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ABSTRACT 

Response patterns are computed for the LASA and other arrays and for a class 

of wide-band signals.   Results are displayed as contour plots in wavenumber space 

and In real soace, with and without P-wave attenuation. 
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I. INTrODUCTION 

It is usual to compute the response pattern of a seismic array for sinusoidal 

signals and to express the result as a function of relative wavenumber.   These results 

are of limited usefulness because, on the one hand, real signals are wide-band tran- 

sients and, on the other, it is difficult to interpret the wavenumber-space pattern in 

terms of array performance in real space. 

In this report a simple theory is developed for the response of an array to 

wide-band signals, and patterns are computed using a signal model characterized by 

a Gaussian power spectrum.   The results are shown as contour plots, both in wave- 

number space and in real space.   The real space patterns are computed for an event 

at a fixed epicenter and the response is given as a function of the point to which the 

array is steered.   This pattern, of course, depends upon the reference epicenter. 

Analogous patterns are computed for the case of an array steered at a fixed reference 

point, the response being shown as a function of source epicenter.   These patterns 

differ from the former ones by the addition of the effect of attenuation on the P-wave 

signal. 



H.        ARRAY BEAM RESPONSE TO WIDE-BAND SIGNALS 

We suppose that we have an array of N identical sensors (such as short-period 

vertical-component seismometers) located at the points r   in a plane at or near the 

earth's surface.   The origin of coordinates serves as a reference point within the 

array.   Let a transient signal propagate across the array towards a direction bearing 

0 (to the East of North) with a horizontal phase velocity v.   We assume that the wave- 

form at the origin is 

s(t) =   J S(u)) e11* düU/2TT 

and that the propagation is locally icn-dispersive, so that the signal observed at the 

th •     •     , n    sensor is simply 

x (t) = s(t-a-r ) 
n — —n 

In this formula we have introduced the slowness vector, a, which points in the direction 

of propagation and has magnitude |g,| = 1/v, in seconds per kilometer.   The slowness 

is determined directly from the travel-time curve, T(A), (travel-time as a function 

of linear distance to source) by means of the relation 
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In order to focus the array on a signal characterized by slowness vector a '^e 

form a beam by introducing steering delays and adding the sensor outputs.   The re- 

sulting beam output is 

N 

I 
n=l 

b(t) = r-.   T!   x (t + a • r )  . 
N   H    nN     -    -n' 

Much more complicated forms of array processing have been used,     but we are 

interested here only in the simple beamforming technique just described.   It can be 

shown that simple beamforming is an optimum procedvre to use in the case of broad- 

band background noise which is uncorrelated between sensors. 

Now suppose that we steer a beam for slowness vector a and a signal arrives 

with slowness vector g^'. Combining the definitions given above, we see that the re- 

sulting beam output is 

« N 
b(t) = /  S(UJ) {j-j   £   expliu;<a-a

,).rii]}eitt*düü/2n. 
n=l 

-00 

That component of the signal having angular frequency w is propagating with angular 

wavenumber vector ma > and at that frequency the array is steered for wavenumber 

vector tua.   The result is that this frequency component of the signal is multiplied by 

the factor F^a' ~üUfl)i where 

N 

Z 
n=l 

1   N 



is the wavenumber response function of the array.   Note that the beam output depends 

only on the difference vector, ^ = a' -fl. between the two slowness vectors. 

The pattern of the array in wavenumber space, defined as 

POO  =   |F(k)|2, 

actually shows the array response to narrow-band signals.   Since wide-band signals 

suffer distortion of waveform in passing through the beamforming operation, the wide- 

band array response cannot be fully characterized by a single numerical pattern. 

However, there are various ways of assigning a single number to the beam response 

to a given signal which serve to characterize the effective pattern in an approximate 

way.   Of these, the most tractable, mathematically, is the total energy received on 

the beam, ..e., 

J b(t)2 dt   , 
— 00 

for a signal which is itself of finite total energy-   In practice, it is isual to form a 

family of beams, using a grid of steering points, and measure the signal slowness 

vector (which in turn determines the event's epicenter) by making some kind of decision 

as to which beam is "best," or by interpolating between beams.       If this is to be 

done automatically, it must be based on some functional of the beam output, such as 
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the beam energy, average absolute value, peak value, etc.   Some justification for 

using the energy as an optimum functional can be made from statistical considerations, 

and this functional will be used throughout this report. 

We substitute the wavenumber response function, F(k), into the formula for 

b(t), with the result 

• 
iuut 

b(t) = J SMFMa'-a)! e    dwAr 

Now, using Parseval's theorem, we can evaluate the effective pattern of the beam: 

00 OB 

E(£)   s  J   b(trdt   =   J    |S(UJ)|    | ?(!!)£) fdUJ^TT 

2 
=   J    |S(üü)f P^du^TT   , 

— oo 

where £ = a — a is the slowness difference vector which describes the relative position 

of the beam and the signal.   We assume that the signal power spectrum is normalized 

so that 

J |S(a))|  dui/2n =  1  , 

since in this case E(ü) =   1 and E(0) then measures the relative response to events 

not in the beam center. 



Suppose we represent the signal power spectrum in the form 

|S0")|2 = j {Gdu-^ + GC-uj-^)} 

where G(ui) is a normalized function, 

j* G(u;) du)/2n =   1  , 

which is more or less peaked at yj = 0.   The idea is to recognize explicitly a "center 

frequency," u; , for the signal, even though the bandwidth may be relatively large. 

2 
The two terms are required to insure the necessary symmetry of |S(UJ)| .   Since 

P(ou3) is symmetric in u;, we have 

09 

E(^) = J G(u.-u;o)P(uj|i)d^/2n 

= J  G((tf)PI(a) + mo)fi] d^n 
— CO 

N CO 

=  N"      I.      f G(uü)exp(i(uj + a) )B-(r   -r   )] du»/2TT .   J o       —n    —m 
n,m=i ~oo ., 

^ N       Yj    exp [ wo£- (r n - r m)l  J G(uu) exp [ iu.£- (r n - r m)] düu/2n 
n,m=l —oo 
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The single-frequency case (at u) = ID ) can be recovered by replacing G(w) by a delta 

function at the origin with the expected result 

N 

E 
n=l 

1   ^ 2 E(I) = IN l> ^P^oi'lJ  = P<V)- 

In general, if <ve put 

gn,m  s J0^)«? I^&•(£„-Im)l   d*«/2TT 

then 

-2    N 
E(ß) = N       ).   g       exp (luu ß'(r  -r   )] V£/ ^.^n.rn     Fl   oR   -n   -m/J 

n,m=l 

Since the matrix, g       , is real and symmetric and has diagonal values of unity, we 

obtain 

1       2       V Mi)   =   N+Nä      I     8n>m   COSl«, £.(£^£^1    . 
n>m = ] 

In order to get an idea of the effect of the wide-band nature of the signals, we 

shall make a simple assumption for the spectral function, G(UJ), namely a Gauss 

function: 

0(0)) =  (2TTcj3)"1/2exp{-~(^)2}   . 

r 

i 



Plots of the resulting signal power spectra are shown in Fig. 1 for a center frequency 

ox 1 H', and a series of values of a (effective bandwiHth).   The frequencies f  and f 

shown on each graph are the 3-do points. 

For this spectrum we find the matrix 

g        = exp{-r-(a/f )   (uu ß*(r  -r   )] } ön,m K l    2 w' o'   l oM   -n   -rn/J  ' 

where f   = uu /2n is the center frequency in Hertz.   Note that:   ß = k   is the wave- oo -i       / 0r     _0 

number difference vector corresponding to the center frequency.   Again, the single- 

frequency case is recovered sinply by puttir.w a = 0.   It should also be noted that the 

wide-band pattern is formally equivalent to a single-frequency pattern, computed as a 

sum over points (r   -r   ) {
T lag space, with a taper, or set of weights (in our special 

case these are Gaussian) applied in lag space.   Using this analogy we may expect the 

re&ult of the finite signal bandwidth, in general, to be a broadening of the main lobe 

and an evening out of the response elsewhere; including a reduction of sidelobes.  A.'so, 

grating lobes (i. e., sidelobes as large as the main lobe) due to regularities in array 

geometry, if present, will be reduced to the stutus of sidelobas. 

It can also be seen directly from our first formula for E(^) that it is essentially 

an average of values of P(k) over a range of k-values in the direction of ß.   The larger 

the magnitude of ^, the larger the interval of averaging, hence the pattern-smearing 

becomes progressively more pronounced with distance f^m the origin in the ß-plane. 

These phenomena can b3 clearly seen in the contour plots of Section III. 
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III.       ARRAY RESPONSE PATTERNS IN WAVENUMBER SPACE AND IN REAL SPACE 

Using the Gaussian signal model and the pattern definition of Section II, 

computations have been made for a number of array geometries.   In •'he first series of 

contour diagrams, the patterns are shown (in terms of do down from the value at the 

origin), plotted in wavenumber space.   The wavenumber difference vector corresponding 

to the vector ß is defined as 

M     = f   8   . -o        o1- 

where we have used the A to symbolize the fact that the argument of the pattern function 

is a difference vector, and the slash identifies the cyclic wavenumber, in cycles per 

kilometer, corresponding to the use of f   instead of UJ .   In terms of Ale  , the formula 

on which the computations are based is 

N 

Z 
n>m=l 

IN 
E(^o> = h+W    Z    exp{-|bf[2nMo.(rn-rm)]2}coS[2nAto.(rn-rm)]   . 

Here, bf s a/f  is a measure of fractional bandwidth.   Note that this function is 

symmetric with rospect to the sign of the vector, A£ . 

In Fig. 2 we show a scaled map of the LASA array, treating each of the 21 

subarrays as single sensors.   The main lobe of the response pattern of this array in 

wavenumber space is shown in Fig. 3 for a single frequency signal at 1 Hz, and in 



Figures 4 through 8 for a Serie? of values of bandwidth, * namely a = 0.1, 0.2, 0. 3, 

0.4 and 0.5 Hz.   The broadening of the main lobe is clearly shown, as well as the 

filling-in of the low-points in the pattern in the upper-right and lower-left hand corners. 

For comparison with later figures, the LASA response for the case (a/f-) = 0. * is 

shovn in Fig. 23 for a larger range of values of wavenumber. 

A 'iimilar series of figures for a typical LASA subarray (F2) is shown in 

Figs. 9 through 15.   The very regular geometry of this array (Fig. 9) gives rise to a 

complex pattern for a sinusoidal signal (Fig. 10), feituring deep nulls.   These features 

are progressively smoothed by increasing bandwidth until we reach the case of Fig. 15, 

which gives no hint of the complexity of the single-frequency case. 

A final series of plots shows the effect of bandwidth on grating lol.es.   Figure 16 

shows a simple four-element array.   Its single-frequency response over a relatively 

large portion of wavenumber space is shown in Fig.  17, where many grating lobes 

(zero db response) are shown.   The sequence of Figs.  18 through 22 corresponding to 

the same five values of bandwidth as before ends with a pattern showing a main lobe 

against a background leve' nearly flat at ^ db down from the origin. 

It is, of course, much more convenient to study the array pattern directly in 

real space, i. e., in latitude and longitude, instead of in wavenumber space.   The 

* In these figures the c-values are labelleo in Hertz, which is correct for a center 
frequency of 1 Hz.   However, the patterns apply to any center frequency and a fractional 
bandwidth, bf, numerically equal to the indicated Q (in other words the pattern labelled 
"g = 0.2 Hz" applies to any center frequency, f0, and a Gaussian spectrum with variance 
parameter ^ = 0.2 f0). 
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disadvantage, however, is that the pattern varies with the point to which the array is 

steered.   The procedure is to pick a steering point, say latitude m , longitude \ , and 

then compute the wavenumber vector k (p ,x ) which corresponds to this point, as 

s^an from the array.   This vector points away from the steering point, i. e., it points 

in the direction rr+ 3» where g is the beai iig of (cp tK ) as .seen from the array center, 

and has magnitude 

l^o^o'^l   = '"oV 

where n   is the slowness and tu   is the signal center frequency in radians.   The pattern 

at any arbitrary point (cp,0 is then computed by first finding the relevant wavenumber 

vector, k(cp,x.), then putting 

A*o =  (l/2TT)(ko-k)f 

and using Lie formulas given at the beginning of this Section.   Since the pattern is 

symmetrical with respect to the sign of M  , it doesn't matter whether we compute 

our wavenumber vectors pointing away from or towards the aiming point, so long as 

we are consistent.   It is also true that the array response is unchanged by interchanging 

the points io which the array is steered and the location of the hypothetical event, so 

long as signal attenuation is ignored, since this interchange only results in a change 

in the sign of A-k  . 
^ -o 
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For a study of the ability of an array to locate events by forming a number of 

beams at various steering points, we may think of the event as fixed at a reference 

point, (co tk ), while the oeam is steered to a variable point, (cp.A.).   The response at 

(cp»A.)i relative to the response at the actual event location, then determines the pattern 

of interest.   This pattern is simply the wavenumber pattern transformed to a new co- 

ordinate system. 

However, it also makes sense to steer a beam at a fixed point, (p ,\ ), and 

consider the array response to an event of fixed magnitude occurring at a variable 

point, (cp, X,)-   Normalized to the response when (cpf\) coincides with (cp ,\ ), this pat- 

tern differs from the former in that the signal attenuation (computed from empirical 

Q-factors) for a source at (cp,\), relative to the attenuation at (cp ,\ ) must be taken 

into account.   The resulting pattern describes the response to an unwanted event (or 

body-wave noise) with a source (or apparent source) at some point other than that of a 

possible event to which the array is steered.   In the first pattern (the "beamforming 

pattern") the response is nowhere higher than at the reference point, (q^.X-).   In the 

second pattern the response will often be greater off-center than at the reference, 

since locations usually exist with sufficiently less attenuation than at beam center to 

more than offset the rejection due to being oi: the center of the array main beam. 

These features are illustrated in a series of figures, starting with Fig. 26.   In 

these figures the reference point is at the center, indicated by a star, and the contours 

are labelled in db down from this reference point.   In Fig. 26 we show the LASA 

12 
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beamforming paix?rn for a hypothetical event on the coast of Peru, 70° from the array. 

For this and all subsequent patterns the signal was assumed to have a center frequency 

of 1 Hz and a "fractional bandwidth," b = a/f , of 0.2.   The signal power spectrum is 

3 db down from its peak value at the frequencies 0.76 Hz and 1.24 Hz for this case, 

which seems fairly realistic.   The distortion of the wavenumber space pattern (see 

Fig. 23) when transformed to real space is rather severe.   In Fig. 27 the corresponding 

pattern is shown with attenuation added.   The curve of Q-factor versus distance which 

was used is shown in Fig. 25.   The shaded area in Fig. 27 is a region of response 

greater than or equal to the response at the reference point.   This results from the 

fact that the Q-factor curve dips, just beyond 70°, resulting in less attenuation with 

greater distance for a few degrees.   The result is to shift the maximum of the pattern. 

The effect of large attenuation in and beyond the core shadow boundary (lower right- 

hand corner) is also clearly seen. 

A more dramatic case is shown in Figs. 28 and 29, where the reference point 

is at 48° from the LASA array (a point in Colombia was chosen), which is at a local 

peak between two dips in the Q-factor curve.   The beamforming pattern is again a 

distorted version of the wavenumber pattern, but now the pattern including the Q-factor 

(Fig. 29) is strongly modified by the various peaks and troughs of the Q-factor curve. 

A final pair of patterns. Figs. 30 and 31, using a reference point in Japan, 

"0° from the LASA array, was computed for an array comprising of D, E, and P rings 

only from the LASA array (12 elements).   The corresponding wavenumber pattern is 

13 
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given in Fig. 24.   The main lobe is considerably smaller than for the full array, and 

the troublesome 6 db sidelobes which can be seen in Fig. 23 are absent. 
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of CT.   Three db frequencies labelled as f +. 
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Figure 2 The LA5A array (symbols are site names). 
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Figure 3 LASA main beam.   a = 0. 0 
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Figure 4 LASA main beam.   CT = 0. 1 
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Figure 5 LASA main beam.   a = 0.2 
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Figure 6 LASA main beam.   a = 0. 3 
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Figure 7 LASA main beam.   c = 0.4 
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Figure 8 LASA main beam.   a = 0.5 
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Figure 9 Subarray F2 of the LASA array. 
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Figure 10        Subarray pattern,   Q-- 0.0 
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Figure II        Subarray pattern,   a = 0.1 
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Figure 12 Subarray pattern.   Q = 0. 2 
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Figure 13        Subarray pattern.   a = 0. 3 
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Figure 14 Subarray pattern,   a = 0. 4 
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FigurelS Subarray pattern,   Q = 0. 5 
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Figure 16        Four-element array. 
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Figure 17 Four-element array pattern.   o = 0.0 
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FigurelS Four-element array pattern.   a = 0. 1 
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Figure 19 Four-element arr^y pattern.   a = 0.2 
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Figure 20 Four-element array pattern.   a = 0. 3 
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Fitrure 21 Four-element array pattern.   0 = 0.4 
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Figure 22 Four-element array pattern.   a = 0.5 
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Figure 23 LASA pattern in wavenumber space. 
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Figure 24 Wavenumber pattern of an array consisting of the LASA D-, E-, 
and F-sites. 
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Figure 25        Q-factor, dependence on distance. 
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Figure 26        Real space LASA pattern.   Epicenter at 70   from array. 
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Figure 27 
Real space LASA pattern including attenuation.   Beam steered 
at epicenter of Figure 26. 
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Figure 28 Real space LASA pattern.   Epicenter at 48   from array 
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Figure 29        Real space LASA pattern including attenuation.   Beam steered 
at epicenter of Figure 28. 
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Figure 30        Real sp^ce pattern of partial LASA array.   Epicenter at 80 
from the array. 
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Figure 31 Real sfWCvi partial LASA pattern, including attenuation.   Beam 
steered at epicenter of Figure 30. 
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