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ABSTRACT

Response patterns are computed for the LASA and other arrays and for a class
of wide-band signals. Results are displayed as contour plots in wavenumber space

and in real space, with and without P-wave attenuation.
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I. INTT ODUCTION

It is usual to compute the response pattern of a seismic array for sinusoidal
signals and to express the result as a function of relative wavenumber. These results
are of limited usefulness because, on the one hand, real signals are wide-band tran-
sients and, on the other, it is difficult to interpret the wavenumber -space pattern in
terms of array performance in real space.

In this report a simple theory is developed for the response of an array to
wide-band signals, and patterns are computed using a signal model characterized by
a Gaussian power spectrum. The results are shown as contour plots, both in wave-
number space and in real snace. The real space patterns are computed for an event
at a fixed epicenter and the response is given as a function of the point to which the
array is steered. This pattern, of course, depends upon the reference epicenter.
Analogous patterns are computed for the case of an array steered at a fixed reference
point, the response being shown as a function of source epicenter. These patterns
differ from the former ones by the addition of the effect of attenuation on the P-wave

signal.
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1. ARRAY BEAM RESPONSE TO WIDE-BAND SIGNALS

We suppose that we have an array of N identical sensors (such as short-period

vertical -component seismometers) located at the points r _ in a plane at or near the

n
earth's surface. The origin of coordinates serves as a reference point within the
array. Let a transient signal propagate across the array towards a direction bearing

B (to the East of North) with a horizontal phase velocity v. We assume that the wave-

form at the origin is

s® = [ S e du/2n

and that the propagation is locally icn-dispersive, so that the signal observed at the

nth sensor is simply
xn(t) = s(t—q° £n) .

In this formula we have introduced the slowness vector, g, which points in the direction
of propagation and has magnitude |g| = 1/v, in seconds per kilometer. The slowness
is determined directly from the travel-time curve, T(d), (travel-time as a function

of linear distance to source} by means of the relation

_dT
lal = 33 -

ot kxR nl
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In order to focus the array on a signal characterized by slowness vector g we
form a beam by introduciag steering delays and adding the sensor outputs. The re-

sulting beam output is

Much more complicated forms of array processing have been used ,(l) but we are
interested here only in the simple beamforming technique just described. It can be
shown that simple beamforming is an optimum procecr re to use in the case of hroad-
band background noise which is uncorrelated between sensors.

Now suppose that we steer a beam for slowness vector g and a signai arrives

with slowness vector g'. Combining the definitions given above, we see that the re-

sulting beam output is

® 1 N fut
b(t) = J' S(w) {N- Z exp[iw(g—g')-g_n]}e dw/2m .

n=1
-

That component of the signal having angular frequency w is propagating with angular

wavenumber vector wq', and at that frequency the array is steered for wavenumber
vector wg. The result is that this frequency component of the signal is muitiplied by

the factor F(wg' —wg), where
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is the wavenumber response function of the array. Note that the beam output depends
only on the difference vector, § = g — g, between the two slowness vectors.

The pattern of the array in wavenumber space, defined as
2
Pk) = |F(®)|",

actually shows the array response to narrow-band signals. Since wide-band signals
suffer distortion of waveform in passing through the beamforming operation, the wide-
band array response cannot be fully characterized by a single numerical pattern.
However, there are various ways of assigning a single number to the beam response
to a given signal which serve to characterize the effective pattern in an approximate
way. Of these, the most tractable, mathematically, is the total energy received on

the beam, ..e.,
J‘ b(t)2 dt ,
—®

for a signal which is itself of finite total energy. In practice, it is isual to form a
family of beams, using a grid of steering points, and measure the signal slowness
vector (which in turn determines the event’s epicenter) by making some kind of decision
as to which beam is "'best,’’ or by interpolating between beams.  If this is to be

done automatically, it must be based on some functional of the beam output, such as




the beam encrgy, average absolute value, peak value, etc. Some justification for
using the energy as an optimum functional can be made from statistical considerations,
and this functional will be used throughout this report.

We substitute the wavenumber response function, F(k), into the formula for

b(t), with the result
b®) = | S@) Flu(g'—g)) e du/2n.

Now, using Parseval's theorem, we can evaluate the effective pattern of the beam:

E@) = | b(t)2 de = [ |S(:.u)|2 |l'-‘(w§)|2 du/2m

= [ |S@[ Plug) du/2n ,
-
where g = o' — g is the slowness difference vector which describes the relative position
of the beam and the signal. We assume that the signal power spectrum is normalized
so that
o

J‘ |S(w)|2 dw/2m = 1 ,

-

since in this case E(U) = 1 and E(g) then measures the relative response to events

not in the beam center.




Suppose we represent the signal power spectrum in the form

2 1
s@)" = 5 {Gw-w)+G(w-u)}
where G(w) is a normalized function,

- -]
Jf' Gw) dw/2m = 1 ,

which is more or less peaked at w = 0. The idea is to recognize explicitly a "’center
frequency, "’ W for the signal, even ihough the bandwidth may be relatively large.
The two terms are required to insure the necessary symmetry of l S(w),z. Since
P(wg) is symmmetric in w, we have

E(g) = [ Gl —w,) Pwp) dw/2m

= | Gl Pi(w+w )] dw/2n

N ®
- N Y J Cw)exp (iw+w)g - -1 )] dw/2m
n,m=1—e .
-2 N -
=N . mz‘;l exp [iwo§°(£n-_1;m)]_£ G(w) exp [iwg’({n-gm)] dw/2m .

s b Y
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The single-frequency case (at w = wo) can be recovered by replacing G(w) by a delte

function at the origin with the expected result

N
E(g) = |§ Zl exp[iwog-gn2 = Plw B) -
n=

In general, if we put

g

o E [ G exp [lwg-( -—r )l dw/2m ,

then

N
E(g) = N ) g m €XP liw g-(@ —r ).
m

Since the matrix, 81 is real and symmetric and has diagonal values of unity, we
3

obtain

Zl—

2 N
E(B) = N*§F L By 08 0 B- —r )]
n>m=]

In order to get an idea of the cffect of the wide-band nature of the signals, we
shall make a simple assumption for the spectral function, G(w), namely a Gauss

function:

G = @nod) e {75 (5} .




Plots of the resulting signal power spectra are shown in Fig. 1 for a center frequency
of 1 H-~, and a series of values of g (effective bandwidth). The frequencies f b, and f
shown on each graph are the 3-du points.

For this spectrum we find the matrix

8o m = X {- 50/ Lo g —x 0%}
where fo = wo/2n is the center frequency in Hertz. Note that ‘o B=k o is the wave-
number difference vector corresponding to the centeyr frequency. Again, the single-
frequency case is recovered siriply by puttir. - g = 0. It shculd alsc be noted that the
wide-band pattern is formally equivalent to a single-frequency pattern, computed as a
sum ovev points (r g 4 m) in lag space, with a taper, or set of weights (in our special
case these are Gaussian) applied in lag space. !Ising this analogy we may expect the
result of the finite signal bandwidth, in general, to be a broadening of the main lobe
and an evening out of the response elsewhere; including a reduction of sidelobes. A'so,
grating lobes (i.e., sidelobes as large as the main lobe) due to regularities in array
geometry, if nresent, will be reduced to the stutus of sidelob.s.

It can also be seen directly fromn our first formula for E(g) that it is essentially
an average of values of P(k) over a range of k-values in the direction of 8. The larger
the magnitude of g, the larger the interval of averaging, hence the pattern-smearing
becomes progressively more pronounced with distance fr 'm the origin in the B-plane.

These phenomena can bz clearly seen in the contour plots of Section Iil.




III. ARRAY RESPONSE PATTERNS IN WAVENUMBER SPACE AND IN REAL SPACE

Using the Gaussian signal model and the pattern definition of Section II,
computaticns have been made for a number of array geometries. In the first series of

contour diagrams, the patterns are shown (in terms of do down from the value at the

origin), plotted in wavenumber space. Tiie wavenumber difference vector corresponding

to the vecto: B is defined as

where we have used the A to symbolize the fact that the argumeat of the pattern function
is a difference vector, and the slash identifies the cyclic wavenurnber, in cycles per
kilometer, corresponi:ng to the use of f . instead of @ . In terms of A_TEO, the formula

on which the computations are based is

N
= __2_ » _l -3 . — 2 A, —_
E(ak ) = '+N"n>};,=1exp{ 5bf{2nak -(x -1 )I°} cos(2na% - -1 )]

Z\r—

Here, bg = °/fo is a measure of fractional bandwidth. Note that this function is
symmetric with respect to the sign of the vector, Ago.

In Fig. 2 we show a scaled map of the LASA array, treating each of the 21
subarrays as single sensors. The main lobe of the response pattern of this array in

wavenumber space is shown in Fig. 3 for a single frequency signal at 1 Hz, and in
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Figures 4 through 8 for a seriez of values of bandwidth, * namely g = 0.1, 0.2, 0.3,
0.4 and 0.5 Hz. The broadening of the main lobe is clearly shown, as well as the
filling-in of the low -points in the pattern in the upper -right and lower -left hand ccraers.
Far comparison with later figures, the LASA response for the case (c/fo) =0.. is
shov'n in Fig. 23 for a larger range or values of wavenumber.

A similar series of figures for a typical LASA subarray (F2) is shown in
Figs. 9 through 15. The very regular geometry of this array (Fig. 9) gives riseto a
complex pattern for a sinusoidal signai (Fig. 10), featuring deep nulls. These features
are progressively smoothed by increasing bandwidth until we reach the case of Fig. 15,
which gives no hint of the :omplexity of the single -frequency case.

A final series of plots shows the effect of bandwidth on grating lol:2s. Figure 16
shows a simple four -element array. Its single-frequency response over a relatively
large portion of wavenumber space is shown in Fig. 17, where many grating lobes
{zero db response) are shown. The sequence of Figs. 18 through 22 corresponding to
the same five values of bandwidth as before ends with a pattern showing a main Jobe
against a background leve' nearly flac at = db down from the origin.

It is, of course, much more convenient to study the array pattern directly in

real space, i.e., in latitude and longitude, instead of in wavenumber space. The

* In these figures the c-values are labelleu in Hertz, which is correct for a center
frequency of 1 Hz. However, the patterns apply to any center frequency and a fractional
bandwidtk, bf, numerically equal to the indicated g (in other words the pattern labelled
4= 0.2 Hz'' applies to any center frequency, f,, and a Gaussian spectrum with variance
parameter 4 = 0.2 fj).

10




disadvantage, however, is that the pattern varies with the point to which the array is
steered. The procedure is to pick a steering point, say latitude D longitude Ao’ and
then compute the wavenumber vector k o(‘po’ )\0) which corresponds to this point, as
sFen from the array. This vector points away from the steering point, i.e., it points
in the direction r; + g, where 3 is the beai .ng of (cpo,xo) as seen {rom thc array center,

and has magnitude
[k, @oor )] = wyoq

where a, is the slowness and W, is the signal center frequency in radians. The pattern
at any arbitrary point (g,A) is then computed by first finding the relevant wavenumber

vector, k (y, 1), then putting

sk = (1/2m) (@ _~K),

and using tie formulas given at the beginning of this Section. Since the pattern is
symmetrical with respect to the sign of Ak o’ it doesn't matter whether we compute

our wavenumber vectors pointing away from or towards the aiming pcint, so long as

we are consistent. It is also true that the array response is unchanged by interchanging
the points io which the array is steered and the location of the hypothetical event, so
long as signal attenuation is ignored, since this interchange only results in a change

in the sign of A% o

11




For a study of the ability of an array to locate events by forming a number of
beams at various steering points, we may think of the event as fixed at a reference
point, (CPO')\O)' while the beam is steered to a variable point, (p,)). The response at
(s 1), relative to the response at the actual event location, then determines the pattern
of interest. This pattern is simply the wavenumber pattern transformed to a new co-
ordinate system.

However, it also makes sense to steer a beam at a fixed point, (c"o')‘o)’ and
consider the array response to an event of fixed magnitude occurring at a variable
point, (p,)). Normaiized to the response when (g, A) coincides with (cpo, )‘o)' this pat-
tern differs from the former in that the signal attenuation (computed from empirical
Q-factors) for a source at (y,)), relative to the attenuation at (cpo,xo) must be taken
into account. The resulting pattern describes the response to an unwanted event (or
body-wave noise) with a source (or apparent source) at some point other than that of a
possible event to which the array is steered. In the first pattern (the ''beamforming
pattern’’) the response is nowhere higher than at the reference point, (gy,1,)- In the
second pattern the response will often be greater off-cciuter than at the reference,
since locations usually exist with sufficiently less attenuation than at beam ccenter to
more than offset the rejection due to being o.: the center of the array main beam.

These features are illustrated in a series of figures, starting with Fig. 26. In
these figures the reference point is at the center, indicated by a star, and the contours

are labelled in db down from this reference point. In Fig. 26 we show the LASA

12

TP P U7 o $1.TSC 00 Vo7 S POPReT| : = i PSSP




beamforming paii>rn for a hypothetical event on the coast of Peru, 70° from the array.
For this and all subsequent patterns the signal was assumed to have a center frequency
of 1 Hz and a ''fractional bandwidth,"’ bf = g/fo, of 0.2. The signal power spectrum is
3 db down from its peak value at the frequencies 0.76 Hz and 1. 24 Hz for this case,
which seems fairly realistic. The distortion of the wavenumber space pattern (see
Fig. 23) when transformed to real space is rather severe. In Fig. 27 the corresponding
pattern is shown with attenuation added. The curve of Q-factor versus distance which
was used is shown in Fig. 25. The shaded area in Fig. 27 is a region of response
greater than or equal to the response at the reference point. This results from the
fact that the Q-factor curve dips, just beyoud 70°, resulting in less attenuation with
greater distance for a few degreec. The result is to shift the maximum of the pattern.
The effect of large attenuation in and beyord the core shadow boundary (lower right-
hand cotner) is also clearly seen.

A more dramatic case is shown in Figs. 28 and 29, where the reference point
is at 48° from the LASA array (a point in Colombia was chosen), which is at a local
peak between two dips in the Q-factor curve. The beamforming pattern is again a
distorted version of the wavenumber pattern, but now the pattern including the Q-factor
(Fig. 29) is strongly modified by the various peaks and troughs of the Q-factor curve.

A final pair of patterns, Figs. 30 and 31, using a reference point ia japan,

0 from the LASA array, was computed for an array comprising of D, E, and F rings

only from the LASA array (12 elements). The corresponding wavenumber pattern is

13




given in Fig. 24. The main lobe is considerably smaller than for the full array, and

the troublesome 6 dh sidelobes which can be seen in Fig. 23 are absent.

14
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Figure 4

LASA main beam. 5=0.1
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0=0.2

LASA main beam.
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0=0-3

LASA main beam.
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Figure 8 LASA main beam. g5=C(.5
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Figure 10

Subarray pattern. o =0.0
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Figure 11

Subarray pattern. g=0.1
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Figure 16
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Figure 20 Four-element array pattern. 5= 0.3
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Figure 27

Real space LASA pattern including attenuation.
at epicenter of Figure 26.
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partial LASA pattern, including attenuation. Beam

stecred at epicenter of Figure 30.
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Figure 31
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