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NAEC-ASL-1111

FOREWORD

This report is one of four reports to be prepared by Structural
Mechanics Associates under Navy Contract No. N156-46654. This con-~
tract was initiated under Woxk Unit No. 530/G7, "Development of
Optimization Methods for the Design of Composite Structures Made
from Anisotropic Material (1-22-96) and was administered under the
direction of the Aeronautical Structures Laberatory, Naval Air Engi-~
neering Center, with Messrs. R. Molella and A. Manno acting as Pro-
ject Engineexrs. The reports resulting from this contract will be
forwarded separately. Three reports are completed and cover work
from "4 May 1965 to 31 December 1966. The title and approximate
forwarding date for each report are as follows:

NAEC-ASL~1109, "Structural Optimization of Corrugated Core
and Web Core Sandwich Panels Subjected to Uniaxial Compression,'
dated 15 May 1967, TForwarding date, June 1987.

NAEC-ASL~1110, "Structural Optimization of Flat, Corrugated

Core and Web Core Sandwich Panels Under In-Plane Shear Leads
and Combined Uniaxial Compression and In-Plane Shear lLoads,"
dated 1 June'1967. Foxwarding date, July 1967,

NAEC-ASL-1111, "A Method for Weight Optimization of Flat Truss
Core Sandwich Panels Under Lateral Loads,'" dated 15 June 1967.
Forwarding date, July 1967.
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NOTICE

Reproduction of this document in any form by other than naval octivities
is not authorized except by special approval ot the Secretary of the Novy
or the Chief of Naval Operations as appropriate.

The following Espionoge notice con be disregarded unless this decument

is plainly morked CONFIDENTIAL or SECRET.

This document contains information affecting the national defense of the
United States within the meening of the E spioncge Laws, Title 18, U.S.C.,
Sections 793 ond 794. The tronsmission or the revelotion of its contents in
any monner to an uncuthorized person is prohibited by law.

ST




NAEC-ASL~1111

SUMMARY

This report presents a method for optimizing on & weight basis flat
truss core sandwich panels under lateral loads,

To aolve this type of probiem on the basis of ths methods presented
in Reference 1, that is equating the stress level for all failure modes,
requires & knowledge of the stress distribution throughout the pznel for
the given loading, There are no available stresz analysis methods, of
sufficient gophistication, for corrugated panels under lateral loading,
hence a large.portion of this report is devoted to the development of such
& msthod of analysis, The method is essentially a deformation method;
ths basic characteristica of which are described in Reference 2; howaver,
) techniqﬁe of using Fourier type trgnarormationn makes the solution more
tractable,

Chapter 1 presents in detail the method of stress analysis of the
sandwich panel with a truss core. Chapter 2 discussea the cpt}mization
procedure, In Appendix 1 it is demonstrated that the finite, one-
dimensional structural element used in the analysis is valid for the type

of panel which is considered.
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NAEC-ASL~1111
NOTATION
‘A Katrix defined by Equation (1.36)
QA Panel dimension in the y direction, inches
b Panel dimension im the x direction, inches
1(: Stiffnress matrix defined by Equation (1.L8)
i{) Column matrix of joint displacements referred to
i-th coordinate system (i = 1, 2, 3), inches
{;é‘ Displacement of the i-th joint, inches
e Number of plate slemsnta in pansl
E Modulus of elasticity, 1bs./in.2
iFii External force per unit distance in x-direction applied to
i-th joint, 1b,/in.
i§§§ Internal force per unit distance in x-direction applied to
i-th jJoint, by the j-th element, 1lb,/in.
Q Shear modulus, 1bs./in.2
Jcit Column matrix of joint forces defined by Equation (1.43)
’CSE Column matrix of applied forces defined by Equation (1.L7)
in the ¢ = 2 coordinate system
he Core depth, inches
K = (R)2)(RT). See Equation (1.55)
w* Shape factor (dimensionless)
& Width of a plate elament [i = ¢ (core) or £ (faeei] » inches
n Number of joints in panel

‘P ‘Q‘,‘R‘;\- “omponents of {F“S referred to coordinate system c
shere ¢ = 1, 2, or 3, 1bs./ir,
¢ i! l' [ 3 l: i
Fy,q;,'y Components of {fj; referred to coordinate system c, lbs/in.

R Matrix defined by Equation (1.50)
4

S Column rmatrix of internal forces defined by Equation (1.L40)

A4
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HOTATION

¥atrix defined by Equation (1.36)

Panel dimension in the y direction, inches

Panel dimension in the x direction, inches
Stiffness matrix defined by Equation (1.L48)
Column matrix of joint displacements referred to
i-th coordinate system (i = 1, 2, 3), inches
Displacemant of the i-th joint, inches

Number of plate elemsnta in panel

Modulus of elasticity, lbs./in.?

External force per unit distance in x-direction applied to
i-th joint, 1b,/in.

Internal force per unit distance in x-dirsction applied to
i-th joint, by the j-th element, 1b,/in.

Shear modulus, 1bs./in.2
Column matrix of joint forces defined by Equation (1.43)

Column matrix of applied forces defined by Equation (L.L47)
in the ¢ = 2 coordinate system

Core depth, inches

(R)(2C)(RT). See Equation (1,5%)

Shape factor (dimensionless)

Width of a plate elament [i = ¢ (core) or ¢ (facei] , inches
Number of joints in panel

“omponents of {Pis referred Lo coordinate gystem ¢
where ¢ = 1, 2, or 3, lbs./ir,

Components of {f}i referred to coordinate system c, lbs/in.

Matrix definad by Equation (1.50)

Column matrix of internal forces defined by Equation (1.LO)
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HAPTER 1

AYALYST® OF TRUSS~CCPE SANDWICH PANEL B

~. Introduction

The analysis of a complex structure under loading begins with the
decomposition of the structure into "basic elements" and assuming that
their response to any loading that they are rsqu.red to sustain is
known, Viewed in this light, the problem of determining the behevior

of the structure under & specified lecading condition, is really a

PUTCRE

problem of determining what loading will be placed on each "basic
element" (i.e. internal loading) as a result of the specified loading
being placed on the structure (i.e, ex*ernal loading).

The determination of distribution of internal loading for a given
oexternal loading condition can always be accomplished by invoking two
obvious physical requirements, The first is that every element of the
structure will remain in equilibrium, The second is that deformalions
of the basic element as a consequance of the loading placed on thea will
not violate the basic integrity of the structure,

In implementing this approach to the analysis, it is necessary to
choose the basic elements of the structural system,postulate the form
of the loading that must be sustained and determine the response of the
elementa to the loading. Great accuracy in this type of finite element
analysis usually requires that the basic elements be as small as possible
resulting in a structure consisting of a great number of elemsnts,
However, the requirement that the mathematical formulation is
tractable may require that the structure be divided into a fewer number

of larger basic elements,
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B. Basic Aasumptions

Congider the truss-core sandwich panel shown in Figure 1, whose

geomatry is considered as representative of several forms which are

used.

l\ /
. T z2hetane ' *\/
P— a .

rigure L

Triangulated Core Sandwich Plate

It iy desired to determine the response of this panel to a lateral

iloading when the panel is supported continuously along the four edge

boundaries,

e nen vame—a et
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Due to the construction of a truss-core sandwich panel, it is not
possible to casily determine the orthotropic properties in the x and y
directiona for purposes of analysisand for determining stress distribu-
tions under lateral loading. Ther=fore, the formulation of the problem
will be in Yerms of more fundamental structural elements of the sysien.

One such elemsnt is & plate element shown in Figure 2.

Figure 2

A Plate Flement

It is assumed that for the constructions considered
t; << £ << b= 0() {= forc

where A is a characteristic length which gives a measure of the rate of
spatial variation of all loading placed on these elemonts, thus it is
possible to treat the elements as one-dimensional, This approach, in
effect, reduces the provlem to a group of coupled one dimensional
problems,

Now consider this formulation in greater detail when the basic
elements are chosen as described above. A second assumption is made that

t, is 80 small relativs to all other pertinent dimensions that the

i
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reeistance of these elemants to any deformation which is out of the plane
definsd by the elemant is neglected. Coasistent with this last
assumption, it is further assumad that the basic plate elements are
loaded only by 4in-plane forces distributed along their edges.

Finally, the applied lateral load on the panel is replaced by atatically
equivalent line loads in the x-direction at the locations where the web

and face elements inlersect.

C. Cocrdinate Systems and Notation

In Figure 3 is shown: (1) a numbering system which is to be used
to identify the elements and joints; and (2) three coordinate systema
which are convanient to use at different stages of the analysis., The
X-Yo~2, (¢ = 1, 2, 3) axes are parallel to the principal moment of
inertia axes of the cross-sectional areas, also the x axis is parallel
to the flute direction of the core and Yy is parallel to the 1

dimension of the plate elements,

Figure 3

Coordinate Systems
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Referring to Figure 3, the following notation is introduced:
€ = number of plate elsments in panel
h =  number of joints in panel

{(: } = external force per unit distance in x dirsction
applied to the i-th joint

eP: 'Ql,.R‘ components of {F'} referred to coordinate system c
where ¢ = 1, 2 or 3

{f:3

P‘, QJ ) components of {f Sr@fnrred to coordinate system ¢
. g c
fr = ‘ ‘fﬂ

0= Pa Ps

internal force per unit distance in x direction
spplied to i-th Joint by j-th element

{1.0 a)
O" 3‘
33 -%q;
define

the internal forces scting on j-th element
refers to the two joints defining J with k> j.
denotes that the coordinate system to which{F’
so that the y axis is parallel to the direct

Note that i and k
The subscript j on c

} is referred is chosen

1on of the j-th element.

{d‘}tdiaplncemnt of the i-th joint
°¢4"“u",iAr = components of {di} refoerred to coordinate system c
A SR
o L )
< ¢ AL
@J. {qu - Jug)z
o {8, G 9.‘_ (1.0 b)
Y‘ Vv +V )7
. . |
éJ = J\rkﬁlféz
define the state of deformation of j-th element,

Again 1 and k refer
to the two joints defining J with k> i, The subscript j on ¢ has
the same meaning as above,
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D, Formulation of Problem

The problem to be solvad is stated as follows: Given the
i structure and either the external force per unit distance to be applied
to esch joint or the resulting displacement to be obtained at each joint,
find the resulting internal force distribution, This report will con-
centrate on solving the problem when the external forces are prescribed
at all joints,

It was pointed out in the introduction that the solution is obtained

E by invoking the physical requirements of equilibrium of all points in the
structure and ensuring continuity (maintaining structural integrity)
F throughout the structure under loading.
(1) Equilibrium
The equilibrium requirement applied to each of the joints
A results in the following set of algebraic equations which expressed in

vector forn are
;U;}*‘EF% = {0} (=1, oo h (L)

In these equations the summation is carried out over all elemants (j)
which frame into the i-th joint. Equations (1.1) constitute a set of
linear algebraic equations on the unknowns {fj! . To ascertain whether
they are sufficient to determine the unknowns™ requires us to simply
count equationa and unknowns, There are obviously 3n scalar

equations, and since there are e (= 2n - 3) elaments, there are

2e (= bn - 6) vector unknowns., Note that by virtue of the assumption

that no elements can sustain a force perpendicular to the plane defined

*See Reference 2,
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by the elemenu, cach of the vectors{f;fia confined %o be in a known

plane,hence only two scalar unknowns are associated with each{fj.}

The total number of unknowns, therefore, is ke = 8n - 12 which is more

than the mumber of equations if n>2,
Reforring these n vector equations (Z.)) to coordinate

system ¢ = 2, the following 3n scaiar equations result:

:; ‘a ( )
.‘,_/ Pi +-2P‘ =0 L= I, o h (1.1 8)
Zz {3 0 .
7 3 +Q - ts l,o-on (1.1 b)
. S J .
’ . zrj +R s O le,---h (1.1 ¢)

' (2) Internal Force - Deformation Relationships

0f =all of the sets of unknowns that will satisfy the
equilibrium requirement expressed by Equations (1.1), the one that
will represent the actual distribution of internsal forces in the
structure gives rise to & daformation for each of the basic elements

' that will not violate consistent deformations of the structure, To

apply such conditions the deformation of each element in terms of the
internal forces acting on it must be derived.

Consider the j~th element together with the associated

coordinate system, relevant dimensions and the loads to which it is

subjected as shown in Figure la.
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Figure La

Due to the asgsumption of a linear system, it may be taken &s the
supsrposition of ths following three problems shown in Figures
kb, Lc, and Ld.

A Lo )
Lo«
i re
I . . o x
ES - F i
Figure Lb
where

o“.(x‘) = (i‘.“(x) +C"9J‘ (x) J's |- eeom-3(1,2)

P‘(x) :QJ P:(x) _C,PJ‘: (x) J" ! ...'g.zn-,;(l.J)
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YJJ;
f"i 700
II. > X
PN
Figure kc
where ¢ Kk ¢ ¢
(k) =g, (x) -—"_qf(x) J =l e tn-K1.b)
Y; 4

m . e e e e = ee T I oy -, §

¥here ﬂ-;(x) =< p;(x) + gpj (X} j=)--€2nx15)
Subject to the restriction that .f<< & and £ <<, where

A is some characteristic length associated with the loading, it is
permissable to analyze each of these problems by a suitable one
dimensjional theory. The Jjustification of such a step together with

a derivation of the appropriate one dimensional thecry is given in
Appendix I, A summary is given below:

Problem I {Pig. Lb) gives riseto a deformation characterized
by a displacemsnt in the yJ direction which does not vary with y and
a displacement in the x direction which varies linearly with y‘1
[1 6., displacement “'I"l QJ (x)-_] The relationship between

» (x)lﬂ&)and 3”,()&)‘@‘-(5), as derived in Appendix I, is given by:
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O‘(x)-.-z,K G t [@ (x)] K2 G, JZJt/ [x (x)l (1.6)

s, 2n-3

*

() =14KG;t; 26,4, ¢, ‘k ch,t (
€00 Z; 30-1) de] 8,0+ dL“")l”) .
- ,E€ =22n~3 ;

Tn Equations (1,6) and (1.7) (3 and ﬁ? rpfer to the

shear modulus and the Poisson's ritio of the j-th element whereas

,BJ and tj are the height, and thickness of the j-th element ;
3

respectively. K represents a factor to account for the shape of the

cross~-saction,

Problem II (Fig. lLc) gives rise to a deformation which is

o aksne Femraa St it

3 characterized by a displacement in the yj direction which varies

inipan csmt e

E linearly with Yy {i.e. displacement ’ZE?T éL‘(x%]. The relationship
3

4
between J;’(x) and 61 (x) , as derived in Appendix I, is

RPN % )

33()&)*— 8 J(x)

((-v ),e (1.6)

Problem II[ (Fig. Ld) gives rise to a deformatlon which is

characterized by a displacement in the x direction which does not vary

with Yy The relationship between ‘ﬂ;(x) and o(J (x), as derived in !
Appendix I, is

_ G2 t;, d* .
TT‘(X\’ (‘O'V dxa [-O( ()K):\ )—I,"‘-,€=Zn-3 (1‘9)

(3) Consistent Deformations

l In Section C, internal deformations are defined that

10

e

¥
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are sssociated with each distribution of internal forces, In order to

maintain the integrity of the structure only thoses states of deforma-

tions which are associated with a unique displacement for each joint ;
will be allowed, This requirement will be met if 0(3,(33 , ¥ end .
53 can Y& defined in terms of c:"u" ,CJ u” ,C'. ¢ snd < vk

according to:

, C; AL
O(.J {J uk 4+ )ut)z J'=',"‘°,e-‘2"‘3(1.10)

m

@J =(c‘5 w - u‘)"z J o, €22n-30,1)

LA SR RV b

§; = -9z

j=ly e e=2n-301.12)
J T es2n-30.)
In Fquaticas(1.10) through(1.13), i and k refer to the joints at either
end of thse slemant J and C‘j refers to the coordinate system with
X, ¥ plane parallel to plane defined by element, See Figure lLa,

Each of the equations in the system {1,1) through (1.13)
is either a linear aiygebraic equation or a linear ordinary differential
equation which are obviously independent of each other. To show,
therefore, that the system is sufficient to uniquely determins all of
the unknowns again requires a count of available equations and unknowns,
I¢ has already been shown that Equation (1,1) represents 3n equaiions
and 8n - 12 unknowns., Equations (1.2) through (1.5) give 8n - 12 more
equations but also introduces 8n - 12 more unknowns (i.e. O"' ,P‘ ‘:T'j ’
and TT: ;j=l,-~-'e,-2n-éj. Equations (1.6) through (1.9) give 6n - 12

wore equations and also 8n - 12 more unknowns X}.e. OLj, @3;,'}3,and 5’

11
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j= e 2n-3] . Finally, Equations {1.10) through (1.13) give

8n - 12 additional equations while introducing 3n unknowns [1.9. the 3
components of the n displacement vectors {dig s 3 - 1*;111 . Notice
that {di} (£ = 1,+-+, n) completely determines the right hand sides of
Equations (1.10) through (1.13). Adding equitions and unknowns gives
(27n - 38) of each, hence,the system possesses 4 unique solution,

-

E: Methods fur Solving Equations

There are suveral ways for solving the above system of equations.,
Perhaps the most direct is to use Equations (1.2) through (1.5) to
obtain {f;‘}in terms of 07,0, 3‘3 , and ﬁ" . Then by direct
substitution of Equations (1.6) through (1.9) into the result, we obtain
{f?} in terms of oLi,@j,X“‘and SJ . Next we use Equations (1,10)
through (1.13) to obtain ifj} in terms of {111} . Finally,
substituting this result into Equation (1.1) will give n vector
equations on the n unknown displacement vectors {di}(i = 1,°, n)

Once this system of equations has been solved and the displacement of
each of the joints obtained, then, all of the other unknowns are
obtainable by direct calculations as dictated by Equations (1.2)
through (1.13).

Without actually carrying out the above substitutions in detail
it is readily apparent that the final system of equations (3n scalar
equations) constitute a system of linear ordinary differential equations
with constant coefficients, The theory for handling such systems of
equationa is well defined and the method of attack 1s straight-

forward. In the present problem, however, the straight-forward
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procedure would became extremely complicated by virtue of the large
number of equations tn be handled, Undoubtedly, the large number
of manipulations that will ecvantually be required will necesaitate
the use of a high spred digital computer. Tt is necessary , there-
fore, that the differantial equations be transformed into algebraic
equations.

The system of n linear ordinary differential equations may be
transformed into an infinite system of linear algebrajc equations in
the following manner. Ry introducing a set (or sets) of functions which
are complete over the interva]l 0% K(-b and then taking the unknown
solutions as linear combinations of the mrmbera of one or another of the
sats, the problem trangforms from that of finding a zet of unknown
functions of x to one of finding the coeafficients in the above
mantioned linear sumg, The equations governing these coefficients
may be obtained by direct substitution of a generic form of the linear sum,
The result will be, in general, an infinite system of linear algebraic
oquations., Thus we have reduced the problem to solving algebraic equations
but have increased the number of equations o an infinite number which
represents no advantage unless the number of equations can be truncated
in some way or unless the equations can be uncoupled from one another either
singly or in finite blocks. For the present problem we can introduce
gets of functions for which the latter occurs provided we are willing to
let the problem dictate to some extent the boundary condition at the
ends x = o and x = b, Since, ir practice, the boundary conditions
are not clearly defined, for example, clamped or hinged, this last

restriction is not very severe, OSee further discussion in Appendix I,

13
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; F. Tranaformation of Fquatlons
E' The first step i3 to initroduce the following sete of functions
é‘ which are complete and orthogonal over the interval O € X £ b
3
and {sm Wm X‘S
{cos wWmx}
where Ca.)m='."ﬂ.§f m=42, ", ®
; Next we expand all of the variables in Fquations (1.1) through
: {1.13) in terms of one or the othur of the above sets according Lo
. Table 1.
Table 1
Sine Cosine
; y and z components of {F’i} x component of {F‘:}
ﬁ y &nd z components of iff} x compenant, of { f;‘}
o e
5; Ty ;
v @i
3, o ,
| y and 3 componeAis of Sciég x componen: of i()LS

Introducing the notation

¢(x) = Z (q5): Sin Wm X (1.1k)

™ma

‘/5"‘)"2((?)2 COS WmX (1.15)

meo

By substitution of Equations (1.lL) and {1.15) into Equations (1.1)
through (1.13) and making use of orthogonality when appropriate, the
following system of algebraic equations are obtained, Equation (1.1)

L

TN e
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is referred to coordinaie system o - 2, which is taken as the global

reference axes,

4\__ (’(i:)m * (lQ‘)m =0 o I'“..' n (1.17)
z( ) +(R) La""’"h (1.18)

M =0, - 00
(o) = Co )i+ Cigs )l yhe
™m 2 0,00
c k (= fe e
(Pd')m =( ) ( P, )m $=h “,e (1.20)

P .
@)= Cg Ol e
- (G &k < __\‘ ¢ = ."')

ﬂ:')m (’P;' )m +( IP/- ),,, in-lo,- ,.’e (1.22)
@l o e g ol

ot 328 e
, 1K® 2G4 ¢t
(PJ )m [_ [JJ -+ 3(:) —,:7 Wm J(@ ) + [& K‘Gdz;w*yt'):(l'?h)
g€
. &Q t )3 n~0,* ", 0
(:Hm=[ ¢ ~-] : ]
J (\—UdSﬂJ (SJ ~ 40 '_’-2(1.25)
) 2G, 2, ¢, ¢
(ﬂﬂ"‘ Xm) « ](OLJ>M J“(;' € (1.26)
m = v

15
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(OLJ):C-'Z'[(C;MK); + (cl'u'i):j J=here (1.27)
(@) -Cud)e) T

s K y Ly S = .o
(¥; ).:“'ZKCJU' ). + (" U'L)MJ JThTNE

™ = O’-oo,m

5 e ¢ NS Cm e
(BJ');%%JU}):\“ ‘v )MJ JELTE )

=0, =, 00

Equations (1.16) to (1.30) are the equations governing the

coefficients in the expansions of our unknown solution functions. As

’

before in dealing with equations (1.1) to (1.13) the above equations
can be solved by taking as the basic unknowns the components of the
displacements of the Jointsid*}(i = 1,°*, n), solving for them, and
then obtaining all other unknowns by direct calculation, Referrad to
the ¢ = 2 coordinate system, the basic unknowns .are the functions
‘L(i(x) ,‘lf"(x) , and zuf"()()[l::l,---,r,]or the coefficients
Cud)s (U9 ame Cwri)e E""""'m'o""'a]'Tho
procedure is: (1) substitute the latter coefficients into Equations
(1,27) to (1.30) and introducing a coordinate transformation when

1 necessary; (2) substitute the results into Equations (1.,23) to (1.26);
Y (3) substitute these results into Equations (1.19) to (1.22); and

: (L) finally substitute these results into Equations (1.16) to (1.18)

16
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to obtain an infinjte sy-tem of algebrainr equations on the infinjte
number of unknown:, Note, hoawever, that the equations governing
("(,(‘-),: , (L (/"‘),:\ , And (’uj';'),: for one rarticular
value of m are not coupled to those for a different value of m,
This means that the infinite number of equations uncouple in blocks
of 3n linear algebraic equationas on the 3n unknowns {i.e, (lb{i):\,
(1U‘L).: ’ (awi):\ [,‘- = ’,‘ ‘e n , m = Sorme m"‘cgch]}

and the problem reduces to a series of problems involving 3n linear
algebrajic equations, Of course, for an exact answer, we must solve
an infinite number of such problems, For pﬁgctieal purposes, however,
only the first few coefficients will offer a significant contribution,
hence, solving only a few problems will glve a sufficiently accurate
answer,

The question of the boundary conditions atv x = G and x = b has

to be angwered, The sets of functions used Jn our expansions will result

in . _ d~ (x) = _.dfi_cf_) =
‘(d(x)_ aﬁ;_ dx ©

regardless of the values of Lhe coeffjicients obtained in solving the
above set of equations, This condition corresponds to simple supports
for the flexure deformation of the basic elaments; free ends for
extension in the x direction for the basic elements and no extension
in the y (width) direction for the basic elements. Although the actual
conditions may be slightly different, the error introduced by assuming
these conditions should be confined to the immediate vicinity of the
supports. Notice that other boundary conditions couid be treated but

that would require placing certain restrictions on the values of the

17
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coefficients that ara to be obtained. These restrictions would destroy
the uncoupling achieved above which would necessitate some type of

itsration scheme for & solution.

8. Matrix Formulation for m-th Coefficient

A mtrix forsulation is presented now to obt&in the solution of the
systesm of equations involving the coefficients of the infinite series
introduced in Section F.

As indicatad in Section F, the basic unknowns are the appropriate
transform of the components of {dis ( = 1,+«, n) referred to the ¢ = 2
coordinats system. Arranged in a column matrix of 3n elements, the

unknowns to be determined are

F(gul (T
(aun):‘
QYN
).,
(v )] (1.31)

»~»
o
i

v
Cw)l
(‘uf‘).i

(W)

- -

The first step ia to introduce transformation matrices from the c =« 2

system Lo the ¢ = 1 system and the ¢ = )} syatem.

18
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[0} [0

T = [O} cos@{]] -5!!'\9{_1']
[ ]sme[]] cose[I]
- (1.32)
o (1] [0} [o]
T"_ = l. ]cosB{ll s.ne[l]
[0] -sino[I] coﬁe[l]
where !
© is shown on Figure 1
[C)] is the n x n null matrix
[I] is the n x n unit matrix,
The appropriate transformation equations, as becomes apparent
by expansion, are
- T %
(1.33)
3 2
D~ lazD

1D and 3D are defined by the matrix given in Equation (1,31) except the
scalar elements are given with resnect to the c = 1 and ¢ = 3 axes
respectively.

To represent Equations (1.27) through (1,30) in matrix form, sub-
divide the elemsnts of the structure into three groups according to
which coordinate system has the y - x plane parallel to the plane of the
element. Referring to Figure 3, the groups have the f&lloving numbers,

Oroup 1t 1,5, 9, »+ ¢+ , & -2
Group 2t 2, L4, 6, «+ v+ , 8 -1

Growp 3: 3,7, * * *, e
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e+l _n-1
Oroups 1 and 3 each have 2 members whereas Group 2 has
g b P
[
2 A< 2 members. Now for each of the above groups a

rectangular matrix is constructed with the number of rows equal to

the number of members in the group and the number of columns equal to the
number of joints in the structure according to the following rule,
Associate each row with e member of the group (i.s. first row with
element 1, second row with element S; etc,) and each column with a
Joint of the structure. Now we set every matrix element in the row
asscciated with a given structural element equal to zero except the two
which correspond to the joints into which the structural element is
framed., These are set equal to +1 or -1 according to whether the joint
number is larger or smaller respectively. Restricting our attention to
Group 1, the matrix, so defined, is
(11000 .. .. 0 |

00-1100'0500

0 0 O O"l ¢ o » . O
'a. . . .
o o0- - - -1 1 0

L. -

With the aid of this matrix the equations (1.27) through
(1.30) for elements that fall within the first group may be

written as

E =[‘A 'Dle' (1.3L)

"
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(s ):\

wh . e
ere (Ci Q-l)m
(3. )m
(65

ey
i

(Bet)n
)
% Xs))a: {(1.35)

(Fea)
(d)m
(55)2

_(%’"‘)::
and [ [&] [o] [d]]
. [a] [0] [d]
A = [O] Ea] [0] (1.36)
(9] [d] [d]]

in vhich EﬁJ is obteined from ‘@ by replacing all -1 with & +1 and

[0] is an (ﬂ%’- nnsnull matrix, That matrix equation (13kL ) does
indeed represent Equations (1.27) through (1,30) for the numbers of
Group 1 may be seen by direct expansion. Similar results may be
obtained for the other two groups of mcmbers.

The deformation of the elements in the three groups are express-
ible in terms of the 2D column matrix by Equations (1.33) and (1.3L)

as follows:

) i o 2
E=A riz D ("‘°TC Tea = [ﬂ) (1.37)
To represent Equations (1.23) through (1.26) in matrix form the

subdivision introduced in the preceeding paragraphs is kept but intruduced

here is the restriction that the properties of all elements in Groups 1 and 3

are the same and properties of all elements in Group 2 are the sume., Under

this restriction the following matrices are introduced.
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where the index 1 (1 = 1, 2, 3) indicates the group of members being
considered [0] andLI] sre squire null and unit matrices respectively
with number of rows and colurmns equal te the number of members of the
group. Consequently, for those elements of Group i, the Equations

(1.23) through (1.26) may be writlen as
"522256 (1.39)

where

|

Y
3

e~ |
.. . :Q 5:1
N’
o3 n

——
3
e’
[p)

(1.L0)

’

—~ o~
OO
N
23 n3

«
3

4
= ( Y
> ' (')N,‘ Note : GQrouvp 1, Fr=€-2
.(Ol )rv G"'OUP 2) ’.-_-e
(J—s ):, Group 3, r=e -|

TN TN N
<~ C e
S8
S S
PRV BV

*

S

<.
;
;—J

(

- o4
Combining Equations (1.37) and (1.39), the internsl forces in the

elements of all three groups may be expressed in terms of 2D according to

'S SZ2AT, D (¢<1,2,3, and T =[1]) ()

Jla

R e

skt ke hada W E
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The final step is to obtain the forces that arise at each joint
due to the internal forces in the elements, sum all of thess forcea and
substitute in Equations (1.16), (1.17), and (1.18), This must be done
separately for each of %he three groups previously defined since each
group will give the joint forces with reference to a different coordinate
system, Consider initially the first group of members then it may be
shown by direct expansion that

'Gq,='A"'S (1.k2)

where A’ is the transpose of the matrix A and .(5., is a column matrix
representing the sum of all forces acting on the joints by elements in

the first group, referred to the coordinate system c = 1,

-~ -

Z(P, ).

1,5.,9

X(P;

nSS

z;u»,
PN
G, = 5:(9 )s (1.L43)

‘I59
.

SoCqs)

AR

Y}“(r)

PR

Sh(v

Ils,

i,j,,i‘r:): |
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A similar expression may be written for the othsr two groups,

so that in general

: S
Ge = ‘A ‘S (1.Lk)

where 1 © coordinats system

k ©» group number of members,

To add the effrcts of the three groups requires that ell forces
ba referred to the same coordinate system (1.6. ¢ = 2 system)., This is
done by using the transformation watirices le and T32 given in

Equation (1.32). For the contribution of group k, we have

"G =(T.) G (1.45)

T
where (Tm.) is the transpose of Ter and T"."[Il

Adding together 201, 202, and 203, the total force applied at esach
Joint by the basic elements is obtained and Equations (1.16) through
(1,18) reduce to

G, + G+ G, *+ Ge = O

(1.46)
wheralcsu is the external force applied referred to the ¢ = 2 coordimate
system. That is, ~ (,P.)i"

e*):
(*P):
¢Q). (1.47)

Gy = | (@R
¢
R
(R
(R)L
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Combining all of the previous results Gl’ G, and 03 are
expresaed in terms of the single unknown matrix 20 and the result
eubstituted in Equation (1.L48) to give the matrix aquation

*C*D +aGa=O (1.471)

whera

1C = (TOt)T(’A)T(‘Z )('A\)(TI z\"'(loA\)T(IZ )(zA) + (1.L8)
(T )"CAY AN TS

iz the stiffness matrix, The matrix of unknown deflections can now be

obtained from Equation (1.L47) in terms of the inverse of “C and is

expressed as

D= -0CY (*Ga) (1.19)

Since all of the desired unknown quantities are obtainable from

29 by direct calculation, Equation (1.49) represents the formal solution
to the problem,
Before proceeding any further, the matrix formulation is summarized

The lines represent matrix products with the multipliers

in Rlgurs L.
Joining of two or more lines indicates a

being indicated over the line,

summation,
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LIAQT
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y (Tsa)
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()
Figure L

Summary of Matrix Gomputations

H. Method for Solving Large System of lLinear Equations

A8 already stated, the formal solution to the problem is contained
in the matrix equation (1.L9). Implicit in this simple matrix equation,
however, is an inversion of ths large order matrix 2C. Indeed, in

carrying out the solution of a given problem it is numerically easier

26
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not to make uge ol the formal solution of the system of equations
represented by Equation (1.L7) (i.e. not to abtain (ZC)'I) but to
cbtain the solution in & different manuer. In this section an
algorithm to accomplish this goal is develnped.

The following interpretation can be given an element of the
2C matrix. ?Cy represents a component of the net internal force which
acts on a joint which is defined by i for a displacement field which
consists of a unit displacement in a direction and for a joint defined
by , while a1’ b uetiections are kept zero. It is obvious, there-
fore, that unless the joint defined by j is directly ccnnected to the
Joint defined by i by an element of the structure, then 2Cy must be
zero,  Thais leads to the (on fuaion that the majority of elements of
the 2Cy matrix are zero. The solution of the equations represented by
(1.L47) can be most easily accomplished by partitioning into smaller
groups of coupled equations.

Before accomplishing this partitioning it woulld be helpful to first
recast the formulation in such a manner that all of ths non-zerc elements
of the 2C matrix cluster around the main diagonal, This is done by
introducing the following square matrix which contains only ones and

zeroes,

27
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LI S IR
Py’ .
SJ J'=l, ,3n
gU\O\ .
/ d=ly *o+y 30
8" '
J 12l, oa¢’ 3“
S,ruz X
y Aa" BN A2
R - 3.10\91 ’
) Jsl’oo..ah
.f‘ .
%J J‘\i . v-‘sn (1.50)
"
: 43y T
S!n .
‘ d=ty 7" ,3nN

vhers the Kronecker delta

i , . .
%j =1 if o=y
= 0 if #g (1.51)
has been introduced. It may be noticed that

RRT = 1 (1.52)
vhere RT indicetes the transpose of R and I indicates the 3n x 3n
unit matrix,

Maltiplying Equation (1.47) by R and noting Fauation (1,52)
rosults in

®2a?) @) = - (1)) (1.53)
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where, r(zu‘):‘— P(zp"):‘_}
cv'): Q")
w2 CRm
Cur) CpP*).

@eo)=| VLY RICG)=| CR)r [y

Cw., ("R (L.54)
E R P
Cvo). CQ)a
-.("W h):-\_ (z Rn):
the new stiffness matrix ] )
K = (R)Z0)r ) (1.55)

nov has all non-zerc slemsnts clusterad around the main dlagonzl. The

syatem of equationa expressed in the form given in Equation (1.53) is

TR PIT

solved rather than the form riven in Lyvation (L.L7).
Expanding the matrix Equation (1.53), the resulting system of

equations may be represented by the following partitioned form:
KX+ KiaXa + Y
Kay Wi +Kaa Xa & Kas Xs

Ya
KaaXa + Ko Xs + Ksq Xg Ya (1.56)

K(u».n)eXe + KreeX(e) + Ke(eri) X@i2) = Ye+0
Kies2)er) Xes 1)+ K(er2Xe s 2) Xer2)= Y(eu)
In Equation (1,56), Kij’ Xi» Yj represent submatrices obtained by

ny

partitioning the K, X, Y matrices according to

Ko Koo o ot | | )
K Kaa Kas . ] .
K = v K s Koy
= . . . ' Kepile Kipridpr)) KiprXpe2)
: : ,. | ). . KeperXpet) KipeaXpa2)
(1.57)

Loz )
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X Y,

X; Y:.
X=]" Y=

Kpia \]'pn.

In Equations (1,56) and {1.57), p i8 given by

p = -5" - (1.58)

and the submatrices have dimensions as indicated in Tabla 2,

Table 2
Matrix Dimension
Ku 6 x6
Kii (4 = 2,3,..?*1) 12 x 12
K (p +2)(P +2) 6 x 6
12
Kl? 6 x
l(21 12 x 6
. " .o 12 x 12
i(t(a'f(li) 223, ’P) ¥
K(1+04(1~2,3.,p) 12 x 12
K(p+1)(p+2) 12 x 6
K(p+2)(p+1) 6 x 12
xl 1 X6
11(1'2,"',P*1) 1 x12
XP* » 1x6 '
!1 1x6
Yi (L =2,,p+1) 1 x12
!P+2 1x6
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The system of equations sxpressed in the form indicated by (1,56)
may bs solved as follows: From the firal we obtein

- -1 -
X, v K] [Yl Ky xzj
Using this in the second we can obtain
. -1 -1 -1
This 1s then used in the third to obtain an expression for X_ in terms
of Xh which 1s then used in the fourth to cbtain Xb in tsrms of )(S otc,

Froceeding in this manner we arrive ai the (p+ 2)“‘i squation expressed

only in terme of XP*z vhich may be solved., Once XP* 2 has baen so

determined XP* 1 then XPt,han Xp__1 o L. Xl may all be obtained by

back substitution. Thus, the solution may be axpressrd by the

following set of equations:
Kiper) = Bepranpra) Zipen)
Xped = By [Z (e - KieproxpraiX pugg 159
Xp = Bpp|Zp—KpepenXp]
X =B |E, ~KaX.)

where \

B. = K./

-1
Ba = (Kea = Ku By Kiz ) (1.60)
833 ’- (Kn‘* Ksz B2 /:\za)—‘
- -

and B‘P‘*"P") _(K‘P”XPW ~Kepradper) Bepy p+h) K(PHXPH.))

Z, =Y,

2: =Y1"Ku8u2. (1.61)

Zg f \(3 - K?szz’Zaz

Z(P'l)z\(l? ) - K(Phl)(pﬁ-\) B(anPi—')Zp&t)
It is important to note that the solution as expressed by

Equations (1.59) through (1.61) only requires the inversion of & 12 x 12
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matrix and is independent of the number of joints in the structuras to

be analyzed. I¢ wmight also be not«d that the programming of the
solution a3 represented here is a relatively simple task and thet a

program can be easily written for a general valiue for n.

I. Synthesis of the Final Solution

Based on the explanations given in Sections F and O, the synthesis
of the final solution for the streas distribution in the panel is now
summarized, The set of Jn equations, essentially given by Equation
(1.49), are solved a finite number of times for the coefficients of
the transformed displacement components, denoted in Equation (1.31) by
2D. This finite number of solutions of Equation (1.L49) will depsnd on
the characteristics of the lateral loading. However, for the types of
flight losdings usually encountered,the number of terms in the series
(or coefficients of the transform of displacements) represented by
Equations (1.14) and (1.15) will be probably less than five. Once ths
displacemant coefficients are determined then the internal forces can
be obtained by using Equation (1l.4l), Finally the actual joint ris-
placements and stress distribution in the panel are obtained by sumuing
the finite number of terms in the series of the form given in
Equationa (1.lh) and (1.15) and in accordance with the scheme of

Table 1,

J. HRemarks
The method of analysis developed in this chepter has been based

on ths assumption of linear elasticity and isotropy. However, it is
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possible to extend the technique ¢ 1ncvlude orthotropic materials by

deriving the force-displacement relsticnships similar to those given
in Equstions (1.6) through (1.9) and discussed in detail in Appendix 1.
The development of the analysis algerithm in this chapter was

bagad on a truss-core panel, However, the results are presantad in the

form of watrix formulas which are completely general., Hence any change

in core geometry (e.g., web core) is reflacted only in those matricea
which defina the geometry of articulation, such as Equations (1,32),
(1.33), and (1.36).

Although, beyond the scope of this work, it appears advisable to
investigate the stress distributions in corrugated core panels under

lateral loads by utilizing @ computer program,

It is recommended that several simple lateral distribu-
tions, for example uniform or triangular, bs considered tc obtain the
stress distributions 77 ,(9 , 0, I in various eiements of the panel.
By systematically investigating the stress distributions as various
parameters are varied, such as thicknesses, aspect ratyee, differsnt
materials for faces and core, it appears feasible that ampirical
expressions could be formulated so that it would not be necessary to
resort to the more tims consuming matrix analysis. Further, once such

closed form expressions for stresses are available the method of

structural optimization used 1in Reference 1 can be applied.
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TIAPTER 2

OPTIMUM DESIGN OF TRUCR-CORE SANDWIH PANELS

¢« Introduction

The first step in the development of any optimum design procedure
is to preciseiy define what is to be meant by optimum and then to trans-
late this definition into e mathematical language. There are several
different ways in which this can bta accomplished and two of these are
discusaed here.

One common mathod of defining optimization is first to define soma
function or functional of the design parameters and to equate optimiza-
tion of design with either the maximization or the minimization of this
function or functional. Two frequently used choices for the function to
be extremized are the total cost of the structure and the total weight
of the structure. It is important to emphasize that the design which is
optimum from a total cost peint of view is not necessarily optimum from
a total weight point of view and vice-versas. It would only be known, a
priori , that both criteria would lead to the same design if it is known
that the only factor that went into the total cost is the weight, Never-
theless, the tendency quite often is to choose the minimum weight
criterion when the desire is actually to minimize cost asince it is usually
tuch sasier to express the functional dependence of weight on the design
parameters than it is to express the functional dependence of cost on the
design parameters., In this work, the weight factor alone is considered
and all other factors are ignored, A modified version of such an approach
would be to investigate the minimum weight design and determine if there

are any excessive costs associated with it (i.e. possibly high fabrication

3k
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costs)., If none appear, Lhen minimum weight is classified as optimum, but
if excosasive costs are uncovered then the structure i~ modified to remove
the excessive cost problem and a somewhat higher weight structure is
clagaified as minimum.

An optimization procedure as outlined above leads Lo a mathematical
problem which falls within the class of problems termed extremum
problems, The approaches for obtaining their solutions fall into two
distinct classifications, one is termec the direct approach and the other
is termed the indirect approach. The direct approach consists of simply
evaluating the function to be extremized for all possible combinations of
the design parameters and then comparing the results to see which is
the desired extremum, It is apparent that such an approach can easily
becoms intractable as the number of design parameters increase or the
spactrum width of values is broadened. On the other hand, it is often
poasible to generate a scheme to "zero in" on the optimum value even for
large numbers of design paramsters.

The indirect approach is to develon some easily investigated require-
ments that & particular design must satisfy if it is to extremize the
desired function and to throw out all designs that do not live up to
these requirements, The designs that satisty these requirements are then
subjected to the direct approach. As an example, 1t is possible to show,
subject to certain continuity requirements, that if the function of the
design parameters is to take on an extreme value for a particular design
then any small change in the design will produce no change in the function,
This fact can be translated into mathematical language and the result

used as a test., Although the indirect approach is frequently much faster
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than the direct approach it is not without its problems since “easily
investigated requiresents"” are frequently not easily investigated and
sometimes noc design will pass the postulated requirements which, of
course, does not mean there is no optimum deaign but rather that the
requirements are too severe,

As a rule the indirect approach will work quite well if the design
paramelers are not limited in any way or if the restrictions to be placed
on the design parameters are expressible by equations., Difficulties
arise when the restrictiona are presented in expressions containing
inequalities, For the design of & structure, these latter restrictions
vsually occur since the constraints that are to be placed on the para-
meters are simply that the structure will not fail in any manner (i.e.
any structure is acceptable that does not fail).

A second approach to the entire problem of optimum design of
gtructures is based on the physical definition of an optimally designed
structure as one which i1s made to use all of its load carrying ability
to the greatest extent possible. Starting with this definition of

optimum, the procedure is to enumerate the various possible modes of

3 failure and then choose the design parameters such that as many modes

as possible are brought to incipient failure, If the condition of failure
for each of the modes results in a system of linear algebraic

H equations on the design parameters and if all of the algebraic equations

l 80 obtsined are linearly independent then a solution .is assured since as
\ wmany modes, as there are design parameters, can be brought to incipient
\ failure,

If the condition of failure for each of the modes results in a

] non-linear equation then we do not have such an assurance and we must

36




T SR

=

NAEC-ASL-1111

test to see if it is peasible, See heferenca 1. Several recent
investigations in non-linear structural preblems (3, L) indicate

that solutions do converge to disiinct wnd real alues of the parameters
involved and thus unique solutions 4o “eanlt,

It is possible to compare this second approach of optimization
to the first approach in the following ranner.

Assume that minimum weight is the optimization criterion in the
first approach. Mathematically,then, the problem is to choose the design
paramsters such that the welght function is & minimum when the design
parameters are so chosen that the structure doss not fail. As
previously stated, the restriction that the structure should not fail is
expressed mathematically as a series of inequalities, one arising from
each of the various possible failure modes. Physical reasoning i3 now
introduced and it is postulated that the minimum weight structure is
probably one for which as many as poasible of these inequalities is just
satisfied, The object, therefore, is t- choose the inequalities that are
closest to being violated (i.e. as many as possible) and design so that
all are Jjust at the point of being violated. It is, of course, nacessary
to check that &1l of the remaining inequalities are still satisfied,

Although the latter approach is based more on physical reasoning
than is the former, it is undoubtedly the easier approach to formulate
provided the various conditions of inciplient failure are expressible in
cloasd form. Thus, it is a superior approach from an engineering point
of view. For cases in which the conditions of incipient failure are not
expressible 1in closed form it appears that the second approach can only

be sclved by a trial and error procedure. The difficulties, therefore,

37




RARC-AGL-1111

appsar to bs the same as thosa which would ke encountsred in minimizing
a2 function by the direct method. In fact, it appears that there would
ba mors difficulties since it is necessary tc satisfy more conditions

by trial ard error.

B. Design Paramecters

Consider the truss-core sandwich plate shown in Figure 5, It s
desired to optimize the design of this structurs for the transverse

loading of q(x, ¥).

f o »

e e te

S

Figure 5

Truss-Core Sandwich Panel
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The ;eometry of the structure is defined by the following
dimensions:
#) "a" ar "b" are ithe overa.l dimensions,
b) h, is the thickness of the core,
c) tf and t, are the thic«ness of the face plates and the truss-
core, respectively,
d) © is the angle made by the core elements with the vertical.

In a large number of problems, the specifications will call for
a design in which the overall dimensions, "a" and "b", have been pre-
determined, Hence, it is not proper to treat "a" and "b" as design
parameters.

Although the structure is shown with all other dimensions
independent of location in vhe plate, this need not be the cagse. If
the manner in which the transverae loading varies with position can be
limitea, as well as the type of supports that will be admitted for the
plate boundaries, then the manner in which the interior stress fleld
varies will also be limited. In such cases 2% 1s porssibie to introduce
smaller or lighter members in those regrons in which the level of
stress i® low compared to the zams type members which are in regions
of higher stress levels, Fo. this work, all core members are assumed
to be identical; all face plate members are assumed to be identical;
and hc and 8 are assumed o .. constant with respect to any position
in the plate,

In this investigation, it is assumed that the materizl used is
homogeneous, isotropic and linearly elastic. However, the facing

material and the truss-core material is taken to be different materials.,
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Ths mechanical behavior of an isotrcpic linearly elastic solid is
governed by two constants and nernce two material design parameters
are introduced, in addition to the four gecmetric design parameters
hc’ tf, to, and 6. Note that for panels of different materials for
facing and core, it i3 only necessary to specifly the known ratio of
the material properties and not two additional parameters.

It might be well to emphasize the fact that any optimum design
procedure must, undouhtedly, include orthotropic material, limited
plastic action and variation of some of the geometric parameters with
position. In this light, the present work is to be viewed as a

first step.

C. Failure Criteria

The first rcquirement of a design is that it does not fail on the
basis of the following criteria:
a) excessive deflection
b) strength deficiencies
c) instability
Except in those cases for which there are very strict allowable
deflection tolerances, an excessive deflection failure will usually be
asgociated with some amount of "plastic™ acticn occurring somewhere in
the structure. To design for an excessive deflection failure, there-
fors, requires analysis of the structure in those cases in which part of
the structure is undergoing plastic action. Since the latter problem is
a formidable one, a much more restrictive criterion, completely dis-

allowing any plastic action or allowing only some arbitrarily set limit

L0
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of plastic action, is frequently substituted for the excessive
deflection criterion.

A wmaterial failure may be 8aild to occur when the internal
forces sxcaed the strength or a specified stress level of the
material. Once again the material will usually not fail without
first undsrgoing some plastic action, 1In a statically indeterminate
structure like the trusa core sandwich plate the onset of plastic
action will result in a redistribution of internal forces which will
change the stress distribution. Once again, the calculation of this
redistribution is extremely complicated with the result being valid
only for the specific loading history used in the analysis,

Two other material faillures which can arise but are difficult
to quantify or express analytically are due to creep and fatigue,.
However, these failures are beyond the scope of this work,

An instability failure occurs for a given loading if the
distributton of internal forces calculated for that loading will
undergo a significant change when a small external perturbing factor
is introduced, For the truss core sandwlich panel, it is possible
to distinguish between a local instablility which arises due to an
instability in the response of an individual component and an overall
instability which arises because the manner in which the components
are joined causes the articulated structure to become unstable, It
might be pointed out that for a statically indeterminant structure
& local instability does not necessarily msan a catestrophic structural

fajlure but may merely result in a redistribution of internal forces,

For the truss core sandwich panel subjected to a tranaverse
loading, there is no possibility of an overall instability failure,

Ll
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There i8, of course, a poasibility of a local instability occurring
and for the geometry of the truss core treated hers, such instabilities
will be catastrophic.

One type of failurs that sometimes occurs but is not considered in
this treatment is a failure of the joints of ths structural components.
In fact there iy much exparimental evidence which indicates that
improperly designed joints initiate the failures of a structure, however,
a detailed consideration of this problem is beyond the scope of this work.

For the truss core sandwich panel the structure will be said to
have failed; (a) if the state of stress anywhere in the structure is
beyond the linear range or (b) if elastic instability occurs in any
individual componeunt, Thus the failure modes are consistent with the

analyses desvelcpod in Chapter 1.

D. Failure Modes

Since the analysis presented in Chapter 1 has besn developed for
linear elasticity only, the expressions for describing failure modes
will have to be consistent with that development. Further, the basic
premise in the development of the load-displacement relationships for
the plate elements of the panel has been the one-dimensional character-
ization (see Appendix 1). Consistent with this approach, then, it is
reasonable to define failure modes in terms of the average stresaes
m,e.,o, J" for the plate elements.

Due to the nature of the loading, that is, laterally applied to the
truss core panel, and simply supported edges it is obvious that the
important elements to consider ani thair primary stresses are (see
Pigure S): (1) upper face mslemnta su h ag (4-0) subjlected to biax.al

L2
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comprogsion; (2) lower face elements such as (5-7) subjected to bisxial
tension; ana (3) web elements such as {L-5) subjected to combined
stresses of compression, shear and in-plane flexure, Since in any
practical case it is not always obvious what the degree of fixity is at
the adges of the pansl, it 1s conservative to use simply supported edges,
How the specific criteria for these elementa will be listed and as such
rapresent the constraints which are imposed on the structure and which
sust not be viclated when determirirg a minimum weight design,

The upper face elemenis are aubjer~ted to essentislly biaxial

compression as shown in Figure 6, which can be evaluated as

Y ii;"__ Uy
Y I o,

S
£, - & X
=T oL,
- b. -
rote. ¢ = forc
Figure 6
Stresses on Typical Element
= -1
Oyw = -3 . (2.1)
m (2.2)
o‘ = --—!——- — .
xx 2 tr
43
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Hewsver, it can be shown that since b>>1; , tha atability of this
element can be reduced to a one dimensional problem, Hence, the

buckling criterion ia

x| = = ———L—;P"l E (ji\)z (2.3)
KR er 3(\"17; *Qf .

so that the constraint introduced for the stresses in the upper face is

T < 2 PilEctp(tj-_)l

3 (1-v2) 7 (2.4)
The lowsr face slements are subjected essentizlly to biaxial
tension (Figure 6) which can be evaluated as
Oyy = “2—'-1%- (2.5)
Oxx = -f,_—.gl (2.6)

{

In this combinad stress situation it is ususl to resort soms theory of
failure depending on the type of materisl used., For example, if the
wnaterial is ductile a widely accepted thoory is Maximum Shear which
interprets failure as occuring at first ylelding of the ductile material;
if the material is brittle then many times the Maximum Streas Theory is
usad, Thus the constraint introduced for the stresses in the lower face
is aimply that the larger principal tensile stress is less than or equal
to the fracture atress in a uniaxial tensile test of the material,

The web element is essentially subjected to a combination of
stresses resulting from Owxx, Oy, and OL, as shown in Figure 6.

In terms of the average ctresses

d
o_:&u. = ?-ﬁvc BXQL) ,Z e (2'7.)

Lk




HAEC=-ASI~1111

) T
Ovy =~ 7 = (2.8)
o'ny = ";‘2-' —% (2,9)

Equation (2.7) is the O, stress developad as a ccnsequance of the U
stresses and is given in Appendix 1 by Equation (A.Ta). Note that
8ince the analysis given in Chapter 1 evaluates (3 (x) by a truncated
ssries then gy% can be found by termwise differentiation. Although
no rigorous theory sxiste to account for buckling of a long thin plate

under combinséd loading, Reference 5 recommends a criterion of the

following type:
RI ¢ R} +Ry %1 (2.10)
where
R = o applied stress
~ " allowable stress

1,2,3 index which ipdicates the typs of lo?g’ng, 8.8,
comproasion(c ’ shear (8 , or flexure

X,y,t numerical exponents,
In particular, Referance 6 in Figurs 27 presents interaction curves
for various combinations of compression, bending snd shear., Thus, a
criterion given by Equation (2.10) or data from interaction curves
the third conotraint is introduced which cannot be violated during the

optimication process.

E. Optimisation Procedure

Baged on the form of analysis developed in Chapter 1, it is readily

apparent thet for the truse core sandwich pansl under lateral losds
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opitinization by extremization ot 4 functional form 1s impractical but
rather a nume.:/cal procedure will huve to be utilized. Consequently,
opyimum deaign will not »e defined as that one in which the most
obvious failure modes occur s.multanecusly., Instead, the criterion
used will be to choose those valies of the design parameters which
sake the total weight a minimur subject to the reatriction that none
wf the failure (citeria are vilaced.

he veccameded method of achieving an optimum design will be
the direct approach as described in Section A. Since no analytical
expresajpns exist at this time which predict the stress distributions
foy the panels considered in this report, the direct approach appears
to be the most straight {orward and feasible technique and in esgsence
concurs with the philosophy promulgated by R. Bellman in Reference 7.

E
The two material parameters, —£ and Xﬁ, and the four geometrical

C -Uc

parameters, h., t., tg, and 0 , define a six dimensional space with

a one to one correspendence between a point in space and a particular
design. Since every point in the space obviously will not correspend
to a design which will not fail, the first step will be to ascertain
the region in space which corresponds to designs which do not fail.
These valid designs are numerically determined by the procedure

given in the flow chart, Figure 7. Thus, the hypersurface separating
the region of no failure from the region of failure iy obtained. As
a consequence of these calculations, the extremum regions on the

weight hypersurface will be grosaly defined. The next step is to
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refine the geomstrfcal parameter increments in the region of minimum
panel weight uviucil a design conifguration is secured to whatever

acqyracy is deemed necessary,

Referring to Figure 5, the entir weight of the structure
(agclynive of weight of adhesives or fas eners), expressed in terms of

tge deajgn parameters, is easily seen to 3

W o= ab{@iﬁt—‘— + 2_(-7;1‘;] (2.12)

sIinB

were Q. and ()g are the weight densities of the cors and the faces,
respootively, and all other quantities are defined in Figure 5. It is
immediately seen that neither hc nor the ratio of mechanical properties
enters directly into the weight, however, it would be erroneous to
conclude from this that the depth d~~- not enter into the weight,
Only two of the three parameters, b, hc' and 8 can be chosen to be
independent for the geometry shown and Equation (2.12) takes b and ©
as the independent parameters. The ratio of the mechanical properties
will also enter the picture in an indirect manner since they will have
an effect on what values for the other design parameters constitute

a safe design.
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APPE*DIX 1

GOVERNING EQUATI IS U™ ONE-DIMENGJIONAL ELEMENTS

It is the purpose of this appendix to investigate the validity
of p-etulating that the basic elemsnts have only one gignificant
imenaion and to obtain ...~ -“wations goverring the response of these
one ¢imensional models.

The restriction of the bagic eiements to thin plates {i.e, with
respect to the other two dimensions and the rate of spatial variation
of the loading) subjected to in-plane loading allows average values to
te used as far as the thickness direction is concerned. The resulting
twoc dimenaional thsory, geaneralized plane siress theory, is well under-
stood and the requiremsnts for its validity need not bs investigated
here, It is the further redu~tion from a iwo-dimensional problem to a

one-dimenaional problem that needs to be investigated.

Case I:

Consider the boundary value problem shown in Figurs Al.

Y
?lz o (x) 2 000
h
2
-+ - e - - X
-5
? -lz- o () ‘E é)(_x)
| P _,_-‘e R - - .
Figure Al

with the boundary conditions at x = 0 and x = 1 nut being specif.a:

A8 y»ti,

SRR e o8

K

)
Al oNn

gy I
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The appropriate governing equations are:

Equilibrius:
Oxx,x + Cuy,y =0
(A.I)
O”‘Y»K + O;Y'V =0
Stress-Strain: ,
Tex = ‘Zfsv (éuz +V eyy)
{A.2)
Ovy = -f:%(éw + U Eun)
Oxy=2G Uy
Strain-Displacement :
e "R = L‘(,K
éYY = U;Y (A.))

'
EA\/ 2-5_- (u,y* L’Tﬂl)
The cowmma notation indicates partial differentiation with reapsct

to tho variables x and y. The boundary conditions on the edges y =

2 W2 are

_+ OCx)

Ty =* 2t
(A.L)

yeo (Zt

vhere the plus sign is correct for y = + h/2 and the minus sign is
correct for y = - h/2,

In order to solve this system of equatioris it is posaible to first
substitute the strain-displacemant relations into the stress-strain
relations to obtain stress-displacement relations and then substitute
the result into the squilibrium equations to obtain two coupled partial

differential equations in « (x,y) and U"(x,y). To satisfy these
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eguations in conjunction with the houvrs , conditions as listed in

(A.L) &8 not, in general, prasible. however if "h" is much less than
any characteristic dimension in the x direction (i.e. either the length
or some measure of ths raie of variation of o (x)or E(x)), then an
approximate solution can be achieved on the basis of the fellowing
assumption: the y varlation of the unknown displacemsnta W (x;y)

and V (xy)is expandable in & power series. Under the asaumption of
small h relative tc dimensions in the x dirsction these powsr serias
expansions will converge quite rapidly hence a good approximation can
be obtained by truncating after the first few terms., Realizing this,
the truncation ie introduced in the very bsginning rather then

obtaining first the exact solution in esries form and then truncating.

It is important to notice, however, that the truncatsd series is

only approximate and &s such cannot satiafy the pair of partisl

PR TR T

differsntial equations discussed above but rather can satisfy only
certain saspects of then,

The form of the loading applisd to the edges at y = ! h/2 will
give rise to a w(x,y) which is antisymmetric in y and a v (x,vy)
which is symmetric in y. Noting this, then if the powsr series
expressions is truncated after one tern the fcllowing form for the
displacemant field resulta

UL (n,y) = giaiiilbl

U x,y) = ¥(x)
whers @(x) and w(x) are to be determined by satisfying some aspects

(A.3)

of the governing equation, The atrain ans stress fielda associated

with the above displacemsnt fiold iz obtained by direct substitution
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€ al%f——‘hL (A.6)
€yy=0 5
=4 128¢() . d¥

Oy 2y K dx]
O‘xj‘ - 4‘ﬁ d@ ‘y (Ao? l)

-V dx b
oyy =AY <@ 5 (A.7 b)
o;w.y =Q (_Zh_@ + _._.gz__) (he? o)

As asntioned above, subatitution of Equations (A.7) into the
equations of equilibrium will show that they will not be satisfied no
mttor vhat the form of 3 (x) or ¥(x). However, soma aspscts of them
cen be satisfied, Integrating the oquations with respect to y froa

= h/2 to h/2, and making use of the boundary conditions expressed in
(A.4) results in

h
2
f;- Tundy =0 (4.8 8)
Ly
3
aq,__fo‘dy,uo’(") = O (A.8 b)
X oy

It 19 obvious that Equstion (A.8 a) will bs gsatisfied regardleses of the
fore of u(x) and yx) vhereas Equation (A.8 b) introduces the following
restriction which is obtained by substitution of Equetion (A.7 ¢) into

Eguation (4.8 b) and parforaing the indicated integration

O(x)= ~G hf(%g_ . %_%) (1.9)
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In addition tc satisfying the equilibrium equations in an

averags sense, the requirsmont that siresa couple equals zero can

alezo be satisfied, Multiplying each of Equation (A.1) by y and then

integrating, again making use of Equation (A.l) the results ara:

L)

b,
d 2 2
e Ym*d‘i +hpx) ._f Oxydy =0  (A.10 a)
dx _2 2 ~% Y Y
d P2 %
£ z YO;'YdY _.fo'” cfy = QO (.10 b)
A
7 - h

By direct substitution of Equatien (A.7} into Equation (A.10), it is
resdily seen that Equation (A.10 b) is idsntically satisfiasd while

Equation (A.10 8) introduces the fullowing restriction on (3 {x)
and T(x) 1

eu)nzat@ﬁ-~iLﬁuL fgx]

o 30-vddxt  d«x (a,11)

Equations (4.9) and (A.11) pgive the desired relations betwasn

tha loading and the diasplacement fleld subiject Lo the restrictions

slready noted. A wmore rigorous snalysis using ensrgy concepts would

shov that 1t is logically counsistent to introduce & shaps factor
(termed I¢') into Equation (A.7 c). That ta,

Ony = K‘C‘(Z"&‘ + g‘f) (A.7 d)

Introducing this fector psrsita Equations (A.7 d) and (A.1]) to be

written es
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o(x)=-2 K*G¢ %@fﬂ - KGht LR

dx‘
) = [4KS _zahtd] 3+ d¥(
? ) [ﬁﬁfh Bht 16004 210Gt 410

A word should be said about the boundary conditions to be applied
to the ends x ~ 0 and x = £. Obvioualy, it is not possible to satisfy
the exact boundary conditions of the three dimensionzl theory but only
zetinfy thess boundary conditions in an sversge senss, By virtue of
8t. Ventnt's principle, howaver, it is known that ths error associated
with not satisfying these conditione exactly iz confined to the region
in tha vicinity of the two ends.

Cass II: HNext, consider the boundary value problem shown in

Pigure A2, \
Y }i T
& 3
3 e L o N
.}
1s :
I y, [l{ F s}
Pigure A2
with the boundary conditions at x » O end x » £ being left
unspecifisd for the tLims being.
Ths governing equations are again (A.l) through (A.3) with the
boundary conditions on y * & h/2 being exprassed methsmatically as
Ty = I——}(:
2
(A.13)
O-yn = 0O
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4 solution of the following form is taken

w OGy) = W (%)

, (A.1h)
UV yl=s Us (XD y 4+ U~ (x,)/)

where it hes been sssumed that

Uz (x) = U=2)T700 (4.15)
4Gt
By substituting this form of the solution in Equations (A.1) through
(A.3) and (A.13) results in the folinwing boundary value problem on

@ (xy)and Uxy) .

Equilibriua:
O hnyn + Ty = — 20 @)

Tuyn + Tyl = - 20l ooy &1

Stress-Streing
Cun =2GQ (€un v VEL)
§ -
, . . A7
Tvy =2G (€, vLEL) (A1)
=

Ony=22G ¥ .
Strain-Disglaceasnt :Y “ Y

é%l‘ s u\ ~
[ i ' )
Yly = _E ( u’y + (j‘, “)
Boundary Conditione ony * 2 n/2:
O"yy’ =0

S o Vs () (4.19)
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wvhere the mirua sign is correct for y v < n/? and the plus sign
ie correct for y » - h/2,

Kow, without actually solving the boundary value problem for
&'x,y) and U"(x,y) s it is desirable to obtain soms knowledge of the
order of magnituda of these terms relative to (/g (x)y .

To do this properly 21l dimensions are first normalized with respect

tc soms charscteristic length, say h,

Lat §=
n=%

In Yerms of g and N 28 the indepandsnt variables the boundary value

(A.20)

problem on “-'(f,q) and U"(glf\) bacomes

Bquilibrium:
Tx,€ + Tay\n = ~ 28 2-55—5) (a.21)
Onyf + Tyyin --g%f.':u__)dd C::') n
Stresp-3train: €
B 2 “ .o
ol = ES (e vey, -
O—y'r“‘iz:%(e'vy“ ’Veu:) o
diy.. = 2 G Y»\\;‘
Strain Displacesnnt:
e.nu“ - : M ¢
€ - T:T Y g‘ {A.23)
Y % T A
anu;\(u +-L/"u§)
Boundary Conditions:
Tyy" = O
“ (r.2
Ony' = ¥ 2G 42K ¥

g
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In Equations (A.20) through (A.2L), the double prime has been intro-
duced to emphasize the fact that the independent variables hava besn
changed.
It can be shown that all of the forcing terms on [(,('(g'rl)/h]
and [U’"(g, '\)/L\] are dependent on darivates of vy (§)
with respect to §’ . Since this i3 true and since the first porticn
of ths aolution is equal to t)';(g')hr\it is consistent to neglect the
sacond portion relative to the first provided
’dm e
ve (§)

The reault of doing this is to obtain as & solution the 4‘

<< |

folleowing
WX, y)=0

) (A.25)
U"(X, ) = (!"‘-7_) I (x)
Y a6t 7

vhich is used in Chapter 1,
Hothing was said of the boundary conditions applied at = = ©
and x = £ , Once again undar the assumption of h << , the effect

of the boundary will bs emall except near the extremjties of the momber,

Case III: The final case 1is the boundary value problem as shown in

Y
Figure A}, t L 17 (x)

-_-—_.“k

D e

{
5 X

Figure A}

vith the conditions &t % = O and x = 1 left unspecified for the moment,
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As baforas it can be shown that if h << @ and much leass
than any rate of spatisl variation of 7 (x}then it is justifiabls to
deal with an average value rslative to the y diresction. Such en
sttack will result in 4he number being treated as ons dimensional.

The solution is

TT(x): ZG‘\f dzUc(X)
(+V x*

(4.26)
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