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FOREWORD 

INTRODUCTION 

This is one of a group of handbooks covering 
the engineering information and quantitative 
data needed in the design and construction of 
military equipment, which (as a group) con­
stitutes the Army Materiel Command Engineer­
ing Design Handbook Series. 
PURPOSE OF HANDBOOK 

The handbook on Servomechanisms has been 
prepared as an aid to designers of automatic 
control systems for Army equipments, and as a 
guide to military and civilian personnel who are 
responsible for setting control-system specifica­
tions and ens\1ring their fulfillment. 

SCOPE AND USE OF HANDBOOK 

The publications are presented in hand­
book form rather than in the style of text­
books. Tables , charts , equations, and biblio­
graphical references are used in abundance. 
Proofs and derivations are often omitted and 
only final results with interpretations are 
stated. Certain specific information that is 
always needed in carrying out design details 
has, of necessity, been omitted. Manufac­
turers ' names , product serial numbers , tech­
nical specifications, and prices are subject to 
great variation and are more appropriately 
found in trade catalogs . It is essential that 
up-to-date catalogs be used by designers as 
supplements to this handbook. 

To make effective use of the handbook dur­
ing the design of a servo , the following proce­
dure is suggested . The designer should turn 
first to Chapters 16 and 17 where design 
philosophy and methods are discussed. Im­
plementation of the design procedure may 
require a review of certain theoretical con­
cepts and methods which can be achieved 
through reference to Chapters 1 through 10. 
As the design proceeds, a stage will be 
reached at which the power capacity of the 
output member has been fixed. Reference to 
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Chapters 14, 15, and 16 will then illustrate 
the salient features of output members hav­
ing the required power capacity. After the 
designer has chosen the output member, he 
will find the information dealing with sensing 
elements and amplifiers (Chapters 11, 12, 
and 13) helpful in completing the design. 

FEEDBACK CONTROL SYSTEMS AND 
SERVOMECHANISMS 

Servomechanisms are part of a broad class 
of systems that operate on the principle of 
feedback. In a feedback control system, the 
output (response) signal is made to conform 
with the input (command) signal by feeding 
back to the input a signal that is a function 
of the output for the purpose of comparison. 
Should an error exist, a corrective action is 
automatically initiated to reduce the error 
toward zero. Thus , through feedback, output 
and input signals are made to conform essen­
tially with each other. 

In practice, the output signal of a feedback 
control system may be an electrical quantity 
such as a voltage or current, or any one of a 
variety of physical quantities such as a linear 
or angular displacement, velocity, pressure, 
or temperature. Similarly, the input signal 
may take any one of these forms . Moreover, 
in many applications, input signals belong to 
one of these types , and the output to another. 
Suitable transducers or measuring devices 
must then be used. It is also common to find 
multiple feedback paths or loops in compli­
cated feedback control systems. In these sys­
tems , the over-all system performance as 
characterized by stability, speed of response, 
or accuracy can be enhanced by feeding back 
signals from various points within the system 
to other points for comparison and initiation 
of correction signals at the comparison points. 

At present, there is no standard definition 
of a servomechanism. Some engineers prefer 
to classify any system with a feedback loop 
as a servomechanism. According to this inter-



pretation, an electronic amplifier with nega­
tive feedback is a servo. More frequently , 
however, the term servgmechanism is re­
served for a feedback control system contain­
ing a mechanical quantity. Thus , the IRE 
defines a servomechanism as "a feedback con­
trol system in which one or more of the sys­
tem signals represents mechanical motion." 
Some would restrict the definition further by 
applying the term only to a special class of 
feedback control system in which the output 
is a mechanical position. 

APPLICATION OF SERVOMECHANISMS 10 
ARMY EQUIPMENT 

Servomechanisms are an important part of 
nearly every piece of modern mechanized 
Army equipment. They are used to automat­
ically position gun mounts , missile launchers, 
and radar antennas . They aid in the control 
of the flight paths of jet-propelled rockets and 
ballistic missiles , and play an important role 
in the navigational systems of those vehicles. 
As instrument servos, they permit remote 
monitoring of physical' and electrical quan­
tities and facilitate mathematical operations 
in computers. 

No single set of electrical and physi~l re­
quirements can be stated for servomecha­
nisms intended for these diverse military ap­
plications. The characteristics of each servo­
mechanism are determined by the function it 
is to perform , by the characteristics of the 
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other devices and equipments with which it 
is associated, and by the environment to 
which it is subjected. It will often be found 
that two or more servo-system configurations 
will meet a given set of performance specifi­
cations . Final choice of a system may then be 
determined by such factors as ability of the 
system to meet environmental specifications, 
availability of components, simplicity, relia­
bility, ease of maintenance, ease of manufac­
ture, and cost. Finally, the ability to translate 
any acceptable paper design into a piece of 
physical equipment that meets electrical and 
physical specifications and works reliably 
depends to a great extent upon the skill of 
the engineering and manufacturing groups 
responsible for building the system. The exer­
cise of care and good judgment when specify­
ing electrical, mechanical, and thermal toler­
ances on components and subsystems can 
contribute greatly to the successful imple­
mentation of servo-system design. 

The handbook on Servomechanisms was pre­
pared under the direction of the Engineering 
Handbook Office, Duke University, under con­
tract to the Army Research Office-Durham. The 
material for this pamphlet was prepared by 
Jackson & Moreland, Boston, Massachusetts , un­
der subrontract to the Engineering Handbook 
Office. Jackson & Moreland was assisted in their 
work by consultants who are recognized authori­
ties in the field of servomechanisms. 



PREFACE 

The Engineering Design Handbook Series of the Army 
Materiel Command is a coordinated series of handbooks 
containing basic information and fundamental data useful 
in the design and development of Army materiel and sys­
tems. The handbooks are authoritative reference books of 
practical information and quantitative facts helpful in the 
design and development of Army materiel so that it will 
meet the tactical and the technical needs of the Armed 
Forces. The present handbook is one of a series on Servo­
mechanisms. 

Section 1 of the handbook contains Chapters 1 through 
10, which present feedback control theory as related to 
servomechanisms. This material is a concise summary 
of information on the subject. For this reason, persons 
who are unfamiliar with servomechanisms theory may 
find it necessary at first to acquaint themselves with 
the material included in standard textbooks. The bibliog­
raphy at the end of each chapter lists applicable textbooks 
and periodicals for additional referencing and research. 

For information on servomechanism components and 
system design, see one of the following applicable sections 
of this handbook: 

AMCP 706-137 Section 2 Measurement and Signal 
Converters (Chapters 11- 12) 

AMCP 706-13 8 Section 3 Amplification (Chapter 13) 
AMCP 706-139 Section 4 Power Elements and System 

Design (Chapters 14-20) 
An index for the material in all four sections is placed 

at the end of Section 4. 
Elements of the U. S. Army Materiel Command having 

need for handbooks may submit requisitions or official 
requests directly to Publications and Reproduction Agency, 
Letterkenny Army Depot, Chambersburg, Pennsylvania 
17201. Contractors should submit such requisitions or 
requests to their contracting officers. 

Comments and suggestions on this handbook are wel­
come and should be addressed to Army Research Office­
Durham, Box CM, Duke Station, Durham, North Carolina 
27706. 
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CHAPTER 1 

PROPERTIES OF FEEDBACK CONTROL SYSTEMS* 

1-1 OBJECTIVES OF A FEEDBACK CONTROL SYSTEM 

The purpose of a feedback control system 
is to monitor an output (controlled variable) 
in a manner dictated by an input (reference 
variable) in the presence of spurious disturb­
ances (such as random load changes). The 
basic elements of a feedback control system 
are shown in Fig. 1-1. The system measures 
the output, compares the measurement with 
the desired value of the output as prescribed 
by the input, and uses the error (difference 
between actual output and desired output) to 
change the actual output and bring it into 
closer correspondence with the desired value 
of the output. To achieve a more sensitive 
control means , the error is usually amplified ; 
in general, the higher the gain the more accu­
rate the system. Thus , a feedback control sys­
tem is characterized by measurement, com-

*By L.A. Gould 

INPUT+ NOISE ERROR 

parison, and amplification. In brief, a feed­
back control system is an error-correcting 
power-amplifying system that produces a 
high-accuracy output in accordance with the 
dictates of a prescribed input. 

Since arbitrary disturbances (such as am­
plifier drift, random torques, etc) can occur 
at various points in the system, a feedback 
control system must be able to perform its 
task with the required accuracy in the pres­
ence of these disturbances. Since random 
noise (unwanted fluctuations) often is pres­
ent at the input. of the system, a feedback 
control system must be able to reject, or filter 
out, the noise while producing as faithful a 
representation of the desired output as is 
feasible. 

DISTURBANCE 

~ 

COMPARATOR AMPLIFIER 
... COEtt_~~~LNLlD -+- ....-ouTPUT 

MEASURED OUTPUT' 
~~~ 

Fig. J- J Elements of a feedback control system. 
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1-2 OPEN-LOOP VS CLOSED-LOOP SYSTEM CHARACTERISTICS 

Because a measure of the output is fed 
back and compared with the input, any repre­
sentation of a feedback system contains a 
closed loop (see Fig. 1-1), and the system is 
thus called a closed-loop system. Many con­
trol systems do not exhibit this closed-loop 
feature and may be termed open-loop sys­
tems. In an open-loop system, the error is 
reduced by careful calibration. The elements 
of an open-loop control system are shown in 
Fig. 1-2. 

DISTURBANCE 

INPUT+ NOISE 
OUTPUT 

fig. 7-2 Elements of an open-loop control system. 

If open-loop and closed-loop systems are 
compared, it can be seen that several advan­
tages accrue to the closed-loop system. In a 
closed-loop system, the percentage change in 
the response of the system to a given percent­
age change in the response of one of its ele­
ments is approximately inversely proportion­
al to the over-all amplification of the loop. 
However, in an open-loop system, the percent­
age change in the response of the system is 
approximately proportional to the percentage 

change in the response of one of its elements. 
Thus , a feedback control system is insensitive 
to changes in the parameters of its compo­
nents and can usually be constructed from 
less accurate and cheaper components than 
those used in an open-loop system. One excep­
tion to the foregoing statement results from 
an inherent limitation- the closed-loop sys­
tem can be no more accurate and reliable 
than its measuring element. The same limita­
tion holds true for an open-loop system. 

The error produced in an open-loop system 
by a given disturbance is much larger than 
the error produced by the same disturbance 
in an equivalent closed-loop system, the ratio 
of errors being approximately proportional 
to the over-all amplification of the loop of the 
closed-loop system. Thus, a feedback control 
system is relatively insensitive to extraneous 
disturbances and can be used in situations 
where severe upsets are expected. One can 
conclude that the over-all amplification (or 
gain) that can be achieved inside the loop of 
a feedback control system directly affects the 
accuracy of the system, the constancy of its 
characteristics, and the "stiffness" of the sys­
tem in the face of external upsets or disturb­
ances. In general, it is found that the higher 
the gain of the system, the better the system. 
The highest gain that can be used, however, 
is limited in every case by considerations of 
stability. 

1-3 STABILITY AND DYNAMIC RESPONSE 

For the advantages of accuracy and con· 
stancy of characteristics, the feedback con­
trol system must pay a price in the form of a 
greater tendency toward instability. A linear 
system is said to be stable if the response of 
the system to any discontinuous input does 
not exhibit sustained or growing oscillations. 
Essentially, this means that the system re­
sponse will ultimately settle down to some 
steady value. An unstable system which ex­
hibits steady or runaway oscillations is unac­
ceptable. Unstable behavior must be guarded 

1-2 

against in the design, construction, and test­
ing of feedback systems. Because of the possi­
bility of instability, a major portion of con­
trol system design is devoted to the task of 
ensuring that a safe margin of stability exists 
and can be maintained throughout the operat­
ing range of the system. 

It can be shown that the cause of instability 
in a given closed-loop system is due to the 
fact that no physical device can respond in­
stantaneously to a sudden change at its input. 
If a sudden change occurs in the error of a 
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feedback system, the output will not correct 
for the error instantaneously. If the correc­
tive force is great enough (due to a high 
amplification), the output will accelerate rap­
idly and cause a reversal of the error. If a 
high output velocity is attained, the inertia of 
the output will carry the output past the point 
where the error is zero. Instability occurs if 
the maximum magnitude of the error after 
reversal is equal to, or greater than, the mag­
nitude of the original disturbance in the 
error. The tendency for a system to become 
unstable is accentuated as the amplification 
is increased, since the stored energy in the 
inertia of the output will be correspondingly 
increased without any compensating increase 
in the rate of dissipation of energy in the sys­
tem. This situatiop corresponds to an exces­
sive delay in the response of the output. Thus, 
an attempt to increase accuracy by increasing 
gain or amplification is usually accompanied 
by an increased tendency toward instability. 
As a result, design becomes a compromise 
between accuracy and stability. A more de­
tailed and quantitative examination of stabil-

ity is developed in Ch. 4. 
The dynamic behavior of a system is im­

portant not only as a determinant of stability 
but also, for stable systems, as a measure of 
instantaneous accuracy. In many situations 
where rapid input variations occur, it is of 
the utmost importance that the error be kept 
within specified bounds at all times. Ideally, 
a system with no time lag would be able to 
follow extremely rapid input variations with 
perfect accuracy at all times. Actually, the 
impossibility of achieving instantaneous re­
sponse, together with the stability problem 
created by the "pile-up" of the dynamic lags 
of cascaded elements in a loop, make the 
problem of maintaining dynamic accuracy 
(i.e., error within specified bounds at all 
times) progressively more difficult as the 
rapidity of input variations increases. Con­
sequently, the design of both system and 
components is focused to a large degree on 
improving the speed of response (in other 
words, reducing dynamic lags), thereby ob­
taining a concomitant improvement in the 
over-all dynamic accuracy of the system. 

1·4 TERMINOLOGY a= FEEDBACK CONTROL SYSTEMS 

To facilitate discussion and to maintain 
uniformity, a specific terminology has been 
adopted. The general diagram of a feedback 
control system is shown in Fig. 1-3. Note that 
some of the elements and variables in this 
diagram correspond to real devices and sig­
nals, whereas other elements and variables 
correspond to purely hypothetical properties 
of the system that are useful in visualizing 
the various functions of the system. 

To aid visualization and to distinguish be­
tween variables and components, the sym­
bolism of Fig. 1-3 is defined as follows : 

(a) A line represents a variable or signal 
The arrow on the line designates the direction 
of information flow. 

(b) A block represents a device or group 
of devices that operate on the signal or signals 
entering the block to produce the signal leav­
ing the block. 

1-3 

(c) The symbol & represents sum­
mation. The variables entering are added 
algebraically, according to the signs associ­
ated with the corresponding arrows, to pro­
duce the variable leaving. 

(d) The symbol-,-- is called a splitting 
point. The variable entering is to be trans­
mitted to two points in the diagram. The vari­
ables leaving are both identical to the variable 
entering. 

The symbolism used for the variables in 
Fig. 1-3 is defined as follows: 

r =reference vari­
able or input 

n = nmse 
e =actuating 

variable 
m =manipulated 

variable 

u = disturbance or 
upset 

c = controlled vari­
able or output 

i = desired or ideal 
output 

Y. = system error 
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In many cases, the representation of Fig. 
1-3 can be simplified. If the measuring and 
feedback elements are ideal and have no 
dynamic lag, it is possible to redraw the figure 
(see Ch. 3) so as to have no elements in the 

feedback path of the system. 
A system in which the unmodified con­

trolled variable is fed back directly for com­
parison with the input is called a unity-feed­
back system. The main loop of a unity-feed­
back system is shown in Fig. 1-4. 

If the ideal output of a system is the refer-

EFERENCE R 
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' VARIABLE COMPENSATING 
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AMPLIFYING 
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ence variable, the ideal elements are perfect. 
That is, the desired output is exactly equal to 
the reference input at all times. Many designs 
require that the output equal the input at all 
times although, strictly speaking, this is im­
possible with real components. 

If a unity-feedback system is to have its 
desired output equal to its reference input, in 
the absence of noise, the system error must 
equal the actuating variable. A unity-feed­
back system of this type is often used initially 
in the process of design because of its simplic­
ity. Such a system is shown in Fig. 1-5. 
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CHAPTER 2 

DYNAMIC RESPONSE* 

2-1 INTRODUCTION 

The dynamic response of a component or 
system is the output response to an input that 
is a varying function of time. The steady­
state response of a component or system is 
the output response to an input that is con­
stant with time. 

Paragraph 1-3 indicates that dynamic re­
sponse is a basic determinant of system sta­
bility as well as an important element of 
system performance. All design theory for a 
feedback control system is centered on the 
study, analysis, and manipulation of the 
dynamic response characteristics of the sys­
tem and of the components that are part of 
the system. Because of its fundamental im­
portance, the dynamic response of any physi­
cal device or system is classified according to 
the nature of the input time variation that 

occurs. In some cases, the input time varia­
tion may be entirely artificial since it may not 
ordinarily occur in practice (for example, a 
sinusoidal signal). In other cases, the input 
variation may be one that is known to occur 
in practice (for example, a step change), In 
the former case, the artificial input time func­
tion is used primarily to facilitate analysis, 
design, and testing. In the latter case, the 
actual response of the system to the known 
input function is an important measure of 
performance which both the designer and 
user need to know in order to verify that the 
system meets the performance specifications. 
In either case, a clear understanding of the 
nature of the input and of the methods for 
finding the response to it are necessary for 
successful design. 

2-2 LINEARIZATION 

The basic tool used to describe the dynamic 
performance of a device is the set of differen­
tial equations that serve as a mathematical 
model for the actual physical device. Since 
quantitative techniques are imperative for 
analysis and design, a mathematical descrip­
tion is necessary. However, when going from 
the physical device to the differential equation 
model, one must resort to approximations if 
usable results are to be expected from a 
reasonable expenditure of time and effort. If 
the physical situation is such that It IS pos­
sible to describe the device with a set of 
*By L.A. Gould 
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constant-coefficient linear differential equa­
tions to a high degree of accuracy, a wide 
variety of powerful tools are available to aid 
analysis. Even when the expected range of 
variation of the variables is such that the 
accuracy of approximation is partially lost 
when constant-coefficient linear differential 
equations are used, such a representation still 
serves a useful purpose. Although the repre­
sentation above is inaccurate, it does provide 
a qualitative estimate of behavior which is 
still good enough to be of value to the designer 
for guiding testing procedures. Furthermore, 
if the designer artificially restricts the range 
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of variation of the variables, he can obtain 
accurate results which apply to some, though 
not all, of the expected variations. From such 
a restriction, there results a partially accur­
ate description that can at least be used to 
verify whether or not the device meets some 
of the performance specifications. 

Although descriptions utilizing constant­
coefficient linear differential equations pre­
dominate in feedback control system design, 
two classes of systems exist that do not lend 
themselves to such a description. Sampled- or 
pulsed-data systems are best described by 
variable-coefficient linear differential equa­
tions and are discussed in Ch. 9. Contactor or 
relay servomechanisms cannot be described 
by linear equations at all, and one must resort 
to the nonlinear equations that describe these 
systems (see Ch. 10). In addition, although 
the nonlinear properties of linear systems are 
ordinarily treated as secondary effects in the 
usual design procedure, they can, under cer­
tain circumstances, seriously affect perform­
ance. Such circumstances occur when the 
range of variation of the variables is wide or 
when the nonlinearity cannot be justifiably 
ignored. Secondary or incidental nonlineari­
ties such as saturation and backlash are 
treated in Ch. 10. 

Since linearization methods are the basis 
for most design work, it is important to 
understand the techniques that are used to 
establish a linear differential equation des­
cription of a device. As a first step in a line­
arization procedure, appropriate assumptions 
are usually formulated based on a knowledge 
of the phhysics involved. For example, in 
describing d-e machinery operating in an 
unsaturated region, the effect of hysteresis 
is often ignored and the normal magnetiza­
tion curve of the steel is used in the analysis. 
The justification for such an approximation 
is based on the fact that, in many cases, the 
width of the hysteresis loop is small compared 
with the range of variation of magnetization 
encountered when using the device. In an­
other situation, one may ignore the effect of 
backlash in a gear train for reasons analogous 
to those above. 

2-2 

When reasonable assumptions have elimi­
nated many of the incidental nonlinearities of 
a device, one is often left with a performance 
description that is still nonlinear because of 
the curvature of the steady-state response 
(steady output as a function of a constant 
input) curves of the device. When this occurs, 
use is made of incremental techniques to pro­
duce the desired linear description. 

The incremental linearization of a nonline­
ar characteristic (approximate representa­
tion of a nonlinear function by a linear func­
tion for small changes of the independent 
variable) is based on the Taylor series expan­
sion of the function around a desired operat­
ing point. The deviation of the function from 
the operating point obtained from the approx­
imate expansion of a function around a 
steady-state operating point is given by 

6{(:r+x2, .•. , x,f = ~~ ~x1 
Cxz t1.x2 • . . C.r,. l\.x" 

(2-1) 

l\.j(X~o X2, • •• , Xn) = f(X~o X2, · • ·, Xn) 

- f ( X10, X2o, • . • , X no) (2-2) 

where 

f(x~o x2, ... ,x,) =function to be approxi­
mated 

(x1o, X2o, ... , Xno = steady-state operating 
point 

l\.x, =X~.; -X"o (k= 1, 2, ... ,n) 

C =?.!_I (k=1,2, . .. ,n) 
.,.,. Q XJ.: XJc;, X:!o, ••• 'Xno 

In the approximation [Eq. (2-1) ], the devia­
tion or increment of the function from the 
operating point has been expressed as a linear 
function of the deviations (from the operat­
ing point) of its independent variables. The 
constant coefficients C"'k are called the partial 
coefficients of f with respect to x1, x2, ... , x,. 
at the operating point (xio, X2o, ... , x,.o). 

Example. A shunt d-e motor is speed-con­
trolled by the vacuum-tube circuit shown in 
Fig. 2-1. Assuming that hysteresis is negli­
gible, the basic equations of the system are as 
follows: 

(2-3) 
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dF 
E, -Ep -Nt­

dt 
IJ=-----­

R, 
F = F(lc) 

La dl,. + Raia =E.- Eb 
dt 

Eb = k.FN 

M = kmFia 

M=J dN +ML 
dt 

where 

E, = plate voltage 
E, =grid voltage 

I 1 = field current 
E, = supply voltage 
Eb =motor back emf 
La= armature inductance 
Ra = armature resistance 
N =motor shaft speed 
ke = motor back emf constant 
N1 = number of field turns 
F = field flux 

R1 = field resistance 
I a.= armature current 
M = motor torque 
km = motor torque constant 
J = total mom ent of inertia 

M L = load torque 

(2-4) 

(2-5) 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

It is assumed that mechanical friction is 
negligible. 

To linearize Eq. (2-3),lett 

Ev ~ Epn + e~' = Epn + llEp 

E g ~ E gn + eg = E g 0 + llE 9 

11 ~ I1,. +i1 = I1• + Mt 

(2-10) 

(2-11) 

(2-12) 

where E p<J, E 0., and 11,. represent values at the 
steady -state operating point and e~', ey, and i1 

represent the deviations of the values of E, 
E, and I 1 from their corresponding steady ­
state operating-point values. 

tSymbol ~ is defined as "equals by defini­
tion" . 
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mHTROL 
FIELD 

Ep 

Fig. 2- J Speed control of shunt d-e motor. 

Since /lEp = (aEp) !lEv+ (('JEp) M1 
oEv oit 

= (~) eu + (oE ~') i,, 
oEv oi, 

Eq. (2-10) becomes 

Ep = Epo + ( - p.) e,+ (Rp) i, 

\vhere 

and R ~ oEp 
p - oi, 

(2-13) 

As a result of the definitions above, the in­
cremental linear approximation to Eq. (2-3) 
becomes 

(2-14) 

where ep, e" and i 1 represent incremental 
quantities. 

To linearize Eq. (2-5), let 

F ~ F.+ f = F . + tlF 

Then, Eq. (2-15) can be written as 

F = F , + C1 i1 

where 

oF C II. v -

/ = oi, If* 

(2-15) 

(2-16) 



THEORY 

Consequently, the incremental linear approxi­
mation to Eq. (2-5) becomes 

I= C,if (2-17) 

Substituting Eqs. (2-lo), (2-11), (2-12), 
(2-15), and (2-17) into Eq. (2-4) results in 

Ito +i, = 
E.o +e.- (Epa+ ep) - N/?(Fa + C, i 1) 

dt 

(2-18) 
or 

+ . (Eso 
I, if= R Epa) 

I d" 

( '• - e, ~' N ,c,-i:) (2-19) 

where + 

E,, = steady-state value of E, 

e, = increment in E, 

It can be seen that the equation for the oper­
ating point of the field circuit is 

I 
_ Eso- Epa 

to- R, 
(2-20) 

and the incremental equation for the field 
circuit is 

Nc 
di, 

·e.- eP- 1 1-
dt 

i,=------­
R, 

To linearize Eq. (2-7), let 

where 

N ~ Nu + n 

(2-21) 

(2-22) 

(2-23) 

2-4 

Then, the incremental linear approximation 
for Eq. (2-7) becomes 

eb = k. (No!+ Fun) (2-24) 

Substituting Eqs. (2-7), (2-17), (2-21), 
(2-23), and (2-24) into Eq. (2-6), and using 
a procedure analogous to that above, the equa­
tion for the operating point of the armature 
circuit becomes 

lao= Eso- keF flo (2-25) 
Ra 

and the incremental equation for the arma­
ture circuit is 

where 

la ~lao +i"' 

To linearize Eq. (2-8), use the incremental 
linear approximation 

m = kmF oia + kml ao! 

where 

M ~Mo+m 

(2-27) 

(2-28) 

By substituting Eqs. (2-23) and (2-28) into 
Eq. (2-9), the equation for the operating 
point of the mechanical circuit is 

Mo =MLo (2-29) 

and the incremental equation of the mechan­
ical circuit is 

(2-30) 

where 

ML ~ M/,o + m~, 
From an examination of the analytical 

work above, it can be seen that the applica­
tion of the linearizing technique produces a 
set of incremental equations that describe the 
behavoir of the system for deviations of the 
variables from the operating point of the 
system. In addition, the operating point is 
also defined by a set of algebraic equations. 
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Summarizing the operating-point equa­
tions : 

I _ E.a -E,a (2-20) to-
R, 

E,. ~ Ev (Euo• I,a) (2-31) 

lao= 
E •• - k.F.N. (2-25) 

Ra 

Fa~ F Uta) (2-32) 

Mo =MLo (2-29) 

Mo ~ kmFJao (2-33) 

The operating-point equations can be solved 
for the unknowns 11., E,o, I,, Fa, No, and Mo 
if the quantities E, , E,, and MLo are speci­
fied. This solution is usually done graphically 
because the steady-state characteristics of the 
tube [Eq. (2-31)] and the field structure 

[Eq. (2-32)] are presented as experimental 
curves. 

Summarizing the incremental equations : 

'tt = 

J dn + m1, = kmFaia + k .. I •• C1i1 
dt 

(2-14) 

(2-21) 

(2-34) 

The time-varying inputs to the system are 
the incremental quantities e, e, and mL. If 
these quantities are known, the incremental 
equations can be solved for e, i1, i, and n as 
functions of time. 

2-3 TRANSIENT RESPONSE 

The transient response of a system is the 
time variation of one or more of the system 
outputs following a sudden change in one or 
more of the system inputs or the derivatives 
or integrals of the system inputs. Often a 
transient input variation does not correspond 
to the actual input variations that a system 
might experience in practice. However, tran­
sient specifications of system performance 
are very commonly used and, as a result, the 
designer must know how to describe system 
behavior in terms of transient response. It 
can be shown (see Ch. 3) that the transient 
response of a linear system completely speci­
fies the differential equations of the system 
and, therefore, can be used indirectly to find 
the response of the system to any type of 
input. 

A given transient response must be re­
ferred to the type of input that caused it. 
Three commonly used transient test inputs 
are the impulse, the step, and the ramp. 

2-5 

A unit impulse can be conceived of as a 
time function that is infinite at t =a and zero 
everywhere else. A unit impulse is defined by 
Eqs. (2-35) through (2-37), where b0 (t- a) 
is a unit impulse function occurring at t = a. 

f_:"' bu(t- a)dt = 1 

J~m"' bu(t -a)f(t)dt =f(a) 

bu ( t - a) = 0, t > a and t < a 

(2-35) 

(2-36) 

(2-37) 

The unit step function 1)_1 ( t- a) is merely 
the integral of the unit impulse b0 (t- a). 
The unit step is defined by Eqs. (2-38) and 
(2-39), where b-d t- a) is a unit step oc­
curring at t = a. 

b_dt- a) = ["" l'lu(X- a)dx 

1)_1 (t- a) = {0, t <a 
1, t >a 

(2-38) 

(2-39) 
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The unit ramp function ~'>-2 ( t -a) is the 
integral of the unit step ~'>-1 ( t- a). The unit 
ramp is defined by Eqs. (2-40) and (2-41), 
where I'J_2 ( t - a) is a unit ramp occurring 
at t =a. 

~L~(t _a)= {0, t <a 
t, t >a 

(2-40) 

(2-41) 

The impulse, step, and ramp functions are 
shown in Fig. 2-2. It should be noted that 
these functions are equal to zero for all t < a 
and that they are discontinuous or one or 
more of their derivatives are discontinuous 
at the instant of occurrence. Clearly, the re­
sponse of a physical system to any one of 
these inputs will be zero before the input 

occurs if the system is assumed to be initially 
at rest. 

Example. A system IS described by the 
equation 

~ + 2 d
2
x + 2 dx + x _ d2y 

ilt"3 dt2 dt - dt2 
(2-42) 

where y is the input and x is the output. The 
output transient responses as functions of_ 
time are shown in Fig. 2-3 when the input is 
a unit impulse, a unit step, and a unit ramp, 
each occurring at t = 0. The specified initial 
conditions fort< 0 are x = 0, dxjdt = 0, and 
d~xjdt2 = 0. 

It should be noted that, although the curves 
in Fig. 2-3 are different, they represent the 
same information about system behavior pro­
vided that the input associated with each 
curve is known. 

2-4 FREQUENCY RESPONSE 

The frequency response of a system is the 
variation of the output to an input which is 
a constant-amplitude variable-frequency si­
nusoid. Frequency response is usually of in­
terest in the linear case but does have applica­
tion in the nonlinear case (see Ch. 10). 

In the case of a linear system, a sinusoidal 
input produces a sinusoidal output of the 
same frequency as the input. The frequency 
response of a linear system is therefore com­
pletely described by the ratio of the output 
amplitude to the input amplitude and by the 
phase angle of the output relative to the 
phase angle of the input, both expressed as 
functions of frequency. 

The frequency response of a system is usu­
ally presented in three ways: by a polar plot 
of the tip of the vector A (w) ei<l>lwl with fre­
quency was a parameter (j = v- 1) ; by sep-

arateplotsof10logl0A(w) andq,(w) versus 
frequency w; and by the gain-phase plot of 10 
log10 A (w) versus 4> (w) with frequency w as 
a parameter. A (w) is the amplitude ratio of 
output to input and <f>(w) is the output phase 

2-7 

angle minus the input phase angle. One could 
also plot 20 log1 0 A ( w) as is done in the liter­
ature in many places, but there is little to be 
gained by using the factor of two. 

The frequency response of a system is use­
ful primarily because of the many theoretical 
simplifications that are possible when it is 
used as an analytical and design tool. Just as 
transient inputs rarely occur in practice, so 
do sinusoidal inputs almost never occur in 
practice. Nevertheless, both methods of de­
scribing dynamic response are useful in anal­
ysis and design. 

Since frequency response and transient re­
sponse are directly related to the differential 
equation of a system, they contain the same 
information about system behavior. These 
two methods of describing dynamic response 
are merely different approaches to the same 
end. Both have a useful function to perform 
in designing control systems. Techniques for 
correlating the frequency response and tran­
sient response of a system are presented in 
Chs. 3 and 7. 
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2-5 FORCED RESPONSE 

The forced response of a system is the time 
response of an output of the system to an 
arbitrary, but completely defined, variation 
of one of the system inputs. Forced response 
is distinguished from transient response in 
that the input variation associated with the 
forced response of a system is considered as 
a continuous time function with no discon­
tinuities in any of its derivatives. A sinus­
oidal input is a special case of a forcing input 
which is isolated for special attention because 
of its theoretical importance. 

A typical example of an arbitrary forcing 
input is the angle of the line-of-sight from a 
radar antenna to a target that is moving at 
constant velocity in a straight line (see Fig. 
2-4 ). Such a course is known as a straight­
line crossing course. The angle of the line-of­
sight 8 in this case is given by 

O{t) = tan-1 ~ t 
R 

where 

V = target velocity 

R =minimum target range 

(2-43) 

The inverse tangent function in Eq. (2-43) 
and all its derivatives are continuous for all t. 

Many design problems have input specifi­
cations involving arbitrary forcing functions 
that cannot be adequately described by dis­
continuous functions. The techniques for de­
termining the response of a system to these 
functions are discussed in Pars. 3-3, 3-7, and 
7-2. 

CONSTANT VELOCITY • 
TARGET 

ANTENNA 

Fig. 2-4 Straight-line crossing course. 

2-6 STOCHASTIC INPUTS 

A stochastic process is one in which there 
is an element of chance. In many situations, 
the input to a system is not completely pre­
dictable and cannot be described by a mathe­
matical function, either analytically or gra­
phically. The term "random process " is often 
used to describe such a situation, but it is not 
an accurate term since a process can often 
consist of a combination of a completely pre­
dictable portion together with a purely ran­
dom portion. It is evident that the signals in 
a feedback control system are more often 
stochastic than predictable in nature, parti­
cularly when the effect of the ever-present 
noise is considered. A typical example of a 
stochastic process is a radar signal corrupted 
by noise. 

2-8 

Since a degree of uncertainty exists if one 
attempts to determine the value of a stochas­
tic signal at a given instant of time, probabil­
ity density functions and other statistical 
characterizations such as the average value, 
the root-mean-square (rms) value, and the 
correlation function are used to describe the 
signal. It is useful to think of a stochastic 
signal as a member of a family of signals, 
each generated by an identical process. Such 
a family of signals is called an ensemble, and 
the statistical characterizations of the sto­
chastic process are related to the ensemble of 
signals rather than to a particular member 
of the ensemble. Determination of the re­
sponse of a system to a stochastic input does 
not yield a function of time, but rather a 
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statistical characterization of the output sig­
nal ensemble. 

Stochastic signals are separated into two 
classes. If the statistical behavior of the proc­
ess that generates the ensemble is independ­
ent of time, the process is stationary. A non­
stationary process is one whose statistics vary 
with time. In most situations involving sto­
chastic processes, the signals generated are 
non-stationary . It is useful, however, to treat 
practical processes as stationary if the varia­
tion of the statistics with time is small over 
the useful; life of the system. A typical ex­
ample is the noise generated in a vacuum 
tube. As the tube ages , the statistical charac­
ter of the noise changes. If the period of use 
of the tube is short compared with its ex­
pected life, then the noise generated by the 
tube can be considered as a stationary proc­
ess. 

If. a stochastic process is stationary, it is 
possible to use a smgle member of the ensem-
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ble of the process to determine the statistics 
of the process. For example, if the average 
value of a signal is sought and the process 
generating the signal is known to be station­
ary, the average value can be found in two 
ways. In the first way, the average value is 
computed by taking the time average for a 
single member of the ensemble. In the second 
way, the average value is computed by taking 
the values of all the members of the ensemble 
at a particular instant of time and averaging 
these values. The latter average is called the 
ensemble average. Since the process is known 
to be stationary, both averages are independ­
ent of time. That both averages are identical 
has not been proven as yet, but their identity 
seems plausible if one accepts the assumption, 
the so-called ergodic hypothesis, that ensem­
ble averages and time averages are identical 
for a stationary process. The various ways to 
characterize stochastic signals and the re­
sponse of a system to a stochastic signal are 
discussed in Par. 3-8. 



CHAPTER 3 

METHODS a= DETERMBNBNG DYNAMIC RESPONSE 

a= LINEAR SYSTEMS* 

3-1 THE DIFFERENTIAL EQUATIONS 

As discussed in Ch. 2, any design procedure 
is based on the differential equations that 
serve as the mathematical model for the phy­
sical system. This chapter deals with methods 
of determining the dynamic response of phy­
sical systems from the differential equations 
that describe them. The type of response 
sought depends upon several factors : the 
specifications of the system; the design pro­
cedure adopted ; and the limitations imposed 
by test conditions encountered when seeking 
experimental verification of the design per­
formance. 

Differential equations may be classified as 
follows: 

(a) Linear differential equations with con­
stant coefficients 

(b) Linear differential equations with 
time-varying coefficients 

(c) Nonlinear differential equations 

Of the three classes, constant-coefficient linear 
differential equations are, by far, the most 
widely used and the best understood. The sub­
ject matter of this chapter is focused exclu­
sively on methods of solving equations in this 
class. Chapter 9 deals with time-variable 
linear differential equations of a specific type 
that have a wide application. Chapter 10 con­
siders nonlinear equations and some of the 
techniques for treating them. 

The general form of a linear differential 
equation with constant coefficients is 

(3-1) 

'"By L.A. Gould 
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where the a's and b's are the constant coeffi­
cients, x ( t) is the response function, andy ( t) 
is the input function. The equation is linear 
because the response to a sum of component 
input functions equals the sum of the re­
sponses to each of the component input func­
tions. The highest-order derivative of the 
response x present in the equation is called 
the order of the equation. Thus, Eq. (3-1) is 
an equation of the nt" order. The information 
necessary for a solution of the equation is 
a statement of the initial value of the re­
sponse and the initial values of its first n-1 
derivatives, as well as the value of the input 
y (t). The response can be separated into 
two parts -a general or homogeneous solu­
tion, and a particular solution. The complete 
solution of the differential equation is the 
sum of the general solution and the particular 
solution. The general solution always has the 
form of a sum of exponentials with real and 
complex arguments; the particular solution 
has the same form as the input or a sum of 
the input and its derivatives. The general 
solution is often called the force-free or tran­
sient solution; the particular solution is called 
the [01·ced or steady solution. Each term in 
the transient solution is called a normal re­
sponse mode or characteristic of the equation. 

The complete solution of a linear differen­
tial equation is given by 

:r:(t) = xp(t) + ~ A 1.ePkt (3-2) 
k=.cl 

where xp ( t) is the particular solution, p,, is 
a root of the equation, and A, is a constant­
amplitude coefficientof a response mode. The 
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root Pk is a function only of the coefficients 
ai whereas A, is a function of the a's, b's, and 
y(t) [Eq. (3-1)]. The quantities A, and p,. 
are generally complex numbers that occur in 
conjugate pairs if the coefficients a; and bj 
and the input function y ( t) are real. 

The term root is applied to each of the 
p/s because these numbers can be found 
from the differential equation by treating 
the differentiating operator djdt as a real 
variable, replacing it by p for convenience, 
and setting y ( t) equal to zero. The algebraic 
equation resulting from such substitutions in 
Eq. (3-1) is 

(3-3) 

This equation is known as the characteristic 
equation. The roots of Eq. (3-3), when de­
termined, give the p,,'s of the normal response 
modes of Eq. (3-2). 

The classical procedure for solving con­
stant-coefficient linear differential equations 
is covered in many textbooks. 0-2•3•4 > More 
powerful tools for treating differential equa­
tions , such as Laplace and Fourier trans­
forms , are presented in Par. 3-4. For 
situations where the input is sinusoidal or 
stochastic, additional special techniques are 
used. These are discussed later in the text. 

3-2 FACTORING AND CHARACTERISTIC PARAMETERS 

OF RESPONSE MODES 

3-2.1 FACTORING 

In most cases, the solution of a linear dif­
ferential equation requires the determination 
of the roots of the characteristic equation 
[Eq. (3-3)]. Unfortunately, if the order of the 
equation is high, the process of factoring the 
equation to find the roots becomes extremely 
tedious. For such cases, special techniques 
have been developed (see Pars. 4-4, 5-7, and 
7-1). This section covers some general factor­
ing procedures applicable to any algebraic 
equation. In addition, the characteristics of 
first- and second-order equations are dis­
cussed and graphical methods for determin­
ing the roots of third- and fourth-order 
equations are presented. 

The factoring of rational polynomials is 
covered by many authors. <5•6•7·8-9,10,33) The 
method presented here is one that is very 
convenient. 

The general algebraic equation can be writ­
ten as 

f(p) = p" + Cn-1 p"-1 + ..... +c1p +co= 0 

(3-4) 

If the order n of the equation is odd, one or 
more real roots must exist. The real root (or 
roots) can be determined graphically by plot­
ting f ( p) versus p and noting the zero-cross­
ing(s) of f(p), or analytically by using 
Horner's method of synthetic division, with 
the first trial divisor being 

(3-5) 

If the equation is reduced to one of even 
order, Lin's method<9> can be used. This 
involves choosing the tria! divisor 

(3-6) 

Next, f(p) is divided by gt ( p) as follows: 

+ .,S!_ fi' + Cn-1;,._~ + ... + CtP +Co 
c.. . ......•......... (3-7) 
- c'2P2 + c'tP +Co 

c'2P2 + c'tP + c'o 
remainder 

3-2 
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If the remainder of Eq. (3-7) is not negligi­
ble, a new trial divisor is chosen such that 

V2(p) =P2 + c'1 P +~ (3-8) 
c'2 c'2 

Next, f (p) is divided by the new divisor 
g 2 (p), etc., and the process is continued until 

the remainder is negligible. The last divisor 
is then a factor of the original equation. Then, 
the quotient (of f(p) and this last divisor] 
is treated in an identical manner, and the 
process is repeated until f(1) is factored 
into quadratic factors whose roots can be 
determined directly. 

Example. Find the roots of the algebraic 
equation 

f(p) = p~ + 10.65p8 +89.0p2 +15.50p + 27.0 = 0 

Solution. The first trial divisor is 

< )=N>-2+
15

·
50

P + 27·
0 

= 2 +0.1742 +o.3o3 g1 p P 89.0 89.0 p p 

Dividing f(p) by V1 ( p ) produces 

p2 + 10.48p + 86.9 

p 2 +o.t742p + o.3o3 jP4 + 10.65p3 + s9.0p2 + 15.50p + 27.0 
p 4 + 0.17p~ + 0.3p2 

10.48p3 + 88.7p2 + 15.50p 
10.48p3 + 1.8p2 + 3.18p 

second trial divisor 86.9p2 + 12.32p + 27.0 
86.9p2 + 15.14p + 26.3 

remainder - 2.82p + 0.7 

3-3 

{3-9) 

(3-10) 
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The second trial divisor is 

( ) 2 + 12.3.2 + 27.0 + + 
U2 P = P 

86
.
9 

P 
86

.
9 

= p 2 0.1418p 0.311 

Dividing f ( p ) by U2 ( p) yields 

p 2 + 0.1418p + 0.311 1 p 4 + to.65p3 + 89.0p2 + t5.5op + 21.0 
I p 4 + 0.14p:l + 0.3P2 

10.5lp3 + 88.7p2 + 15.50p 

10.5lp3 + 1.5p2 + 3.27p 

third trial divisor------ 87.2p2 + 12.23p + 27.0 
87.2p2 + 12.36p + 27.1 

remainder------ - 0.13p- 0.1 

The third trial divisor is 

( ) = 12 + 12.23 27.0 - 2 + + 
U3 P l ~ + 

87
.
2 

- p 0.1403p 0.310 

Since Ua ( p ) leaves essentially no remainder, 
the resulting quadratic factors of f (p) are 

f(p) = (p2 + 0.1403p +0.310) (p2 + 10.51p +87.2) 

Factoring the two quadratics in Eq. (3-13), 
the roots of Eq. (3-9) are found to be 

P1.P2 = -0.0702 ± j 0.552 and Pa,P4 = -5.26 ± j 7. 72 

3-2.2 CHARACTERISTIC PARAMETERS OF 
RESPONSE MODES 

3-2.3 First Order: ( p + c0 ) = 0 

IC 

z 
E o.e 
1-
!:;1 
~ 0.6 

\ 
1':1!.. 

..... 
f' 

..... 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

I I 
I I 

'~-t The response mode corresponding to the 
first-order factor is of the form ... 

0 T = TIME COHST ANT 

X (t) = Ae-c.t (3-15) 

The reciprocal of c0 is called the time constant 
of the response mode. 

Useful plots of exponential functions are pre­
sented in Fig . 3-1. 

3-4 
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Fig. 3·1 Exponential functions e-"' and 1 -e-x. 
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3-2.4 Second Order: p' + C1P +co = 0 

The second-order equation can be rewrit­
ten in the form 

Jl + 2~WnP + w,? = 0 

where 

e 
[= ----'== 

2 yeo 
damping ratio 

(3-16) 

cu, = yeo = undamped natural frequency 

If ~ < 1, the response mode corresponding to 
the second-order factor is of the form 

x (t) = Ae-'"',/ cos (wdt + q,) 

where 

( 3-17) 

w" = Wn yl - ~2 =damped frequency of 
transient oscillation 

If ~ .2: 1, the second-order factor can be fac­
tored into two first-order factors so that the 
response consists of two first-order modes. 

3-·2.5 Third Order<ll) 

p~ + C2P 2 + CtP + Co = 0 

By making the substitution 

p =Co 1/3 A 

the third-order equation is reduced to 

(3-18) 

where 

The reduced equation can be factored as fol­
lows: 

P + a 2P + a 1/, + 1 = (A + 1/w,.2 ) 

where 

u~ = 2~w,. + 1 
w,.2 

2~ + 2 
H1=- W,. 

w,. 

("J..2 + 2~w,. A + w,2 ) 

(3-19) 

w,. = a reference frequency 

3-5 

Figure 3-2 shows plots of w,. versus ~for con­
stant values of a2 and a1. Figure 3-3 shows 
plots of a 2 versus a1 for constant values of ~ 
and w,.. From these charts and the third­
order equations, the roots of the cubic can 
be determined. 

3-2.6 Fourth Order<lll: 

P 4 + c3p 3 + C2P2 + C1P + Co = 0 

By making the substitution 

(3-20) 

the fourth-order equation is reduced to 

(3-21) 

where 

The reduced equation can be factored into the 
form 

(A2 + 2~lWr 1A + Wr1
2

) 

or, alternatively 

(A2 + 2~2w,.} + w,./) = 0 

(3-22) 

(F + 2~,.w). + w,2 ) 

[A2 + 2 (~,p~) ( w,pw) A+ ( w,.pw) 2
] = 0 

(3-23) 

where the symbols are defined as follows: 

w .. ~ w .. 1 = dimensionless natural frequency 
of reference component 

~ .. ! ~~ = damping ratio of reference com­
ponent 

~ w,.2/w,.1 = ratio of undamped natural 
P," 

frequencies of components 

p~ ~ ~2/~1 =ratio of damping ratios of 
components 
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Fig. 3-2 Cubic chart. 

By permission from "Solution of the Cubic Equations and the 
Cubic Charts", by L. W. Evans, bound with "Transient Behavior 
and Design of Servomechanisms". by G. S. Brown, 19-'3. Massa­
chusetts Institute of Technology. 
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0~06 08 10 2 3 4 ~ 6 1 8 9 10 

Fig. 3-3 Cubic chart. 

By permission from "Solution of the Cubic Eq uations a nd the 
Cubic Chartsfl. by L. W. Evans, bound with "Transient Behavior 
and Design of Servomec hani sms"'. by G. S . Brown, 19-tJ , Massa­
chusetts Institute of Technology. 
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Fig. 3·4 Quartic chart. (Sheet I of 2) 

By permission from •• s ervomechanisms" , by Y. J. Liu, bound 
with "Transi ent Behavior and Design of Servomechanisms". by 
G. S. Brown, 1943, Massachusetts Institute of Technology. 
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To find the parameters defined by Eqs. 
(3-22) and (3-23), the following procedure 
is used: 

(a) Determine the quantities 

(b) Stability can be determined from 
Routh's criterion (Par. 4-2). 

(c) The quartic chart i& shown in Fig. 3-4. 

A sketch of the construction that is used to 
find p"'' w" p, , and ~. is shown in Fig . 3-5. 
Referring to these figures, the determination 
of the parameters of the factored quartic [Eq. 
(3-22)] is given by the procedure below. 

(d) Locate intersection 3a of the particu­
lar pair of M and N values on Chart I. Draw 
a line through 3a, parallel to the 135° -inclined 
lines, until it intersects the 45"-inclined scale. 
The intersection on this scale gives Pa• where 

/. A_!_( + 1 ) 
(

P.a = Pw -
a:! p., 

(e) From the particular a 2 value on the 
left-hand scale, draw a horizontal line until 
it meets the particular 135°-line found in step 
(d) atpoint3b. 

(f) From intersection 3b, draw a vertical 
line that intersects curve P at 3P and curve 
Qat 3Q. 

(g) A horizontal line drawn through 3P 
intersects the immediate right scale of ordi­
nates at 3d giving the value of pw, and the next 
right (left-hand scale of ordinates of Chart 
11) at 3d' giving the value of ro,. 

(h) A horizontal line drawn through 3Q 
on Chart I intersects the particular curve of 
a3/a1 on Chart II at point 4a. The lower ab­
scissa..._of 4a gives the value of Pt;· 

3-10 

(i) Through 4a, draw a 45°-inclined line 
until it intersects a vertical line correspond­
ing to the particular value of (a3 + a1) /2 at 
point 4b. A horizontal line drawn through 4b 
intersects the extreme right-hand scale of 
Chart II giving the value of~ •. 

(j) When Pa is obtained in step (d), the 
following equations can be used a s an alter­
nate method of findingp.,, ro,., Pt;• and ~r : 

(3-24) 

1 
w,. == -----= 

VPw 
(3-25) 

(3-26) 
pt;= -----

p.,- (::) 

(3-27) 

(3-28) 

(3-29) 

~r = ____ a..:..l ___ _ 

(3-30) 
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Fig. 3-5 Sketch of the quartic chart. 

By permission from ' 'Servomechanisms". by Y. J. Liu, bound 
with ''Transient Behavior and Design of Servomechanisms", by 
G. S. Brown, 19~3. Massachusetts Insti tu te of Technology. 

3-3 THE CONVOLUTION INTEGRAL <12
> 

The output time response of any linear 
system to an arbitrary input can be found by 
means of the convolution (superposition) in­
tegral. If y(t) is the input, x(t) the output, 
and w ( t) the impulse response of the system, 
then the output x can be found by evaluating 
the convolution integral 

i
+oo 

x(t) = -oo dt, w(td y(t- td (3-31) 

or 

i
+oo 

x(t) = -oo dt, w(t- td y(tt) (3-32) 

This integral applies in every case and is use­
ful for graphical time-domain studies of sys­
tem performance. In many situations , how­
ever, evaluation of the convolution integral 
is tedious, so more refined procedures are 
used (see Pars. 3-4,3-6,3-7, 3-B,and 3-9). 

3-11 

If the system being studied IS a physical 
system, then 

w (t) = 0 fort< 0 (3-33) 

The convolution integral then reduc ' S to 

x(t) =i+oo dt1w(td y(t -t1 ) 

0 

or 

x(t) = ["' dt1 w(t -ttl y(t1 ) 

(3-34) 

(3-35) 

If, as often occurs , y ( t) and w ( t) are both 
zero for t < 0, then the convolution integral 
reduces to 

x(t) ::::::it dtt w(tt) y(t - tt) 

" or 

x(t) =it dt1 w(t- td y(t.) 

" 

(3-36) 

(3-37) 
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3-4 LAPLACE AND FOURIER TRANSFORMS<12,u,14,15,16,17,1a,19} 

3-4.1 GENERAL 

Laplace and Fourier transforms are aids 
for solying differential equations and intro­
duce properties of system performance that 
enhance the designer's understanding and 
simplify his task. 

The Fourier transform of a function and its 
inverse are defined as follows : 

i+oo 
][f(t)] ~F(s)~ - oo dte-''f(t) [Direct] 

(3-38) 

]-1 [F(s)] ~ f(t) ~~L+i""ds e"F(s) 
2nJ -ioo 

where s = cr + jw 
[Inverse] (3-39) 

The La,place transform of a function and its 
inverse are defined as follows : 

.([f(t)] ~F(s)~J.""dte-"'f(t) [Direct] 
n 

(3-40) 

.(-1 [F(s)] ~f(t) ~ -. ds e·''F(s) 1 i'"+ioo 

2nJ ,·- ioo 

[Inverse] (3-41) 

where s =the complex variable ( orfrequency) 
o + jw. 

The Fourier transform is applicable to 
functions that exist for all time t, whereas the 
Laplace transform is used for functions that 
are zero fort < 0. In the expression (3-41) for 
the inverse Laplace transform , the constant c 
is a convergence factor that enables one to ap­
ply the Laplace transform to functions whose 
Fourier transforms do not exist. 

The conditions for the existence of the 
Fourier transform of a function, known as 
Dirichlet's conditions, are 

(a) f(t) hasafinitenumberofdiscontinu­
ities in a finite interval 

(b) f(t) has a finite number of infinite­
valued points in a finite interval 

(c) f (t) has a finite number of maxima 
and minima in a finite interval 

3-12 

(d) L:"" lf(t) ldtisfinite 

The conditions for the existence of the La­
place transform of a function are identical 
with those for the Fourier transform except 
that the fourth condition is relaxed to 

L:"" If ( t) I e-''1 dt is finite for a finite c 

3·4.2 THEOREMS 

The following theorems are useful for ap­
plying the Laplace and Fourier transforms to 
the solution of differential equations : 

' 
(a) .([af(t)] =aF(s) (3-42) 

(b) .([fdt) ± f2(t)] = Ft{s) ± F2(s) 

(3-43) 

(c) .( [ dnf(t)] = s"F(s)- s"-1/ (O+) 
dtn 

- s•-Zfl (O+) - ... - sf<n-2) (0+) 

- [<n-1) (O+) (3-44) 

F(s) ---

ro+ ro+ t 
)_, f(t)dt j_ j_ f(t)dt 

+ -oo S" + -<Xl -~Il-l + • . • 

(e) .([t(!)J =aF(as) (3-46) 

(f) .( [.ftdt - t)/2(t) d-r] 

= F1 (s)F2(s) (3-47) 

(g) .([f(t- a)] =e-"$F(~ 
ifj(t-a) = OforO t <a 

(3-48) 
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( h) .( [/ ( t + a) ] = ea• F ( s) 
iff ( t +a) = 0 for - a< t < 0 

(i) lims.([f(t)J limf(t) 
x4 o f~oo 

(j) lim s.([f(t)] =lim f(t) 

(k) .([fdt)fz(t)] 

1 fc+joc 
=-. F ( s- w )F2 (w ):::tv 

2JtJ c-joo 

(3-49) 

(3-50) 

(3-51) 

(3-52) 

(3-53) 

Theorems (a), (b), (e), (f), (i), (k), and 
(1) also apply to the Fourier transform. 
Theorem (c) is called the red differentiation 
theorem and theorem (d) is called the real 
integration theorem. Theorem (e) is used to 
change the time scale of a problem and is 
called the normalization theorem. Theorem 
(f) is the real convolution theorem and, if ap­
plied to the convolution integral [Eq. (3-35) 31 

yields the very important result 

1[x(t)] = X(s) =1 [J~tlw(t- td y(td] 

= W (s) Y (s) (3-54) 

Theorems (g) and (h) apply to the Fourier 
transform without the stated restrictions. 
Theorem (i) is called the final-value theorem 
and theorem (j) is called the initial-value 
theorem. Theorems (k) and (1) are included 
primarily to prevent the common error sug­
gested by theorem (1), namely, incorrectly 
stating that the transform of the product of 
two time functions is the product of the sep­
arate transforms of the functions. 

3-4.3 SOLUTION OF DIFFERENTIAL 
EQUATIONS 

The solution of ordinary linear differential 
equations is accomplished by means of theo­
rems (a) , (b), (c), and (d). Applying these 
theorems to Eq. (3-1), one obtains 

a,s;] X ( s) - A ( s) = [ -~ b ;si] 
;=0 

Y(s) + B(s) (3-55) 

3-13 

where A ( s) is a polynomial in s depending 
upon the a 's and the initial values of x and its 
first (n-1) derivatives, and B(s) is a poly­
nomial in s depending upon the b's and the 
initial values of y and its first (m-1) deriva­
tives. The response transform can be obtained 
by solving Eq. (3-55) for X(s) 

r 
~ b;si] [B(s) +A(s)] 

X ( s) = J=O y ( 8) + " . 
n ~ a-s' 

'5'. a;si i=O ' 

i::::::O 

(3-56) 

In words, this equation can be written 

response system ( input ) 
(transform) = (function) transform 

(
initial condition) (3-57) 

+ function 

The ratio of the response transform to the 
input transform when all initial conditions 
are zero (i.e., the initial condition function is 
zero) is called the system function or the 
transfer function of the system. This function 
depends only upon the coefficients of the dif­
ferential equation and is independent of the 
input and the initial conditions. Comparing 
Eq. (3-57) (with initial condition function set 
equal to zero) with Eq. (3-54), it is evident 
that the transfer function of a system equals 
the transform of the impulse response of the 
system for a unit impulse. 

Transforming a differential equation en­
ables the analyst to replace the processes of 
differentiation and integration by simple al­
gebraic processes. Then, the transform X (s) 
can be found algebraically. Subsequently, the 
system response x ( t )corresponding to there­
sponse transform X ( s) can be found by using 
the inversion theorem [Eq. (3-41) 3. However, 
this theorem usually involves contour integra­
tion in the complex s plane. To avoid this in­
tegration, tables of transform pairs have been 
constructed that give the time function cor­
responding to a given transform directly. A 
brief list of commonly used transform pairs is 
given in Table 3-1. More extensive tables can 
be found in references (13), (20), and (21). 
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TABLE 3-1 LAPLACE TRANSFORM PAIRS 

F(s) f(t),t>O 

1 bo ( t ), unit impulse 

1 
l'l-1 ( t ), unit step -

s 

1 
l'l-2 ( t ), unit ramp -

82 

I 1 .!_ e-tiT 
Ts+ 1 T 

{l) 

§~ + !B~ sin wt 

I s 

§~ +f# cos wt 

1 1 

S2 + 2~oo,.S + Wn 2 (1)~<1: 
w .. y'1- ~2 

e-~"' .. 1 sin w,. y'1- ~2t 

(2) ~ = 1: te-w.t 

1 
(3) ~ >1: 

w .. ~2 - 1 
e-\;mnt sin t Wn ~2 -lt 

1 I t . 

(s+a)2+~2 
- e-a sm ~t 
p 

s+a 
e-at cos ~t 

(s + a)2 + ~2 

1 1 tn-1 -
S" (n- 1)! 

1 1 tn-1 
e-t/T --

(Ts + 1) " (n- 1)! T" 

If tables of transform pairs are unavailable, 
or if the particular transform whose inverse 
is sought is not listed in the tables , the method 
of partial fractions may be used to expand the 
transform into a sum of terms , each of which 
is readily recognized as the transform of a 
simple time function. If the transform whose 
inverse is sought is a ratio of rational poly­
nomials, the roots of the numerator polyno-

mial are called the zeros of the function and 
the roots of the denominator polynomial are 
called the poles of the function. If the poles of 
the function are not repeated, they are called 
single-order poles. The order of a multiple­
order pole is the number of times the pole is 
repeated. For a function containing only 
single-order poles, the partial-fraction expan­
sion of the function is 

3-14 
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F(8)~N(8) = i ~ 
- D ( 8) "=1 8 - 8" 

(3-58) 

where 

K" ~ [(8- 8k)N(8)] 
- D (s) •=\, 

= [~~:~] ·=·k 
(3-59) 

and 8~· is the kth root of the denominator poly­
nomial D(s). 

If the transform contains multiple-order 
poles, the partial-fraction expansion of the 
function is 

F(8) ~ N(8) = 5: ~ Kki . (3-60) 
- D(8) "=1 i=l (8- 8k}'"•-J+l 

where 

K~-· ~ 1 
•J = (j- 1)! 

dH S-8k)"'•N(S)]} 
D (8) •=·\ 

(3-61) 

:nd 
8
7." is re order of the pole of F ( s) at 

From Eqs. (3-58) and ( 3-60), it is obvious 
that the expansion of a rational function 
when inverted produces a sum of exponential 
terms for the corresponding time function. 
Terms containing exponentials with complex 
arguments will appear in conjugate pairs and 
can therefore be combined to form product 
terms (exponential multiplied by a sine or 
cosine function) representing damped sinu­
soids. 

Example. The system defined by the equa­
tion 

d
4
x + 10.65 dax + 89.0 d

2
x + 15.50 dx 

dt4 dt3 dt2 dt 

+ 27.0x = 27.0y (3-62) 

is initially at rest. At t = 0, a unit ramp input 
is applied. Find the difference between the 
inputy and the output x as afunction of time. 

Solution. Since the system is initially at rest, 
all initial conditions are zero. Transforming 
Eq. (3-62) results in 

X(8) = 

27.0 ''( ) 
84 + 10.6583 + 89.0s2 + 15.50s + 27.0 .c 

8 

(3-63) 
Let 

e (t) = y (t) - x (t) (3-64) 

Then, transforming Eq. (3-64) and substitut­
ingforX(s)from Eq. (3-63),E(s)becomes 

E(8) = 
8[s3 + 10.6582 + 89.0s + 15.501 y 

s4 + 10.6583 + 89.0s2 + 15.50s + 27.0 (s) 

(3-65) 

By referring to the values of the roots given 
in Eq. (3-14), the denominator D(s) of Eq. 
(3-65) can be factored as follows: 

D (s) = (s + 0.0702 -j0.552) (s + 0.0702+ j0.552) 

( s+ 5.26- j7.72) (s + 5.26 + j7.72) (3-66) 

3-15 
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The transform of y (t), found from Table 
3-1,is 

y (s) 
1 

Using the factored form of the denominator 
and substituting 1/s2 for the value of Y (s) 
in Eq. (3-65) results in 

(3-67) 

E (s) = [s3 + 10.659 + 89.0s + 15.501 
s[s + 0.0702- j0.552] (s + 0.0702 + j0.552] [s + 5.26 -j7.72] [s + 5.26 + j7.72] 

Since two pairs of the poles of E (s) appear 
as conjugate pairs, the partial-fraction ex­
pansion of E (s) can be written 

E( ) = Kt + Kz + K; + K3 
s s s + 0.0702 -j0.552 s + 0.0702 + j0.552 s + 5.26- j7.72 

K3 
+ s + 5.26 + j7.72 

where a bar over a constant indicates the 
complex conjugate of the constant. Using the 
expansion theorem [Eq. (3-59) 3 

Kt = 15.50 = 0.574 
27.0 

K .. __ [ (s:{ + 10.65s~ + 89.0s + 15.50) 1 
+ + + + - 0.918 e-jO.HO~~ 

- S (8 0.0702 /0.552) (82 10.518 87.2) s = -0 . 070~+JO.M>~ 

K,. = [ .. (s:J + 10.65~ + 89.0s + 15.50). ) = 2.89 X 10-4 e - J0.27<" 

s(s- + 0.1403s +o.310) (s+ 5.26 +J7.72) • =-5. 26+J'1.7~ 

K3 = 2.89 X 1Q-4e+;o.zn,. 

3-16 

(3-68) 

(3-69) 

(3-70) 

(3-71) 

(3-72) 

(3-73) 

(3-74) 
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Inverse transforming Eq. (3-69) 

e ( t) = 0.574 + 0.918 e-o 01021 

[ei<o.:;;;~r -1.8\1) + e-Ho.o~2t -1.89)] 

+ 2.89 X 10-4 e-u.~nt 

[ei<7.7~t-o.s7)-+- e-il7.72t- o.s7Jl (3-75) 

The bracketed functions on the right side of 
Eq. (3-75) are recognized as cosine functions, 
so that e ( t) can be written as 

e ( t) = 0.57 4 + 1.836 e-o o1o21 

cos (0.5525 - 1.89) 

+ 5.78 X 10-1 e<' 2 u1 cos (7.72t- 0.87) 

(3-76) 

It is convenient for plotting purposes to write 
the arguments of the cosine functions in de­
grees and to use trigonometric identities to 
reduce the phase angles to angles smaller 
than 45°. If this is done, e(t) can be written 
as 

e ( t) =- 0 574 + 1.836 e-o o7ou sin 

(31.6t -18.3) o - 5.78 X 10-4 e-" 261 sin 

(442t + 40.2) 0 (3-77) 

3-4.4 FREQUENCY RESPONSE 

It is often important to find the response 
of a system to a sinusoidal input. For a sinu­
soidal input, the output of the system will also 
be sinusoidal after transients have died out. 
The amplitude and phase angle of the output 
relative to the input are dependent only upon 
W ( s ), the transfer function of the system, 
and can be determined by letting s = jw in 
the transfer function, where w is the fre­
quency (in radians/second) of the input sinu­
soid. The ratio of output amplitude to input 
amplitude is then given by 

(3-78) 

where A.r is the output amplitude, A, is the 
input amplitude, and W (s) is the transfer 
function of the system. The phase angle of 
the output relative to the phase angle of the 
input is given byt 

rf>x -rpy = L. W(jw) (3-79) 

where rf>x is the output phase angle and rf>y is 
the input phase angle. 

When the transfer function of a system is 
evaluated as a function of frequency for a 
sinusoidal input, the complex function that 
results is called the frequency response of the 
system. 

i"Symbol L. denotes 11 angle 11 

3-5 BLOCK DIAGRAMS AND SIGNAL-FLOW GRAPHS (22
•
23

•
24

•
25

•
26

•
27

•281 

3-5.1 BLOCK DIAGRAMS 
Equations (3-54) and (3-57) demonstrate 

that, with zero initial conditions, the trans­
form of the output of a system can be ex­
pressed in terms of the input transform and 
the system function. The system function can 
be thought of as an operator. That is, the sys­
tem function operates on the input transform 
to produce the output transform. In a similar 
manner, the system operates on the input to 

produce the output in the time domain, the 
operation being defined by the convolution in­
tegral [Eq. (3-31)] and depending only upon 
the impulse response of the system. The con­
cept of an operator is presented pictorially by 
the technique known as operational block dia­
gram algebra. The block diagram of a system 
is the pictorial representation of the mathe­
matical operations involved in the differential 
equations that describe the system. 
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Table 3-2 presents a list of symbols used in 
the block diagram representation of a system 
and Fig. 3-6 presents a list of reductions that 
enable one to simplify or reduce the block 
diagrams of a system. Since the block dia­
gram contains no more information than the 
differential equations, the manipulation of a 
block diagram is merely a pictorial process 
of manipulating the differential equations. 
The advantage of a block diagram representa­
tion is that the operational relations in a sys­
tem are emphasized rather than the hard­
ware. By becoming familiar with common 
block arrangements, the designer can inter­
pret the function of various elements in a sys­
tem much more rapidly than would be pos­
sible from an inspection of the differential 
equations. 

Example. The transformed equations of a 
servomotor driving an inertia load coupled 
to the motor through a flexible shaft are 

Tm = (Jms2 + f, .. s) Om+ K(O,,. -fh) (3-80) 

K(Bm -e,} =hs'~-OL +rL (3-81) 

where 

Tm= motor torque K = shaft stiffness 

J m = motor inertia o,_ = load angle 

fm =motor damping J1, =load inertia 

e,, = motor angle T,, = load torque 

The damping of the flexible shaft is assumed 
to be negligible. Draw the block diagram of 
the system and reduce the diagram, keeping 
the motor angle e, and the load angle BL in 
evidence. 

Solution. The block diagram of the system is 
drawn in its "primitive" form in Fig. 3-7 A. 
The successive steps necessary to reduce the 
"primitive" diagram to the desired form are 
shown in Figs. 3-7B to 3-71 with the rules 
used for each step indicated below each step. 

TABLE 3-2 BLOCK DIAGRAM SYMBOLS 

Symbol Description Operation 

X variable ---
X y operator Y=AX 

..[4}----

X y summin~r point Y=X-W 

~ 
X X splitting point X=X 

1x ~ 

X y multiplier Y=XZ 

1: 
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RULE ORIGINAL DIAGRAM EQUIVALENT DIAGRAM 

1 I 
A I I l ~ AB I .. 

I I 1 
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2 A+B 
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Fig. 3-6 Block diagram manipulation and reduction "rules". (Sheet I of 3) 

3-19 



THEORY 

RUL I ORIGINAL DIAGRAM EQUIVALENT DIAGRAM 

7 

8 

w z w 
9 ..... 

+ t 

t X 

y 

X 

w y 
10 E 

+ w 

+ 

X 

Fig. 3-6 Block diagram manipulation and reduction "rules". (Sheet 2 of 3) 
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RULE ORIGINAL DIAGRAM EQUIVALENT DIAGRAM 

w 

w + X 

+ 
w + y 

11 
y 

X 

X 

lC w 

12 

y z 
c 

WHERE Ll 1 = PC - BD 

W X 

13 D 

y 
c 

WHERE t..2 = 1 - ABCD 

Fig. 3-6 Block diagram manipulation and reduction "rules". (Sheet 3 of 3) 
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K 

A. ELEMENTARY BLOCK DIAGRAM 

K 

B. USE OF RULE 9 OF FIG. 3-6 

C. USE OF RULE 3 OF FIC. 3.6 

Fig. 3-7 Block diagram examples. (Sheet 7 of 3) 
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D. USE OF RULE 11 OF FIG 3-6 

K 

-__ J._s_z1_+_'·_s_...JH. __ K __ ~ ~ 
-y -y 

1 
""JLST 

K 

Fig. 3-7 Block diagram examples. (Sheet 2 of 3) 
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H. USE OF RULE OF FIG . 3.6 

I. USE OF RULE 1 OF FIG. 3-6 

OL 

~~---~--~~~~ 

fig. 3·7 Block diagram examples. (Sheet 3 of 3) 
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3-5.2 SIGNAL-FLOW GRAPHS!2.7,2.8 l 

An alternate procedure for representing 
the differential equations of a system pictori­
ally is Mason's<27 > signal-flow graph method. 
In a signal-flow graph, variables are repre­
sented by points called nodes and transfer 
functions are represented by directed lines or 
branches called transmittances. The distinc­
tion between the summing points and the 
splitting points of block diagram algebra is 
eliminated in the signal-flow graph. The rules 
for drawing a signal-flow graph are as fol­
lows<28>: 

(a) Signals travel along branches only in 
the direction of the arrows. 

(b) A signal traveling along any branch 
is multiplied by the transmittance of that 
branch. 

(c) The value of the variable represented 
by any node is the sum of all signals entering 
the node. 

(d) The value of the variable represented 
by any node is transmitted on all branches 
leaving that node. 

Example. The two equations 

X1 = to1 Xo + tn X1 + t21 X2 

X2 = to2 Xo + t12 X1 + t22 Xz 

(3-82) 

(3-83) 

are represented by a signal-flow graph in Fig. 
3-8. 

Fig. 3·8 Signal-flow graph in three variables. 

For convenience, the signal-flow graph is 
usually drawn such that no branch enters an 
input node or leaves an output node. This is 
accomplished by introducing an additional 
node connected by a unity-transmittance 
branch to each input and output node as 
shown in Fig. 3-8, where the input node is as­
sumed to be x0 and the output node is as­
sumed to be x1. 

The order of a signal-flow graph is a meas­
ure of the number of independent feedback 
loops and thus indicates the complexity of the 
system. The order of the signal-flow graph is 
the minimum number of essential nodes­
those nodes that must be removed to eliminate 
all feedback paths. A node is removed either 
by setting the variable associated with the 
node equal to zero or by deleting all branches 
leaving the node. Signal-flow graphs of orders 
one and two are shown in Figs. 3-0 and 3-10, 
respectively. The signal-flow graph of Fig. 
3-8 is of order two, the essential nodes being 
x1 and x2. 

The reduction of signal-flow graphs is ac­
complished by application of the following 
rules<2 R> : 

(a) Two parallel paths may be replaced by 
a single path with a transmittance equal to 
the sum of the two original transmittances 
(Fig. 3-11). 

(b) Two cascaded paths are equivalent to 
a single path with a transmittance equal to 
the product of the two original transmit­
tances (Fig. 3-12). 

(c) The termination of a branch with 
transmittance t can be shifted one node for­
ward by the following steps (Fig. 3-13) : 

( 1) Determine all the branches leaving the 
original terminating node x of branch t. 

(2) Draw new branches from the starting 
node Xo of branch t to the terminating nodes 
of all the branches leaving the terminating 
node x. 

(3) To each of the new branches thus 
drawn assign a transmittance equal to the 
product of t times the transmittance from 
node x to the node on which the new branch 
terminates. 

( 4) Eliminate the original branch t. 
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(5) Chang:, the variable of the original 
node x to x' = x - tx0• 

(d) The starting point or origin of a 
branch with transmittance t can be shifted 
one node backward by the following steps 
(see Fig. 3-14) : 

(1) Determine all the branches entering 
the original starting node x of branch t. 

(2) Draw new branches from the starting 
nodes of all the branches entering starting 
node x to the terminating node x, of branch t. 

(3) To each of the new branches thus 
drawn assign a transmittance equal to the 
product oft times the transmittance from the 
node at which the new branch starts to node x. 

• • 

A. ORIGINAL GRAPH 

B. ESSENTIAL NODE REMOVED 

Fig. 3-9 Signal-flow graph of order one. 

. .. • 

A. ORIGINAL GRAPH 

~\·~~~~·~--· • 
x3 (X~) X ouT 

B. ESSENTIAL NODES REMOVED 

Fig. 3-70 Signal-flow graph of order two. 

( 4) Eliminate the original branch t. 
(e) A self-loop with transmittance t of a 

node x can be removed by dividing the trans­
mittances of all branches entering node x by 
(1 - t) and eliminating the loop (Fig. 3-15; 
in this figure. t == t 22, where the frrst sub­
script denotes the node on which the branch 
originates and the second subscript denotes 
the node on which the branch terminates). 

Note, in rule (c), that a self-loop is created 
at node x0 for a branch starting from the 
terminating node x of branch t and ending on 
the starting node x0 of branch t (Fig. 3-13 
does not happen to have such a branch). In 
rule (d), a self-loop is created at node X; for 
a branch starting from the terminating node 
X; of branch t and ending on the starting node 
x of branch t. 

Example. The various steps involved in re­
ducing the second-order signal-flow graph of 
Fig. 3-8 are shown in Fig. 3-16. 
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A. ORIGINALGRAFH 

B. EQUIVALENT GRAPH 

Fig. 3-17 Signal-flow graph showing addition of 

parallel branches. 
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A ORIGINAL GRAPH 

B EQUIVALENT GRAPH 

Fig. 3-12 Signal-flow graph showing multiplication 

of cascaded branches. 

Xo 
A. ORIGINAL GRAPH -t TO BE MOVED FROM X TO X2 

x, 

Xo 
B. STEPS ( 1) AND (2) · · INTRODUCTION OF NEW BRANCHES 

x' • X - tX0 
C. STEPS(3), (4), AND (5)- ELIMINATION OF OLD BRANCH; 
LABELLING OF NEW BRANCHES, CHANGE OF VARIABLE AT 
TERMINATING NODE OF OLD BRANCH 

3-27 

A ORIGINAL GRAPH - t TO BE MOVED FROM X TO X I 

B. STEPS ( 1) AND (2) - INTRODUCTION OF NEW BRANCHES 

C. STEPS (3) AND (4) - ELIMINATION OF OLD BRANCH AND 

L·AB ELL lNG OF NEW BRANCHES 

Fig. 3-14 Signal-flow graph showing origin shifted 

one node backward. 

Fig. 3-13 Signal-flow graph 

showing termination 

shifted one node forward. 
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122 

Q 
112 x2 123 

A ORIGINAL GRAPH 

x2 

-•t 123 
- 22 

B. EQUIVALENT GRAPH 

fig. 3-15 Signal-flow graph showing elimination 
of a self-loop. 

\IV 
In 

A ORIGINAL SIGNAL-FLOW GRAPH (SECOND ORDER) 

.. 
(1 ~~.,) 

x. 

B. REDUCTION TO FIRST-ORDER GRAPH 

BY ELIMINATING SELF-LOOPS 

.. 

{L1 11)(1-122 

C. MOVEMENT OF BRANCH(d) TERMINATION FROM 

NODE X2 TO NODE x1 22 
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0 1 XouT 

[ 
lul21 ] 

(1-t 11 X1-t22) 

D. CASCADE AND PARALLEL BRANCHES COMBINED 

x0 x 1 

E. REDUCTION TO ZERO-ORDER GRAPH 
BY ELIMINATION OF SELF-LOOP 

X ouT 

fig. 3-16 Signal-flow graph showing reduction 
of second-order graph. 
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3·6 APPROXIMATE NUMERICAL AND GRAPHICAL METHODS a= 
DETERMINING TRANSIENT RESPONSE 

A large variety of graphical and numerical 
procedures( 29 t 0 4 5J have been proposed that 
enable the designer to determine the follow­
ing: (1) the transient response of a system, 
knowing the frequency response ; (2) the 
frequency response, knowing the transient 
response; or (3) the response of a system to 
an arbitrary input. These graphical and nu­
merical procedures are particularly useful 
when purely analytical procedures are too 
difficult or time-consuming. When using La­
place or Fourier transforms , the difficulty 
that arises is primarily one of factoring high­
order polynomials . When the convolution in­
tegral is involved, its direct evaluation is 
often time-consuming and difficult. If experi­
mental data are available in the form of tran­
sient responses or frequency responses of 
system components, it is desirable to avoid 
the problem of approximating the data with 
analytical functions. 

In many of the techniques, the determina­
tion of the transient response of a sy stem 
from its frequency response is based on the 
real-part and imaginary-part integrals, i.e., 

2 ioo /(t) = ""*- dwcoswtRe[F(jw)] (3-84) 
Jt 0 

f(t) =- ~ (
00

dwsinwtlm[F(jw)] 
Jt Jo 

(3-85) 

where Eq. (3-84) is the real-part integral, 

Eq. (3-85) is the imaginary-part integral 
f Ct) is the time response to be evaluated, and 
F (jw) is the transform of f ( t) evaluated for 
s =Jw. 

Floyd (4!J uses Eq. (3-84) to determine the 
time response corresponding to a transform 
F ( s) satisfying the following conditions : 

The procedure used in Floyd's method is as 
follows: 

(a) The function Re [F (jw)] is plotted to 
a linear scale and approximated by a series of 
straight-line segments. 

(b) The straight-line approximation is 
written as a sum of trapezoidal functions 
having the general form shown in Fig. 3-17. 

(c) The time response corresponding to 
each of these component trapezoids is g1ven 
by a relation of the form 

!;(t)=l:._A;Si(w;t) Si(tl.;t) 
Jt 

where 

Si(x) A sin x 
- X 

(3-86) 

(3-87) 

and the quantities A;, wi, and fl., are defined in 
Fig . 3-17. 

(d) The total time response is obtained by 
taking the sum of the individual time re­
sponses corresponding to each component 
trapezoid, i.e., for k trapezoids 

3-29 

f ( t) = :i ~ A, Si ( w;t) Si ( tl.;t) 

• I 

iL .,. 
• 

i=l Jt 

I 

'\---: 
I 
I 
I 

(3-88) 
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Example. A unity-feedback system has the 
closed-loop response 

c ( s) - w ( s) = 1.4s + 0.14 
R (s) s3 + s2 + 1.4s + 0.14 

(3-89) 

Find the impulse response w ( t) of the sys­
tem. 

Solution. Re[W(jw)] is plotted in Fig. 3-18 
and the straight-line approximation to this 
function is shown as the dashed curve. 

Sketches of the straight-line approximation 
and the trapezoidal decomposition of this ap­
proximation appear in Fig. 3-19. From the 
approximation and the definitions of Fig. 
3-17 ,the parameters of the trapezoids can be 
shown to be those listed in Table 3-3. 

The impulse response is therefore given by 

w (t) = ~ [ -0.01 Si(0.12t) Si(0.12t) 
J[ 

+ 1.71Si(1.06t) Si(0.4lt) 

- 0.59Si(2.05t) Si(0.57t) (3-90) 

- 1.08 Si.(4.89t) Si. (2.272)] 

This response is plotted in Fig. 3-20 along 
with the exact impulse response determined 
by inverse transforming W (s). 

Guillemin<44•45l uses a different approxima­
tion to Eq. (3-84) . If the real-part function 
is differentiated n times, the corresponding 
time function is found to be 

.!!. 

f(t) =- d{l) cos wt 2 ( -1) ~ i"' _d'_' R_e..::...[F......:(c:::....jw....::.)..::..] 
J[ ~ u d~ 

(3-91) 

if n is even, and 

f(t) = 
n+I ] 

~ ( -1)_2_ f"' dw sin wt d"Re[F(jw) 
Jt tn Jo dw" 

(3-92) 

if n is odd. 

TABLE 3-3 PARAMETERS OF TRAPEZOIDS 

Trapezoid No. Wi ~i Ai 

I 0.12 0.12 --o.01 

II 1.06 0.41 +1.71 

III 2.05 0.57 --o.59 

IV 4.89 2.27 -1.08 

If a straight-line approximation to Re[F (jw)] 
is differentiated twice, the second derivative 
of the approximation is a series of impulses 
in the frequency domain extending over posi­
tive and negative frequencies. Thus 

+ f ai[l'\o(w-wi) +oo(w+wi)] 
i=l 

(3-93) 

where the 1'\'s are unit impulses. 

The time response can then be found from 

f(t) = __ -+ L aicoswit 2 [a0 m ] 

nt~ 2 i=I 
(3-94) 

As checks on the approximations of Floyd 
and Guillemin, the following relations hold : 

/(0) =~{"' dwRe[F(jw)] =~~A, 
Jt Jo n=l Jt 

(3-95) 

where A, is the area of the nth trapezoid in 
Floyd's approximation. 

ao m 0 - + L ai= 
2 i=l 

(3-96) 

where ai is the magnitude of the jth impulse 
in Guillemin's approximation. 

(3-97) 

where ai is the magnitude and Wj is the fre­
quency location of the jth impulse in Guille­
min's approximation. 
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Stallard <38> has suggested a method for 
obtaining the time response applicable to con­
trol systems having an oscillatory response. 
In particular, the response c (t'! of a control 
system whose input r ( t) is a unit step 11-t ( t) 
can be approximated from 

c (t) 
__ 4 ~ Re[W(jn<J>I)]sinnwtt 

n j[ n=l,3,5, .•. 
(3-98) 

where 

W(s)=C(s) the closed-loop transfer 
R(s} ' function 

_wo 
Wt--

9 

w0 = cutoff frequency at which the phase 
angle of W (jw) is -90° 

By using about eight terms of the series [Eq. 
(3-98) ], an accurate representation of the 
step response of the system is obtained that 
is valid over the interval 

j[ 

1.2 -- ~...__ 

1D 

::::: 0.8 

g 
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0 \\ 
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:z: 
0 0.4 ;:: 

" ::l 
02 IL 

... 
a ... 0 
_j 

"' 
"' -a2 

!\ ,, 
\, 

-o.4 ~\ --
' ~ 

p 

If the impulse response or the ramp response 
of the system is sought, Eq. (3-98) can be 
differentiated or integrated term-by-term to 
obtain the desired response. 

When using the real-part integral [Eq. 
(3-84) 3 and the various approximations de­
rived from it , a convenient method of finding 
Re [W (jw) 3 is often desired when the impulse 
response of a feedback control system is 
sought. Since many of the design procedures 
discussed in Chs. 5 and 6 employ a graphical 
representation of the open-loop response 
C(jw)jE(jw) in the gain-phase plane (see 
Ch. 5), Fig. 3-21 is included. This chart pre­
sents contours of constant Re[W(jw)] on 
the gain-phase plane. If the open-loop fre­
quency response C(jw) / E(jw) is plotted on 
this chart, the intersection of the C (jw) I 
E (jw) function with the Re[W(jw)] con­
tours at each frequency determines the real 
part of the closed-loop response W (iw) as a 
function of frequency. 

- ~--

~ 
,. 

~ 

-0.6 
0 LO 2.0 

ANCULARFREQUENCY w 

3.0 4.0 

1As + 0.14 
Fig. 3-78 Real-part function for W(s) = __ ....:..:...:.::.....___:.:...:....: __ 

s 3 + s2 + 1.45 + 0.14 
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Fig. 3-20 Impulse response from Floyd's method 
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Fig. 3-I9 Trapezoidal approximation for Re[W(jw)]. 

W(s) = 1As + 0.14 
s3 + s2 + 1As + 0.14' 
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3-7 ERROR COEFFICIENTS FOR DETERMINING RESPONSE 
10 AN ARBITRARY INPUT 

The convolution integral [Eq. (3-31) 3 
gives the response of a linear system to any 
arbitrary input. In many control applications, 
the input function is specified as an arbitrary 
function of time that cannot be classified as 
a transient or sinusoidal input. Since the 
evaluation of the convolution integral 
usually involves a tedious graphical or 
analytical procedure, methods of simplifying 
the calculation of the response of a unity­
feedback system fo an arbitrary input have 
been devised. 

One of the most useful techniques is called 
the error-coefficient method. <40·46•47 > In this 
procedure, the convolution integral is ex­
panded in a Taylor series. To insure con­
vergence of the expansion, it is assumed that 
the input and its derivatives have no discon­
tinuities in the time interval of interest. 
The forced response to the input is then 

e(t) = e0r(t) +e1r'(t) +e2r''(t) + ... 

(3-99) 

where e, e, ... are called the error coeffi­
cients of the system. It can be shown that the 
error coefficients are the coefficients of the 
Maclaurin series expansion of the error-to­
input transfer function E (s) jR ( s) ,i.e., 

(3-100) 

The easiest way to expand E (s) /R (s) for 
rational functions is to divide the numerator 
polynomial by the denominator polynomial. 

The first few error coefficients expressed in 
terms of the parameters of the open-loop 
function C(s)/E(s) are listed in Table 3-4 
for a unity-feedback system. 

Equation (3-99) shows that the response 
of a system to an arbitrary input can be ex­
pressed in terms of the error coefficients, the 
input, and the derivatives of the input. The 
only restriction is that the input and its 
derivatives have no discontinuities in the 
time interval of interest. In particular, if 
there is a discontinuity in the input or one of 
its derivatives, the error-coefficient expansion 
applies after the transient due to the discon­
tinuity has died out. 

In using the expansion, it usually suffices 
to terminate the series after the first four 
nonzero error coefficients. If the series is ter­
minated after the kth error coefficient, an ap­
proximate bound on the remainder of the se­
ries is given by 

(3-101) 

where p(t) is the remainder, r<k+I> (t) is the 
( k + 1) th derivative of the input r ( t), and 

ek-H is the (k+l)th error coefficient. The 
bound [Eq. (3-101)] applies in most practi­
cal cases if four or more nonzero .terms are 
used in the expansion. For the restrictions on 
Eq. (3-101), see referencet40 >. 

3-34 



TABLE 3-4 ERROR COEFFICIENTS IN TERMS OF OPEN-LOOP FUNCTION C(s}/E(s) 

Form of 
Open-Loop KN(s) 

nzs~ + n1s + 1 KN(s) KN(s) N (s) = n1sJ ·+ 
Function D(s) 

sD(s) s~D (s) 
C(s)/E(s) D (s) = d~.s" + + d1s + 1 i 

w w 
(11 

1 
0 6 -- 0 

1 -f-K 

e1 K(d1- n1) 1 
0 -(1+K):! K 

e2 K { (d2- n2) (1 + K) +} K (d1- n1) - 1 1 -(1 + K) 3 (n1- d1) (Kn1 + d1) K:! K 

~ 

I 
I 
~ 

I (da-ns) (1 + K)2 + K 2 (d2 - n 2 )+ K(2 + Knd 

(n2- dz) (1 + K) (n1- dd + 1/K3 
K d1- n1 es 

(1 + K)' 

1 

(d, + Kn,) + (n,- d,) K 
(d2+ Kn2) (1 + K) 

- (d1 + Knd 2 

I 
I 

e4 K(d2- nz) + Kndn1- dd- 1 
K~ 
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3-8 RESPONSE 10 STATIONARY STOCHASTIC INPUTS(48
'
49

'
5o.s1

•
52

> 

As discussed in Par. 2-6, the response of a 
linear system to a stochastic input cannot be 
expressed as a specific function of time. The 
only way to describe system behavior in the 
presence of stochastic inputs is in terms of the 
statistics of the input and the response. Theo­
retically, an infinite number of statistics is 
required to describe a stochastic process com­
pletely. Practically, however, only a few sta­
tistics are used. 

The probability density functions are direct 
measures of the chance of occurrence of cer­
tain events in the process. Thefirst probabil­
ity density function of a stochastic variable 
r ( t) is denoted by 

P1 ( r],td ! probability that the variable has 
a value r, at time t 1• 

The second probability density function is de­
noted by 

P2 ( r1,ti ;r2,t2) ! probability that the vari­
able has a value r 1 at time 
t, and a value r2 at time t2 
simultaneously 

In practice, only the first two probability 
density functions are used. For a stationary 
stochastic process, the first probability den­
sity function is independent of the time t 1 ; 

the second probability density function is a 
function only of the time difference (t2 - tJ). 

Twc commonly used probability density 
functions are the normal distribution and the 
Poisson distribution. The normal distribution 
is given by 

.P(r)dr = 1 e- ~ ( ,.~-; Ydt· 
IT yl2rr 

(3-102) 

where P(r) dr is the probability of finding r 
between rand 1" + dr , ris the mean value of 
r (to be defined below), and o is the standard 
deviation of r (to be defined below). The 
Poisson distribution is given by 

(vt\f)X e-v!J.I P(N,M) = ----'--___.:... __ 
N! 

(3-103) 

where P (N,M) is the probability of finding 
N events in a time interval At, and v is the 
average frequency of occurrence of the events. 

In general, the average or mean value of a 
stochastic variable r is given by 

r+x r ~ )_«; r p (r,t) dr (3-104) 

For a stationary stochastic process, the mean 
value is independent of time and can also be 
found from 

i+T 
,-A lim _l_ r (t) dt 

T->oc 2T =F 
(3-105) 

The mean-square value of a stochastic vari­
able or process is given by 

-.,,.. r+, 
r-= J_oc r 2P(r,t) dr (3-106) 

For a stationary stochastic process, the mean­
square value is also given by 

(3-107) 

The root-mean-square (rms) value is the 
square root of the mean-square value. 

The variance of a stochastic process if given 
by 

v ~ [r- rF (3-108) 

The standard deviation o is the square root of 
the variance. It can be expressed in terms of 
the mean value and the mean-square value as 
follows: 

(3-109) 

In most applications, rms values and mean 
values are usually the most common statistics 
used. To aid in the determination of these 
quantities , statistics called correlation func­
tions are used. The autocorrelation function 
<Pn· ( T) of a stationary stochastic process r ( t) 
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is defined as the mean value of the product of 
the function r at time t bv the function r at 
time t + -r, i.e., 

cp,.,.(-r) ~r(t)r(t +•) (3-110) 

' f+T dim- r(t)r(t + -r) dt 
T->oo 2T _'f 

(3-111) 

The crosscorrelation function cf> ( -r) between 
··~ two stationary stochastic processes r ( t) and 

0 ( t) is defined as the mean value of the prod­
uct of the function r at time t by the function 

t . t + . Jl a time . -r, 1.e., 

cf>,.J-r) ~r(t)}l(t + -r) (3-112) 

- )lr;;t 2lT i:.T r(t)}l(t +-r) d-r (3-113) 

From the definition of the autocorrelation 
function [Eq. (3-110) ], it is evident that the 
mean-square value of a stochastic process 
equals the value of the corresponding auto­
correlation function with zero argument : 

(3-114) 

Useful properties of the correlation func­
tions are as follows : 

(a) q,,.,. <t> = cp,.,(--r) [even function] 

(3-115) 

(b) lcf>,.,.(T) I< cf>/1.(0) (3-116) 

(c) Jim cp,,. ( T) r' (3-117) 
T400 

(d) cf>r (T) = cp (-T) 
1..1. jA.f" 

(3-118) 

--·---
(e) 11>,.1' (-r) I ~y</> ... (O)cp~~ (0) (3-119) 

(f) lim</>, (-r) = r~ 
1'-..:..rf' 1..1. 

(3-120) 

A few examples illustrating the use of auto­
correlation functions follow. If r ( t) is a rec­
tangular wave with values +~or-~ ana with 
zero crossings located at event points that 
are Poisson-distributed in time with an aver­
age frequency of v, the autocorrelation func­
tion of the process is given by 

(3-121) 

If r(t) is a rectangular wave with ampli­
tude values distributed in any fashion and 
with zero crossings located at event points 
Poisson-distributed in time with an average 
frequency v, the autocorrelation function of 
the process is given by 

(3-122) 

where o is the standard deviation of the am­
plitude distribution, and r is the mean value 
of the amplitude distribution. 

If r ( t) is a train of identical finite pulses 
whose starting points are Poisson -distributed 
in time with average frequency v, the auto­
correlation function of the process (known as 
"shot noise") is given by 

cf>rr{T) = vf_:"' f(t)f(t + T) dr; + r 2 

(3-123) 

where f ( t) 1cl the time vanatwn or wave­
form of a single pulse and ris given by 

- f+"' r=v -oo /(t) dt (3-124) 

If r ( t) is pure or "white" noise, the auto­
correlation function is given by 

cj>,.,(-r) = yllo(T) (3-125) 

where y is a constant that depends on how thr 
process is generated. 

Thus, if "white" noise is considered as a lim­
iting case of shot noise generated by ex­
ponential pulses of amplitude A and time 
constant T (where the amplitude approaches 
infinity and the time constant approaches 
zero with the area s under the pulse held 
constant), then the constant y is given by 

vs 
y=-

2 
(3-126) 

where v is the average frequency of occur-· 
renee of the pulses. 

Because the correlation functions are com­
pletely defined as functions of a time vari­
able -r, they are Fourier transformable. By 
convention, lj2n times the Fourier transform 
of a correlation function is called a power 
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spectrum or a power-density spectrum. Thus , 
the power-density spectrum <l>,.,.(s) of a sto­
chastic process is defined as 

<l>,.,.(s) ~- d1: e-•• cf>,.,.(T) li+"' 
21t -oo (3-127) 

The cross-power-density spectrum between 
two stochastic processes r ( t) and f.L ( t) is de­
fined as 

(3-128) 

Given the power spectra, the corresponding 
correlation functions can be found by inverse 
transformation, i.e., 

1 .[+joo 
cf>,.,. ( T) = ----:- <1>,.,. ( s) e-" ds 

J -joo 

(3-129) 

cf> ( T) = -. 
100 

<ll ( S Je"' ds 1 r·· 
'" 3 -«> I"IJ. 

(3-130) 

In terms of the power-density spectrum, the 
mean-square value of a stochastic process 
can be found by evaluating the following 
integral: 

( 3-131) 

Useful properties of the power spectra are 
a,.,(.s) = <IJJT (- s):even function) (3-132) 

<ll,.~> ( s) = <ll~>,. ( -s) (3-133) 

Having established some of the statistics 
of stationary stochastic processes, the re­
sponse of a linear system to a stochastic input 
can now be described. If cf>,.,. ( •) is the auto­
correlation function of the input r(t) of a 
linear system whose impulse response is 
w ( t), the autocorrelation function of the out­
put c(t) is given by 

cf>,.,.(T) = J~: dt1 w(td 

f:oo dt2w(t2) cf>,.,. (t +tl-t2) 

(3-134) 
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The crosscorrelation function between the 
input and the output is given by 

f
+oo 

cf>rc ( T) = dt W (t) cf>rr ( T - t) (3-135) 
J-m 

which can be recognized as a convolution in­
tegral. 

Extending the description of the stochastic 
response of a linear system to the frequency 
domain, if W(s) is the transfer function of 
the system and <l>..,.(s) is the input power­
density spectrum, the output power-density 
spectrum is given by 

<l>cc(s) = W(s) W( - S) <l>,.,.(s) (3-136) 

The cross-power-density spectrum between 
input r ( t) and output c ( t) is given by 

<ll,.,.(s) = W(s) <l>,.,.(s) (3-137) 

or 

<l>,.,.(s) = W(-s) <l>,.(s) (3-138) 

If f.L(t) is another signal and <ll~>,.(s) is the 
cross-power-density spectrum between f.L ( t) 
and the input r ( t ), the cross-power-density 
spectrum between f.L(t) and the output c (t) 
is given by 

<ll (s) = W(s) <ll (s) 
jA.(" jA.I" 

(3-139) 

or 

<ll ( s) = W ( -s) <ll ( s) 
C!J. I"Jl. 

(3-140) 

In summary, once the properties of a sto­
chastic process are expressed in terms of cor­
relation functions , the analysis of system be­
havior is a straightforward problem that 
can be treated through the use of the defini­
tions and properties of the correlation func­
tions and their transforms , the power spec­
tra. In particular, where rms values are of 
interest, Eqs. (3-114) and (3-131) are of 
great use. 



DETERMNNG DYNAMIC RESFOJSE a= l..IEAR SVST8V5 

3-9 USE OF ANALOG COMPUTERS FOR SIMULATION<suu4
'
55

> 

In many problems, the use of analog com­
puters greatly facilitates the analysis and 
design procedures. In both the linear and the 
nonlinear cases, the analog computer is a 
tool of wide versatility. Since the detailed 
properties of analogy computers vary from 
one manufacturer to the next, this section 
will cover only some general principles of 
analog computer use. 

The basic elements of any analog computer 
are integrators, coefficient potentiometers, 
summing amplifiers, multipliers, and func­
tion generators. The symbols for these ele­
ments and the mathematical operations they 
perform are shown in Fig. 3-22. The similar­
ity of these symbols to the symbols of block 
diagram algebra emphasizes that the block 
diagram of a system is readily convertible to 

the computer diagram of the system. Several 
important restrictions of the computer dia­
gram are 

(a) Differentiation is difficult to realize 
in practice. 

(b) The summing amplifiers and integra­
tors almost always introduce a change in 
algebraic sign. 

(c) The useful frequency range of the 
computer is limited at low frequencies by 
drift and at high frequencies by phase shift 
and attenuation. 

(d) The amplitude scale of the computer 
is limited by amplifier saturation. 

Example. The block diagram of Fig. 3-7A 
is shown as a computer diagram in Fig. 
3-23. 
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SYMBOL OPERATION 

Y~x X ~ Ay 

x = yz 

X = l(y) 

Fig. 3-22 Elements of analog computers. 
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Fig. 3-23 Computer diagram for system of Fig. 3-7A. 
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CHAPTER 4 

STABILITY * OF FEEDBACK CONTROL SYSTEMS 

4-1 INTRODUCTION 

The determination of system stability is the 
first step in the design of any linear control 
system. To carry out this :first step, a test for 
system stability is required. The particular 
stability test used will depend on the meaning 
attached to the term stable operation. Gen­
erally, a system is said to be stable if it re­
mains at rest when all inputs are zero and if 
(for any disturbance) no signal grows with­
out bound or exhibits sustained oscillation 
when the inputs are returned to zero. In the 
case of linear systems, the only situation in 
which unstable behavior can occur is the one 
in which the roots of the characteristic equa­
tion of the closed-loop system lie in the right­
half s plane and therefore have positive real 
parts. The response modes corresponding to 
right-half-plane roots of the characteristic 
equation have amplitudes that increase with­
out limit as time increases. Consequently, any 
stability criterion for a linear system is es­
sentially a method of determining whether or 
not the characteristic equation has right-half­
plane roots. 

In Fig. 4-1 the general single-loop system is 
shown. The output response transform for 
this system is 

C(s) = G1 (s) Gds) R(s)- G2 (s) U(s) 
1 + Gt(s) G2 (s) H (s) 

( 4-1) 

*By L.A. Gould 

4-1 

The characteristic equation of the system is 

1 +GI(s) G2(s) H(s) = 0 (4-2) 

Thus, if any of the roots of Eq. (4-2) lie in 
the right-half s plane, the system of Fig. 4-1 
is unstable. 

The presence of right-half-plane roots of 
the denominator of the response transform 
C (s) [i.e., right-half-plane poles of C (s)] 
could be determined by direct factorization of 
Eq. (4-2), after it has been cleared of frac­
tions. Since a system is unstable if one or 
more right-half-plane poles of C(s) exist, it 
is usually sufficient to determine whether 
these poles exist; however, it is not necessary 
to determine their exact location. Hence, the 
standard stability criteria that are discussed 
in this chapter (with the exception of the 
root-locus method) merely determine the 
number of unstable poles without regard to 
their location in the right-half s plane. 

H(s) ~ool•-----

Fig. 4-1 Single-loop system- block diagram. 
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Three useful stability criteria -the Routh 
criterion, the Nyquist criterion, and root­
locus method -are described in succeeding 
paragraphs. 

The Routh criterion is the simplest to 
apply and can be used when the characteristic 
equation is known, at least in literal form . 
This criterion can be employed to determine 
the presence of any roots of an algebraic 
equation that lie in the right-half plane. If 
the equation is the characteristic equation of 
a closed-loop system, the presence of right­
half-plane roots means that the system is un­
stable. 

The Nyquist criterion is the most widely 
used stability criterion because the only in­
formation it requires for its application is a 
plot of the open ... loop frequency response 
Gdjw) G2 (jw) H(jw). This frequency re­
sponse can be determined either from an 
analytical representation of component be­
havior or from direct measurement of the 
response of the components to sinusoidal in­
puts. In addition to its use in determining the 
presence of system stability, the Nyquist cri­
terion is extended in many design procedures 
to give an indication of the degree of stability 
possessed by the stable system (see Chs. 5 
and 6). By an examination of the behavior of 
the G1 (jw) G2(jw) H(jw) locus in the vicin-

ity of the - 1 + jO point, the Nyquist crite­
rion provides the servo engineer with a rela­
tively straightforward and extremely power­
ful tool for analysis and design. 

The root-locus method is a graphical tech­
nique for revealing the position of the poles 
of the response transform C ( s) in the s plane 
as a gain factor of the open-loop function 
G1 (s) G2 (s) H(s) is varied. The primary 
advantage of this method for stability deter­
mination is that the closed-loop pole locations 
are kept in evidence at all times. Thus, it is 
easy to see when the poles move into the 
right-half plane as the gain factor is varied . 
There are two primary disadvantages con­
nected with the root-locus method. First, the 
location of the poles and zeros of the open­
loop function must be specified. This often 
requires some sort of analytical approxima­
tion to the experimental test data. Second, the 
plotting of the paths of the closed-loop poles 
involves a trial-and-error procedure that can 
be quite tedious. In spite of these disadvan­
tages , however, the root-locus method is quite 
useful in that it immediately places in evi­
dence the closed-loop pole-zero configuration 
for any particular design (stable, of course). 
Thus , the characteristics of the time response 
of the system are easily ascertained and the 
verification of performance specifications in 
the time domain is a straightforward matter. 

4-2 ROUTH CRITERION 11
'
2

'
6

) 

By applying the Routh stability criterion, 
one can determine whether any roots of an 
algebraic equation lie in the right-half s 
plane. If the coefficients of the equation are 
known only in literal form , the Routh crite­
rion yields only a set of inequality conditions 
for stability. However, if the coefficients of 
the equation are known numerically, the cri­
terion permits one to determine whether sta­
bility actually exists. 

To show the general procedure used in 
applying the Routh criterion, consider the 
following general algebraic equation : 

4-2 

ansn + an-lsn-l + ... + als +a, = 0 ( 4-3) 

Next, the coefficients are arrayed in two rows, 
alternate coefficients being placed in alternate 
rows 

(1) 

(2) 

0 

0 
(4-4) 

Then, the array is extended by taking ap­
propriate cross-products to determine the ele­
ments in the third row 

(3) 

( 4-5) 
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The elements of the fourth row are formed by 
taking cross-products of the elements of the 
second and third rows, in exactly the same 
manner that the third-row elements were 
formed. This process is continued until all the 
elements of a row are zero. On completion of 
the array, the Routh criterion can be em­
ployed to determine the presence of right­
half-plane roots. 

The Routh criterion states : 
The number of roots of the original 

equation that lie in the right-half s 
plane equals the number of sign 

The complete algebraic array is as follows : 

(1) 1 2 M 

(2) K 4 0 

(3) (K-2) KM/2 0 

(4) [ (K-2) - K 2M/8] 0 0 

(5) (K-2-K2M/8) 0 0 

(6) 0 0 0 

The inequalities that determine stability are 

K > 0, (4-8) 

K-2 > 0, 

and 

[ (K-2) - K 2Mj8] > 0 

(4-9) 

(4-1 0) 

(b) As an example of an algebraic equa­
tion with numerical coefficients, consider the 
equation 

sa +2s4 +2s3 + 46s2 + 89s + 260 = 0 
(4-11) 

The complete numerical array is as follows : 

4-3 

changes in the elements that form the 
first column of the final array. 

An examination of the procedure used above 
shows that all the elements of any row after 
the second may be divi~ed by a positive num­
ber without changing the result. 

Examples. 

(a) Consider the following algebraic equa­
tion with lateral coefficients : 

s4 + Ks3 + 2s2 + 4s + M = 0 

whereK > 0 andM > 0. 

0 

0 

0 (row multiplied by K/2) 

0 (row multiplied by 1/4) 

0 (row multiplied by 2/KM) 

0 

(4-6) 

(4-7) 
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(1) 1 2 89 

(2) 2 46 260 

(3) -1 -1.95 0 

(4) 1 6.17 0 

(5) 1 0 0 

(6) 1 0 0 

(7) 0 0 0 

Inspection of the signs of the elements of the 
:first column shows that one sign change 
occurs in going from the second to the third 
row and another in going from the third to 
the fourth row. Hence, two roots of Eq. 
(4-11) lie in the right-half 8 plane. The fac­
tors of Eq. (4-11) are 

0 

0 

0 (row divided by 21) (4-12) 

0 (row divided by 42.1) 

0 (row divided by 4.22) 

0 (row divided by 6.17) 

0 

(8 + 4) (8 -2 + j3) (8 - 2 -j3) 

(8 +1 +j2) (8 +1 _j2) (4-13) 

The right-half s-plane roots of Eq. (4-13) are 

(4-14) 

4-3 NYQUIST CRITERION<3
'
6

) 

The Nyquist criterion is a graphical pro­
cedure by which one can determine whether 
any of the roots of the equation 

1 +G(8) = 0 (4-15) 

lie in the right-half 8 plane. Only the follow­
ing information is required in this procedure : 
(1)the magnitude and phase angle of G(jw) ; 
(2) the behavior of G (s) at the poles of G ( s) 
that lie on the imaginary axis or at the origin 
of the 8 plane ; and (3) the number of poles of 
G (s) in the right-half 8 plane. (NOTE: For 
nonunity feedback loops, one tests for the 
zeros of the function 1 T G ( s) H ( s) where 
G(s) is the forward transfer function and 
H (8) is the feedback transfer function.) 

The Nyquist criterion can be expressed 
mathematically as 

\ 4-16) 

4-4 

where 

Z = number of zeros of 1 + G ( s) that lie 
in the right-half 8 plane 

P =number of poles of G ( s) that lie in the 
right-half s plane 

N =number of clockwise encirclements of 
the point - 1 + jO by the locus of 
G ( s) as 8 describes the path shown in 
Fig. 4-2 

For stability, Z must be zero; that is, P = 
-N. If P # -N, the system is unstable. 

If there are any poles of G ( s) on the im­
aginary axis, the G (jco) locus will become in­
finite at these points. To rlPtPrmine the be­
havior of the G (jw) locus at these poles, so as 
to be able to count encirclements, a small 
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semicircular detour is made into the right­
half s plane at each pole of G ( s) on the im­
aginary axis. Thus, the G(jw) locus will de­
scribe a large semicircle instead of becoming 
infinite. If the pole on the imaginary axis is 
of multiple order, the G (jco) locus will de­
scribe one semicircle for each order of the 
multiple pole. 

A convenient rule for determining the 
direction of turn of the G (jw) locus at the 
imaginary-axis poles of G(s) is 

Turn to the right by 180° for each order of 
the pole as the frequency increases . 
If G (s) has no poles in the right-half s 

plane or on the imaginary axis (except at the 
origin), the Nyquist stability criterion sim­
plifies tot 

I G (jw) :< 1 when L G (jw) = -180" 

( 4-17) 

Examples. 
(a) Consider the function 

G (s) 
K 

(4-18) 
s(Ts + 1) 2 

For what range of K will 1 + G(s) have 
stable roots? 

tSymbol L denotes "angle" 

IMAGIHARY 
AXIS 

Fig. 4-2 locus of s for the Nyquist criterion. 

To simplify the calculation, change variables, 
letting/..= Ts. Then, 

G (A) 
KT (4-19) 

Plot (1/KT) G(A) on the complex plane for 
A = ju. Such a plot is sketched in Fig. 4-3. 
Since encirclements depend only upon the 
topology of the plot, the locus can be distorted 
to facilitate the counting of encirclements 
(Fig. 4-4). 

4-5 

r 
I 
I 
~ 

u <0 II 
I 

I 

IMAGINARY AXIS 

--.......... 

' ~ u=o 

jl 

\ 
\ 

\ REAL 
AXIS 

I 
I 

I 
I 

/ 
/ -- kiT G(.\) PLAHE 

Fig. 4-3 Locus of of for f.. = if.l.· 
A(A 1 )2 

K\ G(.\) PLANE 

1 
Fig. 4-4 Distortion of locus of 

h(h+1)2 • 
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It is convenient to arrange the pertinent 
information in tabular form as follows : 

LOCation of Nature of 
-1+j0 p N z Stability 

A 0 0 0 stable (Z = 0) 

B 0 2 2 unstable (Z # 0) 

c 0 1 1 unstable (Z # 0) 

The stable range of KT is determined from 
the table above and Eq. (4-17) as 

0 < KT < 2.0 

This expression is found by determining the 
range of KT which, when multiplying the 
(1/KT)G('A) locus, will keep the point 
- 1 +jOin region A. 

(b) Consider the function 

G(s)=KP±s) 
s(1- s) 

(4-20.) 

For what range of K will 1 + G(s) have 
stable roots? 

Location of Nature of 
- 1 + jO p N z Stability 

A 1 0 1 unstable 

B 1 -1 0 stable 

c 1 1 2 unstable 

Stable roots exist forK in the range 

-oo<K<-1 

These limits are found by determining the 
range of K which , when multiplying the 
(1/K) G(s) locus, will keep the -1 + jO point 
in region B. 

4-6 

IMAGINAR 
AXIS 

1 + jO I 

/ 
/ 

I 
/ 

REAL 
AXIS 

*G(s) PLANE 

Fig. 4-5 Locus of _!__ ( 1 + s). 
s 1- s 

IMAGINARY 
AXIS 

A 

tG(s) PLANE 

Fig. 4·6 Distortion of locus of .!.... ( 1 + s \ . 
s 1- s} 
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4-4 ROOT -LOCUS METHOD<",s> 

In the root-locus method, a plot is made of 
the locus of the roots of 1 + G (s) = 0 as a 
function of a gain factor of G ( s ). G ( s) must 
be known numerically in completely factored 
form. For nonunity feedback loops, one plots 
the roots of the equation 1 + G ( s) H ( s) = 0 
where G (s) is the forward transfer function 
and H ( s) is the feedback transfer function. 

If G ( s) is written in the form 

z 

n (s + sd 
G (s) = Ko :...::k=:...::l ___ _ 

IT (s + si) 

(4-21) 

i=l 

where Ko is varied from 0 to + oo, then the 
necessary condition for a point in the s plane 
to lie on the locus of the roots of 1 + G(s) = 
0, as Ko varies, is 

~A, -~A,= -180" (4-22) 

where 

~ A, = sum of the angles of the phasors 
from the zeros of G ( s) to the point 
in question 

~ A, = sum of the angles of the phasors 
from the poles of G ( s) to the point 
in question 

The value of the constant Ko that is as­
sociated with each root-locus point is found 
from the relation 

where 

n 1 Vpl 
n I Vz I 

(4-23) 

TI I V P I = product of the magnitudes of the 
phasors from the poles of G(s) 
to the root-locus point 

TI I v. I = product of the magnitudes of the 
phasors from the zeros of G (s) 
to the root-locus point 

The root-locus method can be used to reveal 
the position of the roots of 1 + G (s) = 0 
directly and to determine whether any of the 

roots can move into the right-half s plane as 
the constant Ko is varied. This method of sta­
bility determination is primarily a graphical 
one, particularly when determining the points 
in the s plane that satisfy the angle condition 
[Eq. (4-22)3. Although the angle condition 
determines the entire locus, it is still neces­
sary to find the actual points by a trial-and­
error procedure. That is, a point is guessed 
and the angle condition is checked; if the 
angle condition is not satisfied, another point 
is tried, etc. 

4-7 

To facilitate the plotting of the root locus, 
several theorems based on the angle condition 
[Eq. ( 4-22)] and the magnitude condition 
[Eq. (4-23)] have been established. These 
are: 

(a) The number of branches for a given 
locus equals the number of roots of 1 + G ( s) 
=0. 

(b) The locus starts (Ko = 0) at poles and 
ends (Ko = oo) at zeros. 

(c) The real-axis position of the locus al­
ways has an odd number of poles and zeros 
to the right of the s point for Ko > 0. 

(d) The breakaway from the real axis into 
the complex plane between two adjacent poles 
occurs at the point of maximum K 0 • 

(e) For two adjacent zeros, the locus en­
ters the real axis from the complex plane at 
the point of minimum K0 • 

(f) Near complex poles, the direction of 
the locus is given by 

where ~ A, is the sum of the angles of the 
phasors from all the other zeros to the com­
plex pole in question, and ~A, is the sum of 
the angles of the phasors from all the other 
poles to the complex pole in question. Near 
complex zeros, the direction of the locus is 
given by 

[-180° +~Ap -~A.]. 
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(g) The asymptotes of the locus for large 
values of 8 are given by a set of straight lines 
that intersect the real axis at angles 

180" ± 360°n A=----- (n=0,1,2, ... ) 
p-z 

(4-24) 

and whose intersection with the real axis IS 

given by the centroid of the pole-zero con­
figuration 

p • 

~ 8;- ~ 8k 
i=l k=l 

(4-25) p-z 

where 

p =number of poles 8i = jth pole 

z =number of zeros 

(h) The locus is symmetrical with respect 
to the real axis. 

These theorems may be verified for the va­
rious loci in Fig. 4-7, which presents examples 
of a wide variety of root loci for systems up to 
the fourth order. In this figure, T (p , x) in­
dicates a system with p poles and z zeros. 

As an example of a typical root-locus plot 
for a unity-feedback loop, consider the func­
tion 

K 
G(8) = f f 

8(8/wl 1) (8/w2 1) 

8(8 +wJ) (8 fw2) 

where w1 = 10 radjsec, w2 = 30 rad/sec, and 
the conditions are 

/8 + /8 + 10 + /8 + 30 = 180" 
(angle condition) 

I s II s + 10 II 8 + 30 I = 300 K 
(magnitude condition) 

The location of the poles of G ( 8) on the s 
plane is as shown in Fig. 4-8. 

The root locus coincides with the real axis 
lying between the pole at the origin and the 
pole at -10, as well as with the part of the 
real axis lying to the left of the pole at -30. 
The locus breaks away from the real axis at 

4-8 

some point between the pole at the origin and 
the pole at -10. To locate this breakaway 
point, either the technique described in theo­
rem (d) or, in this simple case, an analytical 
technique can be applied. 

Let -6 be the location of the breakaway 
point. With s = - 6, the magnitude condition 
becomes 

/('6) = 6(- 6 + 10)(- 6 + 30) = 300K 

The negative of the value of 6 which maximizes 
the left side of the equation above is the co­
ordinate of the breakaway point. Thus 

/('6) = '63- 406' + 3006 

/'('6) = 3'6~ - 806 + 300 = 0 

6 = 20.8, 6.3 

Only the smaller value of 6 satisfies the angle 
condition on the real axis. Therefore, the 
breakaway point is at - 6.3. The gain factor 
K at this point is obtained by substituting 
this value of 6 into the magnitude condition 
equation, i.e., 

300 K = 6.3(- 6.3 + 10) (- 6.3 + 30) 

K = 1.84 

The point on the branch of the locus to the 
left of the pole at -30, for this same value 
of gain K , is at -30.8. 

The asymptotes of the locus, for large 
values of s, intersect the real axis at angles 
given by the relation 

A= 180" ± 360" n 
p-z 

Since p = 3 and x = 0, the angles are 60" and 
-60° (or +120°). The real-axis intercept of 
the asymptotes is given by 

X 
- ~ 8;- ~ 8k 

0 - =---'------'=--"- = 
p-z 

= 13.3 

[O + 10 + 30] - [0] 
3-0 

A sketch of the data obtained so far is givC'n 
in Fig. 4-9. 
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At this point, it would seem necessary to 
apply the exploratory s-point method to de­
termine the rest of the locus. However, even 
before this is done, we can determine which 
of the asymptotes the locus approaches. In 
this particular case, we already know (from 
a Nyquist plot) that the function 1 + G (s) 
will have right-half-plane roots when the 
sensitivity is above a certain value. There­
fore , the two branches of the locus in the 
complex portion of the plane must head to­
ward the right-half plane as the gain factor 
K increases. Thus, the locus will cross the im­
aginary axis and go into the right-half plane. 
The points of imaginary-axis crossing are 
easy to find in this particular case because of 
the small number of poles involved in the 
configuration. 

Consider the geometric properties of Fig. 
4-10. At the crossing point, the angle condi­
tion requires that 

tan-1 We + tan-1 We + 90" = 180° 
Wt W2 

4-9 

Therefore 

or 

w,. = VWt w2 = y300 = 17.3 

At this point, the gain K is determined by 
the magnitude condition. Using this condi­
tion, it is found that K = 40. The correspond­
ing point on the branch to the left of the pole 
at -30 is at -40. 

The remainder of the locus can be sketched 
in, or a more accurate determination of the 
locus points can be made by the exploratory 
s-point method. Figure 4-11 is a sketch of the 
entire locus, with key points indicated. 
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CHAPTER 5 

GAIN DETERMINATION* 

5-1 PERFORMANCE CRITERIA AND DEFINITION5c3
'
6

) 

5-1.1 GENERAL 

Performance criteria are tests or rules by 
which one can determine, from the system 
parameters, whether or not the system has 
certain particular performance characteris­
tics. An important parameter used in the de­
sign of servo systems is the gain of the sys­
tem. The relations between gain and per­
formance specifications are usually expressed 
in terms of performance constants, such as 
the velocity constant, the acceleration con­
stant, and the torque'constant. Definitions of 
several imporant parameters and constants 
are given below. 

S-1.2 GAIN 

If G (s) is the transfer function of a com­
ponent, the gain K of the component is 

K = lim s±n G ( S) (5-1) 

where n is the order of the pole or zero of 
G (s) at the origin. The plus sign is used for 
a simple or multiple pole at the origin, and 
the minus sign is used for a simple or mul­
tiple zero at the origin. The gain K is easy to 
identify if G (s) is written in the form 

G(s) ::-:- K s+n [aksk + a"_,sk-1+ ... + 1] 
bjs' + b;_,sH + ... + 1 

(5-2) 

''By L.A. Gould 

5-1 

5-1.3 VELOCITY CONSTANT 

The velocity constant of a system is a meas­
ure of the steady-state error if the input to 
the system is a constant velocity. The velocity 
constant is defined by the relation 

where 

w; = constant input velocity 

E, = steady-state error 

(5-3) 

For a single-loop unity-feedback system (Fig. 
5-I) , the velocity constant is 

K,. =lim [s C(s)] =lim [s G(s)] (5-4) 
s-+0 E ( S ) 8-'>0 

An analysis of Eq. (5-4) shows that the 
velocity constant of a single-loop unity-feed­
bitch system is finite and nonzero only if the 
open-loop transfer function C ( s )/ E ( s) has 
exactly one single-order pole at the origin 
(one integration). 

5-1.4 ACCELERATION CONSTANT 

The acceleration constant of a system IS 

defined by the relation 

where 

a ; = constant input acceleration 

E_,_, = steady-state error 

(5-5) 
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For a single-loop unity-feedback system 
(Fig. 5-1) , the acceleration constant is 

KA =lim [s 2 C(s)J =lim [s~G(s)] (5-6) 
,.""" o E ( s) """" o 

An analysis of Eq. (5-6) shows that the ac­
celeration constant of a single-loop unity­
feedback system is finite and nonzero only 
if the open-loop transfer function C (sYE (s) 
has exactly one double-order pole at the or­
igin (two integrations). 

5-1.5 TORQUE CONSTANT 

The torque constant of a system is defined 
by the relation 

where 

T 1, = constant load torque 

E, = steady-state error 

5·1.6 STATIC ACCURACY 

(5-7) 

The static accuracy of a linear system is 
measured by the steady-state error that is 
developed for a specified steady-state input 
or disturbance. A steady-state input in this 
context means that the input is a constant 
position, a constant velocity, a constant ac­
celeration, etc. A steady-state disturbance 
means that the disturbance is a constant. 
The performance constants defined previ­
ously will uniquely determine these steady­
state errors, as may be seen from the defini­
tions of the constants . 

5-1.7 BANDWIDTH 

In general, the bandwidth of a servo system 
refers to a frequency interval between 0 and 
some upper frequency . There is no universal­
ly accepted definition of the upper frequency . 

4 G(s) 

--------------------

Fig. 5-1 Single-loop unity-feedback system. 

Several commonly used upper-frequency val­
ues for unity-feedback systems (Fig. 5-l) 
are given below: 

(a) Wn, resonant frequency -frequency 
at which the closed-loop frequency response 
C(jw)/R(J"w) has its peak magnitude MP 
(Fig. 5-2). 

(b) <oa -frequency at which the magni­
tude of the closed-loop frequency response 
C(jw) / R (jw) is unity (Fig. 5-2). 

(c) wb- frequency at which the magni­
tude of the closed-loop frequency response 
C (jw) jR (jw) is 0. 707 (Fig. 5-2). 

(d) Hl11 -frequency at which the phase of 
the closed-loop frequency response is -90" 
(Fig. 5-3). 

(e) w. -frequency at which the magni­
tude of the error-to-input frequency response 
E(jw)/R(J"w) is 0.1 (Fig. 5-4). 

(f) CO em• magnitude crossover frequency -
frequency at which the magnitude of the 
open-loop frequency response C(J"co) / E(jw) 
is unity (Fig. 5-5). 

M, 

1.0 1----...t!": 
I 

I I .~,.~ 0.707 
vo.: ---- - ------.- -,-

5-2 

0 

1 I 
I I 
t I 
I I 
I 

Fig. 5·2 Bandwidth measures from magnitude of 

closed-loop frequency response CG(J))/R(iw). 

0 

l jl 
~ 

..... -90° 

Fig. 5·3 Bandwidth measure from phase of 
closed-loop frequency response C(jw)/ R(jw). 
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(g) we, asymptote crossover frequency -
frequency atwhich the -lOdgjdec asymptote 
of the open-loop frequency response C (jw) I 
E (jw) crosses 0 dg (Fig . 5-5; see Par. 5-3 for 
terminology). 

5·1.8 PEAK MAGNITUDE 

The peak magnitude M, is defined as the 
maximum value of the magnitude of the 
closed-loop frequency response C (iw) /R (iw) 
or the magnitude of the resonant peak of the 
response (see Fig. 5-2). 

The value of M P is used as a measure of the 
degree of stability, and design in the fre­
quency domain usually involves adjusting a 
gain K so as to satisfy a specified value of MP. 
Large values of MP are indicative of highly 
oscillatory behavior, whereas values of M 9 

less than unity are indicative of heavily 
damped behavior. In practice, MP usually lies 
between 1.3 and 1.6; that is, the range of MP 
is usually specified as follows : 

(5-8) 

or 

1 dg < 10 log10 MP < 2 dg (5-9) 

1.0 

OJ 

.. -
Fig. 5-4 Bandwidth measure from magnitude of 

error-to-input frequency response E(jw)/ R(jw). 

ASYMPTOTE 

TRUE CURVE 

Fig. 5-5 Bandwidth measures from open-loop 
frequency response. 

5-2 POLAR-PLANE REPRESENTATION<1
'
2

'
9

'
12

> 

5·2.1 GENERAL 

A polar-plane representation of the open­
loop frequency response C (jw) I E (jw) is 
often used in the process of carry ing out a 
design in the frequency domain. A plot of 
C(iw) / E(iw) in polar coordinates makes it 
easier to apply the Ny quist stability criterion 
to determine gain setting ranges for stable 
operation. In addition, the determination of 
gain for a specified MP value involves only a 
simple graphical construction on the polar 
plane (see Par. 5-4). Plots of both the direct 
function and its inverse are used, wherein 
only positive frequencies are usually con­
sidered. 

5-3 

5·2.2 DIRECT POLAR PLANE 

A direct polar-plane plot of the function 
G(jw) is constructed by drawing a curve 
through the points whose polar coordinates 
at each frequency are the magnitude of G(jw) 
and the phase angle of G(fw) at that fre­
quency, where the phase angle of G (jw) is 
the phase of c(t) minus the phase of e(t) 
when e ( t) and c ( t) are sinusoids . Positive 
angles are plotted in a counterclockwise direc­
tion. Increasing the gain associated with 
G(jw) expands the polar locus in a radial 
direction. If G(jw) is cascaded with another 
transfer function , the resulting polar coord­
inates of the combination are obtained- at 
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each frequency by: ( 1) multiplying the mag­
nitude of G(jro) by the magnitude of the cas­
caded function to give the magnitude of the 
combination; and (2) adding the phase angle 
of the cascaded function to the phase angle of 
.G(jro) to give the phase angle of the com­
bination. 

5-2.3 INVERSE POLAR PLANE 

An inverse polar-plane plot of a function is 
a plot of the reciprocal of the function on the 
polar plane. The reciprocal or inverse of 
G (jro) is written as follows: 

G-1 (jro) = _1_ 
G(jw) 

(5-10) 

The polar coordinates of G-1 (jro) at each fre­
quency are given by : (1) the reciprocal of the 
magnitude of G(jro) ; and (2) the negative of 
the phase angle of G (jw) . Increasing the gain 
of G (jw) shrinks the inverse locus in the 
radial direction. If G (jro) is cascaded with 
another transfer function, the resulting polar 
coordinates of the inverse of the combination 
are obtained at each frequency by: (1) multi­
plying the magnitude of the inverse G (jw) 
locus by the inverse of the magnitude of the 
cascaded function to give the magnitude of 
the inverse of the combination; and (2) add­
ing the negative of the phase angle of the 
cascaded function to the phase of the inverse 
G(jw) locus to give the phase angle of the in­
verse of the combination. 

Example . Plots of the direct function 

G (jro) = 1 
(5-11) 

jw [ (jw) 2 + 0.6jro + 1] 
andamultipleofitsinverse3G-1 (J'ro) appear 
in Fig. 5-6 . 

150° 
210° 

170° 
190° 

1800 
tao• 
190° 
170° 

210° 
1500 

1:30• 120• 110• 100• 90• 80" 70• 
2:30• 240• 250• 260" 270• 280" 2900 

Fig. 5-6 Dired and inverse polar plots of 

G(jw) 
jw[(jw)2 + 0.6jw + 1] · 

60° 
3008 

5-3 EXACT AND ASYMPTOTIC-LOGARITHMIC REPRESENTA110NS(s.9
•
13

> 

5-3.1 GENERAL 

The logarithmic method of representing a 
function is a more convenient way to present 
frequency-response information than the 
polar-plane method. The advantage of the 
logarithmic procedure is that magnitude 
multiplication for cascaded functions reduces 
to the simple addition of logarithms. Further-

5-4 

more, the magnitudes of the frrst- and second­
order factors of transfer functions can readily 
be approximated by straight-line asymptotes 
when the functions are plotted to a logarith­
mic scale. Such asymptotic approximations 
reduce the time taken up by calculation and , 
in addition, enable the designer to make a 
rough estimate of system performance, when 
this is necessary. 
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5·3.2 SEPARAlE MAGNITUDE AND 
PHASE PLOTS 

The separate magnitude and phase-angle 
plots for a transfer function G (jw) are re­
spectively: (1) plots of 10 log1o 'G (jw) I ver­
sus log w ; and ( 2) plots of Ang G ( jw) versus 
log w. The unit of logarithmic magnitude used 
in these plots is called the decilog, abbreviated 
dg. The magnitude of a number N in decilogs 
is 10 log 10N. For convenience in plotting, 
semilog graph paper is generally used. To plot 
a transfer function G (jw) that is already in 
factored form , several aids (to be discussed 
below) are available which simplify the pro­
cedure. Before discussing these aids , however, 
it is helpful to point out the general types of 
factors that may appear in any rational alge­
braic function. Consider a function G (jw) 
whose factored form can be written as follows : 

G(jw) =K (jw)±n 

(T1jw + 1) [(j ~)
2 + 2 ~ 1 j ~+ 1 ] . 

Wnl Wn l 

(T2jw + 1)[(j ~)2 + 2 ~ d ~+ 1 ] . w,.. w,.. 
(5-12) 

Only three general types of algebraic factors 
appear in Eq. (5-12). 
The three factor types , which may occur in 
any rational function, are the following : 

(jw) ±n (differentiation or integration) 

(5-13) 
2 0 dg 

I Odg 

-

(Tjw + 1) (first order) (5-14) 

[j (:r+2,j :,. + 1] (second order) 

(5-15) 

5-3.3 MAGNITUDE CURVES 

The magnitude curve of the quantity 
(j(J)) ±n is a straight line passing through 0 dg 
at w = 1 with a slope equal to ±10 n dg/ 
decade. 

The magnitude of the first-order factor 
( Tjw + 1 f=1 can be approximated by two 
straight lines. For To < <1, the asymptote is 
the 0-dg line. For Tw> > 1, the asymptote is a 
line with a slope of ±10 dg/decade that 
crosses Odg at Tw = 1. The frequency 
wb = l/T is called the break frequency of the 
factor. The true magnitude curve can be ob­
tained from the asymptotes by applying the 
two rules-of-thumb : 

(a) At tht break frequency, the true 
curve is 1.5 dg above (or below) the asymp­
totes . 

{b) At an octave above and below the 
break frequency, the true curve lies 0.5 dg 
above (or below) the asymptotes . 

The asymptotes and the true magnitude 
curves for a first-order factor are shown in 
Fig. 5-7. Note in this figure that the magni­
tude curve of (Tjw=1) -1 is the mirror 
image of the magnitude curve of (Tjw + 1) 
about the 0-dg line. 

........ 
...-1-' -

I I ....--...-~ 
~ 1- -~-f- + 10 dg/dec ASYMPTOTE 

"' 0 .... 
u 
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.... 
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w 
a 
:::> 

0 dg 

!::: -I Odg 
z 
C) ... 
::E 

-20dg 
0.1 0 .2 

I I ::::;....-

~ 
10 log 10 IT(ic:.+ 1)" 11 ....... ~ -...... 

0.5 2 

Tw ~ 

r-- .... 

------ ' r-1 r-t-1'"-t--

5 10 20 50 

Fig. 5-7 Asymptotes and true magnitude curves for the first-order factor (Tj(J) + 1)+'. 
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The magnitude of the second-order factor 

can be approximated by two straight-line 
asymptotes . For w< <wn, the asymptote is the 
0-dg line. For w> >wn, the asy mptote is a 
straight line with a slope of t 2 0 dg/decade 
crossing the 0-dg line at the break frequency , 
wh = Wn· A set of second-order magnitude 
curves is shown in Fig. 5-8 for different val­
ues of the damping ratio ~- Not that the ap­
proximation is best for~= 0.5 . 

5-3.4 PHASE-ANGLE CURVES 

The phase angle of the factor (jw) ±n is a 
constant equal to ± 90n °. The phase-angle 
curves of the first-order factor (Tjw + 1) ±l 

are shown in Fig . 5-9. Note that each curve 
is symmetrical about the point on the curve 

at which w = 1/T. The phase-angle curves of 
the second-order factor 

[ ( j ~Y+ 2 ~ j ~:- +1 J 

are shown in Fig . 5-10 for different values 
of the damping ratio ~-

To plot the separate magnitude and phase­
angle curves for a factored transfer function , 
separate plots are first made of the magni­
tude and phase-angle curves of each factor. 
In doing this , care must be taken to distin­
guish between numerator and denominatur 
factors . Next, all the magnitudes are added 
at each frequency to obtain the composite 
magnitude curve. Similarly, all the phase 
angles are added at each frequency to obtain 
the composite phase-angle curve . It is im­
portant to note that the factors must be in 
the standard fonns given in Eqs. (5-8), (5-9), 

u-t-' 

~II 
J"'+l) 

/ 
~-""" POINT OF SYMMETRY 

..... 
+4:1" 

IX 

v ....... 0 ... 
u 
<( -----IL 
IL 
0 
w o• 

----- ........ 

i"-r-.... 

..J 
1-' 
z 
<( 

w 
"' <( 
:: 

"r-- .... 
D.. 

-45" 
~ (Tj.,+l)"l 

'-..... 
"' -~ ~ ... ...... 

o.1 0.2 0.5 2 5 10 20 50 100 
T.,_ 

Fig. 5-9 Phase-angle curves for the first-order fador (Tjw + 1 )± 1• 
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and (5-10) if the curves of Figs. 5-7 to 5-10 
are to be used. The effect of the gain K can 
be incorporated by merely adding 10 logH,K 
to the magnitude scale of the composite mag­
nitude curve. 

Example. The separate factors and com­
posite curves for the function 

K 

e 
/;1 
IL 
0 
w 
..J 
Cl 
ill 

~ 
:z: 
n 

180° 
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120' 

90 . 
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~ 
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v v 
/ / v v v 

v ~ ~ ~ E::::= 

I I 
,; ~ 0.10 
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(- 0.15 r-..1'--. 
' -0.20 -I'-
,; ~ o.is --. . 
( e O.JO ......"" 

ll v v v I 
v 

~~ v 
v [/, rli 

~ ~ vv 
t? t/ [/ 
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G (jw) = K ---:--t-~( 0:..:.::.2?r;j~w_+___;!...1 )L------: 

uw> f(i ;of+ o.6 i ~ + 1 1 
(5-16) 

where K = 6.5 are plotted in Figs. 5-11 and 
5-12. 
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I~ 

fig . 5-7 0 Phase-angle curves for the second-order factor [( i ~)~ + 2 t; i ~+ 1]. 
(Un W,. 

5-8 



+28.1 dg 

+18.1 dg 

+90" 

o• 

-90• 

-ISO• 

0.1 

---r-.. --r--r- JO.lj.,+I J 

---.. 
JjOJI•l 

t""' 

0 . 1 0.2 2 5 .. __ 

Ill 
I I I II U I 

~ 2 J' f it + 0.6 j fk- + 1 

I 
I --~ -'r 

""" 
r- TRUE CURVE 

JG(jO>)J 

,::.J ......... 
~ ~ ' "" ' 

.... !'-~ 
''-. 

COMPOSITE 
ASYMPTOTE 

I I I II 

II 

+20dg 

+IOdg 

o dv j!: 

."' ... -...I ... 
-IOd, ~ 

-20dt 

10 20 50 100 

[0.2 jw + 1] 
Fig. s-n Magnitude plots far G(jw) = K ---.~.....o......,..-;i'---....::....-----=-

jw [( i ~0 r + 0.6 i 4h + 1] 

------i-""' 
..-1-"~-" L (0.2 i.,+l) -____...... ~ 

-r- r-.... ..... 
r--.r\ 

r-~ i\ 
~ 2 r L G(j "') 

" '(L 0 ~J + 0.6 j i%' + 1 

"" "" ::::--
0.2 0.5 2 5 10 20 50 ., ___ 

(0.2jw + 1) 
Fig. 5-72 Angle plots far G(joo) = K -----;:-;-____;,-;-;';------=---~ 

;w [ ( i :) 
2 

+ 0.6 i ~ + 1] 
5-9 

100 



THEORY 

5·3.5 GAIN-PHASE PLANE 

To facilitate design, a third method for 
representing frequency functions may be 
used. In this method, the magnitude and 
phase angle of a frequency function are plot­
ted on a coordinate system called the gain­
phase plane. The magnitude is plotted to a 
logarithmic scale (in decilogs) and the phase 
angle is plotted to a linear scale. Frequency 
is the parameter for the gain-phase plot. The 
gain-phase plot can be determined directly 
from the frequency function by calculating 
the magnitude (in dg) and phase angle of 
the function at various frequencies. Alterna­
tively, the gain-phase plot can be determined 
through the intermediate use of the separate 
magnitude and phase-angle plots when the 
function to be plotted is in factored form. 
The gain-phase plot is most useful for de­
termining the closed-loop response of a sys­
tem from the open-loop response (see Pars . 
5-4 and 5-5). 

Example . The function 

G( . )-
6

- (0.2jw+1) 
JW - .~ 2 

(jw) [( j ;~) + 0.6j(:o + 1 1 
(5-17) 

is plotted on the gain-phase plane in Fig . 5-13. 
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5-4 CLOSE.D-LOOP RESPCI'-JSE DETERMINATION<4
•
5

•
9

•
12

•
13

•
14

> 

5-4.1 GENERAL 

The relations that exist between the closed­
and open-loop responses of a unity-feedback 
system can be obtained by considering the 
diagram in Fig. 5-l. In this diagram , it is 
clear that the open-loop responses is given by 

C(jw) = G( "w) 
E(jw) 

1 
(5-18) 

The closed-loop response function W(jw) is 
defined as follows: 

C(jw) 6 W( "w) 
R(jw) = 1 

(5-19) 

Now, E (jw) = R (jw) -C (jw) . Substituting 
this expression for E(jw) into Eq. (5-18) 
rearranging terms, and using the definitio~ 
in Eq. (5-19), it is found that 

W ( · ) G-\-tl(..i"""'w),__ 
JW = -1 + G (jw) (5-20) 

The transformation from the G plane to 
the W plane defined by Eq . (5-20) is used to 

determine the closed-loop response W (jw) 
from the corresponamg open-loop response 
G (fw ). Although a direct calculation of the 
W function is possible, this is often avoided 

5-10 
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because it usually proves to be tedious. In­
stead, various aids for performing the 
G-to-W plane transformation are used. These 
are presented next. 

5·4.2 POLAR-PLANE TECHNIQUE 

In the polar-plane technique, a "vector" 
construction on the G plane is used to deter­
mine both the magnitude and phase angle of 
W. As an illustration, consider the G func­
tion sketched in Fig . 5-14. In this figure , 
once the -1 + jO point is located, the follow­
ing "vector" relations hold : 

OB=G 

VA=-l 

OB-0A=AB=1 +G 

(5-21) 

(5-22) 

(5-23) 

Then, the closed-loop response at each fre­
quE;ncy can be determined from the construc­
tion of Fig . 5-14 as follows :t 

IW("w) l = lOBI 3 
IABI 

L W(jw)= L ABO=</> 

tSymbol L denotes "angle" 

loo (G) 

Re (G) 

G PLANE 

(5-24) 

(5-25) 

Fig. 5-J 4 Closed-loop response construction on 

the G plane. 

6-11 

The inverse G-plane construction for th e 
closed-loop response is shown in Fig. 5-15. In 
this figure, the following "vector" relations 
hold: 

OB= G-1 

OA= -1 

AO + OB= AB= 1 +G-1 

(5-26) 

(5-27) 

(5-28) 

The closed-loop response can be determined 
from the following relations : 

IW("w)l = IAOI 3 
IABI 

L W(jw)= L OAB = </> 

(5-29) 

(5-30) 

To avoid "vector" constructions, constant 
magnitude and constant phase-angle con­
tours that correspond to the G-to-W trans­
formation of Eq. (5-20) are often used. The 
following definitions apply : 

M= jW(jw)l 

</> = L W(jw) 

N=tan </> 

(5-31) 

(5-32) 

(5-33) 

The transformation given in Eq. (5-20) 
can be used to map contours of constant M 
and constant N onto the G plane. The M con­
tours appear as a set of bipolar circles as 

Fig. 5-J 5 Closed-loop response construction on the 
G- 1 plane. 
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shown in Fig. 5-16. The contours of constant 
Nor 4> are shown in Fig. 5-17. 

To represent the constant M and </> con­
tours in the G-1 plane, Eq. (5-20) is used. 
TheM contours are a set of concentric circles 
and the q, contours are a set of straight lines. 
The M and </> contours for the G-1 plane are 
shown in Fig. 5-18. 

The properties of theM and 4> contours are 
listed in Table 5-1. 

TheM and q, contours are the lines or curves 
of constantM and constant</> as they appear in 
the G or G- 1 planes. By constructing a chart 
of M and ¢ circles for the G or G- 1 planes , one 
has the coordinate system of the W plane rep­
resented by circles and lines in the G or G-' 
plane. The closed-loop magnitude M and 

phase angle ¢ can be obtained directly from 
the G function by constructing the G func­
tion (or the G-1 function) on a chart of con­
stant M and + contours. At each frequency, 
the value of theM contour that intersects the 
G (or G-1

) function is the value of the mag­
nitude of the closed-loop response W. Simi­
larly, the value of the 4> contour that intersects 
the G (or G-1 ) function at a given frequency 
is the value of the phase angle of the closed­
loop response W. 

The M and 4> contours aid greatly in per­
forming the transformation from open- to 
closed-loop frequency response and are used 
to facilitate the design of a system when the 
shape of the G function is to be altered so as 
to improve performance. 

TABLE 5-1 PROPERTIES OF M AND q, CONTOURS 

y = lm(G) 

x=Re(G) 

G Plane 

M contours 

( 
M2 )2 M2 

y2 + X + M2 -1 = (M2 -1) 2 

center: ( 
M2 ) 

- M2-1 '0 

radius: IM~~ll 
. . . M 
mtercept nearest ongm : -

M+l 

N contours 

N =tan+ 

(x+0.5) 2 + (Y- -~-)~_l_(N
2

+ 1 ) 
2N 4 N2 

center: (- "T" , -rj 
2 2N 

"'. y!N 2 + 1 radiP.'\: 
2 N 

5-12 

y = /m(G-1 ) 

x = Re (G-1 ) 

G-1 Plane 

M contours 

(1 + x)" = -
1
-

M2 

center: ( -1, 0) 

radius: 
1 

M 

1-M 
intercept nearest origin : 

M 

N contours 

N =tar 4> 

"--r tvx +N = 0 

Note ; N contours are a family of radia 
lines emanating from the center of th, 
M circles 
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fig. 5-16 Contours of constant M in the G plane. 

¢POSITIVE 

<!> HEG.t.TIVE 

G PLANE 

LOCUS OF 
CENTERS -0,5 

Fig. 5-17 ContoUTS of constant phase in the 

G plane. 

~NCOHTOUR 

/ LOCU$ OF M _} 
CONTOURS <;·1 PLANE 

fig. 5-18 Contours of constant M and constant 

</> in the c-• plane. 

5-4.3 GAIN-PHASE PLANE TECHNIQUE 
(NICHOLS CHART) 

Since constructions on the gain-phase 
plane involving cascaded functions and gain 
alterations are usually simpler than similar 
constructions on the polar plane, a chart of 
constant M and </> contours has been con­
structed for the gain-phase plane. This chart 
is called the Nichols chart and is shown in 
Figs. 5-19 and 5-20. Figure 5-19 presents a 

"' " 0 .... 

PHASE ANGLE IN OEGREES 

E ~~~~~~~~~~~~~~~+-
o 

-360 -270 -180 -90 0 

Fig. 5-19 Chart showing symmetry of M-N contours 

about phase of 180 degrees (Nichols Chart). 

Reprinted with permiss ion fr om Principles of Servomechanisms. 
b,· D. P. Camphell. Cop,·right. J94R. J ohn Wiley & So ns, Inc. 
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Fig. 5-20 Nichols chart. 
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large-scale view of the Nichols chart and Fig. 
5-20 presents only that part of the Nichols 
chart that is most useful for design purposes. 

The Nichols chart is used in the same way 
that the M-N contours are used on the polar 
plane. The G function is plotted on the 
Nichols chart. The value of the M contour 
that intersects the G function at a given fre­
quency is the value of the magnitude of the 
closed-loop response W at that frequency . 
Similarly, the intersection of the G function 
with the 4> contours determines the phase 
angle of the closed-loop response W as a 
function of frequency. 

54.4 NONUNITY·FEEDBACK SYSTEMS 

If the closed-loop response of a nonunity­
feedback system is sought, a slight modifica­
tion of the procedure used for the unity­
feedback system will enable the designer to 
use the Nichols chart and the polar M-N 
contours as well. 

The closed-loop response of the nonunity­
feedback system (Fig. 5-21) can be written as 
follows: 

C(jw) 

R(jw) 

1 
H(jw) [ 

G(jw) H(jw) 1 
1 + G(jw) H(jw) 

(5-34) 

Since the bracketed portion of the right-hand 
side of Eq. (5-34) has the same form as the 
right-hand side of Eq. (5-20), the Nichols 
chart (or the polar M-N contours) can be 
used to find GHj ( 1 + GH) from a plot of 
G (joo) H (jw). The closed-loop response 
C(jw)jR(jw) can then be found by multi­
plying GH/(1 +GH)by H-1 at each fre-
quency. 

R 

+ 

Fig. 5-27 Nonunity-feedback system. 

5-5 SETTING THE GAl N FOR A SPECIFIED M <
4

•
5

•
9

•
12

•
13

•
14

> p 

5·5.1 GENERAL 

A primary problem encountered in servo 
system design is the determination of the 
loop gain K required to produce a specified 
degree of stability. For a unity-feedback sys­
tem (Fig. 5-l) , the stability of the system is 
determined by the location of the G (iw) locus 
with respect to the point -1 + jO (see Ny­
quist criterion, Par. 4-3). For a nonunity­
feedback system (Fig. 5-21), however, the 
stability of the system is determined by the 
location of the G (jw) H (jw) locus with re­
spect to the point -1 + jO. One analytical 
approach can serve for both types of sys­
tems if it is noted that , by redrawing Fig . 
5-21, the study of the stability of a nonunity­
feedback system can be expressed in terms 

5-15 

of the stability of a unity-feedback system 
cascaded with another transfer function 
(Fig. 5-22). Thus, the discussion of stabil­
ity can be limited to unity-feedback systems. 

A system is said to have a low degree of 
stability if the normal mode of response is 
highly oscillatory. Such a system is also said 

c 

Fig. 5-22 System equivalent to the system of 

Fig. 5-21. 
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to have a low relative stability. The degree 
of stability of a stable unity-feedback sys­
tem can be measured by the closeness of ap­
proach of the G (jw) locus to the point 
-1 +iO. An examination of the polar M con­
tours (Figs. 5-16 and 5-18) or the Nichols 
chart (Fig . 5-20) shows that, the larger the 
value of M , the more closely the G(jw) con­
tour approaches the point -1 +jO. The peak 
magnitude of the closed-loop response W (jw) 
is called M 11• By limiting this peak value, the 
degree of stability of a system can be main­
tained within a specified bound. 

If G(jw) is specified, except for a factor K, 
the degree of stability of the closed-loop re­
sponse W (jw) corresponding to this G(jw) 
can be changed by adjusting the value of K. 
If the degree of stability as measured by MP 
is specified, K is uniquely determined. The 
determination of K for a specified M P is usu­
ally accomplished by a graphical construction 
in the polar or gain-phase plane . 

5-5.2 POLAR-PLANE CONSTRUCTION 

The polar-plane construction required to 
determine K [the gain of G (joj for a speci­
fied M, is shown in Fig. 5-23 for the GIK 
plane and Fig. 5-24 for the KG-1 plane. 

*­
I 

G{jtu) 

T 

''" (t) 

f PLANE 

Fig. 5-23 Construction for gain determination on 

direct (G/ K) plane. 
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The procedure used for a construction on 
the direct, or G/K, plane (Fig. 5-23) is as 
follows: 

(a) G (jw) is plotted as a function of w. 
K 

(b) A straight line is drawn from the 
origin, making an angle 'ljl with the real axis, 
where 

'ljl = sin-1 
( ~J 

This line is called the 'I' line. 

(c) A circle with center on the real axis is 
constructed, tangent to the 'ljl line and the 
G (j(J)) I K locus. 

(d) A line is drawn from the point of 
tangency of the 'ljl line with the circle (point 
b in Fig. 5-23) normal to the real axis. 

(e) The value of Re(G/K) at the point of 
intersection of the normal with the real axis 
(point a in Fig. 5-23) is the reciprocal of the 
gain K which must multiply G(jw)/K to pro­
duce the specified M p· 

(f) The angulsr frequency at the point of 
tangency of the G (jw) /K locus with the circle 
is the resonant frequency of the closed-loop 
system having the specified M 11 (wu in Fig. 
5-23). 

KG-1 PLANE 

Fig. 5-24 Construction for gain determination on 

inverse (KG-') plane. 



The procedure used for a construction on 
the inverse, or KG-t, plane (Fig. 5-24) is as 
follows: 

(a) KG-1 {jw) is plotted as a function of w. 
(b) A straight line (1V line) is drawn from 

the origin, forming an angle 1V with the real 
axis , where 

1V = sin-1 ( ~J 
(c) A circle with center on the real axis is 

constructed, tangent to the KG-1 locus and 
the 1V line. 

(d) The center of the circle is the point 
-K+jO. Thus, the coordinate of the center of 
the circle on the real axis is the value of K 
used to multiply G(J'w) to produce the desired 
Mp. 

(e) The angular frequency at the point of 
tangency of the circle with the KG-1 {jw) 

locus is the resonant frequency of the closed­
loop sy stem having the specified M, ( wR in 
Fig. 5-24). 

Example . A unity-feedback system has the 
following open-loop frequency response : 

G{jw} = K 
jw [(jw) 2 + 0.6]'m + 1] 

(5-35) 

Find K and wn forM, = l.6. 

Solution. 

(a) Direct-plane procedure : 

( 1) The G (J'w) l · l d K ocus 1s p otte (Fig. 

5-25). 

(2) The ~· line 1s drawn with 'ljJ = sin-1 

(_I ) = 38.7°. 
1.6 

2200 
140• 

230• 240• 2500 260" 270" 280° 290• 3000 310• 
so• 

3200 
40" 13o• 120• 11 o• 100" 90• so• 100 6o• 

Fig. 5-25 Direct-plane determination of K for M11 = 1.6, G(jw) = +K + 
jw[(jw) 2 0.6jw 1] 
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15D-
210" 

220' 
140• 

230• 
130• 

240" 250" 260• 27D- 280• 2900 300• 
r zo• 11o- 100• 90• so• 70• 6o• 

310• 
50" 

320° 
400 

K 
Fig. 5-26 Inverse-plane determination of K for Mr. = 1.6, G(j<o) = ----+r----

jro [(j<o)2 0.6 jro + 1] 

( 3) The circle with center on the real axis 
tangent to the G(jro} /K locus and the "ljJ line: 
is constructed. 

(4) A line is drawn from point b perpendi­
cular to the real axis , intersecting the real 
axis at the point -2.78+j0 (point a). 

1 
(5) Thus, K = 2. 78, or K = 0.36. 

( 6) The resonant frequency is ron = 0.94 
rad/sec. 

(b) Inverse-plane procedure : 
(1) The locus of 3KG-1 (jro) IS plotted 

(Fig . 5-26). 
(2) The 'ljl line for Mp = 1.6 ("\ll = 38. 7") 

is drawn . 
(3) The tangent circle is constructed. 
(4) The center of the tangent circle is at 

1.08+j0 (point a). 
(5) Thus , 3K = 1.08, or K = 0.36. 
( 6) The resonant frequency is ron 0.94 

rad/sec. 

5·5,3 GAIN-PHASE PLANE CONSTRUCTION 

The construction required to determine the 
gain K for a specified MP is simpler when the 
gain-phase plane rather than the polar plane 
is employed. In the gain-phase plane construc­
tion, changing the gain merely moves the 
G (jro) locus in a vertical direction without 
changing the phase angle. The gain-phase 
plane construction is carried out as follows 
(Fig. 5-27) : 

(a) The G(jro) /K locus is drawn on the 
gain-phase plane. 

( b) The G(jro)/K locus is placed over the 
Nichols chart or, more specifically, a plot of 
the desired MP contour is made on the gain­
phase plane . The two coordinate systems are 
then aligned so that angles coincide. 

(c) The G(jro} /K locus is moved up (or 
down) until it is tangent to the specified MP 
contour. 

6-18 



GAIN DETERMINATION 

(d) The intersection of the 0-dg line of the 
M, contour with the G(jm) /K magnitude 
scale gives the value of 10 log1o K, where K 
is the value of the gain by which G (jm) /K 
must be multiplied to produce the specified 
M1'. 

(e) The angular frequency at the point of 
tangency oftheM, contour with the G(jm)/K 
locus determines the resonant frequency of 
the closed-loop system having the specifiedMP. 

Example. A unity-feedback system has the 
open-loop frequency response 

G(jm) = K (0.2jw + 1) (5-36) 

jw[ ( j 1~ r + 0.6 j ~ + 1 ] 

Find K and mR forM, = 1.5. 

Solution. 

(a) TheG~m) locusis plotted (Fig . 5-28). 

(b) The G(jm) /K locus is placed over the 
M, = 1.5contour, the phase-angle coordinates 

Fig. 5-27 Construction for gain determination on 

gain-phase plane. 

are aligned, and the locus is moved vertically 
until tangency occurs . 

(c) The point of tangency occurs at ms = 
12rad/sec. 

(d) The intersection of the 0-dg line.of the 
MJJ contour with the magnitude scale of 
G (jw) I K yields 

-10 log10 K = -4.15 dg, or K = 2.6 

+JO~g 

t 
~I" ' 
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-· M, • 1.5 CONTOUR 
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K 

Fig. 5-28 Gain-phase plane determination of 

K for Mp = 1.5, 

G(jw) = K (0.2 jw + 1) 

jw [ ( j ~ ) 
2 

+ 0.6 i ~ + 1 ] 
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5-6 APPROXIMATE PROCEDURES(4
'
5

'
9

' 

6-6.1 PHASE MARGIN AND GAIN MARGIN 

The peak magnitude of the closed-loop re­
sponse is not the only measure of the degree 
of stability that is commonly used. More 
direct, but less reliable, descriptions of the 
approach of the G (jw) locus to the point 
-l+jO are available. These measures of the 
degree of stability are called phase margin 
and gain margin. 

5-6.2 Phase Margin (Fig. 5-29) 

The phase margin (p.m.) of the open-loop 
function G(jw) of a unity-feedback system 
equals (180° + L G (jw)] at the frequency 
for which the magnitude of G (fw) is unity. 

5-6.3 Gain Margin (Fig. 5-29) 

The gain margin (g.m.) of the open-loop 
function G (jw) of a unity-feedback system is 
the reciprocal of the magnitude of G(jrD) at 
the frequency for which the angle of G (jw) 
is -180°. 

The primary advantage of the use of the 
phase margin or the gain margin as a meas­
ure of the degree of stability is that calcula­
tions may be made directly on the separate 
magnitude and phase-angle plots. 

C(Jw) C PLANE 

A. POLAR PLANE 

In practice, the phase margin is used more 
widely than the gain margin as a degree-of­
stability criterion, while the gain margin that 
results when the phase margin is specified is 
used as a measure of the goodness of perform­
ance. A system with a low gain margin is 
considered to have a poor performance. 

The usual ranges of phase margin and gain 
margin for which performance will probably 
be satisfactory are the following: 

30" < p.m. < 60" 

2.5 < g.m. < 10 

(5-37) 

(5-38) 

When the phase margin is used as a degree­
of-stability criterion for setting the gain K of 
a unity-feedback system, the procedure is 
developed directly from the definition of 
phase margin as follows: 

(a) The separate amplitude and phase 
plots (or the gain-phase plot) of G (jw) jK 
are constructed. 

(b) The frequency at which 

!.. G (jw) - - 180o + K - p.m. (5-39) 

is determined. 

-180• -90• 

B. GAIN-PHASE PLANE 

Fig. 5-29 Phase margin and gain margin. 
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(c) At this frequency, '.G (jw) /K is deter­
mined. 

(d) At this frequency, K is chosen such 
that 

jG(jw)j =1 (5-40) 

Note that, if only a rough approximation is 
desired, the asymptotic magnitude curve may 
be used rather than the true magnitude curve. 

Example. 
The function plotted in Figs. 5-12 and 5-13 

is the open-loop function of a unity-feedback 
system. The phase margin of the system is to 
be set at 45". In Fig. 5-13, w --= 11 radjsec 
when 

G(jw) 
L K -180° + 45" = -135" 

(5-41) 
In Fig. 5-11, for w = 11 radjsec 

I
G(jw)l lOlog,, _K ___ -4.5dg (5-42) 

To have G(jw); = 1 at w = 11 radjsec 

10 log,,K = 4.5 dg, or K = 2.82 (5-43) 

Note, in this example, that the use of the 
asymptotic curve to estimate K gives a poor 
result. The magnitude of the asymptotic ap­
proximation for G (jw) I K at ru = 11 radjsec 
is -7.5 dg. This would give an approximate 
value of K = 5.61 for a 45" phase margin. 
The error of approximation is a factor of two, 
which is too large to be acceptable. One should 
note further that, for this system, the gain 
margin is infinite since the negative phase 
shift never exceeds 180". 

5-6.4 GENERAL COMMENTS ON THE 
PHASE-MARGIN CRITERION 

The phase-margin criterion used as a meas­
ure of the degree of stability is a good sub­
stitute for the Mv criterion provided that the 
G function does not have low damping-ratio 
quadratic factors (i:;-< 0.3) with natural fre­
quencies in the range where 

-135" < L G (jw) < -225" (5-44) 

If no low damping-ratio quadratics are 
present, then the gain determined from the 
true magnitude curve (or the asymptotic 
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magnitude curve) for a specified phase mar­
gin is a good approximation to the gain de­
termined from the corresponding MP crite­
rion. The Mp criterion corresponding to a 
given phase margin may be found from the 
relation 

p.m. = sin-1 
( ~P) (5-45) 

The frequency at which the phase margin 
is determined is: (1) the magnitude cross­
over frequency w,m if the true magnitude 
curve is used; and (2) the asymptote cross­
over frequency We if the asymptotic magni­
tude curve is used. For the M v corresponding 
to the specified phase margin, the frequen­
cies w,."l or we are good approximations to the 
resonant frequency of the system wR. 

5-6.5 APPROXIMATE CLOSED-LOOP 
RESPONSE 

If the phase-margin criterion is used in 
conjunction with the separate amplitude and 
phase-angle plots, a rapid estimation of the 
closed-loop magnitude response is obtainable 
by means of the following relations : 

(a) For a unity-feedback system (Fig. 
5-1) 

jW(jw)j=1, whenjG(jw)j >>1 
(5-46) 

jW(jw)I=IG(jm)i, whenjG(jw)' <<1 
(5-47) 

(b) For a nonunity-feedback system (Fig. 
5-21) 

IC(jw)l I 1 I 
R(jw) = H(jw) ' 

when IG(jw) H(jw)l>> 1 (5-48) 

I~~;:~ I = I G (jw) I , 

wheniG(jw) H(jw)l<< 1 ( 5-49) 

In the approximate equations (5-46) to 
( 5-49), the boundary is always the point 
where the magnitude of the open-loop func­
tion is unity. Since this point is determined 
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directly in the phase-margin procedure, the 
approximate closed-loop response for a given 
phase-margin criterion can be constructed as 
follows: 

(a) For unity feedback, the magnitude 
crossover frequency fficm is determined by 
means of the phase-margin criterion. 

(b) Usually for ffi < fficrru I G(iffi) 1 > l,and 
for ffi > fficm• 1 G(iffi)1 < 1 [G(jffi) is mono­
tonic]. 

(c) Therefore, forffi <fficm, 1 W(iffi) 1 = 1. 
For ffi > fficm, I W (iffi) 1 = 1 G (iffi) 1-

(d) At ffi == fficm, 1 W(jffi)1 = M,, where MP 
is determined for the specified phase margin 
from Eq. (5-45). 

(e) From the high-frequency (ffi > w,,) 
and low-frequency (ffi < fficm) behavior to­
gether with the behavior at ffi = fficm• the en­
tire magnitude response I W (jm) 1 may be ap­
proximated. 

w 

~ +IOdg 

~ 
w 

"' w 
0 
:::l ..... 
~ Odg 
'""' :I 

- 1-· ,_. 

If I G (jm) I is not monotonic as defined in 
step (b) , several magnitude crossover points 
will exist and Eqs. (5-46) and (5-47) must 
be used directly. In this case, the approxima­
tion should not be trusted unless the cross­
over points are widely separated (at least 1 
decade apart) or! G(jm)l >>lor<< !be­
tween the crossover points. 

The procedure for nonunity-feedback sys­
tems is similar to that described here for 
unity-feedback systems and is based on Eqs. 
(5-48) and (5-49). 

If only a very rough approximation is de­
sired, the asymptotic magnitude curves may 
always be used to reduce calculation time. 

Example. The open-loop function of a 
unity-feedback system is 

G (iffi) = K 
jffi (jm + 1) 

(5-50) 

f. TRUE CURVE 
.... 

D.. ~ .... ASYMPTOTE APPROXIMATIO 
g 
.... 
0 
w ... 
g -IOdg 
u 

0.1 

"""""' ~ 
~ 

t"-......._ 
t"-... r.... t< 

I 
0.2 0.5 2 10 

Fig. 5-30 Approximate closed-loop magnitude response of unity-feedback system, 

G (j<o)- K 
- iffi(jffi + 1 ) • 
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The gain K is to be set for a phase margin of 
45". Find K, Wcm• and the approximate closed­
loop magnitude response W (iw) . 

Solution. 

(a) !._ G~w) = -180° + 45" = -135" 

for w = 1 (the crossover frequency). 

G (jw) 
(b) At w = 1, = 0.707. 

K 
(c) Therefore, K = 1.41 and w,., = 1. 

(d) If the asymptotic magnitude curve for 
G (jw) /K is used, the asymptotic magnitude 

of G(jw)/K = 1 at to= 1. Thus, use of the 
asymptotic magnitude rather than the true 
magnitude produces an error of 40 percent 
in the determination of K. 

(e) If the approximation to the closed­
loop magnitude response is based on the 
asymptotic magnitude curve of G (jw) jK, then 
forw <w,m,themagnitudeofW(jw) isunity. 
For w > Wcm, the magnitude of W (jw) is rep­
resented by a straight line with a slope of 
- 20 dg/decade, crossing 0 dg at w=w,m = 1. 
The M 11 corresponding to a phase margin of 
45° is 1.41,or 1.5dg. The approximate closed­
loopmagnitude response is shown in Fig. 5-30. 

5-7 ROOT -LOCUS METHOD"•• 

5·7. 1 GENERAL 

The root-locus method deals primarily with 
the study of the motion in the s plane of the 
roots of the characteristic equation of a sys­
tem as a function of the gain K. The relation 
between stability and gain can be observed di­
rectly through use of this method by noting 
how the roots move from the left half of the 
s plane (stable roots) to the right half of the 
s plane (unstable roots) asK is varied. A sys­
tem can be characterized as having a low de­
gree of stability if its roots lie in the left half 
of the s plane but are very close to the im-. . 
agmary axis. 

Gain determination by means of the root­
locus method is based on the fact that many 
practical systems have a pair of complex 
closed-loop poles that are closer to the origin 
than any other complex poles of the system. 
These poles are called the dominant poles of 
the system. By assigning a specified value to 
a characteristic parameter of the dominant 
pole pair, the gain of the system may be fixed 
by a measure of the degree of stability related 
to the dominant pole pair. 

5-7.2 PROPERTIES OF ROOTS IN THE s PLANE 

The roots of the characteristic equation of 
a system are either first- or second-order, and 
each root is associated with a specific tran­
sient response mode. The characteristics of 
the roots, the response modes, and the speci-

fie contours in the s plane are related m a 
simple way. 

5-7.3 First-Order Root: s = - .!_ 
T 

The transient response mode corresponding 
to this root is e-t!T, where Tis the time con­
stant of the mode. Lines drawn parallel to the 
imaginary axis in the s plane are loci of con­
stant T for first-order factors. 

5-7.4 Second-Order Root: 

8 = - ~ Wn ± jwn V 1 - ~2 

The transient response mode corresponding 
to this root is 

e-~wnt COS Wd 1 

where 
(~w .. ) -l = time constant of envelope of mode 

wa = wn·v1 - ~2 =damped frequency of 
transient oscillation 

~ = damping ratio 
Wn = undamped natural frequency 

For the second-order root, s-plane loci can be 
developed by using the following properties : 

Re(s) =- ~Wn (5-51) 

I m ( 8) = ± Wa = ± Wn yl - ~2 

lsi =Wn 

L S=±COS-' ~± 180" 

(5-52) 

(5-53) 

(5-54) 
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''" (s) 

Fig. 5-37 loci of characteristic parameters of 
second-order root. 

Thus, lines drawn parallel to the imaginary 
axis are loci of constant-envelope time con­
stant Csco,)-1 • Lines drawn parallel to the real 
axis are loci of constant damped frequency of 
oscillation w<f. Circles centered at the origin 
are loci of constant natural frequency w,. 
Radial lines emanating from the origin are 
loci of constant damping ratio S· The various 
s-plane loci for the second-order factor are 
shown in Fig. 5-31. 

5-7.5 GAIN DETERMINATION IN THE s PlANE 

The usual degree-of-stability criterion for 
determining the gain K from the root locus 
of a system is: 

The dominant roots are adjusted to 
satisfy a specified damping ratio ~-

The advantage of the root-locus procedure 
over the MP criterion of the frequency­
response method becomes evident if a truly 
dominant pole pair exists. In this case, all 
other poles are far from the origin, and the 
transient response of the system is dominated 
by the transient response mode associated 
with the dominant pole pair. Thus , the time 
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behavior of the system becomes immediately 
evident once the damping-ratio criterion is 
satisfied. The disadvantage of the root-locus 
method is that considerable time is consumed 
in constructing the locus. Adjustment of the 
gain K for a specified dominant-root damp­
ing ratio is best demonstrated by a specific 
example. 

Example. The open-loop function G(s) of 
a unity-feedback system is 

K (0.2s + 1) 
G(s) = s( s Tl) (O.ls + 1) (5-55) 

Find the gain K and the closed-loop pole-zero 
configuration for a dominant-root damping 
ratio ~ =0.5. 

Solution 

(a) The open-loop function is placed in 
the standard form of the root-locus method as 
follows: 

G ( s) = 2K ( 8 + 5) 
s(s+1)(s+10) 

(b) The angle condition is 

L (s + 5)- L s - L (s +I) 
- L (s +10)= -180" 

(c) The magnitude condition is 

1s +51 2
K lsi Is+ II !s + 101 

1 

(5-56) 

(5-57) 

(5-58) 

(d) The locus of the roots is constructed 
from the angle condition by choosing trial 
points in the s plane and checking back to see 
whether the angles of the vectors of the open­
loop poles and zeros add up according to Eq. 
(5-57). A curve drawn through the trial points 
that satisfy this equation is the root locus. To 
determine the gain K associated with each 
locus point, Eq. (5-58) is used. The value of 
s corresponding to a given locus point is sub­
stituted into this magnitude equation and the 
equation is then solved for K. The locus for 
this problem in the upper half of the s plane 
is shown in Fig. 5-32. 

(e) The line corresponding to ~ = 0.5 ( L 
s = ± 120°) is drawn and the intersection 
with the locus is noted. The intersection occurs 
ats = -0.60 tj 1.04. 

(f) Using the magnitude condition, it is 
found that K = 1.38. 
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(g) ForK= 1.38, the location of the real 
root between s = -5 and s = -10 is deter­
mined by direct application of the magnitude 
condition. This root lies at s = -9.85. 

(h) The closed-loop pole-zero configura­
tion has a zero at the open-loop zero s = -5. 

+8 

+6 

+4 

t2 

-10 -8 -6 -4 -2 

( i) The factored closed-loop transfer func­
tion is 

2.84 (s + 5) 
W(s) = (s +9.85)(s2 + 1.2s + 1.44) 

0 

K(0.2s + 1) 
Fig. 5-32 Gain determination from root locus, G(s) = -~~-=----'-'~-

s(s + 1) (O.ls + 1) • 

5-25 



THEORY 

BIBLIOGRAPHY 

1 G. S. Brown and D. P. Campbell, Princi­
ples of Servomechanisms, pp. #92-104, 
John Wiley & Sons, Inc. , New York, 
N.Y., 1948. 

2 ibid., pp. #146-154. 

3 ibid. , pp. #166-168. 

4 ibid., pp. #176-189. 

5 ibid., pp. #236-261. 

6 J. G. Truxal, Automatic Feedback Con­
trol System Synthesis, pp. #80-81, 
McGraw-Hill Book Company, Inc., New 
York, N.Y., 1955. 

7 ibid., pp. #221-242. 

8 W. R. Evans, Control-System lJynamics, 
pp. #96-113, McGraw-Hill Book Com­
pany, Inc., New York, N.Y. , 1954. 

9 H. M. James , N. B. Nichols, and R. S. 
Phillips, Theory of Servomechanisms, 
MIT Radiation Laboratory Series, Vol. 

5-26 

25, pp. #158-186, McGraw-Hill Book 
Company, Inc., New York, N. Y., 1947. 

10 W. R. Ahrendt and J . F. Taplin, Auto­
matic Feedback Control, McGraw-Hill 
Book Company, Inc. , New York, N . Y., 
1951. 

11 Edited by I. A Greenwood, Jr., J. V. 
Holdam, Jr. , and D. MacRae, Jr. , 
Electronic Instruments, MIT Radiation 
Laboratory Series , Vol. 21 , pp. #215-
318, McGraw-Hill Book Company, Inc., 
New York, N.Y., 1948. 

12 H. Chestnut and R. W. Mayer, Servo­
mechanisms and Regulating System 
Design, Vol. I, pp. #221-244, John 
Wiley & Sons, Inc., New York, N. Y., 
1951. 

13 ibid., pp. #291-326. 

14 ibid., pp. #347-350. 



CHAPTER 6 

* COMPENSATION TECHNIQUES 

6-1 INTRODUCTION 

Compensation in the general field of servo­
mechanisms refers to the procedures used to 
modify the dynamic response characteristics 
of a system by auxiliary means so that it 
meets performance specifications. Most actual 
components have a limited dynamic response 
and so do not respond instantaneously to in­
put variations. Because of the dynamic lim­
itations of physical components, stability 
problems arise in closed-loop systems , as dis­
cussed in Chs. 4 and 5. The requirement of 
stable operation imposed on all closed-loop 
systems limits the accuracy that can be ob­
tained with these systems. In order to mini­
mize this inherent limitation, artificial means 
(compensation techniques) are used to mod­
ify the dynamic characteristics. These in­
clude the introduction of networks cascaded 
with the fixed elements in the loop and the 
addition of auxiliary loops to the system . 

The general compensation problem is il­
lustrated by Fig. 6-1. In this figure, G,(s) 
represents the response of the fixed elements 
in the loop which cannot be altered, H (s) 
represents the response of feedback elements 
that may be present, and Gc(s) represents 
the response of compensating elements that 
are to be adjusted so that the complete sys­
tem meets the performance specifications. 
The procedure for designing the system can 
be outlined as follows [H(s) is assumed to be 
unity] : 

(a) With Gc(s) = K, a pure gain (real 
number) , a stability check is made to deter­
mine the allowable range of the gain K for 
stable operation. 

(b) Assuming a specified degree of stabil­
ity, the gain K, is adjusted to meet this re­
quirement. 

*By L.A. Gould 

6-1 

(c) From the input specifications , the 
error of the system is found when K is ad­
justed as in (b) , and this error is checked 
against the error specification. 

(d) If the error does not meet specifica­
tions , a more complicated form for Gc(s) is 
introduced. The system is then adjusted to 
satisfy the specified 'degree of stability, and 
the error specification is again checked. 

(e) The procedure is continued, trying dif­
ferent or more complicated compensation 
functions , until the error falls within specifi­
cations (that is , if the specifications can be 
met). 

In practice, the forms of compensation nor­
mally employed are kept simple. This is due 
in part to the fact that the fixed elements are 
usually limited in their range of linear opera­
tion, and the introduction of complex compen­
sation functions merely reduces the range 
over which the linearity assumption applies . 
In addition, it is found that the theoretical 
advantages that may accrue with complex 
compensation are not realized in practice be­
cause the theoretical model no longer fits the 
physical system . 

c(s) 

Fig. 6-7 Compensation in a single loop. 
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6-2 RESHAPING LOCUS ON GAIN-PHASE PLANE <1.2•
3

•
4

•
8

•
11

> 

6-2.1 GENERAL 

Because magnitudes and phase angles add 
when functions are cascaded in the gain­
phase plane, this frequency domain is the 
one most suitable for studying the effects of 
cascaded compensation functions. The intro­
duction of a compensation function in the 
loop of a unity-feedback system can be 
thought of as a method for reshaping the 
open-loop frequency response C (iw) IE (iw) 
to permit a higher gain to be used for the 
specified degree of stability. If M, is the 
degree-of-stability criterion used, the gain 
can be increased by causing the phase and 
gain margins of the function Gc (jw) G1 (jw) /K 
to increase by a proper choice of Gc(jw). To 
maintain the specified M, the Mp contour 
must be moved downward for tangency to 
occur; this downward motion corresponds to 
an increase in the open-loop gain of the sys­
tem (Fig. 6-2). The two most commonly used 
compensation networks for reshaping the 
open-loop gain-phase locus are the lag net­
work and the lead network (see Par. 6-6). 

-1ao• 

G
0

(j..,) G1(j..,) 

K 

-so• 

0 dg 

Fig. 6·2 Change in open-loop response produced 
by compensation illustrating downward motion c£ 

Mp contour far gain increase 

6-2.2 LAG COMPENSATION 

The first-order lag function is 

Gc(jm) = K -Tcjrp + 1 ; a> 1 (6-1) 
aT0Jm-=F"i 

where K is the real gain factor , Tc is the time 
constant, and a is an attenuation factor. Lag­
function plots for a= 5, 10, 20 (with K = 1) 
are shown in Fig. 6-3. These plots are made to 
a normalized frequency scale for which 

~ = Tcm (6-2) 
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Fig. 6-3 Universal tag functions. 
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In using the lag function to reshape an 
open-loop frequency response, the choice of 
the attenuation factor is usually governed by 
the gain increase that is sought. In practice, 
a 's greater than 20 are rarely used. A good 
rule of thumb is that the gain increase that 
can be achieved lies in the range from 0.7u to 
0.9a. There are two considerations that limit 
the choice of the time constant T,. Since the 
lag function introduces a negative phase shift, 
the choice of the time constant should be such 
that this phase shift does not occur in the 
region where the open-loop response passes 
near the --1+j0 point. Consequently, the lag 
function is usually adjusted so that its major 
phase contribution occurs at low frequencies. 
This means that Tc cannot be made too small 
without affecting the stability of the system. 
On the other hand, if Tc is made too large, the 
transient response of the system tends to 
deteriorate as a result of excessive peaking 
and an abnormally long settling time. A rule 
of thumb for adjusting the lag function is as 
follows: Choose Tc so that a phase shift of 
-5" to -1 0" is introduced at the uncom­
pensated resonant frequency of the system. 
The uncompensated resonant frequency is de­
fined as the resonant frequency which is ob­
tained for the specified MP when Gc(s) = K. 

The steps involved in adjusting the lag 
function al"l> the following : 

fq) With G,.(s) = K, the gain and .eso­
mult frequency of the system are found for 
the specified value of M,. 

l b J using Fig. 6-3, the value of (3 is de­
termined for the specified allowable phase 
shift. Since the region of low phase shift of 
the lag function occurs for values of (3 > 5, 
the phase shift of the lag function in this 
region is adequately represented by 

L G,.(jf"l) -=-- -- -for~:::>: 5 t (
u-1) 1 

a f:l -

Symbol L denotes "angle" 

6-3 

Thus , the phase angle varies inversely as ~· 

(c) If wn1 is the uncompensated resonant 
frequency and~"' is the value of~ correspond­
ing to the specified allowable phase shift of 
the lag function, then, from Eq. (6-2), 

(6-4) 

(d) Since the scale ratio be~ween ~ and w 
is fixed by Eq. (6-4), the magnitude and 
phase-angle contribution of the lag function 
to the G1 (jw) function at each frequency can 
determined from the universal curves of Fig. 
6-3. 

(e) After the lag function has been added 
to the fixed-element response G,(j~), the gain 
K is determined from the specified MP cri­
terion. 

Example . The transfer function of the fixed 
elements of a unity-feedback sy stem is given 
by 

1 
G,(s) = s (0.3s + 1)(0.1s + 1) (6-5) 

A lag function with a= 1U is used to com­
pensate the system . The lag function is to 
contribute -5° of phase shift at the uncom­
pensated resonant frequency . Design the com­
pensation when 1 Olog10 M, = 1.5 dg. 

Solution. The frequency response G1 (jw) is 
plotted in Fig. 6-4 as Curve A. For the speci­
fied MP (see construction), the point of tan­
gency of the MP contour with Curve A occurs 
at the point where u>n

1 
= 2.4 radjsec; from 

the displacement downward of the M 11 

contour by 4.1 dg (i.e., 10 log K = 4.1) one 
gets K = 2.57 for the uncompensated system 
when Gc(jw) = K. From the a = 10-plot of 
Fig. 6-3, -5° of phase shift occurs at~"' = 10. 
Therefore, 

f34> 10 
T, = --= 

2 4 
- 4.17 seconds ( 6-6) 

Wu, • -

The scale change from w to (3 is , therefore , 

~=4.17w (6-7) 
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Fig. 6·4 lag.compensation procedure. 

6-5. These plots utilize a normalized frequency 
scale for which 

(6-9) 

In using the lead function to reshape an open­
loop frequency response, advantage is taken 
of the fact that the lead function exhibits 
positive phase shift. Thus, by adjusting the 
time constant T,i t is possible to add positive 
phase angles to the fixed-element response 
G1 (jw) in a region where the negative phase 
shift of the fixed elements is too great to secure 
an Mp-contour tangency . Hence, the lead func-

.. 
J.!)_ 

0 '--~....-:::%::.. 

IOr-~~~~-r--,---,---,--,,--, 

8 t--;---t­

~ 6 t--;r---r--;r---r-
0 

With this scale change, the universal lag 2 + t---t---t--t---f-
function for a= 10 is used to add the magni­
tude and phase angle of Gc(jw)/K to the 
fixed-element response G1 (J'w) . The compos­
ite Gc Uw) G1 (jw) I K function appears as 
Curve B in Fig. 6-4. Using the specified MP 
criterion, the resonant frequency of the com­
pensated system is 2.0 radjsec and K has 
been increased to a value K = 20.4. Thus, the 
use of the lag function with a = 10 has al­
lowed an increase in gain by a factor of 7.6. 
The resonant frequency has been decreased 
by 17 percent. 

6-2.3 LEAD COMPENSATION 

The first-order lead function is 

G,(jw) = K aTcjw + 1 
Tcjw + 1 

a>l (6-8) 

where K is the gain, T c is the time constant, 
and a is an attenuation factor. Lead-function 
plots for a= 5, 10, and 20 are shown in Fig. 

6-4 
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tion can decrease the effective negative phase 
shift of the composite G, (iw) G1 (jw) /K func­
tion, allowing an M, tangency to occur for a 
larger value of gain K. In many cases, an 
increase in the resonant frequency of the sys­
tem is obtained when lead compensation is 
used. 

Due to the tendency of lead compensation 
to increase the bandwidth of a system, it is 
found that the system is more sensitive to 
noise , and its linear range of operation is re­
stricted . Thus , in practical situations , the 
attenuation factor a used usually does not 
exceed 20. The adjustment 'of the time con­
stant T,. is a matter of trial and error. An out­
line of the trial-and-error procedure is given 
below: 

(a) The phase-angle difference 'V between 
the "nose" of the M9 contour and the -180" 
line of the gain-phase plane is given by 

1jl = sin-1 { ....!.. ) (6-10) 
Mp 

The maximum phase shift c/>m introduced by 
the lead function is 

cf>m = sin-1 { a- 1) 
a+1 

(6-11) 

(b) The first-trial choice of the lead-func­
tion time constant T" is found by determining 
the frequency at which the following angle 
relation holds : 

~G,(jw,) = -180"+'IJI-c/>m (6-12) 

The frequency w, which satisfies Eq. (6-12) 
be found directly from the gain-phase plot of 
G1 (iw). Then, the first choice of T,is given by 

(6-13) 

where ~m is the frequency at which the maxi­
mum phase shift (cf>m) occurs on the normal­
ized lead-function curve of fig. 6-5. The fre­
quency ~m can be found from the relation 

1 
13m= v' a 

(6-14) 

(c) Since the scale ratio between w and the 
normalized frequency~ is fixed by Eq. ( 6-14), 
the magnitude and phase-angle contribution 
of the lead function to the Gr(jw) function at 

each frequency can be determined from the 
universal curves of Fig . 6-5. 

(d) After the lead function has been added 
to the fixed-element response G, (jw) , the gain 
K is determined from the specified M, cri­
terion. 

(e) The first-trial choice of the lead-func­
tion time constant T, usually determines a 
closed-loop resonant frequency that is close 
to the maximum obtainable frequency with 
the given attenuation factor a. 

6-5 

However, the open-loop gain K is not neces­
sarily a maximum. Therefore, if gain increase 
is the objective, additional trials must be 
made. The additional trials usually involve the 
choice of trial values of To that are smaller 
than the initial choice. A rule of thumb is that 
the time constant T, which maximizes K is 
approximately one-half to one-third the ini­
tial-trial value. 

Example. The transfer function of the fixed 
elements of a unity-feedback system is given 
by Eq. (6-5). A lead function with a= 10 is 
used to compensate the system. Design the 
compensation when X log10M9 = 1.5dg. 
Solution. The frequency response G1 (jw) is 
plotted in Fig . 6-6 (Curve A). From the prob­
lem specifications and Eqs. ( 6 -I o), ( 6-11) , 

.-- 3.8 

-24o• -2200 -2oo• /-1ao- -1so• -140• -120• -.oo· 
L G ___. 

Fig. 6·6 Lead-compensation procedure. 
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and (6-14), we find that '1\J = 45°, cf>m = 54.9°, 
and~~~~= 0.316. Eq. (6-12) yields 

(6-15) 

Using this result and Curve A of Fig. 6-6, we 
find that w1 = 7.2 radlsec. Then, from Eq. 
( 6-13), the initial choice for the lead-function 
time constant is Tc

1 
= 0.044 sec. The scale 

change from uJ to ~ is therefore given by 

~ = 0.044w (6-16) 

With this scale change, the universal lead 
function for a= 10 is used to add the magni­
tude and phase angle of G,.(jco) I K to the fixed­
element response G1 {jw). The composite 
G,.(jco) G1 {jw) IK function appears as Curve B 
in Fig. 6-6. Using the specified MP criterion, 
the resonant frequency of the uncompensated 
system (Curve A) is con 1 = 2.4 radlsec and 

the gain of the uncompensated system with 
Gc(J"w) = K is K = 2.57. The resonant fre­
quency of the compensated system (Curve B) 
is wn2 = 8.2 radlsec and the gain of the com­
pensated system is K = 6.68. Thus, the reso­
nant frequency of the system has been in­
creased by a factor of 3.4 and the gain by a 
factor of 2.6 through lead compensation. If 
maximum gain is sought, the lead time con­
stant must be reduced. By trial and error, we 
find that with T,. = 0.020sec, wH = 5.6 radlsec 
and K = 8.65. The construction for maximum 
gain is shown as Curve C in Fig. 6-6. Thus , for 
maximum gain adjustment, lead compensation 
increases the resonant frequency by a factor 
of 2.3 and the gain by a factor of 3.4. Note 
that the time constant for maximum gain is 
0.45 times the initial-trial choice. The results 
of this example are listed in Table 6-1. 

Compensation Adjustment Tc (sec) wu(radlsec) K 

Initial trial ;maximum resonant 
frequency 0.044 8.2 6.68 

Final trial ;maximum gain 0.020 5.6 8.65 

No compensation 2.4 2.57 

6-3 PHASE-MARGIN AND ASYMPTOTIC METHODS (l,4,s) 

6-3.1 GENERAL 

A rough picture of the effect of compensa­
tion can be obtained if the magnitude asymp­
totes are used in conjunction with the phase­
margin criterion for the degree of stability 
(see Par. 5-6). Using a 45" phase-margin cri­
terion, the asymptotic method gives good re­
sults provided there are no low-damping-ratio 
quadratic factors in the open-loop transfer 
function C (jw) IE (jw). If the 45" phase­
margin criterion is assumed, then the asymp­
tote crossover frequency w,. (defined in Par. 

6-6 

5-l) usually occurs in a region where the slope 
of the asymptote is -10dgldecade. 

The phase-margin criterion can be used as 
an approximation to theM P criterion, or it can 
be used as an independent degree-of-stability 
criterion. If it is used independently, the sep­
arate magnitude vs frequency and phase­
angle vs frequency plots are employed. If the 
phase-margin criterion is used to approxi­
mate the Mp criterion, one might just as well 
use the asymptotic curve as an approxima­
tion to the true magnitude curve. 
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The rules of thumb established in Par. 6-2 
for adjusting the compensation functions can 
be applied in an identical manner when work­
ing with the separate magnitude and phase 
angle plots except that the asymptotic-cross­
over frequency w,. or the magnitude-crossover 
frequency Wcm will replace the resonant fre­
quency wn where necessary. The universal 
compensation-function curves of Figs. 6-3 
and 6-5 can be used when working with the 
separate magnitude and phase-angle curves. 

The steps involved in adjusting the com­
pensation functions when using the phase­
margin criterion and the separate response 
curves are outlined below. 

6-3.2 LAG COMPENSATION 

(a) With G,.(s) = K, the gain and mag­
nitude-crossover frequency (or asymptote­
crossover frequency) are found for the speci­
fied phase margin. 

(b) Using the universal lag-function 
curve (Fig. 6-3), the normalized frequency 
~,1, (at which the allowable negative phase 
shift of the lag function occurs) is deter­
mined. 

(c) The lag-function time constant is 
found from the relation 

B"' T,.=--
Wcm1 

(6-17) 

where w,, 1 is the magnitude-crossover fre­
quency of the uncompensated system, or, 
alternatively, one can use the relation 

(6-18) 

where <o,.
1 

is the asymptote-crossover fre­
quency of the uncompensated system. 

(c) Using the scale ratio between f"l and w 
determined by Eq. (6-17) or (6-18), the 
magnitude (or asymptote) and phase-angle 
contribution of the lag function to the G1 (jw) 
function at each frequency can be determined. 

(d) After the lag function has been added 
to the fixed-element response G1 (jw) , the gain 
K is determined from the specified phase mar­
gm. 

6·7 

6-3.3 LEAD COMPENSATION 

(a) The frequency w1 which satisfies Eq. 
(6-13) is found directly from the ,L G1(jw) 
curve. 

(b) If f"lm is the normalized frequency at 
which the maximum phase shift cf>m for the 
lead function occurs (see Fig. 6-5), then the 
first trial choice of the lead-compensation 
time constant is 

Tc
1 
=~ (6-19) 

Wl 

(c) Using the scale ratio between Bm and 
<o1 determined by Eq. (6-19), the magnitude 
(or asymptote) and phase-angle contribution 
of the lead function to the G1 (jw) function at 
each frequency can be determined. 

(d) After the lead function has been added 
to the fixed-element response G, (jw), the gain 
K is determined from the specified phase mar­
gm. 

(e) Further trial values of the lead-func­
tion time constant Tc are tried until the gain 
K or the magnitude- (or asymptote-) cross­
over frequency has been maximized. 

Example. The transfer function of the fixed 
elements of a unity-feedback system is given 
by Eq. (6-5). The 45° phase-margin criterion 
is to be used to adjust the degree of stability 
of the system. 

(a) Lag compensation with a= 10 is to be 
used to improve performance. The allowable 
negative phase shift that the lag function con­
tributes at the magnitude- (or asymptote-) 
crossover frequency of the uncompensated 
system shall be 5". Design the compensation. 

(b) Lead compensation with a= 10 is to 
be used to improve performance. Design the 
compensation. 
Solution. 

(a) The magnitude and asymptote curves 
of G1 (jw) are drawn in Fig. 6-7 and the 
phase angle curve is drawn in Fig. 6-8. For 
a 45" phase margin, the magnitude-cross­
over frequency Wcm = 2.08 radjsec and the 
corresponding gain is 2.34. The asymptote­
crossover frequency u>c = 2.08 radjsec and the 
corresponding gain is 2.04. (Compare with 
w11 = 2.4 radjsec and K = 2.57 for 10 log10 

MP = 1.5 dg.) For 5° of allowable negative 
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phase shift , and a= 10, ~,; = 10 from Fig. 
6-3. Therefore, using Eqs. (6-17) or (6-18), 
T, = 4.8 sec. The scale change from ~ to w is 
given by 

r) = 4.8w (6-20) 

The composite Gc(jw) G1 (jw) !K magnitude 

+I 0 dg ............... r--. 
~ 

r- I' r-.r-. 

~ ~~ ~ t 
0 dy 

..... 
~ ~ ~~--

ASYMPTOTE Gc(jw)G,(j<u) ~ 

-
~ -10 dg 
~ 

"' 
~ K 

- 2 0 dg, 

- 30dg 

-40 
O.J 0.2 0.5 

and asymptote curves for the lag-compen­
sated system are drawn in Fig . 6-7, and the 
composite phase-angle curve is drawn in Fig. 
6-8. Using the 45" phase margin, the magni­
tude-crossover frequency Wcm = 1. 7 4 radjsec, 
and the corresponding gain is 20. The asymp­
tote-crossover frequency we= 1. 74 radjsec 
and the corresponding gain is 17.8. 
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Fia. 6-7 Maanitude curves for /oo-comoensofion orocedure emolovino ohose moroin. 
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Fig. 6-8 Phase curves for lag-compensation procedure employing phase margin. 
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(b ) The magnitude and asymptote curves 
of G1 (jw) are drawn in Fig. 6-9 and the phase 
angle curve is drawn in Fig. 6-10. Using the 
problem specifications and E qs. (6-11) and 
(6-14), ljl = 45°, </>m = 54.9" and ~Ill= 0.316. 
Eq. (6-12) yields 

curve (Fig. 6-10), ro1 = 7.2 radj sec. From E q. 
(6-19), the initial-trial time constant Tc

1 
= 

0.044 sec and the scale change from ~ to w is 
given by 

~ = 0.044w (6-22) 

(6-21) 

Using this result and the G1 (jw) phase-angle 

The composite G,(jro) G1 (jw) !K magnitude 
and asymptote curves for the first-trial lead­
compensated sy stem are drawn in Fig . 6-9 

+10 dg 

0 dt 

1 -10 4t 
!! 

0 

l' 
0 
- -2itolt 

-30 4t 

~ r-
-r=: 1=::: l=:r: 

OJ Q.2 

c.(J .. )G1(j .. ) 
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~ 
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MAGHITUDE G,!J.,) ..../ ~~ ~ K 

~ ~ 
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Fig. 6-9 Magnitude curves for lead-compensation procedure employing phase margin. 
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Fig. 6-70 Phase curves for lead-compensation procedure employing phase margin. 
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and the corresponding phase-angle curve is 

drawn in Fig. 6-10. Using the 45° phase-mar­

gin criterion for the lead compensated system, 

the magnitude-crossover frequency Wcm = 7.0 

radj sec, and the corresponding gain is 6.02. 
The asymptote-crossover frequency we = 7.0 
radj sec and the corresponding gain is 4.46. 
The results of this example are summarized 
in Table 6-2. 

TAB.E 6-2 RESLLTS OF COMPENSATION USING 45° PHASE MARGIN 

Compensation (l)("l#t K forwrlll We K forw" Factor of Gain Factor of w,. or 
Adjustment Increase w,./11 Change 

No compensation; 
true magnitude 
used 2.08 2.34 

No compensation; 
asymptote used 2.08 2.04 

Lag compensation; 
true magnitude 
used 1.74 20 8.6 0.84 

Lag compensation; 
asymptote used 1.74 17.8 8.7 0.84 

Lead compensation ; 
true magnitude 
used 7.0 6.02 2.6 3.4 

Lead compensation ; 
1 1.0 I I I asymptote used 4.46 2.2 3.4 

6-4 FEEDBACK OR PARALLEL COMPENSATION <
2

'
3

'
4

> 

The cascade type of compensation discussed 
in Pars. 6-2 and 6-3 has the disadvantage 
that the compensation adjustment is sensitive 
to changes in the parameters of the fixed ele­
ments due to non-linear behavior of the sys­
tem. When feedback compensation is used, on 
the other hand, the compensation adjustment 
is much less sensitive to fixed-element param­
eter variation provided the loop gain is high. 
In addition, the networks used in feedback 
compensation are usually simpler in form 
than the corresponding cascade networks. 
However, the necessity for high loop gain (at 

least a gain of 10 at the break frequencies of 
the feedback networks) generally requires a 
more complicated and expensive system. 

The procedure used in designing feedback 
compensation networks employs a combina­
tion of the gain-phase plane and the asymp­
totic-magnitude presentations. The basic 
principles involved in the design of feedback 
compensation networks can be clarified by a 
study of Fig. 6-11. Here a feedback function 
H,. ( s) is used to modify the characteristics of 
the fixed elements G1 ( s) and a cascade func­
tion G,. (s) is provided to aid in adjusting the 

6-10 
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performance of the major loop. In most cases, 
the cascade function Gc(s) is a pure gain K 
which serves to adjust the degree of stability 
of the system. The burden of reshaping the 
G1 ( s) function is placed on the feedback com­
pensation function H, ( s ). In addition, the 
feedback function is usually provided with a 
gain adjustment to permit the setting of the 
degree of stability of the minor loop. 

The general configuration of Fig. 6-11 can 
be redrawn and placed in the cascade form of 
Fig. 6-12. Here, 

G',.(s) (6-23) 

Thus, theoretically, cascade compensation and 
feedback compensation are equivalent. In 
practice, feedback compensation is more flex­
ible, and the resulting system is less sensitive 
to component parameter variations. 

Fig. 6-11 General feedback-compensation 

configuration. 

E(s) M(s) 

Fig. 6-12 Cascade equivalent of feedback­
compensation configuration. 

C(s) 

6-11 

The procedure for adjusting the feedback 
compensation is best understood by examin­
ing the asymptotic behavior of the minor loop. 
If 

IG1 (jro)H,(jw) i >> 1, 

then 

If 

C(jw) 

A (jw) 

G 1 (jw)H,(jw)l << 1, 

then 

C(jw) 

A (jw) 

1 

(6-25) 

Thus, in the frequency ranges where the open­
minor-loop frequency-response magnitude 
I Gt(jw) Hr (jw) is very large, the closed-mi­
nor-loop response C (jw) I A (jw) behaves like 
the reciprocal of the feedback function 
H,. (jw). When the open-minor-loop-response 
magnitude is very small, the closed-minor-loop 
response behaves like the fixed elements re­
sponse function G1 ( s ). Thus, the frequency 
scale can be divided into several regions based 
on the magnitude of the open-minor-loop re­
sponse. Whenever the magnitude of this re­
sponse IG1 (jw) H, .(jw) I or IE (jw) /M (jw) I is 
greater than unity, the asymptotes of the 
closed-minor-loop response coincide with the 
asymptotes of the reciprocal of the feedback 
function H,.(jw). Whenever the magnitude of 
the B (jw) /M (jo)function is less than unity, 
the closed-minor-loop response asymptotes 
coincide with the asymptotes of the fixed-ele­
ment response Gt{jw). 

Usually, the feedback function H,(jw) is so 
chosen that the frequency scale is divided into 
three ranges. These ranges are: 

0 < w <wz when IGt(jw)H,.(jw)l < 1 
(6-26) 

Wz< w < w, when :G1(jw)H,.(jw) I> 1 

(6-27) 

w, <(I)< 00 when iGt(jw)H,(jw)l < 1 
(6-28) 
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and wz is the lower-frequency boundary and 
w,. is the upper-frequency boundary. Corres­
ponding to the three frequency ranges fixed 
by the magnitude of the open~minor-loop re­
sponse, the closed-minor-loop response 
asymptotes are defined by 

for 0 < w < Wz 

(6-29) 

for Wz < w < w., 

(6-30) 

IC(jw)l:::::::: IG (jw) I 
A (jw) 

1 for w, < w < oo 

(6-31) 

The procedure for adjusting the feedback 
function Hc(s) and the cascade gain Gc(s) 
= K can thus be roughed out using asymptotic 
pictures of the various responses and then car­
ried out in detail using the gain-phase plane. 
The aim of the asymptotic sketches is to ex­
amine the form of the closed-minor-loop re­
sponse as the feedback compensation is ad­
justed. Examination of the asymptotes of 
typical cascade compensation arrangements 
can also serve as a guide to the shaping of the 
closed-minor-loop response. The desirable 
properties of the closed-minor-loop response 
can be expressed in terms of the properties 
that are desirable for any open-major-loop 
function; namely, high gain at low frequen­
cies ( w< wz), a stable shape relative to the 
-1 +jo point, and low gain at high frequen­
cies ( w >wu) . 

Since there are usually several parameters 
to adjust in the feedback compensation proce­
dure, the process of adjustment is one of trial 
and error guided by the asymptotic sketches. 
The details of the procedure are best demon­
strated by an example. 

Example. Th ransfer function of the fixed 
elements of a sy~"em is given by 

1 
(6-32) 

s(0.3s + 1) (0.1s + 1) 

Feedback compensation is to be used to im­
prove the performance of the system in con­
junction with a pure gain cascaded with the 

minor loop. The transfer function of the feed­
back elements is given by 

KcB2 

TcB+ 1 
(6-33) 

Note that this transfer function can be 
realized in a position-control system by a 
tachometer cascaded with a single-stagehigh­
pass RC filter. The cascade compensation be­
ing a pure gain, its transfer function is given 
by 

(6-34) 

Design the compensation for a 45° major­
loopphase margin. 

Solution. The open-minor-loop transfer func­
tion is 

B(s) 
~~ = G1 (s)Hc(s) = 
M(s) 

KcS 
(TcS + 1) (0.3s + 1)(0.1s + 1) 

(6-35) 

A plot of the asymptotes of G, (jw) Hc(jw) /Kc, 
using the techniques for plotting asymptotic 
magnitude curves of Par. 5-3.3, is shown in 
Fig. 6-13 for Tc = 2 sec as a trial guess. The 
adjustment of Kc controls the degree of sta­
bility of the closed-minor-loop response. lf Kc 
is made too large (e.g., greater than 50), the 
closed-minor-loop response will have a quad­
ratic factor with a very low damping ratio, 
making it difficultto obtain a high-gain open­
major-loop response. Anticipating this be­
havior, a value of Kc = 1 Ois not unreasonable. 
With K, = 10, the inequality of Eq. (6-27) is 
satisfied for the portions of the open-minor­
loop asymptotes above the -10 dg line. When 
K,. is set equal to 10, the 0-dg line for the open­
minor-loop response G1 (jw)Hr(jw) is that 
shown dashed in Fig. 6-13. This line defines 
the frequency boundaries co 1 = 0.1 rad/sec and 
a,,= 13 radjsec. The closed-minor-loop re­
sponse asymptotes can then be drawn with the 
aid of the approximations to jC(jw)/ A (jw) I 
given in Eqs. (6-29) to (6-31). In the fre­
quency range from w1 to w = 1/T,. there is a 
-20 dg/dec contribution to jl/H,. (jw) i from 
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the factor s2 whereas the (T cS +1) factor 
makes no contribution (i.e., it contributes 
0 dgjdec). In the range from w = 1/T c to w,, 
both factors contribute , the s2 factor contrib­
uting -20 dg/dec and the (Tcs + 1) factor 
+ 10 dgjdec. The closed-minor-loop asymp­
totes are shown in Fig. 6-14. From an exam­
ination of the resultant asymptotic curve, sev­
eral points may be noted. The combination of 
the breaks at w1 and 1/ T c appears as a cascade 
lag-compensation effect which is a desirable 
open-major-loop-response property. In fur­
ther trials , attempts may be made to broaden 
the -20dg/dec slope region bounded by these 
breaks and to move the region to a higher fre­
quency range . The break at w 11 is from a slope 
of -lOdgj dec to a slope of -30 dgj dec which 
is characteristic of a quadratic factor in the 
open-major-loop response. If this factor has a 
low damping ratio , high-gain stabilization of 
the major loop may be difficult. Thus , the first 
trial choices of T c and K c produce a set of open­
major-loop asymptotes which appear reason­
able; however the adequacy of the choices 
must be verified. 

At this point, the Nichols chart (Fig . 5-20) 
is used with a gain-phase plot of G1(jw)Hc(jw) 
to determine the closed-minor-loop response 
C (jw) I A (jw) (see Par. 5-4 for the use of the 
Nichols chart with non-unity-feedback loops). 

v 
~ 

-10 dg 

~---~-- "'t 

~ 
v 

-20 dg 

G,(jto)H,{jto) 

f..-- K 

I ( I I 
-30 d~ 

0.01 0.02 0 .05 0 .1 0.2 0 .5 

As a result of the application of the gain­
phase plane construction, the true magnitude 
curve of C(jw)l A(jw) is shown in Fig . 6-14 
can be obtained. The corresponding phase 
angle curve appears in Fig . 6-15. The shape 
of the true magnitude curve shows no severe 
resonance effects so that acceptable closed .. 
loop performance may be expected. Using the 
45° phase-margin criterion to adjust the cas­
cade compensation Gc(s) =K, the magnitude­
crossover frequency wcm = 8.6 radjsec and the 
corresponding gain K = 40. Thus , the per­
formance is quite good. (Compare the results 
of cascade compensation for this same system 
in Pars. 6-2 and 6-3.) The only drawback to 
the design is that the equivalent cascade lag 
effect is at a fairly low frequency. This would 
produce somewhat excessive peaking in the 
transient response of the system which would 
be followed by a long transient tail. Improve­
ment in performance could be achieved by 
further trial, e.g., by decreasing the feedback 
compensation time constant T, ,and attempt­
ing to increase the minor-loop gain K 0 • The 
resultant system would then have a more 
acceptable transient behavior, but the 
magnitude-crossover frequency W cm and the 
major-loop gain K might be reduced. How­
ever, only further trial-and-error analysis 
would show what actually occurs . 

II I T 111 
II 0 dg LINE WITH K ~ IO 

!'-... \. < 

"" "'• " !'-... 
~"t-. 

2 5 10 20 50 100 

Fig. 6-13 Open-minor-loop asymptote for feedback compensation procedure. 
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fig. 6-14 Closed-minor-loop magnitude for feedback compensation procedure. 
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Fig. 6-15 Closed-minor-loop phase angle for feedback compensation procedure. 
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6-5 ALTERNATIVE DESIGN METHODS<6
'
7

'
9

'
10

'
12

•
13

> 

The primary advantage of design in the 
frequency domain is the rapidity with which 
the procedure can be carried out. The disad­
vantage is the difficulty involved in visualiz­
ing the time-domain behavior corresponding 
to a given frequency-domain design. In prac­
tice, the relationship between frequency re­
sponse and transient response is considered 
by many workers to be rather nebulous. Theo­
retically, however, frequency-domain and 
time-domain descriptions are entirely equiv­
alent, although the actual process of translat­
ing from one description to the other may be 
quite laborious in spite of the fact that many 
approximations have been established to 
guide the designer in relating frequency re­
sponse with transient response (see Par. 7-1). 
One very important stumbling block arises 
because most direct specifications of system 
performance are given in terms of the tran­
sient response of the system to a step or ramp 
input. This type of specification is just as 
artificial as that given in terms of the re­
sponse of a system to a sinusoidal input since 
the true inputs of most systems are neither 
steps, nor ramps, nor sinusoids. Nevertheless, 
it is the transient response of a system that 
is most frequently specified because this type 
of response is the easiest to visualize and the 
quickest to verify experimentally. 

In order to circumvent some of the concep­
tual difficulties involved in frequency-domain 
design, methods of time-domain design have 
been advanced. Most of these methods utilize 
the open-loop and closed-loop pole-zero con­
figurations of the system and thus involve 
features of both the time and frequency do­
mains. The facility with which these methods 
can be used depends almost exclusively on the 
feature of having an analytical description of 
the open-loop pole-zero configuration as a 
starting point. Thus, the methods require 
that any experimental test data be approxi­
mated by analytical functions. This require­
ment does not apply to the frequency-domain 
methods that receive major emphasis in Ch. 
5 and Pars. 6-2 through 6-4. In addition, the 

graphical procedures discussed in Pars. 3-6 
and 7-1 enable the designer to work entirely 
with experimental data, going back and forth 
between time and frequency domains without 
ever having to deal with analytical descrip­
tions. Since the time-domain synthesis meth­
ods usually end up with a closed-loop pole­
zero configuration, additional labor is neces­
sary to extract the actual plots of transient 
response and frequency response in order to 
verify whether performance specifications 
have been met. On the other hand, in a 
frequency-domain design, the only additional 
labor involved is that of determining the tran­
sient response (usually by the methods of 
Par. 3-6), the frequency response being di­
rectly available at the end of the design pro­
cedure. Thus far, the time-domain procedures 
that have been developed are most successful 
for analysis but are quite time-consuming 
and laborious for synthesis. Actually, most of 
the current time-domain "synthesis" proce­
dures merely involve ordered trial-and-error 
analysis. A few of the time-domain methods 
are described here. 

Evan's root-locus method<6-7 ) can be used 
for the design of compensation functions by 
postulating a series of trial forms of the pro­
posed compensation functions and plotting 
the root locus for each form (see Pars. 4-4 
and 5-7 for the technique of root-locus con­
struction and the nature of the degree-of­
stability criterion). On adjusting the gain to 
satisfy the degree-of-stability criterion with 
a specified damping ratio~ for the dominant 
pole pair, each trial root locus will produce 
a specific closed-loop pole-zero configuration. 
Then by direct inspection of these configura­
tions or by plots of the actual transient re­
sponses (through partial-fraction expansion 
and inverse Laplace transformation), the best 
compensation form may be selected. 

Yeh<13
) has proposed an extension of Evan's 

method which involves plotting contours of 
closed-loop pole location for a series of fixed­
gain values as some parameter of the compen­
sation function is varied. These plots are called 
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gain contours. In addition, for fixed values of 
the compensation-function parameter, con­
tours of closed-loop pole location are plotted 
as the gain is varied. These plots are called 
root contours. By examining the gain and 
root contours, the best combination of the 
compensation-function parameter and the 
gain can be selected. 

Truxal< 11> has developed a pure synthesis 
procedure based on the desired closed-loop 
pole-zero configuration (see Par. 7-1). It is 
assumed that this configuration is character­
ized by : ( 1) one pair of conjugate-complex 
dominant poles, (2) one or more dipoles (a 
pole and zero very close together on the nega­
tive real axis), (3) poles on the negative real 
axis that are far removed from the dominant 
pole pairs, and ( 4) one or more finite zeros<9 >. 
This closed-loop 'pole-zero configuration will 
be produced by an open-loop function [C (s) I 
E(s) for a unity feedback system] which has 
all its poles on the negative real axis. If the 
closed-loop function 

C(s) ___ P(s) 

R(s) N (s) 

and, for a unity-feedback system, 

C(s) __ P(s) 
E(s) - Q(s) 

then 

Q(s) =N(s) -P(s) 

(6-36) 

(6-37) 

(6-38} 

where P ( s ),N ( s ), and Q ( s) are polynomials 
ins. 

The synthesis procedure is then a method for 
determining the zeros of Eq. (6-38) since 
these are the poles of C(sYE(s). Since all 
the poles of C(s)/E(s) lie on the negative 
real axis, if the polynomials N(s) and P(s) 
are plotted on the same coordinate system for 
s = -a where a is a real variable, then the 
intersections of the two curves give the poles 
of C(s)/E(s). The zeros of C(s)/E(s) are 
the same as the zeros of C ( s )/R ( s ). Knowing 
the transfer function of the fixed elements 
G1 (s), the compensation can be determined 
from the following equation: 

G 8 __ 1_ [C(s)] 
c( ) - G

1
(s) E (s) (6-39) 

The cancellation of the function G1 (s) by the 
compensation Gc(s) should be avoided as 
much as possible by having some of the poles 
of G1 (s) occur in the open-loop function 
C(s)/E(s). This can be accomplished by 
altering slightly the specified form of the 
closed-loop response C(s)/R(s) since the 
performance specifications are rarely rigid. 
Changes in the parameters of the fixed ele­
ments G1 ( s) will negate the cancellation 
called for by Eq. (6-39). Actually, exact can­
cellation is not necessary since small parame­
ter variations will not alter the closed-loop 
response appreciably. 

6-6 TYPICAL COMPENSATION NETWORKS<2
'
5

'
6

'
14

'
15

'
16

'
17

•
18

'
19

•
20

•
21

> 

6-6. 1 D-C ELECTRIC 

The most common d-e networks are the lag 
network and the lead network shown in Fig. 

6-16. 
The /ag-networktransfer function is 

E.(s) Ts + 1 
Ei(s) aTs+ 1 

where 
T= R2C, and 

a=l+ ~ 
R2 

(6-40) 

(6-41) 

(6-42) 

The lead network transfer function is 

1 aTs + 1 

a Ts+ 1 

where 

6-16 

T = ( RrR2 ) C, and 
.Rr +R2 

(6-43) 

(6-44) 

(6-45) 
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Chestnut and Mayer(5l present a series of 
charts of d-e networks containing only resis­
tances and capacitances. These charts cover 
most of the desirable frequency-response 
characteristics that are called for in compen­
sation of feedback control systems. 

6-6.2 A·C ELECTRIC(2, 5, 6, 1-e, 15, 16, 17, 1a, 19,201 

In many control system applications, the 
signals are suppressed-carrier modulated, 
and the control information modulates a con­
stant-amplitude carrier signal (in practice , 
60 or 400 cps). For example, the form of volt­
age corresponding to the actuating signal 
may be as follows: 

V(t) =e(t) cosroot 

where e(t) is the true data signal, and w., is 
the carrier frequency. Networks which are 
designed to operate on the data of carrier­
modulated signals are called a-c or carrier­
frequency networks. If it is necessary to com­
pensate a system employing carrier-modu­
lated signals a-c networks are required since 
d-e networks will not work because they effec­
tively operate on zero-frequency-carrier sig­
nals. 

There are two questions involved in treating 
the compensation of carrier-modulated sig­
nals: 

{1) Analysis: Given a network which 
operates on a carrier-modulated signal, what 
is the data-frequency (d-e) equivalent net­
work? 

+ 

R2 

Eo 

r 1 
A. LAG NElWORK 

(2) Synthesis: Given a desired data-fre­
quency (d-e) network, what is the equivalent 
carrier-frequency network? 

If H(jro) is the frequency response of a 
carrier network, the frequency response of the 
data-frequency equivalent is given by 

1 
H(jrod) =-y!A2 + B 2 er.. 

2 

where 

{6-46) 

A = IH +I cos ( L lf+) + IH-1 cos(,L H_) 
{6-47) 

B = -IH +I sin ( L H +> + IH-1 sin ( L H-) 
{6-48) 

B 
"lj!d = tan-1

-

A 

H + 11 H [j ( illo + wd)] 

H _ 11 H [j ( illo - wd) ] 

roo = carrier freyuency 

Wa = data frequency 

{6-49) 

(6-50) 

{6-61) 

H (jwa) = frequency response of equiva­
lent data-frequency network. 

There is no unique answer to the synthesis 
problem, but a convenient answer is given by 
the "low-pass to band-pass" transformation. 
If it is assumed that the magnitude of the 
carrier-frequency equivalent of a data-fre­
quency network has even symmetry about the 

c 

+ 

e, 

B. LEAD NElWORK 

Fig. 6-7S D-C compensation networks. 
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carrier frequency W0 and that the phase angle 
has odd symmetry aboutwa. i.e., 

(6-52) 

(6-53) 

then the carrier-frequency equivalent to a 
given data-frequency network is 

(6-54) 

Unfortunately, an exact solution of Eq. 
(6-54) leads to the conclusion that if the data­

frequency network H is physically realizable, 
the carrier-frequency network His not. How­
ever, an approximation to the low-pass to 
band-pass transformation is possible which 
does lead to physically realizable networks. If 
the data frequencies wd are small compared to 
the carrier frequency {o 0 , then 

., 
w + wo-

j(w- o,)~j l Zjw (6-55) 

As an example, suppose that the frequency 
response of a data-frequency network is given 
by 

Tnjwa + 1 
Tdjwd + 1 

(6-56) 

The carrier-frequency equivalent can be found 
by using Eqs. (6-54) and (6-55). Thus 

DATA-FREQUENCY ELEMENT 

R 

o---A./V'v---o 

H(jw) _ ( 6-57) 

There are several ways to realize a carrier­
frequency network which is approximately 
equivalent to a given data-frequency network. 
The resistance-inductance-capacitance reali­
zation starts with the actual data-frequency 
circuit and replaces the data-frequency cir­
cuit elements by their approximate carrier­
frequency equivalents as shown in Fig. 6-17. 
Because of the practical difficulty of realizing 
parallel inductance-capacitance combinations 
in the carrier-frequency network, the usual 
procedure is to realize the data-frequency 
transfer function by means of a resistance­
inductance circuit. Then the carrier equiva­
lent will contain only series inductance-capac­
itance combinations. 

Because lag networks are usually inserted 
at very low data frequencies , their carrier 
equivalents are required to be very sharply 
tuned to the carrier frequency. That is, the 
carrier equivalent network must be a high-Q 
circuit. Unfortunately, such high-Q circuits 
are impractical for servo carrier frequencies 
(60 and 400 cps) and are very sensitive to 

CARRIER-FREQUENCY EQUIVALENT 

C/2 

Fig. 6-77 Equivalent circuit elements for carrier-frequency networks. 
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carrier frequency drift . To get around these 
limitations when lag compensation is desired 
for a carrier-modulated system, the usual + 
procedure is to demodulate the signal, com­
pensate it with a d-e lag network, and then 
remodulate. 

l 
I 

c 
I 

R 

c 
r II 

R ~ 

The realization of carrier-frequency lead 
networks is not as difficult as the realization 
of lag networks since they operate at rela­
tively high data frequencies and therefore do 
not require excessively high-Q circuits . How­
ever, carrier lead networks are also sensitive 
to carrier drift, although some attempts have 
been made to counteract this effect. (15,18) If 
the carrier drift is large (more than 5%), 
then the scheme of demodulation, compensa­
tion, and remodulation should be considered. 
An effective alternative to this scheme utilizes 
feedback compensation with a tachometer. 

E; R 2c E. 

An examination of the magnitude re­
spon~es of carrier networks shows that they 
fall mto the class of filters called "notch" 
filters . Methods for realizing notch filters 
with resistance-capacitance rather than re­
sistance-inductance-capacitance networks are 
discussed in Refs. (2,5,14). A typical resist­
ance-capacitance notch filter is shown in Fig. 
6-18. The frequency response of this carrier 
network is given by 

E. (jw) = H (J'w) = 
E; (J'w) 

- 1 
Wn- --

RC 

(6-58) 

(6-59) 

The approximate data-frequency equivalent 
IS 

(6-60) 

Thus , as far as data frequencies are con­
cerned, the symmetrical parallel - T notch 
filter behaves as a differentiator for data fre­
quencies up to approximately 0.2w0 • 

2 

Fig. 6-78 Parallel-T notch filter. 

The major difficulty in using resistance­
capacitance notch filters is that they must be 
tuned by successive adjustments of several 
circuit elements ; otherwise, high-precision 
elements must be used. 

6-6.3 MECHANICAL DAMPER 

A widely used mechanism having the action 
of a compensation network is the inertia 
damper shown in Fig. 6-19. The damper, 
which is connected directly to the servomotor 
shaft, consists of a thin cylindrical metal 
shell, a heavy cylindrical metal slug , and a 
damping fluid. If one neglects motor damp­
ing, the block diagram of the inertia damper 
and servomotor is that shown in Fig. 6-20. In 
this figure , 

6-19 

T = _J...:d:...:.( !.....:":....._' +.!...,_J=m )"­
B(J, + Jm +Jd) 

a= 1 + Jd 
J, +Jm 

T"' = motor torque 

T,, = load torque 

Om = motor shaft position 

(6-61) 

{6-62) 

J,, = motor moment of inertia and reflected 
load inertia 

J., = shell moment of inertia 

J<~ = slug moment of inertia 

B =fluid damping 

The advantages of the inertia damper are : 

(1) simplicity 

(2) no steady power loss 

+ 



SERVOMOTOR 

T,. + 

OUTPUT SHAFT 
AN~6 .. 

SWG _j BEARING_) 

Fig. 6-79 Inertia damper. 
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The disadvantages are : 

(1) damper must be designed and built 
for each specific application. 

(2) peak acceleration ofthe damper-motor 
combination is reduced relative to that of the 
motor alone because of the added apparent 
inertia produced at the motor shaft by the 
damper mechanism. 

6-6.4 HYDRAULIC AMPLIFIER (See Par.13-6) 
A fairly common means for obtaining lag­

network action in a hydraulic amplifier is 
shown in Fig. 6-21. In this figure, 

xi = input displacement of pilot valve 
x. = output motion of power piston 
x, = feedback motion of follow-up 

sleeve 
B = damping of fluid dash pot 

Fig. 6-20 Block diagram of inertia damper 

(motor damping negligible). 

K,, K 2 = spring constants 
a, b = lever arms 

FOLLOW-UP SLEEVE 

~ILOT VALVE 

Fig. 6-27 Hydro-mechanical compensation network. 
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If the gain of the hydraulic amplifier is very 
high (greater than 10), the transfer func­
tion of the system is 

X0 (8) ~~a(a _ 1) ( 1 + Ts ) 
x;(s) a 1 + aTs 

(6-63) 

where 
a= 1 + 5:: (6-64) 

K, 
and 

T =B/(K2 + Kd (6-65) 

6-6.5 PNEUMATIC CONTROLLER<21 > 

(See Par. 13-7.) 

The general schematic of a typical pneu­
matic controller is shown in Fig. 6-22. In this 
figure, 

t· = motion of set point (reference input) 
c =motion of pen (controlled variable or 

output) 

DIFFERENTIAL 
LINKAGE 

e = actuating signal 
x1 = flapper motion 
P,. = nozzle back pressure 
Po = pilot relay output pressure (to dia­

phragm valve or similar load) 

x1b = feedback motion. 

If the nozzle-flapper amplifier and the pilot 
relay are assumed ideal, the block diagram of 
the controller is as shown in Fig. 6-23, where 

K 1 = ratio of proportioning linkage 
(0 < K1 < 1) 

k,1 = nozzle-flapper gain 

kpr = pilot relay gain 

Simple proportional action (pure gain) is 
possible if the feedback function is achieved 
by means of a spring-loaded bellows as shown 
in Fig. 6-24. If the ratio of feedback motion 
x1b to pilot-relay output pressure Po is denoted 

NOZZLE 
FLAPPER 

PNEUMATIC 
FEEiiBACK 
NElWORK 

PILOT 
RELAY 

Fig. 6-22 Schematic diagram af a pneumatic controller. 

Adapted by permission from Instruments, Volume 26, No. 6, 
June, 1953, from article entitled 'Dynamic Behavior of Pneumatic 
Devices', by L. A. Gould and P. E. Smith, Jr. 

+ 

FEEDBACK 
FUNCTION 

Fig. 6-23 Controller block diagram. 

Adapted by permiSSIOn from Instruments. Volume 26, No. 6, 
June, 1963. from article entitled 'Dynamic Behavior of Pneumatic 
Devices', by L A. Gould and P. E. Smith, Jr. 
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by K1b, the transfer function of the propor­
tional controller is given by 

P 0 (S) (1 _KJ)k,1k,, 

e(s) 1 + KtK1bk,1kp,· 
(6-66) 

If the product K1K1bk"1kp, is very high (greater 
than 10), the proportional controller has the 
approximate response 

Po(s) 
e (s) 

(6-67) 

A lag-compensation effect (proportional­
plus-integral) can be achieved if the feed-

AIR 
SUPPLY 

r FLAPPER 

~==>l\/\l'vl===: 
SUPPLY 

RESTRICTION 

back function of Fig. 6-22 is obtained by 
means of the arrangement of Fig. 6-25. The 
feedback function in this case is given by 

x1b(s) = Ktb ( Tns ) 
Po(s) TRs+1 

where 

TR ~ RuCR 

R11 =integral resistance 

CR = capacitance of tank 

(6-68) 

K 1b = sensitivity of proportional bellows 

PROPORTIONAL 
BEL LOINS 

Fig. 6-24 Schematic diagram of a proportional controller. 

Adapted by per miSSIOn from I n struments. Volume 26 , No. 6. 
June, 1953, from article entitled 'Dynamic Behavior of Pneumatic 
Devices' , by L. A. Could and P. E . Smith, Jr. 

AIR 
SUPPLY 

""" I 

D 

CAP ACITY 
TANK 

INTEGRAL RESISTANCE 

OUTPUT, 
P. 

A - RESET BELLOWS 
B - PROPORTIONING BELLOWS 
C- RELAY 
D- SUPPLY RESTRICTION 

Fig. 6-25 Schematic diagram of a proportional plus integral controller. 

Adapted by permission from Instruments. Volume 26, No. 6. 
June, 1953. from article entitled 'Dynamic Behavior of Pneumatic 
Devices', by L. A. Gould and P. E . Smith, J r . 
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The transfer function of the controller then 
becomes 

P.(s) = (1- Kl)knfkp,· ( TRs + 1 ) 
e(s) auTRs + 1 

(6-69) 

where 

flu = 1 + Klknfkp,.K.fb (6-70) 

If the product Kikn1kp,.Kfb is very high 
(greater than 50), the response of the pro­
portional-plus-integral controller is approxi­
mately 

Po (s) ~ (1- Kd ( 1 + _1_) (6-71) 
e (s) K 1K1b TRs 

The form of the right side of this equation 
explains the name -"proportional-plus­
integral" controller. 

A lead-compensation effect (proportional­
plus-derivative) can be achieved if the feed­
back function of Fig. 6-22 is obtained by 
means of the arrangement of Fig. 6-26. The 
feedback function in this case is given by 

AR 
SUPPLY 

D 

c 

x,b(s) - K (~ s + 1) 
P. (s) - tb Tds + 1 

(6-72) 

where 

Td ~Rt~Cd (6-73) 

b a 1 + Ad (6-74) 
= Av 

Rd = derivative resistance 
cd = capacitance of tank 

A, =area of derivative bellows 
A, = area of proportional bellows 

K.1b = sensitivity of proportional bellows 
The transfer function of this controller is 

P.(s) -- --
e (s) 

where 

(1- KI)k.tkpr ( T,t.S + 1) 
1 + K1k .. 1kp,K,b ~; s + 1 

OUTPUT, P • 

A - PROPORTIONING 

E -VARIABLE 
DERIVATIVE 

(6-75) 

(6-76) 
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If the product_!_ (Klkn1kP,.K1u) is very high 
b 

(greater than 10), the response of the 
proportional-plus-derivative controller is ap­
proximately 

Po(s) ~ (1- K 1 ) r1s + { 
'(') (- -) KlKtb ~d s - 1 

(6-77) 

If the ratio of the areas (Aa/Ap) is very high 

(greater than 50), then b > > 1, and the re­

sponse is given approximately by 

(6-78) 

The form of the right side of this equation 

explains the term -"proportional-plus­

derivative" controller. 
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CHAPTER 7 

PERFORMANCE EVALUATION* 

7-1 RELATIONS BETWEEN FREQUENCY RESPONSE 

AND TRANSIENT RESPONSE 

7-1.1 GENERAL 

As stated in Par. 6-5, the relationship 
between transient response and frequency re­
sponse is somewhat tenuous. Consequently, it 
is often necessary to have explicit knowledge 
of the response in both the time and fre­
quency domains. This section presents some 
of the important approximations that enable 
the designer to translate between the time­
and frequency-domain descriptions of per­
formance. By the use of these approxima­
tions, a quick evaluation of performance can 
be made. 

7-1.2 CLOSED-LOOP FREQUENCY RESPONSE 
FROM CLOSED-LOOP TRANSIENT 
RESPONSE 

If the closed-loop transient response of a 
system is known from experimental test data, 
there are several methods< 21 •22•27•28•29·3°l avail­
able for determining the frequency response. 

If the step response of the system is non­
oscillatory (i.e., has no overshoot), the tran­
sient component of the response can be ob­
tained by subtracting the step response from 
the final value of the output, i.e., 

c,(t) =c(oo) -c(t) (7-1) 

where c ( oo) is the final value of the output, 
c ( t) is the step response, and c, ( t) is the 
transient component of the response. The 
logarithm of Ct ( t) is plotted against time on 
semi-log paper. If the response is dominated 
by an exponential component, the resultant 
curve plotted on semi-log paper eventually 

*By L.A. Gould 
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approaches a straight line whose slope cor­
responds to the magnitude of the dominant 
time constant. That is, if the dominant tran­
sient component is 

c,l (t) = Ae-t!T, 

then 
loge Ct

1 
(t) =loge A-t/T 

(7-2) 

(7-3) 

An extrapolation of the straight-line asymp­
tote of logr c, 1 ( t) back to zero time yields the 
logarithm of the amplitude A of the dominant 
transient component. Thus, the dominant 
transient component is completely determined 
and can be subtracted from c, ( t ).A plot of the 
logarithm of the difference [ct(t) -c11 (t)] 
versus time t produces a curve which ap­
proaches a straight-line asymptote whose 
slope corresponds to the time constant of the 
exponential component having the next small­
er time constant. Extrapolating this curve 
back to zero time yields the logarithm of the 
amplitude of the secondary component, c1., ( t ). 
Next, the function [c, (t) - c11 (t) - c,;(t)] 
is determined, and the process can be re­
peated until the limit of measurement accu­
racy is reached. 

Thai-Larsen <21 > gives a method for deter­
mining approximate transfer functions based 
on the approximation of a nonoscillatory step 
response by the transfer function 

W(s) = C(s) 
R(s) 

(7-4) 
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where T2 and T3 are dimensionless time con­
stants and t0 is the dead time. 

By choosing the 10%, 40%, and 80% times 
in the step responses of this system for the 
various combinations of its parameters , a 
set of dimensionless curves have been con­
structed. In using the curves (Figs. 7-1 
through 7-5), the three points correspond­
ing to the 10%, 40%, and 80% response 
levels of the measured response are deter­
mined, and the times corresponding to these 
points are designated th t~, and t3, respec­
tively. The values of the dimensionless ratio 
(ta -t1)/(t2 -t,) and the time (ta-t,) to­
gether with curves of Figs. 7-4 and 7-5 will 
enable the designer to determine a set of 
roots that corresponds to a transient passing 
through the three selected points. If a dead 
time to is present, the ratio (t3 - tt) I (t2 -to) 
will enable the designer to select roots that 
reproduce the :first 10% of the transient. 
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I 0-percent transient response corresponding to 

combinations of various time constants 

By permission from Tranttactions of the AlEE, Volume 74 Part II, 
1955, from article entitled 'Frequency Response from Experi­
mental Nonoscillatory Transient-Response Data', by H. Thai­
Larsen. 
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Example. Let 

t, = 0.97 sec 

t2 = 2.14 sec 

ta = 4.47 sec 

Then, 

ta -tJ =3.00 
t2 - t, 

(a) Entering Fig. 7-4 at this value (i.e., 
3.00), several curves are crossed allowing the 
choice of various combinations of the dimen­
sionless or relative time constant T. Choosing 
three of these combinations : 
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By permission from Transactions of the AlEE, Volume 74, Part 
II, 1955, from article entitled "Frequency Response from Experi­
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(1 ) Curve 1-T- T : 1, 0.275 , 0.275 

( 2) Curve 1-0.4-T: 1,0.4, 0.135 

(3) Curve 1-T: 1, 0.520 

(b) Entering Fig . 7-2 with the dimension­
less time constants found above, the dimen­
sionless time (t3 - t1) /r1 is determined : 
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(1) Curve 1- T- T for T = 0.275 : 
1.755 

(2) Curve 1-0.4- T for T = 0.13 5: 
1.790 

(3) Curve 1- T for T = 0.520 : 1.890 

(c) The time (t3- tt) from the actual 
transient divided by the dimensionless time 
(ta - t1) / t 1 y ields the conversion factor t 1 by 
which the relative time constants found in 
the first step must be multiplied to obtain the 
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actual tim e constants . Note that Eq. (7-4) 
represents a normalized transfer function 
with dimensionless time constants 1, Tz, and 
T3• The tim e constants for the original func­
tion before normalization are t1, t1T2, and 
t1 T;1• For the example {t3 - t1) = 3.50 sec, 
the three combinations which fit the original 
curve are: 

( 1) t1 = 1.995 sec; t1T~ = t 1 T 3 = 0.549 sec 

( 2) t 1 = 1.955sec; ttT~ = 0.782sec; 
t 1Ta = 0.264 sec 

(3) t 1 = 1.850 sec; T:tT" = 0.963 sec; 
ttTa = 0 
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fig. 7·5 Normalized curves yielding the time 

mterval between 70- and 80-percent response of 

the transient corresponding to combinations of 

various time constants. 

uy permission from Transactions of th e AlEE. Volume 74. Part 
Il. 1955, from art icle entitled 'Frequency Response from Experi­
mental Nonoscillatory Transient-Response Data', by H. T hai­
Larsen. 
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(d) To check for the necessity of a dead­
tim e factor , enter Fig. 7-5 with the dimen­
sionless time constants T from the second 
step to determine t~/t 1 • 

(1) Curve 1-T -TforT = 0.275; 
1.075 

(2) Curve 1-0.4- T forT = 0.135 ; 
1.055 

(3) Curve 1- T forT= 0.520; 1.018 

(e) The conversion factor r 1 found in the 
third step , together with the results of the 
fourth step , permit the calculation of the 
actual tim et~ if no dead time is present. Thus, 
for the three combinations considered, there 
results 

(1) t:~. = 2.142sec 

(2) t2 = 2.060 sec 

(3) t2 = 1.885 sec 

(f) The times found in the fifth step when 
subtracted from the measured time t 2 yield 
the dead time to. The actual measured time 
t2 = 2.14 sec. Therefore, 

(1) to= 2.14 -2.142 = 0 

(2) t 0 = 2.14 -2.060 = 0.080 sec 

(3) to= 2.14- 1.885 = 0.255 sec 

(g) By substituting the appropriate values 
from steps (c) and (f) into Eq. (7-4) , we 
find that the three transfer functions which 
approximate the response in the lOo/o to 80 % 
interval are 

(1) W(s)- -----
1
---­

(L995s+ 1) (0.549s+1)2 

(2) W( s) ==: 
e-0.0808 

(1.955s+l) (0.782s+1) (0.264s+1) 

e -0.255s 
(3) W (s) <==- -----:-----­

- (1.850s+1) (0.963s+l) 

Chestnut and Mayer< 27 l give graphical 
methods that are useful for determining fre­
quency response from transient response m 
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any case (oscillatory or nonoscillatory). To 
find the frequency response associated with 
the step response of a system, the time axis 
of the response is divided into equal intervals. 
Then a "staircase" approximation (see Fig. 
7-6) is made to the step response with each 
step occurring at the middle of a given time 
interval. If t, is the middle of the nth time 
interval and AC, is the change in the re­
sponse occurring at t,, then the frequency 
response is given by 

W (jw) = ~ L1C11 e-i•"t,. (7-5) 
n=l 

This equation can be evaluated graphically 
at each frequency by a "vector" summation. 

To find the frequency response correspond­
ing to the impulse response of a system (the 
impulse being approximated experimentally 
by a short finite pulse), the time scale of the 

'·+ 
f c' .s ~ 

Fig. 7-6 Rectangular approximation to step response. 

1. 0 
1-

2. 0 

Fig. 7-7 Rectangular approximation to impulse 

response. 

7-5 

impulse response is divided into equal inter­
vals. Then a rectangular-pulse approxima­
tion is made to the impulse response (Fig. 
7-7). If tn is the center of the nth time inter­
val, en -the value of the impulse response at 
t, and At - thelength of the time interval, 
then the frequency response is given by 

00 

W(jw) = L C11!1te-imt,. (7-6) 
n=l 

This equation can be evaluated graphically at 
each frequency by a "vector" summation. 

Seamans et al. (28 •29 l use a triangular meth­
od to approximate a given time function 
c (t). This is equivalent to approximating 
the time function by straight-line segments 
and then decomposing the straight-line ap­
proximation into a series of isosceles triangles 
(Fig. 7-8). Once the transform of a single 
triangular pulse is known, the frequency func­
tion C (jw) corresponding to c ( t) is found 
from 

C(jw) 
[ 

. wM ]2 sm--
= e-imfo 2 L1t[ f Elle-inmM] 

wL1t n=l 

2 
(7-7) 

where to represents the time at the start of 
the first pulse, At- the time interval be­
tween pulses, and E, -the amplitude of the 
nth pulse. 

Guillemin<~R.aoJ suggests that the time func­
tion be approximated by a sequence of rational 
polynomials in t (straight lines, parabolas, 

Fig. 7 ·B Triangular approximation to time function. 
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cubics, etc.) . The approximate function c* ( t) 
is differentiated enough times (ntimes) to 

dn 
make--c* a sequence of impulses. Actually, 

dtn 
the original function may be differentiated 
before approximating by polynomials so that 
lower-order polynomials can be used. The 
final impulse function is then transformed, 
yielding 

(7-8) 

where a, is the magnitude of the kth impulse, 
t,. -the time of occurrence of the kth impulse, 
and n -the total number of times the orig­
inal function has been differentiated. 

If rational approximations are sought for 
an experimentally derived frequency function 
W (jw), advantage can be taken of the fact 
that the plot of 10 log, I W (jw) I vs logw is 
easily representable by straight-line asymp­
totes having slopes of ± 1 On dg/dec ( n = 0, 
1, 2, ... ) . By combining the straight-line ap­
proximation of the magnitude function with 
the first- and second-order response curves 
given in Par. 5-3 (Figs. 5-7 through 5-10) , 
curve fitting is possible. The easiest proce­
dure is to use the magnitude curves to get a 
rough approximation and then to refine the 
approximation with the phase curves . 

-At 0 +At t-

Fig. 7-9 Triangle function. 

7-6 

Linvill05•28 > has proposed a method for im­
proving the foregoing approximation proce­
dure. In this method, an investigation is made 
of the effect of varying the position of the 
approximate poles and zeros on the difference 
between the actual function and the first ap­
proximation obtained from fitting the asymp­
totes and their corresponding correction 
curves . For example, if 

F (w) = 10 log1o! G (jw) I 
and 

G(s) = s~ - 2a1s + a 1
2 + w1

2 

s~ - 2a2s + a} + wl 

(7-9) 

(7-10) 

then the change in F (03J resulting from small 
changes of the poles ( -+-a2 ± jw2) and the 
zeros ( -+-a1 ± jw1 ) is given by 

(7-11) 

The steps in the approximation procedure 
are as follows : 

(a) A plot is made of the difference be­
tween the actual F (03J and the first approxi­
mation in a frequency region where the first 
approximation is to be improved by changing 
the position of approximate poles and/or zeros 
which occur in this region. 

(b) The variation of the pertinent partial 
derivatives of F(w) with frequency w is de­
termined in the vicinity of the approximate 
poles and/or zeros . 

(c) The pertinent partial-derivative curves 
are used to approximate tlF ( w) in the fre­
quency region of interest. From this approxi­
mation, the necessary changes in the positions 
of the approximate poles and/or zeros are 
determined. 

The curves of Figs. 7-lOA through 7-lON 
can be used to evaluate the necessary partial­
derivative curves. Note that the phase correc­
tions can be determined by using the same 
procedure . 
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7•1.3 RELATIONS BETWEEN CLOSED-LOOP 
TRANSIENT RESPONSE AND CLOSED­
LOOP POLE-ZERO CONFIGURATION 

It is desirable to be able to describe prop­
erties of the transient response of a. system 
when one is given the closed-loop pole-zero 
configuration and vice versa. Usually, the de­
signer is given specifications for some form 
of the transient response of a system. As are­
sult the conversion of the transient-response 
spe~ifications to a desired closed-loop pole­
zero configuration is a starting point in many 
design procedures [see Par. 6-5 and refer­
ences(3·"·6·19·20·28>] . Since the usual assumption 
in these design procedures is that the closed­
loop performance of the system is primarily 
controlled by a dominant pair of complex 
poles (dominant quadratic factor in the de­
nominator), only the characteristics of an 
underdamped second-order system are pre­
sented here. 

If the system being examined is a unity­
feedback system with a pair of complex­
conjugate poles and no closed-loop zeros, the 
closed-loop transfer function relating output 
to input is 

The error-to-input transfer function is 

E(8) 8(8 +z~wn) 
R ( s) 8~ + 2~Wn8 + Wn2 

The open-loop transfer function is 

G ( 8 ) = C ( 8) = Wn 
2 

E ( 8) 8 ( 8 + 2~wn) 
In these equations, 

wn =natural frequency 

and 

~=damping ratio. 

(7-13) 

(7-14) 

The magnitude and phase of the closed-loop 
frequency response W (jw) are the second­
order quadratic factor curves presented in 
Par. 5-3. The velocity constant Kv of the sys-
tern is 

(7-15) 

The first three error coefficients are 

e, = 0 (7-16) 

1 
(7-17) e1 = 

Kv 

1-452 
(7-18) e2 = 

Wn
2 

The error response curves for a unit-ramp 
input are given in Fig. 7-11. Note the steady­
state error for a unit-ramp input to this sys­
tem is given by 

2~ 1 e,.=--=--
Wn Kv 

(7-19) 

The error response curves for a unit-step 
input are given in Fig. 7-12. The output re­
sponse can be obtained from these curves by 
subtracting them from unity. The solution 
time or settling timet, of the step response is 
the time for the output to reach 98% of its 
final value or for the error to fall to 2% of its 
initial value. For the second-order system, 

4 t,= --
~Wn 

(7-20) 

The output response curves for a unit-step 
input are plotted in Fig. 7-13. 
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Adapted with permission from Principle& of Servomechanisms, 
by G. S. Brown and D. P. Campbell, Copyright. 19~8, John 
Wiley & Sons, Inc. 
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Quantitative descriptions of the relation­
ships between properties of the transient re­
sponse and the frequency response of a 
second-order system will now be given. The 
resonant frequency of the closed-loop re­
sponse W (jw) is 

(7-21) 

The magnitude of the resonant peak M9 (see 
Fig. 7-14) is given by the relation 

M- 1 
p - 21; v' 1 - 1;2 

(7-22) 

The frequency of damped transient oscilla­
tion w" (damped natural frequency) is 

(7-23) 

The time taken to reach the firstpeak in the 
output response to a unit-step input is 

t - :rc 
"'l - w,. v' 1 - 1;2 

(7-24) 

- 0.2 

2 

DIMENSIONLESS TIME,"'" t 

Fig. 7-72 Transient error-response curves of a 

second-order servomechanism to a unit-step input. 

Adanted with permission from Principles of Ser vomech atti.-..Ht• 
h)' G. S. Brown &nd D. P. Campbell, Copyright, 1948, John 
Wiley & Sons, Inc. 

Fig. 7-13 Transient output-response curves af a 

second-order servomechanism to a unit-step input. 

Adapted with permission from Prin ciples of Seti'Omechanhm, 
by G. S. Brown and D. 1'. Campbell. C opyright, 1948. John 
Wiley & Sone, Inc. 
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The peak overshoot Pov in the output response 
to a unit-step input (see Fig. 7-15) is 

_,.,_"1;_ 
P - - yl-t;• 

OV- e (7-25) 

If bandwidth is defined as the frequency rob 
at which 10 log, I W (jro) I is down 1.5 dg from 
the zero-frequency value, then 

rob = ro,. [ 1 - 2t2 + y 2 - 4t2 + 4t4 P'2 

(7-26) 

With the important characteristics of a 
second-order system described, it is possible 
to use these characteristics to aid in establish­
ing a desired closed-loop pole-zero configura­
tion from the transient-response specifica­
tions. 

A few general relations between pole-zero 
configurations and transient-response charac­
teristics are in order. Most closed-loop re­
sponse functions of unity-feedback systems, 
W (s),are characterized by a pair of dominant 
complex poles, one or more dipoles (pole and 
zero close together), one or more finite zeros, 
and poles whose magnitudes are much greater 
(a factor of five or more) than the magnitude 
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By permission from Autom<>tic Feedback Control System Syn• 
them, by J. G. Truxal. Copyright, 1966, McGraw-Hill Book 
Company, In::. 

of the dominant pair of poles. 13.5,6,12,18,19,28) 

The pertinent relations are as follows: 

(a) The addition of a real zero to W ( s) 
tends to increase the overshoot of the output 
response to a unit-step input, decreasing the 
rise time and time delay. 

(b) The addition of a real pole to W(s) 
tends to decrease the overshoot of the output 
response to a unit-step input, increasing the 
rise time and time delay. 

(c) The addition of real poles to W (s) 
whose magnitudes are much larger than the 
magnitude of the dominant pole pair has very 
little effect on the transient response. 

(d) The addition of complex poles toW (s) 
whose magnitudes are much larger than the 
magnitude of the dominant pole pair has very 
little effect on the transient response provided 
the damping ratio of the added poles is not too 
small. 

(e) The addition of a dipole to W(s) has 
very little effect on the step response of the 
system but may have a pronounced effect on 
the steady-state errors of the system. 

(f) The excess of poles over zeros for 
W ( s) is equal to or greater than the excess 
of poles over zeros for the fixed-element 
transfer function G1(s). 

(g) Most military applications require 
that W(O) = 1. This implies that the open­
loop transfer functions C(s)/E(s) = G(s) 
have at least one pole at the origin. 

(h) In any system with one open-loop pole 
at the origin, the first three error coefficients 
are 

e, = 0 (7-27) 

" 1 m 1 
}:-- }:- (7-28) 
l=l P1 i=l ZJ 

~-1) 
;=t zl 

(7-29) 

where -p1 is the jth pole of W(s), -z1 jg 

the jth zero of W(s), and Ku is the velocity 
constant of the system. 
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( i) In any system with two open-loop 
poles at the origin, the first three error co­
efficients are 

e,= 0 (7-30) 

(7-31) 

e~ = _ ~ ( i _I __ ~ _I_) = _I_ 
- 2 i=l P/ J=l zl Ka 

(7-32) 

where Ka is the acceleration constant, -P; 
is the j th pole of W (s), and -z; is the j th 
zero of W (s). 

( j) If the cutoff frequency Wco is defined 
as the frequency at which the phase of the 
closed-loop frequency response is - 90° and 
the buildup time tbu is the time for the output 
response first to cross unity for a step input, 
then 

(7-33) 

(k) If the rise time tr is defined as the 
time required for the output response to a 
unit-step input to go from 10% to 90% of 
its final value and rob is the bandwidth as de­
fined immediately above Eq. (7-26), then 
for a response with less than 10% overshoot, 

wbtr 4 -- = 0.30to 0. 5 
2n: 

(7-34) 

( 1) If the delay time td is defined as the 
time for the output response to a unit step 
to reach 50% of its final value, then 

1 
td ~ -­

K, 
(7-35) 

From the characteristics of the second­
order sy stem and the general relations (a) 
through (n) of the preceding paragraph, the 
conversion of time-domain specifications to 
a closed-loop pole-zero configuration becomes 
a fairly straightforward matter. Truxal<28l 

presents a very good description of a typical 
procedure. 

Example. The specifications for a servo­
mechanism are as follows : 

(a) G1 (s) = K ) 
s(s +a 

(b) The bandwidth rob of the closed-loop 
response shall be less than 50 rad/sec, and 
the output response of the system to a unit­
step input shall have an overshoot less than 
5% of the final value. 

(c) K., > 50sec-1 

(d) !ezl < 0.01 sec2 

Find a closed-loop pole-zero configuration 
that satisfies these specifications . 

(m) If the rise time tr is as defined in (k), 

Solution. If the system is initially approxi­
mated by a second-order response with no 
zeros, Fig. 7-15 shows that~> 0.7 for a peak 
overshoot Pov < 5%. For~= 0.7, Eq. (7-26) 
yields wb = ron. Therefore, Wn < 50 rad/sec. 
The dominant pole pair is thus placed at 
s = -35 ± 35j corresponding to w, = 49.5 
radjsec and~ = 0.707. Now using Eq. (7-15), 
we find thatK, = 35 sec-1, which is too small a 
value. To increase K,, a dipole will be added. 
The pole of the dipole must not be set at too 
low a frequency or else an excessively long 
tail in the transient will occur. The magni­
tude of the pole of the dipole will therefore be 
chosen to be one-tenth the real part of the 
dominant poles. This corresponds to a pole at 
-3.5. To determine the location of the zero 
of the dipole, E q. (7-28) is used. At this 
point, the approximate closed-loop response 
lS 

lit/~-( 2e2 +Ih-) (7-36) 

where e2 is the second error coefficientand Kv 
is the velocity constant. 

(n) If the settling time (solution time) t, 
is the time for the output response to a unit­
step input to reach 98% of its final value, 
then 

(7-37) 
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where P1 = + 3.5, ~ = 0.7, Wn = 49.5, and Z1 

is to be determined. Using Eq. (7-28), 

L _ 1 + 1 
Kv - PI ~Wn + jwny/1-~~ 

+ ___ 1----=== 1 

or, 

Therefore, z1 = 3.40. The desired pole-zero 
configuration for W ( s) is given by 

Ws= 2520(s+3.4) 
( ) - (s~ +7os +2450) (s+3.5) 

The second error coefficient of this system can 
be found from Eq. (7-29). Thus, 

1 [ 1 ( l )2 
e2 = - -2 {(v; + P:

2 
+ ~Wn + jy1- ~~ 

-t- (~Wn- j~ 1- ~2 r- Z:~] 
Evaluating this expression, it is found that 
e2 = 2 X 10-3 sec2 , which is well within speci­
fications. All the specifications should be 
checked at this point to insure that the sys­
tem behaves as desired. The example above 
has been carried out far enough to demon­
strate the basic ideas involved in finding a 
closed-loop pole-zero configuration that satis­
fies the given specifications. 

7-1.4 RELATIONS BETWEEN OPEN-LOOP 
FREQUENCY RESPONSE AND CLOSED­
TRANSIENT RESPONSE (4,7,1,11,12,25,26) 

Since most of the design techniques dis­
cussed in Pars. 6-2, 6-3, and 6-4 involve con­
siderations of the open-loop frequency re­
sponse C(jw) I E(iw) =GUo), methods for 
relating the open-loop frequency response to 
the closed-loop transient response will be pre­
sented here. 

Harris et al. m present an approximate 
technique for determining the error response 
e(t) to a transformable input r(t). If w" is 
defined as the frequency at which the open­
loop asymptotes cross 0 dg (asymptote cross­
over frequency; see Fig. 7-16), this method 

assumes that we occurs in a region where the 
slope of the asymptote is -10 dg/dec. In 
general, the shape of the open-loop asymptote 
for frequencies greater than we has little 
effect on the transient response of the system. 

The reciprocal error-to-input transfer 
function R ( s) IE ( s) can be found from the 
open-loop response C (s)/E(s) by using the 
relation 

(7-38) 

Since the open-loop asymptote function 
C (s)/E (s) is almost always a monotonically 
decreasing function of frequency, the asymp­
tote crossover frequency We divides the fre­
quency scale into two regions : 

R(s) = C(s) forw <<We 

E(s) E(s) 

R(s) :::::1forw>>wc 
E(s) 

(7-39) 

(7-40) 

The procedure for finding e ( t) is as follows: 
(a) From [R (s) /E (s) ].11pro&imate by using 

all factors of C (s)/E (s) corresponding to 
poles and zeros of C(s)/E(s) with magnitudes 
(break frequencies) less than we. Delete all 
other factors of C (sY E ( s) and add a numer-

ator factor equal to ( 1 +~c) . 
(b) [E(s)!R (s) ]approximate is the reciprocal 

of [ R( s )/ E ( s )] appro.~:imate· From the transform 
R(s)ofthe inputr(t)and the approximate 
error-to-input transfer function, find the first 

t 
3 
~ 

0 0 dg 

.! 
~ 

Fig. 7-76 Typical open-loop asymptote function. 
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approximation to e ( t )by performing the in­
verse Laplace transformation of the function 
[E(s)/R(s) 1appro.rimate X R(s) and plotting 
this time function. 

(c) Find the correction ratio, 

P = ( [R (s) /E (s)] approximate ) (7-41) 
[R(s) /E (s)] exact 

S =Jwc 

(d) The ends w, and w,. of the -10 dgjdec 
slope region which fixes We are called the low­
er-and upper-corner (or break) frequencies 
ofthe -10dg/dec region (see Fig. 7-16). The 
plot of the first approximation to e ( t) found 
in (b) is multiplied by the correction ratio p 

in the time interval 

1 1 
-<t<- (7-42) 
w,. Wz 

and the resulting curves are joined smoothly 
in the regions t = 1/wu and t = 1/wz. This 
method works best if the -10 dgjdec slope 
region is fairly long (w,./w1:::::::: 8) and if the 
closed-loop MP is close to unity. 

Chestnut and Mayer <8•26> present a series 
of charts that can be used to determine the 
properties of a unity-feedback system from 
the asymptotes of the open-loop frequency 
response. These charts utilize the following 
terminology (see Fig. 7-17) : 

_M, the maximum ratio of closed­
loop frequency response 

~ the peak value of the ratio of con­
= trolled variable (output) to refer­

ence variable (input) for a step in­
put 

A the ratio of the frequency Wm at 

which C I occurs to the frequency 
Rm 

We at which the straight-line ap­
proximation (asymptote) of the 
open-loop response is 0 decibels. 
(Note: 2 decilogs = 1 decibel.) 

7-22 

! the ratio of we, the lowest frequency 
-of oscillation for a step input, to w"' 

the frequency at which the open­
loop asymptote crosses 0 db (deci­
bels). 

~the asymptote crossover frequency 
- We times tp, the response time from 

the start of the step function until 

.2_1 occurs. 
Rp 

wet• ~the asymptote crossover frequency 

;: ... ... 
"' • 0 ... 
Q 

utuo 

!.! 
Ill: 
w 
~ 
:::) 

'% 
<C 

0 

- We times t,, the settling time from 
the start of the step function until 
the output continues to differ from 
the input by less than 5%. 

4(1 4b/deeo<l• 

A 

OPEN-LOOP TRANSFER 
FUNCTIONG 

STEADY -STATE 
FREQUENCY RESPONSE 

ui;., 0 1-------'-- ----=---.... 
"'• RADIANS PER SECOND 

0 

TRANSIENT RESPONSE FOLLOWING 
A STEP-FUNCTION INPUT 

t, SECONDS 

c 
fig. 7-17 Sketches showing nomenclature used to 

describe various characteristics of servomechanism 

performance. 

Reprinted with permission from Servomechani• ma and Regu­
lating Sy•tem Design, Volume I, by H. Chestnut and R. W. 
Mayer, Copyright, 1961. John Wiley & Sons, Inc. 
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Additional definitions are given in Fig. 7-17. 
The charts correlating the quantities defined 
here are presented in Fig. 7-18 (sheets 1-18). 
It should be noted that these charts can be 
used either for analysis or for synthesis. 

Biernson <11 > presents an excellent method 
for determining the closed-looppoles of a sys­
tem from the open-loop frequency response. 
If it is assumed that the asymptote crossover 
frequency We of the open-loop frequency re­
sponse occurs in (or near) a frequency region 
where the slope of the asymptote is -10dg/ 
dec, then the following relations hold if 
I G (iw) I is a monotonically decreasing func­
tion: 

IG<fw) I =='1 foro::::::: We (7 -43) 

I G Uw) I > > lfor w < < We (low-frequency 
range) (7-44) 

IG<fw) I<< lfor w >>We (high-frequency 
range) (7-45) 

The first approximation to the location of the 
poles of the closed-loop transfer function 
C (s )IR (s) is obtained from the following: 

(a) The zeros of G (s) whose magnitudes 
are less than We (low-frequency zeros) 

(b) The poles of G(s) whose magnitudes 
are greater than We (high-frequency poles) 

(c) A pole at s = -we 

For real or complex closed-looppoles which 
are far from We in magnitude, the shift from 
the first approximation of these poles to their 
actual location can be calculated by a succes­
sive-approximation method which converges 
more rapidly the further the poles are from 
We. If a closed-loop pole is approximated by a 
low-frequency zero of G(s), then the true lo­
cation of the closed-loop pole s1 can be deter­
mined by successively evaluating 

{l>a)"::::::: [ (8-Sa}"l 
G(s) •=• 

for lsal < W 0 , and S1 ::::::: Sa 

(7 -46) 

where n is the order of the open-loop zero, sa is 
the location of the open-loop zero, and 6, is the 
shift from the open-loop zero to the closed­
loop pole, i.e., 6, = 81 -Sa. 

If a closed-loop pole is approximated by a 
high-frequency pole of G(s),then the true lo­
cation of the closed-loop pole s2 can be deter­
mined by evaluating 

(l>b)":::::::- [(s -sb)"G(s)] .-. 
- . 

(7 -4 7) 

where n is the order of the open-looppole, Sa is 
the location of the open-looppole, and l)b is the 
shift from the open-loop pole to the closed­
loop pole, i.e., t>b = s2 - sb. 

For closed-loop poles near we, a graphical 
procedure<11l is recommended since the con­
vergence of the numerical method employing 
Eqs. (7-46) and (7-47) is either slow or nonex­
istent. The graphical procedure involves plots 
of G(s) for s = - o + iw (along axes other 
than the imaginary axis). Because the graph­
ical procedure tends to be somewhat lengthy, 
it will not be given here. 

Example. The open-loop transfer function 
of a unity-feedback system is given by 

G(s) = Ko(s + w2) (s + !".0:1) 
s(s +w1 )2(s + w4)2 

where 

W1 = 0.04 

w2 = 0.2 

!".0:1= 1 

W4 = 16 

(7-48) 

Ko is a proportionality constant whose value 
is to be determined. The asymptotes of this 
function are sketched in Fig. 7-19. The cross­
over frequency w0 is chosen as the geometric 
mean of w3 and w4 since this particular choice 
tends to produce the lowest closed-loop M9 • 

Near we, the asymptote is given by 

7-23 

At the crossover frequency, W0 , therefore, 
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Inspection of Fig. 7-19 and Eq. (7-48) shows 
that the low-frequency zeros of G(s) occur at 
-w2 and -(!)3 and that the high-frequency 
poles of G (s) consist of a double pole at 
-w4• Therefore, the poles of the first approxi­
mation to C(s)/R(s) occur at -w2 (single­
order) , -(J)s (single-order) ,and -(!)4 (double­
order) , plus one pole at -we. The zeros of 
C(s)/R(s) are the zeros of G(8), -(!)2 and 
-w3 • As a result, the first approximation to 
C(s)/R(s) is 

JJ.1JJ.l = illcOJ4
2 

R ( 8) _(_8_+....-<o-e-'-) -( 8=--+--.---w-4-) -2 

K. (zeros of G(s) above We) 

(poles of G (s) above (J)e) 

(7-49) 

The first approximation to E(8) is found to 
be 

The approximate 
given by 

(poles of G ( s) below we) 

(zeros of G (s) below we) 

(7-50) 

factors of 1+G(8) are 

1+G(s)::::: (s+0.2) (s+ 1)(s +4) 
(8 + 16)2 (7-51) 

To evaluate the shifts from the approximate 
factors given in Eq. (7-51), Eqs. (7-46) and 

Fig. 7-7 9 Sketch of open-loop asymptote function. 
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(7-47) are used. The numerical form of 
G(8) is 

G(8) = 4 X 162 (8 + 0.2) (8 +I) (7_52) 
8(8 + 0.04)2(8 + 16)2 

Since We = 4, the numerical method should be 
tried for the factors (s + 0.2), ( s + 1), and 
(s +16). The shift from the approximate 
pole at s = --0.2 to the true pole is given by 

~2 ~ _ (
8 + 0·2> J _ = 0.0016 
G (8) •--o.2 

(7-53) 

Since this quantity is small , the true pole 
lies at 

8 = --0.2 + 0.0016 = --0.1984 

For the approximate pole at s = -w3 = ~. 
the shift to the true pole is given by 

~a~ - (8 + 1) ] ,.... --0.253 
G(8) •=-1 

(7-54, 

This quantity is reasonably large so that a 
second approximation to 1)3 is made by evalu­
ating the right side of Eq. (7-54) at 8 = 
(-1) + ( -0.253), instead of at 8 = -1, 

yielding 

1)3 -(8 + l)] = -0.373 
G ( 8) •=-1.253 

(7-55) 

The shift is still not too well approximated 
since the change from Eq. (7-54) to (7-55) is 
significant. The third approximation to ~3 is 
obtained by evaluating E q. (7-55) at 8 = 
( -1) + ( -0.373), instead of at s = -1 .253, 

yielding 

~3.,.,-(8 + l)) ,. --0.435 
G(8) •=-1.373 

(7-56) 

Since the original approximate closed-loop 
pole at 8 = -1 was fairly close to the cross­
over frequency We = 4, it is to be expected that 
the process of determining the shift 1)3 will 
converge fairly slowly. The succeeding ap­
proximations to the value of the p 1 e are as 
follows: 
-1.468, -1.485, -1.496, -1.503, -1.507, 
-1.509, and finally -1.510. 
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For the approximate double-order pole at s = 
-16, the shift is given by 

or 

(1)4)2- - (s + 16) 2G (s) ].=_
16 

= 59.6 

(7-57) 

(\4 = ±7.7 

The original double-order pole splits in two, 
one pole moving toward We and the other pole 
moving away from W 0 • Only the pole moving 
away from we can be determined by the numer­
ical method. The second approximation to the 
shift of this pole is s = ( -16) + ( -7.7) 
- -23.7. The third approximation to the 

shift of this pole is obtained by evaluating Eq. 
(7-57) at s = -23.7, instead of at s = -16, 

yielding 

(ll4 ) 2 :::::- (s + 16)2G(s)] = ±6.4 
~-23.7 

(7-58) 

or s = -22.4 is the third approximation to the 
pole. Keeping track of the negative shift in 
this case, the succeeding values of the pole are 
found to be -22.6 and finally -22.56. 

(a) The rise time is approximately 1/w""'' 
where the rise time is defined as the time for 
the output response to a unit-step input to 
reach 0.63. 

(b) The peak error for a unit-ramp input 
is approximately 1/wcn•· 

(c) The peak output response for a unit­
impulse input is approximately Wcm· 

(d) The peak overshoot in the output re­
sponse to a unit-step input is best determined 
from MP by means of Figs. 7-14 and 7-15. 

(e) The settling timet. is approximated by 
the settling time of the equivalent second-or­
der system unless G (s) has low-frequency 
zeros produced by integral networks. 

(f) If a first-order lag network (integral 
network) has been used to compensate the 
system, the peak overshoot of the output re­
sponse to a unit-step input will be increased. 
If Tc is the time constant of the lag network, 
an additional transient term Ae-t!Tc is added 
to the step response, where A::::: 1/Tcwc and 
We is the asymptote crossover frequency. 

Thus, three of the five "exact" factors of (g) If an integral network is added to a 
1 +G(s) are (s+0.1984), (s +1.51), and system,therateofdecayoftheerrorresponse 
(s + 22.56). Dividing these factors out yields to a unit-ramp input response is determined 
the remaining complex poles at s = -4.35 by the time constant Te of the integral net-
± j3.3. The "exact" close-loop response C/R work. This response can be sketched from the 
is therefore following considerations: 

C(s) _ 1014(s+0.2)(s+l) 
R(s)- (s + 0.1984) (s+1.51) (s + 22.56) (s2 + 8.69s +30) 

(7-59) 

Although the detail with which this example 
has been presented may make the procedure 
seem laborious, actually it is extremely rapid 
even when the rate of convergence of the suc­
cessive approximations is relatively slow. 
Note, also, that any desirable degree of accu­
racy can be maintained. 

In other papers <23•25 l, Biernson gives a very 
good summary of approximate relations be­
tween the open-loop frequency response and 
the closed-loop transient response. If Wcm is de­
fined as the frequency at which the magnitude 
of G (jw) crosses the 0-dg line (magnitude 
crossover frequency), then 
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( 1) The response initially rises at the same 
rate as the input. 

(2) The peak of the response is 1/wcm· 
(3) If We is the asymptote crossover fre­

quency, the tail of the response is approxi­
mately the tail of an exponential with time 
constant Tc starting from 1/wc at t =0 and 
falling to 1/Kv at t = oo, where Kr is the vel­
ocity constant. 

(h) The maximum time delay by which the 
output response to a unit-ramp input lags the 
input ramp is approximately equal to the rise 
time (0.63-value) of the output response to a 
unit-step input. 
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7-2 ERROR COEFFICI ENTS<17
'
23

'
27

'
31

'
32

> 

Paragraph 7-1 discusses the performance of 
feedback-control systems in terms of transi­
ent response and frequency response. Both of 
these views are intimately connected and stem 
from the impulse-response and convolution­
integral description which forms the basis for 
all performance-evaluation methods . Unfor­
tunately, it is generally true that the evalua­
tion of performance by any of the foregoing 
methods is very laborious when the input is 
an arbitrary (but definable) time function. 
The error-coefficient method is a technique 
which aids the designer in such a case. Para­
graph 3-6 shows that the error response of a 
system to a specified input can be expressed in 
terms of the input, its derivatives, and a set 
of error Coefficients derivable from the trans­
fer function of the system. The expression for 
the error response is 

e(t) = eor(t) + e1r'{t) + e2r''(t) + ... 
(7-60) 

where the error coefficients e0 , e, e2, ••• are 
the coefficients of the Maclaurin series expan­
sion of the error-to-input transfer function 
E (s)/R (s),i.e., 

(7-61) 

This expansion is valid everywhere except 
where the input or any of its derivatives are 
discontinuous. For practical purposes, only a 
few terms of the expansion are used to evalu­
ate the error response. However, the expan­
sion cannot be used near points of discontinu­
ity of r, r', r", ... if accurate results are 
sought. Thus, for example, if a step discontin­
uity occurs in the input r ( t ), the expansion is 
invalid for a time interval extending from the 
instant to at which the step occurs to the time 
Uo + t,), where t, is the settling time of the 
transient error response to the step (time for 
the error transient to fall to 2% of its initial 
value). Obviously, the step can be ignored if it 
is small compared to the remaining terms of 
the expansion in the interval tu < t < (to + t,) . 

Biernson <23 l has suggested that the foregoing 
difficulty can be resolved by examining 
r, r', r/', ... for discontinuities and subtract-
ing these discontinuities from the correspond­
ing functions. The remaining functions will 
all be continuous, and the expansion can be 
applied over the entire time range of interest. 
Then, the effects of the discontinuities in 
r, r', r", . .. are added to the response. In this 
procedure, a discontinuity in a function is con­
sidered to occur if the function rises (or de­
cays) more abruptly than the corresponding 
transient response to the discontinuity. In 
comparing the rise rate of the two curves, a 
convenient criterion is to compare the times 
for the two curves to reach 63% of the initial 
rise (or decay) of the curves. 

A convenient procedure for determining the 
error coefficients required to satisfy perform­
ance specifications is the following: 

(a) Given the inputr (t) and the maximum 
allowable error e"'"·" which can be tolerated at 
any time, determine the derivatives r', r",r'", 
... of the input r{t). 

(b) Assume values of the error coefficients 
so that the maximum value of each component 
term in the expansion [Eq. (7-60) 3 is equal 
to Cma.v• 

(c) Add the curves obtained in (b) to ob­
tain the first trial value of the error response 
edt). 

(d) There will be times in which the first 
trial e, ( t) will exceed Cmax· Referring to the 
curves found in (b) , decide which of the func­
tions r, r', r'' have their maxima in regions 
where e, ( t) exceeds emax· 

(e) Reduce the assumed values of the error 
coefficients in (b) associated with the func­
tions found in (d) . 

(f) Add the adjusted curves found in (e) 
to those functions [found in (b)] which have 
not been changed. Determine whether ema~ is 
now exceeded and, if so, repeat (d) and (e). 
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Once the error coefficients have been speci­
fied by means of a procedure similar to the 
foregoing, the design of the system can be 
carried out as follows : 

(a) The system is designed to meet all other 
specifications on transient response and fre­
quency response such as bandwidth, MP, Po,,, 
etc, 

(b) The error coefficients of the system 
designed in (a) are found in terms of the 
system parameters and the gain, 

(c) If any of the error coefficients found in 
(b) exceed their specified values, they may be 
reduced by increasing the system gain, if 
possible, by the introduction of low-frequency 
dipole lead functions in the pole-zero config­
uration of the open-loop transfer function 
G (s), or by the feedback-compensation tech­
nique suggested by King. 0 7J 

(d) The specifications on transient re-

sponse and frequency response are rechecked, 
and step (c) is modified if necessary, 

A warning should be added, Whenever at­
tempts are made to reduce one or more error 
coefficients of a system by the methods sug­
gested above, it is possible that higher-order 
error coefficients may increase, Therefore, if 
by the addition of a low-frequency lead di­
pole, an error coefficient can be reduced to 
zero, a check should be made to insure that 
higher coefficients have not been increased 
excessively, In addition, it is generally true 
that low-frequency poles in a transfer func­
tion tend to increase the settling time of the 
response of the system to steps in the higher 
input-derivative functions, Therefore, if the 
actual input being examined has discontinui­
ties in one or more of its higher derivatives, 
the effect of the longer settling time in the re­
sponse to these discontinuities must be deter­
mined, 

7-3 PERFORMANCE INDICES<1
•
2
·'·

14
'
16

•
18

> 

A performance index Pis a single number 
which is used as an indirect measure of sys­
tem performance, Other measures of system 
performance have already been considered, 
such as the various commonly used parame­
ters Mv, bandwidth, rise time, peak overshoot, 
etc, However, these parameters provide only 
a partial description of performance since, in 
a sense, only part of the corresponding re­
sponse is described by each, To be sure, if 
enough of these "response parameters" (for 
want of a better term) are known, an accu­
rate description of the corresponding re­
sponse is possible, That is, the "response 
parameters" may be considered direct de­
scriptions of the shape of their associated 
responses, However, since a response func­
tion is continuous, theoretically an infinite 
number of response parameters are necessary 
to describe the response, To get around the 
use of a multitude of response parameters, a 

performance index may be used, The use of 
performance indices is an attempt to replace 
the functional description of the performance 
of a system through its response parameters 
by a numerical description that rates the 
system performance with a single number, 

Paragraphs 8-1 and 8-2 describe various 
techniques for using performance indices, 
This section merely presents the commonly 
used indices together with the input condi­
tions for which they apply, Table 7-1 is a 
summary of these indices, In practice, the 
performance index corresponding to the spec­
ified input is found, and the system is ad­
justed to optimize (minimize or maximize) 
the index, The indices Ph Pa, Pfi, Pu, P1, and 
P8 can be used in purely analytical proce­
dures, However, P 2 and P 4 are not treated 
analytically but rather through the use of 
analog computers, 
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TABLE 7-1 C 0 M M 0 N PERFORMANCE INDICES 

Index Input Description or N arne Reference 

P1 = i"'edt Transient Control area 1,2 * 

P2 =.£"'1 e I dt Transient Integral absolute error (lA E) 9 

P3 = i"'t edt Transient 1 

P 4 = i"' t I e I at Transient Integral-time-multiplied absolute 14,16,18 
error (IT AE) 

Po= i"'e2 dt Transient Integral-square error (ISE) 9,18,33,34 

P6 =i"'te2 dt Transient 

P1 =Pa!P12 Transient 1 

Ps=e2 Stochastic Mean-square error (MSE) 34,35 
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CHAPTER 8 

OPTIMIZATION METHODS FOR TR.fNSIENT AND 
STOCHASTIC INPUTS 

8-1 CRITERIA OF PERFORMANCE 

In Par. 7-3 it was indicated that the con­
ventional measures of performance such as 
rise time, peak overshoot, solution time, M, 
etc. were merely partial descriptions of the 
frequency response of a system or the shape 
of a particular transient response. As a 
result, an adequate description of system be­
havior requires a fair number of response or 
performance parameters. To avoid using a 
multiplicity of response parameters (num­
bers which describe the response such as M, 
peak overshoot, bandwidth, rise time, etc.) 
attempts have been made to describe system 
behavior in terms of performance indices. A 
performance index is a single number which 
can be used as a criterion of performance. 
The pertinent performance indices used are 
those directly related to system error since 
error is the basic determinant of the "good­
ness" of a system. The most common per­
formance indices are those listed in Par. 7-3. 

When performance indices are used in sys­
tem design, the usual procedure is to mini­
mize the index if it is a direct measure of 
error. With a given index one also associates 
the specified input to the system. Several ap­
proaches can be used in carrying out the 
minimization procedure. 

In one approach it may be assumed that all 
but a few of the system parameters are speci­
fied. Then, the optimization procedure in­
volves the adjustment of the free parameters 
so as to minimize the performance index. 

*By L.A. Gould 

8-1 

Such a procedure is called a fixed-configum­
tion minimization method or technique since 
the form of the system is specified and only 
the numerical values of the free p~:.rameters 
are sought. 

In another approach nothing is assumed 
about the configuration of the system. Here 
the entire impulse response of the system is 
varied to minimize the performance index. 
This procedure is called a free-configuration 
minimization method or technique. 

Of the two procedures, the easier one to 
apply and the one more commonly used is the 
fixed-configuration technique since the pro­
cess of minimization can be carried out by 
differentiating the performance index with 
respect to the free parameters and setting the 
resulting partial derivatives equal to zero. 
The fixed-configuration technique is also easy 
to apply when use is made of an analog com­
puter. The free-configuration method, on the 
other hand, is less commonly used because it 
can only be applied by the use of the calculus 
of variations since in this case a systemfimc­
tion (rather than a system parameter) is 
varied to obtain a minimum. 

In practice, the application of optimization 
methods can lead to failure when one is not 
cognizant of the limitations of the mathemati­
cal model that represents the physical system. 
The optimum system often requires cancella­
tion of the characteristics of the fixed ele­
ments of the system, resulting in an unneces­
sarily wide-band performance and concurrent 
nonlinear operation. To avoid this, con­
straints may be placed on signal levels or on 
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bandwidth. Constrained optimization brings 
the designer closer to the practical limitations 
of the system and serves to guide system de-
sign in a realistic way. 

The primary advantages of optimization 
procedures (as contrasted with conventional 
trial-and-error procedures) are twofold. 

First, the designer is able, through optimiza­

tion, to decide whether a given set of specifi­

cations is compatible. Second, the designer 
can decide whether a compatible set of speci­
fications can be satisfied when bounded by 

constraints. 

8-2 OPTIMUM SYNlHESIS OF FIXED-CONFIGURATION 
SYSTEMS 

8-2.1 TRANSIENT INPUTS 

For transient inputs the integral-square 
error criterion (ISE) is commonly used<5.7.10 > 

to obtain optimum synthesis of a fixed-con­
figuration system. If discussion is limited to 
unity-feedback systems, where the desired 
output is the input, then the actuating signal 
e (t) is equal to the system error Ye(t). The 
ISE criterion is then 

(8-1) 

The evaluation of the integral in Eq. (8-1) 
is facilitated by the application of Parseval's 
theorem: 

i+oo 1 too 
x 2 (t) dt = -. J · X (s)X (-s) ds 

-oo 2nJ 
-oo (8-2) 

where X (s) is the Fourier transform of x ( t). 
Thus, Eq. (8-1) can be written 

I, = -. Ye(s) Ye( -s) ds 1 i+"" 
2nJ -oo 

(8-3) 

The procedure for minimizing the ISE is as 
follows: 

(a) Express the Fourier transform of the 
error as a function of the complex frequency 
s. This function will involve the free param­
eters of the system as unknown coefficients. 

(b) Express I, in terms of Ye ( s) by means 
of Eq. (8-3). If Ye (s) is rational, the form of 
I, will be 

8-2 

I 1 f+ioo C(s) ds 
y = -::-t:-

2nj -ioo D(s)D(-s) 
(8-4) 

where C ( s) and D ( s) are polynomials in s. 

(c) Evaluate the integral in Eq. (8-4). 
Definite integrals of this form have been eval­
uated in terms of the coefficients of the poly­
nomials in the integrand. <8•15> A brief table 
of such integrals is presented in Table 8-1 
where the evaluation has been carried out for 
s = jw. At this point, I , is expressed as a func­
tion of the free parameters p1 through PK> i.e., 

I -I (php ···p) (8-5) v- y 2•. k 

(d) Adjust the free parameters P1, pz, ... 
so as to minimize 1,. This can be accomplished 
analytically by solving the k simultaneous 
equations 

olv 0 (. k - = t = 1, 2, ... ' ) 
oPt 

(8-6) 

However, it is often better to find the mini­
mum graphically by working directly with 1,. 

Example. A unity-feedback system has the 
fixed-element transfer function 

1 
G,(s)- s(T

1
s +1) (Tms +t) 

where 

T1 = 0.01 second and 

T m = 0.04 second 
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The compensation Gc(s) is a pure gain, i.e., 

Ge(s) = K,, the velocity constant 

The input is a step of magnitude Ni, i.e., 

r(t) =NiH (t) 

The desired output is the input. The configu­
ration that describes the problem appears in 
Fig . 8-1. 

Fig. 8·1 Configuration for ISE minimization. 

Solution. To find the value of K, that mini­
mizes the integral-square error 1, we first 
find the error transform Y. (s).From the con­
figuration in Fig. 8-1 it is evident that 

Y.(s) =E(s) =R(s) -C(s),and 

C(s) = G,(s)G,(s) R(s) 
1 + Gc(s) G,(s) 

N· Now, R(s) = ~. 
s 

So, by substituting the expressions given 
originally for Gc(s) and G1 (s) into the equa­
tion for C (s) we find that the error transform. 
IS 

Y.(s) = N, T,Tms2 + (T, + Tm) s + 1 
T,Tms3 + (T, + Tm)S2 + S + Kv 

Substituting Y. (s) into Eq. (8-3) and letting 
s = /w, we find that 

where 

Co= 1 

C2= Tl +Tm2 

do=Kv 

dt = 1 

d2 =Tt +r ... 
d3= TtTm 

Using !3 of Table 8-1 to evaluate the integral 
above, we get 

l
1+_&+~+-1 (-1 +-1 )j 

I: = N12 T,.. T 1 K., T1 T,.. 

2 _1_+_1--K.. ) 
Tm T, 

Numerically, this becomes 

I = 1:J.L [ 5.25K., + 1251 
11 

2 125K., - Kv2 

Inspection shows that I,-+ 0 if K,-+ oo, but 
this solution is not allowed since the system 
would then be unstable. Differentiating I, 
with respect to K, and setting dl,/dK., = 0 
yields 

Kv2 + 47.6 K, -2980 = 0 

or 

K., = 35.8 or -83.4 

The negative value is not allowed so a velocity 
constant K, = 35.8 sec-1 minimizes the 
integral-square error. The value of the mini­
mum integral-square error is 

lv,in = 0.049 N12 

As a point of interest, forK.,= 35.8 sec-t, the 
value of the peak magnification is 10 log10 

MP = 2.8 dg which is a reasonable value. 

Another optimization criterion is pre­
sented in a series of papers by Graham and 
Lathrop<a.u> in which they have applied the 
integral-time-multiplied-absolute-error crite­
rion (IT AE) to optimize the performance of 

I,---_ Nlf+"' [c4ro4 + c:!ro2 + c0 ] dro 
2:rc - oo [da(jro)3+d2(joo):!+dl(joo) +do][da(-jro)3+d:!(-;"w):!+d1 (-joo) +do] 

8-3 



THEORY 

standard-system forms . However, their pro-
cedure is limited to step inputs only. The 
IT AE criterion is 

f
+ao 

Ita= -ao tly.(t) I dt (8-7) 

Although the analytical application of the 
IT AE criterion is practically impossible, the 
performance index can be easily mechanized 
on an analog computer. 

For systems exhibiting zero steady-state 
error for a step input (finite velocity con­
stant) , the standard form chosen was 

C(s) _ 1 

R(s) s" + qn-1s,._1 + ... + ql s + 1 
(8-8) 

The denominator polynomials of the optimum 
systems (that minimize the IT AE for a step 
input) are listed in Table 8-2 for the first 
eight orders . Figure 8-2 shows the step re­
sponses of the optimum systems, and Fig. 
8-3 shows the frequency responses of these 
systems. 

w 
4 
g ... .. 

HONDIMEHSIOHAL TIME 

Fig. 8-2 Step-function responses of the optimum 

unit-numerator transfer systems, second to 

eighth orders. 

Uy permission from Transactions of the AlEE. Volum e 72, Part 
II, 1958, from a rticle entitled 'The Synthesis of "Optimum" 
Transient Response: C riteria and Stan<lanl Forms', by Dunstan 
Graham and R C. Lathrop. 

TABLE 8-1 TABLE OF DEFINITE INTEGRALS 

I - _l_i+"' C2n-2(w) dw 
n - 2:Jt -ao Dn(iw)Dn(-jw) 

where 

C2n-2(w) = C2n-~W2n-2 + C2n-4W2
n-

4 + ... + C2ffi2 + Co 

Dn (jw) = dn (jw)" + dn_t(jw) n.-l + ... + ddw +do 
I _ Co 

1 - ---

2dldo 

c2do + d2Co I2= 
2d2d1do 

C4d1 do + C2dado + Codad2 Ia == ~~~~~~~~~~~ 
2dad11 (d2di- dado) 

8-4 
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Fig. 8-3 Frequency responses of the optimum 

unit-numerator transfer systems. 

For systems exhibiting zero steady-state 
error for a ramp input (infinite velocity con­
stant, finite acceleration constant), the stand­
ard form chosen was 

__Q__(s)__ q1s + 1 

R (s) -sn + qn-tSn-1 + ... + q2s2 + q1s + 1 
(8-9) 

The denominator polynomials of the optimum 
systems of this type are listed in Table 8-3 
for the second to sixth orders. The step re­
sponses of the optimum systems are shown in 
Fig. 8-4. 

By permission from Transactions of the AZEE, Volume 72 , Part 
11, 1953, from ar tic le entitled ' The Synthesis of " Op timum" 
Transient Response: Crit eria an d Standard Forms' , by Dunstan 
Graham and R. C. La throp. 

Additional matter such as optimum com­
pensation of various systems and the effect 
of time scaling are also discussed by these 
authors<•-5> with the use of the ITAE criterion 
as the performance index. 

TABLE 8-2 THE MINIMUM ITAE STANDARD FORMS, ZERO-DISPLACEMENT· 

ERROR SYSTEMS 

s + (t)o 
s2 + 1.4cuos +(t)o2 

s3 + 1.75(t)0s2 + 2.15(t)0 
2s + (t)o 3 

s4 + 2.1(t)0 s;, + 3.4cu0 :t:s" + 2.7(t)0 
3s + (t)o4 

ss +2.8(t)os4 +S.O(t)o2s3 +s.s(t)o3s2 + 3.4cuo4s +(t)os 
s6 + 3.25(t)

0
s5 + 6.60(t)0 2s4 + 8.60(t)0 3s3 + 7.45(t)0 

4s2 + 3.9~ 5s + (t)o 6 

s7 + 4.47S(t)0 s6 + 10.42(t)0,2s5 + 15.08(t)o 3s4 + 15.54cu0 
4s3 + 10.6~05 s~ + 4.58(t)0 

6s + (t)0
7 

sB + 5.20(t)
0

s7 + 12.80(t)o 2s6 + 21.60(t)
0 

3 sS + 25.7~0 4s4 + 22.20(t)0 
5s3 + 13.30(t)0 

6s2 + 5.1S(t)0
7 s + (t)o & 

By Permission from Transactionsof the AZEE. Volume 72, P art 
II, 1953, from article entitled 'The Synthes is of "Optimum" 
Transient Response: Crit eria and Standard Forms ', by Dunstan 
Graham and R. C. La throp. 

TABLE 8·3 THE MINIMUM ITAE STANDARD FORMS, ZERO-VELOCITY· 

ERROR SYSTEMS 

s2 + 3.2(t)os + (t)o 2 
s3 + 1.7S(t)0 s2 + 3.2S(t)0

2s + (t)o 3 

s4 + 2.41(t)0s3 + 4.93(t)02s2 + 5.14c.J03s + (t)0
4 

s5 + 2.19(t)
0

s4 + 6.50(t)02s3 + 6.30(t)0 
3s2 + 5.24cu0 

4s + (t)0
5 

s6 + 6.12cu0 sS + 13.42(t)0 2s4 + 17.16(t)0 3s3 + 14.14cu0 4s2 + 6.76(t)0 
5s + (t)o 6 

By permission from Tra,..acti'""' of th e AZEE Volume 72, Part 
II; 1953. from artic le entitled 'The Synthesis of "Optimum" 
Transi ent Response: Crit eria and Standard Forms ' , by Dunstan 
Graham and R. C. Lathrop. 

8-5 
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Fig. 8-4 Step-function responses of the optimum 

zero-velocity-error systems, second to sixth orders. 

By permission from Transactions of the AZEE. Volume 72, Part 
II, 1963, from article entitled 'The Synthesis of "Optimum" 
Transient Response: Criteria and Standard Forms', by Dunstan 
Graham and R. C Lathrop. 

8·2.2 STATIONARY STOCHASTIC 
INPUTS!B,12,15) 

The mean-square error (MSE) criterion is 
universally used as a performance index 
when the input is stochastic. The general 
configuration that applies to this minimiza­
tion problem is shown in Fig. 8-5. 

In this figure, v ( t) is the data component 
of the input, and n ( t) is the noise component 
of the input. The mean-square error is de­
fined as 

""ij2- lim _1_J+T y.2 (t) dt 
e - T~oo 2T -T 

(8-10) 

On the assumption that the data and the 
noise are uncorrelated, application of the 
formulae given in Par. 3-8 to the configura­
tion of Fig. 8-5 yields 

(8-11) 
1- oc 

a-6 

where 

<1>1111 (s) = [1- W(s)] [1- W(-s)] 

<l>vv(S) + W(s)W(-s) <I>nn(S) 
(8-12) 

W(s) = Gc(s) G1(s) 
1 + Gc(s) G1(s) 

(8-13) 

<~>vv ( s) = power spectrum of system error y. 

<~>vv (s) =power spectrum of data v 

<~>nn (s) = power spectrum of noise n 

Since <~>vv(w) is an even function, the evalua­
tion of the integral in Eq. (8-11) can be 
carried out by means of the integral table 
(Table 8-1). 

In all other respects, the design procedure 
for minimizing the mean-square error for 
stationary stochastic inputs with a fixed sys­
tem configuration parallels the procedure for 
transient inputs outlined above. 

Example. For the configuration of Fig. 
8-5, 

1 
G,(s) 

s(T1s + 1) (Tms + 1) 

Gc(s) = Kv 

<I>nn (s)= Yn (white noise) 
lt 

Fig. 8-5 Configuration for MSE minimization. 
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T1 = 0.01 sec 

Tm = 0.04 sec 

a., = 10 milliradianjsec 

v = 0.1 (sec)-1 

Yn = 0.4 (milliradian) 2 -sec 

If we assume that there is no noise initially 
( ({),, = 0) , then 

1 -W(s) = s(T1s+1)(Tms+1) 
T1T ms3 + (T1 + T m)s2 +s+Kv 

A normalized frequency is chosen such that, 
for s = jw, Ttw = u. By applying the normali­
zation theorem of Par. 3-4 (Eq. 3-46) to the 
expression for 1- W(s) above, we obtain 

1- W(ju) = 
(1 + ju) (1 + bju) 

ju b(ju)3 + (1 +b) (ju)2 + (ju) + K 

where 

b =Tm = 4 
TJ 

K = T,Kv 

In addition, the power spectrum of data ex­
pressed in terms of u is found to be 

lf>v.,(u) = [
0

"

2

:/] [u2(a2a+u2)] 

where 

a= T1v = 0.001 

From Eq. (8-12),. the power spectrum of sys­
tem error expressed in terms of u is found to 
be 

!f>yy(U) = 

8-7 

where 

C ( u) = b2u• + (1 + b2
) u2 + 1 

D4(ju) = b(ju)• + (1 + b + ab) (ju)3 
+ ( 1 + a + ab) (ju )2 

+ (a + K) (ju) + aK 

D4 (-ju) = b(-ju) 4 + (1 +b +ab) 
(- ju )3 + (1 1" a + ab) (- ju )2 

1" (a+ K) (-ju) +aK 

Then, using Eq. (8-11), we find the mean 
square error to be 

Ye2 = 2Mv2Tl _!_{f+"' c(u) du} 
2rc -jooD4(ju)D4(-ju) 

Evaluating this expression from 14 of the 
integral tables (Table 8-1) and substituting 
numerical values, we find that 

2 

[
V y,2

] ~ N _ 0.016K2
- 3.99 K + 5.015 

a.,T1 - - -4K3 + 5K2 + O.OOSK 

To determine the minimum value of N it is 
convenient to make a plot of N versus K. 
This avoids a differentiation of N with re­
spect to K which results in a fourth-degree 
algebraic equation whose roots must then be 
determined. It is evident that using the plot 
to determine the minimum is a simpler tech­
nique. The minimum from the plot is found to 
occur at K = 1.1or N = 0.90. Consequently, 
the optimum system has 

K , = 90 sec-1 

[ Yc2 r2 

0.095 milliradian 

If the noise is considered, the procedure is 
more involved but unchanged in principle. 
The results of the minimization of Ye2 with 
the noise added to the data as follows: 

K, = 7.8 sec-1 

[ ]

1/2 

Ye2 = 2.21 mllhrad1an 
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8-3 0 PTI MUM SYNTHESIS a= FREE-CONFIGURATION SYSTEMS 

WITH STATIONARY STOCHASTIC INPUTS<'·7
•
11

•
12

•
13

•
15

> 

The design problem for the optimum syn­
thesis of free-configuration systems with sta­
tionary stochastic inputs is one of determin­
ing the closed-loop transfer function 

C(8) = W(8) 
R(8) 

(8-14) 

that minimizes the mean-square error when 
information is given concerning the data v ( t ), 
noise n(t), desired output i(t), and fixed­
element transfer function G1 (s). No infor­
mation concerning the form of the compen­
sation Gc(8) is needed. Figure 8-6 shows the 
configuration that describes the problem (Gct 

is the ideal element transfer function). 

The solution to this problem is obtained by 
means of the calculus of variations and is in 
the form of an integral equation : 

i: dtagt(ta) J[ "'m dt4g1(t4) 

L: dt2w ( t2) cf>rr ( t1 + ta - t2 - t4) 

-i: 
where 

dtag1 (ta) cf>ri (tl + ta) = 0 for t1 > o­
(8-15) 

g, (t) = impulse response of fixed elements 

Fig. 8-6 Configuration for MSE minimization 

8-8 

w ( t) = impulse response of control sys­
tem (.C-1 [W(8)]) 

.p,, ( t) = autocorrelation function of r ( t) 

.p,; ( t) = crosscorrelation function between 
r ( t) and i (t) 

If the fixed elements are minimum phase (no 
zeros in right-half s-plane) or are unspecified, 
Eq. (8-15) reduces to the Wiener-Hopf equa­
tion : (6,12,15) 

f: dt!lill(tz) +rr (tl- t2) - cf>ri (tl) = 

Ofort1~0 

(8-16) 
If the autocorrelation functions and the 

impulse response of the fixed elements are 
Fourier transformable , Eqs. (8-15) and 
(8-16) can be solved in terms of transforms 
by a method called spectrum factorization. 
For Eq. (8-15), the optimum system function 
W(8) is given by 

[
r(8)] 

W(8) = 1\-(8) + 
/\+ ( 8) 

where 

r(8) = 2rrG1 (-8) cl>,;(8) 

1\(8) = 2rrG1 (8) G1(-8) cl>rr(8) 

(8-17) 

A+ (s) ~ that factor of A (s)which contains 
all the poles and zeros of 1\ ( 8) 
which lie in the left-hand s-plane 

1\-(8) = 1\(8) 
1\+(8) 

[ 
r( 8

) ] A. that part of the partial-trac­
t\- ( 8) + = tion expansion of r ( s )!A- ( s) 

duetothepolesofr(s)'A- (s) 
which lie in the left-half s­
plane 

[ 
r(8) J r(8) [ r(8) ] 
1\-(8) _ = 1\-(8) - 1\-(s) + 
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Transformation and factorization of Eq. 
(8-16) yields 

[ 
«P,..(s) ] 

W(s) = «P-,..,.(s) (8-18) 
«P+,..,.(s) 

where the notation is the same as that defined 
below Eq. (8-17). 

Example. G1 (s) is minimum phase, and 

Ov2V 

«P,,(s) = ( 2) ( 2 2) 
X -8 V -8 

«P,,.(s) = 0 

o, = 10 milliradianjsec 

v = 0.1 sec-1 

y,. = 0.4 (milliradian) 2 -sec 

i(t) = v(t) 

Normalize the frequency scale by letting 

s 
A.=-· 

v 

Then, 

o,2 1 
rrv2 ( _f..2) ( 1 - 1,2) 

vy,. 

:n: 

..CJ,
2 = a and v y,. = b 

y2 

Since the data and noise are un orrelat d 

(<1>,,. = 0), 

<~> .. (A.) = «P,.,(A.) + «P,.,.(A.) = 

b [ c2 _ 1,2 + 1,4 ] 
:n: (-A2) (1- 1,2) 

where 

a o 2 
c2 = - = -"- = 25 X 104 

b y3 Yn 

Since the desired output i ( t) is the data v ( t ), 

<~> ... (A.) = «P,, (A.) 

8-9 

Equation (8-18) applies to this problem. To 
find «P-rr (A) and «P+rr (h) it is necessary to dis­
tinguish between poles and zeros in the two 
half planes. Since <~>rr (A) has a double pole on 
the imaginary axis at the origin, the following 
artifice is used. We let 

-A2 =lim (E - A) (E + A) 
£-+ 0 

The, problem can then be worked with (E - A) 
(E f A) replacing -A2• After carrying out the 
pertinent algebraic manipulations, we let£-+ 0. 
This is equivalent to factoring -1.2 into (-A) 
(+A) and then associating (-A) with the 
right-half plane (RHP) and (+A) with the 
left-half plane (LHP). Therefore, the factor­
ization of@ (A) becomes 

cp (A)=[ (m+in+A.) (m-J"n+A.)] 
rr (+A)(l+A) 

where 

(m+J"n-1..) (m-jn-1..) 
(-A)(l-1..) 

m = 0.5 v 2c + 1 = 15.82 

n = 0.5 y 2c -1 = 15.80 

The factor of <I>rr (A) having all its poles and 
zeros in the right-half plane is 

cp- (A.) = b, (m + jn - N) (m-jn -A.) 
rr :rt (-A}(l-A) 

Therefore, 

(+A.) (1 +A.) (m + jn- A.) (m- jn- A.) 

This function has left-half-plane poles at 
A= OandA = -l.Expanding in terms of par­
tial fractions and retaining only those terms 
in the expansion due to LHP poles, we obtain 
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[
«<lrt(A)] _ 1_!- 1 + C +:;2c + 1 I 
«<l- (A) +- c A 1 + 1.. 

rr 

or 

( 1 + v'2C+l +A) 

[
«<lrt(A)] ( - ) 2 
<Jr (A) = y'2c + 1 - 1 + A (1 + A) 

rr + 

Since, 

If>+ (A)= (m+in+A) (m-jn+A) 
rr (+A)(l+A) 

c+~2C+I+A) 
W (1..) = ( y'<i2c;;-:+:::L1t---='ili\) --(A2.2_+_v'~2c=+=l-A_+...!.c-) 

Numerically, since A= lOs and c = 500, the 
optimum response is 

1 +o.613s w ( s) - ---:-::-_ ___;__:.....,-_ 

(;J2 

+2~ (;J +1 

where 

~ = v.!._ + _!_ = 0.704 
2 4c 

w .. = v vc = 2.24 

The open-loop transfer function correspond­
ing to the optimum response is 

( 1 + 2 
A) 

C(A) = G (A)G (J.) = c 1 + y'2c +1 
E(A) c I A(l+A) 

or,numerically, 

C(s) = 50 (0.613s +1) 
E(s) s(10s +1) 

The mean-square error y/ can then be evalu­
ated by using Eqs. (8-11) and (8-12) together 
with Table 8-1. The rms error due to noise 
alone is found to be 

[ ] 

1/2 y.2 n = 1.35 milliradian 
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The rms error due to the signal acting alone is 

[ ] 

1/2 y.2 . = 0.796 milliradian 

Consequently, the total rms error is 

[y.2r/2= V[y.2L + [y.2L 
or 

[ ]

1/2 y.2 = 1.57 milliradian 
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8-4 LIMITATIONS AND APPLICATION PROBLEMS 

Several difficulties confront the designer 
who carries out the optimization procedure in 
any practical problem. He finds that (1) the 
labor involved becomes excessive, and (2) the 
resulting optimum compensation is both dif­
ficult to realize and unrealistic. The latter dif­
ficulty arises because cancellation of the fixed­
component transfer function is required, re­
sulting in component saturation and poor 
utilization of hardware. One factor acting in 
favor of the designer using the ISE and MSE 
criteria is that the minima resulting from the 
use of these procedures are broad. Thus , a 
fairly wide deviation of parameters and con­
figurations can occur without appreciably 
altering the performance index. Hence, the 
labor involved in designing by optimization 
techniques can be reduced greatly by judicious 
engineering approximations . In addition, 
more freedom is available to the designer 
when the minima that arise in an optimization 
problem are broad since he can then satisfy 
additional performance specifications such as 
rise time, peak overshoot, etc. The same can­
not be said for the IT AE criterion since it is a 
selective criterion producing narrow minima 
that leave little freedom to the designer. 
Therefore, the IT AE criterion is not to be rec­
ommended if parameter variation is to be ex­
pected and other performance specifications 
are to be met. 

Techniques for vvercoming the second lim­
itation of optimization procedures have been 
proposed by Newton. <7•10 ) He recommends 
that constraints be placed on the signals that 
are not to saturate. That is , the optimization 
is to be carried out by requiring that the per­
formance index be minimized while the sig­
nals that may saturate are kept below a speci­
fied upper limit. Actually, however, a measure 
of the peak-signal values is used to facilitate 

8-11 

analysis. In the case of transient inputs , the 
integral-square signal values are to be kept 
below assigned limits. In the case of stochastic 
signals, the rms signal values are to be con­
strained. It is also possible to combine the two 
types of signals by requiring , for example, 
that the rms error for a stochastic input be 
minimized subject to a constraint on the inte­
gral-square value of a specified signal for a 
transient input. 

Newton <w) also proposes that constrained 
optimization be carried out by minimizing 
bandwidth since a minimum bandwidth sys­
tem is highly desirable in any case. Thus , 
bandwidth is minimized subject to a con­
straint on the allowable error index. 

By employing constrained optimization 
using performance indices that exhibit broad 
minima, the designer can approach a problem 
with a greater degree of certainty of finding 
out whether his specifications are compatible 
and, if compatible, whether they can be met 
in practice. 

The optimization procedures discussed here 
have been limited to transient inputs and sta­
tionary stochastic inputs. If the input is non­
stationary, then the optimum system will be­
come nonstationary or time-variable. If the 
form of the time variation in the input statis­
tics is known, it is possible to design a system 
which exhibits variable bandwidth. Unfor­
tunately, there is as yet no general method for 
finding an explicit analytical solution to this 
problem. If the time variation in the input 
statistics is slow compared with the response 
time of the system, then the nonstationary 
problem can be broken down into a series of 
stationary segments . If the input statistics 
vary at a rate that is of the order of the re­
sponse time of the system, then one cannot 
ignore the nonstationary nature of the prob­
lem. 
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CHAPTER 9 

SAMPLED-DATA SYSTEMS* 

9-1 GENERAL THEORY 

Linvill states , "A sampled-data control sys­
tem is one wherein the signal supplied to one 
or more parts of the system is not given con­
tinuously in time, but is supplied at discrete 
values of the time variable , t. In such a system, 
the part of the system being fed intermittently 
might, for example, have an input signal ap­
plied to it at t = 0, T ,2T, 3 T, ... (where Tis 
the length of time between samplings) with no 
data at all supplied in the intervals separating 
these sampling instants. A control system 
makes use of sampled data when it is impos­
sible to supply continuous data to all its 
parts."? 

fQuoted by permiSSIOn from Transactions of the 
AZEE, Volume 70, Part 11, 1951, from article en­
titled "Sampled-Data Control Systems Studied 
Through Comparison of Sampling with Amplitude 
Modulation," by W. K. Linvill. 

r(l) e(l) 
E 

+ -

SAMPLING CARRIER 
SIGNAL 

l 
SAJ\IFUNG f-DEVICE 

If the sampling frequency is high compared 
to the signal frequency and the critical fre­
quencies of the system, then the fact that the 
data are sampled has little bearing on system 
behavior. Otherwise, the effect of sampling 
may become quite pronounced. 

Figure 9-1 shows the elements of a typical 
sampled-data system. The input r(t) may be 
composed of sampled or continuous data. The 
sampling device periodically samples the actu­
ating signal e ( t) under control of the carrier 
signal supplied to it. The holding circuit is 
used to smooth the sampled output from the 
sampling device, and the smoothed output of 
the holding circuit then drives the output 
member. It is evidentthat the components and 
signals in the system are combinations of dis­
crete and continuous elements. Because part 

*By L.A. Gould 

HOLDING OUTPUT c(l) 
CIRCUIT - MEMBER , .... ~ • 

Fig. 9-1 Sampled-data system. 

9-1 
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of the system operates on sampled data and 
part on continuous data, the analy sis of sys­
tem behavior is not easily carried out by con­
ventional methods. For that part of the sys­
tem operating on continuous data, conven­
tional methods of analysis are best. For that 
part operating on sampled data, the use of 
sequences and linear difference equations is 
best. However, methods have been developed 
which treat sampled-data systems from a uni­
fied viewpoint and will be presented in this 
chapter. 

A sampled-data system like that in Fig . 9-1 
can be represented by the mathematical mod­
el shown in Fig. 9-2. The impulse modulator 
is an ideal device that multiplies the actuating 
signal e ( t) by the carrier signal ~ ( t). The 
function ~ (t} represents a periodic train of 
unit impulses occurring at a frequency 
n = 2rr/T radians per second (Fig. 9-3)­
where n is called the sampling frequency . The 
equivalent linear filter is so chosen that the 
combined operation of the impulse modulator 
and equivalent linear filter on the actuating 
signal in the model produces the same input to 
the output member as the combined action of 
the sampling device and holding circuit in the 
original system. For example, a system in 
which the actuating signal is sampled every T 
seconds by a device which holds a particular 

r(t\ e(t) -1 I X Mc!MOOt.~R I + I -
.. 

sample value at that value until the next sam­
pling time is called a sampler-clam per. Its ef­
fect is shown in Fig . 9-4. This type of behavior 
can be exactly represented by the combination 
of an impulse modulator and a filter whose 
transfer function Ge(s) IS 

Gc(s) 
s 

(9-1) 

In the mathematical model, the output of the 
impulse modulator will be a.train of impulses , 
the magnitude of each being the value of the 
actuating signal at the corresponding sam­
pling time. Although such a signal does not 
exist in the physical system, it is useful to 
isolate the action of the impulse modulator 
and combine the equivalent linear filter with 
the output member for the purpose of 
analysis. The impulse modulator is thought of 
as a synchronous switch, controlled by a car­
rier, which periodically closes the connection 
between the actuating signal and the input to 
the equivalent linear filter (Fig . 9-5). The sig­
nal e ( t) entering the switch is continuous in 
this picture, but the signal e* ( t) leaving the 
switch is discrete (sampled). It is also pos­
sible for the signal e ( t )to be discrete as well, 
in which case the action of the switch has no 
effect if it is synchronized with the discrete in­
tervals associated with the input. We will 
adopt the convention that an impulse modula­
tor (or synchronous switch) operates on all 

EQUIVALENT 
LINEAR .. 911:!~1!~ f-." II-+ 
FILTER 

Fig. 9-2 Model of sampled-data system. 
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signals entering it (whether continuous , dis­
crete, or a combination of both) to produce a 
discrete output. Signals that have been sam­
pled, and are therefore discrete, will be repre­
sented by starred functions . Thus, the opera­
tion of an impulse modulator is as represented 
in Fig. 9-6. 

The carrier signal ~(t) in a sampled-data 
system is represented by 

(9-2) 
n=--co 

The Laplace transform of this function is 

+oo 
~ (s) = L e-•T• (9-3) 

11 = 0 

or 

~(8} = --1-
1- e-"T 

(9-4) 

If a signal r ( t )is sampled by an impulse mod­
ulator, the sampled output r * ( t) is 

to 

r* ( t) = ~ ( t) r ( t) (9-5) 

a0rt- k TI sort -(k +m1 

I I I I I I I I 
Fig. 9-3 Train d unit impulses which represents 

the carrier Mt). 

OUTPUT OF SAM'\!. ER-CLII.MPER 

10 + T t0 + 2T 

Fig. 9-4 Action of sampled-clamper. 
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or 

+oo 
r* (t) = L r(nT) bo(t- nT) (9-6) 

11.:=- oO 

The Laplace transform R* (s) of a sampled 
signal is 

1 +oo 
R* (s) =- ~ R (s + jnn) (9-7) 

T n=-oo 

where 

2rt 
n= T 

and 

R(s) = .C[r(t)] (9-9) 

Another form of the transform of a sampled 
signal is 

co 

R* (s )= ~ r(nT) e-•Ts (9-10) 

Note that a starred transform like R* ( s ) rep­
resents the transform of a starred (sampled) 
time function. Also from Eq. (9-7), starred 
transforms are periodic functions of fre­
quency, the period being j n. That is , 

R* (s) =R* (s + jnn) (9-11) 

e• (I) FtL TER AND c(t) 
OUTPUT 
MEMBER 

Fig. 9-5 Simplified picture of sampled-data system. 

x(t) ~ x•(t) 

··----------------~ 0~----------~ 

Fig. 9-6 Operation of sampling switch. 
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9-2 THE z TRANSFORM AND THE w TRANSFORM 

9·2.1 THE z TRANSFORM 

Whenever a time function is transformable, 
it can be shown that the transform of the 
function when sampled is a rational function 
of e-T•; i.e., 

R* (s)= F(e-•r) (9-12) 

whereR* (s)isthetransform ofthe sampled 
function r* ( t). If we let 

z = e~•T (9-13) 

then transforms of sampled-time functions 
are functions of a new complex variable x. The 
z transform of a time function r ( t) is then de­
fined as the Laplace transform R* (s) of r*(t), 
where r* ( t) is the function produced by im­
pulse modulating r (t), and the z transform 
is obtained by replacing e-•T by z in R* (s). It 
is conventional to-let R*(x) represent the z 
transform of r( t) although, rigorously, one 
should use R'' ( -1/T log.z). 

If the Laplace transform R (s) of a func­
tion r ( t) is known, the z transform R* (x ) can 
be found by expandingR (s) in a partial- frac­
tion expansion and using the formulae given 
below. If 

R(s) = (9-14) 

then 

R* (z) = (9-15) 

A short table of z transforms and their equiva­
lent Laplace transforms is given in Table 9-1. 
For more extensive tables see references 5, 
25 , and 26. Unfortunately, several authors 
have adopted the relation x = e+•T. This nota­
tion arose from the mathematics of difference 
equations, but it is awkward and physically 
deceiving in the present connection, since 
e+'T corresponds to ideal prediction. There­
fore , when using the literature , care must be 
taken to verify which particular notation is 
being used. In reference 5, for example, all the 
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expressions for x transforms should have x re­
placed by z-1 to make them correspond to the 
notation adopted in this chapter. 

The introduction of the x transform enables 
one to treat sampled-data systems by all the 
techniques available for continuous-data sys­
tems since it is evident that the process of sam­
pling a time function can be represented by a 

TABLE 9·1 
LAPLACE AND z TRANSFORM PAIRS 

Laplace 
Transform: z Transform : 

F(s) F* (z) 

1. 1 1 

2. e-nT.• zn 

3. 1 1 -
s 1-z 

4. 1 Tx -
s2 (1- z) 2 

5. 1 1 
s+a 1- z e-aT 

6. a z(l -e--aT) 
s(s +a) {1-z) (1-ze--aT) 

7. a z sin aT 
s2 +a2 1 - 2z cos uT + z: 

8. F(s +a) F* (e-aT x) 

9. e-•TF (s) z F* (x ) 

10. ea•F (s) z-(a/T) F* (X) 

1 1 
11. l 

log.a 1 +at' s+-
T 

12. s 1 -z cos aT 
s2 +a2 1 - 2z cos aT + z~ 

13. 
1 Te--aTz 

(s + a) 2 (1 - z e-aT) 2 
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UNIT CIRCLE 

A. s PLANE B. zPLAME 

Fig. 9-7 Relations between s plane and z plane. 

variable transformation from the s domain to 
the z domain. The z transform is a conformal 
transformation that maps the right half of the 
s plane into the interior of the unit circle of 
the z plane and the left half of the s plane to 
the exterior of the unit circle of the z plane. 
The imaginary axis of the s plane is mapped 
into the unit circle of the z plane, the s-plane 
ongm (0 +iO) mapping into the point 
(+1 +iO) in the z plane. These relations are 

shown in Fig. 9-7. Because a z transform is 
periodic (period=jn),thepoints (O+fkQ) 
(k= 1, 2, 3, ... ) in the s plane also map into 
the point (+1 +iO) in the z plane as shown in 
Fig. 9-7. Similar relationships are easily visu­
alized and are treated later in this chapter. 
There is one point which must be emphasized, 
however. Since the z transform of a time func­
tion represents the Laplace transform of the 
corresponding sampled-time function, infor­
mation about behavior between sampling in­
stants is lost and cannot be recovered from in­
spection of z transforms. However, BarkerC24 > 

has developed a method for determining 
behavior between sampling instants. This 
method is described in Par. 9-5. It should also 
be noted that the z transform is related to the 
¥ellin transform which is used to develop the 
theory of transforms and to study problems in 
elasticity .czs) 
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9-2.2 THE w TRANSFORM 

Because of the difficulty involved in relating 
some of the properties of sampled-data sys­
tems to the frequency-domain concepts that 
are most convenient to apply in the study of 
continuous systems, Johnson et al<Ul have 
suggested a very useful transformation of 
variables that aids greatly in design. If 

Z= 
1-w 
1+w 

(9-16) 

is a bilateral transformation from the z plane 
to the w plane, then 

R*(w) =n,*(z) I z= :~: I (9-17) 

is defined as the w transform of r (t). The ad­
vantage of introducing the w transform be­
comes evident when an attempt is made to 
evaluate R* (s) for s = fw. Such an evaluation 
requires an infinite "vector" sum, theoretical­
ly [Eq. (9-7)], or else evaluation of R* 
through the use of e-iroT = cos mT + j sin wT 
and so it is fairly difficult to obtain in practice. 
The use of thew transform, on the other hand, 
simplifies the determination of the frequency 
response of sampled-data systems. The w 
transform maps the unit circle in the z plane 
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into the imaginary axis in thew plane and re­
stores some of the analytical advantages that 
were lost through the sampling process . If 

w=u+fv (9-18) 

then 

u =tan ( w;) (9-19) 

gives the relation between the real frequency 
w and the pseudo- frequency v corresponding 

to the imaginary part of w .The real frequency 
w,from E q. (9-19),is 

2 w = -tan-1 u 
T 

(9-20) 

The primary advantage of thew transform is 
that the transforms of sampled signals can be 
represented by a rational function of a fre­
quency variable w that is simply related to the 
frequency w. In the following sections this 
property is brought out clearly . 

9-3 OPERATIONAL METHODS 

9-3.1 GENERAL 

The operational definition of impulse modu­
lation given in Par. 9-1 simplifies the study of 
sampled-data systems. 

9-3.2 BASIC RELATIONS a= SAMPLED 
FUNCTIONS 

The following basic relations are easy to 
verify. From Fig . 9-8, it is evident that: 

C(s) =G(s)R*(s) 

C* (s) = G* (s)R* (s) 

[R*(s )J* =R*(s) 

From Fig . 9-9, it is evident that: 

C(s) =G(s)R(s) 

C* ( s) = [ G ( s) R ( s)] * 
C* (s)+G* (s)R* (s)!! 

From Fig. 9-10, it is evident that: 

E* (s) 1 
-

R* (s} I+G*(s) 

C(s) G(s) 

R* (s) 1+G*(s) 

C* (s) _ G* (s) 

R* (s) I+G*(s) 

(9-21) 

(9-22) 

(9-23) 

(9-24) 

(9-25) 

(9-26) 

(9-27) 

(9-28) 

(9-29) 

The foregoing relations indicate that all the 
techniques of block-diagram algebra can be 
used to manipulate sampled-data-system con­
figurations except for the !Hided restrictions 

Fig. 9-8 Sampling a smoothed sampled signal. 

r ·I ·I I c• 
G(s) I.M. • 

Fig. 9-9 Sampling a filtered continuous signal. 

Fig. 9·70 A sampled-data feedback system. 

9-6 



SAMPLED-DATA SYSTEMS 

that an impulse modulator (a) "stars" all 
signals entering it , and (b) its position in a 
diagram cannot be interchanged with a con­
tinuous transfer function. Equation (9-26) 
is included to emphasize the fact that the 
starred product of two Laplace transforms is 
not equal to the product of the corresponding 
starred transforms. 

The equations relating to Fig. 9-10 [Eqs. 
(9-27) through (9-29)] introduce some of 
the properties of sampled-data feedback sys­
tems. In particular, the stability of a sampled­
data system is related directly to the zeros of 
the following expression : 

1+G*(s) =0 (9-30) 

If any of the roots of this equation lie in the 
right half of the ~ plane, the system is un­
stable. Nyquist's criterion (Par. 4-3) can be 
applied directly to determine the stability of 
sampled-data systems, except for one modifi­
cation. Since G* (s1 is a periodic function , it 
has an infinite number of poles and zeros, but 
the pole-zero configuration is repeated for 
every multiple of jo. Similarly, the G* (s) 
locus in the s plane is repeated every time s 
changes by jo. Because the G* (s) plot is 
symmetrical about the real axis in the s plane, 
G* (s) need only be plotted for 0 < jw < jn/2 
when s = .iw. In practice, the s-plane contour 

A. G~ [s) PLANE 

INFINITE 
$EMICIRCLE 

and the corresponding G* (s) locus are as 
shown in Fig . 9-11 when the Nyquist cri­
terion is applied. In terms of the z plane, Eq. 
(9-30) becomes 

1+G*(z)=0 (9-31) 

The stability of the system is determined by 
plotting G* (x) as z traverses the unit circle. 
If there are any roots of Eq. (9-31) that lie 
inside the unit circle, the system is unstable. 
The difficulty encountered in plotting G* (s) 
or G* (x) from the required variation of s or 
z is removed when the w transform is in­
troduced. G* (w )is easily handled since it is 
expressible as a rational function of a fre­
quency variable. 

Example. Consider a simple servomecha­
nism with block diagram shown in Fig . 9-10. 
The physical device includes a sampler­
clamper (See Par. 9-1) , a servomotor having 
a one-second time constant, and an ideal am­
plifier. The transfer function of the continu­
ous portion [including the filter as in Eq. 
(9-1)3 is given by Eq. (9-32). 

G (s) = K ( 
1 ~ e-·') 1 

, T = 1 sec. 
s(s+1) 

(9-32) 

INFINITE STRIP 
+ j ~ 1---___,~---, 

0 

B. s PLANE 

fig. 9-7 7 Relations between s and G*(s) for application of Nyquist criterion. 

9-7 



THEORY 

From Eq. (9-7), we obtain 

1 
-G*(8) = 
K 

1 
(1-e--') ~ 

(8 f jnn)2 (1 f 8 f jnn) 

(9-33) 

where n = 2rrJT = 2Jt. 

This function is difficult to plot for s = jw. 
Taking the z transform of Eq. (9-32), we get 

_LG*(z) = z(0.264z +o.368) (9_34) 
K (0.368z -1) (x -1) 

This function is difficult to plot for z = e-iro. 

Letting 

z = 1 - w (9-35) 
1+w 

the w transform of Eq. (9-32) is found to be 

1 (1 -w) (0.632 +o.104w) 
KG* (w) = (0.632 + 1.368w) (2w) 

(9-36) 

when w = jv , the function in Eq. (9-36) is 
easily handled by conventional techniques 
since the relation between the w plane and the 
G* (w )plane is the same kind of relation as 
that which exists between the s plane and the 
G ( s) plane. If the real frequency w is to be 
considered, then there is an added difficulty 
in that Eq. (9-20) must be used to calibrate 
the frequency locus. The asymptotic and 
gain-phase plane techniques can be used with 
a change only in the relation between v and w. 

9-3.3 ADDITIONAL PROPERTIES OF SAMPLED 
FUNCTIONS 

(a) G* (e-•T) = 

21 .f'·+i-a<P> [1- :7.(·- ,,] dp 3tJ ,._, e 
(9-37) 

(b) If G(8) = N(8) , and D (s) has only 
D(8) 

simple poles, 

G*(e-•T)= ± A(8n) 
n=::l B' (8n) 1 - e-T(x- "•1 

1 

(9-38) 

where sn is the nth pole of G ( s ). 
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(c) If the z transform of a time function 
r ( t) is given, the value of the time function 
at the sampling instants can be found from 

r*t=r(nT) = ~~ R*(z)z1-"dz 
21CJ 

(9-39) 

where the contour integration in the z plane 
is along a path that encloses all the singular 
points of R* (x)z1-". 

(d) Initial-Value Theorem: 
limr(t) =lim (1-z)R*(z) (9-40) 
t-+0 z-+0 

(e) Final-Value Theorem :If R* (x) has all 
its poles outside the unit circle of the z plane, 

lim r(t) =lim (1 -z)R* (z) (9-41) 
t-+oo z-+1 

{f) For 8 = ± jkn(k = 0, 1, 2, ... ), G* (z) 
2 

isalwaysreal ( n = ~ ) . 

(g) The degree of the denominator of 
G* (x) in z always equals the degree of the 
denominator of G ( s) in s if G ( s) is rational. 

(h) The poles of G* (x) in the strip 

-iit< lm(8) < + j .g.. inthesplanearethe 
2 2 

poles of G ( s) in the s plane. 

(i) Changing the values of the poles of 
G(s) changes the coefficients A (8n)IB' (s ,) 
as well as the terms 1/ ( 1 - ze+rs.) in the 
partial-fraction expansion of G* (z) [Eq. 
(9-38)]. 

(j) Insertion of zeros in G ( 8) changes 
only the coefficients A (s ,)IB' (s,). 

(k) ThenumberofpolesofG*(x) atz= 1 
is equal to the number of poles of R ( s) at 
s=O. 

(1) In terms of the w transform, the ini­
tial value theorem is 

lim r(t) =lim ( + R* (w) (9-42) 
t~o w-+1 1 + \V 

and the final-value theorem is 

limr(t) =lim(+ R*(w) 
t-+oo w-+0 1 + \V 

(9-43) 
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9-4 DESIGN lECHNIQUES 

The problem of designing a sampled-data 
system is complicated by the fact that the 
system can contain both discrete and contin­
uous elements . In addition, direct application 
of x-transform theory merely gives the re­
sponse at the sampling instants , but the be­
havior during the sampling instants cannot 
be determined by simple methods . 

The insertion of a sampling device in an 
otherwise continuous system to produce a 
sampled-data system introduces the following 
limitations : 

(a) A greater tendency towards instabil­
ity results. 

(b) Ripple components arise in the output 
at the sampling frequency and its harmonics . 

(c) The usable bandwidth of the system is 
reduced to a fraction of the sampling fre­
quency n, the theoretical upper limit being 
n/2. 

To determine the gain necessary to sta­
bilize the system for a specified MP in the 
closed-loop frequency response, the introduc­
tion of the w transform greatly facilitates 
plotting the frequency locus as indicated in 
Par. 9-3. Conventional continuous-system 
techniques can be used. 

·:r ·I e• ~ I.M. 

The root-locus procedure can be used in a 
conventional manner in the z plane to investi­
gate the closed-loop pole-zero configuration. 
This procedure differs from that used for 
s-plane loci of continuous systems in that : 
(a) instability implies closed-loop poles in­
side the unit circle of the z plane (as con­
trasted to right-half-plane poles in continu­
ous-system design) , and (b) the dominant 
pole (or pole pair) is the pole nearest the 
point (1,0) in the z plane (as contrasted to 
poles nearest the origin in the s plane) . 
Otherwise, conventional procedures can be 
used to investigate stability, relative stabil­
ity, and the effect of compensation. 

Compensation of sampled-data systems 
with continuous networks (conventional lead 
and lag networks) is a difficult design prob­
lem and is best treated by trial-and-error 
analysis. In many important applications 
discrete networks can be used for compensa­
tion; for example, the use of digital compu­
ters in fire-control systems provides the de­
signer with an opportunity to use digital 
(discrete) filters in the compensation of the 
control system . Figure 9-12 shows the differ­
ence between continuous and discrete com-

G.(sl ·[ G1(sl • 

[ e• •[ G~(sl H .. 

B. DISCRETE COMPENSATION 

Fig. 9-12 Comparison between discrete and continuous compensation. 
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pensation. In Fig. 9-12A, G, ( s) is the trans­
fer function of a continuous network which 
is used to improve the closed-loop behavior; 
G1 (s) is the transfer function of the fixed 
elements. In Fig. 9-12B, G/ (s) is the trans­
fer function of a digital network (digital 
program) used to improve system perform­
ance. For the case of continuous compensa­
tion, we have 

E* (s) ________ 1 __ _ 

R*(s)- 1 + [Gc(s)G1 (s)]* 
(9-44) 

C(s) G 0 (S)G1 (s) 

R* (s) 1 + [Gc(s) G1 (s) ]* 
(9-45) 

R* (s) 1 +G,*(s)G~*(s) 
(9-46) 

~ _ G,(s)Gc*(s) 
R*(s) - 1 fG,*(s)Gc*(s) 

(9-47) 

Compensation with a digital network is a 
simpler analytical problem than continuous 
compensation because the effect of the com­
pensation can be varied without altering the 
fixed-element contribution to the open-loop 
response G,* (s)Gc* (s). For continuous 
compensation, the open-loop response is 
[Gc (s)Gds)] *, and altering the compensa­
tion will alter the contribution of the fixed 
elements to the open-loop response. Conven­
tional continuous system techniques can be 
used for synthesizing digital programs to 
compensate sampled-data systems ;but if con­
tinuous compensation is desired, a trial-and­
error analytical procedure is necessary. 

9-5 PERFORMANCE EVALUATION 

The determination of the time response of 
a sampled-data system can be carried out in 
closed form by the use of Eqs. (9-38) and 
(9-39). A simple numerical procedure for 
determining the values of the output at the 
sampling instants can be obtained by expand­
ing the z transform of the output in a power 
series in z. Since z corresponds to a time 
delay of one sampling instant, the coefficients 
of the power-series expansion of a z trans­
form are the values of the corresponding 
time function at the sampling instants, as 
can be seen from an examination of Eq. 
(9-10). The expansion is easily performed by 
dividing the numerator by the denominator 
since the z transform is a rational function. 

Example. 
Assume that the z transform of the output 

is given by: 

C* (z) = 0.186(z2 + 1.392) 
( 1- x) [0.554z2 - 1.108z + 1] 

Dividing the numerator by the denominator, 
the power series expansion of C* (x) is found 
to be 

C*(z) = (.26)z + (.76)z2 + (1.17)z3 

+ (1.36)z4 + (1.33)z3 + (1.20)z6 

+ (1.07)::7 + (.99)z8 + (.96)z9 + ... 

The coefficients of this expansiOn are the 
sampled values of c(t), and the instant of 
occurrence is determined from the power of 
z in the appropriate term. The function is 
plotted in Fig. 9-13. 

An alternate method for finding the time 
response of a system is based on a difference­
equation representation. Assume that 

~-
R* (s) 

ao + al e-·•T + ~e-2sT + ... 

b + b e-•T + b n-2sT + 0 1 2<> ••• 

(9-48) 
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Fig. 9-7 3 Sampled-time function. 

Cross-multiplying, inverse transforming, and 
solving for c (nT), we obtain 

c(nT) = _!_ [aur(nT) + a,r[ (n -1) T] 
bu 

+ .. . -d;_c[ (n-l)T] 

- b~c[ (n - 2) T] - . . . (9-49) 

This is a general recurrence formula which 
enables one to calculate the present value 
c(nT) of the output in terms of a weighted 
sum of the present and past values of the 
input r(t) and the past values of the output. 
The calculation is best carried out in tabular 
form. 

Example. Assume that the closed-loop trans­
fer function of a sampled-data servomecha­
msm IS 

C* (z) 

R* (z) 

1.5z 
1 +o.5z 

If r ( t) is a unit step, the tabular evaluation 
of c ( nT) can be carried out as follows. Cross­
multiplying, we get 

C* + 0.5 e-xT C* = 1.5 e-xT R* 

Inverse transforming, we obtain 

c(nT) +.05 c[(n -1}T] 
=1.5r[ (n -1) T] 

or 

c(nT) = 1.5r[ (n- 1)T] 
- 0.5c[ (n- 1) T] 

when r (nT) is a unit step, and where the sys­
tem has been at rest so that c( -T) is zero, the 
calculation of c ( nT) can be carried out in tab­
ular form as follows : 

9-11 

1.5r -0.5c 
n [ (n- 1) T] [ (n- 1) T] c(nT) 

0 0 0 

1 1.5 0 0 

2 1.5 -0.75 1.5 

3 1.5 -0.375 0.75 

4 1.5 -0.562 1.125 

5 1.5 -0.469 0.938 

6 1.5 -0.516 1.031 

7 1.5 -0.492 0.984 

8 1.5 -0.504 1.008 

9 1.5 -0.498 0.996 

1.002 

The values in the last column are plotted in 
Fig. 9-14. In general, it is necessary to know 
the value of c (nT) for values of n correspond­
ing to time prior to the beginning of the tran­
sient. If the system is of kth order, it is neces­
sary to know c ( nT) fork prior to the samples. 
This corresponds to the need for knowing the 
initial conditions in any transient problem. 

1S ~ 

t 1.4 

1.2 
;: 
~ LO 

0.8 

0.6 

0.4 

0.2 

0 

0 2 4 10 

Fig. 9-14 Step response aE sampled-data system. 
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Since the z transform does not give the 
value of the output between sampling instants, 
Lago and Truxal11°l have suggested a method 
which enables one to determine the output at 
submultiples of the sampling period T. A fic­
titious impulse modulator is placed immedi­
ately after the actual one (Fig. 9-15). The fic­
titious sampler has a sampling period which 
is an integral submultiple ofT ;i.e., 

T 
T=­

n 

As a result, we can write 

R'~(z") G'*(z) C'* ( z) = --....;_-'---
1 + G* (z") 

(9-50) 

( 9-51) 

where G'* ( x) and C'* (z) are z transforms of 
g (t) and c (t) with respect to the period T', 
and R* (z") and G* (z") are z transforms of 
r ( t )and g ( t )with respect to the period T but 
with z replaced by zn. 

An extension of the method above is given by 
Barker. <24l In this extended method, the out­
put at any time between sampling instants can 
be found. If we refer to Fig . 9-16, it can be 
seen that the artificial delay produces a signal 
c' (t) which one can sample in order to observe 
the values which will occur between the values 
of c* (t) .We find that 

C'* (z m) = G* (z,m) R* (z) 
' 1 + G* ( x) 

(9-52) 

where G* ( z,m) is a modified z transform . 
G* (z,m) is evaluated by assuming that g ( t) 
is sampled at t = ( n + m- 1) T instead of at 
t = nT. A brief table of modified z transforms 
is listed in Table 9-2. A more extensive table is 
given by Barker. <24 l The use of Eq. (9-52) 
enables one to scan the output by varying m 
between zero and unity. Thus, the variation of 
the output between sampling instants is ob­
served, and a study of the ripple can be made. 

9-12 

------: ... 
(I.M.). I 

I ... _____ .J 

Fig. 9· 7 5 Determination of c(t) between sampling 

instants by sampling at n n radl sec. 

Fig. 9-76 Determination of c(t) between sampling 

instants through the use of an artificial delay. 

The error coefficients of a sampled-data sys­
tem may be obtained from the expression 

1 {d" [E*(s)J} 
en= n! ds" R*(s) •=o 

(9-53) 

Since E *(s) jR* (s) is a rational function in z, 
where z = e-><r, we can expand it in a Taylor 
series (inx) aboutthepointx = 1 (s= 0). 
Then, by using the infinite series expansion of 
e-•T and rearranging terms , we can easily 
obtain the Taylor series expansion of 
E* (sYR *(s) in terms of sat s = 0: 

E* (z) 2 --- = ao +adz -1) + a2(z -1) 
R* (z) 

+a3 (z-I)3+ ... 
(9-54) 
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or 

E*(s) =ao -T(a1)s +T2(a2+.q:i;-)S2 

R*(s) 2! 

(9-55) 

The techniques described in this section can 
be used to obtain the transient response, the 
ripple, and the error coefficients of a sampled­
data system. Using trial-and-error procedures 
and the conventional continuous-system de­
sign techniques, the evaluation of a given sys­
tem in terms of a set of performance specifica­
tions is a straightforward matter. 

TABLE 9-2 MODIFIED z TRANSFORMS 

F(s) F* (z,m) 

1 0 

1 z -
s 1-z 

1 Tz2 + mz -
s2 (1-z)2 

1 ze-amT 

s+a 1 - ze-<>T 
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CHAPTER 10 

NONLINEAR SYSTEMS* 

1 0-1 INTRODUCTION 

All of the techniques of system analysis 
discussed in previous chapters are restricted 
in their application to linear systems. This 
restriction imposes two limitations on design. 
First, components must be of high quality if 
they are to operate in a linear manner when 
amplitudes and frequencies of signals vary 
widely. Second, the linearity restriction limits 
the realizable system characteristics, the 
types of systems, and the tasks that can be 
accomplished. 

Nonlinearities are generally of two types: 

incidental and intentional. Incidental nonlin­
earities are secondary effects which limit per­
formance in otherwise linear systems. Exam­
ples of phenomena that introduce incidental 
nonlinearities include backlash, saturation , 
dead zone, hysteresis , and coulomb friction . 
On the other hand, intentional nonlinearities 
are those introduced purposely to improve the 
characteristics of systems or to alter them in 
specified ways. The contactor (on-off or relay) 
servo is the most extreme example of such an 
intentionally nonlinear system . 

10-2 DESCRIBING FUNCTION PROCEDURES(7,s,12,13,1s,ls,19,21,22,31,3s,36,42,so,sl,s2) 

One problem to be analyzed in an investiga­
tion of nonlinear system behavior is that con­
cerned with the question of stability . A 
method of studying this problem utilizes the 
describing-function procedure . The applica­
tion of the describing-function procedure en­
ables the designer to predict whether or not 
a closed-loop sy stem containing a nonlinear 
element will be stable. A system is said to be 
stable if, after a sudden input or disturbance, 
it eventually comes to rest. In some sy stems 
the existence of a stable oscillation is accept­
able provided the amplitude of the oscillation 
is small. A typical case is a relay control sys­
tem where a small amplitude oscillation may 
be acceptable if the cost of eliminating the 

"ByL. A. Gould 
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oscillation is too high. A system is said to be 
unstable if a finite input or disturbance to the 
system results in an output oscillation that 
tends to grow without bound. 

The describing-function method is based on 
three assumptions: 

(a) There is only one nonlinear element in 
the system. If there are more than one, that 
part of the system including all nonlinearities 
is treated as a single nonlinear component. 

(b) The characteristics of the nonlinear 
element are independent of time. They depend 
only on the present value and past history of 
the input to the element. 

(c) If the input to the nonlinear element is 
sinusoidal, only the fundamental sinusoidal 
component of the output of the element con­
tributes to the input of this element. 
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The last assumption is the heart of the 
method. It is applicable when the amplitude 
of the harmonics generated by the nonlinear­
ity decreases and when the elements that fol­
low the nonlinearity have low-pass character­
istics. 

Referring to Fig. 10-1, the method of anal­
ysis is as follows. The input x ( t) to the non­
linear element N is assumed to be sinusoidal 
with amplitudeX and frequency w. The output 
y ( t) will be periodic (but nonsinusoidal) with 
the same frequency w. A Fourier analysis of 
the output waveform is made and all frequen­
cies except the fundamental are ignored. The 
amplitude Y, of the fundamental will, in gen­
eral, be a function of X and w, as will be the 
phase angle of the fundamental relative to the 
input. The describing function of the non­
linear element is defined as a complex num­
ber whose magnitude is YdX, the ratio of the 
amplitude of the fundamental component of 
the output to the amplitude of the input, and 
whose angle is the phase angle of the funda-

fig. 10-1 Nonlinear feedback control system. 

mental component of the output relative to the 
phase angle of the input. The describing func­
tion is usually denoted by N (X,w). Symbol­
ically, if 

x (t) =X sin wt (10-1) 

then 

y(t) = Y1 sin (wt +,h) + Y22 sin 
(wt +c1d +Y33 sin (wt +.p3 + ... 

(10-2) 

and 

IN(X,w) I (10-3) 

L N (X, w) = c/>1 (10-4) 

The describing functions of several impor­
tant nonlinearities will now be presented. 
Figure 10-2 shows the input-output character­
istic of a contactor with inactive zone A (dead 
zone) and hysteresis h. The amplitude and 
phase curves of the describing function N of 

OUTPUTY 

r l'o 

I 
h r 

+1 

'l. 11 ~~ 
--- INPUT X 

1r ~r 

-I 

Fig. 10-2 Dimensionless representation of contactor 

characteristics (case involving both inactive 

zone and hysteresis). 

Adapted by permission from Tranoactiono of th e AlEE. Volume 
69, Part I, 1950, from article entitled 'A Frequency Response 
Method for Analyzing and Synthesizing Contactor Servomecha­
nisms', by R. J. Kochenburger. 
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this contactor as functions of the input ampli­
tude X appear in Fig. 10-3. Figure 10-4 shows 
the input-output characteristics of anonlinear 
element containing both dead zoneD and sat­
urationS. No phase shift is associated with 
this element since, in general , phase shift will 
not occurfor a single-valued nonlinearity. The 
describing function for no saturation (S~oo) 
is presented in Fig. 10-5. The describing 
function for no dead zone (D = 0) is present­
ed in Fig . 10-6. Describing functions for vari­
ous combinations of dead zone and saturation 

appear in Fig. 10-7. Figure 10-8 shows the in­
put-output characteristic of a nonlinear ele­
ment characterized by hysteresis (backlash or 
free play). The describing function for this 
nonlinearity is presented in Fig. 10-9. Other 
describing functions for more complex non­
linearities can be derived for the particular 
case being considered. Additional describing 
functions are given in the literature. <18•19•

22> 

The procedure for using the describing 
function to predict the nature of the stability 
of a nonlinear sy stem follows. Referring to 
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Fig. 70-3 Plot of the describing function N (simple contactor with hysteresis ratio hi !J.). 

Adapted by permission from Transactions of the AlEE, Volume 
69, Part I, 1960. from article entitled 'A Frequency Response 
Method for Analyzing and Synthesizing Contactor Servomecha­
nisms', by R. J. Kochenburger. 
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Adapted by permission f rom Automatic Feedback Control Sys­
tem Syntlusis, by J . G. Tru xal , Copyright , 1955, McGraw -Hill 
Book Company, Inc. 

Fig. 10-10, the linear and nonlinear portions 
of the system are separated into two parts ; 
the describing function N applies to one part, 
and the response of the linear elements G to 
the other. The gain-phase plane is employed 
for plotting the negative reciprocal ( -1/N) 
of the describing function. The response 
G (Jw) of the linear elements is also plotted on 
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Fig. 7 0-6 Describing function for saturation. 

Adapted by perm iss ion f r om Automatic Feedback Control Sy s­
t em Syntlu sis, by J . G. Truxal , Copyright, 1955, McGraw-Hill 
Book Company, Inc. 
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Company , Inc. 

the same plane. If the -1/N locus and the 
G(jw) locus do not intersect, the sy stem is 
stable and does not oscillate. If the -1/N 
locus and the G(jw) locus do intersect (two 
types of intersections can occur), the system 
may or may not be oscillatory. The describing 
function for a contactor with hysteresis and 
dead zone is sketched in Fig . 10-11 wherein 
the types of intersections of the -1/N locus 
with a G(jw) locus are shown. The parameter 
along the - 1/N locus is the amplitude X of 
the assumed sinusoidal input tu the nonlinear 
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Encountered Nonlinearities'. by H. D. Grief. 

Fig. 7 0· 7 0 Simplified nonlinear system. 

Fig. 7 0· 7 7 Stability determination with 

describing function. 

... 

element. Three cases illustrating the types of 
intersection of the G (jw) locus with the 
-1/N locus are shown in Fig. 10-11. 

Case 1. The G (iw) locus does not intersect 
the -1/N locus. The system is stable and no 
oscillation occurs . 

Case 2. The G (jw) locus intersects the 
-1/N locus at two points A and B. Point A is 
called a divergent equilibrium point since 
sustained oscillations cannot be maintained at 
the frequency w.! and amplitude XA associated 
with A. The existence of a divergent equili­
brium can be determined by treating the 
-1/N locus as one treats the -1 + JO point 
in the study of the stability of linear systems. 
If the amplitudeX associated with point A de­
creases slightly, the G (iw) locus will be lo­
cated in a stable position with respect to the 
-1/N point, and oscillations will tend to die 
out. If the amplitudeX tends to increase from 
X4, the G(jw) locus encloses the -1/N point 
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(corresponding to instability) , and the ampli­
tude of oscillation will tend to increase. Thus , 
oscillation cannot be maintained at A. How­
ever, point B is a point of convergent equilib­
rium, as can be determined by letting the 
amplitude X both increase and decrease rela­
tive to Xn. In each case, the tendency will be 
for the amplitude of the oscillation to head 
back to point B. Thus , the convergent equilib­
rium point B determines an amplitude Xn 
(read offthe -1/N locus) and a frequency 

wn [read off the G (jw) locus] at which a sus­
tained oscillation occurs. 

Case 3. The G (jw) locus intersects the 
-ljN locus at point C. This is a convergent 
equilibrium point, as can be determined by 
letting the amplitude X increase or decrease 
relative to the amplitude Xr associated with 
the intersection C. In each case, the amplitude 
of oscillation will tend to return to X, . 

The describing-function method thus pre­
dicts the stability of nonlinear systems, as 
described above. If intersections occur be­
tween the -1/N locus and the G(jw) locus, 
the amplitude and frequency of convergent 
oscillations can be predicted to an accuracy 
that is determined by the assumptions inher­
ent in the method. Techniques for estimating 
the accuracy of the results are given in ref­
ere;1tes 15 and 52. 

The describing-function procedure breaks 
down if the two loci (- liN and G) approach 
each other without intersecting , are tangent , 
or intersect at a small angle. In these situa­
tions one cannot be certain as to whether or 
not oscillations exist. 

In general, the accuracy of the describing­
function method increases as the cutoff rate 
of the linear element (followingthe nonlinear 
element) increases. The accuracy may de­
crease if the linear element exhibits a sharp 
resonance. 

The describing-function procedure is use­
ful in predicting the closed-loop frequency re­
sponse of a system containing an incidental 
nonlinearity when no oscillation can occur. 
Thereby, peculiarities in measured charac­
teristics can be explained, and quantitative 

estimates of nonlinear effects can be made. By 
treating the -1/N locus as the equivalent of 
the -1 + jO point of conventional linear anal­
ysis , the degree of stability of a system con­
taining a nonlinear element may be estimated. 
Instead of aligning the ( -180°, 0 dg) point of 
the Nichols chart with the ( -180°, 0 dg) 
point of the G (iw) locus in order to determine 
MP, as is done when a linear element is pres­
ent, the ( -180°, 0 dg) point of the Nichols 
chart is aligned with a point chosen on the 
-l/N locus of the nonlinear element for a 
given amplitudeX of the input to the element, 
when a nonlinear element is present. The tan­
gency of the G locus (plotted on the same co­
ordinates as the -liN locus) to an M contour 
of the Nichols chart will then be an indication 
of the degree of stability associated with the 
chosen amplitude X. Moving the ( -180°, 0 
dg) point of the Nichols chart along the -1/N 
locus is equivalent to changing the amplitude 
X of the input to the nonlinear element. By 
this means, the variation of the degree of 
stability (as measured by M,) can be deter­
mined as a function of the amplitude of the 
input to the nonlinear element. The relation 
between the amplitude X (input to nonlinear 
element) and the reference-input amplitude 
R can be determined for each Mp value from 
the following relations (see Fig. 10-1). 

IRI= IN! (10-5) 

where Wv is the frequency associated with the 
point of MP tangency for each value of X 
along the -1/N locus. 

These methods can be extended to deter­
mine the entire frequency response of a sys­
tem by noting the intersections of other M 
contours with the G locus at each value of X 
and using the following relations to deter­
mine the input amplitude (or amplitudes) R 
associated with each value of X: 

I X (jw) I 1 I C (jw) I 
R(jw) - ING:!(jw)l R(iw) (

1
0-

7
) 
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Example . A relay (contactor) servomech­
anism employs a relay with a ratio of hyster­
esis h to dead zone A of 0.5. The describing 
function of the relay is plotted in Fig. 10-12 
as a function of the normalized input ampli­
tude a, where a= Xj6.. The linear element 
Gdiw) is a pure gain K (see Fig. 10-1). The 
linear element Gz(jw) is represented by the 
relation 

Gz(jw) = jro(0.05~·w + 1) 

•10 ~. 
.. 

)v 
1 J~ m 

\3.0 fl' 
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The block diagram of the system is shown in 
Fig. 10-13. The response G1G2 of the linear 
elements is plotted in Fig. 10-12with KIA= 
20 as curve (B). No intersection occurs, and 
so the system is stable. If the gain factor K 
is increased by 8.5 dg (a factor of 7.1), curve 
(A) is obtained. Now, an intersection occurs 
for a= 0.9 and w = 55 rad/sec. This intersec­
tion is a convergent equilibrium point, and 
the system will therefore oscillate at 55 rad/ 
sec with an error amplitude E = 0.00635 
smce 

-•eo• -•&o• -140• -•zo• -1oo• -eo• 

a 
JEJ = [K/6.] 

and 

KIA= 142 

For the stable case, curve (B) of Fig. 10-12 
and Eq. (10-5) are used to determine the 
variation of Mp \Vith the magnitude JRI of the 
sinusoidal input. The results are plotted m 
Fig. 10-14. 
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M LO 
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Fig. 1 0·12 Contactor servomechanism study. 

Fig. 10-13 Contactor servomechanism. 

0 0.005 0010 ~ o.oro 
\RI 

Fig. 10-14 Degree of stability variation with input 

amplitude for contactor servomechanism. 
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1 0-3 PHASE-PLANE PROCEDURES (2,3,4,s,6,23,2A,25,26,27,3o,34,39AM 1,44,46,47 As.sJ,s2,s3) 

The main limitation of the describing­
function procedure is that it cannot predict 
the response of stable nonlinear systems to 
inputs that are not sinusoidal. In contrast, the 
phase-plane method is an attempt to describe 
the response of nonlinear systems to specific 
transient inputs. In this method, attention is 
focused on the differential equations that 
describe the system, and the behavior of the 
system is studied by plotting velocity versus 
displacement with time as a parameter. This 
velocity-displacement plane is called the phase 
plane. Only second-order systems can be 
handled in the phase plane although attempts 
have been made to treat higher-order systems 
by a phase-space representation. (34,40,46,47,48,53> 

Phase-plane analysis is concerned with the 
characteristics of the differential equation 

x +a(x,x)x +b(x,x)x =0 (10-8) 

The phase-plane portrait of the system is a 
plot of the velocity x as a function of the dis­
placement x, the plot being a family of curves 
depending on the initial conditions x (0) and 
x (0). Once the initial conditions have been 
specified, the behavior of the system is deter­
mined completely by the curve in the phase 
plane corresponding to the given initial con­
ditions. Thus, the phase-plane approach is 
most useful in determining the response of a 
system to a step input. Since a step input does 
not always occur in practice, the application 
of the phase-plane technique is severely re­
stricted when the response to other types of 
inputs is sought. 

As an example, consider a second-order 
-lir;ear system whose characteristic equation 
is! 

(10-9) 

If the velocity x is treated as a new variable 
y, then, by eliminating the dependence of the 
above equation on time, there results 

dy +2r 2 X -0 - -,wn+w, --
dx y 

(10-10) 

Equation (1 0-10) is a first-order equation 
for y as a function of x and has a family of 
solutions depending on the initial values y (0) 
and x ( 0) . Each solution is called a phase 
trajectory, and the totality of solutions is the 
phase-plane portrait of the system. The phase 
trajectories for Eq. (10-10) are shown in 
Fig. 10-15 for~ = 0.5. In this figure, if the 
initial conditions correspond to the point A 0 , 

then the motion of the system is completely 
described by the trajectory AoA1A2A3A4A:.Ar. 
with time increasing in the direction of the 
arrows. 

In a more general case, it may be very diffi­
cult to solve the equation that describes the 
trajectories. A graphical procedure involving 
the determination of the isoclines (lines of 
equal slope) is then possible. (4) Referring to 
Eq. ( 10-8), the slope of the phase trajectories 
is found to be 

dy X - = -a(x,y)- b(x,y) -
dx y 

(10-11) 

By setting the right side of this equation 
equal to a constant, a curve connecting points 
of equal slope is determined. The isoclines 
thus obtained are plotted in the phase plane, 
and the slopes of the various phase trajec­
tories can be drawn directly on the isoclines. 
If a large number of isoclines are drawn, the 
phase trajectories can be accurately deter­
mined. 

Once the phase portrait of a system has 
been constructed, the behavior of the system 
can be investigated. If the response of the 
system for a given set of initial conditions is 
sought, the corresponding phase trajectory 
determines the response. The variation of 
time t along the trajectory can be ascertained 
from the relation 

t = J ~ dx (10-12) 

The nature of the stability of the system 
can be determined by an investigation of the 
singular points of the system. If the behavior 
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of a second-order system can be described by 
the two first-order equations 

x = P(x,y) 

y=Q(x,y) 

( 10-13) 

(10-14) 

the points at which x =-= 0 and y = 0 are called 
the singular p oints of the system and repre­
sent equilibrium states of the sy stem. If the 
trajectories approach a singular point, the 
system is stable ; whereas, if they diverge 
from the singular point, the system may be 
unstable . To investigate the nature of the 
equilibrium at a singular point , a Tay lor 
series expansion of the functions P ( x,y) and 
Q (x,y) is made about the point, and all but 
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the first-order terms in expansion are neg­
lected. Thus , the singular points are deter­
mined from the solutions of the equations 

P(x,y) = 0 

Q(x,y) =0 

(10-15) 

(1 0-16) 

The linearized forms of Eqs. (10-13) and 
(10-14) at the singular point x = a andy = b 
become 

x = a1 ( x - a) + a~ ( y - b ) 

y =b1(x - a) +b2(y -b ) 

(10-17) 

(10-18) 

where a1 , a, b1, and b2 are coefficients of the 
expansiOn. Six types of singular points can 
occur: 
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Fig. 10-15 Phase portrait of linear second-order system with ~ = 0.5. 

By permission from A utomatic Fccdbark Control System Syn­
thesis, by J . G. Truxal. C opyright. 1955, McGraw-Hi1l Book 
Company, Inc. 
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(a) Stable node (Fig. 10-16) 

(a1 +b~) <O (10-19) 

(a1 + b2 ) 2 > 4(a1 b~ -lll!b1) (10-20) 

(b) Unstable node (Fig. 10-17) 

(a, +b2 ) > 0 (10-21) 

(a1 +b~ ) 2 >4(a1b2 -a2b1) (10-22) 

( c) Stable focus (Fig . 10-18) 

(at + b2) < 0 

(a1 + b2 )~ < 4(alb2- a2b1) 

(d) Unstab lefocus (Fig. 10-19) 

(a1 +b2) >o 
(a,+ b2P < 4(albz -a2b1) 

(e) Center (Fig. 10-20) 

(a1 + b,) = 0 

(a1b 2 - a2bd > 0 

(f) Saddle point (Fi g. 10-21) 

(a , + b,) =0 

(a1b 2 - a2bd < 0 

(10-23) 

(10-24) 

(10-25) 

(10-26) 

(10-27) 

(10-28) 

(10-29) 

(10-30) 

The relations among the various singular 
points and the Taylor series coefficients given 
by Eqs. (10-19) throu gh (10-30) are sum­
marized in Fig. 10-22. 

Fig. 10-16 Portrait in the vicinity of a stable node. 

By permiss ion from Automatic Feedback Control Sy stem S11 n · 
th••>•, by J . C. T ruxal. Copyright. 1955, McGraw-Ilill Book 
Company, Inc, 

J I 

Fig. 10-17 Portrait in the vicinity of an 

unstable node. 

By permission fr om Automatic Feedb ack Con trol Sy s tem Sy n­
th e>i>, by J . G. Trux al, Copyr ight, 1955, McGraw-Hill Book 
Company, Inc. 

Fig. 70-78 Portrait in the vicinity ·of a 

stable focus . 

By permission from A utomatic Feedback Control Syste m Slln­
l he5l5. by J. G. T ruxal, Copyright. 1955. McGraw-H ill Book 
Company, In c. 
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Fig. 10-19 Portrait in the vicinity of an 

unstable focus. 

By permission from Automatic Feedback Control System Syn­
thesis. by J. G. Truxal, Copyright, 1955, McGraw-Hill Book 
Company, Inc. 

Fig. 10-20 Portrait in the vicinity of a center. 

By permission from Automatic Feedback Control System Syn­
thesis, by J. G. Truxal. Copyright, 1956. McGraw-Hill Book 
Company, Jnc. 

In the case of feedback control systems, the 
problem is simplified because Eq. (10-13) can 
be replaced by 

X=Y (10-31) 

and the Taylor senes coefficients a1 and ~ 
become 

(10-32) 

(10-33) 

Fig. 10-21 Portrait in the neighborhood of a 

saddle point. 

Adapted by permission from Automatic Feedback Control Sys­
tem Syntheeis, by J . G. Truxal, Copyright, 1955. McGraw-Hill 
Book Company, Inc. 

In addition to the determination of the 
singular points, a complete description of the 
stability of a system in the phase plane re­
quires a determination of the limit cycles of 
the system. A limit cycle is an isolated closed 
path in the phase portrait which corresponds 
to a system oscillation of fixed amplitude and 
period. A limit cycle is stable or unstable 
depending upon whether the paths in the 
neighborhood converge toward the limit cycle 
or diverge away from it. Thus, there arise 
two general types of self-excitation of non­
linear systems. Soft excitation occurs when a 
limit cycle encloses an unstable singular point 
(Fig. 10-23) ; hard excitation occurs when a 
limit cycle encloses a stable limit cycle or a 
stable singular point (Fig. 10-24). There is 
no definite method available for determining 
the limit cycles of a system or even if a limit 
cycle exists. The only approach is to deter­
mine the convergent and divergent properties 
of the phase trajectories. Thus, if all trajec­
tories are converging outside a circle C1 
(centered at the origin) and diverging inside 
a smaller circle c2 (centered at the origin), 
then a stable limit cycle must exist between 
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SADDLE 
POINT 

0 

STABLE 
FOCUS 

UN$TABLE 
FO~US 

Fig. 70-22 Types of singularities. 

By permission from A utomatic Feedback Control Sys te m S11n· 
thesis, by J. G. Trux al, Copyright, 1955, McGraw-Hill Book 
Company, Inc. 

UNSTABLE 
SINGULAR POINT 

ST ABLE 
LIMIT 

CYCLE 

Fig. 7 0-23 Portrait with soft self-excitation. 

By permiSSIOn from A utomatic Feedback Control Sy ste m Syn· 
th es is. by J. G. Truxal, Copyright, 1955, McGr aw-Hill Book 
Company, Inc. 

STABLE 
LIMIT CYCLE 

Fig. J 0-24 Portrait with hard self-excitation. 

By permission from A utomatic Feec/hack Control System Sy n .. 
th esis, by J . G. Truxa l, Copyright, 1955, McGraw-IIill Book 
Company, Inc. 

the two circles. In particular, an examination 
of the time rate of change of the distance r 
from the origin for small and large values of 
x and y can determine the divergent or con­
vergent properties of the phase trajectories. 
Several other conditions for the existence of 
limit cycles have been determined. <3 ) Some of 
these conditions are the following : 

(a) No limit cycle exists in any region 
within which 

~p + bQ 

bx by 

does not change sign. 

(b) Within any limit cycle the number of 
nodes, foci , and centers must exceed the num­
ber of saddle points by one. 

(c) If a trajectory stays inside a finite 
region and does not approach a singular 
point, then the trajectory must be a limit 
cycle or approach a limit cycle asymptoti­
cally. 

Knowing the trajectories , the singular 
points, and the limit cycles of a system, the 
behavior of the system is completely deter­
mined when the initial conditions are speci­
fied. The determination of the trajectories 
and the singular points is a straightforward 
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procedure; the determination of the limit 
cycles, however, is more difficult. The com­
plete phase portrait can then be used to deter-

mine the nature of system stability, and the 
response of the system (if stable) is readily 
ascertained. 

10-4 LIMITATIONS, COMPENSATION, AND OTHER METHODS 

As discussed previously, the describing­
function procedure is primarily effective in 
determining the existence of limit cycles and 
predicting the amplitudes and frequencies 
associated with stable limit cycles. To a lesser 
degree the describing-function procedure can 
be used to estimate qualitatively the degree 
of stability of stable nonlinear systems. In 
addition, the describing-function method can 
be used to determine the frequency response 
of nonlinear systems .. therefore, it is helpful 
in explaining anomalous experimental results. 

The phase-plane procedure is useful in 
determining the exact nature of the stability 
of nonlinear systems in situations where the 
describing function method is inapplicable. 
In addition, the time t>esponse of a nonlinear 
system can be determined expeditiously 
through the use of the phase-plane so that a 
more quantitative estimate of the degree of 
stability of a system can be obtained. 

Unfortunately, neither the phase plane nor 
the describing function can be used to deter­
mine the response of a nonlinear system to 
inputs other than simple steps or sinusoids. 
Since these elementary inputs rarely occur 
in practice, the utility of the two methods is 
severely restricted. 

When the input to a system is arbitrarily 
defined, it is necessary to use either numeri­
cal computation <54•55•56 > or, more conveniently, 
analog or digital computers. The analog com­
puter is an especially powerful aid in the 
study of nonlinear systems. 

Some specific remarks are in order regard­
ing the stabilization and compensation of 
nonlinear systems. If the describing-function 
method is applicable, stabilization can be ac­
complished by reshaping the response G (jw) 

of the linear element with conventional linear 
functions to eliminate intersections between 
the describing function and G (jw). A non­
linear compensation function may be added 
to reshape the original describing function. 
If the added nonlinearity is separated from 
the original one by a low-pass filter, the de­
scribing functions of the two nonlinearities 
can be multiplied directly to obtain the com­
posite describing function of the nonlinearly 
compensated system. If the compensating 
nonlinearity immediately precedes or follows 
the original nonlinearity with no separation 
by filtering action, a new describing function 
must be determined by combining the input­
output characteristics of the two nonlinear­
ities. In the latter case, the effect of the added 
nonlinearity on the original describing-func-. 
tion locus is much more difficult to visualize. 

A great deal of effort has been devoted to 
the study of "optimum" nonlinear systems. 
The basic assumption in these studies <5.11,23,24, 

25,27,30,34,4I,44,4G,4Bl is that a system having a 
transient response (to a step input) that 
settles in a minimum period of time and has 
a minimum overshoot is an "optimum" sys­
tem. The limitation of such "optimization" 
methods is due primarily to the fact that a 
nonlinear system will behave differently for 
different inputs. As a result, a system that 
has been "optimized" for a given step input 
may behave poorly for other step inputs of 
different magnitude, and it is likely that it 
will not behave in an optimum manner in 
response to other types of inputs. 

In conclusion, it should be said that the 
problems of stabilization, compensation, and 
optimization of nonlinear systems have, as 
yet, not been adequately treated. 
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