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ABSTRACT

This paper gives an algorithm for L-shaped linear programs which arise
naturally in optimal control problems with state constraints and
stochastic linear programs (which can be represented in this form
with an infinite number of linear constraints). The first section
describes a cutting hyperplane algorithm which 1s shown to be
equivalent to a partial decomposition algorithm of the dual program.
The two last sections are devoted to applications of the cutting
hyperplane algorithm to a linear optimal control problem and
stochastic programming problems.




L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO
OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING

by

R. M. Van Slyke and Roger J.-B. Wets

I. Introduction

It has been observed by many authors, see e.g. Barr [2), Gilbert [12], Rosen
[21,22], Neustadt [18], Whalen [29,30]), Zadeh [31], Pshenichniy {19], that the
techniques of mathematical programming can be utilized to solve optimal control
problems. The usual approach (although others are possible, see e.g. Dantzig [6],
Van Slyke [23}) is to discretize the system either by finite difference approximations
or by considering the system in sample data mode. If the system dynamics are linear
and there are no state space constraints various devices [6,23] of mathematical
programming can be used so that the grid size or number of sample points in the
sample mode does not affect the number of equations in the associated mathematical
program. This is desirable since the computational effort for solving linear
programs by the simplex method depends much more on the number of equations
involved than on the number of variables. However, if state space constraints are
present the number of equations can grow astronomically. This is unfortunate,
especially in the common situation where the state space constraints are automatically
satisfied for most time periods. If confronted with problems of this type, the
following heuristic procedure suggests itself: First solve the problem without the
state space constraints, then check if the solution satisfies all the state space
constraints. If it violates some of these constraints, introduce only those which
are violated and solve this new problem. The procedure is repeated until o feasible

(and thus optimal) solution is attained. The algorithm developed in this paper




formalizes the ideas of this heuristic procedure. Whenever we obtain a solution
which violates some state space constraint, we generate a restriction on the
controls (rather than on the states) which eliminates the various solution from
the feasibility region.

The algorithm can be slightly modified to solve stochastic programs with re-
course, first considered by Dantzig [5] and Dantzig and Madansky [7] under the name
of two-stage linear programs under uncertainty. The problem here is the following:
A decision must be made before the actual value of some of the parameters of the
problem is observed (it is assumed that those parameters are known in probability).
Due to the lack of knowledge of the particular outcome of the random elements of
the problem discrepancies may occur which, after observing the actual values of
those parameters, are to be corrected by selecting a particular recourse action
(also called second stage decision). One of the difficulties which arise when
trying to solve such problems is that a particular decision and a particular out-
come of the random elements may give rise to discrepancies for which there is no
(feasible) recourse action. Thus, one should only select decisions, such that for
every possible realization of the random elements, a (feasible) recourse action
can be selected to correct the eventual discrepancies. Earlier treatments of
stochastic programming ignored this difficulty {7], [25] by assuming that the
structure of the stochastic program was such that this problem could not arise. Tt
did appear that unless one made this assumption the additional constraints one had
to introduce could be very large, even infinite when the random parameters had
continuous distributions.

In [7) Dantzig and Madansky considered stochastic programs with finitely dis-
tributed random parameters and complete recourse, i.e., for every decision and
for every outcome of random variables there exists a feasible recourse. For
obvious practical reasons it seemed desirable to remove those restrictive

assumptions. The last section of this paper develops an algorithm for stochastic




programs which fail to satisfy the complete recourse assumption as well as the
finite distribution assumption.

In (27] it was shown that for stochastic programs with recourse (random
right hand sides) the set of feasible decisions, represented by a n-vector x , is
a convex polyhedral subset of R" , thus at most a finite number of linear
constraints must be added to the problem to determine the set of feasible decisionms.
However, the characterization of the feasibility region given in [27]) is not very
constructive. The algorithm developed here generates these linear constraints
systematically and generates only those which are violated by some optimal
decision candidate, in much the same way as in the control problem with state space
constraints.

The stochastic programming problem differs from the linear optimal control
problem in that there i1s a cost associated with the recourse actions which must be
accounted for. Dantzig and Madansky [7] suggest sampling to obtain the appropriate
characteristics of the cost function associated with the recourse problem.

However, as pointed out by MadanskyT, the utilization of sampling can lead to
inaccuracies. This as we shall see, can be avoided by using a gradient method rather
than a cutting plane method.

In Section 2,an algorithm which is essentially the same as the algorithm
developed by Benders [3]++1s described and a geometric interpretation is given.
Section 3 exhibits the duality between this algorithm and a variant of the
decomposition algorithms of Dantzig and Wolfe. The applications of this aigorithm
to optimal control problems with state space constraints and stochastic programs
with recourse are developed in Sections 4 and 5 respectively. Now, let us give a

mathematical formulation of the linear program we are interested in.

f SIGMAP Conference on Stochastic Programming, Princeton, New Jersey, (December 1965).

s

' This was pointed to us by E. Balas.
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We give the name L-Shaped Linear Programs to linear programs of the form

(1) Minimize 2z = clx + czy
(1.a) subject to Allx = b1
(1.b) A21x + A22y = b2
x>0,y>0
11 21 22
where A is a m, X nl matrix, A is m, X n1 and A is m, X 0, .

As can be seen from the applications that we have in mind, we expect that (1) has

some or all of the following characteristics.

(1) The constraints A21x + A22y = b2 are loose, in the sense that

for "most" vectors x satisfying A% = b , x>0, there

exists y > 0 such that the constraints Azlx + A22y = b2 are

satisfied.
(11) The vector y 1s of little interest and the value of c2y is a
small factor in determining the value of the optimal solution.

21 22
y=

(1i1) The constraints A" x + A b2 are numerous, possibly infinite,

and are often given in an implicit manrer.

Thus, in order to speed up computation and limit storage requirements it is

desirable to work mainly with the constraints (l.a) and consider the constraints

(1.b) and the variables of y only when needed.




2. A Cutting Plane Algorithm

&.__Feasibility.

Instead of problem (1), let us first consider the special case where c2 =0 .

(This corresponds to the problem arising in optimal control problems with state

space constraints):

Minimize 2z = clx

(2) subject to s - bl
A21x + A22y = b2
x>0,y>0.

In this case the algorithm proceeds as follows. First solve the simpler linear

program
Minimize z = clx
(3) subject to Allx = b1
x>0
whose optimal solution we denote by x . For the time being we assume that (3) is

solvable. If x satisfies the
vy g . . " 22 2 21~
Feastibility Critericn: There exists y > 0 such that A""y = b" - A""x ,
then x and some y determine a feasible (and thus optimal) solution to (2). We

denote by K2 the set of all x satisfying the feasibility criterion.

If x does not satisfy the Feasibility Criterion, we generate a constraint

involving only x which is violated by x but satisfied by any feasible solution to

(2). This constraint is then added to the constraints of problem (3). This added

constraint has, in a sense to be made precise later, (Section 2, E) the property




that it cuts deepest into the set Kl = {x|A11x = bl, x > 0} . The process is
then repeated until an optimal solution to the augmented problem (3) satisfies
the feasibility criterion. We will show that we hsve to add at most a finite
number of constraints to (3) in order to achieve this goal.

To determine whether x satisfies the Feasibility Criterion or not we try

to find a nonnegative solution, y , to

(%) & % b~ AR

This can be considered geometrically. Let pos A22 = {t|t = A22y »y >0} be

the closed convex cone generated by the columns of A22 . Then x satisfies

- 2
the feasibility criterion if and unly if b2 = A21x € pos A2' . If not, i.e., if

b2 - A21§ ¢ pos AZZ

b2 - A21§ and pos A22 . Such a hyperplane, say {x|ox = 0} , is determined by its

21

, there is a hyperplane through the origin separating strictly

normal o which must satisfy ot <0 for t € pos A22 and o[b2 -A“M)x>0.

Figure 1.

The normals o , which are needed, are generated using a slight variant of

the Phase I procedure for the simplex method. We solve




+ -
Minimize w=ev + ev

(5) subject to A22y + Iv+ - Iv = b2 = A21§

where e 1is a row vector of 1's, 1 1is a m, X m, identify matrix and v+ R

and v are mz-vectors of variables.

Problem (5) has always an optimal solution with w > 0. x satisfies the
feasibility criterion if and only if at the optimal w = 0 . If at the optimum

w > 0 , then there exist dual variables o satisfying

22

oA <0
(6) -e <0 <e
o[b2 - A21§] = Minimum w > 0 .

Thus o has the desired properties. In the next sectiong we show that the o's

generated by solving (5) are optimal in some sense and give the geometrical

interpretation in more detail.

In order for x to be feasible it is clear that b2 - A21x must be on the

same side of the hyperplane {t|ot = 0} as pos A22 .

Thus, x feasible implies that
o[b2 - A21x] <0.
Thus, we add the constraint
(7) [0A21] R 3 ob2

to the linear program (3).

It is also possible that when solving problem (3) (or even after a few

—




additional constraints have been added) we discover that (3) is unbounded. Taus,
the solution to (3) is no longer given in terms of a particular vector x but

we are given a half-line in Kl , say ;p + xic » A >0, onwhich cx decreases

monotonically to - < as A goes to + « . We have that:
(8) Proposition:
If -A21§c and Bl A21§p belong to pos Pec , then (2) is

unbounded. If -A21§c f pos A22 then every solution to (2)

must satisfy the constraint.

(9 [0a%1)x > ob?

which is violated by xp + X;c for A sufficiently large, where o denotes
the vector of optimal simplex multipliers corresponding to the optimal

solution to
- + =
Minimize w = ev + ev

(10) subject to A22y + v - v = - A21§

21 1

- 22 R 22
If -A X € pos A but %7-A xp ¢ pos A then every feasible

solution to (2) must satisfy the constraint generated by solving the

linear program (5) where x is set equal to xp

Proof:
The conclusion is immediate if —A21§C and bz - AZI;p belong to pos A22 .
If -A21§C { pos A22 then for some X , b2 - A21§ - AA21§C ¢ pos A22 for all

A > )X . To see this, it suffices to observe that if o are the optiral simplex

9 )
multipliers for (10) then UAZ“ ~ 0 and nA21xC 0 . Thus, by scle:tiny )

- 21-
sufficiently large o(b2 - A2]xp - A lxc) can also be made artitrarilv  ciall,




Set X =0 if o(b2 - A21§ ) < 0, otherwise select %X such that

p’ =
21§p - XA21§C) =0 . Then for all A > XA , 0 determines a hyperplane

separating pos A22 and (b2 - A21§p - AAZlic). It follows that every x in

o(b2 - A

K, such that x = (ip + X;c) + u§c p >0 violates (9) which must be satisfied

1
by every feasible solution to (2). If -A21§c € pos A22 but b2 - AZI;p f pos A22
either b2 - A21§p - AA21§C does not belong to pos A22 for all X > 0 or there

exists A such that if ) > 35 b2 = A21§p = AAZlic belongs to pos A22 . Now

let o denote the optimal simplex multipliers obtained from (5) by setting

X = §p . If for all >0, b2 - A21§p - XA21§C does not belong to pos 22 "
the ray §p + A;c violates for all X the constraint (7) so generated and thus
this particular extreme ray is eliminated from the feasible solution. On the

other hand, 1f b2 = AZl;p - AA21§C belongs pos A22 for X > X , the points

bf - APl + TR - APl b0
satisfy the constraints and the ray (;p + X§c) + “;c has not been eliminated from
the set of feasible solutions.

We can thus summarize the procedure to find an optimal solution to (2), as
follows:

If (3) (with as without additional constraints) is solvable with x = x . We
then solve (5). If w =0 then x 1is an optimal solution for (:). Otherwise we
generate a constraint of the type (7) which is then added to the constraints of (3).
If (3) (with or without additional constraints) is unbounded with a direction of
decrease for c¢x given by x = ;p + A;c » A >0 . We then solve (10), and (5)
with x = §p . Let w and w denote the optimal value for (10) and (5)

respectively. If w=w=0 then (2) is unbounded. If w>0 , we use the

optimal multipliers of (10) to generate a constraint of the type (9) which is
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added to the constraints of (3); if w=0 but w>0 , Wwe generate a constraint
of the type (7).

Clearly this process is finite since each o0 corresponds to a basis for (5)
(or (10)) of which there is a finite number and, moreover, no constraint can be
repeated. Obviously, no constraint of type (9) will be generated after we obtain
bounded solution to (3).

It is conceivable, of course, that the number of bases of (5) or (10),
corresponding to a particular o could be very large, so that the number of
generated constraints could be large compared to the number of original constraints
(1.b) in which case the proposed algorithm might be inefficient. However, since we
only add binding constraints which have a deepest cut property (as we shall see
later) and if properties (i), (ii) and (iii) mentioned in the introduction are
satisfied, this seems unlikely.

Another useful property of the algorithm is that in adding new constraints to
(3), the next iteration already has a basic solution which is infeasible only for

one basic variable. The basis is the basis for the previous iteration, plus the

slack variable for the added constraint. Thus, each successive x can be easily

obtained by a few steps of the dual simplex method.

B. Optimality

A . 2
We now return to our original problem (1), i.e., to the case when ¢~ may

be different of zero. Obvicusly, problem (1) is equivalent to:

Minimize clx + 8

(11) subject to G(x) < 8
Xt K= K1 @ K2
where
12) O B (Min Gyl gle B < Bl % 5 o)

L o
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We first observe that

(13) Proposition:

For all «x ¢ K2 , Q(x) 1is either a finite convex function or

Q(x) 1is identically - = ,

Proof:

For all «x ¢ K2 , the linear program

Minimize c2y

(14) subject to A22y = b2 - A21x

y >0

is feasible. Moreover, for all x ¢ K, » (14) 1is unbounded if and only if the
linear system nA22 < ¢ 1is inconsistent. Thus, if (14) is unbounded for some x ,
it will be unbounded for all x . It remains to show that if Q(x) is finite on

the convex set Kz , then it is convex. Consider xo, x1 € Kz and

xx - (l-A)x0 + Axl where ie([0,1] , and let yo, yl and yA be optimal solution

to (14) when x equals xO, x1 or xA respectively. Then,

109060 + QG + c[@-1)y? + 2yt > eyt + otxh)

since (l-X)y0 + Xyl is a feasible solution (but not necessarily optimal) to (14)
when x equals xx

Moreover,

(15) Proposition:
Suppose Q(x) is finite, let n denote the optimal simplex
multipliers corresponding to the solution of (14) with x = x ,

then the linear function




(16) Gatlyx - (mbd)

is a support of Q(x) .

Proof:

Since n is optimal for (14) with x = x , then by duality theory for linear

programming we have that

1_1(b2 L Q(x) .

By assumption Q(x) is finite and thus for all x ¢ K, , n is a feasible solution

for all duals of (14):

(17) Maximize n(b2 - Ale)

nA22 = C2

but 1 1is not necessarily an optimal solution. Thus, again by duality theory we

have
?r'(b2 - A21x) < {Max n(b2 - A21x)!nA22 & c2} = Q(x) for all x ¢ K2

Even though the following observation is not absolutely necessary for the

subsequent development, it is worthwhile to note that

(18) Proposition:

Suppose Q(x) is finite on K2 , then Q(x) 1s a convex

polyhedral function.

Proof :

By letting x range over K2 » we see that only a finite number of supports

to Q(x) of the type (16) can be generated, since every n corresponds to a




o
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particular basis of A22 and A22 has only a finite number of square nonsingular sub-

matrices. Moreover, for all x ¢ K2 there is some support of type (16) which
meets Q(x) at x . Thus, the upper envelope of this finite number of linear
supports coincide with Q(x)

The process to obtain an optimal solution to (1) or equivalent to (11) is
very similar to the one already described for finding a feasible solution. Suppose
X 1is a feasible solution, i.e., x € K = Kl s K2 , and (14) is solvable with

x = x . Let 7 be the corresponding optimal simplex multipliers. Then:

Q(x) = ?(b2 - A21§)

Moreover, by convexity of Q(x) and the properties of © given in (15), it follows

that

Q(x) > m° - [7A

for all x in K . Thus, a pair (x,8) is feasible for (11) only if

9 > w2 - [7a%1)x

which we can also write

(19) (7a2l)x + 0 > 7b2

On the other hand if (xo, 60) are optimal for (11) and "O are the optimal

simplex multipliers obtained from (14) by substituting x for x0 , we have that
QL) = %2 - 10421,0

0
The optimality of x0 implies that cx + Q(x) _ c¢x +-Q(x0) for all x in K .

From 60 > Q(xo) and 6 unrestricted in (11) it follows that UO = Q(xo)




These two last observations allow us to construct a finite procedure for
finding an optimal solution to (1). Say (xk, ek) is an optimal solution to the

linear program

(20) Minimize clx + 9
(20.a) subject to [nlA21]x + 0 > (nlbz) £=1, ..., k-1
X € K1 ) Kz 5
We then solve (14) with x = xk . If (14) is unbounded then (1) is unbounded. If
not, let nk+1 denote the optimal simplex multipliers. Then:
(21) Optimality Criterion:

Vi 9k . ﬂk+1[t2 - Alek] then xk is an optimal solution to (1). If

Gk < Q(xk) we add the constraint

k+1, 21 k+l, 2
m A m

[ b

Jx + 8 >

to the constraints of (20), which has the effect of eliminating the solution

k
(xk, ) from the set of feasible solutions of (2). The algorithm is initiated

with xO minimizing clx on K and 80 = -,

Now suppose that (20) is unbounded after at least one constraint of type (20.a)
has been introduced. Note that in such a case, (20) cannot be unbounded for some
fixed x and 6 = -~ » | since 6 must satisfv the constraint of type (20.a). Thus,
there exists some ray, say xp + Axc » A > 0 on which the objective of (20) can He
pushed to - = ., Checking if this ray belongs to pos A22 has been dealt with in
the previous section. If not, we generate constraints of type (7) or (9). Now

2 _ 21 21

suppose b xp and -)A X belong to pos A22 . Let Y. be an optimal

solution to the linear program:
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Minimize czy

21

subject to A22y = - A X,

y>0

and let m be the corresponding vector of optimal simplex multipliers. If
clxC + c2yC < 0 then obviously (1) is unbounded. If clxC + c2yC > 0 then
X, is not a desirable unbounded direction since letting A go to + « ({in

X+ ch would push the objective of (1) to + « . In this case adding the

constraint

(a2 )x + 0 > [nb?)

to (20) would eliminate the direction X, from the desirable (optimal) solutions
of (20). If clxC + c2yc = 0 then no point of the ray xp + Axc will be
preferable to x_ as a solution to (1), thus adding the above constraint to (20)

will keep xp in the set of feasible solutions of (20) but will eliminate the

other points of the ray.

This process is obviously finite since each = corresponds to a basis of A22

and these are finite in number. Moreover, no n can be generated twice since this

would lead to a constraint already present which could not be violated by the solution

at hand. In this section we have assumed that each x pgenerated is a feasible
solution, if x ¢ Kz then one may have to introduce ccistraints of type (7) or (9)

before continuing the search for an optimal solution to (1).

C. Summary of the Algorithm.

Step 1:

Solve the linear program
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(22) Minimize z = clx + 0

(22.a) subject to Allx = bl

(22.b) *a?l1ix > (M) k=1, ..., s

(22.¢) [(7*a2l1x + 6 > [n¥p?) k=1, ..., t
x>0

Initially, s =t=0. 6 1is set equal to - ~ and is deleted from the
actual computations as long as there are no constraints of type (22.c). If (22) is
infeasible so is (1) and we terminate. If (22) is solvable go to Step 2 if (22) is

feasible but unbounded go to Step 2'.

Step 2:

(22) is solvable. Let (xz, 62) be an optimal solution to (22). Use the

simplex method (Phase I, Phase II) to solve.

Minimize w = c2y
(23) subject to A22y = b2 - A21x2
y20

If (23) is infeasible, i.e., Phase I terminates with the infeasibility form
different of zero, we use the multipliers so generated to construct a constraint of
the form (22.b). If (23) is feasible and unbounded so is (1) and we terminate. If
(23) is solvable and Min w(xl) = 62 then is xQ is optimal and we terminate.
Otherwise, we use the multipliers so generated to construct a constraint of the form

(22.c) and return to Step 1.

Step 2':

(22) is feasible but unbounded. Let xi + sz » » > 0 be a ray of unbounded
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decrease of clx . We then solve (23) with b2 - AZIxQ replaced by -A21xi :

If this problem is infeasible (i.e., Phase I terminates with positive objective
value), we use the optimal simplex multipliers to generate a constraint of type
(22.b). 1f this problem is feasille let yi be the optimal solution and nl the
associated simplex multipliers. Now solve (23) with xE = xi . If this new
problem is infeasible, we generate a constraint (22.b) as in Step 2. Otherwise,

1
either clxi + czyé < 0 1in which case (1) is unbounded and we terminate or

1 ¢ 2 2
c X 4+ c yc

n >0 and then ng is used to generate a constraint of type (22.c)

we return to Step 1.

Finally, 1t is not difficult to see that if so desired (e.g. in order to keep
the data related to problem (22) in the easy access memory) it is possible to remove
those constraints of (22.b) and (22.c) which are slack, although they may be
generated again and have to be re-introduced. This also necessitates a new
finiteness proof which is based on the fact that upon taking suitable account for
degeneracy, the objective value clx + Q(x) corresponding to every feasible
solution to (23) - generated in Step 2 - is monotonically decreasing so there are
only a finite number in which (23) has a feasible solution. On the other hand,
between feasible solutions to (23) when constraints of the form (22.b) are being

introduced, the value of clxk is monotonically increasing so that a feasible

solution to (23) always occurs after a finite number of steps.

D. Some Geometric Characterizations

We have already pointed out that checking if a particular point, say x , is

feasible corresponds to determining if b2 -,A21§ belongs to the cone

pos A22 = {t]t = Azzy »y >0} . Similarly, if at some stage the program (22)

2 LR

yields an unbounded direction, then solving (23) with b x replaced with

21 ¢ .
-A21xi corresponds to determining if the ray X(-A 1xc) » X > 0 belongs to the
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cone pos A22 . - Even checking for optimality of a given pair (62, xQ) can be

L
viewed as determining if (bZ s 21xl ) belongs or does not belong to the cone

c2 T 2 22- gy

pos 2= {t | T=cy,A y,y> 0} . In this section and the following one,
A

we limit our discussion to the case when checking for feasibility, i.e., x in K, ,

2

but in view of the above observations our remarks can be adapted equally well to
the other parts of the algorithm.

but does not belong to K, . Then solving the linear

Suppose x € K 2

1 ’
program (5) yields w > 0 . At the same time we generate some o , which corresponds

to a particular basis of the matrix (AZl. I, -I) . The basic solution contains at

: + -
least one artificial variable, 1i.e., a component of the vector (v , v ) , at

positive level. Since otherwise w = 0 and b2 - A21x € pos A22 . We have that

(24) Proposition:

Suppose the optimal solution to (5), with w > 0 , contains exactly
one artificial variable. Then, o 1is the normal of a supporting

hyperplane of pos A22 determining a (mz-l)-dimensional face of pos A22

Proof:

First note that this (mz-l)—dimensional face may be pos A22 itself viz.
if pos A22 is of dimension (mz—l). Also, by the hypothesis of this proposition

the cone pos A22 has at least dimension m2—1 . By assumption, there are at

least m2-1 columns of A22 such that 0Ai§ = 0 where Ai§ denotes the jth
column of A22 . Of these, mz—l are linearly independent since m2-1 belong to
the basis. Let F = {t | t = Z Aiiyj , y > 0} where J = {j l oAff =0} . It
now suffices to observe that gﬁi pos A22 n{t | ot =0}, that {t w o =0} is

a supporting hyperplane of pos A22 and that F has dimension m2-1 since it
contains mz-l linearly independent points.
Thus, if it is possible to obtain a solution to (5) with only one artificial

variable in the optimal basis it follows that o determines a (m2—1) dimensional



faces of pos A22 to construct the constraints (22.b) one expects that fewer

need be generated. In particular, the number of deficiency 1 faces of pos A22

is much smaller than the number of basis of (A22

» I, =I) [11). However, it is
not always possible to obtain a (m2-1) face of pos A22 . In fact as is
indicated in the next proposition, it is sometimes possible to obtain solutions to

(5) such that

{t | ot = 0} N pos 5 {0} .

(25) Proposition:

Suppose x ¢ K, and (bi - Ai:x) is different of zero for all

i , and that for all j

(26) ) a2, ) A%t

14 1
(1] @2 - aZpx) > 0 {ﬂwi-@h)<mj

holds, then no column Aii of A22 will figure in the optimal basis of

(5). Aii denotes the 1™ row of A%l .
Moreover, one should realize that the conclusion of the above proposition
depends very much on the selection of cost coefficients +1 for the artificial
variables in the infeasibility form. In fact, any set of positive numbers could
be selected as cost coefficients for the infeasibility form. Thus, an obvious

complement to (25) is

(27) Corollary:

Suppose x ¢ K, and (b2 - Ai&x) is different of zero for all 1 ,

and for all j and all sets of positive numbers My o eees M
2
the relation
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A > A
(28) ol ¥1%13 o Mih1y
{il(bi - Ajyx) > 04 {i](bl—Ai*x) < 0}
22 22
holds, then no column A*j of A will figure in the optimal basis
of (5). Aii denotes the ith row of A21 .

To see that the condition (28) is not vacuous , consider

A22 = (i ;) and b2 - A21x = (:% ).

Obviously the condition (28) is much weaker than (26) since it allows for
some perturbation of the coefficients of the objective function in (5). It also
indicates how one may modify (5) in order to be able to increase the number of the
columns of A22 figuring in the optimal basis. This would mutually increase the
dimension of the face of pos A22 determined by the corresponding o . 1In
practice, this would involve a parametric study of the linear program (5). The
constraints (22.b) so generated would generally be '"better" than those obtained
by solving (5) but whether the extra computation is justified can probably be

discovered only by experience in using the algorithm.

E. A "Deepest Cut' Property

As we mentioned earlier the constraints (7) obtained by solving (5) have a
deepest cut property with interesting geometrical interpretations which we now

examine. The linear program (5) can te interpreted as finding the nearest point

in pos AZZ to d = b2 = A21x in the sense of the Ql norm, {.e.,
Min [I z -d !ll
] m
(29) subject to z¢  pos AZZ,, R 2
d=) b
T2
wher: || z || denote the ¢ norm given by || z ||. = y |z,|
1 1 1 i=1 |
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m
The %, norm is defined on the space R 2 of column m,-vectors. Associated
m, My &
with R is its dual space (R ") which may be identified with all real valued
m
linear functions on R . As is well known, any linear function £(z) in
m
R can be represented in a one to one way as a matrix product w.x of a m,

dimensional row vector n , and the column vector x . We shall thus think of
My = Do
(R °) as a space of row vectors with the same dimension as R ° . A hyperplane,
m
H , passing through the origin of R 2 can be represented in the form
m
*
H={z|nz = 0} for some n 40 in (R 2) . However, this representation is not

unique since (Bn)z = 0 determines the same hyperplane for any real number

B ¢ 0 . To resolve this ambiguity, we specify that || = Il. = 1 . Where
m
i '||* is a norm defined on (R 2) . This norm can be defined quite naturally

m
(9], using . on R e by means of the following relation
1

(30) [ 1y = max tnz | ]2 1]y g 1)

It is easily seen that || m II* = || m ||m = m?x | L | , the L norm . A

given 1 , determines also a half space § = {z | nz < 0} which is bounded by H .
The condition that || m Ilm = 1 and the specification of which half space is to be
determined uniquely defines

The dual of (5) is

Max 0[b2 - A21§]

(31) subject to oA22 <0
Ioilgl i=1, ..., m
Let us interpret (31) in the language developed here. o 1is a m,
m
*
dimensional row vector which is an element of (R 2) . 1t determines a half

space, S , by S = {x | ox < 0} which includes pos A22 . This follows from

2
the relation z ¢ pos A22 implies that z = A 2y for some y > 0 ; hence |

- d
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oz = (oAzz)y <0 . The relations |01| L0 R A0 R m, 1s equivalent to
m
*
[l o |]_ <1 . oOf all elements of (R 2) satisfying these conditions we are

21}] . Let us now examine the geometrical

21;]

te find one which maximizes o[b2 - A

interpretation of maximizing o[b2 - A

The distance from a point z toa hyperplane H given by H = {z|nz = 0}
or equivalently from the origin to the plane H- = {z|loz = 02z} can be obtained

by solving the linear program:

Minimize ez+ + ez

+
subject to o0z - 0z = 0z

The optimal solution is obviously determined by z = z: = z; = ;L-oz H
\Y

+ =
. Thus, the distance from

z "z, = 0, for i # v where Iovl = max |o

|
=

z to H Iis

I -1 -
'm_r—rax Oi ' OZI— I'ro"ﬂ'm IOZ, .

Thus, problem (31) (i.e., the dual of (5)) can be interpreted as finding

m
2. %
oe(R 7) determining a supporting hyperplane of pos A22 which is as far as

possible from b2 = A21§ in the sense of the &, norm. Moreover, by the duality

1
theory of linear programming, we have that this maximum distance is equal to the

2 A21§ from pos A22 . Thus, in terms of the 1 norm we

‘ distance of b 1

1

have generated a "deepest cut."
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3. The Partial Decomposition Algorithm

A very natural approach to L-shaped programs is via the decomposition
algorithm of Dantzig and Wolfe [8]. Nonetheless, if (1) has the properties
mentioned in the introduction, the straightforward application of the
decomposition algorithm to problem (1) does not take advantage of the structure
of the problem.

Decomposition can, however, be advantageously applied to the dual of problem

(1):
Maximize w = ub1 + vb2
(32) subject to AT R < e
VAZZ . CZ

where decomposition is done with respect to the coefficient vectors of the

variables v , the coefficient vectors of the component u are retained

unmodified:
Maximize w = ub1 + X A, p, + z WY
k" k k 'k
11 1
(33) subject to UuAT + | AR+ ) wT <«
Dy =1
Ak >0 B >0
where Rk = ﬂkA21 and o LA ﬂkbz for a vertex nk of the convex polyhedron
determined by nAzz < c2 9 Tk = okA21 and Y = © b for an extreme ray nk of
2
the convex polyhedron, ﬂAz < c2 . If we now take the dual of (33) assigning

dual multipliers x, to the first n

j 1

inequalities and 6 to the last equation,

-
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we obtain the dual problem:

Minimize 2z = clx + 0

subject to Allx = b1
4 =
(34 ka +6 > Py K=ol ahe s 5 Lt
Tkx Y k=1, , S
x >0

or equivalently,

Minimize 2z = clx + 0

subject to Allx = b1
ahx > (%D k=1, ooy s
(nkA21)x 3718, 2 (nkbz) K=l o
x>0

which corresponds to (22). Note that the feasibility constraints (22.b) correspond

A22 < c2 , whereas the optimality constraints

to the extreme rays of the polyhedron n
(22.¢) correspond to extreme points of ﬂAzz < c2 . The constraints generated in
Step 2' of the cutting plane algorithm correspond to columns of (33) generated
during the Phase 1 of this partial decomposition procedure. Thus, the algorithm
which we developed here can be interpreted as a dual method of the Dantzig - Wolfe
decomposition algorithm.

On the other hand, if we consider the L-shaped linear program in the

equivalent form




25

Minimize clx + Q(x)

(35) subject to Allx - b1

then our algorithm can be interpreted as a cutting plane algorithm [4] , [16] . If

A21 and A22 have a finite number of rows, K2 is a polyhedral set and Q a2

convex polyhedral function. The methods of {4], [16] can be used to establish

the convergence of our algorithm in the case where the number of rows are

infinite; alternatively, the results in (23] can be used to establish convergence

using the interpretation of our algorithm as the dual of a decomposition procedure.
Thi: s simply a reflection of the fact that the cutting hyperplane methods

of Cheney and Goldstein [4], Goldstein ([13], and Kelley [16] on one hand and the

decomposition methods of Dantzig and Wolfe [8], the algorithm associated with

Wolfe's Generalized Program [5), [23], and in particular Dantzig's convex

programming algorithm [5] on the other hand are simply dual methods to one another.
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4, Optimal Control with State Constraints

A rather standard optimal control problem is

Maximize qO(T)

subject to g% = B(t)q(t) + C(t)u(r)
(36) qQ(0) = q°
: T
q(T) ¢ L = {q = (qo, oAy qn)lqi = q i=1, ..., n}

q(t) € Q(t)eRr"

u(t) ¢ U(t)

where U(t) and Q(t) are closed convex polyhedral sets. t We will consider the

discrete analogue of this system.

Maximize qg

subject to 9 . qu

qi = q(iA) and similarly for the other functions.
i

Al

i=0, ..., N-1 where A =

Since qH'1 = [T+ ABi]qi + actu , we can now solve for each qk inductively in

“+

The case where U(t) are not polyhedral leads to algorithms which converge but
are not finite. Problems for which U(t) is not polyhedral is treated in [23].
Problems for which Q(t) is not polyhedral can be treated by analogous devices.
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o 0
terms of the initial state q and the control sequence u , ..., U

Thus

q1 = [1+ ABO]qo + ac%®

q2 = [I 4+ ABll{[I + ABO]q° + ACOuO} + AClul

and {n neneral

0
qk+1 = ;jgkll + ABJ]S q° + [T + ABk] el [T+ ABl]ACOUO + ...

k—luk—l " k k .

+ (1 + ABk]AC AC u

Let

k-2

(37) Y(3,k] = (1 + 8B L)0r + aB% "2y + ...+ (1 +aBd)

fer j <k, v[3§,3j} =1 and ACk = Ek . Then, we have

k-1
(38) = v[0,klq® + T Y(j + 1,kEdd .
j=0

Since Q1 and Ui are closed convex polyhedral sets, we can formulate the

3 W3, ¢ 4o, .

constraints on u in the form F ., N-1 , and those on

the state variables q as G(J)qj P g(J) So now we have

Maximize qg

N-1 ,

N ] T

subject to quo - E Y[j+l,N]Ejuj = Y[o,N]q - q
3=0
p1) 4, () =0, ..., N -1
and the additional constraints
T T T
G(j)qj > g(j) j=0, ..., N-1, where q = (0, Gy coeo qn) o
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If we let u= [0, «ooy WV 1] and A = [-Y(1,ME , -v(2,ME , ..., -Y(N,N)EX]

and b = Y[O,k]q0 - qT , we have

Maximize  qq
(39) subject to qug + Au = b
Pt () =0, cory N =1
g o 12 §=0, o, N=-1

where qj is given by (38). The approach for handling the constraints

F(J)uJ > f(j) by generalized linear programming has been described in [6] and
[23]. Thus for simplicity, we limit ourselves to a discussion of the constraints
G(j)qj P g(j) and assume that the constraints F(j)uj ] f(j) on the uj's simply

reduce to the requirements that they are all nonnegative. We may now simplify (39)

to read:
Maximize qg
. N
(40) subject to UOqO + Au = b
N INC)
u >0

It is this problem which we interpret as an L-shaped program. The correspondence
is A - All , U~ x , finally the slack variahles of the implicit constraints
on u , G(j)qj > g(j) , correspond to y . In this case, c2 = 0 so that

second stage feasibility is the only requirement. Frequently from the physical

nature of the problem it is clear that "usually" the state constraints will not be
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violated, and, of course, the value of the slack variablzs are of no particular
use so that the representation of (40) as an L-shaped program seems particularly

appropriate.

To generate the cut we simply evaluate nj by ng =1 for
[g(j) - (ij)qj]i ~ 0 and ng = 0 otherwise. The cut is equal to
I njC(j)qj :Enjg(j) which is the sum of the infeasible equations. All that

remains is to express these in terms of the u's. In other words, we wish to

evaluate
k-1
1) R R R,
k 3=0
and the constant term
(e - v(0,k1¢°)
This will give a new constraint An+1 U bn+1 which must be satisfied by u ,
where A denotes the n+1th row of A , the special structure of (41), in

n+l %

particular, of the Y[j,k] makes possible many simplifications in determining

A and bn+ and, in particular, the relevant quanti*ies would be accumulated

n+l%* 1

as one determines nj , rather than determining nj and then going back to

calculate A and bn+ . In addition, if the state space constraints are

n+l% 1

"loose", not many of the equations would be violated.

This application 1s an example of an important subclass of L-shaped programs
which could be called I-shaped programs. These are L-shaped programs in which the
components of the v vector are simply slack variables.

The ‘nteger programming algorithm of Gomorv [l14] can be considered as another
example of an I-shaped program where A21x + Iy = b2 or equivalently

2

21 S ;
AR b represents the infinite number of constraints which can be added to

eliminate noninteger extreme points but do not eliminate anv feasible integer points.

-
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5. Stochastic Programs with Recourse

A stochastic program with recourse (random right-hand sides) also known as

two stage linear programs under uncertainty [7] reads

(42) Minimize 2z = cx + E{fMin qv!
subject to Ax =b
(42.a) Tx + Wy > ¢ (£ on (%,z,F)

The interpretation to be given to this problem as well as the definition of the
svmbols can be found in [25] or various other papers in this area, see e.g. [7],
[15]. Problem (42) is easily recognized to be an l.-shaped program with possibly

an infinite number of constraints (42.b) and an infinite number of v wvariables.

We denote by -~ the support of che random variable ¢ , i.e., the smallest closed

m
subset of R of measure one.
Ve shall assume that - has at least upper bound a , i.e., such that

ae- and for all 1 . < a for all ¢¢= . 1If this model {s viewed as the

representation of a physical decision process, the assumption that for each i

there exist ay such that Ei L a, seems to be very natural. The additional
assumption that ac- is somewhat more restrictive. However, this would
certainly be the case if the components of ¢ where independent random variables

and each &i has compact (or bounded above) support. Extensions and a more
completediscussion of these questions can be found in "Finding a Feasible Solution
to Stochastic Program with Fixed Recourse"” [24].

From a mathematical viewpoint the assumption that for each i there exists

o is not so appealing but if such an upper bound does not exist then determining




if problem (42) is feasible has to be dealt with differently, as can be seen from

the following proposition.

(43) Proposition:
Suppose for some i there is no number ay such that
Ci <oy and £eZ . Then (42) is feasible only if the lireality
space of pos (W, -I) contains Ri , where Ri is the ith
component of the Cartesian product R" « jHIRj (Rj denotes the

real line).
Proof:

If RiC pos (W, -I) then the equation (W, -I)i (Z) =l 1B, is solvable for all

&y with y and s nonnegative. Otherwise, for some Ci the above equation

is not solvable. Since £, has no upper bound, for any x there exists §

i
in = (determining &1) such that the system

wiy > £ T,x

is inconsistent. This implies that for no x the recourse (or second stage)
problem is feasible for all #f{ 1in =z , thus the set of feasible solutions to
(42) is empty, i.e., (42) is infeasible.

If the ¢,'s are independent and for certain 1i's , £, has no greatest

i i

upper bound, we can use the above proposition to determine if (42) is infeasible.

If the criterion is satisfied we can ignore those equations whenever we verify if

a given x 1is feasible or not. In [28] the problem of characterizing and computing
(which can be easily done) the lineality space of pos(W, -1) has been dealt with

in detail.
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In the algorithm to be described below, we shall assume that for each i ,

a, exists and ae= Propsoition (16) in Section 2.B '"A Feasibility Test", of

i

[26]) allows us to derive constraints (equations (17) of [26] of the form)

(44) (cT)x > oa

which in view of proposition (16) of [26], plavs the same role than the feasibilitv
constraints (7) plays in the L-shaped linear program. Moreover, it has been shown
that the feasibility region for the decision variables x determined by the induced
constraints [26, p.92] can be represented by a finite number of linear constraints.
(Prosposition 12 of [27].) In Section 2.0 "Some Geometric Characterizations,”" we
have shown the relation between the feasibility constraints (7) that we introduce
and the supports of the cone pos (W, -I) . In [27] the accent had been placed

on deriving an expression in terms of a minimal number of support (determined by
the rows of the polar matrix [27]) of pos (W, -I) , rather than an arbitrary
finite collection of supports. As can be seen from proposition (24) supports of
maximum dimension corresponds to obtaining a particular solution to the linear

program.

+
Minimize ev
+ =
subject to Wy + Iv = Iv =a - Tx
+ =

These observations allow us to construct an algorithm which will find feasible
solutions to (42) in a finite number of steps, i.e., by requiring that x satisfics
the constraints (42.a) to which we add a finite number of constraints of the
form (44); each one being generated by solving one linear program rather than

verifying it for a particular x and for all ¢f:~ there exist a feasible vy ,




i.e., y > 0 , such that Wy > ¢ - Tx . i
We now outline a general algorithm for sclving problem (42); general, in

the sense that we make no assumption on the structure of the matrices (in 1

particular W) or on the form of the distribution of the random variable ¢ ,

except that ; has a greatest upper bound. (See proposition (43) if this is

not the case.) We ignore the special cases of infeasibility and unboundedness

which are to be handled as bzfore.

Step 1:

Solve the linear program

(45) Minimize c¢x + 9

(45.2) subject to Ax

(45.b) (okT)x > (o a) k =1, , S

(45.¢) (r*T)x + 8 > p k=1, couy t |
x>0 .

Initially, s and t are zero. If no constraints of the form (45.c) are present

8 1s set equal to - » and is ignored in the computation. Let x2 A 62 be an

optimal solution of (45).

Step 2:

Solve the linear program to find

wl = Minimum ev+

(46) subject to Wy + Iv+ -Iv =a - 'l‘x2




1
If w =0, go to Step 3. If wl # 0 , the optimal solution 02 to (46) is used

to generate a cut of the form (45.b).

Step 3:
For all in = , solve the linear program.
2
w = Minimum gy
47 subject to Wy - Is =+ -~ qu

Each ¢ determines an optimal = , say, nQ(L) . We then compute

CeE nN0)) and o = EnT(E)E) . IE
2, 2 L , 2 L
w(x) < 8 , we terminate (Optimality Criterion). If not, we use 7 , p to

Gty = Ei{n“m(g -mh)

generate a new constraint of the form (45.c) which we now add to our problem (45)
and return to Step 1.

We should also point out that in following this procedure, it is possible
to generate an infinite number of constraints of the form (45.c). Nevertheless, a
result of K. Murty [17]) allows us to keep m (T is m x n) or less constraints
of the form (45.b) and (45.c¢) at each cycle, i.e., the constraints with nonzero
slack can be removed.

We have separated Step 2 of the paraphrase (in Section 21,c) of the cutting
plane algorithm in two parts. The reason being that in order to generate the
feasibility cuts, we need only consider the upper bound of ; (not all elements
of é) whereas we need complete information related to the probability space
(=, F, F) 1in order to compute nR and oa (even when ; has finite
cardinality the labor so saved should be considerable). Moreover, if * has
infinite cardinality, it is difficult to perform Step 3 unless the structure of

1 v
W 1is such that it is possible to find a closed form expression for = and ¢,
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e.g., see [20] and [25]). The remaining part of this section is denoted to suggest

a method to circumvent this problem. We start by describing a variant of the

above algorithm.

If ¢ 1is an absolutely continuous random variable, we can modify the

algorithm as follows:

Step 1:

Solve the linear program

Minimize [c - nl_lT]x
Allx = b
subject to (0 T)x > (0 a) k=1, ..., s
x>0.

Initially s = 0 and nQ—l = 0 . Let §2 be an optimal solution to (48). Find
-1 - -1 -2 -

Min v (1)) =c[(1-))x + Ax7) + Q[(1-M)x + Ax] where x was our previous

0<i<1

solution (x0 = 0) which for £ > 1 was used to determine nl-l and the
function Q(x) is as defined in (26, Equation (21)}. Say, w(kz) < ¥(x) for

» e {0,1]. If Xl =0 . We terminate with optimal solution er-1

(Optimality Criterion). Let x2 = (1 - A‘l)x;l-1 + Xgil

Step 2:

As above.

Step 3:

As above, determines nE and we ten return to Step 1.

The convergence of this algorith~ can be easily verified if we observe that
from proposition (29) and corollary (28) in [26] it follows that if ! is a
continuous random variable then Q(x) 1is a differentiable function with gradient

) 2 . .
-»'T at x . Thus, the above algorithm can be viewed as a variant of the




Frank-Wolfe [10]} algorithm for finding the minimum of a convex differentiable
function on a convex polyhedral set. Since their procedure requires twice-
differentiability and in general Q(x) will not be of class C2 their
convergence proof does not strictly apply. The necessary modifications can be
found in [25, proposition (37), (41) and (43)].

This last algorithm as well as the first one we suggested, to solve
Stochastic Programs with Recourse relies on the possibility of performing Step 3
If é does not have finite cardinality this seems to be nearly impossible.
However, one could exploit a suggestion of Dantzig and Madanskv [7] which consists
in sampling the distribution of ¢ and solve Step 3 for some finite sample. This
would naturally result in approximated values for nQ and og . As has already
been pointed out in the introduction, this approach would generate a constraint
of tvpe (45.c) which would not necessarily be a support of the function Q(x) ,
and could bery well eliminate the optimal sclution (42) from the set of feasible
solutions to (45). This inconvenience has been completely eliminated if we follow
the second procedure since all the constraints present in (48) never involve any
approximation process.

We are however still left with two problems. First to solve Step 3 for a
large (possibly very large) number of values of ¢ in *~ . Second, the
resulting ;Q will not in general, determine the gradient of Q(x) at xp and
thus the convergence properties of the algorithm are changed. This second problem
will be che object of another paper in which various sampling techniques are
examined and the convergences properties of the algorithm are established. We

2 2 Lo
now show how to obtain the approximate value n° for from a specific sample.

.et El, R &N be a sample of size N obtained from the distribution of ¢

Our purpose is to solve (in Step 3) the N linear programs of the form:
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Minimize qy

49) subject to Wy - Is = Ek - Txl kel ..., N

Since we are performing Step 3, xl e K, and since § ¢ é it follows that (49)
is feasible for all Ck . Moreover if (49) is unbounded for some Ek it 1is
unbounded for all § € é thus (42) is unbounded (see Proposition 13). Let us
assume (49) is solvable. Let nE(C) denote the optimal simplex multipliers
associated with solving (49) for a particular & . Then

1 2 k
N7 @€ .

) N
(50) nom )
In the appendix of [26], we have reviewed the properties of the function

Q(t) = {Min qy|Wy = t, y > 0} in particular we shall use the fact that: If

{n(t)} 1is the wapping determining the optimal eimplex multipliers, then there

exists a function n(t) in {n(t)} plecewise constant on pos W. 1In particular, if

e

is an optimal basis corresponding to a particular value of t , then is

also an optimal basis for all t ¢ pos w(i) . Let q(i) be the subvector of q
(1 -
corresponding to W ) , then n(t) = q(i)w(i) 1 determines an optimal vector
i
of multipliers for all t € pos w( ) . Applying this result to (49) it follows

£
that n°(¢) 1is also optimal for all Cj such that (Ej - Txl) € pos W(f) where
W(E) 1s the optimal basis obtained from solving (49) for some fixed £ . To
L
determine if (Cj = Tx)e for W(E) 1t is sufficient to verify if

L

we) @l - b >0 .

-1
This can be easily done since W(§) is available from the final optimai tableau.

We now give an algorithmic procedure to find nt » as defined by (50).

W

(1)




Step a:

Select an unbiased sample of size N from the distribution of ¢ , say

£

k
51, o - EN . Compute Ck =f -Tx k=1, ..., N. By {Lj} we denote the

b

set of available ¢ and set L =N .

Step b:

Select some ¢ in {cj} and set ¢ = ck (initially k = 1) and solve

the linear program:

Minimize qy

subject to Wy - Is = pk

Let v(ck) be the optimal simplex multipliers and w(ck) be the corresponding

optimal basis.

Step c:

Let n(k) be the number of vectors 3 in the set {7} such that

(51) wehH s o0

Set L =1L-n(k) and 1if L > 0 return to Step b with k = k + 1 and delete

from the set {Lj} and those Lj which satisfied (51). If L =0 terminate

with

2
hid =

a5

1
Nk

In returning to Step b it is suggested to select  (in the remaining set

of (cj} such that ¢ fails to satisfy (51) only in a minimum number of




.
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components (if possible one). Thus the previous basis would be the optimal basis
for the new ck up to very few dual simplex step.

A few experiments have been made on an IBM 7094 (with a not nearly optimal
code). We have selected N = 3000 and 5000, and 10 < m < 40 (m 1is the numbers
of rows of W ). In each case the computation of ;2 took never more than twice
the time required to solve one linear program of the same size. In the same vein,
a number of experiments have been conducted by Ballinfty and Prekopa for random

linear programs. In their manuscript [1] they show that numerous ''tricks" can be

performed to improve sampling procedures.
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