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FOREWORD

This report is one of four reports to be prepared by Structural
Mechanics Associates under Navy Contract No. N156-46654. This con-
tract was initiated under Work Unit No. 530/07, "Development of
Optimization Methods for the Design of Composite Structures Made
from Anisotropic Material" (1-23-96) and was administered under the
direction of the Aeronautical Structures Laboratory, Naval Air Engi-
neering Center, with Messrs. R. Molella and A. Manno acting as Pro-
ject Engineers. The reports resulting from this contract will be

forwarded separately. Three reports are completed and cover work
from -4 May 1965 to 31 December 1966. The title and approximate
forwarding date for each report are as follows:

NAEC-ASL-1109, "Structural Optimization of Corrugated Core
and Web Core Sandwich Panels Subjected to Uniaxial Compression,"
dated 15 May 1967. Forwarding date, June 1967.

NAEC-ASL-III0, "Structural Optimization of Flat, Corrugated
Core and Web Core Sandwich Panels Under In-Plane Shear Loads
and Combined Uniaxial Compression and In-Plane Shear Loads,"
dated 1 June 1967. Forwarding date, July 1967.

NAEC-ASL-IIII, "A Method for Weight Optimization of Flat Truss
Core Sandwich Panels Under Lateral Loads," dated 15 June 1967.
Forwarding date, July 1967.
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NOTICE

Reproduction of this document in any form by other than naval activities

is not authorized except by special approval ot the Secretary of the Navy

or the Chief of Naval Operations as appropriate.

~The following Espionage notice can be disregarded unless this document

~is plainly marked CONFIDENTIAL or SECRET.

'le

This document contains information affecting the national defense of the

United States within the meaning of the Espionage Laws, Title 18, U.S.C.,
Sections 793 and 794. The transmission or the revelation of its contents in
any manner to an unauthorized person is prohibited by law.
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JI4ARY

This report presents a method for optimizing on a weight basis flat

truss core sandwich panels under lateral loads.

To solve this type of problem on the basis of the methods presented

in Reference 1, that is equating the stress level for all failure modes,

requires a knowledge of the stress distribution throughout the panel for

the given loading. There are no available stress analysis methods, of

sufficient sophistication, for corrugated panels under lateral loading,

hence a large portion of this report is devoted to the development of such

a method of analysis. The method is essentially a deformation method,

the basic characteristics of which are described in Reference 2; however,

a technique of using Fourier type transformations makes the solution more

tractable.

Chapter I presents in detail the method of stress analysis of the

sandwich panel with a truss core. Chapter 2 discusses the optimization

procedure. In Appendix 1 it is demonstrated that the finite, one-

dimensional structural element used in the analysis is valid for the type

of panel which is considered.
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NOTATION

'A Matrix defined by Equation (1.36)

CL Panel dimension in the y direction, inches

6 Panel dimension in the x direction, inches

C Stiffness matrix defined by Equation (1.8)

'0 Column matrix of joint displacements referred to

i-th coordinate system (i - 1, 2, 3), inches

Displacement of the i-th Joint, inchea

eNumber of plate elements in panel

E Modulus of elasticity, lbs./in.
2

IF) External force per unit distance in x-direction applied to
i-th Joint, lb./in.

IF Internal force per unit distance in x-direction applied to
i-th joint, by the J-th element, lb./in.

Shear modulus, lbs./in.
2

I, Column matrix of joint forces defined by Equation (1.3)

Column matrix of applied forces defined by Equation (1.7)
in the c - 2 coordinate system

Core depth, inches

- (R)(2C)(RT). See Equation (1.55)

K2 Shape factor (dimensionless)

11 Width of a plate element [i - c (core) or f (face)] , inches

ti Number of joints in panel

.,i I ",,,,,ponentq of tFij referred to coordinate system c
.,here c - 1, 2, or 3, 1b,';./ir..

C t Compon of referred to coordinate system c, lbs/in.

R Matrix defined by Equation (1.50)

S Column rmatrx of internal forces defined by Equation (l.hO)

v
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NOTATION

'A Matrix defined by Equation (1.36)

Q. Panel dimension in the y direction, inches

6 Panel dimension in the x directionp inches

C Stiffness matrix defined by Equation (1.48)

& 0 Column matrix of joint displacements referred to

i-th coordinate system (i - 1, 2, 3), inches

td*l Displacement of the i-th joint, inches

e Number of plate elements in panel

E Modulus of elasticity, lbs./in.2

JF il External force per unit distance in x-direction applied to

i-th joint, lb./in.

1Internal force per unit distance in x-direction applied to
i-th joint, by the J-th element, lb./in.

Shear modulus, lbs./in.
2

Column matrix of joint forces defined by Equation (1.3)

Column matrix of applied forces defined by Equation (1.47)
in the c - 2 coordinate system

Core depth, inches

K - (R)(2C)(RT). See Equation (1.55)

KL Shape factor (dimensionless)

,, Width of a plate element [i - c (core) or f (face)] , inches

tNumber of joints in panel

C PVQ Rl !. o "iponents of' jPij referred to coordinate system c

.here c * 1, 2, or 3, lb.;./jr..
Components of If'J I referred to coordinate system c, Ibsin.

R IMatrix defined by Equation (1.50)

S Column rttrix of internal forces defined by Equation (1.40)

v
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'iAVJfLR I.

l,:AI.YSJ7- 'F TRUSS-COPE SANUDICH PANEL

f k. introduction

The analysis of a complex structure under loading begins with the

f decomposition of the structure into "basic elements" and assuming that

their response to any loading that they are required to sustain is

known. Viewed in this light, the problem of determining the behavior

of the structure under a specified loading condition, is really a

problem of determining what loading will be placed on each "basic

element" (i.e. internal loading) as a result of the specified loading

being placed on the structure (i.e. ex+ernal loading).

The determination of distribution of internal loading for a given

external loading condition can always be accomplished by invoking two

obvious physical requirements. Tho first is that every element of the

structure will remain in equilibrium. The second is that deforma.ions

of the basic element as a consequence of the loading placed on the.. will

not violate the basic integrity of the structure.

In implementing this approach to the analysis, it is necessary to

choose the basic elements of the structural system,postulate the form

of the loading that must be sustained and determine the response of the

elements to the loading. Great accuracy in this type of finite element

analysis usually requires that the basic elements be as small as possible

resulting in a structure consisting of a great number of elements.

However, the requirement that the mathematical formulation is

tractable may require that the structure be divided into a fewer number

of larger basic elements,
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B. Basic Assumptions

Consider the truss-core sandwich panel shown in Figure 1, whose

geometry is considered as representative of several forms which are

used.

bI

Iy j

'CC

Triangulated Core Sandwich Plate

It is desired to determine the response of this panel to a lateral

loading when the panel is supported continuously along the four edge

boundaries.

2
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Due to the construction of a truss-core sandwich panel, it is not

possible to easily determine the orthotropic properties in the x and y

directions for purposes of analysisand for determining stress distribu-

tions under lateral loading. Therefore, the formulation of the problem

will be in terms of more fundamental structural elements of the system.

One such element is a plate element shown in Figure 2.

Figure 2

A Plate Element

It is assumpd that for the constructJons considered

t; <C< _i -.< b - 0 (N) J'= f o- C

where ;k is a characteristic length which gives a measure of the rate of

spatial variation of all loading placed on these elements, thus it is

possible to treat the elements as one-dimensional. This approach, in

effect, reduces the problem to a group of coupled one dimensional

problems.

Now consider this formulation in greater detail when the basic

elements are chosen as described above. A second assumption is made that

t i is so small relative to all other pertinent dimensions that the

3
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resistance of these elements to any deformation which is out of the plane

defined by the elemnnt is neglected. Coisstent with this last

assumption, it is further assumed that the basic plate elements are

loaded only by in-plane forces distributed along their edges.

Finally, the applied lateral load on the panel is replaced by statically

equivalent line loads in the x-direction at the locations where the web

and face elements intersect.

C. Coordinate Systems and Notation

In Figure 3 is shown: (1) a numbering system which is to be used

to identify the elements and joints; and (2) three coordinate systems

which are convenient to use at different stages of the analysis. The

X-YcZc (c - 1, 2, 3) axes are parallel to the principal moment of

inertia axes of the cross-sectional areas, also the x axis is parallel

to the flute direction of the core and y. is parallel to the I

dimension of the plate elements.

& e-2 -t

note: eZn3

Figure 3

Coordinate Systems
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Referring to Figure 3, the following notation is introduced:

e number of plate elements in panel

h number of joints in panel

IF']  external force per unit distance in x direction
applied to the i-th joint

P'Q','R' components of [F-11 referred to coordinate system c
where c - 1, 2 or 3

[F int-rnal force per unit distance in x direction
applied to i-th Joint by J-th element

Pis Ili t r' components of jf' referred to coordinate system c

= -

.ki" (1.0 a)
il 5i

define the internal forces ncttng on J-th element. Note that i and k
refers to the two Joints definlng J with k > t. The subscript j on c
denotes that the coordinate system to which jfj is referred is chosen
so that the y axis is parallel to the direetton of the J-th element.

-c.J: displacement of the i-th joint
C4 ; 3 Lra:components of Idil referred to coordinate system c

~ "-C (1.0 b)

define the state of deformation of J-th element. Again i and k refer
to the two joints defining J with k> i. The subscript J on c has
the same meaning as above.

5
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D. Formulation of Problem

The problem to be solved is stated as follows: Given the

structure and either the external force rer unit distance to be applied

to each joint or the resulting displacement to be obtained at each joint,

find the resulting internal force distribution. This report will con-

centrate on solving the problem when the external forces are prescribed

at all joints.

It was pointed out in the introduction that the solution is obtained

by invoking the physical requirements of equilibrium of all points in the

structure and ensuring continuity (maintaining structural integrity)

throughout the structure under loading.

(1) Equilibrium

The equilibrium requirement applied to each of the joints

results in the following set of algebraic equations which expressed in

vector form are

In these equations the summation is carried out over all elements (J)

which frame into the i-th joint. Equations (1.1) constitute a set of

linear algebraic equations on the unknowns fj To ascertain whether

they are sufficient to determine the unknowns" requires us to simply

count equations and unknowns. There are obviously 3n scalar

equations, and since there are e (- 2n - 3) elements, there are

2e (- 4n - 6) vector unknowns. Note that by virtue of the assumption

that no elements can sustain a force perpendicular to the plane defined

*See Reference 2.

6
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by the element, each of the vectorsffJis confined to be in a known

planehence only two scalar unknowns are associated with each .

The total number of unknowns, therefore, is he = 8n - 12 which is more

than the number of equations if n>2.

Referring these n vector s.q-.Ltions (.J) to coordinate

system c - 2, the following 3n scalar equations result:

I a' 2g = I.'

2Z 4- = o , L= ,. 20 (1.1 b)

:2 J

} .' ,zRL o i- ,, - (1.1 c)
d

(2) Internal Force - Deformation Relationships

Of all of the sets of unknowns that will satisfy the

equilibrium requirement expressed by Equations (1.1), the one that

will represent the actual distribution of internal forces in the

structure gives rise to a deformation for each of the basic elements

that will not violate consistent deformations of the structure. To

apply such conditions the deformation of each element in terms of the

internal forces acting on it must be derived.

Consider the J-th element together with the associated

coordinate system, relevant dimensions and the loads to which it is

subjected as shown in Figure 4a.

I7
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Y

I'1('x) Pj x

Figure ha

Due to the assumption of a linear system, it may be taken as the

superposition of the followJng three problems shown in Figures

4b, 4c, and hd.

Y.

- -_ __ __ _ _ ---- -. _ _

-Lcr (X)

Figure 4b

where t C

p -
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Figure hc

where k k

Figure 4d

where <L(,

Subject to the restriction that .(< and .9.<, where

X is some characteristic length associated with the loading, it is

permissable to analyze each of these problemn by a suitable one

dimensional theory. The justification of such a step together with

a derivation of the appropriate one dimensional theory is given in

Appendix I. A summary is given below:

Problem I (Fig. 4b) gives rise to a deformation characterized

by a displacement in the y, direction which does not vary with y and

a displacement in the x direction which varies linearly with yj

Ie. displacement j fj (x)] . The relationship between

C (Y),Wand j(x), . ), as derived in Appendix I, is given by:

9
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.ffe -, - Z, -3

Tn Fquatjonq (1.6) and ().7) G and f.?r#-fr to the

shear modulus and thi, Poinnon's r'tio of ,ht, j-tfh e1r.mrnL wh,.reas

and t arp thp hoight, And thJrkness of the .- th elemnpnt

respectively. K repre 'ents a factor to :(count for the shape of the

cross-section.

Problem II (Fig. 14c) gives rise to a deformation which is

characterized by a displacement in the yj direction which varies

linearly with yj ji.e. displacement . (A)j . The relationship

between '(A) and 1 (K), as derived in Appendix I, is

Problem III (Fig. Ld) gives rise to a deformation which is

characterized by a displacement in the x direction which does not vary

with yj. The relationship between IT(A) and o( (x) , as derived in

Appendix I, is

(3) Consistent Deformations

In Section C, internal deformations are defined that

10
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are associated with each distribution of internal forces. In order to

mintain the integrity of the structure only those states of deforma-

tions which are associated with a unique displacement for each joint

will be allowed. This requirement will be met if nd, nd

i Cj C
can be defined in terms of Q ,' (. , t/ and If

according to:

~ ~j k ± ~I,*..,e~h~ (1" 10)

JJ

/"-C", 4 k* ,e=zn-3 (. 12)

In Equations(l.lO) through(l.13), i and k refer to the joints at either

end of the element J and C, refers to the coordinate system with

x, y plane parallel to plane defined by element. See Figure ha.

Each of the equations in the system (1.1) through (1.13)

is either a linear algebra.ic equation or a linttar ordinary d.fferential

equation which are obviously independent of each other. To show,

therefore, that the system is sufficient to uniquely determine all of

the unknowns again requires a count of available equations and unknowns.

It has already been shown that Equation (1.1) represents 3n equations

and 8n - 12 unknowns. Equations (1.2) through (1.5) give 8n - 12 more

equations but also introduces 8n - 12 more unknowns [i.e. ; , ,

andiT; ;=,... n-3J. Equations (1.6) through (1.9) give 8n - 12

more equations and also 8o - 12 more unknowns 0. O; , and
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ji |,..ea2.ri-'] . Finally, Equati,'ns (1.10) through (1.13) givo

8n - 12 additional equations while introducing 3n unknowns ji.e. the 3

components of the n displacement vectors {di\ i -1, n]j Notice

that {diI (i o 1,*.., n) completely detert0nes the right hand sides of

Equations (1.10) through (1.13). Adding equations and unknowns gives

(27n - 36) of each, hence,the system possesses a unique solution.

E. Methods for Solving Equations

There are soveral ways for solving the above system of equations.

Perhaps the most direct is to use Equations (1.2) through (1.5) to

obtain f' Ain terms of Crand Tjr . Then by direct

substitution of Equations (1.6) through (1.9) into the result, we obtain

tfiin terms of o(. , ,and g . Next we use Equations (1.10)

through (1.13) to obtain 1f in terms of I dij . Finally,

substituting this result into Equation (1.1) will give n vector

equations on the n unknown displacement vectors tdil(i- 1;, n).

Once this system of equations has been solved and the displacement of

each of the joints obtained, then, all of the othtir unknowns are

obtainable by direct calculations as dictated by Equations (1.2)

through (1.13).

Without actually carrying out the above substitutions in detail

it is readily apparent that the final system of equations (3n scalar

equations) constitute a system of linear ordinary differential equations

with constant coefficients. The theory for handling such systems of

equations is well defined and the method of attack is straight-

forward. In the present problem, however, the straight-forward

12
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procedure would become extremply complirated by virtue of the large

number of equatJnns to be handled. Undoubtedly, the large number

of manipulations that will e-Pentually be required will ncesitate

the use of a high speed digital rompiiter. It. is no.essaiy , there-

fore, that the differential equations be transformed into algebraic

equations.

The system of n linear ordinary differential equations may be

trantormed into an infinite system of linear algebraic equations in

the following manner. fly Introducing a set (or sets) of functions which

are complete over the interval O< X-4 and then taking the unknown

solutions as linear combinations of the m-mbers of one or another of the

sets, the problem transforms from that of finding a s et of unknown

functions of x to one of finding the coefficients in the above

mentioned linear sums. The equations governing the;e coefficients

may be obtained by direct substitution of a generic form of the linear sum.

The result will be, in general, an infinite system of linear algebraic

equations. Thus we have reduced the problem to solving algebraic equations

but have increased the number of equations to an infinite number which

represents no advantage unless the number of equations can be truncated

in some way or unless the equations can be uncoupled from one another either

singly or in finite blocks. For the present problem we can introduce

sets of functions for which the latter occurs provided we are willing to

let the problem dictate to some extent the boundary condition at the

ends x a o and x = b. Since, in practice, the boundary conditions

are not clearly defined, for example, clamped or hinged, this last

restriction is not very severe. See further discussion in Appendix I.

13
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F. Transformation of Equations

The first step is to tnuroduce the following spt.s of functionsi

which are complete and orthogonal over th# tnterval 0 ! X ! b

and

where (0," %Y2l22 m = I , 0
b

Next we expand all of the variables in Ftuntions (1.1) through

(.13)' in terms of one or the other of the above sets according to

Table 1.

Table I

Sine Cosine

y and z components of F X1 Copo.it (if

yand z components of x rooont o f

rj

y n cmoenso x component of

Introducing the notation

By substitution of Equations (1.11.) and (1.15) into Equations (1.1)

through (1,13) and making use of orthogonality when appropriate, the

following system of algebraic equations are obtained. Equation (1.1)

14I
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is referred to -,ordlivite sy;tcm c - 2, whtch is taken as gll

reference ax-s.

+ (1.16)

(j ,

u~o co (o.17)

nI
4- 0 =O O

(.iO) 4 ').
())+ + 0 Y3,e

rn 0,
=~ -= I1 ''"

00

o ~ +Z~~~) K'~ cj'> ('.vi

v =s " CO

r' "1,..-

I - <" a 0,  . 2 1 .5 )

7.( -- C ) rv (1.26)

15
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CC J; ' (1.27)

r0 ', (1. 28

L_ c + L 7 j-=1,--, e (1.30)

M r- = 0 ""00

) , 0

Equations (1.16) to (1.30) are the equations governing the

coefficients in the expansions of our unknown solution functions. Ae

before in dealing with equations (1.1) to (1.13) the above equations

can be solved by taking as the basic unknowns the components of the

displacements of the jointsdi}(i -,", n), solving for them, and

then obtaining all other unknowns by direct calculation. Referrd to

the c 2 coordinate system, the basic unknowns are the functions

I ,( ; (VA) an =r i ) .- (K)or the coefficients

(tv ') and r) *,.,Th
M11 ) "Ndj andL.

procedure is: (I) substitute the latter coefficients into Equations

(1.27) to (1.30) and introducing a coordinate transformation when

necessary; (2) substitute the results into Equations (1.23) to (1.26);

(3) substitute these results into Equations (1.19) to (1.22); and

(L) finally substitute these results into Equations (1.16) to (1.18)

16
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to obtnin An lnflnJt,e sy-tom of agebrai" equwtLons on the infinite

number of unknowrw. Note, hnwpvcr, that the equations governing

CLiX , *u) ,and for one particu lar

value of m are not couplPd to those for a different value of m.

This means that the infinite number of equnt-ions uncouple in blocks

of 3n linear algebraic equations on the 3n unknowns fi.e. (L ),,

and the problem reduces to a series of problems involving 3n linear

algebraic equations. Of course, for an exact answer, we must solve

an infinite numb'r of such problems. For practical purposes, however,

only the first few coeff-M'ients will offer a signi ficant contribution,

hence, solving only a few problems will give a suffJcit-ntly accurate

answer.

The question of the boundary conditions at x - 0 and x - b has

to be answered. The sets of functions usvd in our expansions will result

regardloss of tAe values of the coefficient, obtainod In solving the

above set of equations. This condition corresponds to simple supports

for the flexure deformation of the basic elements; free ends for

extension in the x direction for the basic elements and no extension

in the y (width) direction for the basic elements. Although the actual

conditions may be slightly different, the error introduced by assuming

these conditions should be confined to the immediate vicinity of the

supports. Notice that other boundary conditions could be treated but

that would require placing certain restrictions on the values of the

17
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coefficients that are to be obtained. These restrictions would destroy

the uncoupling achieved above which would necessitate some type of

iteration scheme for a solution.

0. Matrix Formulation for m-th Coefficient

A atrix formulation is presented now to obtain the solution of the

system of equations involving the coefficients of the infinite series

introduced in Section F.

As indicated in Section F, the basic unknowns are the appropriate

transform of the components of fd'3 (i - i,"., n) referred to the c - 2

coordinat, system. Arranged in a column matrix of 3n elements, the

unknowns to be determined are

V ' )A.

2D  - r

The first step is to introduce transformation matrices from the c 2

system to the c " 1 system and the c " 3 system.

10
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TL [ol [ 1 ]T,01 -CSIP [o 5 1-,OL]

T3L [o] -,oeb] son&[z]

where:

(9 is shown on Figure 1

[0] is the n x n null matrix

[L] is the n x n unit matrix.

The appropriate transformation equations, as becomes apparent

by expansion, are

2
D " Tot D

(1.33)3 2D - Tat D

Dand 3D are defined by the matrix given in Equation (1.31) except the

scalar elements are given with resnert to the c -I and c - 3 axes

respectively.

To represent Equations (1.27) through (1.30) in matrix form, sub-

divide the elements of the structure into three groups according to

which coordinate system has the y - x plane parallel to the plane of the

element. Referring to Figure 3, the groups have the following numbers.

Group 1: 1, 5, 9, - a , e - 2

Group 2: 2, 4, 6, * • , e - 1

Group 3: 3, 7, , e

19
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Groups 1 and 3 each have 4 2 members whereas Group 2 has
e- I

2 " n - 2 members. Now for each of the above groups a

rectangular matrix is constructed with the number of rows equal to

the number of members in the group and the number of columns equal to the

number of joints in the structure according to the following rule.

Associate each row with a member of the group (i.e. first row with

element I, second row with element 5, etc.) and each column with a

joint of the structure. Now we set every matrix element in the row

associated with a given structural element equal to zero except the two

which correspond to the joints into which the structural element is

framed. These are set equal to +1 or -1 according to whether the joint

number is larger or smaller respectively. Restricting our attention to

Group I, the matrix, so defined, is

-1 1 0 0 0 0.. . 0

o 0-1 1 ..... . 0

0 o 0 0-1 . . . 0
I*

0 0• - 1 0

With the aid of this matrix the equations (1.27) through

(1.30) for elements that fall within the first group may be

written as

E A (l.3)

20
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where

( (135)

and EL&I [o] 0b['a] [a] [o]
A [o] [1] [o (1.36)

[a] [a] [o
in which [d] is obtained from '0L by replacing all -1 with a +1 and

is an f( i 't Alnull matrix. That matrix equation (13h ) does

indeed represent Equations (1.27) through (1.30) for the numbers of

Group 1 may be seen by direct expansion. Similar results may be

obtained for the other two groups of members.

The deformation of the elements in the three groups are express-

ible in terms of the 2D column matrix by Equations (1.33) and (1.34)

as follows:

E6 = A rz2 D (note Tzz = [i) (1.37)

To represent Equations (1.23) through (1.26) in matrix form the

subdivision introduced in the preceeding paraRraphs is kept but intrtauced

here is the restriction that the proprties of all elements in Oruupa 1 and 3

are the same and propertieb of all euments in Group 2 are the swe. Under

this restriction the following matrices are introduced.

21



NA.C-ASLIflU

L 1-4

-~7% 0
A

-i-0
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where thp index i (i 1. 2, 3) Indicates the group of members being

consideredro] ardrij aro sqkvire null and unit matrices respectivelv

with number of rows and columns equal to the number of members of the

group. Consequently, for those elements of Group i, the Equations

(1.23) through (1.26) may be writLen as

;5 - _;I (1-39)

where

(rrX2

Note i Q top I , r= e-.

( G -oup 3, ,-e-

()2

(Jo-,)2

Combining Equationa (1.37) and (1.39), the internal forces in the

elements of all three groupa may be expressed in terms of 2D according to

$ #;Z'A-[,,jL) (3 1,2,,, G, 1 -[i]) (l.la )
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The final step is to obtain the forces that arise at each joint

due to the internal forces in the elements, sum all of these forces and

substitute in Equations (1.16), (1.17), and (1.18), This must be done

separately for each of the three groups previously defined since each

group will give the joint forces with reference to a different coordinate

system. Consider initially the first group of members then it may be

shown by direct expansion that

c i T, (1.42)

AT '
where is the transpose of the matrix A and G,, is a column matrix

representing the sum of all forces acting on the Joints by elements in

the first group, referred to the coordinate system c - I.

e

PG)

Ir ?I

'> ((r.,..)

r

d

23j
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A similar expression mny be written for the other two groups,

so that in general

ATl

where i - coordinate tystem

k - group number of members.

To add the effccts of the three groups requires that all forces

be referred to the same coordinate system ti.e. c a 2 system). This is

done by using the transformation matrices Tr12 and T3 2 given in

Equation (1.32). For the contribution of group k, we have

Gk M ,Tk.)T UQ W 1.6
T,

where (T.L) is the transpose of Trand Tl:[I].

Adding together '20 29 and 203 the total force applied at each

Joint by the basic elements is obtained and Equations (1.16) through

(1,18) reduce to

z +a'G + G3 + , 0 (1.46)

where'Ga is the external force applied referred to the c - 2 coordinate

system. That is, p,):

'):(1.47)

G 5E

(1 ' )2
(C Rn:
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Combining all of the previous results 201, 2G2 and 203 are

expressed in terms of the single unknown matrix 2D and the result

substituted in Equation (l.h6) to give the matrix equation

1C 4D + ZGQr- 0 (1.47)

where

(C: T. (.CA) T Q k_ 2.'),. 4-("A)T( Z')(1A) *(1.4,8)
(TY(3 A ) (")( A) (T3,a.)

is the stiffness matrix. The matrix of unknown deflections can now be

obtained from Equation (1.h7) in terms of the inverse of 2C and is

expressed as

Since all of the desired unknoun quantities are obtainable from
2D by direct calculation, Equation (l.49) represents the formal solution

to the problem.

Before proceeding any further, the matrix formulation is summarized

in Figure h. The lines represent matrix products with the multipliers

being indicated over the line. Joining of two or more lines indicates a

summation.
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'Al A

.('G&43

Figure L

Summary of Matrix Computations

H. Method for Solving Large Syetem of Iinear Equations

As already stated, the formal solution to the problem is contained

in the matrix equation (l.69). Implicit in this simple matrix equation,

however, is an inversion of the large order matrix C. Indeed, in

carrying out the solution of a given problem it is numerically easier

26
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not to make use of the formal solution of the system of equations

represented by Equation (lJ7) (i.e. not to obtain (20)-) but to

obtain the solution in a different nanecr. In this section an

algorithm to accomplish this goal is developed.

The following interpretation can be given an element of the

2C matrix. 2C represents a component of the net internal force which
y

acts on a joint which is defined by i for a displacement field which

consists of a unit displacement in a direction and for a joint defined

by ,, whil, '.r ,titw tions are kept zero. It is obvious, there-

fore, that unless the joint defined by j is directly connected to the

joint defined by i by an element of the structure, then 2Cy must be

zero. This lead-, t,() t)ho t) iuuion that the majority of elements of

the 2Cy matrix are zero. The solution of the equations represented by

(1.47) can be most easily accomplished by partitioning into smaller

groups of coupled equations.

Before accomplishing this partitioning it woulU be helpful to first

recast the formulation in such a manner that all of the non-zero elements

of the 2C matrix cluster around the main diagonal. This is done by

introducing the following square matrix which contains only ones and

zeroes,

27
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n4n.

r3r)

3 n

J2 '-, .- ,3rit.o
"t " 3n

where the Kronecker delta

=0 iF (1.S1)

has been introduced. It may be noticed that

IMT  a 1 (1.52)

where RT indicates the transpose of R and I indicates the 3n x 3n

unit matrix.

Multiplying Equation (1.47) by R and notinp Fnr.tion (1.52)

results in

(R2CRT) (R)(2D) " - (R)( 2GE) (1.53)
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( 2 )
(R)(=D)= )((R).G)=  (

(1.54)

(2 ),"5 C ,4

(%.Wa 1) p (.2

the new stiffness matrix

K - (R)(2C)(R)j (1.55)

now has all non-zero elements clustered around the main diagonal. The

system of equations expressed in the form given in Equation (1.53) is

solved rather than the fo riv:n in E;qution (l.47).

Expanding the matrix Equation (1.53), the resulting system of

equations may be represented by the following partitioned formt
K,., x, + K, .X% K = y

K s X2*- K-sX -K ,4 X4 = y (1.56)

K(r t.)Xe + KRe X(e*1) + K, (e *.1) X e4.) = +1)

In Equation (1.56), Kij , Xi, Yj represent submatrices obtained by

partitioning the K, X, Y matrices according to

K K.

KL I I ,

(1.57)
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IYxxvj
In Equations (1. 56) and (1.-57), p is given bY

SI (1.58)

and the submatrices have dimensions as indicated in Table 2.

Table 2

Matrix Dimension

K11  6 x6

Kii (i - 2,3,../P.1) 12 x 12

K (p +2)(P+2) 6 x 6

K12 6 x 12

K 21 12 x 6

F. (i 2,3..,p) 12 x 12

K i + l)i (i " 23,...,p) 12 x 12

K (p+ 1)(p+ 2) 12 x 6

K (p+ 2)(p+ 1) 6 x 12

x1  i x6

x (i 2,., p + 1) lx 12

2 lx 6P+ 2

y1 I x 6

Ci (i - 2,",p+ 1) 1 x 12
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The system of equations express'ed in the form indicated by (1.56)

may be solved as follows: Prom the f11.3t we obtain

X, 0 K1 [Y - K1 2

Using this in the second we can obtain

(K22 - K21 KiK 1 2 2 -K21 K11 1 - 23  3

This is then used in the third to obtain an expression for X3 in terms

of X which is then used In the fourth to obtain X in terms of X5 etc.

Proceeding in this manner we arrive at the (p . 2 )nd equation expressed

,nly in terms of X t which may be solved. Once XP+ 2 has been so

determined X,+ I then X Pthqn X " ." XI may all be obtained by

back substitution. Thus, the solution may be expressnd by the

following set of eq'nations:

Nr

X (pt,) B~ 1)(r ,,|, ,) [_, <p+-,)-X'(p,-,'XP+-XX p. ( 1 "5 9 )

X 2 P - Br,,,[-zp-Kpecp+,)Xp]

where

B AY

B3 ( K33 - KSz Bz A z3)-

and B (p.,)Xp,) (K (p#,)p( .) - K , -z)(p B i) 6 ps , o)K (p .4- z

Z, =Y,
Z2 = Y,- Kz, B,,-__ (1.61)

-, "3 - K tB , 

It is important to note that the solution an expressed by

Equations (1.59) through (1.61) only requires the inversion of a 12 x 12

31 f



I \AEC-ASL-u1 1

matrix and is independent of te number of Joints in the structure to

be analyzed. It might also be not-d that the programming of the

solution as represented here is a relatively simple task and that a

program can be easily written for a general value for n.

I. S ynthesis of the Final Solution

Based on the explanations given in Sections F and 0, the synthesis

of the final solution for the stress distribution in the panel is now

summarized. The set of 3n equations, essentially given by Equation

(1.49), are solved a finite number of times for the coefficients of

the transformed displacement components, denoted in Equation (1.31) by
2D. This finite number of solutions of Equation (1.49) will depend on

the characteristics of the lateral loading. However, for the types of

flight loadnnrd usually encounteredthe number of terms in the series

(or coefficients of the transform of displacements) represented by

Equations (1.1L) and (1.15) will be probably less than five. Once the

displacement coefficients are determined then the internal forces can

be obtained by using Equation (1.41). Finally the actual joint dis-

placements and stress distribution in the panel are obtained by summing

the finite number of terms in the series of the form given in

Equations (1.11) and (1.15) and in accordance with the scheme of

Table 1.

J. Remarks

The method of analysis developed in this chapter has been based

on the assumption of linear elasticity and isotropy. However, it is
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possible to extend the technique t inr, eude orthotropic materials by

deriving the force-displacement relationships similar to those given

in Equations (1.6) through (1.9) and discussed in detail in Appendix i.

The development of the analysis algorithm in this chapter was

based on a truss-core panel. However, the results are presented in the

form of matrix formulas which are completely general. Hence any change

in core geometry (e.g., web core) is reflected only in those matrices

which define the geometry of articulation, such as Equations (1.32),

(1.33), and (1.36).

Although, beyod the scope of this work, it appears advisable to

investigate the stress distributions in corrugated core panels under

lateral loads by utilizing a computer program.

It is recommended that several simple lateral distribu-

tions, for example uniform or triangular, be considered to obtain the

stress distributions 11", 0-, ?- in various elements of the panel. I
By systematically investigating tho stress distributiona as various

parameters are varied, such as thicknesses, aspect ration, 4ifferent

materials for faces and core, it appears feasible that OmpJrical

expressions could be formulated so that it would not be neoessary to

resort to the more time consuming matrix analysis. Further, once such

closed form expressions for stresses are available the method of

structural optimization used in Reference 1 can be applied.

33
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OPTIKIM DESIGN OF T1W:7:-CORE SANDWICH PANELS

, Introduction

7Vig first step in the development of any optimum design procedure

is to preciseLy define what is to be mant by optimum and then to trans-

late this definition into a mathematical language. There are several

different ways in which this can be accomplished and two of these are

discussed here.

One common method of definJng optimization is first to define some

function or functional of the design parameters and to equate optimiza-

tion of design with either the maximization or the minimization of this

function or functional. Two frequently used choices for the function to

be extremized are the total cost of the structure and the total weight

of the structure. It is important to emphasize that the design which is

optimum from a total cost point of view is not necessarily optimum from

a total weight point of view and vice-versa. It would only be known, a

priori , that both criteria would lead to the same design if it is known

that the only factor that went into the total cost is the weight. Never-

theless, the tendency quite often is to choose the minimum weight

criterion when the desire is actually to minimize cost since it is usually

much easier to express the functional dependence of weight on the design

parameters than it is to express the functional dependence of cost on the

design parameters. In this work, the weight factor alone is considered

and all other factors are ignored. A modified version of such an approach

would be to investigate the minimum weight design and determine if there

are aro excessive costs associated with it (i.e. possibly high fabrication
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costs). If none appear, then minimum w-ight is classified as optimum, but

if excessive costs are uncovered then the ,tructure i. modified to remove

the excessive cost problvm and a somewhat hIghsr weight, structure is

classified as minimum.

An optimization procedure as outLined above leads to a mathematical

problem which falls within the class of problems termod extremum

problems. The approaches for obtaining their solutions fall Into two

distinct classifications, one is termed the direct approach and the other

is termed the indirect approach. The direct approach consists of simply

evaluating the function to be extremized for all possible combinations of

the design parameters and then comparing the results to see which is

the desired extremum. It is apparent that such an approach can easily

become intractable as the number of design p-ameters increase or the

spectrum width of values is broadened. On the other hand, it is often

possible to generate a scheme to "zro In" o-, the optimum value even for

large numbers of design parameters.

The indirect approach is to develon some easily investigated require-

ments that a particular design must satisfy if it is to extremize the

desired function and to throw out all d,-.gns that. do not live up to

these requirements. The de'ihignh th.t 4at i'fy weth:; requir;n*3nlts are then

subjected to the direct approach. As an example, it is possible to show,

subject to certain continuity requirements, that if the function of the

design parameters Is to take on an extreme value for a particular design

then any small change in the design will produce no change in the function.

This fact can be translated into mathematical language and the result

used as a test. Although the indirect approach is frequently much faster

I



than the direct approach it is not withuut its problems since "easily

investigated requir;e:nts" are frequently not easily investigated and

sometimes no design will pass the postulatod requirements which, of

course, does not mean there is no optimum de-3ign but rather that the

requirements are too severe.

As a rule the indirect approach will work quite well if the design

parameters are not limited in any way or if the restrictions to be placed

on the design parameters are expressible by equations. Difficulties

arise when the restrictions are presented in expressions containing

inequalities. For the design of a structure, these latter restrictions

usually occur since the constraints that are to be placed on the para-

meters are simply that the structure will not fail in any manner (i.e.

any structure is acceptable that does not fail). I
A second approach to the entire problem of optimum design of

structures is based on the physical definition of an optimally designed

structure as one which is made to use all of its load carrying ability

to the greatest extent possible. Starting with this definition of

optimum, the procedure is to enumerate the various possible modes of

failure and then choose the design parameters such that as many modes

as possible are brought to incipient failure, if the condition of failure

for each of the modes results in a system of linear algebraic

equations on the design parameters and if all of the algebraic equations

so obtained are linearly independent then a solution is assured since as

many modes, as there are design parameters, can be brought to incipient

failure. If the condition of failure for each of the modes results in a

non-linear equation then we do not have such an assurance and we must
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test to see if it is possible. Seo efprenca 1. Several recent

investigations in non-linear struetural problems (0, 4) indicate

that solutions do converge to dis i -( t 4khi ranl 'alues of the parameters

involved and thus unique solutions do -- nilt.

It is possible to compAre this vfecoild Approach of optimization

to the first approach in the following raniuer.

Assume that minimum weight Is the optinization criterion in the

first approach. Mathematically,then, the problem is to choose the design

paramoters such that the weight fxuiction is a minimum when the design

parameters are so chosen that the structure doe-s not fail. As

previously stated, the restriction that the structure should not fail is

expressed mathematically as a series of Lnoqualities, one arising from

each of the various possible failure modes. Physical reasoning is now

introduced and it is postulated that the minimum weight structure is

probably one for which as many as posible of these inequalities is just

satisfied. The object, therefore, is tc, choose the inequalities that are

closest to being violated (i.e. as many as possible) and design so that

all are just at the point of being violatd. It Is, of course, necessary

to check that all of the remaining inequA'ities are still satisfied.

Although the latter approach is based more on physical reasoning

than is the former, it is undoubtedly the easier approach to formulate

provided the various conditions of incipient failure are expressible in

closed form. Thus, it is a superior approach from an engineering point

of view. For cases in which the conditions of incipient failure are not

expressible in closed form it appears that the second approach can only

be solved by a trial and error procedure. The difficulties, therefore,
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appear to be the same as those which would be encountered in minimizing

a function by the direct method. in fact, it appears thW there would

be miore difficulties gince it is npcesssrY7 toc satisfty more~ conditions

by trial ard error.

B. Design Parameters

Consider the truss-core sandwich plate shown in Figure 5. It in

desired to optimize the design of this structure for the transverse

loading of(x Y).

(cl ) _

Figure 5

Truss-Core Sandwich Panel
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The ;-eometry of the structur- is defi.led by the following

dimensions:

9) "a" ar "b" are the overall dmersions,

b) hc is the thickness of the core,

c) tf and tc are the thicKness of the face plates and the truss-

core, respectively,

d) 9 is the angle made by the core ele-nints with the vertical.

In a large number of problems, tue s ,ecifications will call for

a design in which the overall dimensions. "a" and "b", have been pre-

determined. Hence, it is not proper to treat, "a" and "b" as design

parameters.

Although the structure is shown with all other dimensions

independent of location in the plate, this need not be the case. If

the manner in which the transverqe loading varies with position can be

limitea, as well as the type of ,upp)rts that will be admitted for the

plate boundaries, then the manner in which the interior stress field

varies will also be limited. n suzh cases :t is possibie to introduce

smaller or lighter me-:bers in those iegionrs in which the level of

stress ie low compared to the same type members which are in regions

of higher streso levels. Fo.: this work, all core members are assumed

to be identical; all face plate members are assumed to be identical;

and h and e are assumed to o constant with respect to any position

in the plate.

In this investigation, it is assumed that the material used is

homogeneous, isotropic and linearly elastic. However, the facing

material and the truss-core material is taken to be different materials.
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Tha mechanical behavior of an isotropic linearly elastic solid is

governed by two constants and nonce two material design parameters

are introduced, in addition to the four geometric design parameters

hco tr, tc, and e. Note that for panels of different materials for
~facing and core, it is only necessary to specify 'the known ratio of

the material properties and not two additional parameters.

It might be well to emphasize the fact that any optimum design

procedure must, undoubtedly, include orthotropic material, limited

plastic action and variation of some of the geometric parameters with

position. In this light, the present work is to be viewed as a

first step.

C. Failure Criter~a

The first rcquirement of a design is that it does not fail on the

basis of the following criteria:

a) excessive deflection

b) strength deficiencies

c) instability

Except in those cases for which there are very strict allowable

deflection tolerances, an excessive deflection failure will usually be

associated with some amount of "plastic" action occurring somewhere in

the structure. To design for an excessive deflection failure, there-

fore, requires analysis of the structure in those cases in which part of

the structure is undergoing plastic action. Since the latter problem is

a formidable one, a much more restrictive criterion, completely dis-

allowing any plastic action or allowing only some arbitrarily set limit

11I
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of plastic action, is frequently substituted for the excessive

deflection criterion.

A material failure may be said to occur when the internal

forces exceed the strength or a specified stress level of the

material. Once again the material will usually not fail without

first undergoing some plastic Action, In a statically indeterminate

structure like the truss core sandwich plate the onset of plastic

action will result in a redistribution of internal forces which will

change the stress distribution. Once again, the calculation of this

redistribution is extremely complicated with the result being valid

only for the specific loading history used in the analysis.

Two other material failures which can arise but are difficult

to quantify or express analytically are due to creep and fatigue.

However, these failures are beyond the scope of this work.

An instability failure occurs for a given loading if the

diitributon of internal forces calculated for that loading will.

undergo a significant change when a -mall externil Perturbing ftctor

is introduced. For the truss core sandwich panel, it is possible

to distinguish between a local instability which arises due to an

instability in the response of an individual component and an overall

instability which arises because the manner in which the components

are joined causes the articulated structure to become unstable. It

might be pointed out that for a statically indeterminant structure

a local instability does not necessarily man a catastrophic structural

failure but may merely result in a redistribution of internal forces.

For the truss core sandwich panel subjected to a transverse

loading, there is no possibility of an overall Instability failure.
there
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There is, of course, a possibility of a local instability occurring

and for the geometry of the truss core treated here, such instabilities

will be catastrophic.

One type of failure that sometimes occurs but is not considered in

this treatment is a failure of te Joints of the structural components.

In fact there is much experimental evidence which indicates that

improperly designed Joints initiate the failure of a structure, however,

a detailed consideration of this problem is beyond the scope of this work.

For the truss core sandwich panel the structure will be said to

have failedj (a) if the state of stress anywhere in the structure is

beyond the linear range or (b) if elastic instability occurs in any

individual component. Thus the failure modes are consistent with the

analyses developed in Chapter 1.

D. Failure Modes

Since the analysis presented in Chapter 1 has been developed for

linear elasticity only, the expressions for describing failure modes

will have to be consistent with that development. Further, the basic

premise in the development of the load-displacement relationships for

the plate elements of the panel has been the one-dimensional character-

ization (see Appendix 1). Consistent with this approach, then, it is

reasonable to define failure modes in terms of the average stresses

Tr1", ( , , for the plate elements.

Due to the nature of the loading, that is, laterally applied to the

truss core panel, and simply supported edges it is obvious that the

important elements to conqider ani thnir primary stresses are (see

Figure 5): (1) upper fa( Phlt," nti si, h as (4-6) subjected to biax.al

2 j
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compression; (2) lower face elements such as (5-7) subjected to biaxial

tension; an (3) web elements such as ki.-5) subjected to combined

stresses of compression, shear arid in-plane flexure. Since in any

practical case it i not always obvious what the degree of fixity is at

the edges of the panel, it is conservative to use simply supported edges.

Now the specific criteria for these elements will be listed and as such

represent the constraints which are imposed on the structure and which

must not be violated when deterruv,,rg A minimum weight design.

The upper face elements are 9ubJeoted to essentially biaxial

compression as shown in Figure 6, which can be evaluated as

YI

note. 4. = h.orc
Figure 6

Stresses on Typioal Ele(1nt

- -
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However, it can be shown that since b >, , the stability of thi

element can be reduced to a one dimensional problem. Hence, the

buckling criterion is

-- E±) (2.3)

so that the constraint introduced for the stresses in the upper face is

Tr (1 - vL) (17 (2.4)

The lower face elements are subjected essentially to biaxial

tension (Figure 6) which can be evaluated as

= -(25)

2- (2.6)

In this combined stress situation it is usual to resort some theory of

failure depending on the type of material used. For example, if the

material is ductile a widely accepted thoory is Maxitmim Shear which

interprets failure as occuring at first yielding of the ductile material;

if the material is brittle then many times the Maximum Stress Theory is

used. Thus the constraint introduced for the stresses in the lower face

is simply that the larger principal tensile stress is less than or equal

to the fracture stress in a uniaxial tensile test of the material.

The web element is essentially subjected to a combination of

stresses resulting from O-K , CY.Vy and Cy as shown in Figure 6.

In terms of the average ctresses

I
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ry (2.8)

Or~y --.pt. (2.9)a te

Equation (2.7) in the 0,% stress developed as a ccnseqvence of the GT

stresses and is given in Appendix I by Equation (A.7a). Note that

since the analysis given in Chapter 1 evaluates (3 (Y) by a truncated

eries then c can be found by termwise differentiation. Although

no rigorous theory existe to account for buckling of a long thin plate

uder combinea loading, Reference 5 recommends a criterion of the

following types

Rx + R _ *R2 ' 1 (2.10)

where

(r cr applied stress

F allowable stress

1,2,3 index which I dicates the type of lo~ng, e.g.,
compression(c), shear(SJ, or flexure''

x,y,s numerical exponents.

In particular, Referance 6 in Figure 27 presents interaction curves

for various combinations of compression, bending and shear. Thus, a

criterion given by Equation (2.10) or data from interaction curves

the third conotraint in introduced which cannot be violated during the

optimization process.

9. Optimisation Procedure

Based on the form of analysis developed in Chapter 1, it in readily

apparent that for the truer core sandwich panel under lateral load*
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optl nization by extremization ui a functional form is impractical but

rarher a nume;:fcn! procedure will h-ve to be utilized. Consequently,

optitnum design will not I'e defined as that one in which the most

obvious failure modes occur s~multaneously. instead, the criterion

used will be to choose those valt~es of the design parameters which

2ake the total weight a minimuir subject to the restriction that none

14 the failure triteria are vi )ated.

Ihe reccacteded method oc achieving an optimum design will be

the direct approach as described in Section A. Since no analytical

expI'esaspns exist at this time which predict the stress distributions

for the panels considered in this report, the direct approach appears

to be the most straight forward and feasible technique and in essence

concurs with the philosophy promulgated by R. Bellman in Reference 7.IEf
The two material parameters, - and -f dnd the four geometrical

c c

parameters, hc, tc, tf, and 0 , define a six dimensional space with

a one to one correspondence between a point in space and a particular

design. Since every point in the space obviously will not correspond

to a design which will not fail, the first step will be to ascertain

the region in space which corresponds to debigns which do nor. fail.

These valid designs are numerically determined by the procedure

given in the flow chart, Figure 7. Thus, the hypersurfate separating

the region of no failure from the region of failure is obtained. As

a consequence of these calculations, the extremum regions on the

weight hypersurface will be grossly defined. Vie next step is to
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refine the geomtrical parameter increments in the region of minimum

panel weight u-,,cil a design conziguration is secured to whatever

accuracy is deemea necessary.

Referring to Figure 5, the entiz weight of the structure

(q4cluvive of weight of adhesives or fas eners), expressed in terms of

t4e dees$n parameters, is easily seen to t3

. 4~ePt.t (2.12)

vkere 9, and e are the weight densities of the core and the faces,

respeotively, and all other quantities are defined in Figure 5. It is

immediately seen that neither hc nor the ratio of mechanical properties

enters directly into the weight, however, it would be erroneous to

conclude from this that the depth d..., riot enter into the weight.

Only two of the three parameters, b, h , and 9 can be chosen to be

independent for the geometry shown and Equation (2.12) takes b and 9

as the independent parameters. The ratio of the mechanical properties

will also enter the picture in an indirect manner since they will have

an effect on what values for the other design parameters constitute

a safe design.
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APPE'"Di I

GOVERNB'YI, EQUAT-'3 i,, ON7,-PMJN3IONA L ELEZNTS

It is the purpose of this app-ndix to investigate the validity

of p-fulating that the basic elemnts have only one significant

dimension and to obtain _.- 'at.ions governing the -esponse of these

one dimensional models.

The restriction of the basic elements to thin plates (i.e. with

respect to the other two dimensions and the rate of spatial variation

of the loading) subjected to in-plane loading allows average values to

be used as far as the thickness direction is concerned. The resulting

two dimensional theory, generallted plane ntress theory, is well under-

stood and thp requirements for its validity need not be investigated

here. It is the further redu-tion from a two-dimensional problem to a

one-dimensional problem that needs to be investigated.

Case I:

Consider the boundary value prtblom shown in Figure Al.

o- ~(x) - !. Cx) 4

Figure Al 1!
with the boundary conditions at x - 0 and x - I not belr4 speifim

as yet.



The appropriate goVerning equations Are:

Eqi~librius:

+ CY, = 0

O"ky, K + ,. 0
Stress-Straen I

I -L7 (A.2)

Strain-Displacement

CY- 1,,Y (A.3)

The comma notation indicatea partial ditferentiation with respect

to tho variables x and y. The boundary condJtions on the edges y -

.* hi? . __

at (.l(A)

2 t
where the plus sign is correct for y - + h/2 and the minus sign is

correct for y - - h/2.

In order to solve this system of equations it is possible to first

substitute the strain-displacemant relations into the stress-strain

relations to obtain stress-displacement relations and then substitute

the result into the equilibrium equations to obtain two coupled partial

differential equations in k (x,y) and ur(xy). To satisfy these
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equations in conjunction with the bout.:.., conditlons as listed in

(Ad4) is not, in general, p-qsible. howevur if "h'" is much less than

any characteristic dimension in the x direction (i.e. either the length

or some measure of the rate of variation of 0C(9)cw (W)), then an

approximate solution can be achieved on the basis of the following

Sassumption: the y variation of the unknown displacements L.C,y)

and ir(x,y)is expandable in a power series. Under the assumption of

small h relative to dimensions in the x direction these power series

expansions will converge quite rapidly hence a good approximation can

be obtained by truncating after the first few terms. Realizing this,

the truncation is introduced in the very beginning rather than

obtaining first the exact solution in series form and then truncating.

It is important to notice, however, that the truncated series is

only approximate and as such cannot satisfy the pair of partial

differential equations discussed above but rather can satisfy only

certain aspects of them.

The form of the loading applied to the edges at y - .? h/2 will

give rise to a U(A,y) which is antisymmetric in y and a t" (^,,')

which is symmetric in y. Noting this, then if the power series

expressions is truncated after one tern the following form for the

displacement field results

trxY) Yt(x),
U ( I -(A.5)

where P(A) and Y"'.) are to be determined by satisfying some aspects

of the governing equation. The strain arn stress fields associated

with the above displacement field is obtained by direct substitution
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Av K -1-- hA6

I _Q-2) d -c 7

O"fy - d (3 _. _. (A .7 A)%-1,7A a)

M~y G~ 4-. r)

As mentioned above, substitution of Equations (A.7) into the

equations of equilibrium will show that they will not be satisfied no

imtter what the form of CO or How). over, some aspects of them

can be satisfied. Integrating the equations with respect to y from

- hi? to h/i? and making use of the boundary conditions expressed in

(AM!) results in

(A.8 a)

1.

_t__ (J C4Ydy + 911 =0 (A.8 b)

It is obvious that Equation (A.8 a) will be satisfied regardless of the

form of uCs) and v-(x) whereat Equation (A.8 b) introduces the following

restriction which in obtained by substitution of Equation (A.7 c) into

Squation (A.8 b) and perforaing the, indicated ntegration

r(xm-Gnh----S +2
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In addition to satisfying the oqujlibrium equations in an

average sense, the requirement that stress couple equals zero can

also be satisfied. MIltiplying each of Equation (A.1) by y and then

integrating, again making use of Equation (A.h) the results are:

Jya~~~~ndy+Y j o-;.y~ (A o! a• f ycCdy +f -vvc=0 (A.1O a)

x-x Ij,- ycr,,ydy cry. ~ .lb

By direct substitution of Equation (A.7) into Equation (A.1O), it in

resdily seen that Equation (A.1O b) is identically satisfied while

Equation (A.lO a) introduces the following restriction on ( (OK)

and '(r )

t(-) d t(A.ylLh 3(i-V)Cix XLJ

Equations (A9) an (A.l) give the dt.,Ired relations between

the loading and the displacemeet field sub~elct to the reotrictions

already noted. A more rigorous analysis using energy concepts would

show that It Is logically conisistent to introduce a shape factor

(teruod ) into Equation (A.? c). That is,

Introducing this factor permits Equatlons (A.7 d) and (A.11) to be

written as

5)



dx dxz

L - 3((-1)X+ G tj dx

A word ahould be said about the boundary conditions to be applied

to the ends x - 0 and x of. Obviouely, it is not possible to satisfy

the exact boundary conditions of the three dimensional theory but only

satisfy these boundary conditions in an avtrrage sense. By virtue of

St. Venant's principle, however, it is known that the error associated

with not satisfying these conditions exactly is confined to the region

in the vicinity of the two ends.

Case I i Next1 consider the boundary value problem shown in
I Figure A20

Fegure A2

with thet boundary conditions at x a 0 and x " being left

unspeified for the tim beina.

The goverrning equtiona are aan (A.1) through (A.3) with the

boutndas7 condition* on y'" h/2 beirq epresed mthemtically s

Cr. Y 2L()

MY 0
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J A solution of the following form is takpn

c((×,y) - (A, y)

(A.14)

where it has been asqumed that

( L) 3 ( -) (xb (A.15)
i} G 4,

By substituting this form of the solution in Equations (A,) through

(A.3) and (A.13) results in the folinwing boundAry value problem on

Q( 'Y)and L((X/y).

Equilibrium:•

, (G , ZG

cr-.I-.- +dr 4 Oc AG., + o_,.,- _ _ ____ £ _ (A.16)

Streeu-Lr$,i

I--

(AI1

V (A.18)

Boiu W=ar Condition* on y h/?s

, y y _ 0

clx



whore the amiua 9Sin is correct for y - h/? and Lhe plus sign

is correct forY - - h/2.

Now, without actually solving the boundary value problem for

L'(Jy) and ii y), it is desirable to obtain some knowledge of the

order of magnitude of these terms relative to Lro (x)y o

To do this properly all dimensions are first normalized with respect

to some characteristic length, say h.

Let
-_ _y__(A .20)

In term of I and r\ as the independent variables the bound&ry value

Problem on CL*',ro and becomes

Equilibrium:

a-" C1.t  jgrd(, (A.21)

Strtss-StrainC

I+-L7V, (A.22 ;

cr ,,2 G_
Strain Displacvment?

, (A.23)

h

bourdwy Conditions,

1 or, (A-24~)
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In Equations (A.?O) through (A.2h), thp double prime has been intro-

duced to emphasize the fact that the indepsendent variables have been

changed.

It can be shown that all of the forcing terms on[cc .I/j
and [Lrv~ I)~ are dependent on derivates of ur; (s')
with respect to * Since this is true and since the first portion

of the solution is equal to V;( )ht it is consistent to neglect the

second portion relative to the first provid-d

The result of doing this is to obtain na a solution the

following

Q(K'Y) 0
'Y( L2 = (g- ) Y (A.25)
' Gt Y

which is used in Chapter 1.

Nothing was said of the boundary conditiona applied at x 0

and x X . Once again under the assumption of , 'ZC , the effect

of the boundary will be amall except near the extremities of the member.

Case III, The final case is the boundary value problem as shown in

Figure A3. -rt, ,)

Figure A3

with the conditions at ;r. / 0 and x - 1 left unspecified for the moment.

_5
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An before it can be shown that if h « - and much less

than any rate of spatial variation of Tr6C)then it is Justifiable to

deal with an average value relative to the y direction. Such an

attack will result in the number being treated as one dimensional.

The solution is

,r(,x) - UG (Xd' C)lT x - L d x cx) (A.26)

L; x
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