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This final report covers the results obtained under

Contract NONR4467(00).\§Two areas of investigation, relatec

o |

in basic concept but disparate in approach and application,

have been considered in this program. The initial effort

L |

involved a conceptual modeling of learning and self-organizing

systems in information theoretic terms. The second effort

-~ |

entailed transferring the conceptual form developed in the

initial study into a contrel-system framework and resulted in

an attractive form of model-reference control system...
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f? 4 Publications and Lectures:
g E 3
'gf ;* Mr. Malcolm R. Uffelman gave a series of lectures on
3 li% = learning machines in the "Pattern Recognition-Models, Learning,
i f‘: T’ Decision Theory," seminar conducted by the Information Sciences
: % ~ Institute of the University of Maryland June 28 through July 1,

3

1965, Mr. Uffelman also published a paper "Learning Systems

[ S
3

and Information Theory" (1) 1966: IEEE Tritérnational Commuhication

Conference, Philadelphia, Pennsylvania, June 1966.
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Part I. Information Theory and Learning Systems

In this part of the report, we shall consider the basic
forms and functions of learning systems. Learning systems
can be considered on three levels of complexity and all three
are defined herein. However, it is shown that the adaptive
system forms the core of each level and it is to this system
that most of our attention is directed. A theorem specifying
the necessary order of complexity of an adaptive system is
presented and proven and some of its implementations are dis-

cussed.

Definitions:

1. Trained System: A system which learns to perform

a desired task through scwe training procedure, but whose
internal state is frozen at the completién of the training
process. An example of a trained system is a linear thresh-
0old device made up of fixed resistor weights where the values
of the resistors used are determined via a least-mean-square
training algorithm using typical inputs. The learning process

can be performed off line.

2. Adaptive System: A system that learns to perfcrm

a desired task through some training procedure and retains
the ability to learn throughout the life of the system. The
continued ability to learn implies the ability to improve

performance via further training (i.e., on~-the-job training),




PR

to unlearn tasks, and to learn new or additional tasks. The
numerous examples of adaptive systems include the CONFLEX I,

MINOS II, and the MARK I PERCEPTRON.

3. Self-Organizing System: An adaptive system coupled

with an automatic evaluation system and a built-in set of
goals. The purpose of the evaluator is to direct the adaptive
portion of the self-organizing system so that it develops a
set of responses satisfying the . 1ls*. Examples ol self-
organizing systems include the Homeostat and the MIT model

reference-control system.

4. Learning Systems: Systems which can learn (with or

without a teacher) to do jobs. 7vues of learning systems are

trained,; adaptive, and self-organi.ing systems.

Information Theoretic Models:

Assume the existence of a trained system. To introduce
this approach to modeling learning systems, assume that the
function to be performed is print reading (multifont).

Figure 1 shcws the information theoretic model to be employed.

]
Environment . | Trained
(Source) > Chanr}el (w%"h _——‘J System
equivocation) I (Receiver)
Figure 1

Simple Information Theory Model

* It should be noted that the goal system itself can be
a self-organizing system that develops the higher goals
of the overall system based on primitive goals. 1In fact,
the final goal system can be composed of a hierarchy of
self~organizing systems.
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The source, called the environment, produces outputs
that are the basic concepts involved in the problem at hand.
In other words, the environment output is not reality but
the abstract essence of physical reality. For example,
when the environment output is some letter, say "B", it
introduces into the channel only the concept "B" and not
an IBM ELITE BACKSLANT "B" or a PICA bold face "B" or any

other physical representation of "B".

For the message (i.e., the output of the environment)
to reach the receiver, here taken as a trained system, it
must be transmitted through a channel. As noted in figure 1,
the channel is a noisy one, that is, it has equivocation.
The output of the channel is a corrupted version of the
environment output. 1In our model, the channel output has

physical meaning and attributes.

The environment defined above is quite like the philo-
sophy which Bishop Berkeley, an eighteenth century Irish
philospher, put forth to refute materialism; matter does
not exist except as a bundle of perceptions. Ultimate
reality is the concept of the perceived reality. It is not
necessary to accept this philosophy to use the model being
proposed. The important idea is that all sensing machines,
man included, can work only with signals taken at the output
of the channel; but the general objective of the sensing
machine and its superior parts, the combination of these

being the trained system in our example, is to produce as

I
+
,




an output the cxviginal concept or something functionally

related to the original concept. 1In our print reader example,
the environment output might be the "R" concept. Due to the
equivocation of the channel, the input to the trained system
might be a bold face block "R" with a broken cusp and surrounded
with carbon smudges. The output of the trained system should
be a code representing “R", without any indication of font or

condition of print, in other words, the original concept.

A trained system is merely an adaptive system that has
been taught a job and then had the ability to change internal
states destroyed. Figure 2 shows the information theoretic

model of an adaptive system.

Trainer

B = .

' |
! | 2 'n 3

& , L

Environment é Channel —-——6—‘: Adaptive | { »

System

—_— - —

Figure 2. Information Theory Model, Adaptive System

The model is essentially the same as that for the
trained system except that the receiver 'is now an adaptive
system. The small arrow in the corner signifies that changes
can be made in its internal state. The superstructure shown
in dashed lines is the trainer and its lines of information-

flow and control. All information paths and control paths
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need not be present in every situation. As shown, the
trainer knows the truth (i.e., the environment output),
physical reality (i.e., the channel output), and the
system response; it can also control the environment and
the state of the adaptive system. The trainer and its
lines of communication are shown as dashed lines to remind
us that they (or some part of them) are needed only when
training is taking place or when the system performance

is being monitored. The various combinations of informa-
tion and control, such as AB23, Al3, or A23 can each offer
an interesting study into the behavior cf the system. However,

for the time being these studies will be postponed.

Figure 3 shows the model for a self-organizing system.

[—— —=—- --— I
| OBSERVER |
| ———{ (OR TRAINER}@®@— — — — — — -
| N | |
NN b e - -
l | < - = |
l l NN ' -
| NN ! IGoals ! |
I | \ ~ |
' i \1 .L |
| & ot __J; t Evaluator |
| : |
| ’ l
| ! - ,
/ cll
! | /// I
! )/ Adaptive | |
Environment (—-@® - - C —‘—-—-» System ] ey

Figure 3
Information Theory Model, Self-Organizing System
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Again, dashed lines show information and control
lines for the trainer. (In a self-organizing system, the
dashed lines more likely show the observer.) 1In the main
structure, the combination of the evaluator and the goals
are termed the goal system. The input to the goal system
from the environment is through a channel, C', which is in
general different from channel C. The goal system also has
an input, different from C and C', from the adaptive system
output through channel C". All channels can introduce noise.
It is the purpose of the goal system to consider the response
of the adaptive system and change the internal structure of
the adaptive system as rz2quired to make the responses tend

to satisfy the goals.

It should be noted that the goal system itself can
be a self-organizing system based on more primitive goals.
Such an organization would allow the main self-organizing
system to develop higher-level goals based on the primitive

goals established for the goal system.

Also notice that when a trainer is used to give
instructions to the self-organizing system, the trainer
does not have direct control of the adaptive portion as it
did in the strictly adaptive system model of figure 2. 1In
figure 3, the trainer can only affect the decision of the
goal system. This is as it is in a biological teacher-student

situation.
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Analysis:

Assume the existence of the trained system illustrated
in figure 1. The purpose of the system is to produce outputs
related to the environment outputs. Without loss of generality,
the system can be assumed to be a pattern-recognition system
with the function of producing an output that is a coded form
of the environment output. 1In general, the environment has

a limited repertoire of outputs.

The output function of the environment can ke represented
as P(Ei), the probability that output Ei will occur at a
given time (a discrete ergodic source is assumed)*., The E,.
are, as stated before, the concept of class; in other word;,
the Ei are the classes (or categories) to which the outputs
of the channel belong and, in effect, each channel output is
a noisy memer of Ei' For simplicity, P(Ei) at time tk is

taken to be independent of P(Ei) at t (i.e., the same

1

as selection with replacement). Consequently, P(Ei) is the

a priori probability of class Ei'

The output of the channel can be represented by P(SjIEi),
the probability of the physical stimulus, Sj, given the concept,

Ei' Thus, as stated above, the channel introduces noise via

* A discrete source is assumed for convenience; an ergodic
source is assumed because: (a) nature must have a high degree
of stationarity or how cculd anything learn about it, and (b)
nature must have its main concepts remain fixed over the en-
semble or, again, how could anything learn about it?

“
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A mapping of the concept into physical reality. The trained
system must take measurements on the physical stimulus, and
based on these measurements produce the concept as an output.

Thus, the function of the receiver (in this case, the trained

system) is to remove noise.

Assume that the form taken by physical reality at the
channel output is a binary code; this removes the problem

of noise being introduced by the measurements.

At this point, let us summarize. The function performed
by a learning system is the removal of noise; thus, a learning
system, after training (another name for designing and de-
bugging), is a filter. After a filter is designed and working,
it is of small interest. The design is the interesting part
of a filter's life. Consequently, let us now turn our atten-

tion to the training of an adaptive system.

As done previously, we define the input pattern to the
adaptive device as an array of n binary variables (1, -1).

The set of patterns (Sll, S "’Srn) represents the corrupted

12

versions of the classes (Cl' o ,...Cr). During training, the

2
adaptive device is adjusted so that it maps any input, Si'

onto the proper class concept, Cj' "Adjustment" means finding,
by some procedure, an internal state of the device that performs

the desired filtering function.

1]




If we restrict our attention to a two~class problem,

the number of possible filter functions (i.e., dichotomies)

L e |

for N patterns is ZN. In other words, with two concepts

n
B
sucn 2R A T e e

being emitted by the environment and with the noisy channel

L |

producing N patterns in response to the two concepts, the

¥ o3 £t S

variability of the problem confronting the adaptive device

is ZN. Since we can physically grasp the signals only ac

the input of the adaptive device, this variability is the

Proe-TRA 35 5

Seny SNy BEy Sy ey Sy Iy g TRy Gy
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effective source variability. We call it the transfer

e
s oy
G

variability, Vt' which can be considered the number of trans-

et

fer states possible for N patterns. The base 2 logarithm

Vt is called the transfer entropy, Ht’

procedure, we hope to adjust the adaptive device so that

By some training

the output of the device, given the desired transfer state

Y e e

and the input pattern, Sa' is completely predictable by an

outside observer.

The adaptive device has a number of possible internal
states, each a different decision surface. We must be careful
to distinguish between distinct internal states and the number
of structural states. For example, in a simple linear-threshold
device having two inputs, we can have more than one set of

weights (i.e., more than one structural state) forming the same

wein | PRALGT

separating plane. Each different set of weights is a component
of the number of structural states, but taken as a group, the

weights form only one distinct internal state. The base 2

s}

§ '§ logarithm of the number of internal states is called the adap-

tive capacity, Ha' of the classifier.

“‘W‘E - y £
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THEOREM:
For an adaptive classifier to be able to perform all
of the possible dichotomies of N patterns, it is necessary

for Ha to at least equal Ht'

PROOF':

Assume that some form of adaptive classifier can achieve
perfect classification for any and all dichotomies of N
patterns with an adaptive capacity, Ha' less than the transfer

entropy, H This means, of course, that the classifier can

dichotomizz the patterns using fewer than 2N internal states.

If a table is made that relates each internal state to the
dichotomy performed, there will be one or more internal states
having more than one dichotomy listed with it. Therefore, each
internal state can form more than one decision surface (i.e.,
can perform more than one dichotomy), or the dichotomies related
to each of those internal states are the same. Both of the
conclusions contradict the definitions; therefore, the initial

assumption is wrong, and no form of adaptive classifier can

perform all possible dichotomies if Ha is less than Ht'

Application:

Let us consider the application of the theorem stated
above to a popular form of adaptive classifier, the linear

threshold classifier shown in figure 4 on the following page.¥*

* 2nother form of adaptive classifier is also analyzed in the
appendix.
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Figure 4
Linear Threshold Classifier

First let us assume, for the moment, that all of the

dichotomies of N equal 2" patterns are possible. Thgs,

the number of transfer states (or dichotomies) is 22 and

Sy

SEAERNAL S ek ae e g

2n
H = log, 2 (1)

PRI Lo,
o
..- l-‘
5

ot

2" bits

Senn Dy
"

Therefore, the device must have an adaptive capacity

of 2" bits. Since there would be no reason to expect any

st Co
i4~«.‘-§
A3

weight, Wi, to need more range than any other weight, Wj

’

we can find the capacity required by each weight, Hw.

=Ty
foemgt

n 3
B, = -Eir—r— bits per weight. (2)
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3 i : Of course, all of the dichotomies are not possible

using a linear threshold classifier, Cameron (1) has es-
tablished the upper bound on the number of linearly separable

dichotomies of 2n patterns, R(n), as

| R(m) < [2_ (e )n (3)
y fin n

If we don't try impossible dichotomies, then log2 R(n)

\ if ’ is less than the true H
3 SRS <
3 B Ht l°gz V <r j}

. . < X 1og° ( ) + n 1092 e2 (4)
- mn n

Y

] - <k I:log2 2-logznn] + n [109292n'1092n]

< % [1 - 1og2nn] +n [logze + n -logzn]

.- Rearranging the foregoing,

H, < n2 + n logze - (n + %) logzn - % logzn (5)

t
: . And, if n is large compared to unity, this is, without great
: error,
;’ H_ < n2 - n log._n (6)
] t 92

Therefore, to a reasonable approximation,

2
< -
Ha n n logzn (7)

v rge
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Again, having no reason to assume otherwise, we can compute

that each weight needs

nz -n logzn bits

n+1

(8)

Or, if n is large, the classifier needs about
n —logzn bits per weight. (9)

Now, let us take a more reasonable approach. Several in-
vestigators (2) have shown that the natural capacity of a

linear threshold device is 2(n+l) patterns. In other words,

if N is equal to or less than 2(n+l), and n is large, a
linear threshold classifier can perform any desired dicho-
tomy with probability near unity. Let us assume that a
linear- threshold classifier can perform any dichotomy of

n equal to or less than 2(n+l) patterns:

é2(n+l)

H = log = 2(n+l) bits (10

t 2

therefore, H must at least eéual 2(n+l) bits. Again, we
a

can compute the average capacity required by each weight:

H = 2(n+1)
w (n+1) (11

2 bits per weight.

Notice that this is, by the above development, only

an average value and that it is a necessary condition.

-14-
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Therefore, we can conclude that te perform dichotomies

ppirppet

involvihg all possible patterns, a prohibitively large

B R A R I
2

il memory--capacity (n-n logzn/n+l bits per weight) is required.

e

- ‘f If a linear-threshold classifier is used within its natural

capacity, the necessary capacity of the weights is quite i

modest (2 bits per weight).

Gl (S

Further Considerations:

One interesting form of adaptive system based on a
perception-like organization is the Multivac (3), which uses
a memory cell having a one-bit capacity (i.e., 1 bit per
weight). Since our theorem says that for n weights, at 1 bit
per weight, the machine can learn, at most, n patterns, let
‘us consider under what cornditions it can learn any dichotomy

of n patterns.

THEOREM:
Given an n~dimensional space and n binary patterns in
qi that space, then if the patterns are linearly independent, any
'={ ; dichotomy of them can be performed by a modulo 2 threshold-

classifier.

PROOF:

Arrange the patterns in an n x n matrix, called the
pattern matrix, with each row being a pattern. The problem
can now be stated as follows: given a pattern matrix with

- linearly independent rows, a colurm metrix containing n binary

3
<

-15-
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elements (called the weight matrix) and a column matrix con-
taining n binary elements (called the classification matrix)

then for the following:
PW = C; Mod 2

where: P is the pattern matrix,
W is the weight matrix, and

C is the classification matrix

the elements of W can be uniquely specified for any arrangement

of ones and zeros in the C matrix.

This can be proven as follows. Since the P matrix has
linearly independent rows, its left inverse (Mod 2) exists
(see Peterson, "Error Correcting Codes," Wiley, 1961). Thus,

we can write:
-1
W=P "C;: Mod 2

which presents a means for computing the elements of W. Since

we have found a way to compute W, the theorem is true.

The theorem can be translated from Modulo 2 to real posi-
tive numbers by having a threshold unit which decides even or

odd rather than greater than.

Thus, the Multivac cannot, in general, classify in any
dichotomy of (N%l) or more patterns, but for N or less linearly
independent patterns and an odd~even threshold device it can

perform any dichotomy.

-16-
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Part II. A Self-Organizing Control System

Figure 3 of Part I shows the mocdel of a self-organizing
system. ' If we consider only linear systems, notice that as long
as "C" communicates to the evaluator the output of the linear
channel C in series with the adaptive system, then their order
can be reversed and adaptation not.be affected. This reversal is
shown in figure 5, where we now call the channel a closed--loop
plant and the adaptive system is a preprocessor of the input.
Thus, we can translate the general model of the self-organizing
system of Part I into a form of model reference-control system.
The basic concept of this form of system is that the required
adaptation takes place in the preprocessor located in the signal

path.

of COAL AND
EVALUATOR

a _

r'y CLOSED
¢ PREPROCESSO LOOP CON—  —&———>

TROL SYSTEM

Figure 5
Block Diagram, Self-Organizing Control System
Two general. conditions are imposed for this discussion:
the closed-loop system is unconditionally stable for all
changes in the plant function, and the closed-loop system
is linear.

-17-
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Initial Assumptions:

Since we shall be concerned with using a statistical
measure to evaluate the behavior of the system, we assume
that all signals are bounded real functions of time and
that the plant function and the input signal are stationary
over the time regions of interest. If y(t) is one of the

signals, then yT(t) is

yT(t) = y(t) : -T2t2T7T
(12
Yp(t) = 0 i t<-T, t>+ T
and the Fourier transform YT(jw) is defined by
+T .
v.Gw = [ yglte Ve g¢ (13)
T T
-7
The System:
Figure 6 is a detailed block diagram of the self-
organizing control system
_— b o -
"—”‘l MODEL %’9
r——-’EVALUXi;éRIW a(€)
Y ICTOSED LooP
r, (£)O—@~| PREPROCESSOR | conrroL —Cp(t)
I SYSTEM

Mode) Transfer Function M(jw)
Preprocessor Transfer Function K(jw)
Control System Transfer Function P (jw)

Figure 6
Detailed Block Diagram

-18-




The Mean Square Error Measure:
/7

The mean-square error-measure is defined as:

.nT
Ve lim 1 l‘ (d t)- 2
e il (t)-c (v) Yae (14)
T~ 27 J
-T
where d(t) is the desired system cutput, and

c(t) is the actual system output.

Following Wiener (4), we shall use this measure to
evaluate the performance error, aT(t) of Figure 6. Our
method of using the mean-square-measure is standard; we
shall at all ‘times attempt to adjust the parameters at our

disposal in such a way as to minimize the mean-square error.

In adopting the mean-square measure, we are stating
that we are willing to accept many small differences between
the desired output and the actual output, but that large
differences are to be heavily penalized. Obviously, there
are cases where this is not a good measure (i.e., cases

for which a miss is as good as a mile).

However, for most applications, the simplicity of
the mean-square measure makes it attractive enouéh to
use even if it results in suboptimal goal achievement. It
is to these applications that the system described here

is addressed.

-19~
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Adaptive Preprocessor:

The adaptive preprocessor is a network based on the

synthesis procedure of Wiener ( 4). Its structural form

Lo(jw) \\\;22:\\\\
1
L, Gu) |—pf- f/ja} -
E (jw) ° ///sz,///)\
-]
‘____.m.___Ln(jw)

Figure 7
Preprocessor

is indicated in Figure 7.

The transfer functions, Liijw), of the parallel
filters are orthonormal functions (3) such as the Laguerre

functions. Orthonormal functions are defined, for our

purposes by

4o * 1 if i .
. . _ ifi=3j
J-ii(jw)L j(Jw)dw. = loiri ] (15)

where the asterisk denotes the complex conjugate.

«20-
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The preprocessor can be used to approximate a

transfer function, K(jw) by

N
RGiw) = ¥ k.1 (3w (16)
i=o
® *
where: ki = 5%— I K(jw)Li (jw) dw

- 00

We shall consider only those sets of functions which

are complete (3).

Analysis:

From Figure 6, we can write

A(3w) M(Jw)R(jw) - C(jw)

(17)

R (jw) [M(jw)—K(jw)P(jw)]

We desire to find an expression for the mean-square

error az(t) . By using Parseval's theorem, we can express

2%(t) in terms of A(jw)

4T
2.
a“(t) = 1im _1 az(t)dt - (18)
T 2T T
-7
+¢D
2 *
a (t) = 1lim 1 [ 1 AT(jw)AT (jw)dw]
T 27 L2mu

o
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We can simplify the notation by defining that equations used
herein of the form
+Q
2 . .
a“(t) =J A(jW)A*(]Wl@W (20)

@

are to be interpreted as in Eq.19.

Using Equations 17 and 19:

+Q

aZ(t) =| RGGWRH(3w) [MGGWIM*(5w) (21)

(-]

“M(IWVKH (3w) B* (5)
~M* (W) K (W) P (W)
SR () B WR* () P* (30 g,

substitution of Equation 16 into Equation 21 yields
+oo

200 =| ROGWRFGW [MEWMT G0
= -M(jw) P*(jw) z kiLi*(jw)
i=o
_M% (5w) P (5w) S“kij(jw) (22)
j=o

N
+R (W (5W) § KTy (3% zknLn*(jw)]dw

m=0 =0

-22-
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Differentiation of Equation 22 with respect to ki yields

+co

3 a%(t) = ROJWIR* (3w) [ =M(5w) P* (59) Li* (5w)
¥ (5) B (3W) L, (3w) (23)
+2k P (W) P* (W) L, (W) L'*i (jw) | aw

aki -

Differentiating again with respect to k.1 yields:
V42

3% a%(t) = [R(jw)R*(jw)P(jw)P*(jw)Li(jw)L*(jw)] dw (24)
2
3%ki

From equation 13, we can see that there is a single value
. 2
for ki that will cause aa (t) to equal zero. Further, from

3k,
i

equation 14, we can see that the second derivative of az(t)

with respect to ki is always positive, indicating that the

single extremum is a minimum point.

Therefore, the mean-squared performance-error for the system
is simply shaped surface (hyperparabolic) with a single minimum
point. This form, therefore, avoids the problem common to the
other form of model reférence-systems in which nonsimple sur-

faces must be searched.

A Simple Search Procedure

Although there are several methods of searching for and
finding the minimum of a simple quadratic surface, only one

will be discussed here.

-23-
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First, let us rewrite equation 23.
+m

Equation 26 indicates that the minimum mean square

AR | da”(t) = R(Jw)R*(Jw)[-M(Jw)p*(Jw)L;(jw)-M*(jw)p(jw)m(jw)_|dw
. +2ki | RGGWIR* (3w)] B (5w) P5WI Li (3w) L¥i (5w) Jaw
: ' I1f we perform the indicated integration, we obtain
g NG %a  (t
- i = = 1
E gz ' _T-lei I, + 2kiI, (26)
5 ;g ' where Il and I, are real numbers.
Integration of equation 24 reveals
B ] R
17 “ M s a 2 2
F N S a(¥) =1, (27)
' 3
s ' where I, is a real number.
k. error can be found by independent adjustment of each para-
neter, ki. There is a simple way to make this adjustment.
B ' Consider the general form of a'quadratic in one variable, X,
- 2
3 I y = Ax" + Bx + C . (28)

2AX + B (29)

22
Il

2k
.t‘,.., E
N

. ] ax _ , (30)
N | dx
B ~24-
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Simple algebra tells us that y(min) occurs at

x = 32 | (31
N N 5
_? and that ?
2
B
Y(min) "~ -z (32)
€ If, in general, we know the value of xo at time to, the change
‘ in x, 8x, required to move to y(m) is
It - .Q.x
: _oax _ _Eq (33
bxr= === [xo *2a
ay
dx

Substituting equation 33 in equation 29, we obtain

o

y = A(xo+bx) + C
i - B )2 ey . B
. = A(;O-xo- oA + BQ;O xo A > + C (34)
2 .
= B_ .
| - Y C-4A (35)

which is, of course, the same result obtained in equation

32. The extension of this to the multivariable case is obvious.

Thus, the problem of searching for the minimum becomes
a problem of evaluating the first and second partial deriva-

tives with respect to each ki and calculating the 0ki required,

Methods for performing these operations are well kncwn (5).
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In summary, one simple search procedure is to sequentially
vary each ki, evaluate the first and second partial deviates
for =zach ki, using the data obtained from the variation, and
independently calculate the change required in each ki to

obtain the minimum mean-square error.

In practice, two factors must be considered. First, the

actual computation of az(t) will most likely be performed by

a low-pass filter. Wiener (4) has shown that this yields a good

estimation of the true mean, if the filter time-constant is long

with respect to the bandwidth of the signal to be averaged.

e |

Second, noisy measurements will prevent an accurate computation

L |

of 6ki. This will, in general, result in a failure to minimize

W et L

the mean-square error. Repeated application of the search pro-

3
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¥
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cedure of averaging the results of several variations of the

4,,'}‘:

e

ki can reduce the amount of misadjustment at the minimum.

 } Rk AT

Experimental Study:

STy

An experimental study of the self-organizing control system
was conducted using general-purpose analog computers to simulate
control plants and reference models. A special-purpose analoyg o

computer was built to provide a 1l0-stage Laguerre network. The

general term of the Laguerre network, Ln(s), is

B 2 n
* ) {_.H—E '(P—‘)'T( =S (36)

any SEN N NNy Py

p—l-s)n 1

§ -
Y
H

This can be rewritten as

'E - JE; (p~s)

2l (p+s) | (p+s)

(37)

T R L R R TR o

R
[}

¢
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The term 211 (p+s) can be realized by the circuit of figure
C
€ R,| /7B
AAV) ==
Ry R, 271
R

2 1
R C =~
€in -4JVWJ N 1 p

Figure 8. Lo(s)

The term 'gff can be realized by the circuit of figure

C Ry R
1 (L 1
| W W RC =%

R
R ? R R = 2R1
e, Ll A —— e
in 0
Figure 9
%ﬁfﬁ% Realization

Thus any order function, Ln(s), can be realized by one cir-
cuit, as shown in figure 8, followed by n cascaded circuits, as
shown in figure 9. The simulator constructed for this study

used a p equal to 3 x 1072 °

-27-
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A variety of plants and reference models were studied.

Typical of these is ‘the following:

oo |
Wi

1. Plant open-loop transfer function

t(ef‘:.v“.»:'i

K(s) %

e |

2. Reference model

»..»

«

LR RN b S e M
" -

. 1
. M(s) 12

; &t
- I: The experimental set-up is shown in figure 10.
e
3 '33 4 g+2
: ?
& “‘,’v '
i Noise M.S.
. Source ®—_ Calculator
k. 3
;i [
“ 7 4
E T
! (E s LO . . . L9
n ]
i ;‘ ; - ko . . . kg

s+l

o 1
iy oM e 44 : LRSS
=3
—

: }‘ 1

i 1 s 1

3 - K(s) = = ; P(g) =——— =

- . s 1 +-§ s+ 1

A
7
L D

3 Figure 10. Typical Experimental Set-Up
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Figure 11 shows the mean-square error, Ez(t), for the
variation around minimum for Lo(t), Ls(t) and Lg(t) as a func-

tion of scale gain (i.e., as read off the indicators on the

simulator.)

Figure 12 shows the Ez(t) for the same terms after the
scale gains have been corrected for pot load. The pot loading

curve is given in figure 13.

These results are typical of all cases tried and shown the

quadradc nature of E2(t) as a function of the ki's.
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LEARNING SYSTEMS AND INFORMATION THEORY

.,
LR A

M. Rucj Uffelman

SCOPE Incorporated
Falls Church, Virginia

INTRODUCTION

A learning system can be broadly defined as a system "whose
actions are influenced by past experiences."1 In this paper,

we shall restrict our attention to adaptive pattern classifiers,
a subclass of learning systems. It is generally accepted that
the ability of adaptive pattern classifiers, either nonparametric
ox parametric, to classify correctly a set of patterns is limited

by the structural or algorithmic composition of the system.

An information theoretic model of an adaptive classifier and

cne limitation on performance are considered in this paper.

DISCUSSION

An elementary information theoretic model for an adaptive pat-

tern classifier and its input mechanism is shown in Figure 1.

For the purpose of this model, the source (or environment) is
based on the philosophy which Bishop Berkeley, an 18th century
Irish philosopher, put forth to refute materialism; matter does

not exist as a bundle of perceptions. Ultimate reality,
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sidered noise. The purpose of the adaptive classifier is to pro-

. classifier is a filter whose function is to remove noise. The

(represented by the source) is the concept of the perceived
reality (represented by the output of the channel). Thus, in
this model, the source produces only the abstr;ct concept of a
class. The perceived representation (i.e. the physical repre-
;entation) whicﬂ appears at the output of the channel is a
corrupted or noisy version of the concept. Notice that the

very process of taking on a physical representation is con-

duce.outputs which are either the concepts or related to the
concepis. In other words, if the classifier is being used as a
font reader, a chain of events might be: (The source produces as
an 6utput the concept of "R"; as a result, the channel produces
an "R" in Canterpury Pica with a broken serif; and finally, the
output of the classifier is a binary codé representing "R".

Thus, the classifier has, in effect, removed the noise introduced

-

by the channel and returned the pure signal, the concept "R".

Based on the above, we can adopt the point of view that the

degree to which it can remove the noise depends on the type and
quantity of the noise and the functional complexity of the fil-
ter. By introducing two factors, akin to source entropy and

channel capacity, it is possible to define a necessary condition

vt
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on the zbility of the classifier to remove noise.

ANALYSIS .
For simplicity we shall take the channel output to be binary. i
If there are N patterns to be classified into 2 classes, there |
. are 2N possible dichotomies. In other words, the training

amounts to adjusting the classifier to perform one of 2N con~

nective functions. The number of possible dichotomies is called
the transfer variability and the base 2 logarithm of this number E
is called the'tgagsfeg entropy, Ht' Notice that Ht is analogous

to source entropy in that it is a measure of the variability

forced upon the system.

$u2 v

The udaptive classifier has a number of possible internal states,
each such state being a different decision surface. The train-
ing process involves finding the internal state which satisfies
the desired dichotomy. The base 2 logarithm of the number of

internal states is called the adaptive capacity, Ha‘ of the ;

classifier. ‘ i.
THEOREM s :
For an adaptive classifier to be able to perform all of the \
possible. dichotomies of N patterns, it is necessary for Ha to at i o

least equal Ht' :3 3
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The proof of this involves assuming that a classifier can be

trained to perform all dichotomies of N patterns where Ha {'e,.~

less than Ht' This leads to the conclusion that one internal

§

= A 4", e Gl ios phs "
ST £ | A IO R 15 0l S U M R M g o
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;

state can perform more than one dichotomy of the patterns or
that two or more of the dichotomies are identical. Both results

contradict the definitions.

e |

Now let us consider the application of this theorem to two well-

s |

known adaptive classifiers, the SOBLN2 and the linear threshold

clasaifierl.

The SOBLN is a logical connective system having, in general,

1

AT st s
B i b e i pe g i T
DA i
X L |

: % é n binary inputs. As an example, a SOBLN for n = 3 is shown
E Do schematically in Figure 2. It computes the 2" logical products

7%,

and logically combines them using an OR gate and transmission

Lot
;-6 - 'g

: "f ) . weights to produce the output. It can be seen that the SOBLN

-

v
iyt
&—1‘?
b3

can realize all dichotomies of N patterns up to the maximum N

of 2“. The maximum H, is

14
T _—
o
& -
\

3 t
’ n
] N 2 n '
‘. 2 i
B 3’ Ht = 10922 = log2 = 2 bits
) e L
o~ . o, n .
: an Thus, Ha by the theorem must be at least 2 bits. The SOBLN
¢ 3
. 3 - contains 2" weights, Wi, which form the variable portion of its
- s '
e 7 H structure. Since there is no reason to expect any weight to
j 3 s require more variability than any other we can establish the
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'variability necessary for each weight by

Ha 2 Ht
number of weights number of weights
2 ____jﬁ:___ = 1 bit per weight
oh

Therefore, at least one bit per weight is necessary.- And in

this case, we can see by direct enumeration that one bit per

weight is also sufficient.

Now l?t us proceed to the linear threshold classifier; an
example is depicted in Figure 3. We know that for n binary
inputs and N = 2" patterns, the classifier can not perform all
22n dichotomies.1 However, it has beenlshown by a number of
investigators thgt the "natural capacity"1 of a linear threshold
éevice is 2(n + 1). In other words, -if N'is equal to or less
than 2(n + 1) the probability that all Aichetomies can be per-
foxrmed is approximately vnity (for large n) and it i; approxi-
mately zero if N is greater than 2(n + 1l). Again taking a maxi-

mum case, we shall for the moment asr.ume that for any 2/(n + 1)

binary patterns all dichotomies can be performed.

Thus,

Ht = log 222(n *1) 2(n + 1) bits

And again, since we have no reason to suspect that any weight
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will require more flexibility than any other weight, we find

that

Ha S Ht

number of weights

number ofiﬁeights :

2 2(n_+ 1) = 2 bits per weight
(n +1)

Thus, a linear threshold classifier must have at least 2 bits
per weight to be able to perform all of the possible dichotomies

within its "natural capacity" of 2(n + 1) patterns.

CONCLUSION !
A necessary con@ition for an adaptive classifier to be able to be
trained for a given task has been developed. 1In at least one
case, the SOBLN, the theorem also leads to a sufficient condition.
For the linear threshold classifier it has been shown experiment-
ally and theoretically, that two bits or less per weight will, in
many cases, do as well in a dichotomy problem as weights with
greater variability? This leads us to believe that for a linear
threshold classifier with N equal to or less than 2(n + 1) and
for those realizable dichotomies of the patterns, that 2 bits per
weight are sufficient. This belief is, .of course, still in the

form of a conjecture, but we are working on its proof.
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