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PREFACE 

This report is written in fulfillment of the requirements of U.S. Navy 
Contract NOw 66-032hc.    The contract is a "level of effort" type, and the 
objectives are covered by the following work statement, taken from the contract. 

"Develop and verify an accurate, general, and rapid method of calculating 
axially symmetric and two-dimensional turbulent boundary-layer flows. The 
specific phases of the work are as follows: 

(a) Semi-empirical expressions will be developed for the turbulent trans- 
port properties, such as eddy viscosity, for use in solution of the flow 
equations. 

(b) Solutions of the complete partial differential equations will be ob- 
tained for incompressible flow, covering problems of flow in water and in air. 

(c) Solutions will also be obtained for compressible flow, applicable to 
air. 

(d) Illustrative applications of the method will be performed to provide 
information on velocity profiles, boundary-layer thickness, skin friction and 
heat transfer. 

(e) Accuracy will be checked by solution of a variety of flow problems 
and comparison with experimental data." 

Under this type of contract, when the due date arrives, accomplishments 
are reported whether the ultimate goals have been reached or not. In the I 
present case, as might be expected, the studies are not complete. The problem 
of incompressible flow has been rather well explored, although more remains to 
be done. The results have been surprisingly good. The equations governing 
compressible flow have all been programmed and the method is working, but time 
was available to calculate only a few cases of flat-plate flow, with and without 
heat transfer. Much more work remains to be done, and the gratifying results 
for incompressible flow supply a firm foundation for continuation, which should 
follow.  The present method has been programiued on the IBM 709^ un ler the num- 
ber 57EB.  The program can be obtained by qualified requeaters from "Commander, 
Naval Ordnance Laboratory, White Oak, (Code 550), via Commander, Naval Ordnance 
Systems Command (Code ORD-055)". 

The authors ..nd their company wish to express gratitude for the support 
supplied by the U.S. Navy. Without it, it is unlikely the work would ever have 
been accomplished. 
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1.0    SUMMRY 

This report presents a numerical solution of turbulent boundary-layer 

equations for both compressible and incompressible flows.    An eddy viscosity 

concept is used to eliminate the Reynolds shear-stress term, and an eddy- 

conductivity concept is used to eliminate the time mean of the product of 

fluctuating velocity and temperature.    The turbulent boundary layer is regarded 

as a composite layer consisting of inner and outer regions, and a separate 

expression for eddy viscosity Is used in each region.    The ratio of eddy- 

viscosity to eddy conductivity is assumed to be constant.    An implicit finite- 

difference method is used in the solution of both momentum and energy equations 

after they are linearized. 

A variety of flows have been computed by this method, and comparisons 

with experimental data and various correlations have been very encouraging. 

The results described in this report do not represent a finished development 

but onjiy what has already been accomplished by using one particular formula- 

tion of eddy viscosity and constant turbulent Prandtl number. 

tämm 
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4.0    ERINCIIAL NOTATION 

:T
T 

C 

E 

f 

g 

G 

h 

H 

K 

t 

L 

M 

P 

Pr 

q 

r 

ro 

Re 

Re 9 

St 

local skin-friction coefficient, eq. (6.113) 

average skin-friction coefficient 

specific heat at constant pressure 

local shear-stress coefficient for laminar flow, eq.(6.114) 

local shear-stress coefficient for turbulent flow, *q. (6.115) 

° "  , viscosity-density parameter 
We b* d 
equilibrium boundary-layer parameter, — -p 

Tw 

dimensionless stream function,  eq.(6.46) 

dimensionless total-enthalpy ratio, eq. (6.54), where applicable 

defect-shape factor, eq.(6.122) 

specific enthalpy 

1    2 total enthalpy,  h + r u   or shape factor, eq. (6.121), where applicable 

variable-grid-system parameter 

mixing length 

reference body length 

Mach number 

pressure 

Prandtl number 

local heat-transfer rate per unit area 

radial distance from axis of revolution 

radius of body of revolution 

Reynolds number,  u x/v 

Reynolds number, u e/v e       e 

Stanton nuwber,  eq. (6.118) 

MMJlftM^—*■ 
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t transverse-curvature term, eq. (6.^2), where applicable 

T absolute temperature 

u x-component of velocity 

u friction velocity,     V^/P 

v y-component of velocity 

x distance along surface measured from leading edge or from 

stagnation point 

y distance normal to    x 

a angle between normal to the surface    y   and the radius    r ,  fig. k 

ß dimensionless velocity-gradient term, eq.(6.53). 

7 intermittency factor, eq. (6.26),  or convergence criterion, 

where applicable 

6 boundary-layer thickness 

A de feet-displacement thickness,  eq. (6.123) 

e eddy viscosity 

T] transformed y-coordinate 

6 momentum thickness,  eq.(6.111) 

^ thermal conductivity 

U dynamic viscosity 

v kinematic viscosity 

5 transformed x-coordinate 

p density 

T shear stress 

<p perturbation quantity,  f — f 

♦ stream function 

a) vorticity 
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SUBSCRIPTS 

c evaluated at the switching point of the boundary layer 

e evaluated at outer edge of boundary layer 

w evaluated at wall 

oo evaluated at free-stream or reference conditions 

Primes on    f    denote differentiation with respect to    r\ 

taa^tiamtm^^m 
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5.0    INTRODUCTION 

The boundary-layer concept,  first introduced in 190^ by Prandtl,  divides 

the flow past a body into two regions: an inviscid region,  governed by the 

Euler equations of motion, and a thin viscous region in the neighborhood of the 

body,  governed by the boundary-layer equations.    7or laminar flow, the existence 

of a known relationship between the shear stress and the velocity gradient 

completes a set of partial differential equations,  and exact solution of the 

boundary-layer equations is mathematically possible.    Highly accurate solutions 

exist for some simple flows,  such as similar flows, which are especially impor- 

tant.    With the advent of high-speed computers,  quite satisfactory results for 

a variety of general flows have been obtained. 

For turbulent flows, on the other hand,  because of the limited understand- 

ing of the turbulent process,  the exact solutions of the boundary-layer equa- 

tions are not possible.    The usual boundary-layer equations for such flows con- 

tain a term involving the time mean of the product of two fluctuating velocities, 

which is known as the turbulent shear stress, and a term involving the time 

mean of the product of a fluctuating velocity and a fluctuating temperature. 

At the present, these terms have not been rigorously related to the mean velocity 

and mean temperature distributions.    Thus, exact solutions of the boundary-layer 

equations for turbulent flows are not possible.    In order to proceed at all, 

the solutions must depend on some empirical information.    Even then the solution 

of boundary-layer equations is not easy.    For this reason,  most of the work on 

turbulent flows has been centered on empirical correlations together with inte- 

gral methods.    In general,  the approaches followed in these methods vary widely. 

In one approach, for example,  Head,s method [l], the boundary-layer parameters 

are obtained by solving the momentum integral equation with two empirical ex- 

pressions called auxiliary equations.    These equations consist of an expression 

for local skin-friction coefficient  (c ) and an expression for shape factor (H). 

In another approach,  for example,  Truckenbrodt's method [2],  the boundary-layer 

parameters are obtained by solving both the momentum and energy integral equa- 

tions by using an empirical expression for the dissipation integral and by 

introducing further approximations in the solution.    These methods were recently 
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reviewed by niompson [5] for two-dimensional incompressible turbulent flows 

and were found to give Widely differing and often inaccurate results. 

A more fundamental approach to the solution of turbulent boundary layers 

is to regard the turbulent boundary layer as a composite layer and to charac- 

terize it by inner and outer regions (see figure l).    The existence of two 

OUT!»    tIC ION 

IAMINAI * SUBLAYEI 

INNEI   IEGION 
i ^ 

Figure 1.-A turbulent-boundary-layer velocity profile. 

regions is due to the different response to shear and pressure gradient by the 

fluid near the wall.    The inner region, whose thickness is approximately   0.1 to 

0.2 5,  depends prrnarily      on the wall shear stress and fluid viscosity.    The 

mean velocity distribution in this region responds rapidly to changes in these 

wall conditions because the eddies in this region are very small.    The mean 

velocity distribution may be described by the so-called "law of the wall": 

u 
1? ^ (yu /v) 

This relation was originally obtained by Prandtl from a mixing-length 

concept  [4],     In addition,   if an expression for eddy viscosity is introduced 

in the inner region,  it can be  shown that eddy viscosity in this region varies 

almost linearly with distance. 

--L" ' M ■     In i 



■■■ HE 

-13- 

In the case of a smooth wall, the inner region contains a layer,  commonly 

called the laminar sublayer,  adjacent to the wall,  where the flow is primarily 

viscous and the mean velocity increases linearly with distance from the wall. 

The thickness of this layer is of the order of 0.001 to 0.01 5. 

The outer region, on the other hand, contains 80 to 90 percent of the 

boundary layer thickness.    The flow in this region is independent of the fluid 

viscosity, but is dependent on the wall shear stress,  and it is highly affected 

by conditions in the free stream such as streamwise pressure gradient.    The 

mean velocity distribution is conveniently described by the so-called "velocity- 

defect law": 

u   — u 

u 

The flow in the outer region shows some similarity to wake flow.    Near the 

outer edge, it has am intermittent character.    The turbulence is characterized 

by large eddies.    The response of the mean velocity distribution to changes in 

its determining conditions is much slower than that of the inner region.    In 

addition, an eddy viscosity,  if introduced, shows a nearly constant value across 

the region.    For example,  as suggested by Clauser [5]» the eddy viscosity for 

the so-called"equilibrium" boundary layers is 
» 

c  = k.  p u    6 
2        e 

where    kp    was empirically determined to be 0.018. 

The approach in which the turbulent boundary layer is regarded as a com- 

posite layer consisting of inner and outer regions was followed in[6] and [?] 

for incompressible flows.     In both references,  the Reynolds shear-stress term 

was eliminated through the use of an eddy-viscosity concept.    The main differ- 

ence between the two approaches is the expression used for eddy viscosity in 

each region.    Another difference is the transformation used to stretch the co- 

ordinate normal to the flow direction to reduce the variation of the boundary- 

layer thickness and to remove the singularity at the leading edge or at the 

stagnation point.    A third difference is the method used to solve the  boundary- 
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layer equations. In reference [7] the momentum equation was solved in its non- 

linear form by an Integration technique; in reference [6] the momentum equation 

was solved in a linearized form. 

The approach used in this report is the one used in reference [?].    Again 

the Reynolds shear-stress term in the momentum equation is eliminated through the 

use of an eddy-viscosity concept,  and a separate expression roi- eddy viscosity 

is used in each region (see  figure 2).    However,  this  olme the expressions are 

OUTI«     LAW 

Figure 2.-Eddy-viscosity distribution across a boundary layer. 

slightly modified, te account for the compressibility effect. In addition, 

the time mean of the product of a fluctuating velocity and a fluctuating 

temperature in the enerny equation is eliminated through the use of an eddy- 

conductivity concept and is introduced into the energy equation through the 

definition of turbulent Prandtl number: 

c e 
Pr . -EL 

T   ^ 

As an initial step,   the turbulent Prandtl '.umber is assumed to be constant. 

Note that the present  framework is general and that  it can handle widely vary- 

ing eddy-viscosity and turbulent Prandtl number formulations. 

■   ■ - 
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The method used to solve the boundary-layer equations here is different 

from the one used in previous studies [7 through 13].    Again the streamwise 

derivatives in both momentum and energy equations are replaced by finite 

differences.    However, unlike the previous studies,  in this study the momentum 

equation is solved in a linearized form, and the previous integration tech- 

nique is replaced by an implicit finite-difference technique.    A variety of 

flows has been computed by this method, and comparisons with experimental data 

and various established correlations are made.    The results presented in this 

report do not represent a finished development,  but are only the results ob- 

tained so far by one particular eddy-viscosity and .-onstant turbulent Prandtl 

number formulation,   in fact the first one tried. 
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6.0 DESCRIPTION OF METHOD OF SOLUTION 

6.1 Equations of the Compressible Turbulent Boundary layer 

The governing equations describing the flow about two-dimensional and 

axisymmetric bodies at high Reynolds numbers and constant pressure within the 

boundary layer are [11]: 

COiriNUirY 

l^-M^'0*^^)}-0 (6-i) 

MOMENTUM 

P 
^it .   . .. ^tt .   .      äu dpj.1     ^   / k      äu \ ic ~\ 
5t +pusr+pv5F = -dr+-T^-^r »-ft) (6-2) 

ENERGY 

p5t + pusr+pv^ = -TS7r ifr ^+^(1--^ )u^;      (6-5) 

where    k = 0   for two-dimensional flow and    k = 1    for axisymmetric flow. 

The basic notation and scheme of coordinates are shown in figure 3, 

where   u     is a reference velocity and   u (x)    is the velocity just outside 

the boundary layer.    The term   H , which is a constant,  is the total enthalpy 

outside the boundary layer.    Local enthalpy outside the boundary layer,  namely, 

h ,  is given by 
6 12 

H   = h   + r u e        e      2    e 

The coordinates are a curvilinear system in which    x    is distance along the 

surface measured from the stagnation point or leading edge.    The dimension    y 

is measured normal to the surface.    Within the boundary layer,  the 

velocity components in the x- and y-directions arc    u   and    v,   respectively. 

The body radius is    r . o 

Mk«tf^»_hi 
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Figur« 3-Boundary layer on a body of revolution. Coordinate system. 

In these equations, the transverse-curvF.ture terms, which are of second 

order, are retained because of their importance in preolcting boundary-layer 

growth on long slender bodies such as certain missiles or at the tail of a 

streamlined body of revolution. 

The equations (6.l),   (6.2), and (6.3) apply to turbulent as well as to 

laminar flows,  providing the dependent variables — velocity,  density, and 

enthalpy — are replaced by their inrtantaneous values for turbulent flow. 

The procedure is due to O.Reynolds.    With instantaneous values,   (6.1),  (6.2), 

and (6.3) become 

sr +"7 isr(r piui) + 57(r 

^U, ^U. (^U, 

ViV = 0 

^i 4 ^i ^i dpi   ,     1      ^    (   k    ^i   ) 
\ ST + piui-^ + pivi ZT-- — * —Zt iru-^j 

^U ^U ^H 

DiVi-¥ 
.    i    a    k (u ^i ,   ,,    i.   ^i) 

(6.M 

(6.5) 

(6.6) 
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Let the instantaneous values be denoted by their average and fluctuating 

values, as follows: 

Vj  = v + v* p    = p + p* 

(6.7) 
u. = u + u» 

Pi = p + p* H.  = H + H» 

Introducing the first three expressions defined by (6.7) into (6.^) and 

averaging with respect to time gives 

^ rk(p u + p'u«) + ^ rk(p v + p'v«) = 0 (6.8) 

By time average is meant, for example, 

t 

u = i / u^t + T)dT 

with   t   large compared with the time scale of the turbulent motions.    For 

the fluctuating values,  say u', the average value, u1,  is 

t 

u»= ~    / u« da = 0 

The raomentura equation for  steady compressible turbulent flow can be obtained as 

follows.    Multiplying (6.^) by   u.,   (6.5) by    r,  and adding the resulting 

equations gives 

k ^i .    k        ^1 ä   , k        v   ,L ^  , k       v r P.u4 ^- + r P.v,-^ + u, ^ (r p^.) + ^ ^ (r p^) DiUi ST " r pivr^    ui ST 

= — r 

li^ 

k ^ i   ^ r k ^i . dp. 
(6.9a) 

which can be written as 

^- \T    p.u.u.) + r- (r p.v.u.) dx    ill'  dy    ill' - — r 
v dp. k ^1 

dx 
, * , k  ^i . 

(6.9b) 

Introducing the  first four expressions defined by (6.7) into  (6.9b), averaging 

with respect to time, and using (6.8)  gives 

m** 
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(p u + ^ ^ + (P v + P'V) ^ = - g . -L- |- rk(p u«2+ u p'v' + p»u«2 ) 

1       Ö       r.kJ ^U 

^ 
— p v'u* - v p* ul   _ p^U*   f (6.10) 

The energy equation for compressible turbulent flow can be obtained In 
a similar way.    Miltiplying (6.4) by   H ,  (6.6) by   r, and adding the resulting 

equations gives 

which can be written as 

^(^^(«^^(rVi)^) a  k/u aHi .   ^    1 v   ^11 

(6.11b) 

Introducing the expressions defined by (6.7) into (6.11b), averaging with 

respect to time, and using (6.8) gives 

(P u + £^37) |f + (P v + pw5) ^ = - "T ^ rk(p ^H1" + u P7«7" + P7^ H) 

(6.12) 

i 

Since for flows at high Reynolds number the boundary layer is assumed to 

be thin and the terms such as p, u, H, and x are assumed to be of the order 

of 1 and v, y of the order of 8, some of the correlation terms involving 

u', v1, p1, and H» in (5.8), (6.10), and (6.12) can be neglected. The 

double correlation terms such as p'u*, u'H^p'H», and pW* are of the order 

of 5 at most, and the triple correlation terms such as pWu* and p^H* 
2 

are of the or'ier of 6  at most. When these simplifications are introduced 

into (6.8), (6.10), and (6.12) and the predominant terms of the same order of 
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magnltude are retained,  the resulting equations are of the same form as those 

of laminar flow except for the terms    p'v1, — pu*2, - p v'u', and - pv^'.  In 

addition,  if the pressure fluctuations within the boundary layer are considered, 

then another term, namely, ~ ST P v'2,   should be included on the left-hand 

side of (6.10).    For flow conditions away from separation, the terms    — p u12 

and   — P v'Z, known as Reynolds nonnal stresses, are small and will be neglected. 

Hence,  with all these simplifications, the governing equations for the compres- 

sible turbulent boundary layer become: 

CGNTINUITY 

ST (r p u) + 57 r (p v + p'v*) ] = ° (6.13) 

MOMENTIM 

äu .   /        ,     i  t\ öu dp .    1     ä p u Sc    ^p v + p v ^ 5^ = - ir + —T 5: ¥ d5c "     Jk^y (6.1M 

ENERGY 

pu^* (pv+F^)^ = --7^[r   |^i + - —J g-^d--> ^| 

(6.15) 

where the term   — p u'v', known as the Reynolds shear stress,  is eliminated 

through the use of Boussinesq's eddy-viscosity (c) concept and the term 

— p v'H»    is eliminated through the use of an eddy-conductlvlty (Tu,) concept. 

. . du 

* p ^ = -^   % c 
P 

C      € 

(6.16) 

(6.17) 

(6.18) 

If ( )  denotes wall, the boundary conditions to be considered are: 

MOMEMTUM 

u(x, 0) = 0 

v(x, 0) = 0 or v(x, 0) 

lim u(x, y) = ue(x) 
-* oo 

v (mass transfer) 

(6.19a) 

(6.19b) 

(6.19c) 

■ - ■ 
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ENERGY 

H(x,  0) = Hw       or        g (x,  0) = ( ^ )w ^20a) 

lim   H(x, y) = He(x) (6.20b) 
y -* co 

6.2    Formulation of Eddy Viscosity and Turbulent Prandtl Number 

In order to solve the compir ssible turbulent boundary-layer equations 

given in the last section, it ?3 necessary to use expressions for eddy vis- 

cosity and turbulent Prandtl number.    The eidy-viscosity formulation that will 

be used in this study is the same as the one used for incompressible flow in 

a previous study [7].    This formulation has worked well for incompressible flow 

and hence it was decided to extend it,  with small modifications,  to compressible 

flow.    In this formulation, the boundary layer is regarded as a composite layer 

characterized by inner and outer regions.    In the inner region, an eddy vis- 

cosity based on Prandtl's mixing-length theory is used; in the outer region, a 

nearly constant eddy viscosity is used.    It is »xactly constant when the flow 

is incompressible and without heat transfer.    An intermittency f&ctor is applied 

to this basic "outer viscosity". 

6.2..'.   Viscosity in the inner region. 

In the inner region, the eddy viscosity is represented by Prandtl's fonnula 

based on the mixing-length theory;  that is, 

ci  = p / Hl (6.21) 

where    i,  the mixing length, is given by    i = k.y.    However, to account for 

the viscous sublayer close to the wall,  a modified expression for    /    is used 

in (6.2l).    This modification,  suggested by Van Driest [lU] and developed by 

consideration of a Stokes-type flow,  is 

/ = \y[l - exp(- y/A)] (6.22) 

Substituting this expression for    £    into (6.2l) gives 

^ 
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€i = p k^ y2[l -exp(-y/A)]2 III (6.23) 

This expression, as it stands, applies to incompressible flows.    The 

quantity    p   is a constant,    k.  = Q.ht and   A    is a constant for a given stream- 

wise location in the boundary layer,  defined as    26V(P/T ) '   .    Equation (6.25) w 
shows that as    y    increases, the exponential term disappears,  leaving Prandtl's 

form, namely, equation (6.21).    It also shows that,  for   y -» 0,    e.    should 
k 1 

vary as    y ,    The latter conclusion is in contrast to the behavior of eddy- 

viscosity expressions proposed by Townsend  [15] and Reichardt  [16],  which show 

that    e.    should vary as    y .    On the other hand,   (6.23) has the same  behavior 

close to the wall as Deissler's eddy-viscosity expression [17]; that is,    e. 
1+ * 

varies as    y     as    y -»0.    An analysis given in Appendix A indicates that    e. 
1+ 1 

should vary as    y     as    y -»0. 

Equation (6.25) can also be applied to compressible flows if p    is taken 

to be a variable and if the exponential term is modified to account for the 

heat transfer in the sublayer.   A logical generalivsation is to consider a 

Stokes-type flow in which the fluid has a variable viscosity.    An analysis 

given in Appendix   B   indicates that the eddy-viscosity formula for the inner 

region should now be 
i 

,2 

^ - P it£ y 1 - oxpj -vT) A
1
}] III <^) 

l/2 — where   A = 26v (p /a  ) '    and v    is the mean value of   v    obtained by averaging 

(6,2^) over some arbitrary distance,  perhaps the sublayer.    As an initial step, 

the ratio of    v/v    is assumed to be unity.    At high wall temperatures,  the 

exponential term will dc^ay much more slowly with    y.    For example,  on a wall 

with a temperature of TJC"?    at sea level,    A^T^ = 2.25 x IO" .    On a wall with 

a temperature of 3000oF at 50,000 feet,    A "^T^ = 5.1*6 x 10    ,  or more than 

20 times as large. 

6.2.2    Viscosity in the outer region. 

In the work on  incompressible  flews,  the  form for eddy viscosity in the 

outer region suggested by Clauser [5] was used; that is. 
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eo = k2p ue5* (6.25) 

where the constant kp is taken to be 0.0168, the value given iu (18]. The 

same fornrula is used for compressible flow, except that p is a variable; 

that is, p = p(x, y). Equation (6.25) is modified by an intermittency 

factor 7   that was obtained by Klebanoff [19]. It is given by 

7 = I [1 -erf 5 (f-.78)] (6.26) 

where    6    is the thickness of the boundary layer.    This formula was deduced 

from measurements of an incompressible flow, and,  for want of anything better, 

it is also used for compressible flow.    With (6.26), the eddy-viscosity formula 

for the outer region becomes 

eo = P k2 ue ö    7 (6.2?) 

6.2.3 Definition of inner and outer regions. 

The constraint used to define the end of the inner region and the be- 

ginning of the outer region is the continuity of the eddy viscosity. It can be 

seen from (6,2h)  and (6.2?) that, at a given position along the body, €  in- 

creases with y and e  remains constant over practically the whole boundary 

layer. Hence, from the wall outward, the expression for inner eddy viscosity 

applies until 

€i = eo (6.28) 

or,  in terms of the distance from the wall, inner and outer regions thus can be 

defined as 

ci = p k^ y2[l - expj- (vyCO172 f}]2|||     0 . y * yc (6.29) 

» 
e P k  u   B   7 y   5 y s 6 (6.30) o      " "2 "e        ' Jc 

where    y      is determined by (6.28). 
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6,2,h   Turbulent Prandtl number. 

The turbulent Prandtl number is a measure of the ratio of eddy viscosity 

to eddy conductivity, that is, the ratio of the transport of momentum to the 

transport of heat. Since the flow in the outer region shows some similarity 

to a wake flow, one may argue that a more realistic formulation of turbulent 

Prandtl number requires a separate expression in each region, as in eddy-vis- 

cosity formulation. The fact that in boundary layers the ratio of eddy con- 

ductivity to eddy viscosity is smaller than in free turbulence permits one to 

conclude that the lowering of this ratio is due to the influence of the wall 

[20], Consequently, if the ratio of eddy conductivity to eddy viscosity is 

lowered by the effect of the wall, it follows that this ratio decreases with 

decreasing wall distance and increases with increasing wall distance. It 

appears that at large wall distance this ratio approaches the value 2, that is, 

the same value observed for free turbulence. On the other hand, no experimental 

results have been obtained on the minimum value of this ratio in the immediate 

neighborhood of the wall. For these reasons, as em initial step the turbulent 

ft-andtl number is assumed to be a constant and equal to unity. 

6.3 Transformation of Boundary-layer Equations 

Before (6.15), (6.lU), and (6.15) can be solved, by a method to be des- 

cribed later, it is convenient to transform them to a coordinate system that 

removes the singularity at x = 0 and stretches the coordinate normal to the 

flow direction, as is usually done in laminar flow. First, the equations are 

placed in an almost two-dimensional form by the Probstein and Elliot transfor- 

mation [21]. 

PROBSTEIN-ELLIOT TRANSFORMATION 

k 
ro(x) 

dx = (—2=  I dx 

dy v =r (xi y) dy 

(6.31) 

(6.32) 

where r (x) is specified by the body shape and r(x, y) is given by (see 

figure h) 

■- - 
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Figure 4.-Coordinates for axially symmetric body. 

r(x, y) = ro(x) + y cos a (6.35) 

Then from (6.5l) and (6.32), 

k ,2 

57~5^5JF      5x5?    \ L j   te    5x5? 

5y     5y 5y L      5y 

(6.3M 

(6.35) 

Define a stream function    ♦   that satisfies the continuity equation (6.13), 
namely, 

£ = k 
r p u 

5*   = - r (p v + p'v», 

(6.36a) 

(6.36b) 

Let 
*    =    1 

p'v1  = p'v' 

U   =  U 

€  = e 

v = v 

PrT = PrT 
(6.37) 
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Now if in the barred plane the continuity equation (6.13)  is written as 

4: (P Ü) + -^ (P v + p^v7)  = 0 
dx My- 

then the  stream function    \|f    that satisfies this equation is 

(6.38) 

^   = - (p v+  pW) (6.39) 

Therefore,  if the relations defined by (6.3^),   (6.55)  (6.37) and (6.39) are 

used,   (6.36a) and (6.36b) become 

r r    x L        dx dy 

(6.Uoa) 

(6.U0b) 

By substituting from (6.^0)  into  (6.lU) and using the relations given by 

(6.3^),   (6.55), and  (6.39),  the  following Probstein-Elliott transformed 

momentum equation is obtained: 

hyhx^pby^     aST ^ VP ^ ^ d7     ^ i U      " "    " ' ^    ^p^ 

(6.1*1) 

vrtiere    t    is the transverse-curvature term defined as 

t = -*—   cos a r 
o 

(6.U2) 

by using the  relationship between    r(x,  y)    and      r (x)    given by (6.55). 

Note tliat in  (6.^1)  the eddy-viscosity term has    a bar.    Thio is necessary 

because    e    is nut a scalar function (e.g.,  like u) and must be transformed 

by (6.31) and (6.52). 

Similarly,  the energy equation (6.15) may be transformed into the  form 

MMtfM^ 
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^öH.ä±M = _i (1 + t)
2k^(i + r_^)M+a(1-^) . 

^ äx     ^x ^     3y L l^ V       ^ PrT / 37     p 

by using (6.^0),   {6.3k),   (6.55), and (6.59).    Equations (6.4l) and (6.^5) 

have the desired two-dimensional form. 

Next,  the Levy-Lees transformation [22]  is introduced,   in order to put 

(6.^1) and (6.^+5)  into a still more convenient form. 

LEVY-LEES TRANSFORMATION 

d| = p n u dx (6,hk) e e e ' 

P Ue 
dTJ = --f,/   dy (6.45) 

(21) ' 

A dimensionless stream function   f    is rexated to    if   as follows: 

♦ =  (2i)1/2f(e, n) (6.46) 

With {6,hh),   (6.U5), and (6.^6), the partial-derivative operators in the new 

coordinate system (|,   n)  become 

I   =Veue^   ♦   I?   £) (6.U7) 

(6.48) 

^ 

^ " (201/2 ^ 

I   =^/2^+|) (6.49) 

i   - (201/2 f (6.50) 
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where the prime on    f    denotes the derivative with respect to    rj.   Introducing 

the transformations from (6.47) through (ö.'TO)  into (6.^1) and (6.U3) and 

using Euler's equation, namely, 

dp + p u du    =0 r       e e    e 

to replace the dp/dx-term in  (6.hi) yields the transformt^ momentum and energy 

equations for the compressible turbulent boundary layer. 

MOMENTUM 

(1 + t)2kC(l+ ^ )  f" 
-11 

+ ff" + ß — - (f)' P        x     ' 
= 2| 

-,  bt*       _„  ^f 

(6.51) 

ENERGY 

+ f'g'  = 

where 

ß 

g = 

= 2{ 

21   ^e 
ue     d5 

H 
H 

(6.52) 

(6.55) 

(6.54) 

and C =SJL. 
pe^e 

The prime on    g    denotes the derivative with respect to    T^  and the sign ~ 

indicates that the quantity is transformed by {6.hk) and (6.'+5)«    For example, 

the transformed transverse-curvature term in  (6.51) and (6.52) is given by 

,1/2      ^ rr    L cos a (20'      /   /    / %    l    ,„ t =  *—"^—   /   (P /P) —r dT] r    p    u J     ^e'   '      k     ' (6.55) 
o    e    e 

In (6,5l) and (6.52) the relationship between the quantities in the trans- 

formed plane and those in the physical plane is given by (6.5l), (6.52), 

(6.U4), and (6.45) - what might be called a Probste in-Elliot-Levy-Lees trans- 

formation. 

^t^^mOätt^mtmm^t 
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PROBSTEIN-ELLIOT-LBVY-LEES TRAJISFORMA.TICN 

U = Pe^eUe(ro/L)2 ^ ^6'^ 

p u k 
dt) =  -i/o-f-cly (6.57) 

(201/2    L 

It can be seen from (6.51) and (6.52) that setting k = 0 reduces them to two- 

dimensional form. On the other hand, for axisymmetric flow with no transverse- 

curvature (TVC) effect, k = 1 and t = 0, which indicates that the ratio of 

r to r  is unity. 

The boundary conditions of (6.51) and (6.52) can now be transformed. From 

(6.48) and (6.50), 

u = ue f» (6.58) 

and from (6.40b), (6.^7), and (6.46), 

since at the wall    u = 0,   p'v'  = 0, and    r = r .The length L is taken equal to 

unity for two-dimensional and for axisymmetric flow with no TVC-effect.    Then 

in the    5,   T|-plane the boundary conditions given by (6,19)  become 

f (5, 0) = fw = 0    or    fw = - -i-j^  J -\   £&- dl (mass transfer) 
(2{; '     u     r        e e e 

0        0 (6.59a) 

f'il, 0) = 0 (6.59b) 

lim   f'(i,  TJ) =1 (6.59c) 
T)   -» CD 

Similarly,   from the definition of   g,  namely,    g = H/H ,  the boundary con- 

ditions given by (6.20)  become 
H 

fAi,o) = -fp ^ ^      or      ßv(e' 0) " ^ (6.60a) 
e 

lim   g({,   n)  = 1 (6.60b) 
n -»oo 

•' 
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6,k    Tiuns format ion of Eddy-Viscosity Equations 

The eddy-viscosity tera appearing in the momentum equation (6,51)  is a 

function of flow-field quantities and must be transforrued.    The turbulent 

ftrandtl number, on the other hand,  is assumed to be a constant and therefore 

is not transformed. 

Using (6.55),   (6.Uoa),(6.U8),   (6.50), and the transformation given by (6.57) 

transforms the expression for the inner eddy viscosity given by (6.2^) to 

0 0        1/2 .        /    r   P        T      \T 1       v    I/2 

I (2t)l/2rk f'L 12     r1 

V 

o    w 
•| Ä— y^/p-f di}j 

w 

(6.61) 

Using (6.58),  the  relation given by (6.57), and the definition of dis- 

placement thickness,  namely, 

0        e e        e e 0   r 

treuisforms the expression for the  outer eddy-viscosity given by (6.27)  to 

% ■ 0.00W -£- C2Ol/2t[i - err yj A i. ^ / j  *!+. ^ . 0.78} 
e ~ 0 r      '   b r 

00 

•   / -\ (pe/p - f)dn (6.65) 

0    r 

6.5    Fluid Properties 

Fluid properties that appear in the momentum and energy equations are 

density (p),  viscosity (n),   specific heat at constant pressurv   (c  ),  and ther- 

mal conductivity (X).     The la4 ,er appears in the energy equation through the 

laminar Prandtl number,   Pr,  dpfined as 

.^ , .   .  .       ... 1   . 1. -. 
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^ c 
Pr = -^ (6.6U) 

These fluid properties, which are assvuned to be functions of temperature only, 

are given by the following formulas [25] for air: 

5, 
cpW -I w1 (6-65) 

i=0 

^(T)    -^   A.^T1 (6.66) 

i=0 

MT)   = ^(cp + JR) (6.67) 

where    R = 1716 lb^-ft/lb -deg R and the A's are different for    c      and    n, 
l m p 

By means of (6,65),  specific enthalpy cam be expressed in the form 

6 

h(T)    =)    A/T1 (6.68) 

i=l 

This relation is necessary because, once a solution of the energy equation is 

obtained, the temperatures are required in the calculation of the new fluid 

properties. The coefficients of these polynomials are given in Table I. 

In addition to the relations given by (6.65) through (6.68) it is also 

necessary to have the relation of density to temperature. This cam be obtained 

from the equation of state and from the assumption that static pressure re- 

mains constant within the boundary layer. 

P = ^| (6.69) 

6.6 Overall Method of Solution 

In previous studies[7 through 15] the method used to solve the momentum 

and the energy equations was based on ideas originated by Hartree and Womersley 

[2^]. It consists of replacing the {-derivatives by finite-difference relations 

1 
■ 
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while retaining the Tj-derivatives. In this way, a partial differential equation 

at a given {-location is reduced to an ordinary differential equation that can 

then be solved by various integration techniques or by finite-difference tech- 

niques, in either nonlinear or linear form. In the previous studies, this ap- 

proach is used quite successfully in the solution of the equations of both in- 

compressible and compressible boundary layers by an integration techniqae. 

The momentum equation is solved in its nonlinear form. 

When the  same method is extended to the solution of the equations of the 

incompressible turbulent boundary layer,  the two chief disadvantages of the 

method become quite pronounced.    First,  computation time is too long.    This is 

due to the greater thickness of the turbulent boundary layer and to the much 

greater variation in the transformed velocity gradient of the turbulent boundary 

layer.    For example,  for a laminar boundary layer the transformed boundary- 

layer thickness,     n ,  is about 6, and the transformed velocity gradient at the 

wall,  x'",  varies between   0 and 2.    On the other hand,  for a turbulent boundary 

layer the transformed boundary-layer thickness may be 150 or more,  and the 

transformed velocity gradient at the wall may vary between    0 and 50 or more. 

The old shooting method,  which is based on the cut-and-try technique,  thus has 

a much bigger range to search in meeting the boundary conditions.     Second, 

accuracy is reduced when small step sizes are used in the streamwiae direction. 

This is a serious problem, because short steps are essential near separation 

or in any region in which changes in the outer flow take place rapidly. 

To overcome both of these disadvantages,  the momentum equation is linearized 

and the integration method is replaced by an implicit finite-difference method 

containing a variable grid in the  rj-direction.    The previous technique of re- 

placing the  {-derivatives by finite-difference relations is retained.    Solution 

of the resulting algebraic equations  in both momentum and energy equations is 

obtained by the Choleski matrix method [25]. 
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6.6.1    Solution of the momentum equation. 

6.6.1.1    Finite-difference representation of 6-derivatives.     With three- 

point-finite-difference fomulAs for the   {-derivatives at    5=1     (6.5l) 

becomes 

^2k a + trK C (i^h + f f" + ß 
n n -r-^y (6.70) 

= 25, n 
f* (A f» 
n \ 1 n + A2fi-1+ A5fi.2 

- f" (A f + A_f  + A,f _ ) 
n \ 1 n   2 n-1  3 n-2 / 

whe re the coefficients A., A , and A, are as foil t ws: 

For three points: 

A,   = 

A„ - - 

A,  = 

({n " W ^n-^n^ 
^ - Sn-2 

^ " «n-l^^-l " 5n-2J 

(6.71a) 

(6.71b) 

(6.71c) 

At    5=6-»  the quantities   A., A ,  and A,    are known,  and the quantities 

having the subscripts   n-1   and    n-2    are Known functions of    TJ    from solutions 

obtained at the two previous stations.    Thus, at    5=5*   (6.50)  is an ordinary 

differential equation in    TJ.    There  is nc  problem of star+,inc the  solution, 

because the terms with 5-derivatives disappear since     5   = 0. At the next sta- 

tion,   5,»  the three-point fomules are  replaced by two-point formulas;  at all 

stations farther downstream the three-point  formulas are used. 

For two points; 

n       n-l 
A2=  r^n" n-1 3 

(6.72) 

6.6.1.2 Linearization of momentum equation.    As is stands,   (6. 7D)  is an 

ordinary nonlinear differential equation of third order,  and with boundary 

conditions given by (6,59) it is difficult to solve.     In  [7 through 13] this 

equation is solved quite satisfa torily for laminar and incompressible turbu- 

lent boundary-layer flows in its nonlinear  form; here  it is solved in a linear 
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form in order to speed up the computations and to be able to take smaller step 

sizes in the  streamwise direction. 

Two different linearization techniques were used to linearize (6,70).    The 

first one is based on the quasi-linearization technique  [26].     If (6.70) is 

written in the  form 

g(f, f», f",  f", n,  |) = 0 (6.75) 

and expanded in a Taylor series around a known solution designated by subscript 

o, 

g = go + (f... . r-x^m + (f. - f..)^ * (f - f-)^ 

+ (f - f Xr|l   + higher order terms    (6.7^) 

the  following quasi-linearized equation is obtained: 

Eiq)"» + E^1» + E3(p» + E^tp = E5 (6.75) 

whore    (p's are the perturbation quantities    defined as 

qp = f - f .     ip»   = f»  - f«, etc. o' o' 

Note that in previous studies,    (p's are used to denote translated stream 

function f's and should not be confused with the perturbation terms that are 

denoted by q?,s in this study.    The latter are used for what are commonly called 

c's,  because     e's have already been used to denote eddy-viscosity terms. 

The coefficients    E.    are given by 

E^ (1 + t)2k Co(l ^ )o (6.76a) 

^2 - [(1 * if   Co(i * i )o)   * f* 2e(AlV Kt^f A3fn_2) (6.76b) 

Ej - - 2[^ P ♦ K(^<0 <■ Agf^^ + Ajf-.j)] (6.76c) 
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E^ = f••  (1 + 2| A1) (6.76d) 

E, = - (i + t)2k co(i + ^ )/-•-[(i + t)2k co(i + 1)S f 
[i.   'o- 

11 

o f f" 
0 o 

- ß [(P /p)    - (f*)  ] - 2|[f«(A-f' + A0f«   .  + Azf«   _) 

- f»«(A.f   + A0f    . + A,f    _)] 
o x 1 o       2 n-1       5 n-2/J (6.76e) 

When (6.75) is solved by the finite-difference method to be described later, 

successive iterations on    f"       cause oscillations in    f"    and convergence is 

not obtained.    On the other hand,   (6.75) shows no oscillatiors in   f"    for 

laminar flow.    For the latter case the convergence is fast (quadratic), and the 

results are very satisfactory.    However, unlike the old shooting method used in 

previous studies, this method gives results that indicate that much finer 

spacing in the strearawise direction is necessary to obtain results comparable 

to those of the old shooting method.     That is to be expected,   since with finer 

spacing the difference between the calculated and assumed solutions (f   and its 

derivatives) decreases. 

The second technique used to linearize (6.70) is in principle similar to 

the one used in the energy equation in previous studies (see [11],for example). 

In this case,   certain terms that make  the equation nonlinear are assumed to be 

known from previous iterations,  that is. 

Since the previous studies have indicated that the greatest error usually 

wars In    f" , agi 

criterion; that is. 

appears In    f" , again successive values of   f"    are used for the convergence 

f"" mm    f*" 

Vi   \ 
<    7 

where    7    is a prescribed value and    Q    denotes the  iteration number. 
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f(l + t)2kC (1 + ^ ) f 11 

^    o 
+ f f«» + ß 

o (pe/p)0 - f'f • 

21 

(6.77) 

fo(Alf' + A2f;.l + A5fn.2) " ^   (Alf + A2fn-1+ Vn-2>] 

The  subscript    o    denotes that the function is obtained from a previous itera- 

tion.     For simplicity,  the subscript    n    is dropped.    Equation (6.77) can be 

expressed in the saune  form as  (6.75), where again the    (p's are the perturbation 

quantities defined as before.    However, the coefficients    E.    now are given by 
J 

E  = (i + T)21" c (i + r ) 1 o ^   o 

(1 + T)2k C  (1 + - ) 
o MO 

+ f 

h - - ßfo - 25foAl = - f'   (ß + 2{ A^, (6.78) 

h - 2« fo,Ai 

E5 = - ß(pe/p)o + 2e[f.(A.f._1 + A3f.,2)- f-(A2fn_1+ A3fn_2)] 

llo 2 o 5o h oJ 

Again, when (6.75) with the coefficients defined by (6.78) is solved by 

the  same  finite-difference method as before,  oscillations  in    f"    continue 

and convergence is not obtained.    On the other hand,   the  results for laminar 

flow indicate that even though the convergence rate of this linearization met.hod 

is not as rapid as the other one,  this linearization methods shows much less 

sensitivity to streamwise spacing and the results are as accurate as the other 

one.     Furthermore,  when a 5-point mean of the eddy-viscosity expression appear- 

ing in  (6.78) is taken in the   rj-direction and a 2-point mean of the coefficients 

given by (6,78) is taken in the     {-direction,  oscillations in    f"    stop and ex- 

cellent convergence on    f"    is obtained. 

6.6.1.3   Variable-grid spacing in the  T)-direction.  From a computational 

aspect,  a turbulent boundary layer presents a much more difficult problem of 

calculation than a laminar boundary layer.    Consider,   for example, an 
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incompressible turbulent flow.    The skin-friction is appreciably greater than 

it is for laminar flow.    This means that    du/^y    is greater.    To maintain com- 

puting accuracy when    du/dy    is large,  short steps in    y   must be taken; when 

it is small, longer steps can be taken.    Therefore,  near the wall the steps 

in a turbulent boundary layer must be shorter than they are in a laminar layer 

under similar conditions.     In the outer region,  the expression for the eddy 

viscosity can be written as  (see 6.27) 

€ 

—^    = 0.0168  (p/p  )  R M (6.79) 

where    R  t   is defined as    p u 5 /^     and    7   is assumed to be unity.    Since 

R #    may easily exceed 10,000,     c /M   may easily exceed 100.    This part of the 

boundary layer then behaves like that of a highly viscous flow (oil,  for example), 

and the thiciaiess of this part becomes very great.    On the whole,  the turbulent 

boundary layer is something like a cold oil flowing p&st a heated wall.    Thus 

it can be seen that the turbulent boundary layer is characterized by great thick- 

ness;  but,  in spite of that,   the steps near the wall must be shorter than for 

laminar flow.    As a result,   if steps of constant    Tj-spacing are used,  far more 

are required than are necessary to solve a laminar layer,  nor will ordinary 

bv.-Mng improve the situation. 

A possible solution of this problem is to devise a simple variable-step 

system that has short steps near the wall,  which lengthen with distance  from 

the wall.    A promising idea,   illustrated in figure  ^,is a grid whose spacing 

is such that the ratio of lengths of any two adjacent intervals is a constant; 

that is,    h,  = Kh      .    The distance to the  i-th grid line  is given by the 

following formula: 

= h K    - 1 
IV K - 1 0,   1,   2»   5,   .•• N (6.80) 

There are two parameters:    h,,   the length of the  first step,  and    K,  the ratio 

of two successive steps.    A number of useful relations for this system can be 

derived,  but the following is of particular interest: 

K - 
ni-h1 

- h. (6.81) 

L tm 



^" 

-39- 

>» 

•o 

'—T f 1 t 1 » 9 * III «  

1    Y        ■ ' '' '' '' '' 11 ■ ■ 1 — — i ' i 

^^l - ' — - I— ■ ■ ■—■ —       —  

—♦              - — ■ ■ ■ ■ ■ ■ ■            —  I 

-  ♦ I ' • ■ I 1 ■ ■ I 1 ■ . .—   —— ■ I—■ ■—. .  — 

'    » ■ ■ • • — • ■ • ■ ■ — — — • 

■ ■ ♦                    ■-     ■ -^^—— I            '          1 ■- ■          ■            — — — — 

__i , . ., , — —- i 1. . . . . . — ■—. —— ' 

■- »■        .^^— , .              ■ ■ ■- — I 1...            I            — — 1 - 

■ ♦ ' ■ ♦ ■ ' '         —          I                 ■ ■ — •— —    ' I 

i       ■ ■ i ■   i — —— 1 i ■ i ■ • — — - •     - ' 

■ m • ♦ i ' ' — i i — —■ i        i ^— •** 

- ♦     ——4—■ ■ ■' '     —     -—- — - ■' — — —' 
i ■ ■      ■ — —       ■-      — —    ■      ' 

■ i ' -     I  i 1 ■ i ■ . ■ ■ •—■ i 1 - 

i      t     "^r     f      —L      I"! I I lltl        i -m 

Figure 5 -Finite-difference variable-grid system in the ^-direction. 

Suppose the boundary layer has a thickness T^ = loo. Assume that an error 

analysis shows that t^ must be 0.1, but that it also shows that h (= h ) 

could be 2.     What  is    K?    It is 

and 157 steps are  required for the traverse.    At a constant step length of 0.1, 

which is based on the wall accuracy requirements,  1000 steps would be  required. 

In th? usual problem,   the value of    K   lies between 1.01 and 1.02.    Figure 5 

accurately represents the  spacing for    K = 1.07,  a grossly large value. The spa- 
cing in the  {-direction is arbitrary. 

6.6.1.U Method of solution. An implicit finite-difference technique is 

used to solve (6.75). Figure 6 shows the finite-difference molecule selected. 

The variable-grid differentiation formulas for this molecule, as well as for a 

5-p«int molecule that is used in the energy equation, are de-ived for the lAgrange 

interpolation formula and are given in Appendix C (see also [27]). By using 

the first-, second-, and third-derivative formulas at point (n, i), (6.75) can 
be written as follows: 
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.    (n, i+2) 

(n. i+D 

(n. i) 
(n-2,i) (n-l,i) 

(n. i-D 

(n. i-2) 

Figur« 6.-Finite-differeoc« molecule for the momentum equation at (n. i). 

^2* riVl+ GiV ^^i-l* Vl-2= Ni    i • 2,   5,   U,   ... N - 2 (6.82) 

where 

'i        R 

E E 

6(8^ K - K^) + 2^ hi_2Ka1(l - Ka^ K2) - ^ hi.2K3al (6.85a) 

B    f E 
Gi= "R^ 6(ai+ K ~ K2- ^i)*2 r hi-2K(ai~ ^i" ^i"*2* ^v K5ai) 

+ E^ h2i-2K\^ ^r ai - i)+ 
Wi.2 ^ 

(6.85b) 

i 3 
^1      R 

E E 
6(ai- K2- K2a1)+2^ ^^^(K2- a^ l) + ^ hi^K ai (6.85c) 

M,   = -r 
E E 

6K(1 - K - Ka^^) ♦ 2 g^ hi_2K3(Ka1- »^ l) + ^ hi-?K5al 

N, 
E1R hi.2 

(6.85d) 

(6.85e) 

^aatm^mäi 
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Ri = B5 

E ET 
6^+ K - K2) + 2 ^ hi_2K(a1- Ka^ K2) - g^ hi.2K3ai J (6-85f) 

The eddy-visco«ity expressions appearing in the coefficients    E,. and E.    at 

(n, i) are taken as the J-point means of the eddy-viscosity expressions in the 

Tj-direction; that is. 

v av'i      5      i-l       i       i+l 
(6.84) 

This averaging process vas introduced in order to stop the oscillations in f" 

and cause the iterations to converge. 

3 

For each point (n, i) at station i, an algebraic equation of the form of 

(6.82) is written, yielding N - 5 algebraic equations with N unknowns. The 

other three equations are obtained by considering the following finite-differ- 

ence molecule at (n, N-l) (see figure 7) and by the boundary conditions given 

by (6.59). 

(n, N) 

(n-2,  N-l) (n-l, N-l) 
, (n, N-l) 

(n, N-2) 

(n, N-5) 

(n, N-l*) 

Figure 7.-Finit«-diff*r«flC« molecule for the momentum equation at (n,N-1). 

By using the variable-grid differentiation formulas at point  (n,  N-l),   (6.75) 

can be written as  follows: 

% + FN.1%-1 + GN-l%-2 +  WV} + "N-lVl* = NN-1 (6.85) 
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where B, 

^ " Vx 
6(a2+ Ka^ K2- K5)+ 2^ h^^KCa^^ Ka2- I^a^ K^- K^- K^) 

+ ^ ^-lAlV K V2- ^2" ^l) + B^; ]      (6-86a) 

^ " ^-1 
6(a2+ K a^ K5)+ 2 ^ ^^KCa^ 

-12 4.i.(KV2' (6.86b) 

E,   „ 
6(a2+ K2- K3)+ 2 2 ^.^(a^ K a,, - K3)- 2 ^(A^ (6.86c) 

«N. 
3 E F 

6K(a1 + K - K2). 2 ^ hNAK5(ar K a1- K2) - ^ h2^^ (6.86d) 

N, N-l  E A-l^J-U 
(6.86e) 

^-1 = B5 
6(a2+ Ka1+ K

2) + 2 ^ ^(Ka^ ^ K\)+ ^ ^^a. (6.86f) 

By using the first-derivative variable-grid differentiation formula at point 

(n, 0), the boundary condition given by (6.59b) can be written as follows: 

where 

^ + Fl*5 + Gl^ + ^^i = Ni 

\ 
Fl = -\   ala3 

Gl s -R^ a2a3 

(6.87) 

(6.88a) 

(6.88b) 

ilium i  !■ 
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A?. 

h- 
B2 
"^   ala2a3 

B. 

(6.88c) 

Nl = ^ (ala2+ ala3+ a2a3+ ala2a5)fw " [h^oh + 

W + Fl (fo)5+ (foV 

^ = B^^ 

(6.88d) 

(6.88e) 

The term    f      is given by (6.59a).     It is equal to zero when there  is no mass 

transfer. 

Similarly,  by using the first-derivative variable-grid differentiation 

formula at point    (n, N), the boundary condition given by (6.59c) can be written 

as follows: 

% + F
N%-1+ GNV2+ HN(%-5+ ^-k - NN ^'^ 

where 

rN = "R^   K aia2a3 

B3     ^ 
S--%   Ka2a3 

(6.90a) 

(6.90b) 

^   K5V3 \ ' -t.   **•* 
B, l     6 

MJJ ^ —   K a^ 

(6.90c) 

(6.90d) 

NN = ^TV - (VfoVl+ ^^o)N-2+ ^foW Wl*.k+ ^o^      (6-^) 

RJJ = B5(K3a1a2a5+ A^ K\*3+ K.\*2) (6.90f) 
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At station n, (6.82), (6.85), (6.8?), and (6.89)form a system of N linear 

simultaneous algebraic equations with N unknowns that can be represented by 

a matrix equation of the form A 9 = N. 

"3 

1 

1 

M. 

1 

F, 

"N- 5 h-3   GN-5 FN-5 1 

^-2  ^-2 ^-2    FN-2 1 

1   h-i  SJ-I F
N-I 

1 

N N 

^1 Nl 

^2 N2 

^ N5 

m • 

• • 

%-2 ^-2 

^-1 «N-l 

% r:N 

(6.91) 

The Choleski method [25] is used to solve (6.91). The matrix A is expressed 

as the product of a lower triangular matrix L and an upper triangular matrix 

U; that is 

[A] 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X  X 

X  X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X  X 

X  X 

X 

(0.92 
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so that  (6.91) becomes 

L U 9 = N 

If (6.93)  is written in the form 

L Y = N 

where 

U 9 - Y 

(6.95) 

(6.9M 

(6.95) 

then the method of solution is apparent.    The two triangular matrices    L   and 

U   are  found from (6.92),  the column matrix    Y    from (6.9U),  and the column 

matrix    cp    from (6.95)« 

6.6.2    Solution of the energy equation. 

6.6.2.1    Finite-difference representation of    {-derivatives.    The method 

of solution of the energy equation is similar to that of the momentum equation. 

Again the     l-derivativcs are  replaced by finite differences that are defined 

by (6.71).    Thus  (6.52) is written as 

f^'^ * (pAs;+ 'VA • (Pi.'„ (6.96) 

where tl"      efficients    P     arc  civen by 

rT 

(6.97a) 

P2 = f + 2|(A1f + A2fn^ + A3fn-2) (6.97b) 

P5 = - 2| f A1 (6.97c) 

(6.97d) 



-» T V, 

-U6- 

6.6.2.2    Method of oolution.    Again,  an implicit finite-difference method 

is used to so.ve the energy equation.    Figure 8 shows the finite-difference 

molecule selected. 

i 
|  (n,  i+1) 

(n,  i) 
(n-2,   i) (n-l,  i) 

(n,  i-1) 

Figur« 8.-Finite-difference molecule for the energy equation at (n, i). 

By using the first-derivative 5-point -w. lable-grid finite-difference  formula 

at point  (n,  i),   (6,96)-an be written as follows: 

ßi+l 
+ Si6i + WiCi-l = Zi i = 1, 2, 3,..., N-l {t.ß) 

vhere 
1 
V 

?5+  P2A2hi_:L(l - K) + A2h i_1 JA^d + K)(P1)._1 + A2(l - K)2P1 

(6.99a) + S(1+K)(Pl)i+l} 

W,   = 
Vi-l I'i.i-JA^S + K)(P;L)._1- A2K(1 - K)?^ A5K(P:L)i+;Lj - P2K 

(6.99b) 

Z. 
1 

V.   = A,h.   . 
1        5 i-l 

(6.99c) 

.hi-lA^Vi-l* A2(l " K)P1+ V1 + ^^l^n} +P2. 
(6.99d) 

—  - - — -   - - 
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Acain,   for simrlicity,  the subscript    n    is dropped.     In solving (6.98),  values 

of    f    and its derivatives determined from the previous solution of the momen- 

tum equation and fluid properties determined from the previous solution of the 

energy equation are used.    Details of the iterative procedures for solving both 

momentum and energy equations are given in Section 6.6.5.     With these proce- 

dures,   (6.98)  is linear and    g    is the only unknown. 

For each point (n,   i),  at station    i    an algebraic equation of the form 

of (6.98)  is written,  yielding    N-l algebraic equations with N-l unknowns. 

The  function    g    at    N    is known from (6.60b),and g at the wall is known from one 

form of(6.u0a),   depending on whether the temperatuu or the heat transfer is 

specified at the wall. 

Case 1:    g.     is known. 

Fcr    i  = 1,   (6.98)  becomes 

g2 + s1g1 + w1gw = z1 (6.100a) 

and,   since    g^    is known,   it can be written as 

g2 + S1g1 = Z^ W1gw = Z* (6.100b) 

Case 2:    g*     is known.        ^w 

For this case    p.      is unknown,   but since    fc*    is known,     ß     can be ex- 

pressed in terms of    g*    and    g.'s by using (6.100a) and the  first-derivative 

variable-grid differentiation formula at point  (n,  O). 

^ = -hl B1(2 + K)gw + B2(l + K)g1 + B3g2 (6.101) 

Thus,   by eliminating    g^    from (6.100a) and (6.101) and rearranging,the following 

equation is obtained: 

7 
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KjBgd + K) - 3^(2 + K) 

^ +    W^B, - B^i + K)    gl g-i = - ^[W^ -^(2 + K)] 
= Z, 

(6.102) 

The system of equations given by (6.98) is also represented by a matrix 

equation similar to (6.91), and 

W„ 

W, 

1 

«N- 2 ^-2 1 

"N-I Vl %-l 
^-2 

-i h-?- 1 

(6.103) 

. 

is solved by the Choleski method described in Section 6.6.1.^.  In the first 

row of (6.105), the asterisks on the coefficients S- and Z  indicate that 

they are determined by the boundary conditions at the wall. When ß  is 

specified,  S 

g* is specified, S 

and Z  are defined by the coefficients of (6.100b), and when 

and Z  are defined by the coefficients of (6.102). 

6.6.3» Outline of procedure for solving momentum and enerr.y equations siinul~ 

taneously at t = t . 
^^~^-^—^-■^■——■^n 

The general method of solvinc the momentum and energy equations at station 

n is described in Sections C.G.l.h  and 6.6.2.2, respectively.  The procedure 

for solving both of these equations at station n is discussed in this section. 

Consider the case when the program is solving the momentum and energy equations 

at station n. Values of f and g and their derivatives at all previous 

stations will be known. In addition, the fluid properties are known up to 

station n. Calculations start from the momentum equation. Before the momen- 

tum equation can be solved, it ij necessary to establish the inner and outer 

regions. Since the eddy-viscosity expressions contain terms like f" and B , 

these two regions are not known until a solution of the momentum equation is 

generated.  Thus an iteration process is necessary. For the first iteration, 
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6      and    f"    are . btained from the  final solution at station n-1,  and inner 

and outer regions are established by (6.28).    With this information,  the system 

of equations represented by (6.91)  is solved by using the  fluid properties from 

the n-1 station and    f    and its derivatives from the n-2,   n-1 stations.    Once 

(6.91)  is solved, new values of    f    are obtained from qp's and f's.  The first 

derivative of    f    is subsequently calculated from the values of    f,  the second 

derivatives from the values 0;"    f1,  and the third derivatives from the differen- 

tial equation,   (6.75).    A solution at station    n    for one  iteration is then 

defined as the averages of the calculated values of    f    and its derivatives 

and previous values of    f    and its derivatives;  that is,   the values of    f    and 

its derivatives are obtained from 

f = ll(fj0
+ (O V/Q o'Q+l ' I 2 (fo)Q +  (fo Wj etc.. 

where Q is an iteration number. This is necessary to stop the oscillations 

in f". 
w 

After a solution of the momentum equation is obtained xn this manner,  the 

values of    f  's and their derivatives from this solution are used to solve the 

energy equation.    Again,  the fluid properties from station    n-1   are used. 

Once  (6.105)  is solved,  fluid properties are obtained for that particular solu- 

tion ly converting the total enthalpy to static temperature,  and inner and 

outer regions for the next solution of the momentum equation are established. 

Tiie conversion of enthalpies to temperatures is necessary because the fluid 

properties given by (6.65),   (6.66),   (6.67),  and (6.69) are expressed ar. func- 

tions of temperature.     The  procedure of calculating temperatures from the 

enthalpies  is as follows:  From the  steady-state energy equation,  the total 

enthalpy    H    is 

H =  h + I u2 (6.10^) 

By using the definition of g and the transformation given by (6.58), equa- 

tion (6.10^) can be written k.s 

(6.105) 6He4ue
2(f.)? 
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Since g is known from the solution of the energy equation, f* is known from 

the solution of the momentum equation, and H and u are given, the right- 

hand side of (6.105) is known. Equation (6.105) is effectively a sixth-degree 

polynomial given by (6.68).    Rewriting (6.105) and denoting it by   F   gives 

F = h -g H   + ^uflf)2 = F(T) (6.106) 

The Newton-Raphson method is used to solve (6.106). An initial temperature, 

T., is obtained from the perfect-gas relationship; that is. 

1_ 
c gHe-iue

2(r.r (6.107) 

where 

calcvJ 

c      for    air is 6.055 x 10    ft'"/sec-dec R.    A new temperature then is 

I by the formula 
F(T:L) 

T2 " T
I " FTT^T 

(6.108) 

where    F*    is the derivative of    F    with respect  to    T.    Once    T?    is obtained, 

the same procedure can be repeated and new values of    T    can be obtained until 

the difference  between the consecutive values of    T    is less than    y, where    7 

is a small number. 

Once the temperature at each point within the boundary layer is known,  the 

fluid properties are calculated from  (6.65),   (6.66),   (6.6?) and (6.69).With these 

newly calculated fluid properties and with the values of    6      and    f"    from the 

previous solution of momentum equation,   inner and outer regions are established 

and the momentum equation and the energy equation are solved in succession. 

An iteration procedure based on the convergence of    f"    is followed.    The itera- w 
tion process continues until either 

(f;w- ^'QI <' 
or 

Q - Q, max 

*m 
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where    7   is a prescribed V2.1v.e ar.d   Q    denotes the iteration number.    A 

typical value of    Q    is 6.    Once either of these conditions is satisfied,  the 

program proceeds to the next  station.     Figure  9 shows the flow diagram at 

station    n. 

i        i 

Calculate fluid properties 
and establish inner,  outer 
regions from Sta(n - l) 

Solve Momentum 
Equation 

Solve Energy 
Equation 

1 

1 r 
1 Calculate new fluid 

properties based on the 
last iteration and establish 
inner and outer regions 

Solve Momentum 
Equation 

Solve Energy 
Equation T 

1 
1 * 

t 
Repeat this cycle until 

(f/    " (fj)     \<7     or      ^ = 0^ 
w Q+l        W Q I ^ 

Then proceed to station (n + l). 

Figure 9.-Flow-diagram for solving the boundary-layer equations at station n, {>£n. 

As the calculations proceed downstream,  the  boundary-layer thickness in- 

creases.    Since at station    n    the initial values of    f    and its derivatives 

are obtained from station    n-1,   it is necessary to make an assumption for these 

values for    T > C1^,)    -,>  where     (1^)    ,     is the transformed boundary-layer 

thickness at station n-1.    For this reason,  at station    n    the values of    f 

and its derivatives are obtained from station n-1 up to    11= (T^)n_1'    
For 

T! > (1^)      ,  f    is obtained from    f = [t] - (Ti,)n.1
+ ^-i^^   ff    is assuined 

to be unity, and    f"    and    f"* are assumed to be  zero  (see figure 10).     The 
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latter assvunption is permissible,  since    f"    and    f,,,    approach zero as 

^ n-l i)m, fj t,f f,,^ ftfL 

^>(^„.l 

^(lL)n-l 

f      fn.l(Tl)'      *'      fn-l(,))'     f"   :   d(T))'    f",  =  ''nlI(T|) 

Figure 10.-Diagram showing the method of generating the initial coefficients of the momentum equation 
at station n. 

6.6.4    Starting the solution at the leading edf;e or at the stagnation point. 

At    1 = 0,  the  |-dependent terms disappear in both the momentum and energy 

equations.    Hence the coefficients of (6.75) given by  (6.78) and the coefficients 

of (6.96) given by (6.97)  do not contain  5-dependunt terms.    In addition,   the 

flow at this zero-station is assumed to be laminar,  because    the eddy-viscosity 

and turbulent-Prandtl-number terras are zero. 

The procedure of solution requires that the momentum equation be solved 

first,   but to do so requires values of the fluid properties as well as the 

initial values of    f   and its derivatives denoted by the subscript    o.    The 

latter values are obtained by the old shooting method of previous studies 

[7 through 15J.    The fluid properties are obtained by assuming a linear tempera- 

ture profile of the form 

T = a + bT) 

which becomes 

T = T   +  (T   - T )-3- (6.109) W e W'    Tl \ y/ 

" L - -      -'■—   ! 
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ty assuming    T(O)  = Tw,  T(T^) = Te. 

After the  first  solution of the momentum equation is obtained by (6.91), 

new values of    f    and its derivatives,  together with the fluid properties ob- 

tained by a linear temperature variation,  are used to solve the energy equa- 

tion.    Again,  once   (6.105) is solved,  fluid properties are obtained for that 

particular solution by converting the total enthalpy to static temperature. 

These fluid properties are used for the next solution of the momentum equation. 

Figure 11 shows the  flow diagram at    1 = 0. 

Calculate    an initial 
velocity profile by 
the old shooting method 

Assume a 
linear 
terperature 
profile 

Calculate 
fluid 
properties 

1 Solve 
Momentum 
Equation — 

Solve 
Energy 
Equation 

Calculate 
fluid 
properties 

1 
1 

L 
1 1 

 »|—- 

IT 
Repeat this cycle until 

Q+l w Q 

or        Q = Vx 

Then proceed to station 1. 

Figure 11.- Flow diagram for solving the boundary-layer equations at 5= 0. 
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6.7   Boundary-lÄyer ftirameters 

Once the profiles of    f   and    g    and their derivatives are determined at 

any {-station, the boundary-layer pai^ameters,  such as displacement thickness, 

momentum thickness,  local shear-stress coefficient,  local skin-friction co- 

efficient,  local heat-transfer rate,  Stanton number,  as well as the law-of-the 

wall coordinates,  velocity-defect coordinates,  and other parameters of interest, 

can be calculated.    Some of thtse parameters are given by the following equa- 

tions. 

Displacement thickness: 

00 

= / (—)   (1 - ^ Uv 
0 

or,  in terms of    {,   rj-coordinates, 

,1/2     a) 

P u e e 

5« = _^ HiL- j (-i-r.)dn k    p r       e    e     /-> o 0 

(6.110a) 

(6.110b) 

Momentum thickness: 

00 

y o        e e e 
(6.111a) 

or,  in terms of    {,   Tj-coordinates, 

00 

9 = teÜ       /     f    Ü   -  f«)    dT) k      p u r e e 
o 0 

(6.111b) 

Shear stress at the wall: 

Tw= ^w W*yK (6.112a) 

or,  in terms of    5,   Tj-coordinates 

1    = 

n p rk   u2 f" w w o      e    w 
W =    L(201/2 

(6.112b) 

■■■^"■^-■■'^ 
, - -      -     ■ - ■ ^,1   m  ■■ tm^m*M if'        !■' 
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Local skin-friction coefficient: 
T 

W 

f      1^2 
2 peUe 

(6.115a) 

or,   in terms of    |,   T)-coordinates, 

k 

cf = (2/0l/2 4-   ^w f; (6.ii3b) 
e 

Local shear-stress coefficient for laminar flow,  not necessarily at the wall 

t.   " 1        2 
L Ö   PoU

0 2    e e 

or,   in terms of    |,   T)-coordinates, 

(6.114a) 

c       =  (2/l)l/2 -f-    -g-    n f" (6.114b) 
TL h        pe 

Local shear-stress coefficient for turbulent flow: 

p u'v* 

T ^ p u 2    e e 

or,  in terms of    \,   T)-coordinates, 

S„ - - f^-T (6.U5a) 

\ '           L       ^e 

Total shear-stress coefficient: 

k 

(2/0l/2-£   -£- e  f" (6.115b) 

c . c    + c      =  (2/|)l/2-f^ -?- (^ + Of" (6.116) 
Ttotal        TL      TT L      Pe 

Equation (6.116)  reduces to  (6.115b) at the wall,   since    € - 0    at    y = 0. 

Heat-transfor rate at the wall: 

" ^ = r" (^/^)w (6.117a) 
pw 

* 

? 

I 

i 

1 
^ IS      -.1 » 
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or, In terms of   i,  Tj-coordinfctes, 

Stanton number: 

St p u CH   - H ) e ex e       w' 

or, in terms of   (,  ^-coordinates, 

k r 
St 

L pe Prw(201/2(1 - gj 

The law-of-the-wall coordinates; 

-\ -   (a/c,)1/2^ 

JQL 
Pe v 

l/2Tj     Ji 

0 

(ecf)—L    r 
(pa/p)dTi 

The velocity-defect coordinate: 

^-^   =    (2/cJ1/2(l - f) 

(6.117b) 

(6.118a) 

(6.118b) 

(6.119a) 

(6.119b) 

(6.120) 

Once    6 , 0, and   c     are calculated,  some of the other boundary-layer para- 

meters such as ehape factor H, defect-shape factor   G, and defect-displacement 

thickness   A   can be calculated from the following relations: 

Shape factor: 

De feet-shape factor: 

00   u   -UN2 

H = 6 /© 

oo 1 
,2 -/(^)W/(^>-vt)V 0 

(6.121) 

(6.122) 

-V 
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Dofeet-displacement thickness: 

0 

/ 
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7.0    COMIARISON OF CALCUIATED AND EXPERIMENTAL RESULTS 

The ultimate test of any numerical calculation technique is a comparison 

of calculations with exact solutions and with experiments.    However, when no 

exact solutions are possible, as, for example,  in turbulent flows, all that 

can be done is to compare the calculations with experiments.    For this reason, 

a variety of both incompressible and compressible turbulent flows are calcu- 

lated by the present method, and comparisons with experiments are made.    The 

results presented in this report do not represent a finished development, but 

are only what has been obtained so far by one particular formulation of eddy 

viscosity and turbulent Prandtl number. 

In the present method, the solution begins at the leading edge or at the 

stagnation point, where    t = 0, and proceeds downstream.   At station    1=0, 

the flow is laminar, and it becomes turbulent at any specified station where 

t > 0.    In principle, a calculation can be started in the middle of a flow 

field, provided that information is available to be used as an input from up- 

stream positions in the flow.    In some of the experiments, a specific portion 

of the flow was Instrumented.    This is referred to as the test section. 

Details of the flow field upstream of the test section were not reported,  and 

hence it «ras necessary to add, in effect, an Initial length (usually a flat 

plate) to the test section.    This length was selected to match as well as 

possible the calculated boundary-layer parameters,  such as   9   and   H, with 

the experimental values at the beginning of the test section.    For each test 

case, details of the matching procedure are discussed separately. 

The computer program of the present method has a capacity of 500 points 

in the T)-direction.    There is no restriction of the number of stations in the 

{-direction.    For a turbulent boundary layer,  the transformed boundary-layer 

thickness may be 150 or more, and the transformed velocity gradient at the wall 

may vary between 0 and 30 or more.    Since a variable-grid system is being used 

in the Tj-direction and smaller spacing is necessary in the inner region,  which 

occupies approximately 10 to 15 percent of the whole boundary layer,  it is con- 

venient to have a table of variable-grid parameters such as Table II.    For the 

cases that have been calculated so far,  an initial    Tj-spacing of   h.  = 0.01 

^K. 
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TA.BLE II 

VALUES OF VARIABLE-GRID BUftMETERS FOR DIFFERENT 

T^ VALUES (N • 500 POIKTS) 

\ 

hl- 
0.001 hl- 

0.01 

K h ,. 
edge K w 

50 1.01196 0.555 1.00595 0.187 

65 1.0158U 0.888 1.00807 0.530 

100 1.01U87 1.^66 1.00920 0.922 

150 1.01555 2.019 1.00991 1.505 

150 1.01585 2.558 1.01025 I.529 

200 1.01650 5.2U8 I.OIO96 2.178 

was found to be satisfactory for the range of f"    between 0   and   10.    For 

values of   f"    greatei than   10,  it was found to be necessary to use a much 

smaller spacing,    a. = 0.001,  cloje to the wall. 

In calculating the cases for both compressible and incompressible flows, 

it is necessary to transform the    x, y-coordinates to    ft, T)-coordinates.    For 

flows with pressure gradients,  it is also necessary to calculate the pressure- 

gradient term    ß, defined by (6.53).    The    5- and T|-coordinates are given by 

(6.56) and (6.57),  respectively,  and reduce to 

x 

I /p n u dx (7.1) 

TJ  = 
e e 

(25) W f (p/Pe)dy (7.2) 

for two-dimensional flows. The du /d|-term in ß is calculated from the e' 
given velocity distribution    u    versus    i    by using a 3-point Lagrange deriva- 

tive formula 



i 

-60- 

(due/dOn ■ An-1u      + A u   + An+1u 
n-x n 'n+1 

(7.3) 

where 

(7.1«) 

2«n - «n«- »n-l 

^  " (V- OTr W (T.ltb) 

(7.1«) 

For compressible flows, the fluid   properties at the edge of the boundary 

layer, which are inputs to the computer program, are determined by the test 

conditions.    On the other hand, for incompressible flows, the fluid properties 

are determined at standard temperature and pressure. 

7.1    Incompressible Flows 

The test cases for which comparisons are calculated by the present method 

consist    of a variety of flows of widely different character: flat-plate, 

flat-plate with mass transfer (blowing and suction), equilibrium flows in both 

favorable and adverse pressure gradients,  nonequilibriura flows in adverse 

pressure gradients, separating boundary layers, and recovering boundary layers. 

7.1.1   Flat-plate flows. 

Flat-plate flow offers an excellent opportunity to compare the calculated 

results with experimental results as well as with well-established correlations 

such as the law of the wall and the defect law.   A flat-plate flow was calcu- 
7 

lated for a Reynolds number of 10   per foot,  by assuming the following values 
of the flow parameters: 

H = 0.58 x 10   lbf-sec/ft2 

P = 0.237 x 10"2lbf-sec2/ft 

u = l600 ft/sec. 

,.v 
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The value of   u    was selected merely as a matter of convenience.   For this e 
case, the relations given by (7.l) and (7.2) reduce to 

6 - M P u  x (7.5) 

P u 
T| ■ TTP y (7.6) 

tee)1'2 

respectively.    From a previous study,  [7], the boundary-layer thickness was 

estimated, and the approximate value of   1^ at   each    (-station was determined. 

By calculating   {   and    n     from (7-5) &nd (7.6), respectively, a flat-plate 
9 flow was calculated up to a Reynolds number of 1 x 10 .    At station 1, at 

k 
Re    = 5 x 10 , the flow was specified to be turbulent.    The calculated value 

x 5 of   Re   at    Re    = 1.05 x Kr was Identical to the corresponding value of   IL 

in Table II of [28].    The initial spacing, h., was 0.001   and   K   was 1.01^87. 
8 Even though the calculations showed that for   Re > 5 x 10   the value of   n 

should iiave been about 130, the maximum value of   n     was taken to be 100, 

because of the computer-capacity limit.   Approximately 70 stations in the 

I-direct ion were used.    The time per station was approximately 10 seconds. 

The results of the calculations are presented in Figures 12a through 12j. 

Figure 12a shows a comparison of local skin-friction coefficients calcu- 

lated by the present method and those calculated by the Prandtl-Schlichting 

formula [29], 

cf =(2 log10Bex - 0.65)'2,3 (7.7) 

as well as experimental values and Colej« line [28]. The experimental values 

are taken from [28], The agreement between Coles' line and experiment is very 
o 

good.    At very high Reynolds number, about 7 x 10 ,  the calculated values of 

c- begin to deviate slightly from Coles» line.    This is believed to be due to 

the smaller value of    T^; ratner than 130, a smaller value of    n , namely 100, 

was used,  in order not to exceed the computer capacity.    Figure 12b shows a 

comparison of calculated shape-factor values with experimental and with those 

given by Coirs1 line.    In figures 12c and 12d the velocity profiles are plotted 

in law-of-the-wall coordinates.    Figure 12c shows a comparison of calculated 

• ■ 

1 
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results with experimental and with those given by the universal logarithmic 

velocity # 
u 
u 

5.75 log10 ^-  +5.10 

at   Re    - 10   and 10 .    Figure 12d shows a comparison of calculated results 
with those given by Coles* line.    In figures 12e and 12f the velocity profiles 

are plotted in velocity-defect coordinates.    Figure 12e shows a comparison of 
calculated results with experimental and with those given by the logarithmic 
velocity distribution[28] 

* 
2.80 - 5.75 log10(^.05 -^ ~- ) (7.9) 

6       e 

ue-u 

u 

6 7 
at   Re    =10   and 10 .    Figure 12f shows a comparison of calculated results 

with those given by Coles* line.    Figure 12g shows a comparison of calculated 
and experimental sublayer profiles.    The experimental data are KLebanoffs 

data at    %. B 77,000 taken from [28].    The agreement of results in figures 
120, 12e, and 12g with experiment Is remarkable, in that the calculated values 
agree with the experimental values point by point. 

The argument of the logarithmic term in (7.9) Is sometimes written in 
tenns of   y/A,  since from (6.123) and from the definition of   u 

A = 
u 

u 
(7.10) 

It can also be written in terms of    y/8.    Use of the latter presents the 
difficulty of dealing with an ill-de fined outer edge of the boundary layer. 
On the other hand, ^6 = 3.6 [30]  for constant-pressure profiles.    For flat- 
plate flows,  5    is therefore related to the defect-displacement thickness   A 

by 6 = 
3^ 

and can be written in tersm of   c„    and    5 as 

6 = 0.392837 
6 

V5? (7.11) 
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Flgures 12h and 121 show comparisons of calculated and experimental [19] 

shear-stress distributions and mean-velocity distributions at   Re, ■ 7.7 x 10 , 
# 

u /u   - 0.037.    The definition of   8   given by (7.11) Is used for the boundary- 

layer thickness In plotting the calculated results.    The shear-stress coeffi- 

cients given by (6.11^) and. (6.115) reduce to 

c     = (2/e)l/2 n f" (7.12a) 
TL 

c,,   = (2/i)l/2 c t" (7.12b) 
TT 

respectively.    The agreement of the velocity profiles is nearly perfect.    The 

shear-stress distribution is also very good except near the edge.    This is 

probably due to the ill-defined definition of   8   in (6.26), which needs to be 

reconsidered.    For example,    6   should perhaps be based on the point where 

u <• 0.995»    Figure 12J shows a comparison of calculated eddy-viscosity distri- 

butions across a boundary layer with values calculated from both Klebanoff*s 

and Townsend's data.    The calculated experimental values are taken from [31]. 

The results indicate that the calculated eddy-viscosity values are in close 

agreement in the inner region and are in poor agreement in the outer region. 

These results for a flat plate demonstrate that the computing program 

has the capacity to handle Reynolds numbers greater than those occurring on 

any existing or contemplated aircraft, as well as on most ships. 

7.1.2   Flat-plate flow with mass transfer. 

The present method is readily applied to flows with surface blowing or 

suction.    Mass transfer at the wall is handled by the boundary condition 

(6.59a), which reduces to 

0 ft   <   6, 

-■' 

fw=  i V{ - jo) 
(7.13) 

for uniform, incompressible,  two-dimensional flow.     In (7.13),     (     represents 

the distance from the leading edge without mass transfer. 

1 

\ 
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1.1.2.1 Uhlform blowing (Mlclcley emd Davis).    The experimental data used for 

comparison with a calculated flow with uniform blowing were obtained by Mickley 

and Davis [32].   Two blowing rates,   v/u   - 0.001 and 0.002, were studied. 

A flat-plate flow was calculated for a Reynolds number of 3.125 x Kr per ft 

by using the values of   n   and   p   that were used in Section 7.1.1, with 

u   " 50 ft/sec.   Thus, an effective length that matched the momentum thickness o 
at the station where blowing began was determined.    On the basis of this infor- 

mation,  (now   t     is known), f     was calculated. ' o w 

The results are shown in figures 13a, 13b, and 13c. Figure 13a shows a 

comparison of calculated and experimental momentum thickness and local skin- 

friction coefficient for each blowing rate. The other two figures show com- 

parisons of calculated and experimental velocity profiles. Figure 13b shows 

the calculated and experimental, values for v /u = 0.001 at x = 58.^2 Inches 

and 83*55 Inches, and figure 13c shows tlie calculated and experimental values 

for   v /u   = 0.002 at the same stations.    The agreement between the calculated w  e 
results and experimental data as shown by the figures is very good. 

1.1.2.2 Uhlfom suction (Tennekes).   Experimental data obtained by Tennekes, 

[33] and [3^], were used for comparison with a calculated flow with uniform 

suction.    Two suction rates,    v /u    = - 0.00512    and    - 0.00^29. were studied. 
w'  e c 

A flat plate was calculated fo^ a Reynolds number of 8.13 x 10   per ft by 

using the    values of   n   and    p    that were used before, with   u   = 130 ft/cec. 

Again, as with blowing, an effective length was determined that matched the 

momentum thickness at the point where suction began.    On the basis of this 

information,    f     was calculated, w 

Figure l^a shows the calculated values of local skin-frlctlon coefficient 

and momentum thickness, together with the experimental data deduced from the 

momentum equation, for both suction rates.    Figure l^b shows the velocity-pro- 

file comparisons for   v /u   = - 0.00312 at    x = 1.25 feet and 2.55 feet, and 

figure ike shows the velocity-profile comparisons for    v/u   = — 0.00^29 at 

x = 0.59^ feet and 2.575 feet.    The agreement between calculations and experi- 

ment is very good. 
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7« 1.3   Equilibrium flows In both favorable and adverse pressvire gradients. 

All the previous examples were constant pressure flows.    The applicability 

of any general method depends on the accuracy of the results it gives for a 

wide variety of flow conditions; hence It must be tested on flows with pressure 

gradients.    Indeed, this la a prerequisite for the Important problem of pre- 

dicting turbulent-boundary-layer separation.    Because of the Interest in equi- 

librium flows that are characterized by 

E = JL g .. constant 
Tw   ^ 

clculatlons were made for several equilibrium flows. Note that for two-di- 

mensional, Incompressible flows with pressure gradients the (-coordinate is 
determined from il-l), which reduces to 

x 

5   =   n p A dx» 

and the T)-coordinate is the same as (7*6). The following sections give com- 

parisons of calculated and experimental results for such flows. 

7.1.3.1 Equilibrium flow in a favorable pressure gradient (Herring »u~\ 

Norbury). Herring and Norbury [35] experimentally investigated two equiJ .1 hri\ia» 

flows characterized by E's of - 0.35 and - 0.53. The former flow was calcu- 

lated by the present method. A free-stream velocity at the entrrnce tc tlw 
K 

test section of 72 ft/sec and a Reynolds number of ^,5 x 10     were the  fJ-ow 

conditions used.    Figure 15 shows the velocity distribution (obtained by trial 

and error) used   to match the momentum thickness at the initial poirt of the 

experimental data, namely, at   x = 2 feet.    Note that with this efttJUtive 

length added, the experimental lengths are translated 4.37 feet. 

Figure l6a shows a comparison of calculated and experiment**! lounvjuoum 
thickness and shape-factor parameters, together with the experrl/.iental velocity 

distribution, and figures l6b and 16c show comparisons of cal'-ntateri auj ex- 

perimental velocity profiles at   x = ?   and 3 feet and k and 5 loot;  respec- 

tively.    The agreement with experiment is very good, and tlvj calculated vöJ-ues 

of velocity profiles correspond to experimental values poiit by point. 

 I 
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«'-'FEET 

Figur« IS.-Velocity distribution used to motch th« momentum thickness for the experimental data of 
Herring and Norbury. 

7«1«3»2   Equilibrium flow in an adverse pressure gradient (Clauser).    In 

reference [30], Clauser experimentally obtained two equilibrium flows corre- 

sponding to two different pressure distributions,  sometimes designated as 

P.D.I and P.D.2, each having a nearly constant value of   E.    The former flow 

was calculated by the present method.   A free-stream velocity of 28.5 ft/sec 

at the beginning of the flow and a Reynolds number of 1.8 x 10   per ft were 

the flow conditions used.    Figure 17 shows the velocity distribution used to 

match the defect-shape factor,  G, of the experimental data, which is reported 

to be 10.5.    The defect-shape factor was used rather than the momentum thick- 

ness, Ö, because the momentum thickness was.not reported explicitly in [50]. 

Figure 18a shows a comparison of calculated and experimental shape-factor 

and local skin-friction coefficient parameters,  together with the experimental 

velocity distribution taken from faired velocity distributions given in [50]. 

Figure l8b shows a comparison of calculated and experimental velocity profiles, 

and figure 18c shows a comparison of calculated and experimental velocity 

profiles in the defect-law coordinates, both at    x = 200 inches and 575 inches. 

The agreement is remarkably good. 

X 
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Figure 17.-Velocity distributions used to match the defect-shape (actor for the experimental data of 
Clauser's P.D.1. 

7«1.3'5   Equilibrium flow recovering to a constant pressure flow (Bradshaw 

and Ferriss). An important class of boundary layer flows comprises those that 

have been perturbed in some manner and are then allowed to recover to some 

equilibrium condition.    As an example of this kind of flow, the boundary 

layer measured by Bradshaw and Ferriss[36] was considered.    A portion of this 
-0.255 flow has an external velocity distribution given by   uo<x    *  "^ from   x = 0 

to x = ^7 inches and is followed by a zero pressure gradient from 60 inches 

to x = 95 inches.    A reference velocity of 110 ft/sec and a Reynolds number of 

6.85 x 10   per ft were the flow conditions used.    Figure 19 shows the velocity 

distribution used to match the boundary-layer parameters at x = 23 inches. 

Note that when an effective length is added,  the experimental lengths are 

translated by 2 feet. 

Figure 20a shows comparisons of calculated and experimental momentum- 

thickness, shape-factor, and local skin-friction parameters, together with the 

experimental velocity distribution.    Figure 20b shows a comparison of calcu- 

lated and experimental velocity profiles at 47,  71 and 95 inches.    Even though 

the agreement in momentum thickness is excellent, except for the first station 

(x = 23 inches)",  the results are not as good as in the other flows.    This is 
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Figure 19.-Velocity distribution used to match the momentum thickness for the experimental data of 
Bradshaw and Ferrlss. 

probably due to the xnaccuracy of matching the initial boundary-layer para- 

meters at    x = 25 inches.     Generally,   several trial-and-error runs  (sometimes 

considerably more) are neceasary to match the initial boundary-layer parameters, 

which are usually momentum thickness and shape factor.    At least one accurate 

matching of one of thise parameters,   for example,  momentum thickness,   is neces- 

sary before one can check the calculated results with experiment.    This is 

especially true in an equilibrium boundary layer for which the shape factor is 

nearly constant and,  unlike the shape  factor of a nonequilibrium flow,   it does 

not adjust itself.    With the velocity distribution shown in figure 19,  the 

calculated and experimental values are 

calculated experimental 

©  (inches) C.216 0.200 

H 1.657 1.667 

Cf 0.96 x lO-5 1.^5 x 10"5 

E 10 5.^ 

There is also the possibility that the disagreement was caused by the calcula- 

tion of    ß,  which was computed by the formulas given in Section 7.0.     Since  ß 

involves the derivatives of velocity,  which are  inputs to the computer program, 

, v 
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any slight irregularities in velocity distribution cause inaccuracies in the 

ß-values.    In general, whereas some small irregularities in the calculations 

of    ß   do not appreciably alter the results, for flows that are near separation, 

as this one is,  irregularities in    ß   are highly undesirable.    For this reason, 

it is necessary to calculate the values of   ß   and then fair the results.    In 

order to improve the results further calculations should be made. 

7.1.^   Nonequilibrium and separating flows. 

From a practical standpoint,  nonequilibrium and separating flows are 

perhaps the most important flows,  since they are often encountered in the 

design of diffusers and lifting surfaces.    For this reason,  three separate 

flows with turbulent separation were considered.    The following sections give 

comparisons of these flows with experimentaJ  flows. 

7.1.^.1 Favorable and adverse pressure gradients on an airfoil-like body 

(Schubauer and Klebanoff).     In reference   [37],  Schubauer and Klebanoff experi- 

mentally obtained a flow characterized by an initial favorable gradient folloved 

by an adverse gradient and separation.    The body is two-dimensional and has a 

sharp nose.     It is at a slight angle of attack, which produces a pressure peak 

at the leading edge that causes transition.    Separation is reported to have 

taken place at 25.7 feet from the leading edge.    A   reference velocity of 

l60 ft/sec  (velocity at 17.5 ft from the leading edge) and a Reynolds number 

of 1 x 10    per ft were the flow conditions used.    A flat-plate flow was used 

to match the momentum thickness of the experimental data at    x = 1 foot. 

The results are shown in figures 21a,  21b, and 21c.    Figure 21a shows the 

experimental velocity distribution and comparison of calculated and experimen- 

tal momentum-thickness,  shape-factor and local skin-friction parameters.    The 

other two figures show comparisons of calculated and experimental velocity 

profiles.    Figure 21b shows the calculated and experimental values at x = ^ 

feet  (in favorable pressure gradient) and at   x = l4.5 feet  (nearly constant- 

pressure flow).    Figure 21c shows the calculated and experimental values at 

x = 20 and 22 feet  (both in adverse-pressure-gradient flow and conditions 

close to separation).    The calculated parameters, with the exception of skin- 
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friction , are in excellent agreement   with the experimental data except near 

separation.    The present method predicts separation at   x = 25 feet.   (Flow is 

said to be separated at the last station before the one at which   f"    becomes w 
negative;    when   f"    becomes negative, the calculations are stopped.) 

7.1.^.2   Adverse pressure gradient on a body of revolution (Moses). Another 

example of a nonequilibrium boundary layer with adverse pressure gradient is 

a flow studied by Moses [38], which was used as a basis of comparison.    The 

pressure distribution designated P.D.2 was considered.    The results reported 

are for the cylindrical section only.    Because the body studied is a cylinder 

of constant diameter,  it is not a test of the method for axisymmetric flow, 

since with the first theory and with the present transformations, the flow is 

two-dimensional.    The experimental separation point was at about 28.8 inches. 

A free-stream velocity of 35« 5 ft/sec at the beginning of the flow and a 
5 

Reynolds number of 2.2 x 10   per ft were the flow conditions used.    Figure 22 

shows the velocity distribution (obtained by trial and error) used to match 

the momentum thickness at the initial point of the experimental data,  namely, 

x = 0. 

3n 

u 
2- 

9.1 

-r 
5 

EXPERIMENT 

x - FEET 

—t— 
10 

Figure 22.-Velocity distribution used to match the momentum thickness for the experimental data of 

Moses' P.D.2. 

Rsrsonal communication with Klebanoff indicated the experimental values of 

these quantities to be in error. 
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Note that when an effective length Is added, the experimental lengths are 
I 

translated by 9*1 feet. 
i 

Figure 25a shows comparisons of calculated and experimental momentum- 

thickness,  shape-factor, and local skin-friction parameters, together with 

the experimental velocity distribution.   Also shown in this figure are the 

two peparation points determined by the present method.    The calculated re- 

sults are based on two values of    y   in the convergence criterion for   f", 

namely, 

The results indicated by the solid line in figure 25a are those that are ob- 

tained by specifying    7    to be 0.01,  and the results indicated by the dotted 

line are those that are obtained by specifying    7    to be 0.001.    Except near 

the separation point,  the calculated results are identical and are in excellent 

agreement with the experimental values.    According to the present method,  sepa- 

ration based on    7 ^ 0.001 is indicated at   x = 27.5 inches, and separation 

based on    7 = 0.01 is indicated at    x = 29 inches.    Figure 25b shows a compari- 

son of calculated (7 = O.OOl) and experimental velocity profiles at 11,  20, 

26, and 29 inches.   Again, except near separation, the calculated results are 

in excellent agreement with experiment.    Figure 25c shows a comparison of 

calculated  (7 = 0.001) and experimental turbulent shear-stress distributions 

at 11,  20,  and 2^ inches.    The agreement is fair. 

7.1.^.5    Adverse pressure gradient on an airfoil  (Von Doenhoff and Tetervin). 

A further example of a nonequilibrium boundary layer with adverse pressure 

gradient is the MCA 65(216)- 222 airfoil tested by von Doenhoff and Tetervin 

[59].    The pressure distribution at an angle of attack of 10.1   and a chord 

Reynolds number of 2.6^+ x 10    was considered.    The experimental separation 

point was at about 55-percent chord. A free-stream velocity of 211 ft/sec at the 

beginning of the flow and a Reynolds number of 1.515 x 10    per ft were the flow 

conditions used.    A flat-pjate flow was used to match the momentum thickness 

of the experimental data at  7.5-Percent chord,  rather than the leading edge as 

the origin.    This was necessary,   since the boundary layer was tripped at 7.5- 

percent chord. 
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The results are shown in figures 2ka.,  2kh, 2kc, and 2Ud.    Figure 2ha. 

shows the experimental velocity distribution and comparisons of calculated 

and experimental momentum-thickness,  shape-factor, and local skin-friction 

parameters.    The other three figures show comparisons of calculated and ex- 

perimental velocity profiles up to the separation point, namely,  at 55-percent 

chord.    In figure 2ha,, the calculated momentum thickness values are in good 

agreement with the experimental values.    However, the agreement is poor for 

the shape-factor values.    This is somewhat surprising,  because the calculated 

velocity profiles are in good agreement with experiment (for example, at 25- 

percent chord).    Since the shape factor is the ratio of displacement thickness 

to momentum thickness, a better correlation in H-values would normally be 

expected.    The calculated velocity profiles begin to deviate considerably from 

the experimental values near separation.    Figure 2hd shows the calculated 

velocity profiles at 50- and 54-percent chord with the separation profile at 

55-percent chord.    The present method predicts separation at 54.5-percent 

chord, which is in excellent agreement with the experimental separation point. 

7.2    Compressible Flows 

The test cases for which comparisons are calculated by the present method 

consist of flat-plate flows with and without heat transfer.    Only a few test 

cases were calculated, mostly because of the difficulties experienced in 

obtaining convergence of the numerical solution of the momentum equation.    As 

a result, most of the time was devoted to attempts to stop the oscillations and 

obtain convergence.     In fact, at present the numerical method for compressible 

flow still needs to be refined.    The calculations for compressible flow use 

5-point averages of the coefficients defined by (6.78) in the    T)-direct ion. 

This scheme was initially used to stop the oscillations, and because of the 

limited time the computer program was not refined.    That is,  the averaging 

process in the    Tj-direction was not confined only to the eddy-viscosity terms, 

as it was in the incompressible flows. 

7.2.1     Flat-plate flow with adiabatic wall. 

Three separate sets of experimental data were used to test the present 

method for a fxat-plate flow with adiabatic wall conditions.    The first set of 

experimental data are those of Spivack  [ho] at   Me = 2.8.    The measurements 
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were made on the flat wall of a two-dimensional nozzle.    The flow was calcu- 

lated for a Reynolds number of 

values of the flow parameters: 

7 
lated for a Reynolds number of 2 x 10   per ft,  by assuming the following 

\x    = 0.376 x 10"6lb„-sec/ft2 

e f       ' 

p    = 0.23k x 10~2lh„-sec2/ft e f ' 

u    = 5170 ft/sec 

T    = 550 deg R 

H    = 8.2 x 10 ft2/sec2 

e ' 

The value of   u     was calculated from the definition of    M, e ' 

u    = 49.1 M   '\fP 

and the total enthalpy,  H , was calculated from 

1    2 H    = h    + T-r u e        e      2    e 

For this case,  the transformed x- and y-coordinates are given by the relations 

(7.1) and  (7.2),  respectively. 

Figures 25a and 25b show the calculated local skin-friction parameters and 

experimental, values that were obtained from the momentum equation, namely, 

dfe    _    Cf 
dx 2 

The parameters are plotted against Reynolds number based on length.  Re ,  in 

figure 25a and on Reynolds number based on momentum thickness,  Re0,  in figure 

25b.    The agreement is very good in both cases. 

The second set of experimental data are those of Chapman and Kester [^1] 

at    M    = 0.8l,  2.5, and 5.6.    The experimental setup consisted of a cylindrical 

model with air flowing axially at the outer surface of the model.    The experi- 

mental skin-friction values were obtained by a direct measurement of total 

. 
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force on the cylinder. The flow was calculated by assuming the following 

values of the flow parameters: 

6       ? 
\i    = 0.376 x 10" lbf-sec/ft 

p = 0.2.^ x 10"2lbf-sec
2/ft 

T = 530 deg R 
e 

The values of   u     and   H      for each Mach number were calculated in the same 
e e 

way as In the preceding case. 

Figure 26 shows a comparison of calculated and experimented average skin- 

friction coefficients at the three Mach numbers.    The agreement is excellent 

for   Me= 0.8l, but only fair at   Me = 2.5 and 3.6. 

The third set of experimental data are those of Matting et al [^2] at 

M   • 0.20,  2.95^ and k.2.    The measurements were made on the flat wall of a 

two-dimensional nozzle.    The calculations used the values of the flow parameters 

tabulated below. 

M n    x 10" p    x 102 T 
e e Ke e 

2 

^6 
n     X  10 

e 

lb -sec 

ft^ 

0.376 

0.179 
0.110 

lb„-sec 

-IF deg R 

0.20 O.376 0.234 530 

2.95 0.179 0.55 219 

U.2 0.110 0.93 132 

The values of    u      and    H      for each Mach number were calculated in the same e               e 
way as in the preceding cases. 

Figure 27 shows comparisons of  calculated and experimental local skin- 

friction coefficients at the three Mach numbers.    The agreement for   M   = 0.20 

is excellent,  but lor the other two Mach numbers is only fair.    Comparisons of 

calculated and experimental boundary-layer Mach number profiles and velocity 

profiles  for    Me = 2.95    and    Rex =  31 x 10     are shown in figure 28a and for 
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M   = h,2 and Re    = 69 x 10    in Figure 28b.    The agreement in vRlocity profiles 

is better than the agreement in Mach number profiles.    However,  in both cases 

the agreement is only fair. 

7.2.2   Flat-plate flow with heat transfer. 

Only one set of experimental data, those of Bappas [^3], was used for a 

flat-plate flow with heat transfer.    The test Mach number used in the compari- 

son is I.69.    The experimental skin-friction values were obtained from the 

momentum equation.    Two different ratios of wall temperature to edge tempera- 

ture, namely   T /T      or   g. were considered.    The calculations used the follow- 
W       G W 

ing values of the flow parameters: 

[i    = 0.576 x 10   lb „-sec/ft2 

e r        ' 

p   = 0,23h x ic"2lb_-sec2/ft e r ' 

T    = 550 deg R 

The values of u  and H  were calculated in the same way as in Section 7.2.I. 
e      e 

Figure 29 shows comparisons of calculated and experimental average skin- 

friction coefficients for g, = 1.70 and 1.6l. Figure 30 shows comparisons 

of calculated and experimental local Stanton numbers for the same c -values. 

The agreement in both cases is fair. Figure 31 shows a comparison of skin- 

friction variation with Mach number. The ratios of local compressible skin- 

friction values to incompressible values, namely  cf/cf >  were calculated at 

several Mach numbers and compared to some experimental results. The agreement 

seems to be satisfactory. 
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8.0    CONCLUDING STATEMENTS 

A numerical solution of the turbulent-boundary layer equations based on 

em eddy-viscosity concept cjid an eddy-conductivity concept are presented.    The 

numerioal method used to solve the boundary layer equations differs from the 

one used in a previous study [7] under contract NOw 64-0552c.    In reference 

[7]>  the validity of using an eddy-viscosity concept in solving the equations 

of the incompressible turbulent boundary layer was explored.    The momentum 

equation was solved in its nonlinear form by the old shooting method of pre- 

vious studies of laminar flows  [8 through 15].    The; shooting method had proved 

itself in accuracy and reliability for laminar flows,  and it was therefore 

preferred to other numerical methods, which are usually based on linearized 

solutions.    The previous study [7] indicated that the eddy-viscosity concept, 

when used with an accurate technique for solving the boundary-layer equations, 

was capable of predicting results that were in good agreement with experiment 

and many of the characteristic features of the turbulent boundary ]ayer.    The 

main «^   'ections to that method were long computing times and restrictions on 

the  step sizes in the streamwise direction.     In the former case,  for example, 

a typical test case consisting of about 25 stations in the x-direction took 

approximately one hour on the  IBM 709^ computer.     That amounted to about 2 

minutes per station.    The numerical method used in that study also had the 

disadvantage that very short steps in the streamwise direction - which are 

essential near separation — could not be taken. 

For these reasons,  when the efforts were extended to the solution of the 

equations of the compressible turbulent boundary layer,   it was necessary to 

use a different numerical method.    Almost the same eddy-viscosity formulation 

as in [7] was used,  except for small modifications to account for the compressi- 

bility effects.    The results indicate that the present method is very fast. A 

typical computation time for incompressible flows on the  IBM 709^ computer is 

approximately 10 seconds per station,  which means that the present method is at 

least 10 times as fast as the old method.    A typical computation time for com- 

pressible flows,  on the other hand,   is about 15 seconds per station.     In addi- 

tion to having very short computing times,  the present method has no restric- 

tions on the step sizes in the streamwise direction; that is,  step sizes can 

v 
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be as small as necessary. 

Various incompressible and compressible turbulent flows are calculated 

by the present method, and comparisons with experiments are made.    Tbe results 

for incompressible flows are,  in general,  very good, and so fltr the results 

for compressible flow are encouraging.      More test cases need to be run for 

both flows, especially for compressible turbulent flows.    The results presen- 

ted do not represent a finished development,  but are only what has been ob- 

tained by one particular formulation of eddy viscosity and turbulent Prandtl 

number. 

\ 
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9.0    TECHNOLOGICAL FOPECAST 

9.1    Problem 

A method of calculating velocity and temperature profiles, skin friction, 

displacement thickness, momentum thickness,  heat transfer, and the separation 

point of the turbulent boundary layers is presented.    Accurate calculation of 

these quantities can be extremely beneficial to the design of ships, turbo- 

machinery, heat exchangers,  lifting surfaces, and all types of aerospace 

vehicles. 

9.2    State of the Art,  Solution, and Forecast 

[See Section 5*0 of this report]. 

9.3    Suggestions and Implications 

The present method uses eddy-viscosity and eddy-conductivity concepts in 

obtaining a numerical solution of the turbulent-boundary-layer equations.    The 

method of solution has the advantage of being applicable to both laminar and 

turbulent flows.    Since most flows have a laminar portion in the vicinity of 

a stagnation point or leading edge  (for example,  on an airfoil at high Reynolds 

numbers),  such an advantage is particularly useful.    The present method uti- 

lizes the upstream history as the calculations proceed downstream.    At any 

station, a laminar profile can be obtained by merely setting the eddy-viscosity 

term in (6.5l) equal to zero. 

The present method also has the advantage that various formulations of 

eddy viscosity or turbulent Prandtl number can be used with very little change 

in the basic method.    Since the results presented in this report are obtained 

by one particular formulation of eddy viscosity and turbulent Prandtl number, 

such an advantage may be very useful in improving the  results for both incom- 

pressible — where the results are very good except near separation — and com- 

This section of the report is included in response to the requirements 

of the contract. 
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pressible flows.    For example,  in the outer region,  the present method uses 

an eddy-viscosity relation modified by an intermittency factor    y   to describe 

the turbulent shear transport.    This relation,  suggested by Clauser [5] for 

equilibrium boundary layers,  is given by (6.27) 

Co = p k2Ue6*7 

where   kp    is a constant of proportionality.    For equilibrium boundary layers 

this constant is 0.018 [5].    In both incompressible and compressible studies 

here,however,  this constant was taken to be 0.0168, the value given in [18]. 

In this way,   (6.27) was also extended to nonequilibrium boundary layers.    In 

order to improve the results near separation,   it is quite possible that the 

velocity and length scales, namely   u     and    6 ,  in (6.27) may need to be 

changed.    According to a recent study [MO,   it appears that when different 

length and velocity scales are used in normalizing the eddy-viscosity formula 

for the outer region,  somewhat less variation in eddy viscosity from station 

to station is obtained than when (6.27) is used.    The results of these calcu- 

lations for the experimental data in [W-] are summarized in Table III, which 

presents the maximum and minimum values for four different normalizations of 

eddy viscosity.    The first is used in this report and evidently is the worst 

of the lot. 

TABLE III. EDDY VISCOSITY VARIATIONS 

u6* e u 6 

€ 

u G 
e 

€ 
* 

u 6 

Maximum value 0.028 0.79 0.059 1.4 

Minimum value 0.00^8 0.26 0,014 0.^7 

Max/Min 5.83 5.04 2.78 2.75 

Another modification of the outer eddy-viscosity relation,  which may im- 

prove the results,  is thfi use of a mixing length concept,  as in the inner 

region.    Escudier and Spalding [U^] have recently studied the distribution of 

mixing length in the turbulent boundary layers.    The results indicate that for 

the outer region of the boundary layer the mixing length is constant and is 

equal to 0.075 &• 



•80- 

The results for compressible flows indicate that it is also necessary 

to make improvements in the formulation of the turbulent Prandtl number.    Even 

though the velocity profiles agree quite well with experiment,  the temperature 

profiles show considerable deviation from experimental values for compressible 

flows, especially close to the wall.    These results suggest that it is neces- 

sary to use a separate expression for turbulent Prandtl number in each region 

and that the initial assumption of a constant turbulent Prandtl number is not 

very satisfactory,  since the variation of turbulent Prandtl number, especially 

close to the wall,  is considerable.    Figure 52 shows turbulent Prandtl numbers 

of boundary layers on a cooled plate [^6].    This figure supports the necessity 

of expressing turbulent Prandtl number separately in each region. 
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Figure 32.-Turbulent Prandtl numbers of boundary layers on a cooled flat plate, Ma^" 5.1, (Te-Tw)/ Te" 0.35. 
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In summary, it can be said that because the results have been so en- 

couraging, the work should be continued along these lines. 
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APPENDIX   A 

BEHAVIOR OF THE EDDY VISCOSITY VERY CLOSE TO THE WALL 

The inner region of a turbulent boundary layer contains a layer,  commonly 

called the sublayer,   adjacent to the wall,  where the flow is primarily viscous, 

since all velocities,   including turbulence fluctuations,  become zero at the wall. 

This region is not uniform either with respect to time or with respect to dis- 

tance along the wall.     In the region    y > 6 ,  where    6     is the sublayer thick- 

ness,  the effect of viscosity in the flow decreases gradually with increasing dis- 

tance    from the    wall until it finally becomes negligibly small.    Beyond this 

point the flow is completely turbulent.    The intermediate region, where the flow 

is neither completely viscous nor completely turbulent,  is called the transition 

region [51]. 

j 
In describing the  behavior of the eddy viscosity very close to the wall, 

k 
one can use the above model and can show that €    should vary as    y     as    y -» 0 

provided disturbances in the boun lary layer are two-dimensional and periodic. 

Since 

-W'tZ (AX) j 

and if    ^u/äy    is assumed to be constant in the viscous subl /er (this corre- 

sponds to a linear velocity distribution),  it is only necessary to show that 

— u'v',  which is proportional to    c,  should vary as    y     as    y -» 0. 

Consider a two-dimensional incompressible mean flow and a likewise two- 

dimensional disturbance.    Assume that the mean velocity   U   depends only on    y, 

that is,  U = U(y),  as in parallel flows.    It is also necessary to assume that 

the pressure in the main flow depends on    x   as well as on    y,  because the 

pressure gradient    dP/dx    maintains the flow.  It can be shown that under these 

The flow in the boundary layer can also be regarded as a good approximation 

of parallel flow, because the dependence of the velocity U in the main flow 

on the    x-coordinate  is very much smaller than the dependence on    y [29 ]. 
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conditions the Navier-Stokes equations and the continuity equation can be 

written as [29] 

r^r^^-V^V (A5) 

where the primes denote the fluctuations. By differentiatirc, (A2) with re- 

spect to   y   and (A5) with respect to    x and subtracting the two equations, 

the fluctuating pressure term,  p',  can be eliminated.    The resulting expression 

can be written as 

dy 

where CD  is the vorticity component perpendicular to the plane of motion. 

It is defined by 

dv'      du' /./-N 

'"z = ST " ST (A6) 

Next introduce a stream function representing a disturbance of tho form 

♦(x,   y,  t)  = q)(y) eia(x ■ Ct) (A7.) 

where    (p    is the amplitude,    a    is a real quantity defined by    -r- L,    A    is 

the wavelength,    L    is a characteristic length,  and    c    is a complex number de- 

fined by a propagation velocity    c      and an amplification factor    c,  that  is, 

c  = c    + i c. 
r 1 

Now,   very close to the wall  (y -> O),  where    U    and    v*    are very small,  eq. (A5) 

may be written as: 

-l^V^*   V2-JL (A8) 
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Since 

u'-^=9'(y)eia(x-Ct) 

V = - ^ = - 1 a q?(y)ei^-ct) 

(A9) 

(A10) 

the vorticity component    CD     can be written as 

O) - (cp" - O2 cp)e:La(x-Crt)= - T(y)eia(x-^t^ (All) 

by using (A6). Substituting the expression for a)  in (All) into (A8) and 

simplifying gives 

■J2!   iacr 

dy 
(A12) 

The solution of (A12) is 

T = c e i ViacpA' y + c    p-i Viacr/v' y c2e 

which reduces to 

T = c.e i ViäcrA (A13) 

if   T   is assumed to be finite when y -* oo,    Equation (A15) can be expanded in 

the form 

T = c. 
Vacr ' acr   2 

27" y - i 2^r y + ••• (AIM 

Substituting the expression (Al4) into (All) and neglecting the terms higher 
o 

than   y     in (AjA) gives 

r #cfc  ' die 1 
9" - ofy^c^i _ (i - i)"^-^ y - i -^  y2j (A15) 

The solution of (A15) is, using the method of variation of parameters, 

-. /oc"1 dfc      0        0 

i-(i-i)V-^y-i^(y2 + -^: 

(Ai6) 

^Ae^+Be^-4 
or /'J 
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Wie constants A and B can be evaluated from the boundary conditions, namely, 

v» = u* = 0 at the wall. Therefore it follows from (A9) and (AlO) that (p* (y) 

and (p(y) are equal to zero at the wall. If the constants A and B are 

evaluated in this way, (Al6) now becomes 

c r I Qlc   ' Qt 

)/ (A17) 

The fluctuating velocities   u*    and   v1    can now be obtained by using (A9) and 

(AlO) and by considering the real part of the resulting expressions,  that is, 

u»   = Re   (d*/dy)  , v»   « - Re   Ot/öx) 

Then 

u* = c. (y -1 v-^ y2>cos a(x - ^ - 2 V% y2 sin a(x - c   t r 

(A18) 

v, = ^Vify3cos a(x - ^ + (f y2 - z\l^^sin a(x - 
Therefore, by using (Al8) and (A19) it can be shown that 

.u.v. .-_X J   u.v. dt^c^V-^ ^ 
0 

and that c. should vary as y  as y -♦ 0, where n ^ 't. 

crt) 

(A19) 
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APFENDIX    B 

MODIFICATION OF THE INNER EDDY-VISCOSITY EQIATION FOR COMPRESSIBLE Fi-  •• 

The expression for the inner eddy viscosity given by (6.23) con also be 

used for compressible  flows if    p    is taken to be a variable and if the ex- 

ponential term is modified to account for the heat transfer in the sublayer. 

A logical generalization is to consider a Stokes-type flow with the  following 

conditions: 

1. Sinusoidally oscillating infinite wall, 

2. Variable    n,   T,   p . 

5.  Oscillations small enough so that any compressibility effects they 

cause can be neglected. 

Because of the last condition, the energy equation does not enter into 

the problem. For a nonsteady parallel flow, the Navier-Stckes equation re- 

duces to  (see eq. (5.17) of [29]) 

Introducing the transformation 

into (Bl) yields 

To solve  (B5),   let 

Then 

dy = ^ dz (B2) 

^u      d u /-„v 

u = f(z) ci(ot * r) (DM 

^= i  cf el(0t*  ') (B5) 

fu. ei(ot + c) afr (B6) 

bz bz 

Substituting the expressions given by (B5) and (B6) into (B5) and rearremging 
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gives 

dz2 
-PMi  of = 0 (B7) 

Assume that    p^    is averaged uver a certain distance,  and write the average as 

pjl .    Then the solution of (B7) can be written 

f = A exp (1 +  0"VV1    z + B exp -(1 +  i)"^ (B8) 

since VT 1 + i 

Assume that    f    remains finite as    z -» oo   so that   A = 0.    Then substitu- 

ting the resulting expression in  (B8)  into  (B^)  yields 

u = B exp "VV Z + i(^ + f "VV zll (B9a) 

Then (B9a)  can be written as 

"Vip z) cos   |cTt+  c-Y p^ o u = B exp(—\/^'p      z) cos  | ot 

or by using the  transformation given by  (B2),  eq.(B9b)  becomes 

(B9b) 

/as—•  y 
' _-\ /P^  P    /    d^ u = B exp {fy^ J ^ ; cos ; ot + c -y^rj (B9c) 

0 0 

The expression given by  (B9c) can  be approximated by expanding    M    by a Taylc^r 

series around an average value of    ^,  that  is, 

n = ^ + y(d^7dy)+ ••• (BIO) 

If the viscosity in  (Bio)  is introduced  into   (B(>:) and if the  second-order 

and higher order terms  of    y    arc ne^ei-ted,   (B('c)  oan be written as 

u  -  B exp(-^|<£-    y) •<^    o t + c - ^/^- :.' (Bll) 
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Equation (Bll) is the same as the incompressible solution except that mean 

values of n and p are used. A mean value looks more accurate then the 

wall value. The rwan value of v should be that corresponding to the sublayer 

thickness. 

Since the cosine term is bounded, (Bll) can be written as 

u oc B exp( - -yfepv) (B12) 

The purpose of modifying the mixing length and consequently the expression 

for eddy --iscosity given by Prandtl's formula,   (6.2l),  is to account for the 

. ublayer and to account for the transition region between the  sublayer and the 

fully turbulent part of the  inner region.     For this reason,  Van Driest [lU] 

defines the mixing length as 

I = kjyU -exp(- y/A)] 

Because the   Stokes effect is localized to a region very close to the wall, 

v    and    p    should assume values appropriate to this region.    A convenient ex- 

pression can be  formed by introducir.3 wall values,  but corrected by a factor 

(v /v) '     to account for the small deviation from wall values,  as fellows: 

- ■{¥*) - ^ i^v^T V^) -exp r VF *)    ^ exp 

The mixing length now becomes 

ki yr ~ exp V -V?0 
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APPENDIX C 

VARIABIZ-GRID DIFFERENTIATION FORMUIAS 

The first-,  second-, and third-derivative formulas for the variable-grid 

system discussed in Section 6.6.1.5 can be obtained in the  following way: 

Consider the lagrange interpolation formula 

n 

f(x)  =   ^   li(x)f(xi) + E(x) (Cl) 

i=0 

where 

(x - xo)  ...(x - xi_1)(x - xi+1)  ...   (x - xn) 

and 

V*)  =  (x-x^tx^ 

(x - xo)  ...(x 

(x.   —x  )...(x.— x.   .)(x.— x.^.)  ...(x.  — x  ) 
i        o'      x i      i-l/x  i      i+l'        v i        n' 

Differentiating  (Cl)  gives 

n 

fr(x) =£   4(x)  f(xi) + Er(x) (C2) 

i=0 

The equations  (Cl) and  (C2) are now e-valuated lor three- and five-point systems 

to obtain the  first-derivative formulas  for the variable-^rid system with three 

points and the  first-,   second- and third derivative  formulas for the  variable- 

grid system with five  points.    Fibres Cl and C2 show the variable-grid  systems 

for three and for five points,  respectively. 

First-Derivative  Formulas  for Three  Points 

f'^U) - hj- B1(2 + K)r._r B2(I + K)r. - B5fi+1] +
(i4^) hi f3(0       (C3) 

K 1 

f«  (x)     = hj- B1K f.^ + B2(l - K)   f.   +  B f.+1] --^i f3(0 (CM 
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Figure C1.-Variable-grid system (or thre« points. 

j^rj^i. ^'1-2 K5hi.2- •      m 
i-2 i-1 vi+l i+2 

Figure C2.-Variable-grid system for five points. 
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f«+1(x)  = h.tl^K f.^ B2(l + K)fi+ B3(l + 2K)fi+1] + K^Y K} hi f5(0   (C5) 

Urtiere 
B,  = 

1     h* (1 + K) 

B2 " ~ "2 hf K 
i 

5      u2 hj K(l + K) 

(C6a) 

(C6b) 

(C6c) 

First Derivative Formulas for Five Points 

Definitions of new terms follow the  formulas 

r'.2(x) = " hi-2[Bl(aia2+ aia5+ a2a5+ aia2a5)   fi-2 +  ViVj'i-l 

+ V2a5fi +  Bl.aia3fi+1 + B5aia2fi+2^  + ^ ^-2  P^) 

(C7) 

f^Cx) hi-2[" BlK5aia2fi-2 +  ^^(V V aia2 " K aiaP)fi-l 

+ ^V?^ +  B/a2fi+l
+  B/aifi+2]  --T^hi.2  ^ 

(C8) 

fj  (x) h^2K5a1[B1K2f._2+  B?K ^^f B^K2*  K a^ a^ l)f. 

(cO 

3    „5, 
fi+l

(x)  =  hi.2K [- B1K aifi-2 " B2^a2fi-1 " V aia2fi +   B^aiVaia2K 

- a If- a K )f        + B a a I"      1 - 2 1     ;   i+l 5 1 2 i+2J 120 i-2 
^ K  a1

ao      I, 
J     »-'     r''(0       (cic) 
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fi+2(x)  = hi-2K3[Biaia2K3fi-2+ B2aia/fi-l+  B5a2a3K fi+ Via2a3fi+1 

IC   A.    A   A. 

+  VV2K5+ aia/+ a2a5K + aia2a3)fi+2l + -W-1 hi.2f5^) 

(cn) 
Second-Derivative Formulas  for Five Points 

^-2^)  = 2hi-2[Bl(ai+ V a3+ aia2+ aia5+ a2a5)fi-2+  B2(aia2+ Vj* a2a5)fi-l 

+ B3(a2+ a5+ a2a3)f.+ B^a^ ^ a^^f^^ B5(a1+ ^ a^^f.^] 

"So ^aia2+ alV a2a5+ a1a2a5)hj_2f
5(0     (C12) 

fJ^Cx) = 2h2_2K[B:LK(a1+ a2+ a^f.^* ^^ + a2K + a^ + a2+ a1)fi_1 

+ B^Ka^- a2- a^^)^ B^Ka^ a2- l)fi+:L+ B^^- a1- l)fi+2] 

+ ^ ^(a^ a2+ a^- Ka1a2)h^2f
5(0        (C15) 

fj  (x)    = 2h^2K[B1K2(Ka1- a^- l)f..2+ B2Ka1(K2- a^ l)fi.1+ BjCa^ ^ - Ka2 

- K2- l^a^ K3a1)fi+ B.a^l - Ka^ K2)fi+1+ B5(a1- Ka^ K2)f.+2] 

- ^ K^d - a1- Ka^  vf^/'U) (ClU) 

f^Cx)  = 2Ji2_2K[B1K2(a1- Ka^ ^)i\_2* ^i^' ^2" ^'i-l*  B5(aia2" ^2 

- K3a1)fi-»- Bj^a^ Ka2- K^a^ K^a^ K^- K^f^^ B^Ca^ Ka2 

+ K2a1)fi+2 ♦ ^ K^a^- a^K - a^- ^^^{i) (C15) 
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fj+2(x) 2h^2K[B1K2(a1a2+ Ka2+ K2a1)fi+2+ B^inff Knj- K3a1)fi+1 

+ B3(a2a3+ 1^+ K3a2)fi+ B4(a2a5+ Ka^ ^\^i+1 

+ B5(a2a5+ Ka^^ J^a^ ^a^ K5a2+ K^)^] 

+ ^ ^(a^K^ a^K2* a^jK + a1a2a5)h3_2f
5(0 (Cl6) 

Third-Derivative Formulas for Fiw Points 

f."(x) = - öh.^lB^l + a1+ a2+ a^f.^ B2(a1+ a2+ a^f.^ 

+ B3(l + a2+ a3)fi+ B^l + a1+ ^f^ B^l + a^ a2)f.+2] 

+ 10(al+ V a5+ ala2+ ala5+ a2a5)hi-2 f5(l) (C17) 

fj'»(x) = - Öh^tBjKd + a^ a2)fi_2+ B2(Ka2+ Ka^ K-l)^^ 

+ B5(Ka2+ Kaj- l)fi+ B^Ka^ K - l)fi+1+ B^CKa^ K - l)fi+2] 

+ ^ ¥i(Ki1*2+ Ka2+ Ka^ a2+ a1)h2_2f
5(|) (C18) 

fj"(x)  = 6 hi_2[B1K(l - K - Ka1)fi_2+ B2(a1- K2- l^a^^)^^ 

+ B^a^ K - K2- K2a1)fi+ B^a^ K - ^^^ B^a^ K - K2)f .+2] 

+ ^ KCa^ Ka^ Ka2- K2- ^ K;5ai)h2_2 f5(0 (C19) 
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fy'(x) - 6h. ^[B^Ca^ K - K^f.^ B2(a2+ K2- K3)f .^ 6^+ Ka^ K5)^ 

+ B^a^ Ka^ K2-K3)f .+1+ B^Ca^ Ka^ K2)^] 

+ i KCa^* Ka2- A^ K^- K^- K4)h2_2 f5(5) (C20) 

Ji 

fj^(x) = 6b._2[B1K(a2+ Ka^ K2)^ B2(a3+ l^a^ K3)^^ B^Ca^ Ka2+ K3)^ 

+ B^(a5+ Ka2+ K^f.^ + B^Ca^ Ka2+ I^a^ K3)fi+2] 

+ ~ K(a2a5+ Ka^^ K2 a, + K2»^* K3a2+ K^) h2_2 f5(0        (C2l) 

The constants    B »  B ,  B ,   3i,  B , and a ,  a ,  a,,  are given by 

1 
Bi = T 

hi-?ala2a3 

(C22a) 

B2=-T-3 
hi.2K VP 

(C22b) 

B,  = 

^ZM 
(C22c) 

B.   - - 
hi.2KV2 

(C22d) 

^ = "r-T 
hi.?K aia2a3 

(C22e) 

a:L = 1 + K, a2 = 1 + K + K", a    = 1 + K + K2* K3 (C22f) 
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CrXlO 

Figure 12-Continued  (h) Comparison of calculated and experimental shear-stress coefficient according 
toKlebanoff. Reg = 7.7» 10*. u*/u# = 0.037. 
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Figur« 12 - Continued  (j) Comparison of calculated addy-vitcoalty distributions across a boundary layer 
with values calculated from Klebanoff's and Towmsend's data. 
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Figur« 13.-Results of calculation» for lh« flat plat« with two uniform blowing rates, vw/u,-0 001 and 
0.002. (Exparinwntal data of MicMay and Davis) 
(a) Comparison of calcuiatad and «Kp«rim«ntal momntum thicknoss and local skin-friction 

co«ffici«nt for th« two blowing rat«» 
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Figure 16.-Results of calculations for an equilibrium flow in a favorable pressure gradient with E = -0.3S 
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thickness and shape-factor parameters. 

. V. 



-117- 

8 
ib 

£ 
^OQ 
< o 
^OQ 
5E 
|0Q 

f i 
2 

\ 

1 
r y 
V if « « 
\ I 
V K 

N k^ 
8 R ? 

M 

si 

I 
« 
CM 
II 
K 

i 

"5 
h. 
& 
8 
f 
is 
c 
g 

I 
I 
I 
5 
« 
8 
"8 

S 

3 

1 

(O 

Ol 
u. 



-118- 

I 
I 
I 
ii 
K 

I 

I 
1 
I 

s 
1 

I 
3 
'S 

1 
ü 

I 

V 



-119- 

u 
Woo 

1.6 

H 

1.4 

1.2 

o o o o —" Cr o o   u 
PKSENT         EXKMMENTAL DATA. 
METHOD                    RCF.30 

/-v    ^N    ^ 

-J 
www       1 

100 200 300 400 

3.0 

Cfx103 

3.0 

1.0 
100 200 

« - INCHES 

Q   n 

— o 9     n    Q 

300 400 

Figure 18.-Results of calculations of an equilibrium flow in an adverse pressure gradient (Experimental 
data of Clauser's P.D.I). 
(a) Experimental velocity distribution and comparisons of calculated and experimental 

shape-factor and local skin-friction parameters. 



-120- 

5 w s? 
2   K «■» 
l 
M                                      i 

? R 

R
EF

. 
30

 

1 
1 i 

JA &   OCD         J 
^   OGD n 

R 1  OD 

t \ 

k5\ 2 
1 \ o 
i    _L_ Q 
1       T c 
!            \ s 

'              \ 

A 1 
E 

£ 

, 
* 

r ^ gs 
\ ( 

\ 

i 1 

K 

■ 

j ^J aGU       1 
Ö Ö 

• <e 

"    «O X I* 

c« 

in 
n 

8 
II 
X 

I 
8 
S 

J 
| 

1 
3 
"5 
8 * 

o 

1 c 

8 o 

I 

9 



-121- 

30 

25 
Q   * ~ INCHES    PRESENT METHOD   EXPEMMENTAL DATA. REF. 30 

200   O  O O 
375   

Figure 18 -Continued, (c) Comparison o( calculated and experimental velocity profiles in the defect-law 
coordinates at x = 200and 375 inches. 



-122- 

U/U. 

cu 

• -MCHCS 

04 

0.2 

r^^^^"^ 

r\ n           o 

\^^ 

PIESf NT METHOD EXPERIMENTAL DATA. REF. 36 

O OO                   j 

20 100 

1.7 

1.5 

1.3 

LüL 
o   o^ö 

o 
"o^      b   | 

100 

24) 

1.5 

C|X103 

1.0 

04 

C\ 

o 
o       ^~ 

o p 

ü o   o   0 

r*"^—— ^^-^^ 

20 «0 
«> INCHES 

100 

Fiflure 20.-Results ol calculations of an aquiUbrlum flow recovering to constant pressure flow 
(Experimental data of Bradshaw and Perriss, a =-0.255 «0) 
(a) Experimental velocity distribution and comparisons of calculated and experimental 

momentum thickness, shape-factor and local skin-friction parameters. 

v. 



-125- 

s 
«1 ul 

r 
V 

J) i OGO 
\ o 
T 

|   OG<l I ■j] 2 
P | 

n s 

1 1 1     1 
1     I 

"TVl 

nu i' 
M 

-I
N

C
H

E
S

 

47
 

71
 

95
 

r\ K 

p 
<^vqv 
<m\C> <ras 1^^ 

!        j 1          S 
%                                  « 
<                                  < 
»                                  ( 

n                   O «i 
5 

m 

i 

e»» 

1 

8 

I 
8 

1 
1 
8 
3 
"8 

I 

I 
1 
ü 

il 



-12U- 

0.2 

#~FfET 

0.1 

PRESENT METHOD     EXPERIMENTAL DATA. REF. 37 
         o  o  o 

3.0 

2.0 

1.0 

<>0£i—O—Q—Q—O—Q t 

O 
SEPARATION iY 
PRESENT METHOD, 

10 15 20 25 30 

5.0 

Cfx103 

2.5 

---. 

o 

) 

\ 
% 

^^^r") ^S^ 

y, 
10 15 20 

«~PEET 
25 30 

Figure 21.-Results of calculations tor favorable and adverse pressure gradients on an airfoil-like body 
(Experimental data of Schubauer and Klebanoff). 
(a) Experimental velocity distribution and comparisons of calculated and experimental 

momentum-thickness, shape-factor, and local skin-friction parameters. 

'- 



-125- 

.-^ 

j^rGtr .-Q-. 

K~FfET 

4.5 
U.3 

PtESENT 
METHOD 

EXfEMMENTAL DATA. 
tEF.37 

ooo 
Q a Q 

1.0 2.0 
y~ INCHES 

3.0 

Figur« 21-Continued (b) Comparison of caiculatod and axporlnwntai velocity profilo« at x = 4.5 and 
14.5 fMt 



t       F     A- 

VLHl Iff* Jll .PU.' a w. 

-126- 

i 
I 
8 
II 
X 

i 

I 

ll 

i^aaL - .iUkt ■   --      IM 



I   .. i  ■■■•<".-'^WJR1P   -'BH 

-127- 

1 

0.5 

0 
C 

■^^ XX^cy, m^mmm/^_ 

^^0*-<V o-o 
1 

IXKKIMENTAL^ 
KFAIATION        I 

• 
1                  i »                 10                 15                 20                25 30 

0.02 

0.01 
^^^ i 4H K > 

<>-o—<l r-o- 
ii        -QT 

■^ 

o              ■ \            1 0                 1 5                 2 0                 25 30 

cfxio3 

10 15 
x - INCHES 

Figure 23.-Results of calculations for a nonequllibrlum flow in an adverse pressure gradient 
(Experimental data of Moses* P.D.2). 
(a) Experimental velocity distribution and comparison of calculated and experimental 

momentum-thickness, shape-factor, and local skin-friction parameters. 

«J 



•iU .m   .    ,   . , _■ .. .   I..I J-.«.,!    ..I..   .11.1 L-I.H.i 

-128- 

0.75 

0.50 

0.25 

^ 

ss 
J F^s" M 

!        A 
/ 
/ \A> o 

A        j y /v/ G 

/5     ^0 S X y^ 0 
^\ x      ^^^ X 0 
lri&   yT     s s^ rv - 

%// G 
L; 

O// 0 EXPERIMENTAL DATA, REF. 38 

If/         Q 
x - INCHES               I 

0             » 
Q                26 
0                20                       | 
A              11 

P   0 

Ö i                        _J 
0.4 0.8 

y - INCHES 
1.2 1.6 

Figure 23.-Continued, (b) Comparison of calcuiated and experimental velocity profiles at x = 11, 20, 26, 
and 29 inches. 

v 
- . * ^ ii    n    „ f.! teäitaÜÜB^ia^^^i  "—•-  



.^*w»*. f' 
■ ,-.,",-tr^!>i-l 

-129- 

6.0 

C^XIO3 

W^t 

PRESENT     EXPERIMENTAL DATA, 
^      x-INCHES  A^ETHOD REF. 38 

O 
□ 

24  

Figure 23.-Continued, (c) Comparison of calculated and experimental turbulent shear-atress coefficients 
at x = 11, 20, and 24 inches. 

L 



-150- 

0.004 

± 
c 

0.002 

2.0 

H 

1.6 

1.2 

PRESENT /METHOD 

O 

EXPERIMENTAL DATA, REF. 39 

OOO , 
"CD ± 

0.2 

o 

0.4 0.6 

Figure 24.-Results of calculations for an airfoil with separation (Experimental data of von Doenhoff and 
Tetervin, NACA 65(216)-222 Airfoil). 
(a) Experimental velocity distribution and comparisons of calculated and experimental 

momentum-thickness, shape-factor, and local skin-friction parameters. 

•V 
-'•"•"     ^-   • ■ ii ■ II«I  .    ii a—  , ^„M<^M^,tM^M>, 



■    ■•■ 

> 

-151- 

□..D-' 

PRESENT       EXPERIMENTAL DATA, 

METHOD REF. 39 

O     O 
CD      CD 

VISCOSITY LAW CHANGES 

0.008 0.012 

Figure 24.-Continued, (b) Comparison of calculated and experimental velocity profiles at x/c = 0.15 
and 0.25. 



-152- 

1.6 

1.2 

u 

0.8 

0.4 

-nr-""" 

 Q j 

Ay 
\ hs' a 

^.inu 

1° 

PRESENT               EXPERIMENTAL DATA, 

METHOD                       REF. 39 

■m t\ ii    m^——.               n\    c\    c\                  ' 

-^-■0.45                    Q     Q     Q 

▲                  VISCOSITY LAW CHANGES 

0.004 0.008 

X 
c 

0.012 0.016 

Figure 24.-Continued, (c) Comparison of calculated and experimental velocity profiles at x/c = 0.35 
and 0.45. 

v 
-    ■   miMai niMi 



-153- 

-■ 

1.6 

1.2 

u 

0.8 

0.4 

»  

A ^xCN——-0.5 

c 

o 

■—   U 

1/                 0 

[/          0 

PRESENT     EXPERIMENTAL DATA, 
METHOD             REF. 39 

A          VISCOSITY LAW CHANGES 

Ö 

o 

0.01 

c 

0.02 0.03 

Figur« 24.-Continued, (d) Comparison of calculated and experimental velocity profiles at K/C = 0.S0, 

0.54, and 0.55. 



,     s. .:>,, 

-Uli- 

dl 
it 

« 
S 
Q. 

«II 

H 

U 

t    _. -■" ^A. 



-135- 

•  * 

.' 



"TM —— 

-136- 

K o 
<D 
n 

in 
CM' 

5 
d 
n 

s a 
o. 

1 
S 

« 

M 

i 

»    CO 

2 

li 
X   x 
ü sä. 

8 

il 

--\, 
I 1111 I    I   I IIMI      l^—Mfc 



,.--./*— ^ ^trvrPW*? 

-137- 

8 

CM 

8 
d 
ii 

a 
s 
o 

1 
s 
M 

I 
O 

I u 
s 

1 
1 

is 
•   • 

II 
P — "R 

I* 
"8- 
M   g 

II 
r». 
«M 

I 
X 
vT 

—I 



^ggTJI JL■ .J.- ^. ...   .'■ L■!. ■.■ U"■ ■     UJ ■.!.. i "^.JT ^ST'.j: ■?    ! .--<....,^, 

f'     '  • 

-138- 

0.8 

0.6 

0.4 

0.2 

^ ^1 ^ 

ruvrv^ 

A 
S 0 

0 
J 

w 
o 

12 16 20 24 

1.0 

0.8 

0.6 

u 

0.4 

0.2 

/^ 
^ 

^ 

W^ -Xöoeao" 

T\ 

PRESENT METHOD EXPERIMENTAL DATA, REF 42 

OOO                   I 

1 

12 

9 

16 20 24 

Fiflure 28.-Comparison of calculated and experimental boundary layer Mach number profiles and velocity 
profiles (Experimental data cf Matting et al). 
(a)M=2.95I Re^aiKio6. 

■*■ ■ ir.nii uMuilHiu^i^i 
-■ *- - aaaMa 



'JHJOU ■W.'A.IUIL. L_J r;1 ■'  —L-J-L^- 

-159- 

1.0 

0.8 

0.6 

JL 
M, 

0.4 

0.2 

0 
0     0^^>   -v 

/^       0 
o 

f 
10 r 30 

0.2 

PRESENT METHOD       EXPERIMENTAL DATA, REP. 42 

  OO O 

10 
_y 

20 30 

Figure 28.-Continued, (b) M = 4.2, Rex=69x106. 



^^■W«»"...U...JJiJi ....Jil.ll 

-1^0- 

n 
O 
X 

s 

12 
Is0   O CD O <] 

^k- 5 3 ? 2 

/U- 5 s 

X 

Jo2 

n 
2 

5 
M 

2 

I 
I 
« 
5 

Ü 

1 

(0 

I 

I 

I x 
• -i 

■O    M l- Iff 
5 'S 
Is 
8 « 
° 2 

II 
li 
n   X 

a 
I 
il 



■^KB^WiMMH 

-Ikl- 

■ 

\                   ^ ll 
<D   // 

^ 7 il «j 
ß]<] // 

OB   // 
rtKL    '/ 

I / 

«P3// 
a o// 

E
X

P
E

R
IA

A
E

N
TA

L 
D

A
T

A
 

R
EF

. 4
3

 

A
 

njro  // »-V ? 3 ? S 

o o   // P
R

E
S

E
N

T 
M

E
T

H
O

D
 1 

1 
1 

1 
1        G      // 

^1- ? 2 
11 

o 

N, 
o s 

o 
X 

a 

•c o 
X 

•c o 

i 

I 
8 

a 

I 

a 

3 
C 

1 

I 
5 
8 
8~ 

Is 
o 

i ! 

8 
3 

u. 

J 



1 

-1^2- 

£ 
5 
S 
I 
5 
5 
1 
t 
1 

I 

I 

lÜ 11  I ■    1 



..  ..  • '"»•a^' 

Unclassified 
S«Cttiity Cla—iflc«tion 

DOCUMENT CONTROL DATA • R&D 
(»•muttr «I—lli»artwi ol MM«, Ng W »bmtrmet mnä mining mmmHm $mnl *• mufitä whm tm •»•wll ftßttt to «I—*W«0 

I. OMIOINATINO ACTIVITY (Cotpemf multtot} 
Douglas Aircraft Company 
Aircraft Division 
Long Beach,  California 

lm.  RKPOMT HCURITV  C UAMiriCATION 
Unclassified 

tk •mourn 

>. MPomr TITLE 

Numerical Solution of the Turbulent-Boundary-Layer Equations 

4. OttCNimvt NOTES (Trf •! N|M« 

Technical Report 
•nrf Ineliiaiv« 4mt—) 

I- AUTHONftJ (L«ae MM*, »ml mmm, MM«U 

Smith, A. M. 0. 
Cebecl, T. 

«. HEM HT OATS 

May 29. 196? 
• «.  COMTNACT OR «RANT NO. 

NOw 66-032U-C 
6. RROJBCT NO- 

lU2 k6 
IRT» 

DAC 33735 

• ft. gyHKRRfRORT NO^t) fAl 

None 

•MI mmy ft« •••li 

10. AVAILAEILITV/UMITATION NOTICES 

Distribution of this document is unlimited 

11  SUHHLEMBNTARV NOTES 

None 

It SCONSONINO MUTANT ACTIVITY 

Naval Ordnance Systems Command 
Department of the Navy 
Washington, D. C.  

It. ASSTNACT 

This report presents a numerical solution of turbulent boundary-layer equations 
for both compressible and incompressible flows. An eddy viscosity concept is 
used to eliminate the Reynolds shear-stress term, and an eddy.conductivity 
concept is used to eliminate the time mean of the product of fluctuating veloc- 
ity and temperature. The turbulent boundary layer is regarded as a composite 
layer consisting of inner and outer regions, and a separate expression for 
eddy viscosity is used in each region. The ratio of eddy-viscosity to eddy 
conductivity is assumed to be constant. An implicit finite-difference method 
is used in the solution of both momentum and energy equations after they are 
linearized. 

DD /^ 1473 uaaUaamsd 
Socwity ClMalfiealloa 



Unclassified 
Srewity ClMtsiBcrtioa 

i« 
KEY «OMOS 

LINK A 
NOLI 

LINK ■ 
HOLK WT 

LINK C 
HOL« 

Boundary Layer 
Compressible 
Incompressible 
Turbulent 

INSTRUCTIONS 

1.   ORIGINATING ACTIVITY:   Entar th* nan* «nd «ddr««« 
of th« ccntractor, •ubcontractor, grant««, Dapartmant of Da- 
fanse activity or other organisation fcorporate mithor) iaauinc 
th« r«pA«. 

2a.   REPORT SECURTY CLASSIFICATION:   Entar th« ov«r- 
•tl •«curity classification of th« raport.   Indicate wKathar 
"Raatrictad Data" is includad   Markii« is to ba in accord- 
anew with appropnat« sacurity regulations. 

2b.   GROUP:   Autoaialic downrs<linc is specified in DeD Di- 
rective S300.10 and Armed Forces Industrial Manual.  Enter 
the group nuvber.   Also, whan applicable, show that optional 
markings hsve heen used for Group 3 snd Group 4 as author- 
imd. 

K   RFPOPT TITLE:   Enter the conplete report title in all 
< ii-'inl I<-I«.-I M   Titiek in all cases should be unclassified. 
V >• i..' nxi.ii.ful title cannot ba selected without claasifica> 
•I>>II. jhow ml« •-lavsification in all capitals in paranlhasis 
'mmri'iatelv following the title. 

i.   DESCRIPTIVE NOTES   If tpprepriala. entar the typ« of 
report, e.  ., interim, progress, summary, annual, or final. 
Give the inclusive dates whan a specific reporting period is 
cover fd. 

S.   AtTHOR(S):    Enter the nameU) of authoKs) as shown on 
n» if» the report.   En»« last name, first name, middle initial. 
U n .literv. show rjinh and branch of service.   The name of 
the principjl » «thor is an absolute minimum requirement. 

o.   REPORT DATt.   Enter the date of the report aa day, 
mo ith. year, or month, yean   If more than one date appears 
on th* report, uae dale of publication. 

7«.   TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e.. enter th« 
numbM- of pages contsming informatioa 

7b.   NUMBER OF REFERENCES   Enter the total number of 
reference» cited in the report. 

»a.   CONTRACT OR GRANT NUMBER:   If appropriate, «Mar 
ine fcwucable number of the contract or grant under which 
ihv report wan writtea 

8b. fe, fc Sd. PROJECT NUMBER: Enter the appropriate 
military department identification, such as protect number, 
subprojact number, system numbers, task number, etc. 

9«.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number muat 
be unique to this report. 

•>6 <>T I IKK REPORT NUMBERS): If the report Has Seen 
fe-^V.ft ' ,ny other report numbcis (either by the originator 
<.i by Ihr «poiMor), alao enter this numbers). 

10.    AVAILAHIMTV LIMITATION NOTICES   Enter any lim- 
it.••! Mk   •n tunhf d.nsemuiation of Ihe report, oth-» than those 

imposed by sacurity classification, using standard stat«m«nte 
such as: 

(1) "Qualified requeatars may obtain copies of this 
report from ODC." 

(2) "Foreign announcement and dissemination of this 
raport by DOC is net authorised" 

(3) "U. S Gevanunam sg«nci«s may obtain capias of 
this raport directly ho« DOC  Other qualified DOC 
users shall raquast through 

(4)    "U. %. military agencies stay obtain copies of this 
raport dlroctly bo« DOC  Other qualified users 
shall request through 

(S)    "All distribution of this report is controlled  Qual- 
ified DDC uaars shall rsqusst through 

ti 

If the report has been furniahed to the Oftice of Technical 
Services, Department of Coaimarca, for sale la th« pvblic, indi- 
cate this fact and enter the price. If knew« 

IL SUPPLEMENTARY NOTES Use for additional esplano- 
tory notes. 

11 SPONSORING MILITARY ACTIVm. Baler the NMM of 
the departmental protect office or laboratory sponsoring fpan 
inn for) the resesrch and development  Include admass. 

13 ABSTRACT:   Enter an abatrscl giving a brief and factual 
summary of the document indicative of the report, oven though 
it may «.so appear elsewhere in the body of the technical re- 
port    If additional apace la raquind, a continuation shoot shall 
be sttsched. 

It is highly desirable that the abatract «f classified ropons 
be unclassified.   Each paragraph of the abatract shall and with 
an indication of the military security clsssiflcstlon of the In- 
formslion in the paragraph, represented as (T$>. ($). (C>. er (V) 

There is no limitation on the length of the abstract.   How- 
ever, the suggested length is fro« IM t« 22S words. 

14 EEY WORDS:   Kny words sr« tact cacally aeaaiagfu! tanas 
or short phrases that characterise a raport and «ay ba used aa 
indes entries for cataloging the raport.   Eay arerds «ust bo 
s«l«ct«d so thst no security clsssificstlon is raquirad.   Ideuti- 
fiers. such ss equipment aMdel desi^Mtian, trade name, milttan 
proiert code name, 
words hut «rill 
teil.   Hie sssignment of links, rales, sad «reighis 

i, geographic location, «ay ba used ss hoy 
followed by aa ladlcatlan of technical cow- 

is optional. 

■ 

0D FORM 1473 (BACK) Uncla—.ifi..,! 
Security Clauificntioa 

  


