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I. INTRODUCTION

This final report covers the results obtained under

Contract NONR4467(00). •Two areas of investigation, related

in basic concept but disparate in approach and application,

have been considered in this program. The initial effort

involved a conceptual modeling of learning and self-organizing1 systems in information theoretic terms. The second effort

entailed transferring the conceptual form developed in the

initial study into a control-system framework and resulted in

an attractive form of model-reference control system.,

Publications and Lectures:

Mr. Malcolm R. Uffelman gave a series of lectures on

learning machines in the "Pattern Recognition-Models, Learning,

Decision Theory," seminar conducted by the Information Sciences

Institute of the University of Maryland June 28 through July 1,

1965. Mr. Uffelman also published a paper "Learning Systems

and Information Theory" (I) 1966ý IEEE *Ifte'national. Comma'hication

"Conference, Philadelphia, Pennsylvania, June 1966.

1. Reproduced in the Appendix to this report.
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j - Part I. Information Theory and Learning Systems

In this part of the report, we shall consider the basic

forms and functions of learning systems. Learning systems

can be considered on three levels of complexity and all three

are defined herein. However, it is shown that the adaptive

system forms the core of each level and it is to this system

that most of our attention is directed. A theorem specifying

the necessary order of complexity of an adaptive system is

presented and proven and some of its implementations are dis-

cussed.

Definitions:

1. Trained System: A system which learns to perform

a desired task through scme training procedure, but whose

internal state is frozen at the completion of the training

process. An example of a trained system is a linear thresh-

[ old device made up of fixed resistor weights where the values

of the resistors used are determined via a least-mean-square

[ training algorithm using typical inputs. The learning process

can be performed off line.

1L 2. Adaptive System: A system that learns to perform

a desired task through some training procedure and retains

the ability to learn throughout the life of the system. The

continued ability to learn implies the ability to improve

performance via further training (i.e., on-the-job training),

'4 -2-
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to unlearn tasks, and to learn new or additional tasks. The

numerous examples of adaptive systems include the CONFLEX I,

MINOS II, and the MARK I PERCEPTRON.

3. Self-organizing System: An adaptive system coupled

with an automatic evaluation system and a built-in set of

goals. The purpose of the evaluator is to direct the adaptive

portion of the self-organizing system so that it develops a

set of responses satisfying the ls*. Examples o2 self-

organizing systems include the Homeostat and the MIT model

reference-control system.

4. Learning Systems: Systems which can learn (with or

without a teacher) to do jobs. ¶'i-(.-?s of learning systems are

trained, adaptive, and self-organa-ing systems.

Information Theoretic Models:

thsAssume the existence of a trained system. To introduce

this approach to modeling learning systems, assume that the

"function to be performed is print reading (multifont).

Figure 1 shýws the information theoretic model to be employed.

Environment hi I Trained

(Source) Channel (with System(Source) ~equ ivocat ion) (eevr J

(iReceiver)

Figure 1
Simple Information Theory Model

It should be noted that the goal system itself can be

a self-organizing system that develops the higher goals
of the overall system based on primitive goals. In fact,
the final goal system can be composed of a hierarchy of

self-organizing systems.
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The source, called the environment, produces outputs

that are the basic concepts involved in the problem at hand.

In other words, the environment output is not reality but

the abstract essence of physical reality. For example,

when the environment output is some letter, say "B", it

Sintroduces into the channel only the concept "B" and not

an IBM ELITE BACKSLANT "B" or a PICA bold face "B" or any

I other physical representation of "B".

For the message (i.e., the output of the environment)

to reach the receiver, here taken as a trained system, it

must be transmitte& through a channel. As noted in figure 1,

the channel is a noisy one, that is, it has equivocation.
r. The output of the channel is a corrupted version oil the

environment output. In our model, the channel output has

physical meaning and attributes.

The environment defined above is quite like the philo-

sophy which Bishop Berkeley, an eighteenth century Irish

philospher, put forth to refute materialism; matter does
L- not exist except as a bundle of perceptions. Ultimate

reality is the concept of the perceived reality. It is not

necessary to accept this philosophy to use the model being

!" proposed. The important idea is that all sensing machines,
S" man included, can work only with signals taken at the output

of the channel; but the general objective of the sensing

machine and its superior parts, the combination of these
being the trained system in our example, is to produce as

•• • -4-*'



an output the .-- inal concept or something functionally

related to the original concept. In our print reader example,

the environment output might be the "R" concept. Due to the

equivocation of the channel, the input to the trained system

might be a bold face block "R" with a broken cusp and surrounded

with carbon smudges. The output of the trained system should

be a code representing 'R", without any indication of font or

condition of print, in other words, the original concept.

A trained system is merely an adaptive system that has

been taught a job and then had the ability to change internal

states destroyed. Figure 2 shows the information theoretic

model of an adaptive system.

B

-1-Trainer

I I I

I I_ 112 •A3

Environment CanlAdaptive -•ISystem

Figure 2. Information Theory Model, Adaptive System

The model is essentially the same as that for the

trained system except that the receiver"is now an adaptive

system. The small arrow in the corner signifies that changes

can be made in its internal state. The superstructure shown

in dashed lines is the trainer and its lines of information-

flow and control. All information paths and control paths

-5-
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need not be present in every situation. As shown, the

a trainer knows the truth (i.e., the environment output),

physical reality (i.e., the channel output), and the

system response; it can also control the environment and

the state of the adaptive system. The trainer and its

lines of communication are shown as dashed lines to remind

us that they (or some part of them) are needed only when

training is taking place or when the system performance

A; {is being monitored. The various combinations of informa-

tion and control, such as AB23, A13, or A23 can each offer

an interesting study into the behavior of the system. However,

31 :for the time being these studies will be postponed.

Figure 3 shows the model for a self-organizing system.

I OBSERVER
-- ), owl (OR TRAINER - --

U-• I I -I

IGoals

I L- Evaluator

1- -• -- Adaptive

Environment - C - System

Figure 3
Information Theory Model, Self-Organizing System

-6-
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Again, dashed lines show information and control

lines for the trainer. (In a self-organizing system, the

dashed lines more likely show the observer.) In the main

structure, the combination of the evaluator and the goals

are termed the goal system. The input to the goal system

from the environment is through a channel, C', which is in

general different from channel C. The goal system also has

an input, different from C and C', from the adaptive system,

output through channel C". All channels can introduce noise.

It is the purpose of the goal system to consider the response

of the adaptive system and change the internal structure of

the adaptive system as r.equired to make the responses tend

to satisfy the goals.

It should be noted that the goal system itself can

be a self-organizing system based on more primitive goals.

Such an organization would allow the main self-organizing

system to develop higher-level goals based on the primitive

goals established for the goal system.

Also notice that when a trainer is used to give

instructions to the self-organizing system, the trainer

does not have direct control of the adaptive portion as it

did in the strictly adaptive system model of figure 2. In

figure 3, the trainer can only affect the decision of the

goal system. This is as it is in a biological teacher-student

situation.

I
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Analysis:

Assume the existence of the trained system illustrated

in figure 1. The purpose of the system is to produce outputs

related to the environment outputs. Without loss of generality,

the system can be assumed to be a pattern-recognition system

with the function of producing an output that is a coded form

of the environment output. In general, the environment has

a limited repertoire of outputs.

The output function of the environment can be represented
as P(Ei), the probability that output E. will occur at a

11

given time (a discrete ergodic source is assumed)*. The Ei
1

are, as stated before, the concept of class; in other words,

the E. are the classes (or categories) to which the outputs

of the channel belong and, in effect, each channel output is

- a noisy mem-er of E.. For simplicity, P(Ei) at time t is
V taken to be independent of P(Ei) at tk_ (i.e., the same

as selection with replacement). Consequently, P(Ei) is the

a priori probability of class Ei.

The output of the channel can be represented by P(S IEi),

* the probability of the physical stimulus, S., given the concept,

SE.. Thus, as stated above, the channel introduces noise viaS~1

* A discrete source is assumed for convenience; an ergodic
source is assumed because: (a) nature must have a high degree
of stationarity or how could anything learn about it, and (b)
nature must have its main concepts remain fixed over the en-
semble or, again, how could anything learn about it?

I
• •-8--
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A mapping of the concept into physical reality. The trained

system must take measurements on the physical stimulus, and

based on these measurements produce the concept as an output.

Thus, the function of the receiver (in this case, the trained

system) is to remove noise.

Assume that the form taken by physical reality at the

channel output is a binary code; this removes the problem

of noise being introduced by the measurements.

At this point, let us summarize. The function performed

by a learning system is the removal of noise; thus, a learning

system, after training (another name for designing and de-

bugging), is a filter. After a filter is designed and working,

it is of small interest. The design is the interesting part

of a filter's life. Consequently, let us now turn our atten-

tion to the training of an adaptive system.

As done previously, we define the input pattern to the

adaptive device as an array of n binary variables (1, -1).

The set of patterns (SII, Sl2... Sn) represents the corrupted

versions of the classes (CI C). During training, the
(C,2"' r

adaptive device is adjusted so that it maps any input, S.,1

onto the proper class concept, C.. "Adjustment" means finding,3
by some procedure, an internal state of the device that performs

the desired filtering function.

-9-
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If we restrict our attention to a two-class problem,

-- the number of possible filter functions (i.e., dichotomies)
4N

for N patterns is 2. In other words, with two concepts

fbeing emitted by the environment and with the noisy channel

producing N patterns in response to the two concepts, the

ii variability of the problem confronting the adaptive device

is 2N. Since we can physically grasp the signals only ac

the input of the adaptive device, this variability is the

effective source variability. We call it the transfer
t variability, Vt which can be considered the number of trans-

fer states possible for N patterns. The base 2 logarithm

Vt is called the transfer entropy, Ht. By some training

procedure, we hope to adjust the adaptive device so that

the output of the device, given the desired transfer state

and the input pattern, S, is completely predictable by an

outside observer.

The adaptive device has a number of possible internal

states, each a different decision surface. We must be careful

to distinguish between distinct internal states and the number

of structural states. For example, in a simple linear-threshold

device having two inputs, we can have more than one set of

weights (i.e., more than one structural state) forming the same

3 Iseparating plane. Each different set of weights is a component

of the number of structural states, but taken as a group, the

I1 weights form only one distinct internal state. The base 2

logarithm of the number of internal states is called the adap-

] tive capacity, Ha, of the classifier.

ra
-10-
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THEOREM:

For an adaptive classifier to be able to perform all

of the possible dichotomies of N patterns, it is necessary

for H to at least equal H
a t*

PROOF:

Assume that some form of adaptive classifier can achieve

perfect classification for any and all dichotomies of N

patterns with an adaptive capacity, Ha, less than the transfer

entropy, Ht. This means, of course, that the classifier can
t*

dichotomize the patterns using fewer than 2 internal states.

If a table is made that relates each internal state to the

dichotomy performed, there will be one or more internal states

having more than one dichotomy listed with it. Therefore, each

internal state can form more than one decision surface (i.e.,

can perform more than one dichotomy), or the dichotomies related

to each of those internal states are the same. Both of the

conclusions contradict the definitions; therefore, the initial

assumption is wrong, and no form of adaptive classifier can

perform all possible dichotomies if H is less than H
a

Application:

Let us consider the application of the theorem stated

above to a popular form of adaptive classifier, the linear

threshold classifier shown in figure 4 on the following page.*

* Another form of adaptive classifier is also analyzed in the
appendix.

-11-
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n
nW

' • +1

F igure 4
Linear Threshold Classifier

I First let us assume, for the moment, that all of the

dichotomies of N equal 2n patterns are possible. Thus,rn
"the number of transfer states (or dichotomies) is 2 and

Ht log2 2

2 bits

1 Therefore, the device must have an adaptive capacity

of 2 n bits. Since there would be no reason to expect any

I weight, Wi, to need more range than any other weight, W.

we can find the capacity required by each weight, H
w

n
Hw n + bits per weight. (2)

-12-
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S ~of course, all of the dichotomies are not possible
using a linear threshold classifier. Cameron (1) has es-

tablished the upper bound on the number of linearly separable

dichotomies of 2 patterns, R(n), as

SnR R(n) < 22' 2 <en (3)

trn n

If we don't try impossible dichotomies, then log2 R(n)
• is less than the true Ht

tt
Ht < log2

•- • n

l<o½g2 (2) + n log 2 (e2 (4)

<½ [log2 2-log2TTn + n [log2 e2n-log2 n]

[1 logTM + n [log 2 e + n -log 2n]

- Rearranging the foregoing,

Ht < n2 + n log2 e - (n + ½) log2 n - ½ log2 T (5)

And, if n is large compared to unity, this is, without great

error,

2 ng

Therefore, to a reasonable approximation,

H <n -n log2 n (7)a2

-13-
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Again, having no reason to assume otherwise, we can compute

that each weight needs

2
'n -n log2 n bits (8)

n+ 1

Or., if n is large, the classifier needs about

n -log 2 n bits per weight. (9)

Now, let us take a more reasonable approach. Several in-

Isvestigators (2) have shown that the natural capacity of a

linear threshold device is 2(n+l) patterns. In other words,

if N is equal to or less than 2(n+l), and n is large, a

Slinear threshold classifier can perform any desired dicho-

tomy with probability near unity. Let us assume that a

linear-threshold classifier can perform any dichotomy of

n equal to or less than 2(n+l) patterns:

Ht l ,og 2 - 2(n+l) bits (10a: t 2
therefore, H must at least equal 2(n+l) bits. Again, we

a
can compute the average capacity required by each weight:

H = 2 (n+l)

(n+l) (1)

- 2 bits per weight.

L Notice that this is, by the above development, only

an average value and that it is a necessary condition.

-14-
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Therefore, we can conclude that to perform dichotomies

involving all possible patterns, a prohibitively large

memory--capacity (n-n log 2n/n+l bit*, per weight) is required.

If a linear-threshold classifier is used within its natural

capacity, the necessary capacity of the weights is quite

modest (2 bits per weight).

Further Considerations:

One interesting form of adaptive system based on a

perception-like organization is the Multivac (3), which uses

a memory cell having a one-bit capacity (i.e., 1 bit per

weight). Since our theorem says that for n weights, at 1 bit

per weight, the machine can learn, at most, n patterns, let

us consider under what conditions it can learn any dichotomy

of n patterns. 4

THEOREM:

Given an n-dimensional space and n binary patterns in

that space, then if the patterns are linearly independent, any

dichotomy of them can be performed by a modulo 2 threshold-

classifier.

PROOF:

Arrange the patterns in an n x n matrix, called the

pattern matrix, with each row being a pattern. The problem

can now be stated as follows: given a pattern matrix with

linearly independent rows, a colurni matrix containing n binary

-15-
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elements (called the weight matrix) and a column matrix con-
taining n binary elements (called the classification matrix)

then for the following:

PW = C; Mod 2

where: P is the pattern matrix,
W is the weight matrix, and

C is the classification matrix

the elements of W can be uniquely specified for any arrangement

[ of ones and zeros in the C matrix.

This can be proven as follows. Since the P matrix has
linearly independent rows, its left inverse (Mod 2) exists

T (see Peterson, "Error Correcting Codes," Wiley, 1961). Thus,

we can write:

W = P C; Mod 2

which presents a means for computing the elements of W. Since

we have found a way to compute W, the theorem is true.

The theorem can be translated from Modulo 2 to real posi-
tive numbers by having a threshold unit which decides even or

odd rather than greater than.

f Thus, the Multivac cannot, in general, classify in any
dichotomy of (N+l) or more patterns, but for N or less linearly

independent patterns and an odd-even threshold device it can
jl perform any dichotomy.

-1
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Part II. A Self-Organizing Control System

Figure 3 of Part I shows the model of a self-organizing

system.' If we consider only linear systems, notice that as long

as "C" communicates to the evaluator the output of the linear

channel C in series with the adaptive system, then their order

can be reversed and adaptation not. be affected. This reversal is

shown in figure 5, where we now call the channel a closed--loop

plant; and the adaptive system is a preprocessor of the input.

Thus, we can translate the general model of the self-organizing

system of Part I into a form of model reference-control system.

The basic concept of this form of system is that the required

adaptation takes place in the preprocessor located in the signal

path.

EVALUATOR

4 PERCESRCLOSED> • • REPROESSORLOOP CON-
TROL SYSTEM

Figure 5
Block Diagram, Self-Organizing Control System

Two general conditions are imposed for this discussion:

the closed-loop system is unconditionally stable for all

changes in the plant function, and the closed-loop system

is linear.

-17-
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Initial Assumptions:
- •Since we shall be concerned with using a statistical

measure to evaluate the behavior of the system, we assume

that all signals are bounded real functions of time and

that the plant function and the input signal are stationary

over the time regions of interest. If y(t) is one of the

signals, then yT(t) is

y (t) = y(t) -T k t k T

[T
_ =t) 0 ; t < - T, t > + T

and the Fourier transform YT(jw) is defined by

YT(jw) = T yT (t) e-wt dt (13)

-T

The System:

Figure 6 is a detailed block diagram of the self-

1I organizing control system

MODEL a()

---- -L A T R I ---- Tt P(PO C S Ot )T t

CLOSED LOOP
-- PREPROCESSOR -CONTROL -- C (t)

SYSTEM.

Model. Transfer Function M(jw)
"Preprocessor Transfer Function K(jw)
Control System Transfer Function P(jw)

Figure 6
Detailed Block Diagram

-18-



The Mean Square Error Measure:

The mean-square error-measure is defined as:FT
im _(dI _cT (t))dt (14)

Ka2(D T-•-=T 2T J
-T

where d(t) is the desired system output, and

c(t) is the actual system output.

Following Wiener (4), we shall use this measure to

evaluate the performance error, a (t) of Figure 6. Our
T

method of using the mean-square-measure is standard; we

shall at all times attempt to adjust the parameters at our

disposal in such a way as to minimize the mean-square error.

In adopting the mean-square measure, we are stating

that we are willing to accept many small differences between

the desired output and the actual output, but that large

differences are to be heavily penalized. Obviously, there

are cases where this is not a good measure (i.e., cases

for which a miss is as good .as a mile).

However, for most applications, the simplicity of

the mean-square measure makes it attractive enough to

use even if it results in suboptimal goal ,achievement. It

is to these applications that the system described here

is addressed.

-19-
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The Adaptive Preprocessor:

The adaptive preprocessor is a network based on the

"synthesis procedure of Wiener (4). Its structural form

is indicated in Figure 7.

E(jw) k

Figure 7
Preprocessor

The transfer functions, L .(jw), of the parallel

filters are orthonormal functions (3) such as the Laguerre

functions. Orthonormal functions are defined, for our

purposes by + *

JLi(jw)L j(jw)dw. =t if i = (

I where the asterisk denotes thb complex conjugate.

1 [ -20-
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The preprocessor can be used to approximate a

transfer function, K(jw) by

N

K(jw) = k.L. jw) (16)

i=o

where: k. -= K (jw)Li (jw)dw

We shall consider only those sets of functions which

are complete (3).

Analysis:

From Figure 6, we can write

A(jw) = M(Jw)R(jw) - C(jw) (17)
-R(jw) [14(jw)-K(jw)P(jw)](7

We desire to find an expression for the mean-square

error a 2(t) . By using Parseval's theorem, we can express

2a (t) in terms of A(jw)

- +T
2 r
a (t) = lim 1 a (t)dt (18)

T-C 2T T

-T

2 *
a (t) lim 1 1 A[(JW)A (jw)dw

-21-
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' We can simplify the notation by defining that equations used

herein of the form

2Ia It) A1 (jw) A*(jw) dW (20)

f are to be interpreted as in Eq.19.

Using Equations 17 and 19-

+0

a22 R R(jw)R*(jw) [M(jw)M*(jw) (21)

- -M (jw) K* (jw) P* (jw)

-M* (jw) K (jw) P (jw)

+00

2 a (t) R(jw)R*(jw) LM(jw)M*(jw) N.

-M Ow) P*(Ow) Ek L O(w)

i=o

j M*(Ow) P Ow) ~k L Ow) (22)

j=o

S+P(jw) P*(jw) k kmLm(Jw) Lk nL *(nw)dw

S. ~M=o n=o _

-22-[!



( 'f Differentiation of Equation 22 with respect to ki yields

2 [
a(t) =R(jw)R*(jw) -M(jw)P*(jw)Li*(jw)

6k _C M* (jw) P(jw) L .(jw) (23)
+2k ] ~wP(wL j)*iw dw

Differentiating again with respect to k yields:

a2 2L
(a2 = R(jw)R*(jw)P(jw)P*(jw)Lpjw) dw (24)

for k. that will cause a (t) to equal zero. Further, from
3. a

ak.

1-

22

equation 14, we can see that the second derivative of a 2(t)

with respect to k. is always positive, indicating that the

single extremum is a minimum point.

Therefore, the mean-squared performance-error for the system

is simply shaped surface (hyperparabolic) with a single minimum

point. This form, therefore, avoids the problem common to the

other form of model reference systems in which nonsimple sur-

faces must be searched.

A Simple Search Procedure

Although there are several methods of searching for and

finding the minimum of a simple quadratic surface, only one

will be discussed here.

-23-
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First, let us rewrite equation 23.

5a2(t jw)R*(jw)[-M(jw)P*(jw)L*(jw)-M*(jw)P(jw)Li(jw)Jdw

+2ki _R(jw)R*(jw)[P(Jw)P(jw)Li(jw)L*i(jw)jdw

If we perform the indicated integration, we obtain

2

i 1 1 + 2kiI2 (26)

where I and I are real numbers.
1 *2

Integration of equation 24 reveals

S2 a 2 (t) 1 (27)

where I is a real number.1 3

Equation 26 indicates that the minimum mean square

error can be found by independent adjustment of each para-

-Deter, ki. There is a simple way to make this adjustment.

Consider the general form of a'quadratic in one variable, x,

2
y Ax + Bx + C (28)

d2 = 2Ax + B (29)

dx
dx 2 =2A 

(30)

L -24-
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Simple algebra tells us that y(min) occurs at

-B (31)
= 2 A

and that
2

B (2

Y(min)'= C- TA 
(32)

If, in general, we know the value of x0 at time to, the change

in x, Ax, required to move to y(m) is

Ax dx 
(3

dx

Substituting equation 33 in equation 29, we obtain

= y = A(x 0 +Lx) + C

A• B
=A x0- 0  ) + B(ýOx-X0 ~ + C (34)

2.
4A (35)

which is, of course, the same result obtained in equation

32. The extension of this to the multivariable case is obvious.

Thus, the problem of searching for the minimum becomes

a problem of evaluating the first and second partial deriva-

tives with respect to each k. and calculating the Aki required.

Methods for performing these operations are well known (5).

-25-
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Ill In summary, one simple search procedure is to sequentially

vary each ki, evaluate the first and second partial deviates

for each ki, using the data obtained from the variation, and

independently calculate the change required in each ki to

obtain the minimum mean-square error.

In practice, two factors must be considered. First, the

actual computation of a 2 (t) will most likely be performed by

I a low-pass filter. Wiener (4) has shown that this yields a good

estimation of the true mean, if the filter time-constant is long

with respect to the bandwidth of the signal to be averaged.
Second, noisy measurements will pre,,ent an accurate computation :of 6ki. This will, in general, result in a failure to minimize

the mean-square error. Repeated application of the search pro-

cedure of averaging the results of several variations of the

k. can reduce the amount of misadjustment at the minimum.

Experimental Study:

An experimental study of the self-organizing control system

3 was conducted using general-purpose analog computers to simulate

control plants and reference models. A special-purpose analog

computer was built to provide a 10-stage Laguerre network. The

U general term of the Laguerre network, L (s), is
n

'I 2 l~~l(36)2H (p+ s) n+ (36

]i This can be rewritten as
n

(37)
21 (p+ s) [ps

-26-
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F2 -p

The term 21 (p+s) can be realized by the circuit of figure
C j•j/

ein -- e I _

Figure 8. L0 (s)

The term can be realized by the circuit of figurep+s

C R R

RC

1 21

R

R R = 2R1

e .e

ein - ... /e 0 ,-

Figure 9
The tRealization
(p+s)

Thus any order function, Ln(S), can be realized by one cir-

cuit, as shown in figure 8, followed by n cascaded circuits, as

shown in figure 9. The simulator constructed for this study1
used a pequal to 3x10-2"

R 2R

-27-
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J3 A variety of plants and reference models were studied.

Typical of these is the following:

1. Plant open-loop transfer function

K(s) =

F S
2. Reference model

M(s) - 1S+2

' The experimental set-up is shown in figure 10.

s+2

S--Noise M. S.

L 1

K s) = ; P(s) - =s 1 s + 1
+ s

Figure 10. Typical Experimental Set-Up
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2Figure 11 shows the mean-square error, E (t), for the

variation around minimum for L 0 (t), L (t) and L 9(t) as a func-

tion of scale gain (i.e., as read off the indicators on the

simulator.)

2
Figure 12 shows the E (t) for the same terms after the

scale gains have been corrected for pot load. The pot loading

curve is given in figure 13.

These results are typical of all cases tried and shown the
2quadrdic nature of E (t) as a function of the k.'s.1

i
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LEARNING SYSTEMS AND INFORMATION THEORY

M. Rucj Uffelman

SCOPE Incorporated
Falls Church, Virginia

INTRODUCTION

A learning system can be broadly defined as a system "whose

actions are influenced by past experiences." 1  In this paper,

we shall restrict our attention to adaptive pattern classifiers,

a subclass of learning systems. It is generally accepted that

the ability of adaptive pattern classifiers, either nonparametric

or parametric, to classify correctly a set of patterns is limited

by the structural or algorithmic composition of the system.

An information theoretic model of an adaptive classifier and

one limitation on performance are considered in this paper.

DISCUSSION

An elementary information theoretic model for an adaptive pat-

tern classifier and its input mechanism is shown in Figure 1.

For the purpose of this model, the source (or environment) is

based on the philosophy which Bishop Berkeley, an 18th century

Irish philosopher, put forth to refute materialism; matter does

not exist as a bundle of perceptions. Ultimate reality,

-1



-• (represented by the source) is the concept of the perceived

reality (represented by the outptit of the channel). Thus, in

this model, the source produces only the abstract concept of a

class. The perceived representation (i.e. the physical repre-

sentation) which appears at the output of the channel is a

corrupted or noisy version of the concept. Notice that the

very process of taking on a physical representation is con-

sidered noise. The purpose of the adaptive classifier is to pro-

duce outputs which are either, the concepts or related to the

concepts. In other words, if the classifier is being used as a

T• font reader, a chain of events might be: (The source produces an

an output the concept of "R"; cs a result, the channel produces

an "R" in Canterbury Pica with a broken serif; and finally, the

output of the classifier is a binary code representing "R".

Thus, the classifier has, in effect, removed the noise introduced

j by the channel and returned the pure signal, the concept

Based on the above, we can adopt the point of view that the

classifier is a filter whose function is to remove noise. The

degree to which it can remove the noise depends on the type and

L quantity of the noise and the functional complexity of the fil-

ter. By introducing two factors, akin to sourrce entropy and

channel capacity, it is possible to define a necessary condition

"-2-
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IJ
"on the ability of the classifier to remove noise.

ANALYSIS

For simplicity we shall take the channel output to be binary,

If there are N patterns to be classified into 2 classes, there

are 2 Npossible dichotomies. In othe~r words, the training

N
amounts to adjusting the classifier to perform one of 2 con-

nective functions. The number of possible dichotomies is called

the transfer variability and the base 2 logarithm of this'number

is called the transfer entroy. Ht. Notice that H is analogous

to source entropy in that it is a measure of the variability

forced upon the system.

The udaptive classifier has a number of possible internal states,

each such state being a different decision surface. The train-

ing process involves finding the internal state which satisfies

the desired dichotomy. The base 2 logarithm of the number of

internal states is called the adaptive capacity, H , of theS~a

classifier.

THEOREMs

For an adaptive classifier to be able to perform all of the

possible. dichotomies of N patterns, it is necessary for H to at

least equal H

-3-



I! The proof of this involves assuming that a classifier can be

jj trained to perform all dichotomies of N patterns where Ha

less than Ht. This leads to the conclusion that one internal
- t

state can perform more than one dichotomy of the patterns or

I that two or more of the dichotomies are identical. Both results

contradict the definitions.

now let us consider the application of this theorem to two well-I2
known adaptive classifiers, the SOBLN and the linear threshold

classifier.

J The SOBLN is a logical connective system having, in general,

n binary inputs. As an example, a SOBLN for n - 3 is shown

schematically in Figure 2. It computes the 2 n logical products

and logically combines them using an OR gate and transmission

weights to produce the output. It can be seen that the SOBLN

can realize all dichotomies of N patterns up to the maximum N

J I of 2n. The maximum H is
t

N 2 n n
H l o2 -log22 2 bits

n
Thus, Ha by the theorem must be at least 2 bits. The SOBLN

"contains weights, W, which form the variable portion of its

structure. Since there is no reason to expect any weight to

require more variability than any other we can establish the

-4-



variability necessary for each weight by

H Haa t
number of weights number of weights

2 n 1 bit per weight
2 n

Therefore, at least one bit per weight is necessary. And in

this case, we can see by direct enumeration that one bit per

weight is also sufficient.

Now let us proceed to the linear threshold classifier; an

example is depicted in Figure 3. We know that for n binary

inputs and N - n patterns, the classifier can not perform all
2 n 1
2 dichotomies. However, it has been shown by a number of

investigators that the "natural capacity"'1 of a linear threshold

device is 2(n + 1). In other words, if N is equal to or less

than 2(n + 1) the probability that all dichotomies can be per-

formed is approximately unity (for large n) and it is approxi-

mately zero if N is greater than 2(n + 1). Again taking a maxi-

mum case, we shall for the moment apF.me that for any 2,(n +.l)

binary patterns ail dichotomies can be performed.

Thus,

H- log 2(n +1) = 2(n + 1) bits

And again, since we have no reason to suspect that any weight

-m t



will require more flexibility than any other weigh*,, we find

that

H H
a t

number of weights number of weights

2(n 1- 2 bits per weight
(n + 1)

Thus, a linear threshold classifier must have at least 2 bits

per weight to be able to perform all of the possible dichotomies

I within its "natural capacity" of 2(n + 1) patterns.

CONCLUSION

A necessary condition for an adaptive classifier to be able to be

trained for a given task has been developed. In at least one

ix case, the SOBLN, the theorem also leads to a sufficient condition.

For the linear threshold classifier it has been shown experiment-

ally and theoretically, that two bits or less per weight will, in

many cases, do as well in a dichotomy problem as weights with

3
greater variability. This leads us to believe that for a linear

threshold classifier with N equal to or less than 2(n + 1) and

for those realizable dichotomies of the patterns, that 2 bits per

weight are sufficient. This belief is, of course, still in the

form of a conjecture, but we are working on its proof.
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