iacr/v g
= cle + c2 e

which reduces to

.1 ‘\/iacr/v y

T =cye (A13)

if T is assumed to be finite when y - co. Equation (A13) can be expanded in
the form

acr acr e

Substituting the expression (All) into (All) and neglecting the terms higher
than y2 in (A14) gives

Qc ac 1
fv"—a?cp?cl{l-(l-i) == 1 y2J (A15)

The solution of (Al5) is, using the method of variation of parameters,

ac Qac
R e A ]

(A26)




The constants A and B can be evaluated from the boundary conditions, namely,
v! =u' =0 at the wall. Therefore it follows from (A9) and (A10) that ¢'(y)
and @(y) are equal to zero at the wall. If the constants A and B are
evaluated in this way, (Al6) now becomes

c Qc Qac
L
0= = y2—%(l—i) T:P+El(a?-2i75)y] (AL T)

The fluctuating velocities u' and V' can now be obtained by using (A9) and
(A10) and by considering the real part of the resulting expressions, that is,

u' = Re (dv/dy) , v' = = Re (Jv/x)

Then 8
ut c!( -Lvﬁ 2) cos ax — ¢ t)—}-va& 2 al{x —c_t)
=W T2V Y X T Sy 2 Vv ¥y sinsx=cy J

t

(A18)

A G .

v = Clz% Tz yjcos a(x - crt) + (g— y2 -% -2—; yi)sin a(x - crt)}
(A19)

Therefore, by using (A18) and (Al19) it can be shown that
2r
Qac ac
— Gl L & Lz=D Tyt 1.2 V_r 4
u'v? = = ‘./ u'vt dt N Cl oy 7

should vary as yn as y 20, where n 2 U,

and that ei



APPENDIX B

MODIFICATION OF THE INNER EDDY-VISCOSITY EQUATION FOR COMPRESSIBLE F:

The expression for the inner eddy viscosity given by (6.23) can also be
used for compressible flows if p 1is taken to be a variable and if the ex-
ponential term is modified to account for the heat transfer in the sublayer.
A logical generalization is to consider a Stokes-type flow with the following
conditions:

l. Sinusoidally oscillating infinite wall.

2. Variable u, T, p .

3. Oscillations small enough so that any compressibility effects they
cause can be neglected.

Because of the last condition, the energy equation does not enter into
the problem. For & nonsteady parallel flow, the Navier-Stokes equation re-
duces to (see eq.(5.17) of [29])

PP ) (81)
Introducing the transformation
dy = u dz (B2)
into (Bl) yields o
ou .y (B3)
Jz
To solve (B3), let
u = (z) ettt ) (B4)
Then
R-ioretl o (85)
2 2
a—% Sy Ll ) 3—2 (B6)
dz dz

Substituting the expressions given by (BS) and (B6) into (B3) and rearranging




-92-

gives

2
d—-g--ouiof=o (BT)

dz

Assume that pu 1is averaged over & certain distance, and write the average as
o . Then the solution of (B7) can be written

f=Aexp(l+i)Ve%—° z+ Bexp =(1 + i) %’z (B8)

since V?= ljs—i c
2

Assume that f remains finite as z - 00 so that A = 0. Then substitu-

ting the resulting expression in (B8) into (B4) yields

u = Bexp -Vmeozi'i(ot"'c-\/@ﬂ} (BYa)

Then (B9a) can be written as

— [ —
u=Bexp(-V%z) cos lo't'.'ro:-ve';—cz] (B9b)

or by using the transformation given by (B2), eq.(B9b) becomes

== . —_ Y
u = B exp K—-V% f% cos 'at,+ € -VE?LQJ %1} (Byc)
0] 0]

The expression given by (B9c) can be approximated by expanding w by a Taylor

series around an average value of ., that is,

b om o+ y(dn/dy)+ ... (B10)

If the viscosity in (B10) is introduced intc (B9c¢) and if the se ‘ond-order

and higher order terms of y are ncglected, (Byc) can be written as

' !
uzBexp(-Ey) cos ot + € - 5\)2-‘”’] (n11)
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Equation (Bll) is the same as the incompressible solution except that mean
values of 4 and p are used. A mean value looks more accurate then the

wall value., The mean value of Vv should be that corresponding to the sublayer
thickness.

Since the cosine term is bounded, (Bll) can be written as
UOCBexp(— Eg_Y) (Bl2)

The purpose of modifying the mixing length and consequently the expression

for eddy -riscosity given by Prandtl's formula, (6.21), is to account for the
.ublayer and to account for the transition region between the sublayer and the
fully turbulent part of the inner region. For this reason, Van Driest [1L]
defines the mixing length &s

¢ = k,y[1 = exp(= y/A)]

Because the Stokes effect is localized to a region very close to the wall,
v and p should assume values appropriate to this region. A convenient ex-
pression can be formed by introducir.z wall values, but corrected by a factor

(vw/'v-)l/‘? to account for the small deviation from wall values, a&s fcllows:

; v v \
= yFw) - om (Vo A ee VRE D

The mixing length now becomes

L = kl y{l - exp .\— V-;! %) J



APPENDIX C
VARIABLE-GRID DIFFERENTIATION FORMULAS

The first-, second-, and third-derivative formulas for the variable-grid
system discussed in Section 6.6.1.3 can be obtained in the following way:
Consider the lagrange interpolation formula

n
£0x) = ) £,(e(x) + E(x) (c1)
1=0
vhere ()
4(x) = = x:Tx‘lr'(xi)
(x = xo) cee(x = xi_l)(x - xi+l) Sa. (K = xn)
= (xi - xo)...(xi- xi_l)(xi— xi+l) ...(xi - xnj
and
B(x) = iy 0y

Differentiating (Cl) gives

n
£7(x) Z £(x) £(x,) + E"(x) (c2)
1=0

The equations (Cl) and (C2) are now evaluated for threc- and five-point systems
to obtain the first-derivative formulas for the variable-grid system with three
points and the first-, second- and third derivative tormulas for the variable-
grid system with five points. Figures Cl and CZ show the variable-prid systems

for three and for five points, respectively.

First-Derivative Formulas for Three Points

A K) .2 .
£ (x) = by[=B (2 + K)r, -2 (1+ K)f, = B,1,,)) +(17+)_) b 2(8)  (c3)

K b

. v . e o i n3
1 [=- ¢t - — ar_& s
}i[ Bly I1-‘]. * BQ(l h) xi * biii*l] 0 g (’) (CL)

£} (x)
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Figure C1.-Variable-grid system for threa points.
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- K(1 + K) .2 3
fi+l(x) = hi[le A 132(1 + x)fi+ 133(1 + 2K)fi+l] + _Lg__l h f (¢) (c5)

where 1
B, = (Céa)
1 2 (1 + K)
i
1
B, = = —— (cép)
2 12k
1
1
Boo (cte)
5 hf K(1 + K)
First Derivative Formulas for Five Points
Definitions of new terms follow the formulas
3
(] o = +
fi_z(x) hi_e[Bl(ala2+ 8,85 a233+ ala2a3) fi0* B?a1a2a5fi-1
a.a 8
172735 4 5
+ + —_ ,
+ B3a2a5fi Bha1a3f1+1 B5a1a2f1+2] 7 hy o T (¢)
(Srp)]
3 3 .
|} — — —
1) = hi = BKaar, ,+ BeKe(af' a t a8, ~Kaja,)r
£%
Ka.a
2 172 b 5
+ th a8 f. + BuKzaefo B5K2alfi+?] =T By ! (¢)
(c8)
3 .3 :
1 = -_— —
£ (x) =h] K al[le%i_glr BKaf, + Bj(K2+ Ka—a-1)f
(=S ]
K’ai L -
= B8 T Bl gap By (8 (€9)
\ R T _ \ _ ,
fi+l(x) hi_zh[ ElK a,f . b?K‘ a:’fi-l BBK B f 4 B‘.‘(alag ala‘,\,h
o 3 Kbalad ) .
- a?!(‘— alh )ii’rl + Bsa. a:’iw] - 5o b f (&) (c10)



(x)—h 3[Baax3 +Baa.K2f.+BaaKfi+Bhaaaf

1+2 112 i-2° 27173 Ti-1 "3 273 172737i+1
6
K a.a.a
3 172 L 5
+ B5(ala.21( + a8, K+ a2a51( +a8na 3)f +2 156 hy _of (¢)
(c11)

Second=-Derivative Formulas for Five Points

" _ 2 + + + + +
_2(x) = 2hi_2[Bl(a.l ajt agt a8 e a2a5)f + B, (a. a,t a8t a 9,3)1‘:l -l

+ Bj(a2+ a,+ a aB)f‘ + Bh(a +a

3

f, +B(a+a+a )r

+aa o

3 5) 1-‘2

£2(¢) (c12)

—@ (a. ajt 8)8,+ aa.t aana B)hi 2

" - on° + + + + + +
f‘i_l(x)—.?hi_el([Bl}((al a alae)fi_g Be(alaeK a K+ak+a

2 2 1 ot 8%

1)f -1)f

2 1

+ BB(Kala‘?— a, - al)fi+ Bb(Kag- a,= P Bs(Kal- a 1+2]

+ 315 K2(al+ a,t aj8,= Kalaz)h?_zf'j(g) (c13)

P (x) = ehi_ex[alx‘h(xal a = 1)f; * BKa (K'=a,— 1)1, + B,(a,~ Ka) — KaJ
](2 2 3 K 12
- K- K"al+ K a.l)fi0 Bbal(l Ka, = )ri+l B5 a - Ka - K )fi+2]
X s S0
=K al(l a,~ Ka + l(2)hi_2f (¢) (cak)

- o2 - Ka - —Ka - K -
(x) = 215 KB K (a)~ Ka = )1, ¢ BK(a~ Ka = K”)r; 1+ By(aa,— K,

1+l

o _ 2SN, S
K al)ri+ Bu(alag* Ka, :c?a2+ K‘al K’a = K )f1+1+ B5(ala2+ Ka,

b k) _ D ¢
+ K?al)fi+2 + 5K (a.lae- aaK-a 1(2 a K )hi £7(¢8) (c15)
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?
] -
' (x) = 2hi_2x[alx?(ala2+ Ka + Kzal)f + B K(a ast Ka

i+2 B a1)fi+1

i+2 3

2
+ B3(a2a5+ l€a3+ K a.2)f1+ Bh(a ast Kajat K‘a. a )fi+1

273

+B5(a2a+}(aa+K2a+K2aa.+K3a+Ka.)f

3 2 i+2
+1K3(a.a.K3+aalC?+aa.K+aaa)h 5(g) (c16)
5] 13 23 172%3
Third-Derivative Formulas for Five Points
101 = -
£523(x) = = 6y IR (1 + &yt ayt ag)f, o+ Bylayh aqt ag)fy )
+ B (1 +at aB)f + Bh 1+a+ a5)f1+l+ B5(l +a¢ aQ)fi+2]
+-l—(a.+a+a.+aa+aa+aa)h2 f5(§) (ca7)
10717 27 3 f1teT M1ty fot3/M4ap
XX = = =
£111(x) 6h; ,[B)K(1 + &+ a,)f, + B,(Ka*+ Ka + K-1)f,
+ BB(KB2+ Ka. = 1)ri+ Bh(xa2+ K- l)fi+l+ B5(Kal+ K- l)fi+2]
o K(Ka ast Ko+ Ka +at )h f5(§) (c18)

' - - - -
£ (x) hl_g[BlK(l K Kal)fi_2+ Be(al K Keal)fi_l

+ Byla)+ K = Ko Keal)fi+ B,(a+ K - x2al)r + B.(a+ K - x2)ri+2]

i+l

1 2 .0 2 .5
+ 3¢ Kla)~ Ka — Kal= K- K2a1+ Kjal)hi_g £7(¢) (c19)



- S, W)
£111(x) = 60, [BK(a )+ K 1(2)fi_2+ B, (a+ - K )£, 1+ Byla,t K= k)1,
+B(a.+l€a.+K2—K3)f +B(a+Ka+K2)f ]
I Mt | i+1" P5\EoT By i+2
L, 2
+ -l%- K(a.la2+ Ka,— 1(28.2+ Keal- KSal- K )hi-e fs(g) (c20)

f;_;é(x) = 6b -2[le(a2+ Ka. + l(2)fi_2+ B, (a. + K2a + x3)f B (a. + Ka+ 1(3)1~
3
+ Bh(a5+ Ka_+ lizal)fi+l + Bs(a.5+ Ka+ K?al+ K )fi+2]
lOK(aa.5+Kaa+K2a +K2aa+K3a+Ka)h12 5(;) (c21)

The constants Bl’ Bg, B}’ Bh’ 85, and al, 8,» 8'5’ are given by
1
B, = T-T (c22a)
By 0818583
1
B, = }1——3—— (ca2v)
1, ~K’'a.a
i-2 172
_ 1
i-2 1
B, = - 1*—%—— (c224)
hi-QK ala2
85 = TTI—_ (c22e)
i ?K alaga
L1t K a, =1+ K+K, a3=1+x+1€?+x5 (ceer)
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Figure 12.- Continued. (h) Comparison of calculated and experimental shear-stress coefficient according
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Figure 12.- Continved. (j) Comparison of calculated eddy-viscosity distributions across a boundary layer
with values caiculated from Kiebanotf's and Townsend's data.
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Figure 13.- Results of caiculations for the fiat plate with two uniform blowing rates, v, /ue = 0.001 and
0.002. (Experimental data of Mickley and Davis)
(a) Comparison of calculated and experimental momentum thickness and local skin-friction

coefficient for the two biowing rates.
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Figure 14.- Resuits uf calculations for the flat plate with two uniform suction rates, v,, /ug = -0.00312 and
-0.00429 (Sxperimental data of Tennekes).
(a) Comparison of calculated and experimenta! momentum thickness and local sk n-friction

coefticient for the two suction rates.
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Figure 16.- Results of calculations for an equilibrium flow in a favorable pressure gradient with E=-0.35
(Experimental data of Herring and Norbury).
(1) Experimental velocity distribution and comparison of calculated and experimental momentum
thickness and shape-factor parameters.
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Figure 18.- Results of calculations of an equilibrium fiow in an adverse pressure gradient (Experimental
data of Clauser's P.D.1).

(a) Experimental velocity distribution and comparisons of calculated and experimental
shape-factor and local skin-friction parameters.
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Figure 18.-Continued. (c) Comparison of calculated and experimental velocity profiles in the defect-law

coordinates at x = 200 and 375 inches.
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Figure 20.- Results of calculations of an equilibrium flow recovering to constant pressure flow
(Experimental data of Bradshaw and Ferriss, a = -0.255 -0).
(a) Experimental velocity distribution and comparisons of calculated and experimental
momentum thickness, shape-factor and local skin-friction parameters.
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Figure 21.- Results of calculations for favorable and adverse pressure gradients on an airfoil-like body
(Experimental data of Schubauer and Klebanoft).
(a) Experimental velocity distribution and comparisons of calculated and experimental
momentum-thickness, shape-factor, and local skin-friction parameters.
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Figure 21.- Continued. (b) Comparison of caiculated and experimental velocity profiles at x = 4.5 and
14.5 foet.
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Figure 23.- Results of calculations for a nonequilibrium flow in an adverse pressure gradient
(Experimental data of Moses' P.D.2).
(a) Experimental velocity distribution and comparison of calculated and experimental
momentum-thickness, shape-factor, and local skin-friction parameters.
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Figure 23.- Continued. (b) Comparison of calculated and experimental velocity profiles at x =11, 20, 26,
and 29 inches.
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Figure 23.- Continued. (c) Comparison of calculated and experimental turbulent shear-stress coefficients
at x=11, 20, and 24 inches.
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Figure 24.- Results of calculations for an airfoil with separation (Experimental data of von Doenhoff and
Tetervin, NACA 65(216)-222 Airfoil).
(a) Experimental velocity distribution and comparisons of calculated and experimental
momentum-thickness, shape-factor, and local skin-friction parameters.
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Figure 24.- Continued. (b) Comparison of calculated and experimental velocity profiles at x/c=0.15 |
and 0.25.
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Figure 24.- Continued. (c) Comparison of calculated and experimental velocity protiles at x/c =0.35
and 0.45.
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Figure 24.- Continued. (d) Comparison of calculated and experimental velocity profiles at x/c = 0.50,
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Figure 28.- Comparison of calculated and experimental boundary layer Mach number profiles and velocity
profiles (Experimental data cf Matting et al).
(a) M=2.95, Re, =31 x 105.
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Figure 28.- Continued. (b) M=4.2, Re, =69 x 106.
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