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ABSTRACT 

This paper gives an algorithm for L-shaped linear programs which arise 
naturally in optimal control problems with state constraints and 
stochastic linear programs (which can be represented in this form 
with an infinite number of linear constraints).  The first section 
describes a cutting hyperplane algorithm which is shown to be 
equivalent to a partial decomposition algorithm of the dual program. 
The two last sections are devoted to applications of the cutting 
hyperplane algorithm to a linear optimal control problem and 
stochastic programming problems. 



L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO 
OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING 

by 

R. M. Van Slyke and Roger J.-B. Wets 

I.  Introduction 

It has been observed by many authors, see e.g. Barr [2], Gilbert [12], Rosen 

[21,22], Neustadt [18], Whalen [29,30], Zadeh [31], Pshenlchnly [19], that the 

techniques of mathematical programming can be utilized to solve optimal control 

problems. The usual approach (although others are possible, see e.g. Dantzlg [6], 

Van Slyke [23]) Is to dlscretlze the system either by finite difference approximations 

or by considering the system In sample data mode.  If the system dynamics are linear 

and there are no state space constraints various devices [6,23] of mathematical 

programming can be used so that the grid size or number of sample points in the 

sample mode does not affect the number of equations in the associated mathematical 

program.  This Is desirable since the computational effort for solving linear 

programs by the simplex method depends much more on the number of equations 

involved than on the number of variables.  However, if state space constraints are 

present the number of equations can grow astronomically.  This is unfortunate, 

especially in the common situation where the state space constraints are automatically 

satisfied for most time periods.  If confronted with problems of this type, the 

following heuristic procedure suggests Itself:  First solve the problem without the 

state space constraints, then check if the solution satisfies all the state space 

constraints.  If it violates some of these constraints, introduce only those which 

are violated and solve this new problem.  The procedure is repealed until ;i f«.isil.li 

(and thus optimal) solution is attained.  The algorithm developed In this paper 
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formalizes the ideas of this heuristic procedure. Whenever we obtain a solution 

which violates some state space constraint, we generate a restriction on the 

controls   (rather than on the states) which eliminates the various solution from 

the feasibility region. 

The algorithm can be slightly modified to solve stochastic programs with re- 

course, first considered by Dantzig [5] and Dantzig and Madansky [7] under the name 

of two-stage linear programs under uncertainty. The problem here is the following: 

A decision must be made before the actual value of some of the parameters of the 

problem is observed (it is assumed that those parameters are known In probability). 

Due to the lack of knowledge of the particular outcome of the random elements of 

the problem discrepancies may occur which, after observing the actual values of 

those parameters, are to be corrected by selecting a particular recourse action 

(also called second stage decision). One of the difficulties which arise when 

trying to solve such problems is that a particular decision and a particular out- 

come of the random elements may give rise to discrepancies for which there is no 

(feasible) recourse action.  Thus, one should only select decisions, such that for 

every possible realization of the random elements, a (feasible) recourse action 

can be selected to correct the eventual discrepancies.  Earlier treatments of 

stochastic programming ignored this difficulty [7], [25] by assuming that the 

structure of the stochastic program was such that this problem could not arise.  It 

did appear that unless one made this assumption the additional constraints one had 

to introduce could be very large, even infinite when the random parameters had 

continuous distributions. 

In [7] Dantzig and Madansky considered stochastic programs with finitely dis- 

tributed random parameters and complete recourse, i.e., for every decision and 

for every outcome of random variables there exists a feasible recourse.  For 

obvious practical reasons it seemed desirable to remove those restrictive- 

assumptions.  The last section of this paper develops an algorithm for stochastic 



programs which fail to satisfy the complete recourse assumption as well as the 

finite distribution assumption. 

In [27] it was shown that for stochastic programs with recourse (random 

right hand sides) the set of feasible decisions, represented by a n-vector x , is 

a convex polyhedral subset of R , thus at most a finite  number of linear 

constraints must be added to the problem to determine the set of feasible decisions. 

However, the characterization of the feasibility region given in [27] is not very 

constructive.  The algorithm developed here generates these linear constraints 

systematically and generates only those which are violated by some optimal 

decision candidate, in much the same way as in the control problem with state space 

constraints. 

The stochastic programming problem differs from the linear optimal control 

problem in that there is a cost associated with the recourse actions which must be 

accounted for.  Dantzlg and Madansky [7] suggest sampling to obtain the appropriate 

characteristics of the cost function associated with the recourse problem. 

However, as pointed out by Madansky , the utilization of sampling can lead to 

inaccuracies.  This as we shall see, can be avoided by using a gradient method ratht-r 

than a cutting plane method. 

In Section 2,an algorithm which is essentially the same as the algorithm 

+t 
developed by Benders [3]  is described and a geometric interpretation is given. 

Section 3 exhibits the duality between this algorithm and a variant of the 

decomposition algorithms of Dantzig and Wolfe.  The applications of this algorithm 

to optimal control problems with state space constraints and stochastic programs 

with recourse are developed in Sections A and 5 respectively.  Now, let us give a 

mathematical formulation of the linear program we are Interested in. 

SIGMAP Conference on Stochastic Progranuning, Princeton, New Jersey,(December 1965) 

This was pointed to us by K. Balas. 
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We give the name L-Shaped Linear Programs  to linear programs of the form 

1    2 
(1) Minimize  z " c x + c y 

(l.a) subject to A x       ■ b 

(l.b) A21x + A22y = b2 

x > 0, y > 0 

11 21 22 
where A   is a m.. x n.  matrix, A   is m? x n.  and A   is m» x n„ . 

As can be seen from the applications that we have in mind, we expect that (1) has 

some or all of the following characteristics. 

21    22    2 
(i) The constraints A x + A y = b  are loose, in the sense that 

for "most" vectors  x satisfying A x = b  , x > 0 ,  there 

21    22    2 
exists y > 0 such that the constraints A x + A y = b  are 

satisfied. 

2 
(li) The vector y  is of little interest and the value of c y  is a 

small factor in determining the value of the optimal solution. 

21    22    2 
(lii) The constraints A x + A y = b  are numerous, possibly infinite, 

and are often given in an implicit manner. 

Thus, in order to speed up computation and limit storage requirements it is 

desirable to work mainly with the constraints (l.a) and consider the constraints 

(l.b) and the variables of y  only when needed. 



2.  A Cutting Plane Algorithm 

4L Feasibility. 

2 
Instead of problem (1), let us first consider the special case where c ■ 0 

(This corresponds to the problem arising in optimal control problems with state 

space constraints): 

Minimize  z - c x 

(2) subject to   Ax       - b 

A21  J A22     v2 
A x + A y - b 

x > 0, y > 0 . 

In this case  the algorithm proceeds as  follows.    First solve  the simpler linear 

program 

Minimize      z « c x 

(3) subject  to Allx - b1 

x > 0 

whose optimal solution we denote by x .  For the time being we assume that (3) is 

solvable.  If x satisfies the 

22 2        21- Feasibtlity Critericr::    There exists    y > 0    such that    A    y ■ b    - A    x  , 

then    x    and  some    y    determine  a  feasible   (and  thus optimal)   solution  to  (2).     We 

denote by    K-     the  set of all    x    satisfying  the  feasibility  criterion. 

If    x    does not satisfy the Feasibility Criterion, we generate a constraint 

involving only     x    which  is violated by     x    but satisfied  by  any   feasible solution  to 

(2).     This  constraint  is  then added  to  the  constraints of  problem   (3).     This added 

constraint has,   in a sense  to be made precise  later,   (Section  2,   E)   the property 



that it cuts deepest into the set Kj^ = {X|A x ■ b , x > 0} .  The process is 

then repeated until an optimal solution to the augmented problem (3) satisfies 

the feasibility criterion. We will show that we have to add at most a finite 

number of constraints to (3) in order to achieve this goal. 

To determine whether x satisfies the Feasibility Criterion  or not we try 

to find a nonnegative solution, y , to 

//\ A22 U2 A21" (4) A y = b - A x . 

22 22 
This can be considered geometrically.  Let pos A  ={t|t=A y,y>0}  be 

22 
the closed convex cone generated by the columns of A  .  Then x satisfies 

2   21-      2' 
the feasibility criterion if and only if b - A x epos A  .  If not, i.e., if 

2   21-      22 
b - K    r. i  pos A  , there is a hyperplane through the origin separating strictly 

2    21— 22 
b - A x and pos A ' .  Such a hyperplane, say {x|ox = 0} , is determined by its 

22 2   21 - 
normal o which must satisfy at < 0  for t e pos A   and 0[b - A ]x > 0 . 

.b  - A x 
o 

Figure 1. 

The normals     a   ,  which are needed,  are  generated using a slight variant of 

the Phase  I  procedure  for  the simplex method.     We  solve 



I      ■"   ■     Nil»! 

Minimize   w = ev + ev 

(5) 
22 + -        2 21- 

subject  to A    y+Iv    -Iv    -b    -A    x 

y>0,v    ^0,    v    >0, 

where    e    is a row vector of 1's,    I    is a    nu x m~    identify matrix and    v    , 

and    v      are    m?-vectors of variables. 

Problem  (5) has always an optimal solution with    w > 0  .     x    satisfies  the 

feasibility criterion if and only  if at the optimal    w - 0   .     If at the optimum 

w > 0   ,   then there exist dual variables    0    satisfying 

22 
oA      < 0 

(6) -e  <  0  <  e 

2   21- 
o[b - A x] » Minimum w > 0 

Thus o  has the desired properties.  In the next sections we show that the o's 

generated by solving (5) are optimal in some sense and give the geometrical 

interpretation in more detail. 

2   21 
In order for x to be feasible it is clear that b - A x must be on the 

same side of the hyperplane  {t|ot ■= 0} as pos A 

Thus, x feasible implies that 

22 

Thus, we add the constraint 

2   21 
o[b^ - Ax] < 0 . 

(7) r *21i     w2 [oA  ] x > ob 

to the linear program (3). 

It is also possible that when solving problem (3) (or even after a few 



additional constraints have been added) we discover that  (3)  Is unbounded.     Thus, 

the solution to  (3)   is no  longer given in  terms  of a particular vector    x    but 

we are given a half-line  In    K    ,  say    x    + Xx     ,   X  > 0  ,    on which    ex    decreases 

monotonically  to     - ^    as     X    goes   to    ■4- "  .     We  have  that: 

(8) Proposition: 

If    -A    x      and    b    - A    x      belong to     pos A       ,   then   (2)   is 
c P 

21- 22 
unbounded.     If     -A    x    ^    pos A then every solution to   (2) 

must satisfy  the constraint. 

(9) [aA21]x > ob2 

which Is violated by xp + Xx  for X  sufficiently large, where o denotes 

the vector of optimal simplex multipliers corresponding to the optimal 

solution to 

Minimize w =      ev + ev 

22 + - 21- 
(10) subject to    A    y +  Iv    -  Iv    = - A    x 

y>0,v     >0,v     >0. 

21-        22      2 'l-        22 
If -A x e pos A   but b -A' x i  pos A   then every feasible 

c p 

solution to (2) must satisfy the constraint generated by solving the 

linear program (5) where x is set equal to x 
P 

Proof; 

21- 2        21-                                          22 
The conclusion   is   inunediate  if     -A    x and     b    - A    x      belong   to     pos  A 

c P           K 

21-        22              -   2 21-     21-        22 
If  -A x ^ pos A   then for some  X,b -A  x -AA x i  pos A   for all 

c  r p       c  r 

\   >   \   .     To see this, it suffices to observe that if o are the opLirjl simplex 

29 21- 
multipliers for (10) then  aA   • 0 and  nA x  ■ 0 .  Thus, bv sclc.'in»  \ 

~ c 
2 21 - 21- 

sufficiently   large     n (b     - A    x    -   XA    x   ) can   also be made  arLi trari Iv     sp«all. J          r>                                  p                   c 

- -'■ ■       "■ ■•■ - 



2        21- - 
Set    \=0    if    o(b    -A    x)<0,  otherwise select    X     such  that 

2 21- - 21- 
o(b    -A    x    -XA    x)-0.    Then  for all    X  >  X  ,  o    determines a hyperplane 

22 2 21- 21- 
separating    pos A       and    (b    - A    x    - XA    x ).     It follows  that every    x    in 

K,     such  that    x » (x    + Xx ) + VJX        y > 0    violates     (9) which must be satisfied 
1 p c c 

21- 22 2        21- 22 
by every  feasible solution  to  (2).     If    -A    x    E  pos A   '  but     b    - A    x    ^  pos  A 

2 21- 21- 22 
either    b    - A    x    - XA    x      does not belong to    pos A for all    X > 0    or there 

- - 2 21- 21- 22 
exists     X    such  that if    X>X,b    -A    x    -XA    x      belongs   to    pos A      .    Now 

let    o    denote  the optimal simplex multipliers obtained  from  (5) by setting 

2 21- 21- 22 
x •> x     .       If  for all    X>0,     b    -A    x    -XA    x      does not belong to    pos A       , p - p c 

the ray    x   + Xx      violates  for all    X     the constraint   (7)  so generated and thus 

this particular extreme ray is eliminated from the feasible solution.    On the 

2        21- 21- 22 
other hand,  if    b    - A    x    - XA    x      belongs    pos A        for    X   >  X   ,  the points 

.2 21,-     L r- . .21- . 
b-A(x+Xx)-uAx VJ>0 

pec 

satisfy the constraints and the ray  (x + Xx ) + px  has not been eliminated from pec 

the set of feasible solutions. 

We  can  thus  summarize  the  procedure  to find an optimal solution to   (2),  as 

follows : 

If   (3)   (with as without additional  constraints)   is  solvable with    x =  x  .     We 

then solve  (5).     If    w = 0     then     x    is  an optimal  solution  for   (1).    Otherwise we 

generate a constraint of the type   (7) which is  then added  to the constraints of   (3). 

If   (3)   (with or without additional constraints)   is unbounded with a direction of 

decrease  for     ex    given by    x ■  x    + Xx     ,  X  >  0   .     We  then solve  (10),  and   (5) 

with    x - x    .     Let   w    and    w    denote  the optimal value  for   (10)  and   (5) 

respectively.     If    w " w = 0    then   (2)   is unbounded.     If    w  >  0   , we use  the 

optimal multipliers of   (10)   to generate a constraint of  the type  (9) which  is 
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added  to  the  constraints of   (3);   if    w = 0    but    w > 0   , we generate a constraint 

of  the  type   (7). 

Clearly  this process is  finite since each    o    corresponds  to a basis for  (5) 

(or   (10))  of which   there is a  finite number and,  moreover,  no constraint can be 

repeated.     Obviously,  no constraint of  type   (9) will be generated after we obtain 

bounded solution to   (3). 

It  is  conceivable,  of course,   that  the  number of bases  of   (5)   or   (10), 

corresponding  to a particular    o    could be very large,  so  chat  the number of 

generated constraints  could be large  compared  to the number of original constraints 

(l.b)   in which  case   the proposed algorithm might be inefficient.     However,  since we 

only add binding  constraints which have a deepest  cut  property   (as we  shall see 

later)  and if  properties   (i),   (ii)   and   (iii)  mentioned  in  the  introduction are 

satisfied,   this  seems  unlikely. 

Another useful property of  the algorithm is  that  in adding new constraints  to 

(3),   the next   iteration already has  a basic   solution which  is   infeasible only  for 

one basic variable.     The basis  is  the basis   for  the previous  iteration,  plus  the 

slack variable  for  the added constraint.     Thus,  each successive    x     can be easily 

obtained by a  few steps of  the  dual simplex method. 

B.     Optimality 

2 
We now  return   to  our original   problem   (1),   i.e.,   to   the  case when    c      may 

be different  of   zero.     Obviously,   problem   (1)   is  equivalent   to: 

Minimize       c  x + 9 

(11) subject   to     Q(x) 

where 

x  s   K =   K    ^  K 

(12) Q(x)   =   (Min  c2y!A22y   =  b2   -  A21x   ,   x  >  0} 
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We first observe that 

(13)     Proposition; 

For all x e K^ , Q(x)  is either a finite convex function or 

Q(x) is identically  - <* . 

Proof: 

For all x £ K_ , the linear program 

2 
Minimize c y 

22 2        21 
(14) subject to    A    y-b    -A    x 

y > 0 

is  feasible.    Moreover,  for all    x E K-   ,   (14)  is unbounded if and only if  the 

22 
linear system    TTA      < c    is inconsistent.    Thus,   if   (14)  is unbounded for some    x   , 

it will be unbounded for all    x  .     It remains  to show  that if    Q(x)     is finite on 

the convex set    K?   ,   then it is  convex.    Consider    x  ,   x    e K.    and 

x    ■  (l-X)x   + Xx      where    XE[0,1]   , and let    y  ,  y      and    y      be optimal solution 

to   (14) when    x    equals    x  ,  x      or    x      respectively.     Then, 

(l-X)Q(x0) + XQ(x1)   +c[(l-X)y
0 + Xy1]   >  cyA  + Q(xX) 

since     (l-X)y   + Xy      is a feasible solution  (but not necessarily optimal)   to  (14) 

when    x     equals    x 

Moreover, 

(15) Proposition: 

Suppose    Q(x)     is  finite,  let    it    denote  the optimal simplex 

multipliers  corresponding to  the  solution of   (14)  with     x  =  x   , 

then the  linear  function 



12 

(16) (*A21)x - Gh2) 

is a support of Q(x) . 

Proof: 

Since  TT  is optimal for (14) with  x = x , then by duality theory for linear 

programming we have that 

^(b2 - A21x) = Q(x) . 

By assumption    Q(x)    is  finite and  thus   for all    x £  K^   ,   TT     is  a  feasible solution 

for all duals  of   (14): 

2        21 
(17) Maximize     TT(b    - A    x) 

A22 2 
TTA       <   C 

but    TT     is  not  necessarily an optimal  solution.     Thus,  again by  duality  theory we 

have 

i(b2 - A21x)   <   (Max  7T(b     - A
21

X)|TTA
22

   <   c2}   =  Q(x)     for all     x  c   K2   . 

Even   though   the  following observation  is  not  absolutely  necessary  for   the 

subsequent  development,   it   is worthwhile   to note  that 

(18) Proposition: 

Suppose    Q(x)     is   finite  on     K-   ,   then    Q(x)     is   a  convex 

polyhedral  function. 

Proof: 

By letting  x range over K  , we see that only a finite number of supports 

to Q(x)  of the type (16) can be generated, since every  TI  corresponds to a 

mt^ 
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22 22 
particular basis of    A and    A       has only a finite number of square nonsingular sub* 

matrices.    Moreover,   for all    x E K-    there is  some support of  type   (16) which 

meets    Q(x)    at    x  .     Thus,   the upper envelope of  this  finite number of linear 

supports coincide with    Q(x)   . 

The process  to obtain an optimal solution  to  (1)  or equivalent to  (11)   is 

very similar to  the one already described for finding a feasible solution.     Suppose 

x    Is a feasible solution,   i.e.,    x e K - K. ^ K^   ,  and  (14)  is solvable with 

x - x .    Let    TT    be the  corresponding optimal simplex multipliers.     Then: 

Q(x)  - n(b2  - A21x)   . 

Moreover, by convexity of    Q(x)    and the properties of    it    given in  (15),   it  follows 

that 

Q(x)  > nb2 -   [*A21]x 

for all    x    in    K  .     Thus,  a pair    (x,e)     is  feasible  for  (11)  only if 

-   2 - 21 
6  > nb    -   [TTA     ]x 

which we can also write 

(19) [nA21]x +  6  >  Tib2 

On the other hand  if     (x   ,  6  )     are  optimal   for   (11)  and    *       are   the  optimal 

simplex multipliers obtained  from (14)  by  substituting    x    for    x     ,  we have   that 

n, 0. 0. 2 0.21  0 Q(x  )»TTb    -«A     x 

The optlmallty of    x       implies  that    ex + Q(x)   _ ex    + Q(x  )     for  all     x     in     K   . 

From    9    > Q(x  )     and     6     unrestricted  in   (11)   it   follows  that     0     =  Q(x   )   . 
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These two last observations allow us  to construct  a finite procedure  for 

k      k finding an optimal solution  to   (1).    Say     (x   ,  9   )     is  an optimal solution  to  the 

linear program 

(20) Minimize c1x + 6 

(20.a) subject   to   [TI
£

A
21

]X+  0  >   (/b2) 11=1 k-1 

x e  Kj ^ K2   . 

We  then solve  (1A) with    x = x     .     If   (1A)   is  unbounded  then   (1)   is  unbounded.     If 

k+1 
not,   let    n denote the optimal simplex multipliers.     Then: 

(21) Optlmality Criterion: 

i/   0    - Ti       [b     - A    x  ]   then     x     is an optimal solution to    (1).      If 

k k 
9     <  Q(x  )    we add  the constraint 

r  k+1.21,     ,   Q k+12 
[TI       A     ]x +  6  >   TT       b 

to the constraints of (20), which has the effect of eliminating the solution 

k  k 
(x , 9 )  from the set of feasible solutions of (2).  The algorithm is initiated 

0 1 0 
with x  minimizing c x on K and 9 = - o . 

Now suppose that (20) is unbounded after at least one constraint of type (20.a) 

has been introduced.  Note that in such a case, (20) cannot be unbounded for some 

fixed  x and 9 = - ^ , since  0  must satisfy the constraint of type (20.a).  Thus, 

there exists some ray, say  x + ^x ,   \   ■  0    on which the objective of (20) can u' 

22 
pushed to - <*> .  Checking if this ray belongs to  pos A   has been dealt with in 

the previous section.  If not, we generate constraints of type (7) or (9).  Now 

2   21 21 22 
suppose  b - A x  and  -AA  x  belong to  pos A   .  Let y  be an optimal 

solution to the linear program: 
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Minimize c y 

22      21 
subject to A y ■ - A x 

y > 0 

and let    v    be the corresponding vector of optimal simplex multipliers.     If 

12 12 
c x    + c y    < 0    then obviously   (1)  is unbounded.     If    ex    +cy     >0     then c c c c 

x      is not a desirable unbounded direction since letting    X     go to    + ^    in 

x   + Xx        would push  the objective of   (1)   to    + oo  .    In this case adding the 

constraint 

IITA211X + 9  >   [Tib2] 

to  (20) would eliminate  the direction    x       from the desirable  (optimal)  solutions 

1 2 of  (20).     If    ex    +cy    "0    then no point of  the ray    x    + Xx      will be c 7c r ^       p c 

preferable  to    x      as  a solution to   (1),   thus  adding the above constraint to  (20) 

will keep    x      in  the set of feasible solutions of  (20) but will  eliminate the 
P 

,22 

other points of  the  ray. 

This process  is obviously finite since each    n    corresponds  to a basis of A" 

and theae are  finite  in number      Moreover,  no    TT    can be generated  twice since this 

would lead  to a constraint already present which could not be violated by  the solutiun 

at hand.     In this section we have assumed  that  each    x    generated  is a  feasible 

solution,   if    x ^  K?     then one may have   to  introduce cc istraints   of   type   (7)  or   (9) 

before continuing  the search for an optimal solution to   (1). 

C.     Summary of  the Algorithm. 

Step  1: 

Solve the linear program 
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(22) Minimize 1 z c x + e 

(22.a) subject to 

(22. b) k=l' ...• s 

(22.c) k=l, ...• t 

X > 0 . 

Initially, s • t ~ 0 . 8 is set equal to - oo and is deleted from the 

actual computations as long as there are no constraints of type (22.c). If (22) is 

infeasible so is (1) and we terminate. If (22) is solvable go to Step 2 if (22) is 

feasible but unbounded go to Step 2'. 

Step 2: 

(22) is solvable. Let (x1
, e1

) be an optimal solution to (22). Use the 

simplex method (Phase I , Phase II) to solve . 

Minimize w 

(23) 

2 
c y 

y > 0 • 

If (23) is infeasible, i .e., Phase I terminates with ~he infeasibility form 

different of zero, we use the multipliers so generated to construct a constraint of 

the form (22.b). If (23) is feasible and unbounded so is (1) and we terminate. If 

(23) 1 eR. R. 
is optimal and is solvable and Min w(x ) = then is X we terminate. 

Otherwise, we use the multipliers so generated to construct a constraint of the form 

(22.c) and return to Step 1. 

Step 2': 

(22) is feasible but unbou~ded. Let xR. + AXR. , A > 0 be a ray of unbounded 
p c 
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1 2        21  i 21 i 
decrease of  ex.  We then solve (23) with b - A x  replaced by -A x  . 

If this problem is infeasible (I.e., Phase I terminates with positive objective 

value), we use the optimal simplex multipliers to generate a constraint of type 

I t 
(22.b).  If this problem Is feasibl« let y  be the optimal solution and n  the 

i. i. 
associated simplex multipliers.  Now solve (23) with x = x  .  If this new 

P 

problem is infeasible, we generate a constraint (22.b) as in Step 2. Otherwise, 

1 £   2 » 
either ex +cy'<0 in which case (1) is unbounded and we terminate or 

c     c 
112  1 I 
ex  + c y  > 0  and then -n      is used to generate a constraint of type (22. e) 

we return to Step 1. 

Finally, it is not difficult to see that if so desired (e.g. in order to keep 

the data related to problem (22) in the easy access memory) it Is possible to remove 

those constraints of (22.b) and (22.c) which are slack, although they may be 

generated again and have to be re-introduced. This also necessitates a new 

finiteness proof which is based on the fact that upon taking suitable account for 

degeneracy, the objective value c x + Q(x) corresponding to every feasible 

solution to (23) - generated in Step 2 - is monotonically decreasing so there are 

only a finite number in which (23) has a feasible solution.  On the other hand, 

between feasible solutions to (23) when constraints of the form (22.b) are being 

1 k 
introduced, the value of  c x  Is monotonically increasing so that a feasible 

solution to (23) always occurs after a finite number of steps. 

D.  Some Geometric Characterizations 

We have already pointed out that checking if a particular point, say  x , is 

2   21- 
feasible corresponds to determining if  b -.A x belongs to the cone 

22 22 
pos A  -{t|t-A y,y>0}.  Similarly, if at some stage the program (22) 

2   21   I 
yields an unbounded direction, then solving (23) with b - A x   replaced with 

21  I 21  I 
-A x  corresponds to determining if the ray X(-A x ) , X > 0  belongs to the 
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22 cone pos A . · Even 

viewed as determining 

pos ( ::2) • {~ I ' • 

checking for optimality of a gi ven pair ( 6£, x£) can be 

if ( b2 ~
1

A2lxi ) belongs or does not belong to the cone 

2 22 } c y , A y , y ~ 0 . In this section and the following one, 

we limit our discussion to the case when checking for feasibil i ty, i.e., x in K
2 

, 

but in view of the above observations our remarks can be adapted equally well to 

the other parts of the algorithm. 

Suppose x £ K
1 

, but does not belong to K2 . Then s olving the linear 

program (S) yields w > 0 . At the same time we generate some o , wh i ch corresponds 

to a particular basis of the matrix (A
21

, I, -I) The basic solut i on conta i ns a t 

least one artificial variable, i.e., a component of the vector + -
(v , v ) , at 

positive level. Since otherwise w = 0 and b
2 

- A
21

x £ pos A
22 

• We have that 

f24) Proposition: 

Suppose the optimal solut i on to (5), with w > 0 , contains exactly 

one artificial vari ab l e . Then, o i s the normal of a supporting 

hyperplane of 
22 

pos A det e rmi ning a (m2- l )-d i mens i onal fac e o f 
22 

pos A • 

Proof: 

Fi rst note t hat t his (m2- l )-d i mensiona l face ma y be pos A
22 

i t se l f v i z . 

if 
22 

pos A is of dimens i on Also, by th e hypot~ es is of th is pr oposi t i on 

the 
22 

has at l east d i mens i on m -1 cone pos A 2 

least m2-1 columns of A22 such that 
22 

oA*j = 

column of A22 . Of these, m -1 2 are linearly 

the bas i s. Let {t I I 22 , y ~ 0 } F = t A*j y j 
j EJ 22 

now suffices to observe that F • pos A ~ {t 

a supporting hyperplane of pos A22 and that 

contains m -1 
2 

linearly independent points. 

By assumpt i on, the re are at 

0 wh e r e A22 denotes the . th 
* j J 

i ndep endent since m2-1 belong to 

where J {j I oA22 0 } It 
*j 

a t = 0 } , that { t I 0 = 0} i s 

F has dimens i on m -1 2 since i t 

Thus , if i t i s possible to obtain a solut i on to (S) with only one arti fici a l 

variable i n the opt i mal basis it follows that o det e rmines a (m2-l) d i mens i onal 



faces of 22 pos A to construct the constraints (22.b) one expects that fewer 

need be generated. In particular. the number of deficiency 1 faces of 22 pos A 

is much smaller than the number of basis of (A
22 

• I • -I) [111· However. it is 

not always possible to obtain a (m2-l) face of pOS A22 In fact as is 

indicated in the next proposition. it is sometimes possible to obtain solutions to 

(5) such that 

I 22 {t at • 0} ~ pos A • {0} . 

(25) Proposition: 

(26) 

Suppose x t K2 and 

i • and that for all j 

22 
holds. then no column ~j 

(5). A~! denotes the ith 

is different of zero for all 

of A22 will figure in the optimal basis of 

row of A21 • 

Moreover. one should realize that the conclusion of the above proposition 

depends very much on the selection of cost coefficients +1 for the artificial 

variables in the infeas i bility form. In fact. any set of positive numbers could 

be selected as cost coefficients for the infeasibility form. Thus. an obvious 

complement to (25) is 

(27) Corollary: 

Suppose x t ~ and (b
2 

- A~!x> is different of zero for all i • 

and for all j and all sets of positive numbers lJ 1 • . ..• 

the relation 

19 
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V A
22

   ^ V A22 

(28) ^     21 
MiAij I     21 ^ij 

{l|(bi  - A^x)   > 0) (i|(bi  - A^x)   < 0} 

,22       ,     .22 
holds,   then no column    A^,     of    A will  figure  In  the optimal basis 

of   (5).     A.A    denotes  the  i       row of    A 

To see  that  the condition   (28)   is not    vacuous   ,  consider 

A      "(12)    an^    ^     ~ A    x = (-1 ) * 

Obviously the condition (28) is much weaker than (26) since it allows for 

some perturbation of the coefficients of the objective function in (5).  It also 

indicates how one may modify (5) in order to be able to increase the number of the 

22 
columns of A   figuring in the optimal basis.  This would mutually increase the 

22 
dimension of the face of pos A   determined by the corresponding a .  In 

practice, this would involve a parametric study of the linear program (5).  The 

constraints (22.b) so generated would generally be "better" than those obtained 

by solving (5) but whether the extra computation is justified can probably be 

discovered only by experience in using the algorithm. 

E. A "Deepest Cut" Property 

As we mentioned earlier the constraints (7) obtained by solving (5) have a 

deepest cut property with interesting geometrical interpretations which we now 

examine. The linear program (5) can be interpreted as finding the nearest point 

22 2   21 
in pos A   tod=b-Axin the  sense of the I.     norm, i.e.. 

Min  I I z - d I I 

22 m2 
(29) subject   to       zt     pos  A      '     R 

2 21- 
d = b    - Ax 

m» 
•z 1 

wher'1 z       .     denote   the     P.,     norm given bv     1      z        ,   =     /      z. 
1 1 I.'-.     1 

i = l 

rfti 
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m2 
The  H,  norm is defined on the space R   of column n^-vectors.  Associated 

m2 m2 * 
with R   is its dual space  (R  )  which may be identified with all real valued 

linear functions on R  .As is well known, any linear function f(z)  in 
m2 

R   can be represented in a one to one way as a matrix product ir.x of a m_ 

dimensional row vector TT , and the column vector x .  We shall thus think of 

m2 * r,m2 
(R )  as a space of row vectors with the same dimension as R  .A hyperplane, 

m2 
H , passing through the origin of R   can be represented in the form 

, m2 * 
H « {zlnz ■ 0} for some TI ^ 0  in  (R )  .  However, this representation is not 

unique since  (ßiOz = 0 determines the same hyperplane for any real number 

6^0.  To resolve this ambiguity, we specify that  || n ||^ - 1 .  Where 

m2 * 
i | *|I* is a norm defined on  (R )  .  This norm can be defined quite naturally 

m2 
[9]» using  | I'M,  on R   by means of the following relation 

(30) 11^11* = max {irz * lii" 

It is easily seen that  M1TM*"'li1,llao " max  I 1,.i I » the l^    norm .  A 

given  n , determines also a half space S = {z | irz < 0}  which is bounded by H . 

The condition that  I I " M  = 1 and the specification of which half space is to he 

determined uniquely defines TT . 

The dual of (5) is 

Max o[b - A x] 

22 
(31) subject to oA  < 0 

o,<l i»l,...,m 
1 " 

Let us interpret (31) in the language developed here. a     Is a m,. 
m2 * 

dimensional row vector which is an element of  (R )  .  It determines a half 

22 
space,  S , by  S = {x | ox < 0}  which Includes  pos A   .  This follows from 

22 22 
the relation  z c pos A   implies that  z = A y  for some  y > 0 ; hence 
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oz «   (oA    )y  < 0   .       The relations   l0^ I   <   1     1 " 1,   ..., m«     is  equivalent to 

, ,  , , „"z * 
o  |  < 1 .  Of all elements of  (R  )  satisfying these conditions we are 

2        21- 
tc find one which maximizes o [b - A x] .  Let us now eAamiae the geometrical 

2   21- 
interpretation of maximizing o[b - A x] . 

The distance from a point  z to a hyperplane H given by H = {z|oz = 0 1 

or equivalently from the origin to the plane H- = {z|oz = oz}  can be obtained 

by solving the linear program: 

Minimize ez + ez 

subject to oz  - oz - oz 

+   -  „ 
z  , z  > 0 , 

The optimal solution is obviously determined by r » z - z  = — oz ; 
V + 

2=2=   0» for     i  ^  v    where       o   I   = max   lo.l    .   Thus,   the  distance  from 
i        i v . 1 

z    to    H    is 

max I o oz   = -r-i—n—    oz 

Thus, problem (31) (i.e., the dual of (5)) can be interpreted as finding 
m2 * 22 

ac(R )  determining a supporting hyperplane of pos A   which is as far as 

2   21- 
possible from b  - A x in the sense of the  £.  norm.  Moreover, by the duality 

theory of linear programming, we have that this maximum distance is equal to the 

2   21- 22 ■"  distance of  b  - A x from pos A   .  Thus, in terms of the  8,  norm we 

have generated a "deepest cut." 
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3.  The Partial Decomposition AlRorlthm 

A very natural approach to L-shaped programs is via the decomposition 

algorithm of Dantzig and Wolfe [8].  Nonetheless, if (1) has the properties 

mentioned in the Introduction, the straightforward application of the 

decomposition algorithm to problem (1) does not take advantage of the structure 

of the problem. 

Decomposition can, however, be advantageously applied to the dual of problem 

(1): 

1    2 
Maximize w » ub + vb 

(32) subject to  uA  + vA  < c 

22   2 
vA   <   c 

where decomposition is done with respect to the coefficient vectors of the 

variables v , the coefficient vectors of the component  u are retained 

unmodified: 

(33) 

Maximize    w = ub    + /_  ^P.   + /,  vju>u 

subject  to       uA11 + 1  \\ + I ukTk  <_ c1 

IK -1 

Xk  : 0 pk   >  0 

where    R,   =  TT A        and   p 
k k, 2 

=  -no       for a vertt 

22 2       „ k.21 , k. 2 k 

:ex    TT       of   the  convex polyhedron 

determined by     TIA       <   C     ;  T,    =  o  A and     >,    = a  b       for  an  extreme  ray     <i       of 

22 2 
the convex polyhedron,     TTA       <  c     .     If we now  take   the  dual  of   (33)   assigning 

dual   multipliers     x       to   the   first     n.      inequalities   and     fi     to   the   last   equation. 
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we obtain the dual problem: 

Minimize  z » c x + 6 

subject to  Ax    ■ b 

(34) »x +e>Pk k=l,...,t 

T. x    > v. k ■ 1, . . . , s 
k     - 'k 

x > 0 

or equivalently, 

Minimize  z » c x + 6 

subject to  Ax    ■ b 

.k.21.        V2, 
(o A )x    > (oT) ) k ■ 1, ..., s 

k - 1, .... t (TTkA21)x + 9 > (v\2) 

x > 0 

which corresponds to (22).  Note that the feasibility constraints (22.b) correspond 

22   2 
to the extreme rays of the polyhedron  nA  < c  , whereas the optimality constraint; 

22   2 
(22.c) correspond to extreme points of  nA ' < c  .  The constraints generated in 

Step 2' of the cutting plane algorithm correspond to columns of (33) generated 

during the Phase I of this partial decomposition procedure.  Thus, the algorithm 

which we developed here can be interpreted as a dual method of the Dantzig - Wolfe 

decomposition algorithm. 

On the other hand, if we consider the L-shaped linear program in the 

equivalent form 

^■^ 
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Minimize      c  x + Q(x) 

(35) subject to    A1^ - b1 

x c  K2 

x >  0  , 

then our algorithm can be  interpreted as a cutting plane algorithm  [4]   ,   [16]   .     If 

21 22 2 
A and    A        have a finite number of  rows,     K      is  a polyhedral set and    Q    a 

convex polyhedral function.     The methods of   [4],   [16]  can be used to establish 

the convergence of our algorithm in the case where  the number of rows are 

infinite;  alternatively,   the results in  [23]  can be used to establish convergence 

using the interpretation of our algorithm as  the dual of a decomposition procedure. 

Thi:    is simply a reflection of the fact  that  the cutting hyperplane methods 

of Cheney and Goldstein   [4],  Goldstein   [13],  and Kelley   [16]  on one hand and  the 

decomposition methods of  Dantzig and Wolfe   [8],   the  algorithm associated with 

Wolfe's  Generalized Program   [5],   [23],  and  in particular Dantzig's  convex 

programming algorithm  [5]   on  the other hand are simply  dual methods   to one  another. 
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4.  Optimal Control with State Constraints 

A rather standard optimal control problem Is 

Maximize q0(T) 

subject to ^ " B(t)q(t) + C(t)u(t) 

(36) q(0) - q0 

i     T 
q(T) E L = {q = (q0, .... qn)|q1 " qi     i=l, •••, n] 

q(t) e Q(t)CRn 

u(t) E U(t) 

where U(t)  and Q(t)  are closed convex polyhedral sets.   We will consider the 

discrete analogue of this system. 

Maximize qn 

i+1     i 
subject   to    a—-^- = BV  + C1u 

0 o 
q     =  q 

N T q     E   L 

q'cQ1 

u^U1 

T    1 
i " 0, .... N-l where A = - , q = q(iA)  and similarly for the other functions. 

Since  q   - [I + AB ]q + AC u  , we can now solve for each q  inductively in 

t 
The   case where    U(t)     are not   polyhedral   leads   to algorithms which  convt-rj"»-  but 
are  not   finite.     Problems  for which    U(t)     is  not  polyhedral   is  treated   in   |2'J|. 
Problems   for which    Q(t)     is   not  polyhedral   can be   treated  by analogous   devices. 
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o ,    v. , 0 k-1 
terms of   the   Initial   state    q       and  the  control   sequence     u   ,   ....   u 

Thus 

q1 - [I + AB0]qO + AC0u0 

q2 - [I + AB1] {[I + AB0]qO + AcV} + AC1u1 

and In general 

k+1 - j1nk[i + ^\ [ q0 + U + ABk] ...  [i + AB^ACV + 

I + AB ]AC  u   + AC u 

27 

Let 

(37) Y[j,k] - [I + ABk 1][I + ABk"2] + ... + [I + AB^] . 

k   k 
for j<k,Y(j.j] = I  and AC = E  .  Then, we have 

(38) 
k-1 

qk = Y[0.k]qO + I  Y[j + I.^EU 

Since Q  and U  are closed convex polyhedral sets, we can formulate the 

cons tralnts on iH  in the form F ^ u^ > f J  j =0, ..., N-l , and those on 

the state variables  q  as f,  qJ s g J  .  So now we have 

Maximize     q„ 

N-l o T 
subject   to     UnqN  -     )    Ylj+l.NlE^iJ   =  Y(o,Nlq0  -  q 

0  0       j=0 

F^J   ^   f(J) j   =   0,     N-l 

and the additional constraints 

;(JV > g(j) i   '  0 N - 1 ,  where  q » (0. q1 qn) 
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If we let u - [u0, ..., u^1]  and A = [-Y(1,N)E0 , -Y(2,N)E1 -Y(N,N)Rk) 

and b-Y[0,k]q -q  ,we have 

Maximize   q0 

(39) subject to U^Q + Au = b 

F(j)uJ . f(3) j = 0, .... N - 1 

Gjqj - g(J) i = 0, .... N - 1 

where qJ  is given by (38).  The approach for handling the constraints 

F ■' uJ > f -'  by generalized linear programming has been described in [6] and 

[23].  Thus for simplicity, we limit ourselves to a discussion of the constraints 

G -^q^ > g^' and assume that the constraints F ■' u-* > f ^  on the u^'s simply 

reduce to the requirements that they are all nonnegative.  We may now simplify (39) 

to read: 

Maximize   q,, 

N 
(40) subject to  U,,q,. + Au = b 

u > 0 

It is this problem which we interpret as an L-shaped program.  The correspondence 

is  A ~ A  , u - ;c , finally the slack variables of the implicit  constraints 

on u ,  G  q > g ^  , correspond to y .  In this case, c •= 0 so that 

second stage feasibility is the only requirement.  Frequently from the physical 

nature of the problem it is clear that "usually" the state constraints will not be 
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violated,   and,   of  course,   the value of  the  slack variables  are of no particular 

use so  that   the  representation of   (40)   as  an L-shaped program seems  particularly 

appropriate. 

To  generate   the  cut we  simply  evaluate     TtJ     by     n.   »   1     for 

[g ■*     - (■       qJ].    '  0    and     T\]  =  0    otherwise.     The cut   is  equal   to 

V  TI-'G  ■'   q-1    '5/   g which   is   the  sum of   the   infeasible  equations.     All   that 

remains  is  to express  these  in  terms  of  the    u's.     In other words,  we wish  to 

evaluate 

(41) I A; 
k 

Mk) k-1 .   . 
I  Y[j+l,k]EV 

and  the constant   term 

!:T.k(g(k)   -   Y(0,klqOl    . 

This will   give  a new constraint     A   ,,    .u    ■   b   .,     which must  be satisfied by    u   , n+1   *     -     n+1 

where    A   ..    .     denotes  the    n+1 row of     A  ,   the special  structure of   (41),   in n+ i , * 

particular,   of   the    Y[j,k]    makes  possible many simplifications  In determining 

A  ,,.     and    b   ,,     and,   in particular,   the  relevant  quantifies would be accumulated n+1* n+1 i r » -i 

as  one determines     -n     ,  rather  than  determining    ^      and  then  going back  to 

calculate    A   ,,.     and    b   ,,   .     In  addition,   if  the state space constraints are n+1* n+1 

"loose",   not  many  of   the  equations would  be  violated. 

This  application  is  an example  of  an   important  subclass  of  L-shaped programs 

which  could  be  called  l-shaped  programs.     These are L-shaped  programs   in which   the 

components   of   the     y    vector are  simply  slack variables. 

The   integer  programming algorithm of  Gomory   [14]   can be  considered as   another 

21 2 
example of   an   l-shaped  program where     A     x +  Iv  =  b       or  equivalently 

21 2 
A    x ^  b       represents  the   infinite  number of  constraints which  can  be added   to 

eliminate  noninteger  extreme  points   but   do  not   eliminate  anv   feasible   integer  points 
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5.     Stochastic  Programs with Recourse 

A stochastic   program with  recourse   (random  right-hand  sides)   also  known as 

two stage  linear  programs  under uncertainty   [7]   reads 

(42) Minimize  z = ex + E fMin qv) 

subject to   Ax     = b 

(42.a) Tx + Wy > f. f,  on  (?:,z,F) 

x > 0 ,  y > 0 

The Interpretation to be given to this problem as well as the definition of tho 

symbols can be found in [25] or various other papers in this area, see e.g. [7], 

(IS]-  Problem (42) is easily recognized to be an I,-shaped program with possibly 

an infinite number of constraints (42.b) and an infinite number of  y  variables. 

We denote by    the support of ehe random variable  f , i.e., the smallest closed 

t     ^  „in   ,- subset of  R  of measure one. 

I'e shall assume that  -  has at least upper bound a , i.e., such that 

If this model is viewed as the 

representation of a physical decision process, the assumption that for each  i 

ae5 and for all  i , f,. < a  for all t.tz 

there exist  a.  such that t,.   ■   u.  seems to be very natural.  The additional 
i i-i 

assumption that  cu •  is somewhat more restrictive.  However, this would 

certainly be the case if the components of  ■'  where independent random variables 

and each  f,,  has compact (or bounded above) support.  Extensions and a mort- 

complete discussion of these questions can be found in "Finding a Feasible Solution 

to Stochastic Program with Fixed Recourse" [24). 

From a mathematical viewpoint the assumption that for each  i  there exists 

i.      is not so appealing but if such an upper bound does not exist then det erm in i ni'. 
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if problem (42) is feasible has to be dealt with differently, as can be seen from 

the following proposition. 

(43)     Proposition: 

Suppose for some i there is no number a.  such that 

C. < a,     and CeH .  Then (42) is feasible only If the lir.oality 

space of pos (W, -I) contains R , where R.  is the 1 
m 

component of the Cartesian product R ■ JSI^* ^A     denotes the 

real line). 

Proof: 

If R C pos (W, -I)  then the equation (W, -I)  (y) « ^  is solvable for all 
1 X   S        X 

with y and s nonnegative.  Otherwise, for some c,       the above equation 

is not solvable.  Since C. has no upper bound, for any x there exists 5 

In (determining £ ) such that the system 

V i ^    V 

y > 0 

is Inconsistent. This implies that for no x the recourse (or second stage) 

problem is feasible for all f, in E , thus the set of feasible solutions to 

(42) Is empty, i.e., (42) is infeasible. 

If the C.'s are independent and for certain i's ,  C.  has no greatest 

upper bound, we can use the above proposition to determine if (42) is infeasible. 

If the criterion is satisfied we can ignore those equations whenever we verify if 

a given  x  Is feasible or not.  In (28) the problem of characterizing and romputlnn 

(which can be easily done) the lineallty  space of  pos(W, -1)  has been dealt with 

in detail. 
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In the algorithm  to be described below,  we  shall assume  that   for each    1   , 

a,     exists  and     acE   .      Propsoition   (16)   in Section    2.B     "A  Feasibility   Test",   of 

[26]  allows  us   to  derive  constraints   (equations   (17)  of   [26]   of   the  form) 

(AA) (oT)x  2   oa 

which  in view of  proposition  (16)  of   [26],   plays   the same role  than  the   feasibilitv 

constraints   (7)   plays   in   the L-shaped   linear  program.     Moreover,   it  has   been shown 

that  the  feasibility  region  for   the  decision variables     x    determined  by   the   Induced 

constraints   [26,   p.92]   can be represented   by  a   finite number  of   linear   constraints. 

(Prosposition  12   of   [27].)     In Section  2.D   "Some  Geometric  Characterizations,     we 

have shown   the  relation  between   the   feasibility  constraints   (7)   that we   introduce 

and  the supports   of  the   cone    pos   (W,   -I)    .     In   [27]   the  accent  had been   placed 

on deriving  an  expression  in terms  of  a minimal   number of  support   (determined by 

the rows  of   the   polar matrix   [27])   of     pos   (W,   -I)   ,   rather   than  an arbitrary 

finite  collection  of  supports.     As   can be  seen   from proposition   (2A)   supports  of 

maximum dimension  corresponds  to  obtaining  a  particular  solution   to  the   lineal 

program. 

Minimize ev 

+ - I 
subject   lo    Wy  +  Tv       -       Iv    = a  - Tx 

y>0,v     >0,v    >0 

These observations  allow us   to  construct  nn  algorithm which  will   find  feasible 

solutions  to   (42)   in a finite number of steps,   i.e.,  by  requiring   that     x    satisfies 

the constraints   (42.a)   to which we add a   finite  number of  constraints  of   the 

form (44);  each one being generated by solving one  linear program  rather   than 

verifying   it   for  a  particular    x    and   for  all     it'-     there  exist  a   feasible    y   , 
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i.e., y > 0 , such that Wy > 5 - Tx . 

We now outline a general algorithm for solving problem (42); general, in 

the sense that we make no assumption on the structure of the matrices (in 

particular W) or on the form of the distribution of the random variable C , 

except that  E has a greatest upper bound.  (See proposition (43) if this is 

not the case.) We Ignore the special cases of infeaslbility and unboundedness 

which are to be handled as before. 

Step 1: 

Solve  the  linear program 

(45) Minimize       ex + e 

(45.a) subject  to    Ax 

(45.b) (okT)x >   (oka) k -  1 s 

(45.c) (TTkT)x + 6   > pk k  >  1 t 

x > 0   . 

Initially,  s and t are zero.  If no constraints of the form (45.c) are presenL 

9 is set equal to - ^ and is ignored in the computation.  Let x  , 6  be an 

optimal solution of (45). 

Step 2: 

Solve the linear program to find 

w  ■ Minimum   ev 

+ - I 
(46) subject   to    Wy + Iv    -  Iv    - a -  Tx 

y>0,v    >0,v~>0. 
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11 £ If    w    =  0   ,   go to   Step  3.     If    w    ^  0   ,   the  optimal  solution    o        to   (46)   is  used 

to generate  a  cut  of   the form  (45.b). 

Step  3: 

For all in E , solve the linear program. 

2 
w = Minimum gy 

(47) subject  to    Wy  -  Is  =  ;. - Tx 

y   >   0   ,   s   >  0   . 

Each    C     determines  an optimal     TT   ,   say,     v   (O   .    We  then compute 

w2(xS  =   Ec{/(Oa   -  Tx£)}   ,   vl  =  E^TTV)}     and    p^  =   Er>{TT*(00   .     If 

2     11 Hi. 
w  (x  )  <   6     ,  we  terminate  (Optimallty  Criterion).     If  not,  we use     TT     ,  p       to 

generate  a new  constraint of  the   form   (45.c)  which we now add  to  our  problem  (45) 

and  return  to  Step  1. 

We  should  also   point out   that   in   following  this   procedure,   it   is   possible 

to generate  an   infinite number of  constraints  of  the   form   (45.c).     Nevertheless,   a 

result of  K.   Murty   [17]  allows  us   to  keep     m     (T    is     m  x  n)     or   less   constraints 

of  the  form  (45.b)   and   (45.c)   at   each   cycle,   i.e.,   the  constraints  with  nonzero 

slack can be  removed. 

We have   separated  Step  2  of   the  paraphrase   (in  Section  21,c)   of   the cutting 

plane  algorithm  in   two parts.     The  reason being  that   in  order   to  generate  the 

feasibility  cuts,  we  need only  consider   the   upper bound  of     r.     (not   all  elements 

of    E)     whereas  we  need complete   information   related   to  the probability  space 

9 9 
(:,   F,   F)     in  order   to  compute     n       and     p        (even when     ~    has   finite 

cardinality  the   labor  so saved should  be  considerable).     Moreover,   if has 

infinite  cardinality,   it   is  difficult   to  perform Step   3 unless   the  structure  of 

9 9 
W    is  such  that   it   is   possible  to   find   a  closed  form expression   for     n       and     p     , 
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e.g.,   see   [20]  and   [25].     The   remaining part of  this  section is  denoted  to suggest 

a method  to circumvent   this  problem.    We start by describing a variant  of  the 

above  algorithm. 

If    i    is an absolutely  continuous  random variable,  we can modify  the 

algorithm as  follows: 

Step 1: 

Solve the  linear program 

Minimize (c  -  TI
II

~
1

T]X 

A11 K A    x » b 

(48) k k 
subject  to     (o  T)x  >   (o  a) k «   1,   ...,   s 

x  >   0   . 

£-1 -I 
Initially    s » 0    and     it •=  0   .     Let    x      be an optimal solution  to   (48).     Find 

C-l -i l-l -i l-l 
Min  ii(\)  =c[(l-A)x        +  Xx  ]  + Q[(l-A)x        + Xx   ]     where    x was  our  previous 

^i1 0 l-l 
solution     (x    - 0)     which  for     £  >  1    was used  to determine    IT and  the 

I 
function    Q(x)     is  as  defined   in   [26,   Equation   (21)].     Say,  iHX   )   <  ii(X)     for 

£ l-l 
X  E   [0,1].     If    X     = 0   .     We   terminate with  optimal solution    x     '   . 

i i     l-l l-l 
(Optimality Criterion).     Let     x=(l-X)x        +Xx     . 

Step 2: 

As  above. 

Step  3: 

As  above,  determines     IT       and we  i leu  return  to Step  1. 

The  convergence of   this  algoritl^ cm be easily verified  if we  observe  that 

from  proposition   (29)   and  corollary   (28)   in   [26]   It   follows   that   if     f.     is   a 

continuous  random variable  then    Q(x)     is  a  differentiable  function  with   gradient 

f f 
-n  T     at     x     .     Thus,   the  above  algorithm can  be  viewed   as  a variant   «1    llu- 
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Frank-Wolfe   [10]  algorithm for  finding  the minimum of  a  convex differentiable 

function  on  a  convex polyhedral  set.     Since  their procedure  requires  twice- 

2 
differentiability and in general     Q(x)     will not be of  class     C       their 

convergence  proof does not  strictly  apply.     The necessary modifications  can be 

found  in   [25,   proposition   (37),   (41)   and   (43)]. 

This   last  algorithm as well  as   the  first one we suggested,   to solve 

Stochastic  Programs with  Recourse   relies  on  the  possibility  of   performing  Step   3   . 

If     5     does  not have  finite  cardinality   this  seems   to be  nearly   imposslhle. 

However,   one  could exploit  a  suggestion of  Dantzig  and  Madansky   [7]  which  consists 

in sampling   the  distribution of     C     and  solve  Step   3   for  some   finite sample.     This 

i i. 
would naturally  result  in approximated values  for     TI       and    p     .     As has  already 

been pointed out  in  the  introduction,   this approach would  generate a constraint 

of   tvpe   (45.c)  which would not  necessarily be a  support   of   the   function    Q(x)   , 

and  could  bery well  eliminate   the  optimal  solution   (42)   from   the set  of  feasible 

solutions   to   (45).     This   inconvenience  has  been  completely  eliminated   if  we   follow 

the  second  procedure since  all   the  constraints  present   in   (48)   never   Involve  any 

approximation process. 

We  are however still   left  with   two  problems.     First   to  solve  Step   S   for  a 

large   (possibly very  large)   number  of  values  of     >.     In .     Second,   the 

resulting     TT       will not  in  general,   determine  the  gradient   of     Q(x)     at     x       and 

thus   the   convergence properties   of   the  algorithm are  changed.     This  second  problem 

will  be   ehe  object  of another  paper   in which various  sampling   techniques  are 

examined  and   the  convergences   properties  of  the  algorithm  are   established.     We 

now  show how   to  obtain   the  approximate  value    TI       for     TT        from a specific  sample. 

1 N ..et     C   ,    . . . ,   f,       be a sample  of   size     N    obtained   from  the  distribution of     f   . 

Our  purpose   is   to solve   (in  Step   5)   the     N    linear  programs  of   the  form: 
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Minimize   qy 

k    £ 
(49) subject toWy-Is-C-Tx k • 1, .... N 

y > 0 s > 0  . 

Since we are performing Step 3, x E K , and since C e = It follows that (49) 

u k 
is feasible for all  C  •  Moreover if (49) is unbounded for some  f,  it is 

unbounded for all C c 5  thus (42) is unbounded (see Proposition 13).  Let us 

assume (49) is solvable.  Let n (O  denote the optimal simplex multipliers 

associated with solving (49) for a particular E,   .     Then 

(50) ^ - Z * ^  a > • 
k-1 

In the appendix of [26], we have reviewed the properties of the function 

Q(t) - (Min qy|Wy - t, y > 0} in particular we shall use the fact that:  If 

{iT(t)} is the ■apping d«tenlnlng tb« opt»—1 mimpltm. Multipliers, then there 

exists a function TT(t) in {'"(t)} piecewise constant on pos W.  In particular, if W 

is an optimal basis corresponding to a particular value of t , then W    is 

also an optimal basis for all t e pos W   .  Let q    be the subvector of q 

corresponding to W( ) , then TT(t) - q^vr1^"1 determines an optimal vector 

of multipliers for all  t e pos VT ^ .  Applying this result to (49) it follows 

that rt (O Is also optimal for all C  such that  (^ - TxS E pos W(C) where 

W(0 is the optimal basis obtained from solving (49) for some fixed C ■  To 

determine if (^ - TX£)E for W(0 it is sufficient to verify if 

wa)"1 aJ - Tx4) > 0 . 

This can be easily done since W(0   is available from the final optimal tableau. 

~ JJ 
We now give an algorithmic procedure to find n  , as defined by (50). 
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Step a: 

Select an unbiased  sample of size    N     from  the  distribution of     f,   ,   say 

IN k k Ä 1 
C   ,   ....   C     •     Compute     C     "  C     - Tx      k  =   1,   ....   N   .     By     (c   }    we  denote   tfu 

set  of  available     (,      and  set     L = N  . 

Step b: 

i k 
Select some  C  in {c,J}     and set  C = C   (initially k = 1)  and solve 

the linear program: 

Minimize   qy 

subject to Wy - Is = t. 

y > 0 . 

k k 
Let  TT (;; ) be the optimal simplex multipliers and W(r, ) be the corresponding 

optimal basis. 

Step c: 

Let n(k)  be the number of vectors r       in the set  {r, } such that 

(51) wuV1 cj > o 

Set  L = L - n(k)  and  if  L > 0 return to Step b with  k = k + 1  and delete 

from the set {c )  and those  r,  which satisfied (51).  If L = 0  terminate 

with 

/ = ± £ n(k)TT(.,k) 

In returning to Step b it is suggested to select (,     (in the remaining set 

of  {C }  such that  ',  fails to satisfy (51) only in a minimum number of 

*m 
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components   (if  possible one).     Thus  the  previous basis would be  the  optimal basis 

for  the new     ;       up   to very  few dual  simplex  step. 

A few experiments have been made on an  IBM 7094   (with a not nearly optimal 

code).     We have selected    N ■  3000 and  5000,   and 10 < m <  40     (m    is   the numbers 

of  rows  of W  ).     In  each case  the  computation of    TT       took never more  than twice 

the time  required  to solve one linear program of the same size.     In  the same vein, 

a number  of experiments have been conducted by  Ballinfty and Prekopa  for random 

linear programs.     In   their manuscript   [1]   they show that numerous  "tricks" can be 

performed  to  improve  sampling procedures. 
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