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FOREWORD

INTRODUCTION

This is one of a group of handbooks covering
the engineering information and quantitative
data needed in the design and construction of
military equipment, which (as a group) con-
stitutes the Army Materiel Command Engineer-
ing Design Handbook Series.

PURPOSE OF HANDBOOK

The handbook on Servomechanisms has been
prepared as an aid to designers of automatic
control systems for Army equipments, and as a
guide to military and civilian personnel who are
responsible for setting control-system specifica-
tions and ensuring their fulfillment.

SCOPE AND USE OF HANDBOOK

The publications are presented in hand-
book form rather than in the style of text-
books. Tables, charts, equations, and biblio-
graphical references are used in abundance.
Proofs and derivations are often omitted and
only final results with interpretations are
stated. Certain specific information that is
always needed in carrying out design details
has, of necessity, been omitted. Manufac-
turers’ names, product serial numbers, tech-
nical specifications, and prices are subject to
great variation and are more appropriately
found in trade catalogs. It is essential that
up-to-date catalogs be used by designers as
supplements to this handbook.

To make effective use of the handbook dur-
ing the design of a servo, the following proce-
dure is suggested. The designer should turn
first to Chapters 16 and 17 where design
philosophy and methods are discussed. Im-
plementation of the design procedure may
require a review of certain theoretical con-
cepts and methods which can be achieved
through reference to Chapters 1 through 10.
As the design proceeds, a stage will be
reached at which the power capacity of the
output member has been fixed. Reference to

Chapters 14, 15, and 16 will then illustrate
the salient features of output members hav-
ing the required power capacity. After the
designer has chosen the output member, he
will find the information dealing with sensing
clements and amplifiers (Chapters 11, 12,
and 13) helpful in completing the design.

FEEDBACK CONTROL SYSTEMS AND
SERVOMECHANISMS

Servomechanisms are part of a broad class
of systems that operate on the principle of
feedback. In a feedback control system, the
output (response) signal is made to conform
with the input (command) signal by feeding
back to the input a signal that is a function
of the output for the purpose of comparison.
Should an error exist, a corrective action is
automatically initiated to reduce the error
toward zero. Thus, through feedback, output
and input signals are made to conform essen-
tially with each other.

In practice, the output signal of a feedback
control system may be an electrical quantity
such as a voltage or current, or any one of a
variety of physical quantities such as a linear
or angular displacement, velocity, pressure,
or temperature. Similarly, the input signal
may take any one of these forms. Moreover,
in many applications, input signals belong to
one of these types, and the output to another.
Suitable transducers or measuring devices
must then be used. It is also common to find
multiple feedback paths or loops in compli-
cated feedback control systems. In these sys-
tems, the over-all system performance as
characterized by stability, speed of response,
or accuracy can be enhanced by feeding back
signals from various points within the system
to other points for comparison and initiation
of correction signals at the comparison points.

At present, there is no standard definition
of a servomechanism. Some engineers prefer
to classify any system with a feedback loop
as a servomechanism. According to this inter-



pretation, an clectronic amplifier with nega-
tive feedback is a servo. More frequently,
however, the term servgmechanism is re-
served for a feedback control system contain-
ing a mechanical quantity. Thus, the IRE
defines a servomechanism as “a feedback con-
trol system in which one or more of the sys-
tem signals represents mechanical motion.™
Some would restrict the definition further by
applying the term only to a special class of
feedback control system in which the output
is a mechanical position.

APPLICATION OF SERVOMECHANISMS TO
ARMY EQUIPMENT

Servomechanisms are an important part of
nearly every piece of modern mechanized
Army equipment. They are used to automat-
ically position gun mounts, missile launchers,
and radar antennas. They aid in the control
of the flight paths of jet-propelled rockets and
ballistic missiles, and play an important role
in the navigational systems of those vehicles.
As instrument servos, they permit remote
monitoring of physical®and electrical quan-
tities and facilitate mathematical operations
in computers.

No single set of electrical and physigal re-
quirements can be stated for servomecha-
nisms intended for these diverse military ap-
plications. The characteristics of each servo-
mechanism are determined by the function it
is to perform, by the characteristics of the
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other devices and equipments with which it
is associated, and by the environment to
which it is subjected. It will often be found
that two or more servo-system configurations
will meet a given set of performance specifi-
cations. Final choice of a system may then be
determined by such factors as ability of the
system to meet environmental specifications,
availability of components, simplicity, relia-
bility, ease of maintenance, ease of manufac-
ture, and cost. Finally, the ability to translate
any acceptable paper design into a piece of
physical equipment that meets electrical and
physical specifications and works reliably
depends to a great extent upon the skill of
the engineering and manufacturing groups
responsible for building the system. The exer-
cise of care and good judgment when specify-
ing electrical, mechanical, and thermal toler-
ances on components and subsystems can
contribute greatly to the successful imple-
mentation of servo-system design.

The handbook on Servomechanisms was pre-
pared under the direction of the Engineering
Handbook Office, Duke University, under con-
tract to the Army Research Office-Durham. The
material for this pamphlet was prepared by
Jackson & Moreland, Boston, Massachusetts, un-
der subcontract to the Engineering Handbook
Office. Jackson & Moreland was assisted in their
work by consultants who are recognized authori-
ties in the field of servomechanisms.



PREFACE

The Engineering Design Handbook Series of the Army
Materiel Command is a coordinated series of handbooks
containing basic information and fundamental data useful
in the design and development of Army materiel and sys-
tems. The handbooks are authoritative reference books of
practical information and quantitative facts helpful inthe
design and development of Army materiel so that it will
meet the tactical and the technical needs of the Armed
Forces. The present handbook is one of a series on Servo-
mechanisms.

Section 1 of the handbook contains Chapters 1 through
10, which present feedback control theory as related to
servomechanisms. This material is a concise summary
of information on the subject. For this recason, persons
who are unfamiliar with servomechanisms thecory may
find it necessary at first to acquaint themselves with
the material included in standard textbooks . The bibliog-
raphy at the end of each chapter lists applicable textbooks
and periodicals for additional referencing and research.

For information on servomechanism components and
system design, see one of the following applicable sections
of this handbook:

AMCP 706-137 Section 2 Measurement and Signal
Converters (Chapters 11-12)

AMCP 706-138 Section 3 Amplification (Chapter 13)

AMCP 706-139 Section 4 Power Elements and System
Design (Chapters 14-20)

An index for the material in all four sections is placed
at the end of Section 4.

Elements of the U. S. Army Matericl Command having
need for handbooks may submit requisitions or official
requests directly to Publications and Reproduction Agency,
Letterkenny Army Depot, Chambersburg, Pennsylvania
17201. Contractors should submit such requisitions or
requests to their contracting officers,

Comments and suggestions on this handbook arec wel-
come and should be addressed to Army Rescearch Office-
Durham, Box CM, Duke Station, Durham, North Carolina
27706.
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CHAPTER 1

PROPERTIES OF FEEDBACK CONTROL SYSTEMS*

1-1 OBJECTIVES OF A FEEDBACK CONTROL SYSTEM

The purpose of a feedback control system
is to monitor an output (controlled variable)
in a manner dictated by an input (reference
variable) in the presence of spurious disturb-
ances (such as random load changes). The
basic elements of a feedback control system
are shown in Fig. 1-1. The system measures
the output, compares the measurement with
the desired value of the output as prescribed
by the input, and uses the error (difference
between actual output and desired output) to
change the actual output and bring it into
closer correspondence with the desired value
of the output. To achicve a more sensitive
control means, the error is usually amplified ;
in general, the higher the gain the more accu-
rate the system. Thus, a feedback control sys-
tem is characterized by measurement, com-

*By L. A. Gould

parison, and amplification. In brief, a feed-
back control system is an error-correcting
power-amplifying system that produces a
high-accuracy output in accordance with the
dictates of a prescribed input.

Since arbitrary disturbances (such as am-
plifier drift, random torques, etc) can occur
at various points in the system, a feedback
control system must be able to perform its
task with the required accuracy in the pres-
ence of these disturbances. Since random
noise (unwanted fluctuations) often is pres-
ent at the input.of the system, a feedback
control system must be able to reject, or filter
out, the noise while producing as faithful a
representation of the desired output as is
feasible.

DISTURBANCE

INPUT + NOISE
——  COMPARATOR

ERROR

AMPLIFIER

» = OUTPUT

MEASURED OUTPUT!

MEASHENY

Fig. 1-1 Elements of a feedback control system.
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1-2 OPEN-LOOP VS CLOSED-LOOP SYSTEM CHARACTERISTICS

Because a measure of the output is fed
back and compared with the input, any repre-
sentation of a feedback system contains a
closed loop (see Fig. 1-1), and the system is
thus called a closed-loop system. Many con-
trol systems do not exhibit this closed-loop
feature and may be termed open-loop sys-
tems. In an open-loop system, the error is
reduced by careful calibration. The elements
of an open-loop control system are shown in
Fig. 1-2.

DISTURBANCE

!

CELEMENED

INPUT 4 NOISE

——— outeuT

—

fig. 7-2 Elements of an open-loop control system.

If open-loop and closed-loop systems are
compared, it can be seen that several advan-
tages accrue to the closed-loop system. In a
closed-loop system, the percentage change in
the response of the system to a given percent-
age change in the response of one of its ele-
ments is approximately inversely proportion-
al to the over-all amplification of the loop.
However, in an open-loop system, the percent-
age change in the response of the system is
approximately proportional to the percentage

1-3 STABILITY AND

For the advantages of accuracy and con-
stancy of characteristics, the feedback con-
trol system must pay a price in the form of a
greater tendency toward instability. A linear
system is said to be stable if the response of
the system to any discontinuous input does
not exhibit sustained or growing oscillations.
Essentially, this means that the system re-
sponse will ultimately settle down to some
steady value. An unstable system which ex-
hibits steady or runaway oscillations is unac-
ceptable. Unstable behavior must be guarded

change in the response of one of its elements.
Thus, a feedback control system is insensitive
to changes in the parameters of its compo-
nents and can usually be constructed from
less accurate and cheaper components than
those used in an open-loop system. One excep-
tion to the foregoing statement results from
an inherent limitation — the closed-loop sys-
tem can be no more accurate and reliable
than its measuring element. The same limita-
tion holds true for an open-loop system.

The error produced in an open-loop system
by a given disturbance is much larger than
the error produced by the same disturbance
in an equivalent closed-loop system, the ratio
of errors being approximately proportional
to the over-all amplification of the loop of the
closed-loop system. Thus, a feedback control
system is relatively insensitive to extrancous
disturbances and can be used in situations
where severe upsets are expected. One can
conclude that the over-all amplification (or
gain) that can be achieved inside the loop of
a feedback control system directly affects the
accuracy of the system, the constancy of its
characteristics, and the “stiffness™ of the sys-
tem in the face of external upsets or disturb-
ances. In general, it is found that the higher
the gain of the system, the better the system.
The highest gain that can be used, however,
is limited in every case by considerations of
stability.

DYNAMIC RESPONSE

1-2

against in the design, construction, and test-
ing of feedback systems. Because of the possi-
bility of instability, a major portion of con-
trol system design is devoted to the task of
ensuring that a safe margin of stability exists
and can be maintained throughout the operat-
ing range of the system.

It can be shown that the cause of instability
in a given closed-loop system is duec to the
fact that no physical device can respond in-
stantancously to a sudden change at its input.
If a sudden change occurs in the error of a
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feedback system, the output will not correct
for the error instantancously. If the correc-
tive force is great enough (due to a high
amplification), the output will accelerate rap-
idly and cause a reversal of the error. If a
high output velocity is attained, the inertia of
the output will carry the output past the point
where the error is zero. Instability occurs if
the maximum magnitude of the error after
reversal is equal to, or greater than, the mag-
nitude of the original disturbance in the
error. The tendency for a system to become
unstable is accentuated as the amplification
is increased, since the stored energy in the
inertia of the output will be correspondingly
increased without any compensating increase
in the rate of dissipation of energy in the sys-
tem. This situatiop corresponds to an exces-
sive delay in the response of the output. Thus,
an attempt to increase accuracy by increasing
gain or amplification is usually accompanied
by an increased tendency toward instability.
As a result, design becomes a compromise
between accuracy and stability. A more de-
tailed and quantitative examination of stabil-

ity is developed in Ch. 4.

The dynamic behavior of a system is im-
portant not only as a determinant of stability
but also, for stable systems, as a measure of
instantaneous accuracy. In many situations
where rapid input variations occur, it is of
the utmost importance that the error be kept
within specified bounds at all times. I1deally,
a system with no time lag would be able to
follow extremely rapid input variations with
perfect accuracy at all times. Actually, the
impossibility of achieving instantaneous re-
sponse, together with the stability problem
created by the “pile-up™ of the dynamic lags
of cascaded eclements in a loop, make the
problem of maintaining dynamic accuracy
(i.e., error within specified bounds at all
times) progressively more difficult as the
rapidity of input variations increases. Con-
sequently, the design of both system and
components is focused to a large degree on
improving the speed of response (in other
words, reducing dynamic lags), thereby ob-
taining a concomitant improvement in the
over-all dynamic accuracy of the system.

1-4 TERMINOLOGY OF FEEDBACK CONTROL SYSTEMS

To facilitate discussion and to maintain
uniformity, a specific terminology has been
adopted. The genecral diagram of a feedback
control system is shown in Fig. 1-3. Note that
some of the clements and variables in this
diagram correspond to real devices and sig-
nals, whercas other clements and variables
correspond to purely hypothetical properties
of the system that are useful in visualizing
the various functions of the system.

To aid visualization and to distinguish be-
tween variables and components, the sym-
bolism of Fig. 1-3is defined as follows :

(a) A line represents a variable or signal.
The arrow on the line designates the direction
of information flow.

(b) A block represents a device or group
of devices that operate on the signal or signals
entering the block to produce the signal leav-
ing the block.

1-3

(c¢) The symbol + _; represents sum-

mation. The variables entering are added
algebraically, according to the signs associ-
ated with the corresponding arrows, to pro-
duce the variable leaving.

(d) The symbol is called a splitting
point. The variable entering is to be trans-
mitted to two points in the diagram. The vari-
ables leaving are both identical to the variable
entering.

The symbolism used for the variables in
Fig. 1-3 is defined as follows:

reference vari-

r o= u = disturbance or
able or input upset

n = noise ¢ = controlled vari-

e =actuating able or output
variable 1 = desired or ideal

m = manipulated output
variable Y. = system error
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In many cases, the representation of Fig.
1-3 can be simplified. If the measuring and
feedback clements are ideal and have no
dynamic lag, itis possible to redraw the figure
(see Ch. 3) so as to have no elements in the
feedback path of the system.

A system in which the unmodified con-
trolled variable is fed back directly for com-
parison with the input is called a unity-feed-
back system. The main loop of a unity-feed-
back system is shown in Fig. 1-4.

If the ideal output of a system is the refer-

ence variable, the ideal elements are perfect.
That is, the desired output is exactly equal to
the reference input at all times. Many designs
require that the output equal the input at all
times although, strictly speaking, this is im-
possible with real components.

If a unity-feedback system is to have its
desired output equal to its reference input, in
the absence of noise, the system error must
equal the actuating variable. A unity-feed-
back system of this type is often used initially
in the process of design because of its simplic-
ity. Such a system is shown in Fig. 1-5.

NOISE DISTURBANGE
REFERENCE ¥ . SYSTEM
VARIABLE VARIABLE compar:‘sDATING VARIABLE VARIABLE ERROR
»| conTROLLED | — -
sy AMPLIFYING e ELEMENTS - z ) o
| ELEMENTS —
+ A
MEASURING
AND FEEDBACK ™}
ELEMENTS
(DEAL DESIRED OUTPUT
ELEMENTS
COMPENSATING *'[compE ING
PENSATIN
AND CONTROLL ED S AND m CONTRO L.
AMPLIFYING ELEMENTS | ™ AMPLIFYING > ELEMEI;JITI%D
ELEMENTS ELEMENTS
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CHAPTER 2

DYNAMIC RESPONSE*

2-1 INTRODUCTION

The dynamic response of a component or
system is the output response to an input that
is a varying function of time. The steady-
state response of a component or system is
the output response to an input that is con-
stant with time.

Paragraph 1-3 indicates that dynamic re-
sponse is a basic determinant of system sta-
bility as well as an important clement of
system performance. All design theory for a
feedback control system is centered on the
study, analysis, and manipulation of the
dynamic response characteristics of the sys-
tem and of the components that are part of
the system. Because of its fundamental im-
portance, the dynamic response of any physi-
cal device or system is classified according to
the nature of the input time variation that

occurs. In some cases, the input time varia-
tion may be entirely artificial since it may not
ordinarily occur in practice (for example, a
sinusoidal signal). In other cases, the input
variation may be one that is known to occur
in practice (for example, a step change). In
the former case, the artificial input time func-
tion is used primarily to facilitate analysis,
design, and testing. In the latter case, the
actual response of the system to the known
input function is an important measure of
performance which both the designer and
user need to know in order to verify that the
system meets the performance specifications.
In either case, a clear understanding of the
nature of the input and of the methods for
finding the response to it are necessary for
successful design.

2-2 LINEARIZATION

The basic tool used to describe the dynamic
performance of adevice isthe set of differen-
tial equations that serve as a mathematical
model for the actual physical device. Since
quantitative techniques are imperative for
analysis and design, a mathematical descrip-
tion is necessary. However, when going from
the physical device to the differential equation
model, one must resort to approximations if
usable results are to be expected from a
reasonable expenditure of time and effort. If
the physical situation is such that it is pos-
sible to describe the device with a set of
*By L. A. Gould

2-1

constant-coefficient linear differential equa-
tions to a high degree of accuracy, a wide
variety of powerful tools are available to aid
analysis. Even when the expected range of
variation of the variables is such that the
accuracy of approximation is partially lost
when constant-coefficient lincar differential
equations are used, such a representation still
serves a useful purpose. Although the repre-
sentation above is inaccurate, it does provide
a qualitative estimate of behavior which is
still good enough to be of value to the designer
for guiding testing procedures. Furthermore,
if the designer artificially restricts the range
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of variation of the variables, he can obtain
accurate results which apply to some, though
not all, of the expected variations. From such
a restriction, there results a partially accur-
ate description that can at least be used to
verify whether or not the device meets some
of the performance specifications.

Although descriptions utilizing constant-
coefficient linear differential equations pre-
dominate in feedback control system design,
two classes of systems exist that do not lend
themselves to such a description. Sampled- or
pulsed-data systems are best described by
variable-coefficient linear differential equa-
tions and are discussed in Ch. 9. Contactor or
relay servomechanisms cannot be described
by linear equations at all, and one must resort
to the nonlinear equations that describe these
systems (see Ch. 10). In addition, although
the nonlinear properties of linear systems are
ordinarily treated as secondary effects in the
usual design procedure, they can, under cer-
tain circumstances, seriously affect perform-
ance. Such circumstances occur when the
range of variation of the variables is wide or
when the nonlinearity cannot be justifiably
ignored. Secondary or incidental nonlineari-
ties such as saturation and backlash are
treated in Ch. 10.

Since linearization methods are the basis
for most design work, it is important to
understand the techniques that are used to
establish a linear differential equation des-
cription of a device. As a first step in a line-
arization procedure, appropriate assumptions
are usually formulated based on a knowledge
of the phhysics involved. For example, in
describing d-c machinery operating in an
unsaturated region, the effect of hysteresis
is often ignored and the normal magnetiza-
tion curve of the steel is used in the analysis.
The justification for such an approximation
is based on the fact that, in many cases, the
width of the hysteresis loop is small compared
with the range of variation of magnetization
encountered when using the device. In an-
other situation, one may ignore the effect of
backlash in a gear train for reasons analogous
to those above.

When reasonable assumptions have elimi-
nated many of the incidental nonlinearities of
a device, one is often left with a performance
description that is still nonlinear because of
the curvature of the steady-state response
(steady output as a function of a constant
input) curves of the device. When this occurs,
use is made of incremental techniques to pro-
duce the desired linear description.

The incremental linearization of a nonline-
ar characteristic (approximate representa-
tion of a nonlinear function by a linear func-
tion for small changes of the independent
variable) is based on the Taylor series expan-
sion of the function around a desired operat-
ing point. The deviation of the function from
the operating point obtained from the approx-
imate expansion of a function around a
steady-state operating point is given by

Af (24, xa, s Zp) = Cq, Amy (2-1)
+ Cmg Axg -’I- PN -F C-"n ACIJ,,
Af(xlr 7 R xn) - f(xl’ Loy o ey Q»',,)
-f (xlor xZUy oty xn(}) (2'2)
where
f(zy, 23, ...,x,) = function to be approxi-
mated
(@10, Tagy « - ,Ta0 = steady-state operating
point
Az, = 2 — X0 (k:l,z,...,'n)
C _af (k=1,2,...,n)
" a z T10) Loy v+« 3 Lno

In the approximation [Eq. (2-1)], the devia-
tion or increment of the function from the
operating point has been expressed as a linear
function of the deviations (from the operat-
ing point) of its independent variables. The
constant coefficients C,, are called the partial
coefficients of f with respect to =y, %2, . . ., %
at the operating point (219, L2, «« « Zno) -

Example. A shunt d-c motor is speed-con-
trolled by the vacuum-tube circuit shown in
Fig. 2-1. Assuming that hysteresis is negli-
gible, the basic equations of the system are as
follows :

E,=FE,(E,I) (2-3)
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E,_E, _N, %
If= dt (2-4)
— 7
F=F) (2-5)
LY 1 —E —E, (2-6)
dt
E,=kFN (2-7)
M = k,FI, (2-8)
m=7 Ny, (2-9)
di
where

E, = plate voltage

E, = grid voltage

I, = field current

E; = supply voltage

Ey = motor back emf

L, = armature inductance

R, = armature resistance

N = motor shaft speed

k., = motor back emf constant
N; = number of field turns

F = field flux

R, = ficld resistance

I, = armature current

M = motor torque

kn = motor torque constant

J = total moment of inertia
M, = load torque

It is assumed that mechanical friction is
negligible.
To lincarize Eq. (2-3),let!

E,AE, ‘e, =E, TAE, (2-10)
EgéEgo+ey =Ego+AEy (2'11)
I AL, +i =1, Al (2-12)

where E,,, E,,, and I, represent values at the
steady-state operating point and e,, €, and %
represent the deviations of the values of E,,
E,, and I; from their corresponding steady-
state operating-point values.

*Symbol A is defined as “equals by defini-
tion™.

CONTROL
FIELD

Fig. 2-1 Speed control of shunt d-c motor.

. dF, OF,
S 'AE':—'-’)AE ( ”)AI
ince 0 <3Eg s+ >, !

28+ ()
<aE, )™
Eq. (2-10) becomes

E,=E, + (—p) e,+ (R,) %

where

(2-13)

_, 12

a and R, éa—E"
oK,

oIy

Ego’ I/u E{m’ Ift

As a result of the definitions above, the in-
cremental linear approximation to Eq. (2-3)
becomes

€p = —ue, +R, i (2-14)

where e, ¢, and 7, represent incremental
quantities.

To linearize Eq. (2-5), let
F & Fot f=F, 4+ AF (2-15)
Then, Eq. (2-15) can be written as

—F,*cC (2-16)
where

F
c, a8
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Consequently, the incremental linear approxi-
mation to Eq. (2-5) becomes

| =Cif (2-17)

Substituting Eqgs. (2-leo), (2-11), (2-12),
(2-15), and (2-17) into Eq. (2-4) results in

I/o +7:f =

Eso +es — (Epo +ep) —Nf%(Fo +Cf7'/)

R,
(2-18)
or
Eso
I, Tif= ( :&)
R; i
oy
%_%_Maﬁ>@4”
R,
where +
E.v é Eso + €s

E,, = steady-state value of E,
e, = increment in E,

It can be seen that the equation for the oper-
ating point of the field circuit is

Eso e Epo

1, =
T Rf

(2-20)

and the incremental equation for the field
circuit is

e, — ey — NG

) dt (2-21)
Zf —
Ry

To linearize Eq. (2-7), let

E,=FEy, + kN.f+ kFon (2-22)
where

E, 2 Ew+e (2-23)

NAN,+n

24

Then, the incremental linear approximation
for Eq. (2-7) becomes

€, = ke (Naf + Fon) (2'24)

Substituting Eqs. (2-7), (2-17), (2-21),
(2-23), and (2-24) into Eq. (2-6), and using
aprocedure analogous to that above, the equa-
tion for the operating point of the armature
circuit becomes

Ey — kFN,
R,

and the incremental equation for the arma-
ture circuit is

oo = (2-25)

di, . .
"It + R i, = e, — k.N,Cit; — kFon
(2-26)
where
AL, ti,

To linearize Eq. (2-8), use the incremental
linear approximation

m = knFia T lemloof (2-27)
where
MAM,+m (2-28)

By substituting Eqs. (2-23) and (2-28) into
Eq. (2-9), the equation for the operating
point of the mechanical circuit is

M, =M, (2-29)

and the incremental equation of the mechan-
ical circuit is

m=0% 4 m, (2-30)
dt
where
ML é Ml‘o + mL

From an examination of the analytical
work above, it can be seen that the applica-
tion of the linearizing technique produces a
set of incremental equations that describe the
behavoir of the system for deviations of the
variables from the operating point of the
system. In addition, the operating point is
also defined by a set of algebraic equations.
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Summarizing the operating-point equa-
tions :

I, = % (2-20)
By 8 By By 1) (2-31)
L,— E—R’Cﬁi"— (2-25)
F, 2 F (Iy,) (2-32)
M, =M, (2-29)
M, 8 kI, (2-33)

The operating-point equations can be solved
for the unknowns I, Ep, I,,, F,, N,, and M,
if the quantities F, FE,, and My, are speci-
fied. This solution is usually done graphically
because the steady-state characteristics of the
tube [Eq. (2-31)] and the field structure

[Eq. (2-32)] are presented as experimental
curves.

Summarizing the incremental equations :

ep = —pe, T Ry, (2-14)
e, — € — Nfcf%
= 2-21
7’f R, ( )
di, +p .
La E R(,’I,a = e, — chon'llf —_ ,CeFan
(2-26)
dn ; .
J E + m; = ,CmFO'L(,, -—+— ,CmIaoCﬂf (2-34)

The time-varying inputs to the system are
the incremental quantitics e, e,, and mp. If
these quantities are known, the incremental
equations can be solved for e, %, i, and n as
functions of time.

2-3 TRANSIENT RESPONSE

The transient response of a system is the
time variation of one or more of the system
outputs following a sudden change in one or
more of the system inputs or the derivatives
or integrals of the system inputs. Often a
transient input variation does not correspond
to the actual input variations that a system
might experience in practice. However, tran-
sient specifications of system performance
arc very commonly used and, as a result, the
designer must know how to describe system
behavior in terms of transient response. It
can be shown (see Ch. 3) that the transient
response of a linear system completely speci-
fies the differential equations of the system
and, therefore, can be used indirectly to find
the response of the system to any type of
input.

A given transient response must be re-
ferred to the type of input that caused it.
Three commonly used transient test inputs
are the impulse, the step, and the ramp.

A unit impulse can be conceived of as a
time function that is infinite at # = a and zero
everywhere else. A unit impulse is defined by
Eqgs. (2-35) through (2-37), where 8,(t —a)
is a unit impulse function occurring at # = a.

f T St —a)dt =1 (2-35)
+ o0

f da(t —a)f(t)dt =7 (a) (2-36)

S0(t —a)=0,t >aandt <a (2-37)

The unit step function §_; (¢ — a) is merely
the integral of the unit impulse 8 (¢ —a).
The unit step is defined by Eqs. (2-38) and
(2-39), where b_,(¢t—a) is a unit step oc-
curring att = a.

34 —a) = ft do(x — 0/) dx (2-38)
3.(t—a) = {51)-% (2-39)
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A. UNIT IMPULSE
B. UNIT STEP

8, (1) T
SLOPE = 41
4] a —_—
C. UNIT RAMP
Fig. 2-2 Transient input functions.
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Fig. 2-3 Transient responses for system dit 2 o= - d?
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The unit ramp function (¢t —a) is the
integral of the unit step d-1 (¢ — a@). The unit
ramp is defined by Eqs. (2-40) and (2-41),
where d_.(t —a) is a unit ramp occurring
atf = a.

S.u(t —a) — ft S —a)de  (2-40)
8t —a) — {‘:Tt;_;‘ (2-41)

The impulse, step, and ramp functions are
shown in Fig. 2-2. It should be noted that
these functions are equal to zero forall 7 < a
and that they are discontinuous or one or
more of their derivatives are discontinuous
at the instant of occurrence. Clearly, the re-
sponse of a physical system to any one of
these inputs will be zero before the input

occurs if the system is assumed to be initially
at rest.

Example. A system is described by the
equation

d*x d?z d2y

i 2 ae 2 Codt?
where ¥y is the input and x is the output. The
output transient responses as functions of
time are shown in Fig. 2-3 when the input is
a unit impulse, a unit step, and a unit ramp,
each occurring at 7 = 0. The specified initial
conditions for 1< 0 are x = 0, dx/dt =0, and
d#z/dt? = 0.

It should be noted that, although the curves
in Fig. 2-3 are different, they represent the
same information about system behavior pro-
vided that the input associated with each
curve is known.

dx
—_— 2-42
7 +x (2-42)

2-4 FREQUENCY RESPONSE

The frequency response of a system is the
variation of the output to an input which is
a constant-amplitude variable-frequency si-
nusoid. Frequency response is usually of in-
terest in the linear case but does have applica-
tion in the nonlinear case (see Ch. 10).

In the case of a linear system, a sinusoidal
input produces a sinusoidal output of the
same frequency as the input. The frequency
response of a linear system is therefore com-
pletely described by the ratio of the output
amplitude to the input amplitude and by the
phase angle of the output relative to the
phase angle of the input, both expressed as
functions of frequency.

The frequency response of a system is ysy-
ally presented in three ways: by a polar plot
of the tip of the vector A (w) e with fre-
quency @ asa parameter (j =~/ — 1) ; by sep-
arate plots of 10log;q A (w) and ¢ (w) versus
frequency w; and by the gain-phase plot of 10
logiy A (w) versus ¢(w) with frequency w as
a parameter. A (w) is the amplitude ratio of
output to input and ¢ (w) is the output phase

angle minus the input phase angle. One could
also plot 20 log;y 4 (w) as is done in the liter-
ature in many places, but there is little to be
gained by using the factor of two.

The frequency response of a system is use-
ful primarily because of the many theoretical
simplifications that are possible when it is
used as an analytical and design tool. Just as
transient inputs rarely occur in practice, so
do sinusoidal inputs almost never occur in
practice. Nevertheless, both methods of de-
scribing dynamic response are useful in anal-
ysis and design.

Since frequency response and transient re-
sponse are directly related to the differential
equation of a systeém, they contain the same

information about SYSM hehavior. These
two methods of describing dynamic response

are merely different approaches to the same
end. Both have a useful function to perform
in designing control systems. Techniques for
correlating the frequency response and tran-
sient response of a system are presented in
Chs. 3 and 7.
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2-5 FORCED RESPONSE

The forced response of a system is the time
response of an output of the system to an
arbitrary, but completely defined, variation
of one of the system inputs. Forced response
is distinguished from transient response in
that the input variation associated with the
forced response of a system is considered as
a continuous time function with no discon-
tinuities in any of its derivatives. A sinus-
oidal input is a special case of a forcing input
which is isolated for special attention because
of its theoretical importance.

A typical example of an arbitrary forcing
input is the angle of the line-of-sight from a
radar antenna to a target that is moving at
constant velocity in a straight line (see Fig.
2-4). Such a course is known as a straight-
line crossing course. The angle of the line-of-
sight 4 in this case is given by

V

—tan! —t 2-43
6(t) =tan R ( )

where
V = target velocity

R = minimum target range

The inverse tangent function in Eq. (2-43)
and all its derivatives are continuous for all 7.

Many design problems have input specifi-
cations involving arbitrary forcing functions
that cannot be adequately described by dis-
continuous functions. The techniques for de-
termining the response of a system to these
functions arc discussed in Pars. 3-3, 3-7, and
7-2.

CONSTANT VELOCITY
i~ <y

TARGET

LINE OF SIGHT

ANTENNA

Fig. 2-4 Straight-line crossing course.

2-6 STOCHASTIC INPUTS

A stochastic process is one in which there
is an element of chance. In many situations,
the input to a system is not completely pre-
dictable and cannot be described by a mathe-
matical function, either analytically or gra-
phically. The term “random process™ is often
used to describe such a situation, but it is not
an accurate term since a process can often
consist of a combination of a completely pre-
dictable portion together with a purely ran-
dom portion. It is evident that the signals in
a feedback control system are more often
stochastic than predictable in nature, parti-
cularly when the effect of the ever-present
noise is considered. A typical example of a
stochastic process is a radar signal corrupted
by noise.

2-8

Since a degree of uncertainty exists if one
attempts to determine the value of a stochas-
tic signal at a given instant of time, probabil-
ity density functions and other statistical
characterizations such as the average value,
the root-mean-square (rms) value, and the
correlation function are used to describe the
signal. It is useful to think of a stochastic
signal as a member of a family of signals,
each generated by an identical process. Such
a family of signals is called an ensemble, and
the statistical characterizations of the sto-
chastic process are related to the ensemble of
signals rather than to a particular member
of the ensemble. Determination of the re-
sponse of a system to a stochastic input does
not vield a function of time, but rather a
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statistical characterization of the output sig-
nal ensemble.

Stochastic signals are separated into two
classes. If the statistical behavior of the proc-
ess that generates the ensemble is independ-
ent of time, the process is stationary. A non-
stationary process is one whose statistics vary
with time. In most situations involving sto-
chastic processes, the signals generated are
non-stationary. It is useful, however, to treat
practical processes as stationary if the varia-
tion of the statistics with time is small over
the useful/life of the system. A typical ex-
ample is the noise generated in a vacuum
tube. Asthe tube ages, the statistical charac-
ter of the noise changes. If the period of use
of the tube is short compared with its ex-
pected life, then the noise genecrated by the
tube can be considered as a stationary proc-
ess.

If a stochastic process is stationary, it is
possible to use a single member of the ensem-

2-9

ble of the process to determine the statistics
of the process. For example, if the average
value of a signal is sought and the process
generating the signal 1s known to be station-
ary, the average value can be found in two
ways. In the first way, the average value is
computed by taking the time average for a
single member of the ensemble. In the second
way, the average value 1s computed by taking
the values of all the members of the ensemble
at a particular instant of time and averaging
these values. The latter average is called the
ensemble average. Since the process is known
to be stationary, both averages are independ-
ent of time. That both averages are identical
has not been proven as yet, but their identity
seems plausible if one accepts the assumption,
the so-called ergodic hypothesis, that ensem-
ble averages and time averages are identical
for a stationary process. The various ways to
characterize stochastic signals and the re-
sponse of a system to a stochastic signal are
discussed in Par. 3-8



CHAPTER 3
METHODS OF DETERMBNBNG DYNAMIC RESPONSE
OF LINEAR SYSTEMS*

3-1 THE DIFFERENTIAL EQUATIONS

As discussed in Ch. 2, any design procedure
is based on the differential equations that
serve as the mathematical model for the phy-
sical system. This chapter deals with methods
of determining the dynamic response of phy-
sical systems from the differential equations
that describe them. The type of response
sought depends upon several factors: the
specifications of the system; the design pro-
cedure adopted ; and the limitations imposed
by test conditions encountered when seeking
experimental verification of the design per-
formance.

Differential equations may be classified as
follows :

(a) Linear differential equations with con-
stant coefficients

(b) Lincar differential
time-varying coefficients

equations with

(¢) Nonlinear differential equations

Of the three classes, constant-coefficient linear
differential equations are, by far, the most
widely used and the best understood. The sub-
ject matter of this chapter is focused exclu-
sively on methods of solving equations in this
class. Chapter 9 deals with time-variable
linear differential equations of a specific type
that have a wide application. Chapter 10 con-
siders nonlinear equations and some of the
techniques for treating them.

The general form of a linear differential
equation with constant coefficients is

dix
a; ==
1§0 dtr

*By L. A. Gould

m

p3

q=t

diy
)’ —_——

dt

(3-1)

where the a’s and b’s are the constant coeffi-
cients, x (¢ ) is the response function, and ¥ (¢ )
is the input function. The equation is linear
because the response to a sum of component
input functions equals the sum of the re-
sponses to each of the component input func-
tions. The highest-order derivative of the
response x present in the equation is called
the order of the equation. Thus, Eq. (3-1) is
an cquation of the n' order. The information
necessary for a solution of the equation is
a statement of the initial value of the re-
sponse and the initial values of its first n-1
derivatives, as well as the value of the input
y{t). The response can be scparated into
two parts —a general or homogeneous solu-
tion, and a particular solution. The complete
solution of the differential equation is the
sum of the general solution and the particular
solution. The general solution always has the
form of a sum of exponentials with real and
complex arguments; the particular solution
has the same form as the input or a sum of
the input and its derivatives. The general
solution is often called the force-free or tran-
sient solution ; the particular solution is called
the forced or steady solution. Each term in
the transient solution is called a normal re-
sponse mode or characteristic of the equation.

The complete solution of a linear differen-
tial equation is given by

2ty =2, () F 3 Aent (3-2)
k=1

where z,(t) is the particular solution, p, is
a root of the equation, and A4, is a constant-
amplitude coefficientof a response mode. The
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root p; is a function only of the coefficients
a; whereas A, 1s a function of the a's, b's, and
y(t) [Eq. (3-1)]. The quantities A, and s
arc generally complex numbers that occur in
conjugate pairs if the coefficients a: and b;
and the input function v (7) are real.

The term root is applied to each of the
p’s because these numbers can be found
from the differential equation by treating
the differentiating operator d/dt as a real
variable, replacing it by p for convenience,
and setting ¥ (1) equal to zero. The algebraic
equation resulting from such substitutions in
Eq. (3-1) is

n

3 Pt =0 (3-3)
i =0

This equation is known as the characteristic
equation. The roots of Eq. (3-3), when de-
termined, give the pi’s of the normal response
modes of Eq. (3-2).

The classical procedure for solving con-
stant-coefficient linear differential equations
is covered in many textbooks. (1234 More
powerful tools for treating differential equa-
tions, such as Laplace and Fourier trans-
forms, are presented in Par. 3-4. For
situations where the input is sinusoidal or
stochastic, additional special techniques are
used. These are discussed later in the text.

3-2 FACTORING AND CHARACTERISTIC PARAMETERS
OF RESPONSE MODES

3-21 FACTORING

In most cases, the solution of a linear dif-
ferential equation requires the determination
of the roots of the characteristic equation
[Eq. (3-3)]. Unfortunately, if the order of the
equation is high, the process of factoring the
equation to find the roots becomes extremely
tedious. For such cases, special techniques
have been developed (see Pars. 4-4, 5-7, and
7-1). This section covers some general factor-
ing procedures applicable to any algebraic
equation. In addition, the characteristics of
first- and second-order equations are dis-
cussed and graphical methods for determin-
ing the roots of third- and fourth-order
equations are presented.

The factoring of rational polynomials is
covered by many authors.(567891033) The
method presented here is one that is very
convenient.

The general algebraic equation can be writ-
ten as

prE 4 L.

f(p):p"+cn_1p"'1+ ..... +clp +co =0

If the order n of the equation is odd, one or
more real roots must exist. The real root (or
roots) can be determined graphically by plot-
ting f (p) versus p and noting the zero-cross-
ing(s) of f(p), or analytically by using
Horner’s method of synthetic division, with
the first trial divisor being

Cy

(p+p)=p+ (3-5)

o
If the equation is reduced to one of even

order, Lin's method® can be used. This
involves choosing the tria! divisor

g1<p>=p2+“c+p+"—° (3-6)

Co

Next, f(p) is divided by ¢, (p) as follows:

pr+lp + 0 [y Fo o T

()
Co Co

(3-7)

P c’o

remainder
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If the remainder of Eq. (3-7) is not negligi-
ble. a new trial divisor is chosen such that

¢ C
o:(p) =p» T p 2
s s
Next, f(p) is divided by the new divisor
g: (p),etc., and the process is continued until

(3-8)

Example. Find the roots of the algebraic
equation

the remainder is negligible. The last divisor
isthen afactor of the original equation. Then,
the quotient (of f(p) and this last divisor]
is treated in an identical manner, and the
process is repeated until f(1) is factored
into quadratic factors whose roots can be
determined directly.

f(p) = p* +10.65p® +89.0p2 +15.50p +27.0=0 (3-9)
Solution. The first trial divisor is
15.50p 4 27.0 . + + (3-10)
= = 0.1742p +0.303
9:(p) =p* + 350 300 =" p

Dividing f(p) by g.(p) produces

p2 +10.48p +86.9

p* +0.1742p +0.303 /p* 4 10.65p° + 89.0p" + 15.50p 4 27.0
ptt 017p3 T 0.3p2

10.48ps + 88.7p2 +15.50p
10.48p3 + 1.8p2 + 3.18p

second trial divisor

86.9p2 +12.32p +27.0
86.9p2 +15.14p +26.3

remainder

— 2.82p + 0.7
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The second trial divisor is

9:(p) =p°>+ 1232 4 220

SEO 20 =V +0.1418p +0.311

Dividing f(p) by g2(p) yields

p2+10.51~F+87.2
p* 4 0.1418p + 0.311 /’p4 + 10.65p® -+ 89.0p2 -+ 15.50p + 27.0
P+ 0.14p% + 0.3p2
10.51p% +88.7p* +15.50p
10.51p% + 1.5p2 + 3.27p

third trial divisor 87.2p2 T 12.23p +27.0
87.2p2 +12.36p +27.1
remainder: > — 0.13p — 0.1

The third trial divisor is

12.23 27.0
gs( =p* + - vl =pt . + .
9s(p) =¢ 575 + 572 =P 0.1403p T 0.310

Since g, (p) leaves essentially no remainder,
the resulting quadratic factors of f(p) are

f(p) = (p* +0.1403p 4-0.310) (p2 ¥ 10.51p +87.2)

Factoring the two quadratics in Eq. (3-13),
the roots of Eq. (3-9) are found to be

1,02 = —0.0702 =% 7 0.552 and ps,ps = —5.26= j 7.72

3-2.2 CHARACTERISTIC PARAMETERS OF
RESPONSE MODES

(3-11)

(3-12)

(3-13)

(3-14)

Ic
3-2.3 Firstorder: (pte,) =0 3 oo
. G ]
The response mode corresponding to the ;ZJ,M A A (=L
first-order factor is of the form m A V4 !
s g T = TIME CONSTANT
w 04 "4 ~
_ ~c,t 9. It
x(1)=Ae (3-15) P <
The reciprocal of ¢, is called the time constant o e
of the response mode. 0 04 08 12 6 20 24 28 32 36 40
. . X = NUMBER OF TIME CONSTANTS
Useful plots of exponential functions are pre-
sented in Fig. 3-1. Fig. 37 Exponential functions e~ and 1 —e™2,

3-4
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3-2.4 Second Order: p’ + ¢p +eg =0

The second-order equation can be rewrit-
ten in the form

7 Fewp toz=0 (3-16)
where
e . .
= _ = _ damping ratio
[ N ping

o, = \/¢; = undamped natural frequency

If ¢ < 1,the response mode corresponding to
the second-order factor is of the form
x(t) = Aetout cos (it + ) (3-17)
where
w; = w, V1 — ¥ = damped frequency of
transient oscillation

If ¢ = 1, the second-order factor can be fac-
tored into two first-order factors so that the
response consists of two first-order modes.

3-2.5 Third Order('V)
p3 +czp2 +c1p +c0 =0

By making the substitution
p=cy 'k
the third-order equation is reduced to
WteeFtaurpl1=0 (3-18)
where

ay = €3/¢, V3 and oy =¢1/¢y 23

The reduced equation can be factored as fol-
lows :

wtaar tant1=0F1/02)
(2 t2t0, 1 Fo?)
(3-19)

where

e — 2T ~17

w,

2T
oy = ——
W,

+ (1),-2

w, = a reference frequency

3-5

Figure 3-2 shows plots of w, versus ¢ for con-
stant values of as and ;. Figure 3-3 shows
plots of a» versus a; for constant values of €
and w,. From these charts and the third-
order equations, the roots of the cubic can
be determined.

3-2.6 Fourth Order(1V):

pt F e Fepz teop e =0

By making the substitution

P =cgt%h (3-20)
the fourth-order equation is reduced to

M Faps oz topti1=0 (3-21)
where

ag = C3/Cot/t

Oy = Co/Ce}/2

o = 61/003/4

The reduced equation can be factored into the
form

(A'2 + 2tlwrll + wrlz)
(3 4 2Ly b + 7)) =0
(3-22)
or, alternatively
(A2 + 20w,A + w?)
[2 + 2(Cp) (@,pw) k + (00p0)*] =0
(3-23)

where the symbols are defined as follows :

o, A w, = dimensionless natural frequency
of reference component

t- A T, = damping ratio of reference com-
ponent

wy,/®,, = ratio of undamped natural
frequencies of components

T/Cy=ratio of damping ratios of
components

I
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Fig. 3-2 Cubic chart.

bound with “Transient Behavior
». by G. S. Brown, 1943. Massa-

n from “Solution of the Cubic Equations and the

”, by L. W. Evans,

and Design of Servomechanisms
chusetts Institute of Technology.
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Cubic Charts
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By permission from “Solution of the Cubic Equations and the
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By permission from “Servomechanisms”, by Y. J. Liu, bound
with “Transient Behavior and Design of Servomechanisms”. by
G. S. Brown, 1943, Massachusetts Institute of Technology.
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To find the parameters defined by Eqgs.
(3-22) and (3-23), the following procedure
is used:

(a) Determine the quantities

AzQxy—4
2

M2

Qg

o% + 02 — 4oy
3

2
jle

Qg

2 and% (o3 + 1)

ay

(b) Stability can be determined from
Routh’s criterion (Par. 4-2).

(c) The quartic chartis shown in Fig. 3-4.

A sketch of the construction that is used to
find p , ®, Py and T, is shown in Fig. 3-5.
Referring to these figures, the determination
of the parameters of the factored quartic [Eq.
(3-22) ] is given by the procedure below.

(d) Locate intersection 3a of the particu-
lar pair of M and N values on Chart I. Draw
aline through 3a, parallel to the 135°-inclined
lines, until it intersects the 45"-inclined scale.
The intersection on this scale gives p,, Where

VA
P
/ 2 Pw

(¢) From the particular a; value on the
left-hand scale, draw a horizontal line until
it meets the particular 135°-line found in step
(d) at point 3b.

(f) From intersection 3b, draw a vertical
line that intersects curve P at 3P and curve

Q at 3Q.

(g) A horizontal line drawn through 3P
intersects the immediate right scale of ordi-
nates at 3d giving the value of p,, and the next
right (left-hand scale of ordinates of Chart
11)at 3d' giving the value of w,.

(h) A horizontal line drawn through 3Q
on Chart I intersects the particular curve of
as/a; on Chart IT at point 4a. The lower ab-
scissa of 4a gives the value of p,.

(i) Through 4a, draw a 45°-inclined line
until it intersects a vertical line correspond-
ing to the particular value of (a3 +4,)/2 at
point 4b. A horizontal line drawn through 4b
intersects the extreme right-hand scale of
Chart 11 giving the value of G,.

(j) When p, 1s obtained in step (d), the
following equations can be used as an alter-
nate method of findingp., ®,, Per and ¢, :

po=[opet Vow)® =4 (320)
1
= —— 3-25
® e (3-25)
ag
o(2) -1
_° (u,) (3-26)
C e ()
Pw —(—1-;-
-%— ((13+(11)
t = — (3-27)
1 —
( +P§) [\/Pw + \/p(D
— 1 y/0e2(0 —pa) (3-28)
v=5l -
. 2[ +5 \/pw] (3-29)
\/Pw ¢
L= =
2 [ + Voo | (3-30)
\/Pw
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SCALE OF 1/2 (a3 + a))

135°
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Fig. 3-5 Sketch of the quartic chart.

By permission from “Servomechanisms”. by Y. J. Liu, bound
with “Transient Behavior and Design of Servomechanisms”, by
G. S. Brown, 1943, Massachusetts Institute of Technology.

3-3 THE CONVOLUTION INTEGRAL®

The output time response of any linear
system to an arbitrary input can be found by
means of the convolution (superposition) in-
tegral. If y(¢) is the input, 2 (¢) the output,
and w (t) the impulse response of the system,
then the output x can be found by evaluating
the convolution integral

z(t) =f_+°° dt; w(ty) y(t —t)

or

+o
20) = | dhw(t—t) y(t)  (332)

(3-31)

This integral applies in every case and is use-
ful for graphical time-domain studies of sys-
tem performance. In many situations, how-
ever, evaluation of the convolution integral
is tedious, so more refined procedures are
used (sece Pars. 3-4, 3-6, 3-7, 3-8, and 3-9).

If the system being studied is a physical
system, then

w(t) =0fort < 0

The convolution integral then reduc s to

(3-33)

z(t) =f+w dt, w(t) y(t —t,) (3-34)

0
or

un=f dtyw(t —b) y(t,)  (3-35)

If, as often occurs, ¥ (t) and w(t) are both
zero for t < 0, then the convolution integral

reduces to

2 (t) =f’ dty w(ty) y(t — t,)
or 0

2 (t) =f' dt, w(t — &) ¥(f)

(3-36)

(3-37)
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3-4 LAPLACE AND FOURIER TRANSFORMS%11151617.1819

341 GENERAL

Laplace and Fourier transforms are aids
for solving differential equations and intro-
duce properties of system performance that
enhance the designer's understanding and
simplify his task.

The Fourier transformof a function and its
inverse are defined as follows :

400
FIF(t)] A F(s) gf dt e'f(t) [Direct]
- (3-38)

FILF ()] A £(t) gz—l—, T ds e F (s)

] J—jeo

[Inverse] (3-39)

where s=o¢ +jw

The Laplace transformof a function and its
inverse are defined as follows :

LI(1)) gF(s)A:fwdte—*'f(t) [Direct]
(3-40)

4-foo
ds e*'F'(s)
e—jao

LIF(s)TA7) 2 27:

[Inverse] (3-41)

where s = the complex variable (orfrequency)
o tjw.

The Fourier transform is applicable to
functions that exist for all time ¢, whereas the
Laplace transform is used for functions that
arezerofort < 0.In the expression (3-41) for
the inverse Laplace transform, the constant ¢
is a convergence factor that enables one to ap-
ply the Laplace transform to functions whose
Fourier transforms do not exist.

The conditions for the existence of the
Fourier transform of a function, known as
Dirichlet's conditions, are

(a) 7(t) has a finite number of discontinu-
ities in a finite interval

(b) f(f) has a finitc number of infinite-
valued points in a finite interval

(¢) f(t) has a finite number of maxima
and minima in a finite interval

) f (8| dt isfinite

The conditions for the existence of the La-
place transform of a function are identical
with those for the Fourier transform except
that the fourth condition is relaxed to

00
f (f(t)| et dt is finite for a finite ¢

3-4.2 THEOREMS

The following theorems are useful for ap-
plying the Laplace and Fourier transforms to
the solution of differential equations :

N

(a) Llaf()] =aF(s) (3-42)

(b) LLf1(8) £ fo(8)] = Fi(s) = Fa(s)
(3-43)

() £ [-d—j;tﬂ] = 'F () — " 1f (04)

—§"2f1(04) — ... —sfUD(0+)
. f(n 1) (0+) (3-44)

(n tines)

o <[ Fpou] -2
+
. fw ;;:t)dt f_w f_.,, f(t)dt

Su—

(n=1 times)

_I_f_o: [f_'mf; f(t)dt] (3-45)
.

(e) £ [ fi (%)] = a F(as) (3-46)
(f) f[f'fl(t—rm(r) de
=F,(8)F.(s) (3-47)
CLF(t —a) ]=eF(s
®) [j];(( —a))]_OeforOQt <a
(3-48)
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h) £ = e™F (s)
( )iff[/t('i'a)a):]o foéi' —(2<t <0

(3-49)
(1) lim sL[f (1) J=1lim f(t) (3-50)
(j) lim sL[f(¢)] =1im f(?) (3-51)
(k) LIf1 @) f(t) ]

1 c+joo

. F (s— . 3-52
_zm_fm (s— w)Fy (w)dv (3-52)
() L1 (8 f2()] 5= F(8) F2(s)

(3-53)

Theorems (a), (b), (e), (f), (i), (k), and
(1) also apply to the Fourier transform.
Theorem (c) is called the red differentiation
theorem and theorem (d) is called the rea/
integration theorem. Theorem (e) is used to
change the time scale of a problem and is
called the normalization theorem. Theorem
(£) is the real convolutiontheorem and, if ap-
plied to the convolution integral [Eq. (3-35)J,
vields the very important result

Flz ()] = X(s) =7 [fiitl w(t—t1) y(t)

— W(s)Y(s) (3-54)
Theorems (g) and (h) apply to the Fourier
transform without the stated restrictions.
Theorem (i) is called the final-value theorem
and theorem (j) is called the initial-value
theorem. Theorems (k) and (1) are included
primarily to prevent the common error sug-
gested by theorem (1), namely, incorrectly
stating that the transform of the product of
two time functions is the product of the sep-
arate transforms of the functions.

3-4.3 SOLUTION OF DIFFERENTIAL
EQUATIONS

The solution of ordinary linear differential
equations is accomplished by means of theo-
rems (a), (b), (¢),and (d). Applying these
theorems to Eq. (3-1), one obtains

[ § aisi]X(S) — A(s) = '&j b[.gi]

=0 j=0

Y(s) + B(s) (3-55)

where A (s) is a polynomial in s depending
upon the a’s and the initial values of z and its
first (n-1) derivatives, and B(s) is a poly-
nomial in s depending upon the b’s and the
initial values of ¥ and its first (m-1) deriva-
tives. The response transform can be obtained
by solving Eq. (3-55) for X (s)

S b B(s) +4(s)
X() =[=—|Y) +| 3 oy
3 a8 i—0
=0
(3-56)

In words, this equation can be written

response system (

o input )
(transform) — (function)

transform

(initial condition) (3-57)

function

The ratio of the response transform to the
input transform when all initial conditions
arc zero (i.e., the initial condition function is
zero) is called the system function or the
transfer functionof the system. This function
depends only upon the coefficients of the dif-
ferential equation and is independent of the
input and the initial conditions. Comparing
Eq. (3-57) (with initial condition function set
equal to zero) with Eq. (3-54), it is evident
that the transfer function of a system equals
the transform of the impulse response of the
system for a unit impulse.

Transforming a differential equation en-
ables the analyst to replace the processes of
differentiation and integration by simple al-
gebraic processes. Then, the transform X (s)
can be found algebraically. Subsequently, the
system response x (f Jcorresponding to the re-
sponse transform X (s ) can be found by using
the inversion theorem [Eq. (3-41)J. However,
this theorem usually involves contour integra-
tion in the complex s plane. To avoid this in-
tegration, tables of transform pairs have been
constructed that give the time function cor-
responding to a given transform directly. A
brief list of commonly used transform pairs is
given in Table 3-1. More extensive tables can
be found in references (13), (20), and (21).
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TABLE 3-1 LAPLACE TRANSFORM PAIRS

F(s) f(t),t=0
1 3o (1),unit impulse
1 d_1 (1 ),unit step
]
1 .
— d_2(t),unitramp
82
7 7o
Ts +1 T
w .
——“§§ + sin wi
-5 ;
& +gp CoS @
- 1 (1)T<1: — 1 e %! sin w, \/1 — (%t
82 4 20w,8 + 0,2 w1 — T2
(2) T= 1:teoat
(3) ¢ >1: m—_i——j e—tont sin ¢ w, \/C2 —1¢
1 1
S ———— — e gin ft
(s+a)2 4 P P
s+ a ‘
- e cos f3t
(s+a)24p2 P
_]._ 1 tn—T
s (n—1)!
—1—_ —1— _ti:l_ e—f/T
(Ts 4 1) (n—1)! T*

If tables of transform pairs are unavailable,
or if the particular transform whose inverse
issoughtis not listed in the tables, the method
of partial fractionsmay be used to expand the
transform into a sum of terms, each of which
is readily recognized as the transform of a
simple time function. If the transform whose
inverse is sought is a ratio of rational poly-
nomials, the roots of the numerator polyno-

mial are called the zeros of the function and
the roots of the denominator polynomial are
called the poles of the function. If the poles of
the function are not repeated, they are called
single-order poles. The order of a multiple-
order pole is the number of times the pole is
repeated. For a function containing only
single-order poles, the partial-fraction expan-
sion of the function is
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NG) _ & _Ke

F(s)2 D(s) E,l po—y (3-58)
where
K & [(s sx) N (s)
D(S) =R
_ [N )
D (s) (3-59)

and s* is the kth root of the denominator poly-
nomial D(s).

If the transform contains multiple-order
poles, the partial-fraction expansion of the
function is

F(s) A N@E)_ $ % ___5______

_D( ) k 1 j=1 (S—S )""‘_’+1

where

(3-60)

wé—.—l———
(7i—1n!
di-l s —s,)™Ny(s)
D (s) ]}

e order of the pole of Fs) at

(3-61)

and m, is
S = 8.

From Eqgs. (3-58) and (3-60), it is obvious
that the expansion of a rational function
when inverted produces a sum of exponential
terms for the corresponding time function.
Terms containing exponentials with complex
arguments will appear in conjugate pairs and
can therefore be combined to form product
terms (exponential multiplied by a sine or
cosine function) representing damped sinu-
soids.

Example. The system defined by the equa-
tion

d"”+s90 2 + 1550

et dt? di? dt

+27.02 = 27.00  (3-62)
isinitially atrest. At# = 0, aunit ramp input
is applied. Find the difference between the
inputy and the output « as afunction of time.

Solution. Since the system is initially at rest,
all initial conditions are zero. Transforming
Eq. (3-62) results in

X(s) =
27.0 .
o F 10655 F89.02 F1550s F 270" )
(3-63)
Let
e(t) =y(t) —z(¢) (3-64)

Then, transforming Eq. (3-64) and substitut-
ing for X (s) from Eq. (3-63), E(s) becomes

E(S) =

s[s®* +10.65s2 +89.0s + 15.501 Y (s)
st T10.655% T89.0s2 T 15.50s +27.0

(3-65)

By referring to the values of the roots given
in Eq. (3-14), the denominator D(s) of Eq.
(3-65) can be factored as follows:

D(s) = (s +0.0702 —j0.552) (s +0.0702+4 j0.552)

(st5.26—j7.72) (s +526 Fj7.72)

315
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The transform of y(f), found from Table
3-1,1s

Y(s) = si (3-67)

Using the factored form of the denominator

and substituting 1/s* for the value of Y (s)
in Eq. (3-65) results in

[s* +10.659 +89.0s +15.501

E(s) =
(s) sls ¥ 0.0702 — j0.552] [s F0.0702 F70.552] [s T 5.26 —57.72] [s T 5.26 Tj7.72]
(3-68)
Since two pairs of the poles of E (s) appear
as conjugate pairs, the partial-fraction ex-
pansion of £ (s) can be written
K K, K, K
E(s) == 2 : :
(s) s T s Foo02 —j0.552 + s Fo.0702 +j0.552 T s¥526 — 7772
4 K (3-69)
s +526 +57.72
where a bar over a constant indicates the
complex conjugate of the constant. Using the
expansion theorem [Eq. (3-59)3
15.50
K, = —/—=10.574
T 210 (3-70)
X _[ (s +10.655 +89.0s + 15.50) 918 ¢oin e
T lss F0.0702 F70.552) (¢ F 10518 ¥87.2)| sovoesome 00
(3-71)
K, = 0.918 ¢tz (3-72)
o (s +10.655* +89.0s +15.50) 0 56 o em
T 5(57 + 0.1403s F0.310) (54 5.26 F7.72)] e smpppme — 200 X 107 e702TE
(3-73)
Ky = 2.89 X 10-tg+0.27x (3-74)
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Inverse transforming Eq. (3-69)
e(t)=0.574 0918 g-0omozt

[i(n552(-1.89) 4 @-1(0.552¢ - 1.89) ]

4 2.89 X 10+t 520t

[ej(T.T.!f -0.87) F (772t - 0.87) 1

(3-75)

The bracketed functions on the right side of
Eq. (3-75) are recognized as cosine functions,
sothat e(f)can be written as

e (t) = 0.574 + 1.836 ¢-0-0702t
cos (0.5525 — 1.89)
+5.78 % 10t ¢=2% cos (7.72t — 0.87)
(3-76)

It is convenient for plotting purposes to write
the arguments of the cosine functions in de-
grees and to use trigonometric identities to
reduce the phase angles to angles smaller
than 45°. If this is done. e(#) can be written
as

e(t)=— 0574 +1.836¢97 sin
(31.6t — 18.3)° _ 5.78 X 10-* ¢! gin
(442t + 40.2)° (3-77)

3-4.4 FREQUENCY RESPONSE

It is often important to find the response
of a system to a sinusoidal input. For a sinu-
soidal input, the output of the system will also
be sinusoidal after transients have died out.
The amplitude and phase angle of the output
relative to the input are dependent only upon
W (s), the transfer function of the system,
and can be determined by letting s = jo in
the transfer function, where o is the fre-
quency (in radians/second) of the input sinu-
soid. The ratio of output amplitude to input
amplitude is then given by

A,
AI/
where A, is the output amplitude, A4, is the
input amplitude, and W(s) is the transfer
function of the system. The phase angle of

the output relative to the phase angle of the
input is given byt

b — ¢y == L W(jw) 3-79)

where ¢, is the output phase angle and ¢y is
the input phase angle.

— W (jo)| (3-78)

When the transfer function of a system is
evaluated as a function of frequency for a
sinusoidal input, the complex function that
results is called the frequency response of the
system.

1Symbol / denotes "angle"

3-5 BLOCK DIAGRAMS AND SIGNAL-FLOW GRAPHS (2223.24.25,2627.28)

3-51 BLOCK DIAGRAMS

Equations (3-54) and (3-57) demonstrate
that, with zero initial conditions, the trans-
form of the output of a system can be ex-
pressed in terms of the input transform and
the system function. The system function can
be thought of as an operator. That is, the sys-
tem function operates on the input transform
to produce the output transform. In a similar
manner, the system operates on the input to

produce the output in the time domain, the
operation being defined by the convolution in-
tegral [Eq. (3-31) ] and depending only upon
the impulse response of the system. The con-
cept of an operator is presented pictorially by
the technique known as operational block dia-
gram algebra. The block diagram of a system
is the pictorial representation of the mathe-
matical operations involved in the differential
equations that describe the system.

3-17



THEORY

Table 3-2 presents a list of symbols used in
the block diagram representation of a system
and Fig. 3-6 presents a list of reductions that
enable one to simplify or reduce the block
diagrams of a system. Since the block dia-
gram contains no more information than the
differential equations, the manipulation of a
block diagram 1s merely a pictorial process
of manipulating the differential equations.
The advantage of ablock diagram representa-
tion 18 that the operational relations in a sys-
tem are emphasized rather than the hard-
ware. By becoming familiar with common
block arrangements, the designer can inter-
pret the function of various elements in a sys-
tem much more rapidly than would be pos-
sible from an inspection of the differential
equations.

Example. The transformed equations of a
servomotor driving an inertia load coupled
to the motor through a flexible shaft are

T = (Jns? T Fus) 6, TK (6, — ) (3-80)
K(0n —8) =Ju00, T 1, (3-81)
where

T»= motor torque K = shaft stiffness

J» = motor inertia #;, = load angle

f» = motor damping J, = load inertia

€,,,— motor angle T;. = load torque

The damping of the flexible shaft is assumed
to be negligible. Draw the block diagram of
the system and reduce the diagram, keeping
the motor angle €,, and the load angle 6, in
evidence.

3-18

Solution. The block diagram of the system is
drawn in its “primitive” form in Fig. 3-7A.
The successive steps necessary to reduce the
“primitive” diagram to the desired form are
shown in Figs. 3-7B to 3-71 with the rules
used for each step indicated below each step.

TABLE 3-2 BLOCK DIAGRAM SYMBOLS

Symbol Description Operation
X variable
—_—
operator Y =AX
summing point | Y =X — W

I
b

splitting point | X

—

X

i

Y | multiplier Y =XZ

X Y
A
X Y
+f
—| W
X X
X
X
Z

"?‘
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RULE ORIGINAL DIAGRAM EQUIVALENT DIAGRAM
1 o A e B | — A3 [—
A
2 ——ll A LB e
+
]
-+
A
= I
3
B -
*
) A P
4 L

ﬁ?_‘A—’
—]

f

Fig. 3-6 Block diagram manipulation and reduction
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RULI |

ORIGINAL DIAGRAM

EQUIVALENT DIAGRAM

-

- >

Y

Y

Fig. 3-6 Block diagram manipulation and reduction "rules”. (Sheet 2 of 3)
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RULE ORIGINAL DIAGRAM

EQUIVALENT DIAGRAM

w
w
1 >
X W w
e o & >
+
+ +
Y
B D
12 A
o & 4 [}
]
+ +
z Y z
= = =5 - -t A—AL Y
+ +
WHERE 4, = AC = BD
w X A w
A -4 > nat R >
+
y
13 D B ABC 5{;2
2 =2
[ )
+ +
z
- = c Y- N —
+ + A2

WHERE A, = 1 — ABCD

Fig. 3-6 Block diagram manipulation and reduction "rules”. (Sheet 3 of 3)
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C. USEOF RULE 3 OF FIG. 3.6

Fig. 3-7 Block diagram examples. (Sheet 1 of 3)

3-22

352
4 T
. o 8
’ms = — K ! 5 t .
O + + s
K -
A. ELEMENTARY BLOCK DIAGRAM
2
s g
T
1 _ Py g
TS ’ K -—@—»— LI -
m + + JLS
K <
B. USEOF RULE 9 OF FIG. 3-6
T
1 ~ 8
——— 1 L
1 52 < K
m3e+Es o, J,_s’
K -
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1
> > K >
1. s24 4 s
™ - o-
D. USE OF RULE 110F FIG 3.6
—_—— + » 1 -
Jos? s o> K + s ™
- -
—_ K -
1 + + 1
L > K z T
..T _I | I—
T
K

Fig. 3-7 Block diagram examples. (Sheet 2 of 3)
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0
1 K - 1 >
Jas? i s 0, hs2eK
S J .32
L [
T
v = 8,
T = 1 1 L
z E . T - >
+ + Jst+f s K o T -
H. USE OF RULE OF FIG. 3.4
35t e
6,
1 kL]t
52 .S st +K -

L

USE OF RULE 1 OF FIG. 3-6

fig. 3-7 Block diagram examples. (Sheet 3 of 3)
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3-5.2 SIGNAL-FLOW GRAPHS (27:28)

An alternate procedure for representing
the differential equations of a system pictori-
ally is Mason’s" signal-flow graph method.
In a signal-flow graph, variables are repre-
sented by points called nodes and transfer
functions are represented by directed lines or
branches called transmittances. The distinc-
tion between the summing points and the
splitting points of block diagram algebra is
eliminated in the signal-flow graph. The rules
for drawing a signal-flow graph are as fol-
lows %) :

(a) Signals travel along branches only in
the direction of the arrows.

(b) A signal traveling along any branch
is multiplied by the transmittance of that
branch.

(c) The value of the variable represented
by any node is the sum of all signals entering
the node.

(d) The value of the variable represented
by any node is transmitted on all branches
leaving that node.

Example. The two equations
X, = t01 .'E() + tll X1 + t21 .762 (3-82)
(3-83)

are represented by a signal-flow graph in Fig.
3-8.

Ly =tpa Xo + 12 21 + 3 X2

Y-

Fig. 3-8 Signal-flow graph in three variables.

For convenience, the signal-flow graph is
usually drawn such that no branch enters an
input node or leaves an output node. This is
accomplished by introducing an additional
node connected by a unity-transmittance
branch to each input and output node as
shown in Fig. 3-8, where the input node is as-
sumed to be z, and the output node is as-
sumed to be ;.

The order of a signal-flow graph is a meas-
ure of the number of independent feedback
loops and thus indicates the complexity of the
system. The order of the signal-flow graph is
the minimum number of essential nodes —
those nodes that must be removed to eliminate
all feedback paths. A node is removed cither
by setting the variable associated with the
node equal to zero or by deleting all branches
leaving the node. Signal-flow graphs of orders
one and two are shown in Figs. 3-® and 3-10,
respectively. The signal-flow graph of Fig.
3-8 is of order two, the essential nodes being
X1 and Xo.

The reduction of signal-flow graphs is ac-
complished by application of the following
rules® ;

(a) Two parallel paths may be replaced by
a single path with a transmittance equal to
the sum of the two original transmittances
(Fig. 3-11).

(b) Two cascaded paths are equivalent to
a single path with a transmittance equal to
the product of the two original transmit-
tances (Fig. 3-12).

(c) The termination of a branch with
transmittance 7 can be shifted one node for-
ward by the following steps (Fig. 3-13) :

(1) Determine all the branches leaving the
original terminating node x of branch 7.

(2) Draw new branches from the starting
node %, of branch ¢ to the terminating nodes
of all the branches leaving the terminating
node x.

(3) To each of the new branches thus
drawn assign a transmittance equal to the

product of 7 times the transmittance from
node x to the node on which the new branch
terminates.

(4) Eliminate the original branch ¢.
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(5) Chang:, the variable of the original
node xto @’ = x — tx,.

(d) The starting point or origin of a
branch with transmittance ¢ can be shifted
one node backward by the following steps
(see Fig. 3-14) :

(1) Determine all the branches entering
the original starting node x of branch t.

(2) Draw new branches from the starting
nodes of all the branches entering starting
node x to the terminating node x; of branch t.

(3) To cach of the new branches thus
drawn assign a transmittance equal to the
product of ttimes the transmittance from the
node at which the new branch startsto node x.

A. ORIGINAL GRAPH

Xin X (X X3 Xout

B. ESSENTIAL NODE REMOVED

Fig. 3-9 Signal-flow graph of order one.

Xin X, X, Xy Xy Xout

A. ORIGINAL GRAPH

—_—d T .

Xin (xy Xy X, Xy Xout

B. ESSENTIAL NODES REMOVED

Fig. 3-70 Signal-flow graph of order two.

(4) Eliminate the original branch t.

(e) A self-loop with transmittance t of a
node x can be removed by dividing the trans-
mittances of all branches entering node x by
(1 —t) and eliminating the loop (Fig. 3-15;
in this figure. ¢ = ty,, where the first sub-
script denotes the node on which the branch
originates and the second subscript denotes
the node on which the branch terminates).

Note, in rule (c),that a self-loop is created
at node z, for a branch starting from the
terminating node x of branch ¢ and ending on
the starting node z, of branch t (Fig. 3-13
does not happen to have such a branch). In
rule (d), a self-loop is created at node z; for
a branch starting from the terminating node
z; of branch t and ending on the starting node
x of branch t.

Example. The various steps involved in re-
ducing the second-order signal-flow graph of
Fig. 3-8 are shown in Fig. 3-16.

A. ORIGINAL GRAFH

8. EQUIVALENT GRAPH

Fig. 3-11 Signal-flow graph showing addition of
parallel branches.
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A ORIGINAL GRAPH

tya tas

A ORIGINAL GRAPH —t TO BE MOVED FROM X TO X,

Xy X,

B. EQUIVALENT GRAPH

Fig. 3-12 Signal-flow graph showing multiplication
of cascaded branches.

iy

ty ts

P -

Xy X t5 X, tg X,
t
X4

Xs p

B. STEPS(1} AND (2) = INTRODUCTION OF NEW BRANCHES

Xg

A. ORIGINAL GRAPH ~t TO BEMOVED FROM X TO X,

B. STEPS(1} AND (2) -- INTRODUCTION OF NEW BRANCHES

C. STEPS (3) AND (4) — ELIMINATION OF OLD BRANCH AND
L'ABELLING OF NEW BRANCHES

ty
h X /_‘_\ X, T, Fig. 3-14 Signal-flow graph showing origin shifted
x - -2 one node backward.
1
X e X - tx
0 Fig. 3-13 Signal-flow graph

C. STEPS(3), (4), AND (5) ~ ELIMINATION OF OLD BRANCH; . o
LABELLING OF NEW BRANCHES, CHANGE OF VARIABLE AT . showing termination
TERMINATING NODE OF OLD BRANCH

shifted one node forward.
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KIN

(‘ = ‘22) 1y
t2 = — > —
Xm0 Xo 1oy X Xout
1- thy
tyy X, s X5 8. REDUCTION TO FIRST-ORDER GRAPH
BY ELIMINATING SELF-LOOPS
A ORIGINAL GRAPH
X, - X,
—‘L% tr
=12
B. EQUIVALENT GRAPH - 2
Xin 1 Xo to 1 Xoun
T-tn

typt
; . ) . T
fig. 3-15 Signal-flow graph showing elimination Nt
of a self-loop. C. MOVEMENT OF BRANcH(I_'ltz_)TERmNATmN FROM
NODE X, TO NODE X, T

toatay + 10y (1 = tp))
-toXT-tyg) - Jy

XN 1 Xg 1 Xour

tthZl
(1=t X1 =155

D. CASCADE AND PARALLEL BRANCHES COMBINED

toatay + g (1 -1p0)
(0 = 4T = 199) ~ 14915y

Xin 1 Xq LS 1 Xpurt

E. REDUCTION TO ZERO-ORDER GRAPH
BY ELIMINATION OF SELF-LOOP

fig. 3-16 Signal-flow graph showing reduction
of second-order graph.
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3-6 APPROXIMATE NUMERICAL AND GRAPHICAL METHODS OF
DETERMINING TRANSIENT RESPONSE

A large variety of graphical and numerical
procedures(?9teysy have been proposed that
enable the designer to determine the follow-
ing : (1) the transient response of a system,
knowing the frequency response; (2) the
frequency response, knowing the transient
response ; or (3) the response of a system to
an arbitrary input. These graphical and nu-
merical procedures are particularly useful
when purely analytical procedures are too
difficult or time-consuming. When using La-
place or Fourier transforms, the difficulty
that arises is primarily one of factoring high-
order polynomials. When the convolution in-
tegral is involved, its direct evaluation is
often time-consuming and difficult. If experi-
mental data are available in the form of tran-
sient responses or frequency responses of
system components, it is desirable to avoid
the problem of approximating the data with
analytical functions.

In many of the techniques, the determina-
tion of the transient response of a system
from its frequency response is based on the
real-part and imaginary-part integrals, i.e.,

£(t) = —%—fwdw cos wt Re[F (jw)] (3-84)
n 0

F() = — 2 [ dosin ot Im[F (jo)]
T Jo
(3-85)
where Eq. (3-84) is the real-part integral,
Eq. (3-85) is the imaginary-part integral
f(qt) is the time response to be evaluated, an

F (jw) is the transform of f(¢) evaluated for
s = jo.

Floyd“V uses Eq. (3-84) to determine the
time response corresponding to a transform
F (s ) satisfying the following conditions :

3-29

The procedure used in Floyd’s method is as
follows :

(a) The function Re{F (jw)] is plotted to
alinear scale and approximated by a series of
straight-line segments.

(b) The straight-line approximation is
written as a sum of trapezoidal functions
having the general form shown in Fig. 3-17.

(c) The time response corresponding to
cach of these component trapezoids is given
by a relation of the form

fi(t)=2-A,Si(wt) Si(Ad) (3-86)
n
where
Si(z) A X (3-87)

and the quantities 4;, w,;, and A; are defined in
Fig. 3-17.

(d) The total time response is obtained by
taking the sum of the individual time re-
sponses corresponding to cach component
trapezoid, i.e., for k trapezoids

Fl)=3 2 A, Si(wt) Si(Ad)

(3-88)
=1
_ wb + W
4 CU.‘ = 2
| oo
= By =g

eRF(
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Example. A unity-feedback system has the
closed-loop response

C(s)
R (s)

1.4s+0.14

st Tt 1.4sT0.14
(3-89)

Find the impulse response w(Z) of the sys-

tem.

Solution. Re[W (jw)] is plotted in Fig. 3-18

and the straight-line approximation to this

function is shown as the dashed curve.

— W(S) =

Sketches of the straight-line approximation
and the trapezoidal decomposition of this ap-
proximation appear in Fig. 3-19. From the
approximation and the definitions of Fig.
3-17,the parameters of the trapezoids can be
shown to be those listed in Table 3-3.

The impulse response is therefore given by
w(t)= 2 [—0.018i(0.12¢) Si(0.12¢)
T

+ 1.715i(1.06t) Si(0.41¢t)
— 0.59.8i(2.05¢) Si(0.57¢)
— 1.088i(4.89t) S (2.272)]

(3-90)

This response is plotted in Fig. 3-20 along
with the exact impulse response determined
by inverse transforming W (s).

Guillemin©44% yuses a different approxima-
tion to Eq. (3-84) .If the real-part function
is differentiated n times, the corresponding
time function is found to be

f(t) = i(—ifm dw cos wt
0

n t"

d'Re [l (jo)]
do®
(3-91)

if n is even, and
f@t) =

nil o n )

2 (1 2f do sin ot L EelF (o) ]

T tn 0 d())"
(3-92)

if n is odd.

TABLE 3-3 PARAMETERS OF TRAPEZOIDS

Trapezoid No. ; A A;
I 0.12 0.12 —0.01
11 1.06 0.41 4-1.71
ITI 2.05 0.57 —0.59
v 4.89 2.27 —1.08

If a straight-line approximation to Re[F (jw) ]
is differentiated twice, the second derivative
of the approximation is a series of impulses
in the frequency domain extending over posi-
tive and negative frequencies. Thus

d?Re [F(jw) ]

Ao’ = 049, (o)

-+ § a;[8o (0 — ;) + do(0 + ;) ]
= (3-93)

where the &'s are unit impulses.

The time response can then be found from

£(2) =_2 D 3 acosapt
nt? | 2 i=1
(3-94)
As checks on the approximations of Floyd
and Guillemin, the following relations hold :

£(0) :if” doRe[F(jm)]1= 3 2 a,
T 0 n=1] T
(3-95)

where A, is the area of the nth trapezoid in
Floyd's approximation.

4 3 oa=0

=2 (3-96)
2 =1

where a; is the magnitude of the jth impulse
in Guillemin's approximation.

F0) =L % awp

T =1

(3-97)

where @; is the magnitude and w; is the fre-
quency location of the jth impulse in Guille-
min’s approximation.
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Stallard®® has suggested a method for
obtaining the time response applicable to con-
trol systems having an oscillatory response.
In particular, the response ¢ (#¥ of a control
system whose input 7 (£ )is a unit step d-1 ()
can be approximated from

4 @ Re[W (jnw i t
c(t)=;— _Es [W (jnwy) ] sin nw,

(3-98)
where

the closed-loop transfer

C(s)
w =__7
(s) B( function

s)’

w; = (1;_0
o = cutoff frequency at which the phase
angle of W (jo) is —90°

By using about eight terms of the series [Eq.
(3-98)1, an accuratc representation of the
step response of the system is obtained that
is valid over the interval

k)9

O<t< —

Wy

If the impulse response or the ramp response
of the system is sought, Eq. (3-98) can be
differentiated or integrated term-by-term to
obtain the desired response.

When using the real-part integral [Eq.
(3-84)3 and the various approximations de-
rived from it, a convenient method of finding
Re [W (jo) ] is often desired when the impulse
response of a feedback control system is
sought. Since many of the design procedures
discussed in Chs. 5 and 6 employ a graphical
representation of the open-loop response
C(jo)/E (jo) in the gain-phase plane (see
Ch. 5), Fig. 3-21 is included. This chart pre-
sents contours of constant Re[W (jw)] on
the gain-phase plane. If the open-loop fre-
quency response C(jo)/E(jw) is plotted on
this chart, the intersection of the C(jw)/
E (jo) function with the Re[W (jw)] con-
tours at each frequency determines the real
part of the closed-loop response W (jo) as a
function of frequency.

10
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Fig. 3-78 Real-part function for W(s) =
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0
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Fig. 3-20 Impulse response from Floyd's method
14s T 0.14
0 W(s) = 5
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0
-0.22
B. TRAPEZOIDAL DECOMPOSITION

Fig. 3-I9 Trapezoidal approximation for Re[W(jw)].
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3-7 ERROR COEFFICIENTS FOR DETERMINING RESPONSE

TO AN ARBITRARY

The convolution integral [Eq. (3-31)3
gives the response of a linear system to any
arbitrary input. In many control applications,
the input function is specified as an arbitrary
function of time that cannot be classified as
a transient or sinusoidal input. Since the
evaluation of the convolution integral
usually involves a tedious graphical or
analytical procedure, methods of simplifying
the calculation of the response of a unity-
feedback system to an arbitrary input have
been devised.

One of the most useful techniques is called
the error-coefficient method. (494647 [n this
procedure, the convolution integral is ex-
panded in a Taylor series. To insure con-
vergence of the expansion, it is assumed that
the input and its derivatives have no discon-
tinuities in the time interval of interest.
The forced response to the input is then

e(t) =er(t) Ter @) Yerr(t) +...
(3-99)

where e, e,, . . . are called the error coeffi-
cients of the system. It can be shown that the
error coefficients are the coefficients of the
Maclaurin series expansion of the error-to-
input transfer function ¥ (s) /R (s) ,i.e,,

(3-100)
The casiest way to expand E(s)/R(s) for

rational functions is to divide the numerator
polynomial by the denominator polynomial.

INPUT

The first few error coefficients expressed in
terms of the parameters of the open-loop
function C(s)/FE (s) are listed in Table 3-4
for a unity-feedback system.

Equation (3-99) shows that the response
of a system to an arbitrary input can be ex-
pressed in terms of the error coefficients,the
input, and the derivatives of the input. The
only restriction is that the input and its
derivatives have no discontinuities in the
time interval of interest. In particular, if
there is a discontinuity in the input or one of
its derivatives, the error-coefficient expansion
applies after the transient due to the discon-
tinuity has died out.

In using the expansion, it usually suffices
to terminate the series after the first four
nonzero error cocfficients. If the series is ter-
minated after the kth error coefficient, an ap-
proximate bound on the remainder of the se-
ries is given by

p(t)

= r41) (t) €1y

max

(3-101)

where p(%) is the remainder, r*+1 () is the
(k¥ 1)th derivative of the input r(¢),and
€1 is the (k-+1)th error coefficient. The
bound [Eq. (3-101)] applies in most practi-
cal cases if four or more nonzero .terms are
used in the expansion. For the restrictions on
Eq. (3-101), secc reference®,
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TABLE 3-4 ERROR COEFFICIENTS IN TERMS OF OPEN-LOOP FUNCTION C(s)/E(s)

Form of KN
O;s:;{‘izzp -——D(S) N(s) =ns 4 nos*+ms+1 KN (s) KN(s)
C(s)/E(s) D(s) =dis* 4+ +dis+1 sD (s) s2D (s)
1
6 1 4K 0 0
e, Kl —m) 1 0
(1+K)* K
P K {(dz—nz)(1+K)+} K(dy,—n) —1 1
(14 K)3 \ (ny — dy) (Kny + dy) K: K
(ds — m5) (1 4 K)* + K*(dy — my) + K (2 + Kny)
K | (s — d3) (1 + K) (= )+ 17K o
. AT | G+ En) 4 (u—dy) -
(ds+ Kn,) (1 4+ K)
— (dy 4 Kn,)?
e K(dy—n) + Kni(ny — dy) — 1

K2

SAHISAS dVANT 40 ISNOIS=RI JINVNAGQ ONINIARIALEA
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3-8 RESPONSE TO STATIONARY STOCHASTIC INPUTS!* 5152

As discussed in Par. 2-6, the response of a
linear system to a stochastic input cannot be
expressed as a specific function of time. The
only way to describe system behavior in the
presence of stochasticinputs isin terms of the
statistics of the input and the response. Theo-
retically, an infinite number of statistics is
required to describe a stochastic process com-
pletely. Practically, however, only a few sta-
tistics are used.

The probability density functions are direct
measures of the chance of occurrence of cer-
tain events in the process. The first probabil-
ity density function of a stochastic variable
r(?) is denoted by

Py (r,t1) A probability that the variable has
a value 7, at time ¢,.

The second probability density function is de-
noted by

Py (7t ;r,t:) A probability that the vari-
able has a value », at time
t, and a value 7. at time &
simultancously

In practice, only the first two probability
density functions are used. For a stationary
stochastic process, the first probability den-
sity function is independent of the time ¢;;
the second probability density function is a
function only of the time difference ({. —%,).

Twc commonly used probability density
functions are the normal distribution and the
Poisson distribution. The normal distribution
is given by

1 - {_(1_7_)3(]7

(r)dr o \/2n ¢

(3-102)

where P(r) dr is the probability of finding »
between r and r T dr, r is the mean value of
7 (to be defined below), and ¢ is the standard
deviation of » (to be defined below). The
Poisson distribution is given by

(VAL)Y e=ar

P(N,At) = N7

(3-103)

where P (N,At) is the probability of finding
N events in a time interval A¢, and v is the
average frequency of occurrence of the events.

In general, the average or mean value of a
stochastic variable # is given by

+ <
5 gf r P(rt) dr (3-104)

For a stationary stochastic process, the mean
value is independent of time and can also be
found from

~a lim _1_

> 2TY=f

4T

7 (t) dt (3-105)

The mean-square value of a stochastic vari-
able or process is given by

T N
4 :f 2P (1,t) dr

For a stationary stochastic process, the mean-
square value is also given by

(3-106)

—ali 1 7
e lim

Alm _—_ 3-107
oo ) ( )

r2 (1) dit

The root-mean-square (rms) value is the
square root of the mean-square value.

The variance of a stochasticprocess if given
by

va [r —7]? (3-108)
The standard deviation « is the square root of
the variance. It can be expressed in terms of
the mean value and the mean-square value as
follows :

9

02 =712 — 12 (3-109)

In most applications, rms values and mean
values are usually the most common statistics
used. To aid in the determination of these
quantities, statistics called correlation func-
tions are used. The autocorrelation function
¢ (1) of a stationary stochastic process » (¢)
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is defined as the mean value of the product of
the function » at time ¢ bv the function r at

timet T, i.e.,
¢rr(r) i'T(t)T(t +T) (3-110)
4T
dim — | r(O)r(t+1) dt  (3-111)
T->x0 T _F

The crosscorrelation function ¢,, (1) between
two stationary stochastic processes 7 (1) and
w(t)is defined as the mean value of the prod-
uct of the function » at time ¢ by the function
pattimet T, ie,

¢, () ATt F 0 (3-112)

im [ + 3-113
Jimer [ rue Fo e (3-113)
From the definition of the autocorrelation
function [Eq. (3-110)1, it is evident that the
mean-square value of a stochastic process
equals the value of the corresponding auto-
correlation function with zero argument :

TF=¢, (0) (3-114)

Useful properties of the correlation func-
tions are as follows:

(a) ¢ty = ¢, (—7)

[even function]

(3-115)
(b) 16 (D) = ¢, (0) (3-116)
() lim ¢, (v) =r (3-117)
(d) ¢, () =9, (=0 (3-118)
(@) I, O =\/¢x(0)g,, (0)  (3-119)
() limg, (1) =r (3-120)

A few examples illustrating the use of auto-
correlation functions follow. If (%) is a rec-
tangular wave with values +f or —f ana with
zero crossings located at event points that
are Poisson-distributed in time with an aver-
age frequency of v, the autocorrelation func-
tion of the process is given by

b (1) = B2 e (3-121)

If »(¢) is a rectangular wave with ampli-
tude values distributed in any fashion and
with zero crossings located at event points
Poisson-distributed in time with an average
frequency v, the autocorrelation function of
the process is given by

(3-122)

where ¢ is the standard deviation of the am-
plitude distribution, and 7 is the mean value
of the amplitude distribution.

If »(¢) is a train of identical finite pulses
whose starting points are Poisson-distributed
in time with average frequency v, the auto-
correlation function of the process (known as
“shot noise™) is given by

d’rr(T) = o* e—V‘r‘ +1—2

RO () do
- (3-123)

brrlT) =V

where f(f) 13 the time variation or wave-
form of a single pulse and r is given by

7:vf_+°° f(t) dt

o0

(3-124)

If (t) is pure or “white” noise, the auto-
correlation function is given by

ére (1) = 30 (1) (3-125)

where y is a constant that depends on how th”
process is generated.

Thus, if “white” noise is considered as a lim-
iting case of shot noise genecrated by ex-
ponential pulses of amplitude 4 and time
constant T (where the amplitude approaches
infinity and the time constant approaches
zero with the areca s under the pulse held
constant), then the constant vy is given by

Vs
Y=-3

5 (3-126)

where v is the average frequency of occur-
rence of the pulses.

Because the correlation functions are com-
pletely defined as functions of a time vari-
able 1, they are Fourier transformable. By
convention, 1/2x times the Fourier transform
of a corrclation function is called a power
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spectrum or a power-density spectrum. Thus,
the power-density spectrum ®,.(s) of a sto-
chastic process is defined as

®,.(s) 8 L [T dr e g (1)

2nJ

(3-127)

The cross-power-density spectrum between
two stochastic processes 7 (t) and p(t) is de-
fined as
A 1 [t —
(D"*‘(s):ﬁf_m drew g (v) (3-128)
Given the power spectra, the corresponding

correlation functions can be found by inverse
transformation, i.e.,

50
D,.(8) e’ ds

—joo

(1) = i_ (3-129)

1 e
$,, (¥) :?f ® (s)eds  (3-130)
In terms of the power-density spectrum, the
mean-square value of a stochastic process
can be found by evaluating the following
integral :

7" 0, (0) do

—od

(3-131)

Useful properties of the power spectra are
Q,.£s) = @, (— s even function) (3-132)

e (5) =9 (—s) (3-133)

Having established some of the statistics
of stationary stochastic processes, the re-
sponse of a linear system to a stochastic input
can now be described. If ¢,.(t) is the auto-
correlation function of the input r(t) of a
linear system whose impulse response is
w (¢ ),the autocorrelation function of the out-
put ¢(t) is given by

(1) = f Tt w(t)

f+°° Aty w (ts) do & F o —t)
- (3-134)
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The crosscorrelation function between the
input and the output is given by

+o0
pre(0) = [ dtw(t) g.(x—1) (3-135)
v —m
which can be recognized as a convolution in-
tegral.

Extending the description of the stochastic
response of a linear system to the frequency
domain, if W (s) is the transfer function of
the system and ®,,(s) is the input power-
density spectrum, the output power-density
spectrum is given by

B (s) = W(s)W( —s) Dp(s)  (3-136)

The cross-power-density spectrum between
inputr (¢ ) and output ¢ (¢ )is given by

®,.(s) =W(s) 0, (s) (3-137)

or

P, (8) =W (—s) D, (s) (3-138)

If p(¢)is another signal and ®_ (s) is the
cross-power-density spectrum between p(7)
and the input 7 (), the cross-power-density
spectrum between p(¢) and the output ¢(t)
is given by

®, (s) =W(s) D (s) (3-139)

or

@ (s) =W(—=s)® (s) (3-140)

In summary, once the properties of a sto-
chastic process are expressed in terms of cor-
relation functions, the analysis of system be-
havior is a straightforward problem that
can be treated through the use of the defini-
tions and properties of the correlation func-
tions and their transforms, the power spec-
tra. In particular, where rms values are of
interest, Eqs. (3-114) and (3-131) are of
great use.
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3-9 USE OF ANALOG COMPUTERS FOR SIMULATION %5545

In many problems, the use of analog com-
puters greatly facilitates the analysis and
design procedures. In both the linear and the
nonlinear cases, the analog computer 1s a
tool of wide versatility. Since the detailed
properties of analogy computers vary from
one manufacturer to the next, this section
will cover only some general principles of
analog computer use.

The basic elements of any analog computer
arc integrators, coecfficient potentiometers,
summing amplifiers, multipliers, and func-
tion generators. The symbols for these ele-
ments and the mathematical operations they
perform are shown in Fig. 3-22. The similar-
ity of these symbols to the symbols of block
diagram algebra emphasizes that the block
diagram of a system is readily convertible to

the computer diagram of the system. Several
important restrictions of the computer dia-
gram are

(a) Differentiation is difficult to realize
in practice.

(b) The summing amplifiers and integra-
tors almost always introduce a change in
algebraic sign.

(¢) The useful frequency range of the
computer is limited at low frequencies by
drift and at high frequencies by phase shift
and attenuation.

(d) The amplitude scale of the computer
is limited by amplifier saturation.

Example. The block diagram of Fig. 3-7A
is shown as a computer diagram in Fig.
3-23.
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DESCRIPTION SYMBOL OPERATION
3
INTEGRATION Y2 X = = flyy + 4y, + 10y,)at
Y3
A
ADDITION Y2 Xo= =y +dyy +10y3)
Y3
COEFFICIENT y-—.@-» X = Ay
y
MULTIPLICATION X X = yz
4
FUNCTION )
GENERATION ¥ = fy)

Fig. 3-22 Elements of analog computers.
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Fig. 3-23 Computer diagram for system of Fig. 3-7A.
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CHAPTER 4 *
STABILITY OF FEEDBACK CONTROL SYSTEMS

4-1

The determination of system stability is the
first step in the design of any linear control
system. To carry out this first step, a test for
system stability is required. The particular
stability test used will depend on the meaning
attached to the term stable operation. Gen-
erally, a system is said to be stable if it re-
mains at rest when all inputs are zero and if
(for any disturbance) no signal grows with-
out bound or exhibits sustained oscillation
when the inputs are returned to zero. In the
case of linear systems, the only situation in
which unstable behavior can occur is the one
in which the roots of the characteristic equa-
tion of the closed-loop system lie in the right-
half s plane and therefore have positive real
parts. The response modes corresponding to
right-half-plane roots of the characteristic
equation have amplitudes that increase with-
out limit as time increases. Consequently, any
stability criterion for a linear system is es-
sentially a method of determining whether or
not the characteristic equation has right-half-
plane roots.

In Fig. 4-1 the general single-loop system is
shown. The output response transform for
this system is
Gi(s) G2(s) R(s) — Ga(s) U(s)

1+ Gi(s) Ga(s) H(s)

C(S) panan

(4-1)

*By L. A. Gould
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INTRODUCTION

The characteristic equation of the system is
1FGi(s) Gu(s) H(s) = 0 (4-2)

Thus, if any of the roots of Eq. (4-2) lie in
the right-half s plane, the system of Fig. 4-1
is unstable.

The presence of right-half-plane roots of
the denominator of the response transform
C (s) [i.e., right-half-plane poles of C(s)]
could be determined by direct factorization of
Eq. (4-2), after it has been cleared of frac-
tions. Since a system is unstable if one or
more right-half-plane poles of C(s) exist, it
is usually sufficient to determine whether
these poles exist; however, it is not necessary
to determine their exact location. Hence, the
standard stability criteria that are discussed
in this chapter (with the exception of the
root-locus method) merely determine the
number of unstable poles without regard to
their location in the right-half s plane.

Gy(s) G}f-‘l)

—IJ H(s) l[‘

Fig. 4-1 Single-loop system — block diagram.
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Three useful stability criteria —the Routh
criterion, the Nyquist criterion, and root-
locus method —are described in succeeding
paragraphs.

The Routh criterion is the simplest to
apply and can be used when the characteristic
equation is known, at least in literal form.
This criterion can be employed to determine
the presence of any roots of an algebraic
equation that lie in the right-half plane. If
the equation is the characteristic equation of
a closed-loop system, the presence of right-
half-plane roots means that the system is un-
stable.

The Nyquist criterion is the most widely
used stability criterion because the only in-
formation it requires for its application is a
plot of the open<loop frequency response
G,(jo) G:(jw) H(jo). This frequency re-
sponse can be determined either from an
analytical representation of component be-
havior or from direct measurement of the
response of the components to sinusoidal in-
puts. In addition to its use in determining the
presence of system stability, the Nyquist cri-
terion is extended in many design procedures
to give an indication of the degree of stability
possessed by the stable system (see Chs. 5
and 6). By an examination of the behavior of
the G, (jw) G.(jw) H(jw) locus in the vicin-

ity of the — 1 + ;0 point, the Nyquist crite-
rion provides the servo engineer with a rela-
tively straightforward and extremely power-
ful tool for analysis and design.

The root-locus method is a graphical tech-
nique for revealing the position of the poles
of the response transform C (s ) in the s plane
as a gain factor of the open-loop function
Gi(s) G.(s) H(s) is varied. The primary
advantage of this method for stability deter-
mination is that the closed-loop pole locations
arc kept in evidence at all times. Thus, it is
easy to see when the poles move into the
right-half plane as the gain factor is varied.
There are two primary disadvantages con-
nected with the root-locus method. First, the
location of the poles and zeros of the open-
loop function must be specified. This often
requires some sort of analytical approxima-
tion to the experimental test data. Second, the
plotting of the paths of the closed-loop poles
involves a trial-and-error procedure that can
be quite tedious. In spite of these disadvan-
tages, however, the root-locus method is quite
useful in that it immediately places in evi-
dence the closed-loop pole-zero configuration
for any particular design (stable, of course).
Thus, the characteristics of the time response
of the system are casily ascertained and the
verification of performance specifications in
the time domain is a straightforward matter.

4-2 ROUTH CRITERION"*¢

By applying the Routh stability criterion,
one can determine whether any roots of an
algebraic equation lic in the right-half s
plane. If the coefficients of the equation are
known only in literal form, the Routh crite-
rion yields only a set of inequality conditions
for stability. However, if the coefficients of
the equation are known numerically, the cri-
terion permits one to determine whether sta-
bility actually exists.

To show the general procedure used in
applying the Routh criterion, consider the
following general algebraic equation :

4-2

a,s" +an_1s”-1 + .. +als + a, =0 (4-3)

Next, the coefficients are arrayed in two rows,
alternate coefficients being placed in alternate
rows

(1)
(2)

Then, the array is extended by taking ap-
propriate cross-products to determine the ele-
ments in the third row

ap Qns Qn_s

0
(4-4)
Ap-1

Ap-3 Qns

Qn-t an-2 —CQn @-3 Ap-1Qp-g —QLp Cy—5 ...
[

3)

Qyy
(4-5)
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The elements of the fourth row are formed by
taking cross-products of the elements of the
second and third rows, in exactly the same
manner that the third-row elements were
formed. This process is continued until all the
clements of a row are zero. On completion of
the array, the Routh criterion can be em-
ployed to determine the presence of right-
half-plane roots.
The Routh criterion states :

The number of roots of the original
equation that lie in the right-half s
plane equals the number of sign

The complete algebraic array is as follows :

1) 1 2 M
(2) K 4 0
(3) (K-2) KM/2 0
(4) [(K-2) —K2M/8] 0 0
(5) (K-2-K:M/8) 0 0
(6) 0 0 0

The inequalities that determine stability are

K >0, (4-8)

K-2 >0, (4-9)
and

[(K-2) —K2M/8] >0 (4-10)

(b) As an example of an algebraic equa-
tion with numerical coefficients, consider the
equation

g5 F2st 248 + 4652 1895 +260=0

(4-11)

The complete numerical array is as follows :

43

changes in the elements that form the
first column of the final array.

An examination of the procedure used above
shows that all the elements of any row after
the second may be divided by a positive num-
ber without changing the result.

Examples.

(a) Consider the following algebraic equa-
tion with lateral coefficients :

sttEstosertas+tym=0 (4-6)
where K = 0and M > 0.
0
0
0 (row multiplied by K/2) (4-7)

0 (row multiplied by 1/4)
0 (row multiplied by 2/KM)
0
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(1) 1 2 89
(2) 2 46 260
(3) —1 —1.95 0
(4) 1 6.17 0
(5) 1 0 0
(6) 1 0 0
(7) 0 0 0

Inspection of the signs of the elements of the
first column shows that one sign change
occurs in going from the second to the third
row and another in going from the third to
the fourth row. Hence, two roots of Eq.
(4-11) lie in the right-half s plane. The fac-
tors of Eq. (4-11) are

(row divided by 21)

(row divided by 42.1)
(row divided by 4.22)
(row divided by 6.17)

(4-12)

S O o o o O© <&

(s t4)(s —2473) (s —2—53)
st1+2)+1_j52 (4-13)
The right-half s-planc roots of Eq. (4-13) arc

81, S = +2ij3 (4-14)

4-3 NYQUIST CRITERION“*

The Nyquist criterion is a graphical pro-
cedure by which one can determine whether
any of the roots of the equation

1+Gs) =0 (4-15)

lie in the right-half s plane. Only the follow-
ing information is required in this procedure :
(1) the magnitude and phase angle of G (jw) ;
(2) the behavior of G (s) at the poles of G (s)
that liec on the imaginary axis or at the origin
of the s plane ;and (3) the number of poles of
G (s ) in the right-half s plane. (NOTE: For
nonunity feedback loops, one tests for the
zeros of the function 1 + G(s) H(s) where
G (s) is the forward transfer function and
H (s) is the feedback transfer function.)

The Nyquist criterion can be expressed
mathematically as

Z=N4+P (4-16)

4-4

where

Z = number of zeros of 1 + G(s)that lie
in the right-half s plane

P — number of poles of G('s)thatlic in the
right-half s plane

N = number of clockwise encirclements of
the point — 1 + ;0 by the locus of
G (s ) as s describes the path shown in
Fig. 4-2

For stability, Z must be zero; that is, P —
— N.If P — N, the system is unstable.

If there are any poles of G(s) on the im-
aginary axis, the G (jw) locus will become in-
finite at these points. To determine the be-
havior of the G (jw) locus at these poles, so as
to be able to count encirclements., a small
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semicircular detour is made into the right-
half s planc at cach pole of G (s) on the im-
aginary axis. Thus, the G(jw) locus will de-
scribe a large semicircle instead of becoming
infinite. If the pole on the imaginary axis is
of multiple order, the G (jw) locus will de-
scribe onc semicircle for each order of the
multiple pole.

A convenient rule for determining the
direction of turn of the G (jw) locus at the
imaginary-axis poles of G(s) is

Turn to the right by 180° for cach order of

the pole as the frequency increases.

If G(s) has no poles in the right-half s
plane or on the imaginary axis (exceptat the
origin), the Nyquist stability criterion sim-
plifies tof

| G (u)< 1 when / G (jo) = —180"
4-17)
Examples.
(a) Consider the function
K
G(s) = 4-18
© =m o @

For what range of K will 1 + G(s) have
stable roots?

+Symbol / denotes "angle"

To simplify the calculation, change variables,
letting & = 7s. Then,

KT
A (A+1)2
Plot (1/KT)G(}) on the complex plane for
= ju. Such a plot is sketched in Fig. 4-3.
Since encirclements depend only upon the

topology of the plot, the locus can be distorted

to facilitate the counting of encirclements
(Fig. 4-4).

GQ) = (4-19)

IMAGINARY AXIS

1
a3 G(A) PLANE

_ 1 .
Fig. 4-3 Locus of M—}‘Wfork = ju.

IMAGINARY IMAGINARY
AXIS AXIS
o
INFINITE
SEMICIRCLE
f ‘
EA
?mslf A 8 c REAL AXIS
-é- + jﬂ_/ -
4
“ \
1
- &7 G{)) PLANE
. . . 1
. . o Fig. 4-4 Distortion of locus of ——5——.
Fig. 4-2 locus of s for the Nyquist criterion. h(h+ 1)?
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It is convenient to arrange the pertinent
information in tabular form as follows :

Location of Nature of
—14+350 |P|N| Z Stability
A 0] 00O stable (Z = 0)
B 0] 2| 2 | unstable (Z £ 0)
C 0] I ]| 1| unstable (Z#0)

The stable range of KT is determined from
the table above and Eq. (4-17) as

0< KT < 20

This expression is found by determining the
range of KT which, when multiplying the
(1/KT)G () locus, will keep the point
— 1 +;0 in region A.

(b) Consider the function
G(s) =K1ty
s(1—s)

For what range of K will 1 + (7 (s) have
stable roots?

(4-20.)

Location of Nature of]
— 1430 P N Y/ Stability
A 1 0 1 unstable
B 1] -1 0 stable
Cc 1 1] 2 unstable

Stable roots exist for K in the range
—w <K< -1

These limits are found by determining the
range of K which, when multipl?_ling the
(1/K) G (s) locus, will keep the — I T 50 point
in region B.

IMAGINA RY‘
AXIS

~
{ \\
\ \ .
RN
\\w<0 \
\

1
TG(S) PLANE

Fig. 4-5 Locus of 1 (] x s).

IMAGINARY
AXIS

s \1—3s

REAL
B C AXIS

\H

1
K G(s) PLANE

Fig. 4-6 Distortion of locus of 1—<]__—-{;)

s \1—s
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4-4 ROOT-LOCUS METHOD®?

In the root-locus method, a plot is made of
the locus of the roots of 1+ G(s) = 0 asa
function of a gain factor of G (s). G(s) must
be known numerically in completely factored
form. For nonunity feedback loops, one plots
the roots of the equation 1+ G(s)H (s)=0
where G (s) is the forward transfer function
and H (s) is the feedback transfer function.

If G(s)is written in the form

I (s +s)
k=1
G(S) = Ko p— (4-21)
n (s+s)
j=1
where K, is varied from 0 to + o0, then the
necessary condition for a point in the s plane

to lic on the locus of the roots of 1+ G(s) =
0, as K, varies, is
A, —2A, = —180" (4-22)

where

> A, = sum of the angles of the phasors
from the zeros of G (s )to the point
in question

> A, = sum of the angles of the phasors
from the poles of G(s)to the point
in question

The value of the constant K, that is as-
sociated with each root-locus point is found
from the relation
_ IV,

Im|v,|

where

K, (4-23)

IT | V, | = product of the magnitudes of the
phasors from the poles of G(s)
to the root-locus point

IT | V. | = product of the magnitudes of the
phasors from the zeros of G (s)
to the root-locus point

The root-locus method can be used to reveal
the position of the roots of 1 ¥ G(s) = 0
directly and to determine whether any of the

4.7

roots can move into the right-half s plane as
the constant K, is varied. This method of sta-
bility determination is primarily a graphical
one, particularly when determining the points
in the s plane that satisfy the angle condition
[Eq. (4-22)3. Although the angle condition
determines the entire locus, it is still neces-
sary to find the actual points by a trial-and-
error procedure. That is, a point is guessed
and the angle condition is checked; if the
angle condition is not satisfied, another point
is tried, etc.

To facilitate the plotting of the root locus,
several theorems based on the angle condition
[Eq. (4-22)] and the magnitude condition
[Eq. (4-23)] have been established. These
are:

(a) The number of branches for a given
locus equals the number of roots of 1+ G(s)
=0.

(b) The locus starts (K, = 0) at poles and
ends (K, = «) at zeros.

(¢) The real-axis position of the locus al-
ways has an odd number of poles and zeros
to the right of the s point for K, > 0.

(d) The breakaway from the real axis into
the complex plane between two adjacent poles
occurs at the point of maximum K,.

(¢) For two adjacent zeros, the locus en-
ters the real axis from the complex plane at
the point of minimum X,.

(f) Near complex poles, the direction of
the locus is given by

[180° — T 4.+ 3 A,]

where 3 A, is the sum of the angles of the
phasors from all the other zeros to the com-
plex pole in question, and X 4, is the sum of
the angles of the phasors from all the other
poles to the complex pole in question. Near
complex zeros, the direction of the locus is
given by

[—180° t32 4, 3 A4,].
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(g) The asymptotes of the locus for large
values of s are given by a set of straight lines
that intersect the real axis at angles
180" + 360°n

pP—2z

A= (n=0,1,2,..)

(4-24)
and whose intersection with the real axis is
given by the centroid of the pole-zero con-
figuration

4
£

2
8 — X Sk
1 k=1

x, = (4-25)

p—z
where

p = number of poles s; = g pole

z — number of zeros 8 = k™ zero

(h) The locus is symmetrical with respect
to the real axis.

These theorems may be verified for the va-
rious loci in Fig. 4-7, which presents examples
of a wide variety of root loci for systems up to
the fourth order. In this figure, T (p, x) in-
dicates a system with p poles and z zeros.

As an example of a typical root-locus plot
for a unity-feedback loop. consider the func-
tion

K
s(s/on T1) (/0 T1)
K(}.h Wo

T s(s Tw) (s Taw

where w; = 10 rad/sec, w: = 30 rad/sec, and
the conditions are

G(s) =

/st s 10+ /s 30 =180"

(angle condition)

|s||st10]|s+30]=300K
(magnitude condition)

The location of the poles of G(8) on the s
plane is as shown in Fig. 4-8.

The root locus coincides with the real axis
lying between the pole at the origin and the
pole at —10, as well as with the part of the
real axis lying to the left of the pole at — 30.
The locus breaks away from the real axis at

4-8

some point between the pole at the origin and
the pole at —10. To locate this breakaway
point, either the technique described in theo-
rem (d) or, in this simple case, an analytical
technique can be applied.

Let —6 be the location of the breakaway
point. With s = — 6, the magnitude condition
becomes

F(8) =6(—6 F10)(—61+30) = 300K

Thenegative of the value of 6 which maximizes
the left side of the equation above is the co-
ordinate of the breakaway point. Thus

F(5) = 8% — 406' + 3006
F(5) = 38 —806 +300=0
6=1208. 6.3

Only the smaller value of 6 satisfies the angle
condition on the real axis. Therefore, the
breakaway point is at — 6.3. The gain factor
K at this point is obtained by substituting
this value of 6 into the magnitude condition
equation, i.e.,

300K = 6.3(— 6.3F10)(— 6.3F 30)
K = 1.84

The point on the branch of the locus to the
left of the pole at — 30, for this same value
of gain K, is at —30.8.

The asymptotes of the locus, for large
values of s, intersect the real axis at angles
given by the relation

180" = 360" n
p—z
Sincep = 3 and x = 0, the angles are 60" and
—60° (or 4+120°). The real-axis intercept of
the asymptotes is given by

:231'—23;-__ [0 + 10 4 30] — [0]
p—z 3—0
= 13.3

A sketch of the data obtained so far is given
in Fig. 4-9.

A=

Zo
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At this point, it would seem necessary to
apply the exploratory s-point method to de-
termine the rest of the locus. However, even
before this is done, we can determine which
of the asymptotes the locus approaches. In
this particular case, we already know (from
a Nyquist plot) that the function 1 + G(s)
will have right-half-plane roots when the
sensitivity is above a certain value. There-
fore, the two branches of the locus in the
complex portion of the plane must head to-
ward the right-half plane as the gain factor
K increases. Thus, the locus will cross the im-
aginary axis and go into the right-half plane.
The points of imaginary-axis crossing are
casy to find in this particular case because of
the small number of poles involved in the
configuration.

Consider the geometric properties of Fig.
4-10. At the crossing point, the angle condi-
tion requires that

tan-t 2=+ tan-1 Lo + 90" — 180°

Wy W2

Therefore
(52) + (=)
0y W2 —>» 00
- (35)

w2

Wy W2

or

®, = Vo, 03 = /300 = 17.3

At this point, the gain K is determined by
the magnitude condition. Using this condi-
tion, it is found that K = 40. The correspond-
ing point on the branch to the left of the pole
at —30is at —40.

The remainder of the locus can be sketched
in, or a more accurate determination of the
locus points can be made by the exploratory
s-point method. Figure 4-11 is a sketch of the
entire locus, with key points indicated.
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jo
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Fig. 4-7 Root-loci plots. (Sheet 1 of 5)
Adapted from “The Study of Transients in Linear Feedback
Systems by Conformal Mapping and the Generalized Root Locus

Method”, by V., C. M. Yeh. ScD Thesis M.E., 1962, Massa-
chusetts Institute of lT'echnology.
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Fig. 4-7 Root-loci plots. (Sheet 2 of 5)
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Fig. 4-7- Root-loci plots. (Sheet 3 of 5)
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300K
sts T 10) (s + 30)

Fig. 4-8 Poles for G(s) —

Fig. 4-9 Asymptotes and real axis behavior for

300K
s(s + 10)(s +30)
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CHAPTER 5§

GAIN DETERMINATION*

5-1 PERFORMANCE CRITERIA AND DEFINITIONS “*

5-1.1 GENERAL

Performance criteria are tests or rules by
which one can determine, from the system
parameters, whether or not the system has
certain particular performance characteris-
tics. An important parameter used in the de-
sign of servo systems is the gain of the sys-
tem. The relations between gain and per-
formance specifications are usually expressed
in terms of performance constants, such as
the velocity constant, the acceleration con-
stant, and the torque'constant. Definitions of
several imporant parameters and constants
are given below.

5-1,2 GAIN
If G (s) is the transfer function of a com-
ponent, the gain K of the component is

K —=lim s* G(s)

5->0

(5-1)

where n is the order of the pole or zero of
(G (s) at the origin. The plus sign is used for
a simple or multiple pole at the origin, and
the minus sign is used for a simple or mul-
tiple zero at the origin. The gain K is casy to
identify if G'(s) is written in the form

= bigf +b; s .. 41
(5-2)

*By L. A. Gould

5-1.3 VELdCITY CONSTANT

The velocity constant of a system is a meas-
ure of the steady-state error if the input to
the system is a constant velocity. The velocity
constant is defined by the relation

K., _ (_Eiyl
=\,

where

(5-3)

w; = constant input velocity
E,, = steady-state error

For a single-loop unity-feedback system (Fig.
5-1) , the velocity constant is

E

An analysis of Eq. (5-4) shows that the
velocity constant of a single-loop unity-feed-
bitch system is finite and nonzero only if the
open-loop transfer function C(s)/E (s) has
exactly one single-order pole at the origin
(one integration).

8=>0

K, =1lim [b Cg;] —1im [sG(s)] (5-4)

5-1.4 ACCELERATION CONSTANT

The acceleration constant of a system is
defined by the relation

K, — <£&>A]
o

where

(5-5)

a; = constant input acceleration

E,. = steady-state error
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For a single-loop unity-feedback system
(Fig. 5-1) , the acceleration constant is

o= lim [s2 ﬂs—)]

E (s)
An analysis of Eq. (5-6) shows that the ac-
celeration constant of a single-loop unity-
feedback svstem is finite and nonzero only
if the open-loop transfer function C (s £ (s)
has exactly one double-order pole at the or-
igin (two integrations).

6-1.5 TORQUE CONSTANT

The torque constant of a system is defined
by the relation

ESS )-1

KT — <——-
T = constant load torque

=lim [s*G(s)] (5-6)

) 8z 0

T, (5-7)

where

FE,, = steady-state error

5-1,6 STATIC ACCURACY

The static accuracy of a linear system is
measured by the steady-state error that is
developed for a specified steady-state input
or disturbance. A steady-state input in this
context means that the input is a constant
position, a constant velocity, a constant ac-
celeration, etc. A steady-state disturbance
means that the disturbance is a constant.
The performance constants defined previ-
ously will uniquely determine these steady-
state errors, as may be scen from the defini-
tions of the constants.

6-1.7 BANDWIDTH

In general, the bandwidth of a servo system
refers to a frequency interval between 0 and
some upper frequency. There is no universal-
ly accepted definition of the upper frequency.

4 ] [

G(s) r_T—‘

Fig. 5-1 Single-loop unity-feedback system.

Mﬂ
1.0
3|3
Sl= oror
O |x
0

5-2

Several commonly used upper-frequency val-
ues for unity-feedback systems (Fig. 5-1)
are given below:

(a) wp, resonant frequency —frequency
at which the closed-loop frequency response
C(jw) /R (jw) has its peak magnitude M,
(Fig. 5-2).

(b) w, —frequency at which the magni-
tude of the closed-loop frequency response
C(jo) /R (jw) is unity (Fig. 5-2).

(c) w,— frequency at which the magni-
tude of the closed-loop frequency response
C (jw) /R (jw) is 0.707 (Fig.5-2).

(d) w, —frequency at which the phase of
the closed-loop frequency response is —90"
(Fig. 5-3).

(¢) o, —frequency at which the magni-
tude of the error-to-input frequency response
E(jw) /R (jw) is 0.1 (Fig. 5-4).

(f) w.m, magnitude crossover frequency —
frequency at which the magnitude of the
open-loop frequency response C(jw)/E (jw)
is unity (Fig. 5-5).

Fig. 5-2 Bandwidth measures from magnitude of
closed-loop frequency response i)/ R{jw).

Fig. 5-3 Bandwidth measure from phase of
closed-loop frequency response C(jw)/R{jw).
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(g) o, asymptote crossover frequency —
frequency atwhich the —10dg/dec asymptote
of the open-loop frequency response C (7®)/
E (jo) crosses 0 dg (Fig. 5-5 ;sec Par. 5-3 for
terminology).

5-1.8 PEAK MAGNITUDE

The peak magnitude M, is defined as the
maximum value of the magnitude of the
closed-loop frequency response C (j®) /R (jo)
or the magnitude of the resonant peak of the
response (see Fig. 5-2).

The value of M, is used as a measure of the
degree of stability, and design in the fre-
quency domain usually involves adjusting a
gain K so as to satisfy a specified value of M,.
Large values of M, are indicative of highly
oscillatory behavior, whereas values of M,
less than unity are indicative of heavily
damped behavior. In practice, M, usually lies
between 1.3 and 1.6 ; that is, the range of M,
is usually specified as follows :

1.3< M, < 1.6 (5-8)

or

1dg < 10logo M, < 2 dg (5-9)

5-2 POLAR-PLANE

5-2.1 GENERAL

A polar-plane representation of the open-
loop frequency response C(jw)/E (jw) 1is
often used in the process of carrying out a
design in the frequency domain. A plot of
C (Jo)/E (Jo) in polar coordinates makes it
casier to apply the Nyquist stability criterion
to determine gain sctting ranges for stable
operation. In addition, the determination of
gain for a specified M, value involves only a
simple graphical construction on the polar
plane (sce Par. 5-4). Plots of both the direct
function and its inverse are used, wherein
only positive frequencies are usually con-
sidered.

Cljw)

10 legyg I :

Fig. 5-4 Bandwidth measure from magnitude of
error-to-input frequency response E(jw)/R(jw).

ASYMPTOTE

TRUE CURVE

E(jw

LOG w —=

N=
SLOPE

=10 dg/dec

Fig. 5-5 Bandwidth measures from open-loop
frequency response,

REPRESENTATION2%12

5-3

5-2.2 DIRECT POLAR PLANE

A dircct polar-plane plot of the function
G(jo) is constructed by drawing a curve
through the points whose polar coordinates
at cach frequency are the magnitude of G (o)
and the phase angle of G(jw) at that fre-
quency, where the phase angle of G (jw) 18
the phase of c(t) minus the phase of e(f)
when e(£) and c¢(¢) are sinusoids. Positive
angles are plotted in a counterclockwise direc-
tion. Increasing the gain associated with
G(jw) expands the polar locus in a radial
direction. If G(j®) is cascaded with another
transfer function, the resulting polar coord-
inates of the combination are obtained- at
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cach frequency by : (1) multiplying the mag-
nitude of G(jw) by the magnitude of the cas-
caded function to give the magnitude of the
combination ; and (2) adding the phase angle
of the cascaded function to the phase angle of
G (jo) to give the phase angle of the com-
bination.

5-2.3 INVERSE POLAR PLANE

An inverse polar-plane plot of a function is
a plot of the reciprocal of the function on the
polar plane. The reciprocal or inverse of
G (Jw) 1is written as follows:

1
G (jw)

The polar coordinates of G (jw) at each fre-
quency are given by : (1) the reciprocal of the
magnitude of G (jw) ;and (2) the negative of
the phase angle of G(jw) . Increasing the gain
of G (jo) shrinks the inverse locus in the
radial direction. If G (jw) is cascaded with
another transfer function, the resulting polar
coordinates of the inverse of the combination
are obtained at each frequency by: (1) multi-
plying the magnitude of the inverse G (jw)
locus by the inverse of the magnitude of the
cascaded function to give the magnitude of
the inverse of the combination ; and (2) add-
ing the negative of the phase angle of the
cascaded function to the phase of the inverse
G (jw) locus to give the phase angle of the in-
verse of the combination.

G (jw) = (5-10)

Example. Plots of the direct function

1
jo [ (jw)® +0.6j0 T 1]

and a multiple of its inverse 3G-* (jw) appear
in Fig. 5-6.

G (jw) = (5-11)

140°
220°

= 0.7
150°
210°

06
0.5

160° 0.4

200°

170°
190°

180°

0.8

0.9 ¢ 0.3

180°

190°
170°

200°

160° Glie)

A 0.8

210
150° X 0.7
0.6 M

0.5

Iy

0.4 4

100°
260°

130°
230°

1200
240°

110e°
250°

90°
270°

80" 70°
280" 290°

Fig. 5-6 Direct and inverse polar plots of

1

G(jw) = .
ol jwloy T o.600 T 11

5-3 EXACT AND ASYMPTOTIC-LOGARITHMIC REPRESENTATIONS ®*'¥

5-3.1 GENERAL

The logarithmic method of representing a
function is a more convenient way to present
frequency-response information than the
polar-plane method. The advantage of the
logarithmic procedure is that magnitude
multiplication for cascaded functions reduces
to the simple addition of logarithms. Further-

54

more, the magnitudes of the first- and second-
order factors of transfer functions can readily
be approximated by straight-line asymptotes
when the functions are plotted to a logarith-
mic scale. Such asymptotic approximations
reduce the time taken up by calculation and,
in addition, enable the designer to make a
rough estimate of system performance, when
this is necessary.

60°
3008
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5.3.2 SEPARATE MAGNITUDE AND
PHASE PLOTS

The separate magnitude and phasc-angle
plots for a transfer function G (jw) are re-
spectively: (1) plots of 10 log; 'G (jw)| ver-
sus log w ;and (2) plots of Ang G(jw) versus
log . The unit of logarithmic magnitude used
in these plots is called the decilog, abbreviated
dg. The magnitude of anumber N in decilogs
is 10 log,eN. For convenience in plotting,
semilog graph paper is generally used. To plot
a transfer function G (jw) that is already in
factored form, several aids (to be discussed
below) are available which simplify the pro-
cedure. Before discussing these aids, however,
it is helpful to point out the general types of
factors that may appear in any rational alge-
braic function. Consider a function G (jw)
whose factored form can be written as follows :

G(jw) =K (jw)*"

)

(ﬂm+DK

(nm+1q( )+2c

(5-12)
Only three general types of algebraic factors
appearin Eq. (5-12).
The three factor types, which may occur in
any rational function, are the following :

(jw)** (differentiation or integration)

(Tiw + 1) (first order)
®
[ (on

5-3.3 MAGNITUDE CURVES

(5-14)

2
) +2;j 2+ (second order)

n

(5-15)

The magnitude curve of the quantity
(jw) =" is a straight line passing through 0 dg
at w = 1 with a slope equal to =10 n dg/
decade.

The magnitude of the first-order factor
(Tjw + 1)*! can be approximated by two
straight lines. For To< <1, the asymptote is
the 0-dg line. For Tw>>1, the asymptote is a
line with a slope of =10 dg/decade that
crosses Odg at Tw=1. The frequency
wy, = 1/T is called the break frequency of the
factor. The true magnitude curve can be ob-
tained from the asymptotes by applying the
two rules-of-thumb :

(a) At tht break frequency, the true
curve is 1.5 dg above (or below) the asymp-
totes.

(b) At an octave above and below the
break frequency, the true curve lies 0.5 dg
above (or below) the asymptotes.

The asymptotes and the true magnitude
curves for a first-order factor are shown in
Fig. 5-7. Note in this figure that the magni-
tude curve of (Tjw=1)-1 is the m1rror
image of the magnitude curve of (Tjo + 1§

(5-13) about the 0-dg line.
20dg - //"‘
e
10dg =
L] + 10 dg/dec ASYMPTOTE
[-4 wll
8 10 logyg ITio+1] [
Q Lt
w Ods =
|18
S 10 logyq IT(jw+ 1)) =
a N\
= e
E —10dg
3
; \ 3
T —
20d l [T
-20dg
0.1 02 0.5 1 2 5 10 20 50 too
Tw —®

Fig. 67 Asymptotes and true magnitude curves for the first-order factor (Tjw + Ht.

5-5
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MAGNITUDE OF FACTOR
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Fig. 5-8 Asymptotes and true curves for the second-order factor —A i Iv + 2 Qlﬁh.T __ _
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The magnitude of the second-order factor
2 +1
(7 2)+2tiZ41]
Wn Wy

can be approximated by two straight-line
asymptotes. For w< <m,, the asymptote isthe
0-dg line. For o>>w,, the asymptotec is a
straight line with a slope of t2 0 dg/decade
crossing the 0-dg linc at the break frequency,
o, = o, A set of second-order magnitude
curves is shown in Fig, 5-8 for different val-
ues of the damping ratio C. Not that the ap-
proximation is best for { = 0.5.

5-3.4 PHASE-ANGLE CURVES

The phase angle of the factor (jw)*" is a
constant equal to +=90n°. The phasc-angle
curves of the first-order factor (Tjow +1) =1
are shown in Fig. 5-9. Note that each curve
is symmetrical about the point on the curve

at which w = 1/7". The phase-angle curves of
the second-order factor
2
[(j 2Y 4285 6r +1 ]
Wy Wy

are shown in Fig. 5-10 for different values
of the damping ratio C.

To plot the separate magnitude and phasc-
angle curves for a factored transfer function,
separate plots are first made of the magni-
tude and phase-angle curves of cach factor.
In doing this, carc must be taken to distin-
guish between numerator and denominatur
factors. Next, all the magnitudes are added
at each frequency to obtain the composite
magnitude curve. Similarly, all the phasc
angles are added at each frequency to obtain
the composite phasc-angle curve. It is im-
portant to note that the factors must be in
the standard forms given in Eqgs. (5-8), (5-9),

+90° =
ot
A (Tjo41)
+a5
|41 | PoINT OF symmeTRY
% 4
¥
- /
< )y ot
'S /
3 _—-—/
w o
< T ey
u ™~
3 A N
a N
45° b
£ (Tiwd)!
\\
.
\\~~~
-90° —
(o] 0.2 0.5 | 2 L) 10 20 50 100

Fig. 5-9 Phase-angle curves for the first-order factor (Tjw +

)tl

5-7
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and (5-10) if the curves of Figs. 5-7 to 5-10 Glio) — K - (0.2jw T 1)
are to be used. The effect of the gain K can ] ( W \2, L0 4
be incorporated by merely adding 10 logoX (jo) [ 4 1—6> + 067 10 1

to the magnitude scale of the composite mag-
nitude curve. (5-16)

Example. The scparate factors and com-  where K = 6.5 arc plotted in Figs. 5-11 and

posite curves for the function 5-12.
o* [T /2—%.: — 180°
SN e
ciode LN / / - d
150° ¢=0.35 "‘:\ / / 150°
RSy A
120° /<< 120°
: N
o
" /]
= / /
- // A
Y/ /
SRy Ayd/|

0.1

2
. W LW
fig. 5-10 Phase-angle curves for the second-order factor [( II‘) + 28—+ ]] .
n

)ﬂ

5-8
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+28.1dg R - +204q
"
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5.-3.5 GAIN-PHASE PLANE

To facilitate design, a third method for
representing frequency functions may be
used. In this method, the magnitude and
phase angle of a frequency function are plot-
ted on a coordinate system called the gain-
phase plane. The magnitude is plotted to a
logarithmic scale (in decilogs) and the phase
angle is plotted to a lincar scale. Frequency
isthe parameter for the gain-phase plot. The
gain-phase plot can be determined directly
from the frequency function by calculating
the magnitude (in dg) and phase angle of
the function at various frequencics. Alterna-
tively, the gain-phase plot can be determined
through the intermediate use of the separate
magnitude and phasc-angle plots when the
function to be plotted is in factored form.
The gain-phase plot is most useful for de-
termining the closed-loop response of a sys-
tem from the open-loop response (see Pars.
5-4 and 5-5).

Example. The function
(0.2j0 +1)
(jw) [(] ~)+067—+1
(5-17)
is plotted on the gain-phase plane in Fig. 5-13.

G(jo) = 6.5

+10dg \
1 \
= - 1.15
3
3 103 _ 9.6 8.2
- n2=t |~ o
e Lo —h—I» 50
2 5)—‘ 2.0 7.2
- 12.2 (all——1 @
o

4

(<]

&
.
\ .

-4

=iQdg

-180* ~-160* -140* ~-120* -100* -80* -60°
L Gljw) —a-

Fig. 5-73 Gain-phase plot of G(jw)—=
©.2j0 +1)

jo [(i%)2+ 064 + 1]

6.5

5-4 CLOSED-LOOP RESPONSE DETERMINATION®#%213:14

5-4,1 GENERAL

The relations that exist between the closed-
and open-loop responses of a unity-feedback
system can be obtained by considering the
diagram in Fig. 5-1. In this diagram, it is
clear that the open-loop responses is given by

C(jw)

E (jw)
The closed-loop response function w (ju) is
defined as follows :

C(jw)

R (jo)

= G (jo) (5-18)

2 W(jo) (5-19)

Now, K (jo) = R(jo) —C (jw) . Substituting
this expression for E (jw) into Eq. (5-18),
rearranging terms, and using the definition
in Eq. (5-19), it is found that

W) =¥ e G

The transformation from the G plane to
the W plane defined by Eq. (5-20) is used to
determ ne the closed-loop resPonse W (j
from the corresponaing open-ioop response
G (jw). Although a direct calculation of the
W function is possible, this is often avoided

(5-20)
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because it usually proves to be tedious. In-
stead, various aids for performing the
G-to-W plane transformation are used. These
arc presented next.

5-4,2 POLAR-PLANE TECHNIQUE

In the polar-planc technique, a “vector”
construction on the G plane is used to deter-
mine both the magnitude and phase angle of
W. As an illustration, consider the G func-
tion sketched in Fig. 5-14. In this figure,
once the —1 F 0 point is located, the follow-
ing “vector” relations hold :

OB=G (5-21)
O0A=—1 (5-22)
OB —04A=4aB=1%G (5-23)

Then, the closed-loop response at each fre-
quency can be determined from the construc-
tion of Fig. 5-14 as follows:{

W (jo)| = ==+ (5-24)

£ W(jw)= . ABO = ¢ (5-25)

+Symbol / denotes “angle”

tm (G)
-l 0 Re (G)
oW
1+ 6{jw)
B
Gljw) G PLANE
Locus
f.

Fig. 5-14 Closed-loop response construction on
the G plane.
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The inverse G-plane construction for the
closed-loopresponse is shown in Fig. 5-15. In
this figure, the following “vector” relations
hold :

OB = G+ (5-26)
04 = —1 (5-27)
A0 +OB=AB=11t¢G+ (5-28)

The closed-loop response can be determined
from the following relations :

W (jo)| = = (5-29)

L W(e)= L OAB=4¢ (5-30)

To avoid “vector” constructions, constant
magnitude and constant phase-angle con-
tours that correspond to the G-to-W trans-
formation of Eq. (5-20) are often used. The
following definitions apply :

M =W (jo)| (5-31)
¢ =/ W(jw) (5-32)
N—=tan¢ (5-33)

The transformation given in Eq. (5-20)
can be used to map contours of constant M
and constant N onto the G planc. The M con-
tours appear as a set of bipolar circles as

1467 (jo) (A
i &
A \ é Re (.é.)
i o
v
G PLANE
6 (jw)
LOCUS

Fig. 5-15 Closed-loop response construction on the
G~' plane.
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shown in Fig. 5-16. The contours of constant
N or ¢ arc shown in Fig. 5-17.

To represent the constant M and ¢ con-
tours in the G plane, Eq. (5-20) is used.
The M contours are a set of concentric circles
and the ¢ contours arec a sct of straight lines.
The M and & contours for the G plane are
shown in Fig. 5-18.

The properties of the M and ¢ contours are
listed in Table 5-1.

The M and ¢ contours arethe lines or curves
of constantM and constant ¢ asthey appear in
the G or G! planes. By constructing a chart
of M and ¢ circles for the G or G-? planes, one
has the coordinate system of the W plane rep-
resented by circles and lines in the G or G-'
plane. The closed-loop magnitude M and

phase angle ¢ can be obtained directly from
the G function by constructing the G func-
tion (or the G-' function) on a chart of con-
stant M and * contours. At each frequency,
the value of the M contour that intersects the
G (or G') function is the value of the mag-
nitude of the closed-loop response M. Simi-
larly, the value of the ¢ contour that intersects
the G (or G-') function at a given frequency
is the value of the phase angle of the closed-
loop response W.

The M and ¢ contours aid greatly in per-
forming the transformation from open- to
closed-loop frequency response and are used
to facilitate the design of a system when the
shape of the G function is to be altered so as
to improve performance.

TABLE 5-1 PROPERTIES OF M AND ¢ CONTOURS

G Plane

G~ Plane

M contours

PENP R -

Mz_1)" (M 1)
M ’0)

M1

M|

M1

center: (-—

radius:

intercept nearest origin : —
p g M1

N contours
N =tan+

(x4 0.5)* +

center: (—T , —I%

radivs:

M contours
y=Im(G)
X = Re(G1)

N
#(fa)= o

center: (—1,0)

. 1
radius: —
M

) .. 1-M
Iintercept nearest origin :

N contours
N = tar ¢

s+ Nz 4+N=0

Note; N contours are a family of radia
lines emanating from the center of th
M circles
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M= /H(‘

C I

Q:N CONTOUR \

ORIGIN

N CPLANE

fig. 5-16 Contours of constant M in the G plane.

LOCUS OF

¢ POSITIVE CENTERS -0,5

=-140j

& NEGATIVE

G PLANE |

Fig. 5-17 Contours of constant phase in the
G plane.

-140]

3,

7 LOCUSOF M _/

CONTOURS 6! PLANE

fig. 5-18 Contours of constant M and constant
¢ in the G™' plane.

5-4.3 GAIN-PHASE PLANE TECHNIQUE
(NICHOLS CHART)

Since constructions on the gain-phase
plane involving cascaded functions and gain
alterations are usually simpler than similar
constructions on the polar plane, a chart of
constant M and ¢ contours has been con-
structed for the gain-phase plane. This chart
is called the Nichols chart and is shown in
Figs. 5-19 and 5-20. Figure 5-19 presents a

PHASE ANGLE IN DEGREES

CONSTANT
CONSTANT N

M

DECILOGS

-360 =270 -180 -90 o

Fig. 5-19 Chart showing symmetry of M-N contours
about phase of 180 degrees (Nichols Chart).

Reprinted with permission from Principles of Servomechanisms.
by D. P. Campbell. Copyright. 1948, John Wiley & Sons, Inc.

5-13
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28

26 |-

24

22

20

-2°= ANGLE OF [——
1+

N,

Y

———

- 10L0G), [+

——t

10 LOG 4 (6]

~0.5

n

\
/
—4

-5

]

-1
-2
-3
N

]
<_
i
-

S
\\

\ -

A

=12

-180° -170°

-160°  -150°

ANGLEOF G

Fig. 5-20 Nichols chart.
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large-scale view of the Nichols chart and Fig.
5-20 presents only that part of the Nichols
chart that is most useful for design purposes.

The Nichols chart is used in the same way
that the M-N contours are used on the polar
plane. The G function is plotted on the
Nichols chart. The value of the M contour
that intersects the G function at a given fre-
quency is the value of the magnitude of the
closed-loop response W at that frequency.
Similarly, the intersection of the G function
with the ¢ contours determines the phase
angle of the closed-loop response W as a
function of frequency.

64.4 NONUNITY-FEEDBACK SYSTEMS

If the closed-loop response of a nonunity-
feedback system is sought, a slight modifica-
tion of the procedure used for the unity-
feedback system will enable the designer to
use the Nichols chart and the polar M-N
contours as well.

The closed-loop response of the nonunity-
feedback system (Fig. 5-21) can be written as
follows :

CUw) 1 G (jo) H(jw)
R(jw)  H(@jo) L1+ G(jw) H(jo)
(5-34)

Since the bracketed portion of the right-hand
side of Eq. (5-34) has the same form as the
right-hand side of Eq. (5-20), the Nichols
chart (or the polar M-N contours) can be
used to find GH/(1+F GH) from a plot of
G (jw) H (o). The closed-loop response
C(jw) /R (jo) can then be found by multi-
plying GH/(1+tGH)by H- at cach fre-
quency.

R () C
G = =
+

Fig. 5-27 Nonunity-feedback system.

5-5 SETTING THE GAIN FOR A SPECIFIED M, “**'1314

5-5.1 GENERAL

A primary problem encountered in servo
system design is the determination of the
loop gain K required to produce a specified
degree of stability. For a unity-feedback sys-
tem (Fig. 5-1) , the stability of the system is
determined by the location of the G (jw) locus
with respect to the point —1 + 50 (see Ny-
quist criterion, Par. 4-3). For a nonunity-
feedback system (Fig. 5-21), however, the
stability of the system is determined by the
location of the G (jw) H (jw) locus with re-
spect to the point —1 T jO. One analytical
approach can serve for both types of sys-
tems if it is noted that, by redrawing Fig.
5-21, the study of the stability of a nonunity-
feedback system can be expressed in terms

515

of the stability of a unity-feedback system
cascaded with another transfer function
(Fig. 5-22). Thus, the discussion of stabil-
ity can be limited to unity-feedback systems.

A system is said to have a low degree of
stability if the normal mode of response is
highly oscillatory. Such a system is also said

— Tl.l’ GH - =

Fig. 5-22 System equivalent to the system of
Fig. 5-21.
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to have a low relative stability. The degree
of stability of a stable unity-feedback sys-
tem can be measured by the closeness of ap-
proach of the G(jw) locus to the point
—1 +70. An examination of the polar M con-
tours (Figs. 5-16 and 5-18) or the Nichols
chart (Fig. 5-20) shows that, the larger the
value of M, the more closely the G(jw) con-
tour approaches the point —1 +70. The peak
magnitude of the closed-loop response W (jw)
is called M,. By limiting this peak value, the
degree of stability of a system can be main-
tained within a specified bound.

If G(jo) is specified, except for a factor K,
the degree of stability of the closed-loop re-
sponse W (jw) corresponding to this G(jw)
can be changed by adjusting the value of K.
If the degree of stability as measured by M,
is specified, K is uniquely determined. The
determination of K for a specified M, is usu-
ally accomplished by a graphical construction
in the polar or gain-phase planc.

5-5.2 POLAR-PLANE CONSTRUCTION

The polar-plane construction required to
determine K [the gain of G (jo] for a speci-
fied M, is shown in Fig. 5-23 for the G/K
plane and Fig. 5-24 for the KG! plane.

™

S pLA
% PLANE

Fig. 5-23 Construction for gain determination on
direct (G/K) plane.

The procedure used for a construction on
the direct, or G/K, plane (Fig. 5-23) is as
follows :

(a) GL©)

K

(b) A straight line is drawn from the
origin, making an angle ¢ with the real axis,
where

Y = sin-! ( L )
M,

This line is called the  line.

is plotted as a function of .

(c) A circle with center on the real axis is
constructed, tangent to the ¥ line and the
G (jow) /K locus.

(d) A linc is drawn from the point of
tangency of the ¢ line with the circle (point
b in Fig. 5-23) normal to the real axis.

(e) The value of Re(G/K) atthe point of
intersection of the normal with the real axis
(point a in Fig. 5-23) is the reciprocal of the
gain K which must multiply G(jw)/K to pro-
duce the specified M.

(f) The angulsr frequency at the point of
tangency of the G (jw) /K locus with the circle
is the resonant frequency of the closed-loop
system having the specified M, (wg in Fig.
5-23).

m (KG™)

[

Re (KG™1)

KG-' PLANE

Fig. 5-24 Construction for gain determination on
inverse (KG~') plane.

5-16
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The procedure used for a construction on

the inverse, or KG, plane (Fig. 5-24) is as
follows :

(a) KG-'(jw) is plotted as a function of ®.
(b) A straight line (¥ line) is drawn from

the origin, forming an angle ¥ with the real
axis, where

;)

M,

(c) A circle with center on the real axis is
constructed, tangent to the KG™ locus and
the v line.

(d) The center of the circle is the point
—K+70. Thus, the coordinate of the center of
the circle on the real axis is the value of K
used to multiply G (J®) to produce the desired
M,.

(e) The angular frequency at the point of
tangency of the circle with the KG™' (jw)

P = sin-! <

locus is the resonant frequency of the closed-
loop system having the specified M, (wg in
Fig. 5-24).

Example. A unity-feedback system has the
following open-loop frequency response :
K

G(q =
() jo [(Gw)? F0.6j0 +1]

(5-35)

Find K and wp for M, = 1.6.

Solution.

(a) Direct-plane procedure :

(1) The GGw) locus is plotted (Fig.
5-25).

(2) The ¢ line is drawn with ¢ = sin™!

(_1_) — 387°.
1.6

150¢
2loe

160°
200°

NN

170

A

o NI ——

180° \ . C—
, . ‘

190°
170

160*

210° / ’ |— Gljw)
150° Pl
& ,
N 0.3 } /
2200 230" 240 2500 260* 270* 280° 290° 3000 310° 3200
140° 130° 120 110° 100" 90¢ 80° T0° 60° 50° 40°
K

Fig. 5-25 Direct-plane determination of K for M, — 186, G(jw) —

o [Go)> F 0.6 F 1]

617
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b PSS
RSN
DRSS Somate
o VL oINS

| VSN
SIS
A ‘ Q.. “"Q’ '

Fig. 5-26 Inverse-plane determination of K for Ms» = 18, G(jo) =

(3) The circle with center on the real axis,
tangent to the G(jw) /K locus and the ¥ line,
is constructed.

(4) Alinc isdrawn from point b perpendi-
cular to the real axis, intersecting the real
axis at the point —2.784-70 (point a).

(5) Thus,% — 2.78, or K — 0.36.

(6) The resonant frequency is wp = 0.94
rad/sec.

(b) Imverse-plane procedure :

(1) The locus of 3KG-(jw)
(Fig. 5-26).

(2) The W line for M, = 1.6 (¢ = 38.7")
isdrawn.

(3) The tangent circle is constructed.

(4) The center of the tangent circle is at
1.08+470 (point a).

(5) Thus, 3K = 108, or K = 0.36.

(6) The resonant frequency is wp = 0.94
rad/sec.

is plotted

K
jo [G0)? To.6jm+1]

5-5.3 GAIN-PHASE PLANE CONSTRUCTION

The construction required to determine the
gain K for a specified M, is simpler when the
gain-phase plane rather than the polar plane
is employed. In the gain-phase plane construc-
tion, changing the gain merely moves the
G (Jw) locus in a vertical direction without
changing the phase angle. The gain-phase
plane construction is carried out as follows
(Fig. 5-27) :

(a) The G{(jw)/K locus is drawn on the
gain-phase plane.

(b) The G (jw)/K locus is placed over the
Nichols chart or, more specifically, a plot of
the desired M, contour is made on the gain-
phase plane. The two coordinate systems are
then aligned so that angles coincide.

(¢) The G(jw)/K locus is moved up (or
down) until it is tangent to the specified M,
contour.
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(d) The intersection of the 0-dg line of the
M, contour with the G(jw)/K magnitude
scale gives the value of 10 logio K, where K
is the value of the gain by which G(jw)/K
must be multiplied to produce the specified
M,

(¢) The angular frequency at the point of
tangency of the M, contour with the G(jw)/K
locus determines the resonant frequency of
the closed-loop system having the specified M,.

Example. A unity-feedback system has the
open-loop frequency response

K (0.2jw + 1)
. .o \2 .

BN 065211
’“’[(”1o)+06’10+ ]

Find K and wr for M, = 1.5.

G(jo) =

(5-36)

Solution.
(a) The 9—(7](91 locusis plotted (Fig. 5-28).

(b) The G(jw)/K locus is placed over the
M, = 1.5contour, the phase-angle coordinates

=180° -90°

0 dg FOR;G(_Ij(m)

LOCUS

I

045 FOR M, M, CONTOUR

CONTOUR N

~10 logp K ¢

/!

Fig. 5-27 Construction for gain determination on
gain-phase plane.

So) Locus
K

are aligned, and the locus is moved vertically
until tangency occurs.

(¢) The point of tangency occurs at wg =
12rad/sec.

(d) The intersection of the 0-dg line.of the
M, contour with the magnitude scale of
G (jo) /K yields

—10 logw K= —-415 dg, orK=2.6

+10dg
3
asl" |
o
g M, = 1.5 CONTOUR \
‘6 o‘! ‘r\~_\ 1.15
=  0dg FORM_| ™
CONTOUR g
-10logygK == IR Lo—4=C
919 /kﬁ%"”' 9.6{-9-0-82_7.2 _?o.
122 | -~
4 A
~104dg
d 20
/\0 logyo ﬁ(.ji)
-180° =-160° -l40° ~-120* -—100* -80* —60°
L G
K

Fig. 5-28 Gain-phase plane determination of
K for M, = 1.5,

(0.2 jo + 1)

= [(i%)2+0-6i:”—0 +1]
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5-6 APPROXIMATE PROCEDURES“*"

6-6.1 PHASE MARGIN AND GAIN MARGIN

The peak magnitude of the closed-loop re-
sponse is not the only measure of the degree
of stability that is commonly used. More
direct, but less reliable, descriptions of the
approach of the G (jw)locus to the point
—1+4-70 are available. These measures of the
degrec of stability are called phase margin
and gain margin.

5-6.2 Phase Margin (Fig. 5-29)

The phase margin (p.m.) of the open-loop
function G(jw) of a unity-feedback system
cquals [180° £ G(jo)] at the frequency
for which the magnitude of G (jw) is unity.
5-6.3 Gain Margin (Fig. 5-29)

The gain margin (g.m.) of the open-loop
function G (jw) of a unity-feedback system is
the reciprocal of the magnitude of G (jw) at
the frequency for which the angle of G (jw)
is —180°,

The primary advantage of the use of the
phase margin or the gain margin as a meas-
urc of the degree of stability is that calcula-
tions may be made directly on the separate
magnitude and phase-angle plots.

UNIT CIRCLE

p.m.

Gljw) G PLANE

A POLAR PLANE

In practice, the phase margin is used more
widely than the gain margin as a degrce-of-
stability criterion, while the gain margin that
results when the phase margin is specified is
used as ameasure of the goodness of perform-
ance. A system with a low gain margin is
considered to have a poor performance.

The usual ranges of phase margin and gain
margin for which performance will probably
be satisfactory are the following:

30" < p.m. < 60" (5-37)
25 <gm. <10 (5-38)

When the phase margin is used as a degree-
of-stability criterion for setting the gain K of
a unity-feedback system, the procedurc is
developed directly from the definition of
phase margin as follows:

(a) The separate amplitude and phasc
plots (or the gain-phase plot) of G {(jw)/K
are constructed.

(b) The frequency at which
G (jw)

L= = —180° +p.m. (5-39)
is determined.
-180° -90°
|
g P —

I

* I 049
I

g.m.

“tf Gljet

B. GAIN-PHASE PLANE

Fig. 5-29 Phase margin and gain margin.
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(¢) At this frequency, G (jw) /K is deter-
mined.

(d) At this frequency, K is chosen such
that

G (jo)| =1 (5-40)

Note that, if only a rough approximation is
desired, the asymptotic magnitude curve may
be used rather than the true magnitude curve.

Example.

The function plotted in Figs. 5-12 and 5-13
is the open-loop function of a unity-feedback
system. The phase margin of the system is to
be set at 45". In Fig. 5-13, » = 11 rad/sec
when

i m}’(‘“—): —180° + 45" = —135"
(5-41)
In Fig. 5-11, for @ — 11rad/sec
101og,.. ‘Q%@l’, —4.5dg (5-42)
Tohave G(jw); = 1atw= 11rad/sec
10 log...K = 4.5dg, or K = 2.82 (5-43)

Note, in this example, that the use of the
asymptotic curve to estimate K gives a poor
result. The magnitude of the asymptotic ap-
proximation for G (jw)/K at o = 11 rad/sec
is —7.5dg. This would give an approximate
value of K = 5.61 for a 45" phase margin.
The error of approximation is a factor of two,
which is too large to be acceptable. One should
note further that, for this system, the gain
margin is infinite since the negative phase
shift never exceeds 180".

5-6.4 GENERAL COMMENTS ON THE
PHASE-MARGIN CRITERION

The phase-margin criterion used as a meas-
ure of the degree of stability is a good sub-
stitute for the M, criterion provided that the
G function does not have low damping-ratio
quadratic factors (T = 0.3) with natural fre-
quencies in the range where

—135" < / G (jo) < —225" (5-44)

If no low damping-ratio quadratics are
present, then the gain determined from the
true magnitude curve (or the asymptotic

magnitude curve) for a specified phase mar-
gin is a good approximation to the gain de-
termined from the corresponding M, crite-
rion. The M, criterion corresponding to a
given phase margin may be found from the
relation

p.m, = sin! (

! ) (5-45)

P

The frequency at which the phase margin
is determined is: (1) the magnitude cross-
over frequency ., if the true magnitude
curve is used; and (2) the asymptote cross-
over frequency o, if the asymptotic magni-
tude curve is used. For the M, corresponding
to the specified phase margin, the frequen-
cies w., or i, are good approximations to the
resonant frequency of the system wg.

5-6.5 APPROXIMATE CLOSED-LOOP
RESPONSE

If the phase-margin criterion is used in
conjunction with the separate amplitude and
phase-angle plots, a rapid estimation of the
closed-loop magnitude response is obtainable
by means of the following relations :

(a) For a unity-feedback system (Fig.
5-1)

|W(jo)| =1, when |G (jw)| >>1

(5-46)

|W(jw)| ~ |G(jo)|, when |G (ju)' <<1

(5-47)

(b) For a nonunity-feedback system (Fig.
5-21)

CGw)| |1 |
R(jo)|  |H(o)|’

when | G (jw) H(jo)|>> 1 (5-48)
CUwm)| .

R~ |G (jw)],

when |G (jo) H (jo)|< < 1 (5-49)

In the approximate equations (5-46) to
(5-49), the boundary is always the point
where the magnitude of the open-loop func-
tion is unity. Since this point is determined
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directly in the phase-margin procedure, the
approximate closed-loop response for a given
phase-margin criterion can be constructed as
follows :

(a) For unity feedback, the magnitude
crossover frequency we, is determined by
means of the phase-margin criterion.

(b) Usually for ® < @m, | G(Jw)| > 1,and
for ® = ®m, | G(Hw)| < 1[G (jo) is mono-
tonic].

(¢) Therefore, for @ < wem, | W(jn)| = 1.
For 0 > wem, | W (j0)| =~ | G (jw)|.

(d) At © = 0m, | W(jw)| =~ M,, where M,
is determined for the specified phase margin
from Eq. (5-45).

(¢) From the high-frequency (® > ®em)
and low-frequency (0 < wm) bechavior to-
gether with the behavior at ® = ., the en-

If | G(jw)| is not monotonic as defined in
step (b),several magnitude crossover points
will exist and Eqs. (6-46) and (56-47) must
be used directly. In this case, the approxima-
tion should not be trusted unless the cross-
over points are widely separated (at least 1
decade apart) or | G(jw)| 2= lor << 1be-
tween the crossover points.

The procedure for nonunity-feedback sys-
tems 1s similar to that described here for
unity-feedback systems and is based on Egs.
(5-48) and (5-49).

If only a very rough approximation is de-
sired, the asymptotic magnitude curves may
always be used to reduce calculation time.

Example. The open-loop function of a
unity-feedback system is

tire magnitude response | W (jo)| may be ap- G (jo) — K (5-50)
proximated. " jo (jo + 1)
]
g +10dg
&
w
-4
w
S - TRUE CURVE
'_Z: J—“" “\
O Odg — ~
3 N
a ASYMPTOTE APPROXIMATION Ja
o
3 N
2 \
g =10 dg \
\\‘
N
\ J
N
0.1 0.2 0.5 2 5 10
R

Fig. 5-30 Approximate closed-loop magnitude response of unity-feedback system,

K

G (jo) = .
() jooljeo | 1)
5-22
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The gain K is to be set for a phase margin of
45". Find K, w.m, and the approximate closed-
loop magnitude response W (Jjo) .

Solution.

(a) £ = —180° t 45" — — 135"

forw = 1 (the crossover frequency).

G (jw)
K

(b) Atw=1, G(_;{“’) — 0.707.
(c) Therefore, K = 1.41 and o = 1.

(d) If the asymptotic magnitude curve for
G (jw) /K is used, the asymptotic magnitude

of G(jw)/K = 1 attw = 1. Thus, use of the
asymptotic magnitude rather than the true
magnitude produces an error of 40 percent
in the determination of K.

(e) If the approximation to the closed-
loop magnitude response is based on the
asymptoticmagnitude curve of G (jw) /K, then
for ® < w.m, the magnitude of W (jw) is unity.
For ® > ®Wem, the magnitude of W (jw) is rep-
resented by a straight line with a slope of
— 20 dg/decade, crossing 0 dg at 0—=w.» — 1.
The M, corresponding to a phase margin of
45° is 1.41,0r 1.5dg. The approximate closed-
loopmagnitude response is shown in Fig. 5-30.

5-7 ROOT-LOCUS METHOD™"

5-7.1 GENERAL

The root-locus method deals primarily with
the study of the motion in the s plane of the
roots of the characteristic equation of a sys-
tem as a function of the gain K. The relation
between stability and gain can be observed di-
rectly through use of this method by noting
how the roots move from the left half of the
s plane (stable roots) to the right half of the
s plane (unstable roots) as K isvaried. A sys-
tem can be characterized as having a low de-
gree of stability if its roots lie in the left half
of the s plane but are very close to the im-
aginary axis.

Gain determination by means of the root-
locus method is based on the fact that many
practical systems have a pair of complex
closed-loop poles that are closer to the origin
than any other complex poles of the system.
These poles are called the dominant poles of
the system. By assigning a specified value to
a characteristic parameter of the dominant
pole pair, the gain of the system may be fixed
by a measure of the degree of stability related
to the dominant pole pair.

5-7.2 PROPERTIES OF ROOTS IN THE s PLANE

The roots of the characteristic equation of
a system are either first- or second-order, and
each root is associated with a specific tran-
sient response mode. The characteristics of
the roots, the response modes, and the speci-

fic contours in the s plane are related in a
simple way.

1
§— — —

T

The transient response mode corresponding

to this root is ¢*7, where T is the time con-
stant of the mode. Lines drawn parallel to the
imaginary axis in the s plane are loci of con-
stant T for first-order factors.

5-7.4 Second-Order Root:
s= —Lw, = ju,\/1—0

The transient response mode corresponding
to this root is

5-7.3 First-Order Root:

et cos wy'
where
(Tw,) ' = time constant of envelope of mode

wg = wy\/1 — 02 = damped frequency of
transient oscillation
= damping ratio
o, = undamped natural frequency
For the second-order root, s-plane loci can be
developed by using the following properties :

Re(s) = — (o, (5-51)
Im(s) = ay=*w,\/1 —C (5-52)
|8] = on (5-53)
/ s= = cost { = 180" (5-54)
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Fig. 5-37 loci of characteristic parameters of
second-order root.

Thus, lines drawn parallel to the imaginary
axis are loci of constant-envelope time con-
stant (Cw,)*. Lines drawn parallel to the real
axis are loci of constant damped frequency of
oscillation w,. Circles centered at the origin
arc loci of constant natural frequency w,.
Radial lines emanating from the origin are
loci of constant damping ratio L. The various
s-plane loci for the second-order factor are
shown in Fig. 5-31.

5-7.5 GAIN DETERMINATION IN THE s PLANE

The usual degree-of-stability criterion for
determining the gain K from the root locus
of a system is:

The dominant roots are adjusted to
satisfy a specified damping ratio .

The advantage of the root-locus procedure
over the M, criterion of the frequency-
response method becomes evident if a truly
dominant pole pair exists. In this case, all
other poles are far from the origin, and the
transient response of the system is dominated
by the transient response mode associated
with the dominant pole pair. Thus. the time

behavior of the system becomes immediately
evident once the damping-ratio criterion is
satisfied. The disadvantage of the root-locus
mecthod is that considerable time is consumed
in constructing the locus. Adjustment of the
gain K for a specified dominant-root damp-
ing ratio is best demonstrated by a specific
example.

Example. The open-loop function G(s) of
a unity-feedback system is

K (0.2s 1)
s(s TI1)(0.1s T1)
Find the gain K and the closed-loop pole-zero
configuration for a dominant-root damping
ratio { =0.5.
Solution

(a) The open-loop function is placed in
the standard form of the root-locus method as
follows :

G(s) = (5-553)

(s + 5)

G(s) =2K SGET) (5 1 10) (5-56)
(b) The angle condition is
Lsts)y— Ls— z(s+1)
— 2 (s T10)= —180" (5-57)
(c) The magnitude condition is

s+
2K s T 9 1 (5-58)

s[]s T 1] s T 10 =

(d) The locus of the roots is constructed
from the angle condition by choosing trial
points in the s plane and checking back to see
whether the angles of the vectors of the open-
loop poles and zeros add up according to Eq.
(5-57). A curve drawn through the trial points
that satisfy this equation is the root locus. To
determine the gain K associated with each
locus point, Eq. (5-58) is used. The value of
s corresponding to a given locus point is sub-
stituted into this magnitude equation and the
equation is then solved for K. The locus for
this problem in the upper half of the s plane
is shown in Fig. 5-32.

(¢) The line corresponding to § = 0.5 (/
s = =+£120°) is drawn and the intersection
with the locusis noted. The intersection occurs
ats = —0.60tj1.04.

(f) Using the magnitude condition, it is
found that K = 1.38.
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(g) For K = 1.38, the location of the real (i) The factored closed-loop transfer func-
root between s = —5 and s = —10 is deter-  tion is
mined by direct application of the magnitude
condition. This rootlies ats — —9.85.
(h) The closed-loop pole-zero configura- ) 2.84 (s +5)
tion has a zero at the open-loop zero s = —5. W(s) = (s T9.85)(s2 T 1.2s T 1.44)
ASYMPTOTE Im (8)
i €= 0.5
+0
ey
+6
lr_._.._.
+4 I H
{
t2
H i H : :
[2) ‘j + i Re {3) 3
: 8
‘ -6 —_4 ] “—2 o
Fig. 5-32 Gain determination from root locus, G(s) = K(0.2s + 1)

sis T 1) ©1s T 1)°
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CHAPTER 6

*
COMPENSATION TECHNIQUES

6-1

Compensation in the general field of servo-
mechanisms refers to the procedures used to
modify the dynamic response characteristics
of a system by auxiliary means so that it
meets performance specifications. Most actual
components have a limited dynamic response
and so do not respond instantaneously to in-
put variations. Because of the dynamic lim-
itations of physical components, stability
problems arise in closed-loop systems, as dis-
cussed in Chs. 4 and 5. The requirement of
stable operation imposed on all closed-loop
systems limits the accuracy that can be ob-
tained with these systems. In order to mini-
mize this inherent limitation, artificial means
(compensation techniques) are used to mod-
ify the dynamic characteristics. These in-
clude the introduction of networks cascaded
with the fixed elements in the loop and the
addition of auxiliary loops to the system.

The general compensation problem is il-
lustrated by Fig. 6-1. In this figure, G,(s)
represents the response of the fixed elements
in the loop which cannot be altered, H (s)
represents the response of feedback elements
that may be present, and G.(s) represents
the response of compensating clements that
are to be adjusted so that the complete sys-
tem meets the performance specifications.
The procedure for designing the system can
be outlined as follows [H(s) is assumed to be
unity] :

(a) With G.(s) = K, a pure gain (real
number), a stability check is made to deter-
mine the allowable range of the gain K for
stable operation.

(b) Assuming a specified degree of stabil-
ity, the gain K, is adjusted to meet this re-
quirement.

*By L.A. Gould

6-1

INTRODUCTION

(¢) From the input specifications, the
error of the system is found when K is ad-
justed as in (b), and this error is checked
against the error specification.

(d) If the error does not meet specifica-
tions, a more complicated form for G.(s) is
introduced. The system is then adjusted to
satisfy the specified 'degree of stability, and
the error specification is again checked.

(¢) Theprocedure iscontinued, trying dif-
ferent or more complicated compensation
functions, until the error falls within specifi-
cations (that is, if the specifications can be
met).

In practice, the forms of compensation nor-
mally employed are kept simple. This is due
in part to the fact that the fixed elements are
usually limited in their range of linear opera-
tion, and the introduction of complex compen-
sation functions merely reduces the range
over which the linearity assumption applies.
In addition, it is found that the theoretical
advantages that may accrue with complex
compensation are not realized in practice be-
cause the theoretical model no longer fits the
physical system.

1s) es) cls)

G (5) gl Gls)

H(s) Id

Fig. 6-7 Compensation in a single loop.
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6-2 RESHAPING LOCUS ON GAIN-PHASE PLANE (%3451

6-2.1 GENERAL

Because magnitudes and phase angles add
when functions are cascaded in the gain-
phase plane, this frequency domain is the
one most suitable for studying the effects of
cascaded compensation functions. The intro-
duction of a compensation function in the
loop of a unity-feedback system can be
thought of as a method for reshaping the
open-loop frequency response C (jw)/E (jw)
to permit a higher gain to be used for the
specified degree of stability. If M, is the
degrec-of-stability criterion used, the gain
can be increased by causing the phase and
gain margins of the function G.(j0) G, (o) /K
to increase by a proper choice of G.(jw). To
maintain the specified M, the M, contour
must be moved downward for tangency to
occur ; this downward motion corresponds to
an increase in the open-loop gain of the sys-
tem (Fig. 6-2). The two most commonly used
compensation networks for reshaping the
open-loop gain-phase locus are the lag net-
work and the lead network (see Par. 6-6).

-180°

~90°

Fig. 6-2 Change in open-loop response produced
by compensation illustrating downward motion of
M, contour far gain increase

6-2,2 LAG COMPENSATION
The first-order lag function is

G.(jo) =K -T('jmd'_-F]— ; > 1
(7o) al jo T1 &

where K isthe real gain factor, 7, is the time
constant, and « is an attenuation factor. Lag-
function plots for a =5, 10, 20 (with K =1)
are shown in Fig. 6-3. These plots are made to
a normalized frequency scale for which

(6-1)

f_’i = Tc(x) (6-2)
; 0
0.0
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N 0.50
N 1.0 -lo
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Fig. 6-3 Universal lag functions.
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COVPENSATION TECHNIQUES

In using the lag function to reshape an
open-loop frequency response, the choice of
the attenuation factor is usually governed by
the gain increase that is sought. In practice,
a’s greater than 20 are rarcly used. A good
rule of thumb is that the gain increase that
can be achieved lies in the range from 0.7a to
0.9a. There are two considerations that limit
the choice of the time constant T,. Since the
lag function introduces a negative phase shift,
the choice of the time constant should be such
that this phase shift does not occur in the
region where the open-loop response passes
near the —1+4-70 point. Consequently, the lag
function is usually adjusted so that its major
phase contribution occurs at low frequencies.
This means that 7. cannot be made too small
without affecting the stability of the system.
On the other hand, if 7, is made too large, the
transient response of the system tends to
deteriorate as a result of excessive peaking
and an abnormally long secttling time. A rule
of thumb for adjusting the lag function is as
follows: Choose T. so that a phase shift of
—5” to —10” is introduced at the uncom-
pensated resonant frequency of the system.
The uncompensated resonant frequency is de-
fined as the resonant frequency which is ob-
tained for the specified M, when G.(s) = K.

The steps involved in adjusting the lag
function ave the following :

fa) With .(s) = K, the gain and .eso-
nauat frequency of the system are found for
the specified value of M,

{p) Using Fig. 6-3, the value of {3 is de-
termined for the specified allowable phase
shift. Since the region of low phase shift of
the lag function occurs for values of 3= 5,
the phase shift of the lag function in this
region is adequately represented by
1

o —

2.G.(B) g_( ){%forﬁzs ¥
(6-3)

i Symbol £ denotes “‘angle”

Thus, the phase angle varies inversely as f3.

(¢) If wg; is the uncompensated resonant
frequency and B, is the value of p correspond-
ing to the specified allowable phase shift of
the lag function, then, from Eq. (6-2),

B

R

©

I

T. (6-4)

e

1

(d) Since the scale ratio bewween f§ and w
is fixed by Eq. (6-4), the magnitude and
phase-angle contribution of the lag function
to the G,(jw) function at each frequency can
determined from the universal curves of Fig.
6-3.

(e) After the lag function has been added
to the fixed-element response G, (jo) ,the gain
K is determined from the specified M, cri-
terion.

Example. The transfer function of the fixed
clements of a unity-feedback system is given
by

1
5(0.3s T 1)(0.1s +1)

G](S) = (6'5)

A lag function with @ = 10 is used to com-
pensate the system. The lag function is to
contribute —5° of phase shift at the uncom-
pensated resonant frequency. Design the com-
pensation when 10log;o M, = 1.5dg.

Solution. The frequency response G;(jw) is
plotted in Fig. 6-4 as Curve A. For the speci-
fied M, (see construction), the point of tan-
gency of the M, contour with Curve 4 occurs
at the point where wg, = 2.4 rad/sec; from
the displacement downward of the M,
contour by 4.1 dg (i.e., 10 log K — 4.1) one
gets K = 2.57 for the uncompensated system
when G.(jw) = K. From the ¢ = 10-plot of
Fig. 6-3, —5° of phase shift occurs at f; = 10.
Therefore,

Be 10

W,

T, — — 4,17 seconds (6-6)

2.4 —
The scale change from o to (3 is, therefore,

p=417Tw (6-7)
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Fig. 6-4 lag-compensation procedure.

With this scale change, the universal lag
function for @ = 10 is used to add the magni-
tude and phase angle of G.(jw)/K to the
fixed-element response G;(jo) . The compos-
ite G.(ju)G;(jw)/K function appears as
Curve B in Fig. 6-4. Using the specified M,
criterion, the resonant frequency of the com-
pensated system is 2.0 rad/sec and K has
been increased to a value K = 20.4. Thus, the
use of the lag function with ¢ = 10 has al-
lowed an increase in gain by a factor of 7.6.
The resonant frequency has been decreased
by 17 percent.

6-2.3 LEAD COMPENSATION
The first-order lead function is
G.(jo) = K oTded1

Tjo T1

where K is the gain, T, is the time constant,
and « is an attenuation factor. Lead-function
plots for a = 5, 10, and 20 are shown in Fig.

; a>1 (6-8)

6-5. These plots utilize anormalized frequency
scale for which

B=T.w (6-9)

In using the lead function to reshape an open-
loop frequency response, advantage is taken
of the fact that the lead function exhibits
positive phase shift. Thus, by adjusting the
time constant T, ,it is possible to add positive
phasec angles to the fixed-element response
G;(jo) in aregion where the negative phase
shiftof the fixed elements istoo greatto secure
an M,-contour tangency. Hence, the lead func-
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Fig. 6-5 Universal lead functions.
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tion can decrease the effective negative phase
shift of the composite G, (J®) G,(j0) /K func-
tion, allowing an M, tangency to occur for a
larger value of gain K. In many cases, an
increase in the resonant frequency of the sys-
tem is obtained when lead compensation is
used.

Due to the tendency of lead compensation
to increasc the bandwidth of a system, it is
found that the system is more sensitive to
noise, and its lincar range of operation is re-
stricted. Thus, in practical situations, the
attenuation factor ¢ used usually does not
exceed 20. The adjustment ‘of the time con-
stant 7. is amatter of trial and error. An out-
line of the trial-and-error procedure is given
below :

(a) The phase-angle difference 1 between
the “nose” of the M, contour and the —180”
line of the gain-phase planc is given by

Y = sin? ( L )
M

P
The maximum phase shift ¢» introduced by
the lead function is

¢én = sin™ ( 2—;—11)

(b) The first-trial choice of the lead-func-
tion time constant T, is found by determining
the frequency at which the following angle
relation holds :

£ Gy(jan) = —180” Fyp — ¢ (6-12)
The frequency o, which satisfies Eq. (6-12)

be found directly from the gain-phase plot of
G, (Jo) .Then, the firstchoice of T,is given by

(6-10)

(6-11)

(6-13)

where B, is the frequency at which the maxi-
mum phase shift (¢,) occurs on the normal-
ized lead-function curve of Fig. 6-5. The fre-
quency Bm can be found from the relation

_ 1
Ve
(c) Sincethe scale ratio between w and the

normalized frequency f is fixed by Eq. (6-14),

the magnitude and phase-angle contribution
of the lead function to the G:(jw) function at

B (6-14)

6-5

each frequency can be determined from the
universal curves of Fig. 6-S.

(d) After the lead function has been added
to the fixed-element response Gy (Jo) ,the gain
K is determined from the specified M, cri-
terion.

(e) The first-trial choice of the lead-func-

tion time constant T, usually detecrmines a
closed-loop resonant frequency that is closc
to the maximum obtainable frequency with
the given attenuation factor a.
However, the open-loop gain K is not ncces-
sarily a maximum. Therefore, if gain increase
is the objective, additional trials must be
made. The additional trials usually involve the
choice of trial values of T, that are smaller
than the initial choice. A rule of thumb isthat
the time constant T, which maximizes K is
approximately one-half to onc-third the ini-
tial-trial value.

Example. The transfer function of the fixed
clements of a unity-feedback system is given
by Eq. (6-5). A lead function with ¢ = 10 is
used to compensate the system. Design the
compensation when X log;¢M, = 1.5dg.

Solution. The frequency response Gy (jw) is
plotted in Fig. 6-6 (Curve A ).From the prob-
lem specifications and Eqs. (6-10), (6-11),

/—3‘5
T T 1 1 1 l -, 1 3 1
10 log oM, = 15da L /8 ‘-3“
9 = -
| Ao, ;
~5dy 3.2} \ v =ik
o 3.8 0 dg o g';
LY 43 .
- ’. + 2 -
f 104s 5.8 o972 J
[y 7.2 > b ot o
° u |grés L _l
g 8 8 11454
£ O L L
e 1144 18
c NI
-20dg [—4 I i 5.8{4.8{3.843.2
B a - Gyljw)
-25dg | A — ) )
B - w WITH T = 0.044
¢ - SelidSlie) yimy 12 0.0
L f 1 1 1 1 1 13

-240° -220° -200°~180* -160* -140* =120° -100°
LG—

Fig. 6-6 Lead-compensation procedure.
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and (6-14), we find that ¥y = 45°, ¢, = 54.9°,
and §,, = 0.316. Eq. (6-12) yields

/. G(jwy) = —189.9" (6-15)

Using this result and Curve 4 of Fig. 6-6, we
find that w, = 7.2 rad/sec. Then, from Eq.
(6-13), the initial choice for the lead-function
time constant is 7., = 0.044 sec. The scale
change from o to 8 is therefore given by

B = 0.0440 (6-16)

With this scale change, the universal lead
function for a = 10 is used to add the magni-
tude and phase angle of G,.(jw) /K to the fixed-
clement response G,{(jw). The composite
G,(jw) G,(jw) /K function appearsas Curve B
in Fig. 6-6. Using the specified M, criterion,
the resonant frequency of the uncompensated
system (Curve 4) is wp, = 2.4 rad/sec and

the gain of the uncompensated system with
G.(jo) = K is K = 2.57. The resonant fre-
quency of the compensated system (Curve B)
is wp, = 8.2 rad/sec and the gain of the com-
pensated system is K = 6.68. Thus, the reso-
nant frequency of the system has been in-
creased by a factor of 3.4 and the gain by a
factor of 2.6 through lead compensation. If
maximum gain is sought, the lead time con-
stant must be reduced. By trial and error, we
find that with 7. = 0.020 sec, oy = 5.6 rad/sec
and K = 8.65. The construction for maximum
gain is shown as Curve C in Fig. 6-6. Thus, for
maximum gain adjustment, lead compensation
increases the resonant frequency by a factor
of 2.3 and the gain by a factor of 3.4. Note
that the time constant for maximum gain is
0.45 times the initial-trial choice. The results
of this example are listed in Table 6-1.

Compensation Adjustment T. (sec) wy (rad/sec) K
Initial trial ;maximum resonant
frequency 0.044 8.2 6.68
Final trial ;maximum gain 0.020 5.6 8.65
No compensation 2.4 2.57

6-3 PHASE-MARGIN AND ASYMPTOTIC METHODS “4®

6-3.1 GENERAL

A rough picture of the effect of compensa-
tion can be obtained if the magnitude asymp-
totes are used in conjunction with the phase-
margin criterion for the degree of stability
(see Par. 5-6). Using a 45" phase-margin cri-
terion, the asymptotic method gives good re-
sults provided there are no low-damping-ratio
quadratic factors in the open-loop transfer
function ¢ (jw)/E (jw). If the 45" phase-
margin criterion is assumed, then the asymp-
tote crossover frequency w,. (defined in Par.

6-6

§-1) usually occurs in a region where the slope
of the asymptote is —10dg/decade.

The phase-margin criterion can be used as
an approximation to the M, criterion, or it can
be used as an independent degree-of-stability
criterion. If it is used independently, the sep-
arate magnitude vs frequency and phase-
angle vs frequency plots are employed. If the
phase-margin criterion is used to approxi-
mate the M, criterion, one might just as well
use the asymptotic curve as an approxima-
tion to the true magnitude curve.
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The rules of thumb established in Par. 6-2
for adjusting the compensation functions can
be applied in an identical manner when work-
ing with the separate magnitude and phase
angle plots except that the asymptotic-cross-
over frequency w, or the magnitude-crossover
frequency o.. will replace the resonant fre-
quency wr where necessary. The universal
compensation-function curves of Figs. 6-3
and 6-5 can be used when working with the
separate magnitude and phase-angle curves.

The steps involved in adjusting the com-
pensation functions when using the phase-
margin criterion and the separate response
curves are outlined below.

6-3.2 LAG COMPENSATION

(a) With G.(s) = K, the gain and mag-
nitude-crossover frequency (or asymptote-
crossover frequency) are found for the speci-
fied phase margin.

(b) Using the universal lag-function
curve (Fig. 6-3), the normalized frequency
fs (at which the allowable negative phase
shift of the lag function occurs) is deter-
mined.

(c) The lag-function time constant is
found from the relation
T, D (6-17)
(D(‘ml

where w,,, is the magnitude-crossover fre-
quency of the uncompensated system, or,
alternatively, one can use the relation

fs

o,

T, =

(6-18)

where w., is the asymptote-crossover fre-
quency of the uncompensated system.

(c) Using the scale ratio between 3 and
determined by Eq. (6-17) or (6-18), the
magnitude (or asymptote) and phase-angle
contribution of the lag function to the G, (jw)
function at each frequency can be determined.

(d) After the lag function has been added
to the fixed-element response G, (jw) ,the gain
K isdetermined from the specified phase mar-
gin.

6-7

6-3.3 LEAD COMPENSATION

(a) The frequency ; which satisfies Eq.
(6-13) is found directly from the £ G, (jw)
curve.

(b) If B, is the normalized frequency at
which the maximum phase shift ¢. for the
lead function occurs (see Fig. 6-5), then the
first trial choice of the lead-compensation
time constant is

T, —Bu

c
1 —
Wy

(6-19)

(¢) Using the scale ratio between Pn and
w, determined by Eq. (6-19), the magnitude
(or asymptote) and phasec-angle contribution
of the lead function to the G;(jw) function at
cach frequency can be determined.

(d) Afterthe lead function has been added
to the fixed-elementresponse G, (Jw) ,the gain
K is determined from the specified phase mar-
gin.

(e¢) Further trial values of the lead-func-
tion time constant T, are tried until the gain
K or the magnitude- (or asymptote-) cross-
over frequency has been maximized.

Example. The transfer function of the fixed
clements of a unity-feedback system is given
by Eq. (6-5).The 45° phase-margin criterion
is to be used to adjust the degree of stability
of the system.

(a) Lagcompensation with @ = 10is to be
used to improve performance. The allowable
negative phase shiftthat the lag function con-
tributes at the magnitude- (or asymptote-)
crossover frequency of the uncompensated
system shall be 5". Design the compensation.

(b) Lead compensation with a = 10 is to
be used to improve performance. Design the
compensation.

Solution.

(a) The magnitude and asymptote curves
of G;(jw) are drawn in Fig. 6-7 and the
phase angle curve is drawn in Fig. 6-8. For
a 45" phase margin, the magnitude-cross-
over frequency w., = 2.08 rad/sec and the
corresponding gain is 2.34. The asymptote-
crossover frequency w, = 2.08 rad/sec and the
corresponding gain is 2.04. (Compare with
w; =2.4 rad/sec and K = 2.57 for 10 log,,
M,=1.5dg.) For 5° of allowable negative
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phase shift, and a = 10, §;, = 10 from Fig.
6-3. Therefore, using Eqs. (6-17) or (6-18),
T. = 4.8 sec. The scale change from f§ to o is
given by

B = 4.80 (6-20)

The composite G.(jw)G,(jo)/K magnitude

and asymptote curves for the lag-compen-
sated system are drawn in Fig. 6-7, and the
composite phase-angle curve is drawn in Fig,
6-8. Using the 45" phase margin, the magni-
tude-crossover frequency w.. = 1.74 rad/sec,
and the corresponding gain is 20. The asgymp-
tote-crossover frequency w,= 1.74 rad/sec
and the corresponding gain is 17.8.

+ 0dg \
\\
-
_—
b~
~{|
(o] dg Y \
~ ASYMPTOTE G(j
* \\ @\ g ¢ {jw)
= =N
- L N
5 s =
> -10dg \\\
- i
o ' ‘ L~ MAGNITUDE G(j)
o G, (jw)Gg( X NN
= ASYMPTOTE — = tlie) S ‘\ “\
-20 dg \ ~
WA
N .
- 30dg AN
G, (jo)G(je)
MAGNITUDE s f 7
K N
v L L1l
o.l 0.2 0.5 | 2 5 10 20 50 K
o —
Fia. 6-7 Maanitude curves for lao-compensotion pracedure emplovino phose moroin.
- 90
l G’(jm)
-120° -
135 e = — ____..__...{...- b-\o N U () I A N S
} _iso ]
- 6. ()G, (i)
3 DR ALld
5 -180° £ K \
~ I
-210° N‘\\
-240°
-270°
04 0.2 0.5 I 2 5 10 20 50 100

Fig. 6-8 Phase curves for lag-compensation procedure employing phase margin.
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(b) The magnitude and asymptote curves  curve (Fig. 6-10), @, = 7.2 rad/sec. From Eq.
of G,(jw) are drawn in Fig. 6-9 and the phase (6-19), the initial-trial time constant T, =
angle curve is drawn in Fig. 6-10. Using the  0.044 sec and the scale change from f to w is
problem specifications and Eqs. (6-11) and  given by

—_ -3 —_ - " —_—
(6-14), y = 45°, ¢ = 54.9" and B, = 0.316. § = 0.0440 (6-22)

Eq. (6-12) yields
LN " (6-21) The composite G,(jo)G,(jw) /K magnitude
4 Grjon) = —189.9 and asymptote curves for the first-trial lead-

Using this result and the G,(jo) phase-angle  compensated system are drawn in Fig. 6-9

+10 dy
G, (jw)G{jw) 1]
~ MAGNITUDE —— "
\F= "J X
0 de 41 A1
4 =
= P asvuprore e 11Gilie)
2104 > Q N T K -
s MAGNITUDE 6 (j&) —”] \
T
2 204 \
—30 4 N
ASYMPTOTE Gy(je) | —/
|
o4 02 o5 1 2 ) T 20 50 100
o —P

Fig. 6-9 Magnitude curves for lead-compensation procedure employing phase margin.
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Fig. 6-70 Phase curves for lead-compensation procedure employing phase margin.
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and the corresponding phase-angle curve is
drawn in Fig. 6-10. Using the 45° phase-mar-
gin criterion for the lead compensated system,
the magnitude-crossover frequency w., = 7.0

TABLE 6-2 RESULTS OF COMPENSATION USING 45°

rad/sec, and the corresponding gain is 6.02.
The asymptote-crossover frequency w, = 7.0
rad/sec and the corresponding gain is 4.46.
The results of this example are summarized
in Table 6-2.

PHASE MARGIN

Compensation O | Kforwaw | o

Adjustment

Factor of Gain
Increase

K forw, Factor of m,. or

., Change

No compensation ;
true magnitude
used

2.08 2.34

No compensation ;
asymptote used

2.08

2.04

Lag compensation ;
true magnitude

used 1.74 20

8.6 0.84

Lag compensation ;
asymptote used

1.74

17.8 8.7 0.84

Lead compensation ;
true magnitude

used 7.0 6.02

2.6 3.4

Lead compensation ;

asymptote used 7.0

4.46 2.2 3.4

6-4 FEEDBACK OR PARALLEL COMPENSATION

The cascade type of compensation discussed
in Pars. 6-2 and 6-3 has the disadvantage
thatthe compensation adjustment is sensitive
to changes in the parameters of the fixed ele-
ments due to non-linear behavior of the sys-
tem. When feedback compensation is used, on
the other hand, the compensation adjustment
is much less sensitive to fixed-element param-
eter variation provided the loop gain is high.
In addition, the networks used in feedback
compensation are usually simpler in form
than the corresponding cascade networks.
However, the necessity for high loop gain (at

(2,3.4)

least a gain of 10 at the break frequencies of
the feedback networks) generally requires a
more complicated and expensive system.

The procedure used in designing feedback
compensation networks employs a combina-
tion of the gain-phase plane and the asymp-
totic-magnitude presentations. The basic
principles involved in the design of feedback
compensation networks can be clarified by a
study of Fig. 6-11. Here a feedback function
H,.(s)isused to modify the characteristics of
the fixed elements G,(s) and a cascade func-
tion G.(s) is provided to aid in adjusting the

6-10
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performance of the major loop. In most cases,
the cascade function G.(s) is a pure gain K
which serves to adjust the degree of stability
of the system. The burden of reshaping the
G, (s ) function is placed on the feedback com-
pensation function H, (s). In addition, the
feedback function is usually provided with a
gain adjustment to permit the setting of the
degree of stability of the minor loop.

The general configuration of Fig. 6-11 can
be redrawn and placed in the cascade form of
Fig. 6-12. Here,

G.(s)
14+Gi(s)H (s)

Thus, theoretically, cascade compensation and
feedback compensation are equivalent. In
practice, feedback compensation is more flex-
ible, and the resulting system is less sensitive
to component parameter variations.

G’,, (s) _=

(6-23)

Ris) Els) Afs) M(s) Cls!
P> G,{s) Gyls) >
+
_8
B(s)
R {8} |ag—di

MAJOR LOOP

Fig. 6-1]1 General feedback-compensation
configuration.

M(S) C(s)

G;(s) G4(s)

Y

Fig. 6-12 Cascade equivalent of feedback-
compensafion configuration.

The procedure for adjusting the feedback
compensation is best understood by examin-

ing the asymptotic behavior of the minor loop.
If

Gy (jw)H, (jo)| >> 1,

then
C(jw) _ Gy (jw) _ 1
A (jw) 14 G,(jo)H . (jo)  H.(jo)
(6-24)
If
G(jw)H, (jo)| << 1,
then
C(jw) . . i
Al Gy (Jw) (6-25)

Thus, in the frequency ranges where the open-
minor-loop frequency-response magnitude
|G, (jw) H,.(jw)  is very large, the closed-mi-
nor-loop response C (o)/A(jo) behaves like
the reciprocal of the feedback function
H,.(jo) . When the open-minor-loop-response
magnitude is very small, the closed-minor-loop
response behaves like the fixed elements re-
sponse function G, (s). Thus, the frequency
scale can be divided into several regions based
on the magnitude of the open-minor-loop re-
sponse. Whenever the magnitude of this re-
sponse |G;(jw)H, .(jo)| or |B(jow) /M (jw)]| is
greater than unity, the asymptotes of the
closed-minor-loop response coincide with the
asymptotes of the reciprocal of the feedback
function H,.(jw) . Whenever the magnitude of
the B (jw) /M (jo)function is less than unity,
the closed-minor-loop response asymptotes
coincide with the asymptotes of the fixed-ele-
ment response G; (jw) .

Usually, the feedback function H,(jo) is so
chosen that the frequency scale is divided into
three ranges. These ranges are:

0<(,U<(,Ul

when |G, (jo)H,. (jo)| < 1

(6-26)
o< o <o, when G/ (jw)H (jw)|>1

(6-27)
0, <w < w when |G, (jo)H, (jw)| <1

(6-28)
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and w; 1S the lower-frequency boundary and
w, 1S the upper-frequency boundary. Corres-
ponding to the three frequency ranges fixed
by the magnitude of the open-minor-loop re-
sponse, the closed-minor-loop response
asymptotes are defined by

C(].-(.U) = G/(j(l)) for0 <o <y
A (jo) (6-29)
C (jw) 1 for w

- = - <0< Wy
AGw)|  |H.(o) ’ (6.50)
%L(jj%:)l) = |G;(jo)| forw, <w < e

(6-31)

The procedure for adjusting the feedback
function H,(s) and the cascade gain G.(s)
= K can thus be roughed outusing asymptotic
pictures of the various responses and then car-
ried out in detail using the gain-phase plane.
The aim of the asymptotic sketches is to ex-
amine the form of the closed-minor-loop re-
sponse as the feedback compensation is ad-
justed. Examination of the asymptotes of
typical cascade compensation arrangements
can also serve as aguide to the shaping of the
closed-minor-loop response. The desirable
properties of the closed-minor-loop response
can be expressed in terms of the properties
that are desirable for any open-major-loop
function; namely, high gain at low frequen-
cies (w<w;), a stable shape relative to the
—1+;j0 point, and low gain at high frequen-
cies (w>wy,).

Since there are usually several parameters
to adjust in the feedback compensation proce-
dure, the process of adjustment is one of trial
and error guided by the asymptotic sketches.
The details of the procedure are best demon-
strated by an example.

Example. Th ransfer function of the fixed
elements of a syswem is given by

1
5(0.3s T 1)(0.1s T 1)

Feedback compensation is to be used to im-
prove the performance of the system in con-
junction with a pure gain cascaded with the

G/(S) =

(6-32)

minor loop. The transfer function of the feed-
back elements is given by

K s?
Ts+1
Note that this transfer function can be
realized in a position-control system by a
tachometer cascaded with a single-stagehigh-
pass RC filter. The cascade compensation be-

ing a pure gain, its transfer function is given
by

Ce(s) =K

H,(s) = (6-33)

(6-34)

Design the compensation for a 45° major-
loopphase margin.

Solution. The open-minor-loop transfer func-
tion is
B (s)
——— =Gy (s)H.(s) =
M (s) 71 (8)H.(s)
K.s

(T.s T1)(03s T 1)(0.1s T 1)
(6-35)

A plot of the asymptotes of G, (jw) H.(jw) /K.,
using the techniques for plotting asymptotic
magnitude curves of Par. 5-3.3, is shown in
Fig. 6-13 for T, = 2 sec as a trial guess. The
adjustment of K, controls the degree of sta-
bility of the closed-minor-loop response. If K,
is made too large (e.g., greater than 50), the
closed-minor-loop response will have a quad-
ratic factor with a very low damping ratio,
making it difficultto obtain a high-gain open-
major-loop response. Anticipating this be-
havior, a value of K, = 10is not unrcasonable.
With K, = 10, the inequality of Eq. (6-27) is
satisfied for the portions of the open-minor-
loop asymptotes above the —10 dg line. When
K.issetequal to 10,the 0-dg line for the open-
minor-loop response G,(jw)H.(jw) is that
shown dashed in Fig. 6-13. This line defines
the frequency boundaries w, == 0.1 rad/sec and
a, ,—~ 13 rad/sec. The closed-minor-loop re-
sponse asymptotes can then be drawn with the
aid of the approximations to |C(jw)/ A (jw)]
given in Eqs. (6-29) to (6-31). In the fre-
quency range from w; to w = 1/7T. there is a
—20dg/dec contribution to |1/H,. (jw)| from

6-12
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the factor s? whereas the (T +1) factor
makes no contribution (i.e., it contributes
0 dg/dec). In the range from w =1/T; to W,
both factors contribute, the s? factor contrib-
uting —20 dg/dec and the (T.s + 1) factor
+ 10 dg/dec. The closed-minor-loop asymp-
totes arc shown in Fig. 6-14. From an exam-
ination of the resultant asymptotic curve, sev-
cral points may be noted. The combination of
the breaks at w,and 1/T, appears as a cascade
lag-compensation effect which is a desirable
open-major-loop-response property. In fur-
ther trials, attempts may be made to broaden
the —20dg/dec slope region bounded by these
breaks and to move the region to a higher fre-
quency range. The break at w, 1s from a slope
of —10dg/dec to aslope of —30dg/dec which
is characteristic of a quadratic factor in the
open-major-loop response. If this factor has a
low damping ratio, high-gain stabilization of
the major loop may be difficult. Thus, the first
trial choices of T and K, produce a set of open-
major-loop asvmptotes which appear reason-
able; however the adequacy of the choices
must be verified.

At this point, the Nichols chart (Fig. 5-20)
isused with a gain-phase plotof G;(jo)H.(jw)
to determine the closed-minor-loop response
C(jw) /A (jo) (seec Par. 5-4 for the use of the
Nichols chart with non-unity-feedback loops).

As a result of the application of the gain-
phase plane construction, the true magnitude
curve of C(jw)/A(jo) is shown in Fig. 6-14
can be obtained. The corresponding phase
angle curve appears in Fig. 6-15. The shape
of the true magnitude curve shows no severe
resonance effects so that acceptable closed-
loop performance may be expected. Using the
45° phase-margin criterion to adjust the cas-
cade compensation G.(s) =K, the magnitude-
crossover frequency w., = 8.6 rad/sec and the
corresponding gain K = 40. Thus, the per-
formance is quite good. (Compare the results
of cascade compensation for this same system
in Pars. 6-2 and 6-3.) The only drawback to
the design is that the equivalent cascade lag
effect is at a fairly low frequency. This would
produce somewhat excessive peaking in the
transient response of the system which would
be followed by a long transient tail. Improve-
ment in performance could be achieved by
further trial, e.g., by decreasing the feedback
compensation time constant T, ,and attempt-
ing to increase the minor-loop gain K, The
resultant system would then have a more
acceptable transient behavior, but the
magnitude-crossover frequency w., and the
major-loop gain K might be reduced. How-
ever, only further trial-and-error analysis
would show what actually occurs.

o IRER
~
/"‘ P sy 0 dg LINE ¥ITH K_ - 101
N~x
10 d9 A
-l @, :\
'} 5 \\
w\l
-204dg
G, ljalH_(jo) N
K. N
30 ds [ 11
0.0l 002 0.05 0.1 0.2 0.5 2 5 10 20 50 100

Fig. 6-13 Open-minor-loop asymptote for feedback compensation procedure.
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Fig. 6-15 Closed-minor-loop phase angle for feedback compensation procedure.
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6-5 ALTERNATIVE DESIGN METHODS®’*'%'%'?

The primary advantage of design in the
frequency domain is the rapidity with which
the procedure can be carried out. The disad-
vantage is the difficulty involved in visualiz-
ing the time-domain behavior corresponding
to a given frequency-domain design. In prac-
tice, the relationship between frequency re-
sponse and transient response is considered
by many workers to be rather nebulous. Theo-
retically, however, frequency-domain and
time-domain descriptions are entirely equiv-
alent, although the actual process of translat-
ing from one description to the other may be
quite laborious in spite of the fact that many
approximations have been established to
guide the designer in relating frequency re-
sponse with transient response (see Par. 7-1).
One very important stumbling block arises
because most direct specifications of system
performance are given in terms of the tran-
sient response of the system to a step or ramp
input. This type of specification is just as
artificial as that given in terms of the re-
sponse of a system to a sinusoidal input since
the true inputs of most systems are neither
steps, nor ramps, nor sinusoids. Nevertheless,
it is the transient response of a system that
is most frequently specified because this type
of response is the casiest to visualize and the
quickest to verify experimentally.

In order to circumvent some of the concep-
tual difficulties involved in frequency-domain
design, methods of time-domain design have
been advanced. Most of these methods utilize
the open-loop and closed-loop pole-zero con-
figurations of the system and thus involve
features of both the time and frequency do-
mains. The facility with which these methods
can be used depends almost exclusively on the
feature of having an analytical description of
the open-loop pole-zero configuration as a
starting point. Thus, the methods require
that any experimental test data be approxi-
mated by analytical functions. This require-
ment does not apply to the frequency-domain
methods that receive major emphasis in Ch.
S and Pars. 6-2 through 6-4. In addition, the

graphical procedures discussed in Pars. 3-6
and 7-1 enable the designer to work entirely
with experimental data, going back and forth
between time and frequency domains without
ever having to deal with analytical descrip-
tions. Since the time-domain synthesis meth-
ods usually end up with a closed-loop pole-
zero configuration, additional labor is neces-
sary to extract the actual plots of transient
response and frequency response in order to
verify whether performance specifications
have been met. On the other hand, in a
frequency-domain design, the only additional
labor involved is that of determining the tran-
sient response (usually by the methods of
Par. 3-6), the frequency response being di-
rectly available at the end of the design pro-
cedure. Thus far, the time-domain procedures
that have been developed are most successful
for analysis but are quite time-consuming
and laborious for synthesis. Actually, most of
the current time-domain “synthesis™ proce-
dures merely involve ordered trial-and-error
analysis. A few of the time-domain methods
are described here.

Evan’s root-locus method®? can be used
for the design of compensation functions by
postulating a series of trial forms of the pro-
posed compensation functions and plotting
the root locus for each form (see Pars. 4-4
and 5-7 for the technique of root-locus con-
struction and the nature of the degree-of-
stability criterion). On adjusting the gain to
satisfy the degree-of-stability criterion with
a specified damping ratio T for the dominant
pole pair, each trial root locus will produce
a specific closed-loop pole-zero configuration.
Then by direct inspection of these configura-
tions or by plots of the actual transient re-
sponses (through partial-fraction expansion
and inverse Laplace transformation), the best
compensation form may be selected.

Yeh(® has proposed an extension of Evan’s
method which involves plotting contours of
closed-loop pole location for a series of fixed-
gain values as some parameter of the compen-
sation function is varied. These plots are called

6-15



THEORY

gain contours. In addition, for fixed values of
the compensation-function parameter, con-
tours of closed-loop pole location are plotted
as the gain is varied. These plots are called
root contours. By examining the gain and
root contours, the best combination of the
compensation-function parameter and the
gain can be selected.

Truxal®™ has developed a pure synthesis
procedure based on the desired closed-loop
pole-zero configuration (see Par. 7-1). It is
assumed that this configuration is character-
ized by : (1) one pair of conjugate-complex
dominant poles, (2) one or more dipoles (a
pole and zero very close together on the nega-
tive real axis), (3) poles on the negative real
axis that are far removed from the dominant
pole pairs, and (4) one or more finite zeros™.
This closed-loop 'pole-zero configuration will
be produced by an open-loop function [C(s)/
E(s) for aunity feedback system] which has
all its poles on the negative real axis. If the
closed-loop function

CGs)  Pls) (6-36)
R (s) N (s)

and, for a unity-feedback system,
C(s) . P(s) (6-37)
E(s) Q(s)

then
Q(s) =N(s) — P(s) (6-38)

where P (s),N(s),and Q(s) arc polynomials
in s.

The synthesis procedure is then a method for
determining the zeros of Eq. (6-38) since
these are the poles of C(s)Y E (s). Since all
the poles of C(s)/E (s) lie on the negative
real axis, if the polynomials N (s) and P (s)
are plotted on the same coordinate system for
s = —o¢ where o is a recal variable, then the
intersections of the two curves give the poles
of C(s)/E(8). The zeros of C(s)/E (s) are
the same as the zeros of C (s )/R (s ). Knowing
the transfer function of the fixed clements
G, (8), the compensation can be determined
from the following equation:

1 C(s) ]
Gf(S) E(S)

The cancellation of the function G,(s) by the
compensation G.(s) should be avoided as
much as possible by having some of the poles
of G,(s) occur in the open-loop function
C(s)/E(s). This can be accomplished by
altering slightly the specified form of the
closed-loop response C(s)/R(s) since the
performance specifications are rarely rigid.
Changes in the parameters of the fixed ele-
ments (,(s) will negate the cancellation
called for by Eq. (6-39). Actually, exact can-
cellation is not necessary since small parame-
ter variations will not alter the closed-loop
response appreciably.

Go(s) = (6-39)

6-6 TYPICAL COMPENSATION NETWORKS®5%1415161718192021

6-6.1 D-C ELECTRIC

The most common d-c networks are the lag
network and the lead network shown in Fig.

6-16.
The lag-networktransfer function is
E(s) Tsti (6-40)
E.(s)  als+ I

where
T = R,C, and (6-41)
a=1+ 24 (6-42)

R,

The lead network transfer function is

E.(s) 1 oTs+1
—_— 6-43
E;(s) a Ts+1 ( )
where
T = (%{%)C,and (6-44)
R,
=1 — 6-45
a=14 3 (6-45)
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Chestnut and Mayer® present a series of
charts of d-c networks containing only resis-
tances and capacitances. These charts cover
most of the desirable frequency-response
characteristics that are called for in compen-
sation of feedback control systems.

6-6.2 A-C ELECTRIC (2. 5.8, 14, 15, 15,17, 18, 19, 20)

In many control system applications, the
signals are suppressed-carrier modulated,
and the control information modulates a con-
stant-amplitude carrier signal (in practice,
6001 400 cps) . For example, the form of volt-
age corresponding to the actuating signal
may be as follows :

V(t) =e(t) cosw,t

where e(t) is the true data signal, and w, is
the carrier frequency. Networks which are
designed to operate on the data of carrier-
modulated signals are called a-c or carrier-
frequency networks. If it is necessary to com-
pensate a system employing carrier-modu-
lated signals a-c networks are required since
d-c networks will not work because they effec-
tively operate on zero-frequency-carrier sig-
nals.

There are two questions involved in treating
the compensation of carrier-modulated sig-
nals :

(1) Analysis: Given a network which
operates on a carrier-modulated signal, what
is the data-frequency (d-c) equivalent net-

work?
+ > +
Ry
E, En
—[ c

A. LAG NETWORK

(2) Synthesis: Given a desired data-fre-
quency (d-¢) network, what 1s the equivalent
carrier-frequency network ?

If H(jw) is the frequency response of a
carrier network, the frequency response of the
data-frequency equivalent is given by

H (jws) =%\/T'W (6-46)
where

A =|H|cos (£Hy) F|H | cos(£L H)
(6-47)
B= —|H,|sin (£ H,) ¥T|H]|sin (£ H-)
(6-48)

B

. = tan-1— -
P an A (6-49)
H, 2 H[j(w+ wd] (6-50)
H. A H[j(w, —wd)] (6-51)

w, = carrier {reyuency

gy = data frequency

H (jws) = frequency response of cquiva-
lent data-frequency network.

There is no unique answer to the synthesis
problem, but a convenient answer is given by
the “low-pass to band-pass™ transformation.
If it is assumed that the magnitude of the
carrier-frequency equivalent of a data-fre-
quency network has even symmetry about the

+T AVAVAY, +

|

A4
o—um

B. LEAD NETWORK

Fig. 6-76 D-C compensation networks.
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carrier frequency o, and that the phase angle
has odd symmetry aboutw,, i.e.,

|H | = |H| (6-52)

(6-53)

then the carrier-frequency equivalent to a
given data-frequency network is

H(jw) =H[j{o —w,)]

Unfortunately, an exact solution of Eq.
(6-54) leads to the conclusion that if the data-
frequency network H is physically realizable,
the carrier-frequency network H is not. How-
ever, an approximation to the low-pass to
band-pass transformation is possible which
does lead to physically realizable networks. If
the data frequencies wg are small compared to
the carrier frequency w,, then

LH+ = '—LH_,

(6-54)

W moz
(o — =j —+ —
(o — o0, )= > 57
As an example, suppose that the frequency
response of a data-frequency network is given
by

(6-55)

. Tnjmrl + 1
H{jw,) =21 -
(7004) T yjoa + 1
Thecarrier-frequency equivalent can be found
by using Eqgs. (6-34) and (6-55). Thus

(6-56)

DATA-FREQUENCY ELEMENT

T [ G+ ]+
H(jo) = 2 27w

> (6-57)
T, [;i & L] 1
d[y BT R

There are several ways to realize a carrier-
frequency network which is approximately
equivalent to a given data-frequency network.
The resistance-inductance-capacitance reali-
zation starts with the actual data-frequency
circuit and replaces the data-frequency cir-
cuit elements by their approximate carrier-
frequency equivalents as shown in Fig. 6-17.
Because of the practical difficulty of realizing
parallel inductance-capacitance combinations
in the carrier-frequency network, the usual
procedure is to realize the data-frequency
transfer function by means of a resistance-
inductance circuit. Then the carrier equiva-
lent will contain only series inductance-capac-
itance combinations.

Because lag networks are usually inserted
at very low data frequencies, their carrier
equivalents are required to be very sharply
tuned to the carrier frequency. That is, the
carrier equivalent network must be a high-Q
circuit. Unfortunately, such high-Q circuits
are impractical for servo carrier frequencies
(60 and 400 cps) and are very sensitive to

CARRIER-FREQUENCY EQUIVALENT

L

2

Y S )
o ey

O VY Y Z=jw,L
C/2
i
Y=jodc O——— —0
e A o o WENNES
L= 2
w°2C
R R

Fig. 6-17 Equivalent circuit elements for carrier-frequency networks.
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carrier frequency drift. To get around these
limitations when lag compensation is desired
for a carrier-modulated system, the usual
procedure is to demodulate the signal, com-
pensate it with a d-c lag network, and then
remodulate.

The realization of carrier-frequency lead
networks is not as difficult as the realization
of lag networks since they operate at rela-
tively high data frequencies and therefore do
not require excessively high-Q circuits. How-
ever, carricr lead networks are also sensitive
to carrier drift, although some attempts have
been made to counteract this effect. (1518 If

the carrier drift is large (more than 5%),

then the scheme of demodulation, compensa-
tion, and remodulation should be considered.
An cffectivealternative to this scheme utilizes
feedback compensation with a tachometer.

An examination of the magnitude re-
sponses of carricr networks shows that they
fall into the class of filters called “notch™
filters. Mecthods for realizing notch filters
with resistance-capacitance rather than re-
sistance-inductance-capacitance networks are
discussed in Refs. (2,5,14). A typical resist-
ance-capacitance notch filter is shown in Fig.
6-18. The frequency response of this carrier
nctwork is given by

E,(jw) .
_Lolw) _ g —
Boe) 0@
o)+
Do (6-58)
. w \2 . w
(o) +4 (i) +1
where
1
=21 6-59
@ = po ( )

The approximate data-frequency ecquivalent
is

- Ja
H (jog) =———"r—
¢ Jwyg + 20-)0
Thus. as far as data frequencies are con-
cerned, the symmetrical parallel —7' notch
filter behaves as a differentiator for data fre-
quencics up to approximately 0.2w,.

(6-60)

>
<]
>
-
<
<]
P

m.

[wE)
-
1]

Fig. 6-78 Parallel-T notch filter.

The major difficulty in using resistance-
capacitance notch filters is that they must be
tuned by successive adjustments of several
circuit elements; otherwise, high-precision
clements must be used.

6-6.3 MECHANICAL DAMPER

A widely used mechanism having the action
of a compensation nectwork is the inertia
damper shown in Fig. 6-19. The damper,
which is connected directly to the servomotor
shaft, consists of a thin cylindrical metal
shell, a heavy cylindrical metal slug, and a
damping fluid. If one neglects motor damp-
ing, the block diagram of the inertia damper
and servomotor is that shown in Fig. 6-20. In
this figure,

B(J, + Ju - Ja)
a = 1 + Jd .-62
T 5

T, — motor torque
T,, = load torque
6 = motor shaft position

J,,, = motor moment of inertia and reflected
load inertia

J, = shell moment of inertia
J, = slugmoment of inertia
= fluid damping
The advantages of the incrtia damper are:
(1) simplicity
(2) no steady power loss
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i, 4 smeLL The disadvantages are :
7 B (1) damper must be designed and built
SERVOMGTOR 1 i, for each specific application.
| OUTPUT SHAFT 7 (2) peak acceleration of the damper-motor
AR 4 combination is reduced relative to that of the

sluG —/ BEARING—/ motor alone because of the added apparent
inertia produced at the motor shaft by the
damper mechanism.

6-6.4 HYDRAULIC AMPLIFIER (See Par.13-6)

A fairly common means for obtaining lag-
network action in a hydraulic amplifier is
shown in Fig. 6-21. In this figure,

Fig. 6-79 Inertia damper.

2 = input displacement of pilot valve
:UT—:J_J?* el Om Z, = output motion. of power piston
X, = feedback motion of follow-up
sleeve
B = damping of fluid dashpot
Fig. 6-20 Block diagram of inertia damper K,, K,= spring constants
(motor damping negligible). a,b =leverarms

K. SPRING \_:

EDAMPER. B

ln., FEEDBACK 1
| 1%, outpuT
wia WLl L] ///_'/':/
7 FOLLOW-UP SLEEVE 7, 4
il 7 2
;}‘ Lo 7 ;
Vy ! v/
4 4
Y 2
Al || P . 4
4 7 7 7
' 7 7 #
PRESSURE —> 7 4 (//
OiL 7 A Vg 2
/] 2 7 L/
vy L/ Y \/
/] 7 A
,4 . N
] [/
7 POWER
/] //, PISTON
7 2
A
/] A
1= & . Z
D77 7a ~ .
= PILOT VALVE Sl
| | L.. INPUT o

Fig. 6-21 Hydro-mechanical compensation network.
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If the gain of the hydraulic amplifier is very
high (greater than 10), the transfer func-
tion of the system is

2.(8) b _ A+ Ts 6-63
2;(8) Waa(a D (1—|—aTS> ( )
where
a=1+ Hs (6-64)
K,
and
T =B/(K. + K,) (6-65)

6-6.5 PNEUMATIC CONTROLLER®D
(See Par. 13-7.)

The general schematic of a typical pneu-

matic controller is shown in Fig. 6-22. In this
figure,

e — actuating signal
x; = flapper motion
P, = nozzle back pressure

P, = pilot relay output pressure (to dia-
phragm valve or similar load)

zp = feedback motion.

If the nozzle-flapper amplifier and the pilot
relay are assumed ideal, the block diagram of
the controller is as shown in Fig. 6-23, where

K, = ratio of proportioning linkage
(0 <K, <1)

k. = nozzle-flapper gain
k,. = pilot relay gain

Simple proportional action (pure gain) is
possible if the feedback function is achieved

r = motion of set point (reference input) by means of a spring-loaded bellows as shown
¢ = motion of pen (controlled variable or in Fig. 6-24. If the ratio of feedback motion
output) 2 to pilot-relay output pressure P, is denoted
T P
! DIFFERENTIAL PROPORTIONING NOZZLE S PILOT . .
— LINKAGE LINKAGE | FLAPPER I RELAY >
[
Xt PNEUMATIC P,
FEEDBACK e
NETWORK
Fig. 6-22 Schematic diagram of a pneumatic controller.
Adapted by permission from Instruments, Volume 26, No. 6,
June, 1953, from article entitled 'Dynamic Behavior of Pneumatic
Devices’, by L. A. Gould and P. E. Smith, Jr.
1 _ + X P, " Po
K Ky | Ky | o >

P
FEEDBACK o
FUNCTION [

Fig. 6-23 Controller block diagram.

Adapted by permission from Instruments. Volume 26, No. 6,
June, 1963. from article entitled 'Dynamic Behavior of Pneumatic
Devices', by L. A. Gould and P. E. Smith, Jr.
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by Ky, the transfer function of the propor-
tional controller is given by

back function of Fig. 6-22 is obtained by
means of the arrangement of Fig. 6-25. The

feedback function in this case is given by

20_(_)_ - (1 —_— Kl) kn]kﬂr (6-66)

e(s) 1+ KKy, In(s) g ( Trs ) (6-68)
Ifthe product K Kk, /&, isvery high (greater P,(s) Trs 41
than 10), the proportional controller has the where
approximate response

T. A
P,(s) (1 —K,) (6-67) "= .RRCR .
= - R =integral resistance

e(sy KK,

A lag-compensation effect (proportional-
plus-integral) can be achieved if the feed-

| e

Cr =
K;, = sensitivity of proportional bellows

capacitance of tank

FLAPPER X ———
[ t S LOADING SPRING

00600

/s

/
—AAAK
SUPPLY

RESTRICTION PROPORTIONAL
BELLOWS
AIR
SUPPLY

I

Fig. 6-24 Schematic diagram of a proportional controller.

Adapted by permission from Instruments. Volume 26, No. 6.
June, 1953, from article entitled ‘Dynamic Behavior of Pneumatic
Devices’, by L. A. Could and P. E. Smith, Jr.

*

X b
CAPACITY
A TANK

2 /{INTEGRAL RESISTANCE

]T.

D B
A — RESET BELLOWS
AR B = PROPORTIONING BELLOWS
SUPPLY C = RELAY
L -
o ¢ k OUTPUT, D = SUPPLY RESTRICTION

—

—
*

Fig. 6-25 Schematic diagram of a proportional plus integral controller.

Adapted by permission from Instruments. Volume 26, No. 8,
June, 1953. from article entitled ‘Dynamic Behavior of Pneumatic
Devices’, by L. A. Gould and P. E. Smith, Jr.
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The transfer function of the controller then
becomes

P,(s) ( Trs+ 1 )
2 — (11— KDk | ———M—————
e(s) ( 1) Karkey apl s 4+ 1
(6-69)
where
ay = 1+ Kikuthop K (6-70)

If the product K,k,/k,-K;, is very high
(greater than 50), the response of the pro-
portional-plus-integral controller is approxi-

mately

P,(s) (1—K,) (1+ 1
e(S) KlK/b Tlcs

The form of the right side of this equation

explains the name —“proportional-plus-
integral” controller.

) (6-71)

A lead-compensation effect (proportional-
plus-derivative) can be achieved if the feed-
back function of Fig. 6-22 is obtained by
means of the arrangement of Fig. 6-26. The
feedback function in this case is given by

P

Ty
—s+1
i) _ g ( p 5 ) (6-72)
P,(s) PN Tus + 1
where
T, 5 R.Ca (6-73)
R (6-74)

¥
R; = derivative resistance

Ce¢ — capacitance of tank

A, = area of derivative bellows

A, = arca of proportional bellows

K, = sensitivity of proportional bellows
The transfer function of this controller is

Po(s) . (1 - Kl)knfkpr Tn’s + 1
e(s) 14 Kikwk,Kp (& e 1)
g
(6-75)
where
w1+ Kikyky Ky
‘= (6-76)

1 + %— (Klknfkerfb)

o§

AR
SUPPLY

E Ls?’?z?rl:és A = PROPORTIONING
=3
=
"/ E-VARIABLE
A DERIVATIVE
E CAPACITY
TANK

OUTPUT, P, >
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If the product% (KiknkpK ;) is very high

(greater than 10), the response of the
proportional-plus-derivative controller is ap-
proximately

P,(s) (1—K;) Tss+1
€@®) KK,

Tis ) (6-77)

b
If the ratio of the arcas (4,/4,) is very high

(greater than 50), then b > > 1, and the re-
sponse is given approximately by

Py(s) _

e(s) ~ KK (6-78)

(1 - T(IS)
The form of the right side of this equation
explains the term —“proportional-plus-
derivative” controller.
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CHAPTER 7

PERFORMANCE EVALUATION*

7-1 RELATIONS BETWEEN FREQUENCY RESPONSE
AND TRANSIENT RESPONSE

7-11 GENERAL

As stated in Par. 6-5, the relationship
between transient response and frequency re-
sponse is somewhat tenuous. Consequently, it
is often necessary to have explicit knowledge
of the response in both the time and fre-
quency domains. This section presents some
of the important approximations that enable
the designer to translate between the time-
and frequency-domain descriptions of per-
formance. By the use of these approxima-
tions, a quick evaluation of performance can
be made.

7-1.2 CLOSED-LOOP FREQUENCY RESPONSE
FROM CLOSED-LOOP TRANSIENT
RESPONSE

If the closed-loop fransient response of a
system is known from experimental test data,
there are several methods(21.22.27.28,28,30) gygqj]-
able for determining the frequency response.

If the step response of the system is non-
oscillatory (i.e., has no overshoot), the tran-
sient component of the response can be ob-
tained by subtracting the step response from
the final value of the output, i.e.,

e (t) =c(ow) —el(t) (7-1)

where ¢(«) is the final value of the output,
c(t) 1is the step response, and ¢ (t) is the
transient component of the response. The
logarithm of ¢, (1) is plotted against time on
semi-log paper. If the response is dominated
by an exponential component, the resultant
curve plotted on semi-log paper eventually

*By L. A. Gould

71

approaches a straight line whose slope cor-
responds to the magnitude of the dominant
time constant. That is, if the dominant tran-
sient component is

e, (1) = Aet/T, (7-2)
then
log. ¢, (t) = log, A~¥/T (7-3)

An extrapolation of the straight-line asymp-
tote of log, ¢, (f)back to zero time yields the
logarithm of the amplitude A of the dominant
transient component. Thus, the dominant
transient component is completely determined
and can be subtracted from ¢, (7). A plot of the
logarithm of the difference [c:(t) — e, ()]
versus time f produces a curve which ap-
proaches a straight-line asymptote whose
slope corresponds to the time constant of the
exponential component having the next small-
er time constant. Extrapolating this curve
back to zero time yields the logarithm of the
amplitude of the secondary component, ¢, (7).
Next, the function [e:(2) —ei, (2) —er,(E)]
is determined, and the process can be re-
peated until the limit of measurement accu-
racy is reached.

Thal-Larsen(2? gives a method for deter-
mining approximate transfer functions based
on the approximation of a nonoscillatory step
response by the transfer function

C(s)

W(s) R(s)

(7-4)

et

(s+1) (Tes+1) (Tss41)
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where T, and T'; are dimensionless time con-
stants and £, is the dead time.

By choosing the 10%, 40%, and 80% times
in the step responses of this system for the
various combinations of its parameters, a
set of dimensionless curves have been con-
structed. In using the curves (Figs. 7-1
through 7-5), the three points correspond-
ing to the 10%, 40%, and 80% response
levels of the measured response are deter-
mined, and the times corresponding to these
points are designated ¢;, ¢., and %3, respec-
tively. The values of the dimensionless ratio
(tz —t,) /(t; — t;) and the time (¢; — &) to-
gether with curves of Figs. 7-4 and 7-5 will
enable the designer to determine a set of
roots that corresponds to a transient passing
through the three selected points. If a dead
time ¢, ispresent, theratio (¢s —¢,)/ (f2 — ty)
will enable the designer to select roots that
reproduce the first 10% of the transient.

12
,’7 1.0
r-l-wr/// -
A i £
e os =
~ “T-T 9
5
O.
A 7/47 06
/ %/‘ ¥
[-4
YRt 2 e £
:-0:4-1' "/ | ;z:
—03-T
1202-1 ~
1-0.1-T 02
0
0 0.2 04 06 08 1.0

DIMENSIONLESS TIME CONSTANT T

Fig. 7-1 Normalized curves yielding time for
[0-percent transient response corresponding to
combinations of various time constants

By permission from Transactions of the AIEE, Volume 74 Part II,
1955, from article entitled ‘Frequency Response from Experi-
mental Nonoscillatory Transient-Response Data’, by H. Thal-
Larsen.

Example. Let

t; =0.97 sec

ta =214 sec

ts = 447 sec
Then,

2—:—’;‘: =3.00

(a) Entering Fig. 7-4 at this value (i.e.,
3.00), several curves are crossed allowing the
choice of various combinations of the dimen-
sionless or relative time constant T. Choosing
three of these combinations :

3.2

P,

v / 2.6
/ e
I ey =
/ 24
/ 1-T-T // T e
w
A/ / &

A 2.2

/
1-0.6-T ,~/ L 2.0
A/

1-0.5-T /T-_——— 1
1-0.4-T 1T T AT I__J' gy gl gl il il -8
1-0.3-T lj/ ’/ ]n-
1-0.2-1 VZF/ ; L6
1-0.1-T ]

0 0.2 04 06 0.8 1.0

GIMENSIONLESS TIME CONSTANT T

Fig. 7-2 Normalized curves yielding time for
40-percent transient response corresponding to
combinations of various time constants.

By permission from Transactions of the AIEE, Volume 74, Part
11, 1955, from article entitled 'Frequency Response from Experi-
mental Nonoscillatory Transient-Response Data’, by H. Thal-
Larsen.
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(1) Curve 1—-T —T: 1, 0.275, 0.275
(2) Curve 1—04—-T: 1,04, 0.135
(3) Curve 1—T: 1, 0.520

(b) Entering Fig. 7-2 with the dimension-
less time constants found above, the dimen-

sionless time (¢t; —t1) /1, is determined :

40
/ / 38

-1-1 f / 26
/ 34

3.0

RRENNAN

/ ~T-T }/
1-v.6~T //// / F 2.4
1-05-T ¥ / y
2.2
1~0.4-T ,/ /
A
1-03-T P17 f 2.0
1-02-1 |/ //
y., 1.8

1-0.1-T /
y

.6
(4] 0.2 0.4 0.6 0.8 10
DIMENSIONLESS TIME CONSTANT T

Fig. 7-3 Normalized curves yielding time for
80-percent transient response corresponding to
combinations of various time constants.

By permission from Transactions of the AIEE. Volume T4, Part
11, 1966, from article entitled ‘Frequency Response from Experi-
mental Nonoscillatory Transient-Response Data’, by H. Thal-

Larsen.

TIME FOR 80% RESPONSE, t3/ T,

7-3

(1) Curve 1—T —T for T=0.275:
1.755

(2) Curve 1—04—T for T=0.135:
1.790

(3) Curve 1—T for T=0.520: 1.890

(c) The time (t; —¢;) from the actual
transient divided by the dimensionless time
(ts — t1) /71 yields the conversion factor t; by
which the relative time constants found in
the first step must be multiplied to obtain the
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Fig. 7-4 Normalized curves yielding time-interval
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11, 1966, from article entitled. ‘Frequency Response from Experi-
mental Nonoscillatory Transient-Response Data’, by H. Thal-
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actual time constants. Note that Eq. (7-4)
represents a normalized transfer function
with dimensionless time constants 1, T2, and
T.. The time constants for the original func-
tion before normalization are 7y, 1;T2, and
. T3 For the example (t3 —t;) = 3.50 sec,
the three combinations which fit the original
curve are:

(1) ©1 = 1.995sec; 1T = tyT3 = 0.549 sec

2) o 1.955sec; 7T, = 0.782 sec;
7,73 = 0.264 sec

(3) © = 1.850sec; t;T» = 0.963 sec;

'ClT;g =0
2.2
// 20
V 1 i
A /]
1/ s
A1 _
k
/ V., 16 =
/| A/ r-T-1 Y
y 7 5
s X
, g
A 2 O
AV, i d "
1-0.6=T / T 5
1-0.5-T y. 0
1-04-T /J
1-0.3-T ,/ / o
1-02-T )
1—0.1-T/ 06
0 0.2 0.4 0.6 0.8 10

DIMENSIONLESS TIME CONSTANT T

fig. 7-5 Normalized curves yielding the time
interval between 70- and 80-percent response of
the transient corresponding to combinations of
various time constants.

wy permission from Transactions of the AIEE. Volume 74, Part
11, 1955, from article entitled ‘Frequency Response from Experi-
mental Nonoscillatory Transient-Response Data’, by H. Thal-
Larsen.

7-4

(d) To check for the necessity of a dead-
time factor, enter Fig. 7-5 with the dimen-
sionless time constants T from the second
step to determine £,/7;.

(1) Curve 1—T —TforT = 0275;
1.075

(2) Curve 1—04 —TforT = 0.135;
1.055

(3) Curve 1—TforT = 0.520; 1.018

(e) The conversion factor 1, found in the
third step, together with the results of the
fourth step, permit the calculation of the
actual time £, if no dead time is present. Thus,
for the three combinations considered, there
results

(1) t, = 2.142 sec
(2) t2=12.060 sec
(3) ty = 1.885sec

(f) The times found in the fifth step when
subtracted from the measured time ¢, yield
the dead time ¢, The actual measured time
t, = 2.14 sec. Therefore,

(1) te=214 —2142=0

(2) to=2.14 —2.060 = 0.080 sec

(3) tg =214 — 1.885=0.255 sec

(g) By substituting the appropriate values
from steps (c) and (f) into Eq. (7-4), we
find that the three transfer functions which

approximate the response in the 10% to 80%
interval are

1
(1.995s+1) (0.549s-4+1)2

(1) W(s) =

(2) W(s) ==

¢-0.0808

(1.955s+1) (0.782s+1) (0.2643-+1)
e-0.255s

(3) W) = 1 850s+1) (0.9635+1)

Chestnut and Mayer@” give graphical
methods that are useful for determining fre-
quency response from transient response in
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any case (oscillatory or nonoscillatory). To
find the frequency response associated with
the step response of a system, the time axis
of the response is divided into equal intervals.
Then a “staircase™ approximation (see Fig.
7-6) is made to the step response with each
step occurring at the middle of a given time
interval. If t,, is the middle of the nth time
interval and AC, is the change in the re-
sponse occurring at t,,, then the frequency
response is given by

W (jo) = §1Ac,,e—:’«w,. (7-5)
This equation can be evaluated graphically
at cach frequency by a “vector” summation.

To find the frequency response correspond-
ing to the impulse response of a system (the
impulse being approximated experimentally
by a short finite pulse), the time scale of the

1o e ————
]I’
1.8 o
C [rg
08 :‘“13-7/ ACs
1
o4l L)
< tya AC,
ocak 1
t) —sf ?L afc‘
0 ¥ 1 1
o 10 20

Fig. 7-6 Rectangular approximation to step response.

Fig. 7-7 Rectangular approximation to impulse
response.

7-5

impulse response is divided into equal inter-
vals. Then a rectangular-pulse approxima-
tion is made to the impulse response (Fig.
7-7). If i, is the center of the nth time inter-
val, ¢, —the value of the impulse response at
t., and At — thelength of the time interval,
then the frequency response is given by

0

W(jo) = 3 et (7-6)

This equation can be evaluated graphically at
each frequency by a “vector” summation.

Seamans et al.(2829) use a triangular meth-
od to approximate a given time function
¢(t). This is equivalent to approximating
the time function by straight-line segments
and then decomposing the straight-line ap-
proximation into a series of isosceles triangles
(Fig. 7-8). Once the transform of a single
triangular pulse is known, the frequency func-
tion C(jo) corresponding to c¢(t) is found
from

. oAt )2
sin — -
C (jo) = eote 2 | a3 E,,e-f"mA‘]
U)At n=1
2

(7-7)

where £, represents the time at the start of
the first pulse, At— the time interval be-
tween pulses, and £, —the amplitude of the
nth pulse.

Guillemin 83" suggests that the time func-
tion be approximated by a sequence of rational
polynomials in ¢ (straight lines, parabolas,

et} —m-

b 4ob

Fig. 7-8 Triangular approximation to time function.
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cubics, etc.) . The approximate function ¢* ()
is differentiated enough times (#times) to
make—;—tn—c* a sequence of impulses. Actually,
the original function may be differentiated
before approximating by polynomials so that
lower-order polynomials can be used. The
final impulse function is then transformed,
vielding
Clio) =3 22
w) = —
! =1 (Jo)”
where a, is the magnitude of the kth impulse,
t, — the time of occurrence of the kth impulse,
and n — the fotal number of times the orig-
inal function has been differentiated.

If rational approximations are sought for
an experimentally derived frequency function
W (jw), advantage can be taken of the fact
that the plot of 10 log,, | W (jw)!vs logw is
casily representable by straight-line asymp-
totes having slopes of == 10z dg/dec (n= 0,
1.2, ...).By combining the straight-line ap-
proximation of the magnitude function with
the first- and second-order response curves
given in Par. 5-3 (Figs. 5-7 through 5-10),
curve fitting 18 possible. The easiest proce-
dure is to use the magnitude curves to get a
rough approximation and then to refine the
approximation with the phase curves.

(7-8)

—At o + At f ——

Fig. 7-9 Triangle function.

Linvill(15.28) hag proposed a method for im-
proving the foregoing approximation proce-
dure. In this method, an investigation is made
of the effect of varying the position of the
approximate poles and zeros on the difference
between the actual function and the firstap-
proximation obtained from fitting the asymp-
totes and their corresponding correction
curves. For example, if

F(w) =10 logi |G (jw)| (7-9)
and
G(S) — §° — 208 +G12 +(D12 (7_10)

s* —2028 + 0;_)2 +(D22

then the change in F (03) resulting from small
changes of the poles (o0 = jme) and the
zeros (+o; = jw;) is given by

oF
002

SOF

Oy

AF (0) = Aoy

AGI + QEA(LH +
o

+ 2F 4, (7-11)
oW,

The steps in the approximation procedure
are as follows :

(a) A plot is made of the difference be-
tween the actual F (03) and the first approxi-
mation in a frequency region where the first
approximation is to be improved by changing
the position of approximate poles and/or zeros
which occur in this region.

(b) The variation of the pertinent partial
derivatives of F(w) with frequency o is de-
termined in the vicinity of the approximate
poles and/or zeros.

(¢) The pertinent partial-derivativecurves
arc used to approximate AF (w) in the fre-
quency region of interest. From this approxi-
mation, the necessary changes in the positions
of the approximate poles and/or zeros are
determined.

The curves of Figs. 7-10A through 7-10N
can be used to evaluate the necessary partial-
derivative curves. Note that the phase correc-
tions can be determined by using the same
procedure.
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Prescribed Frequency Characteristics”. by J. G. Linvill, Research
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7-1.3 RELATIONS BETWEEN CLOSED-LOOP
TRANSIENT RESPONSE AND CLOSED-
LOOP POLE-ZERO CONFIGURATION

It is desirable to be able to describe prop-
erties of the transient response of a.system
when one is given the closed-loop pole-zero
configuration and vice versa. Usually, the de-
signer is given specifications for some form
of the transient response of a system. As a re-
sult, the conversion of the transient-response
specifications to a desired closed-loop pole-
zero configuration is a starting point in many
design procedures [see Par. 6-5 and refer-
ences 3561920287 Since the usual assumption
in these design procedures is that the closed-
loop performance of the system is primarily
controlled by a dominant pair of complex
poles (dominant quadratic factor in the de-
nominator), only the characteristics of an
underdamped second-order system are pre-
sented here.

If the system being examined is a unity-
feedback system with a pair of complex-
conjugate poles and no closed-loop zeros, the
closed-loop transfer function relating output
to input is
C(s) o2
R(s) T2 +2§m,,s T 0,2
The error-to-input transfer function is

E(s) s(s +2tw,)

W(S) =

(7-12)

— 7-13
R(s) 8¢ +2Cmn8 T 0,2 ( )
The open-loop transfer function is
2
Gs) =S _ On (7-14)

E(s)  s(s+ 2tw,)
In these equations,

w, = natural frequency
and

¢ — damping ratio.
The magnitude and phase of the closed-loop
frequency response W (jw) are the second-
order quadratic factor curves presented in

Par. 5-3. The velocity constant X, of the sys-
tem is

K, — &n
v zc

(7-15)

The first three error coefficients are

e, =0 (7-16)
1

“= 5 (7-17)

er = L _:152 (7-18)
w,°

The error response curves for a unit-ramp
input are given in Fig. 7-11. Note the steady-
state error for a unit-ramp input to this sys-
tem is given by

20_ 1

Css == =
w, K,
The error response curves for a unif-step
input are given in Fig. 7-12. The output re-
sponse can be obtained from these curves by
subtracting them from unity. 7he solution
time or settling time t, of the step response is
the time for the output to reach 98% of its
final value or for the error to fall to 2% of its

initial value. For the second-order system,

4

Cwn

The output response curves for a unit-step
input are plotted in Fig. 7-13.

(7-19)

ty

(7-20)
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Fig. 7-11 Dimensionless transient error-response
curves of a second-order servomechanism to a
unit-ramp input.

Adapted with permission from Principles of Servomechanisms,
by G. §. Brown and D. P. Campbell, Copyright. 1948, John
Wiley & Sons, Inc.
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Quantitative descriptions of the relation-
ships between properties of the transient re-
sponse and the frequency response of a
second-order system will now be given. The
resonant frequency of the closed-loop re-
sponse W (jo) is

o = o, /1 — 22

The magnitude of the resonant peak M, (sce
Fig. 7-14) is given by the relation
1
M= ———— 7-22
VTP (22

The frequency of damped transient oscilla-
tion wg (damped natural frequency) is

Wg=w, /1 =1 (7-23)

The time taken to reach the firstpeak in the
output response to a unit-step input is

(7-21)

tm :——E———_____ -
= T (7-24)
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Fig. 7-72 Transient error-response curves of a
second-order servomechanism to a unit-step input.

Adagted with permission from_ Prineiples of Servomechanisn.
by G. 8. Brown and D, P. Campbell, Copyright, 1948, John

Wiley & Sons, Inc.

1

125

0.4

o 05T
] o

0.50

~
]

\\k\

0.25 7/

/] 2 4 6 8

ot

Fig. 713 Trdnsient output-response curves of a
second-order servomechanism to a unit-step input.

Adapted with permission from Principles of Servomechanism,
hy G. S. Brown and D. P. Campbell. Copyright, 1948. John
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The peak overshoot P,, in the output response
to a unit-step input (see Fig. 7-15) is
119
Pyp=¢ V1°F¢ (7-25)

If bandwidth is defined as the frequency w,
atwhich 10log., | W (jw)|isdown 1.5dg from
the zero-frequency value, then

o = 0,1 — 202 /2 — 42 F4gi]”
(7-26)

With the important characteristics of a
second-order system described, it is possible
to use these characteristics to aid in establish-
ing a desired closed-loop pole-zero configura-
tion from the transient-response specifica-
tions.

A few general relations between pole-zero
configurations and transient-response charac-
teristics are in order. Most closed-loop re-
sponse functions of unity-feedback systems,
W (s),arecharacterized by apair of dominant
complex poles, one or more dipoles (pole and
zero close together), one or more finite zeros,
and poles whose magnitudes are much greater
(afactor of five or more) than the magnitude

100

80
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- W) «— On
8 s24 2lw,s + "‘3
g 60 \
>
o
-
Z a0
[¥) \
o
w
o
20 \
0 0.2 0.4 0.6 0.8 1.0

Fig. 7-15 Overshoot variation with C.

By permission from Automatic Feedback Control System Syn.
thesis, by J. G. Truxal. Copyright, 1966, McGraw-Hill Book
Company, Inc.

of the dominant pair of poles. (3:56:1218,19,28)
The pertinent relations are as follows :

(a) The addition of a real zero to W(s)
tends to increase the overshoot of the output
response to a unit-step input, decreasing the
rise time and time delay.

(b) The addition of a real pole to W(s)
tends to decrease the overshoot of the output
response to a unit-step input, increasing the
rise time and time delay.

(c¢) The addition of real poles to W(s)
whose magnitudes are much larger than the
magnitude of the dominant pole pair has very
little effect on the transient response.

(d) The addition of complex polesto W (s)
whose magnitudes are much larger than the
magnitude of the dominant pole pair has very
little effecton the transient response provided
the damping ratio of the added poles isnot too
small.

(e) The addition of a dipole to W (s) has
very little effect on the step response of the
system but may have a pronounced effect on
the steady-state errors of the system.

(f) The excess of poles over zeros for
W(s) is equal to or greater than the excess
of poles over zeros for the fixed-element
transfer function G;(8) .

(g) Most military applications require
that W(0) = 1. This implies that the open-
loop transfer functions C(s)/E(s) = G(s)
have at least one pole at the origin.

(h) In any system with one open-loop pole
at the origin, the first three error coefficients
are

e, =0 (7-27)
1 n m
=0t =31 _§1 (7-28)
K, =1 Dj i=1 %4
1 1 1 m 1
62___2_<K02+ ;51?_ ;2=:1 zi2)
(7-29)

where —p; is the jth pole of W(s), —z; is
the jth zero of W (s), and K, is the velocity
constant of the system.
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(i) In any system with two open-loop
poles at the origin, the first three error co-
efficients are

e, =0 (7-30)
e = 0 (K,>*) (1-31)
1 n 1 » o] 1
€y — — — — 2 - ) -
2 ( El PP = 7S K,
(7-32)

where K, is the acceleration constant, —p;
is the jth pole of W(s), and —z; is the jth
zero of W (s).

(j) If the cutoff frequency w., is defined
as the frequency at which the phase of the
closed-loop frequency response is — 90° and
the buildup time ¢y, is the time for the output
response first to cross unity for a step input,
then

n

tpm ==

(7-33)
wco

(k) If the rise time ¢ is defined as the
time required for the output response to a
unit-step input to go from 10% to 90% of
its final value and , is the bandwidth as de-
fined immediately above Eq. (7-28), then
for aresponse with less than 10% overshoot,

ot 0,300 0.45
27

(1) If the delay time £; is defined as the
time for the output responsec to a unit step
to rcach 50% of its final value, then

(7-34)

(7-35)

(m) If the rise time ¢, is as defined in (k),
1

-g{-trg = —( 2e; +-T(E2—)

where e is the second error cocfficientand K,
is the velocity constant.

(7-36)

(n) If the scttling time (solution time) ¢,
is the time for the output response to a unit-
step input to recach 98% of its final value,
then

t, == 3. to By, (7-37)

From the characteristics of the second-
order system and the genecral relations (a)
through (n) of the preceding paragraph, the
conversion of time-domain specifications to
a closed-loop pole-zero configuration becomes
a fairly straightforward matter. Truxal®®
presents a very good description of a typical
procedure.

Example. The specifications for a servo-
mechanism are as follows :

__K
s(s 4 a)

(b) The bandwidth w, of the closed-loop
response shall be less than 50 rad/sec, and
the output response of the system to a unit-

step input shall have an overshoot less than
5% of the final value.

(a) G(s) =

(c) K, = 50sec!?

(d) les] = 0.01 sec?

Find a closed-loop pole-zero configuration
that satisfies these specifications.

Solution. If the system is initially approxi-
mated by a second-order responsc with no
zeros, Fig. 7-15 shows that{ = 0.7 for a peak
overshoot P,y = 5%. For L = 0.7, Eq. (7-26)
yields @3 = w,. Therefore, w, =< 50 rad/sec.
The dominant pole pair is thus placed at
s = —35 = 35j corresponding to ®, = 49.5
rad/sec and § = 0.707. Now using Eq. (7-15),
we find that K, = 35 sec1, which is too small a
value. To increase K,, a dipole will be added.
The pole of the dipole must not be set at too
low a frequency or else an excessively long
tail in the transient will occur. The magni-
tude of the pole of the dipole will therefore be
chosen to be one-tenth the real part of the
dominant poles. This corresponds to a pole at
—3.5. To determine the location of the zero
of the dipole, Eq. (7-28) is used. At this
point, the approximate closed-loop response
is

P2 (s +21)
W(s) = Z
(8% 4+ 20w.s + @.2) (s + p1)

7-20
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where p. = 1 3.5,0 = 0.7, 0, = 49.5, and 2,
is to be determined. Using Eq. (7-28),
1_1 4 1
K, = Pr tw, tTjon/1-0
1 1

C w, — jmn\/l —_ C:Z Z1

or,

11 ;1

Z1 D1 Wy, K.
Therefore, z; = 3.40. The desired pole-zero
configuration for W(s) is given by
2520 (st 3.4)
(s2 +70s +2450) (s T 3.5)

The second error coefficientof this system can
be found from Eq. (7-29). Thus,

W(s) =

e; =—2 ﬁ+5{7+(t;wn+a\/l‘—7)z

1 2 1

+ (Cwn—j\/l —C2) 2® ]
Evaluating this expression, it is found that
e; = 2 x 1072 gec?, which is well within speci-
fications. All the specifications should be
checked at this point to insure that the sys-
tem behaves as desired. The example above
has been carried out far enough to demon-
strate the basic ideas involved in finding a
closed-loop pole-zero configuration that satis-
fies the given specifications.

7-1.4 RELATIONS BETWEEN OPEN-LOOP
FREQUENCY RESPONSE AND CLOSED-
TRANSIENT RESPONSE (47.8,11,12,25,26)

Since most of the design techniques dis-
cussed in Pars. 6-2, 6-3, and 6-4 involve con-
siderations of the open-loop frequency re-
sponse C (jo)/E(jw) = G (o), methods for
relating the open-loop frequency response to
the closed-loop transient response will be pre-
sented here.

Harris et al.(™ present an approximate
technique for determining the error response
e(t) to a transformable input »(¢). If o, is
defined as the frequency at which the open-
loop asymptotes cross 0 dg (asymptote cross-
over frequency ; see Fig. 7-16), this method

assumes that w, occurs in a region where the
slope of the asymptote is —10 dg/dec. In
general, the shape of the open-loop asymptote
for frequencies greater than w, has little
effect on the transient response of the system.

The reciprocal error-to-input transfer
function R(s)/E (s) can be found from the
open-loop response C (s ) E (s) by using the
relation

E(s) C(s)

E(s)  E(s)
Since the open-loop asymptote function
C (s )E (s)is almost always a monotonically
decreasing function of frequency, the asymp-
tote crossover frequency o, divides the fre-
quency scale intotwo regions :

+1 (7-38)

E(s) _C(s) )
—E(s) = E(s) forw < < w, (7-39)
E(s) =1foro >> w, {7-40)

E(s)
The procedure forfinding e (£) is asfollows :
(a) From [R(S) /E(S) ]appro.z‘t'mate by USing
all factors of C(s)E (s) corresponding to
poles and zeros of C(s)/E(s) with magnitudes

(break frequencies) less than o, Delete all
other factors of C (sY E (s)and add a numer-

ator factor equal to (1 -{—_f_) .
We

(b) [E(8)/R(8)]upprosimate 18 the reciprocal

of [R(s)'E (s )]approsimate. From the transform

R (s) of the input 7 (¢)and the approximate

error-to-input transfer function, find the first

40

A

we

10 logyq |G(jw)] —ume
o
&

Fig. 7-76 Typical open-loop asymptote function.
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approximation to e('? )by performing the in-
verse Laplace transformation of the function
this time function.

(c¢) Find the correction ratio,

— [R(5) /E (5) Japsrosimars )

7-41
[R(s)/E(s)]ea:act ( )

s = Jjw.

(d) The ends o; and w, of the —10 dg/dec
slope region which fixes o, are called the low-
er-and upper-corner (or break) frequencies
of the —10dg/dec region (see Fig. 7-16). The
plot of the first approximation to e(7)found
in (b) is multiplied by the correction ratio p
inthetimeinterval

(7-42)

and the resulting curves are joined smoothly
in the regions 7 = 1/w, and ¢ = 1/w;. This
method works best if the —10 dg/dec slope
region is fairly long (w,/w;= 8) and if the
closed-loop M, is close to unity.

Chestnut and Mayer (2% present a series
of charts that can be used to determine the
properties of a unity-feedback system from
the asymptotes of the open-loop frequency
response. These charts utilize the following
terminology (see Fig. 7-17) :

_M,, the maximum ratio of closed-
™  loop frequency response

£
R
4 the peak value of the ratio of con-

? ={rolled variable (output) to refer-
ence variable (input) for a step in-

put

(07

— A the ratio of the frequency w, at
(07
occurs to the frequency
o, at which the straight-line ap-
proximation (asymptote) of the
open-loop response is O decibels.
(Note: 2 decilogs = 1 decibel.)

which <

w

— 4 the ratio of w,, the lowest frequency

We - . . .
of oscillation for a step input, to ,,
the frequency at which the open-
loop asymptote crosses 0 db (deci-
bels).

wst, & the asymptote crossover frequency
W, times ¢, the response time from
the start of the step function until

C
—| occurs.
?

o, 2 the asymptote crossover frequency
w, times 7,, the settling time from
the start of the step function until
the output continues to differ from
the input by less than 5%.

[~

I
v
W
S |\ 40 db/decode
i [ OPEN-LOOP TRANSFER
i | FUNCTIONG
Qjw
Oi @y ey m: H LOG w
o

A
Q
&
z STEADY-STATE
z I < FREQUENCY RESPONSE
<
uliz ) ]

[7)
m
©, RADIANS PER SECOND
0
-— 1."“""‘" TRANSIENT RESPONSE FOLLOWING
G - f,ﬂ\ i A STEP-FUNCTION INPUT
- |
i
) 1 U T~
2 I !
‘; —g- 2n
Ojue P
l (APPROXIMATE GRAPHICAL VALUE)
of
t, SECONDS
c

fig. 7-17 Sketches showing nomenclature used to
describe various characteristics of servomechanism
performance.

Reprinted with permission from Servomechanisms and Regu-
lating System Design, Volume I, by H. Chestnut and R. W.
Mayer, Copyright, 1961. John Wiley & Sons, Inc.
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Additional definitions are given in Fig. 7-17.
The charts correlating the quantities defined
here are presented in Fig. 7-18 (sheets 1-18).
It should be noted that these charts can be
used cither for analysis or for synthesis.

Biernson®? presents an excellent method
fordetermining the closed-looppoles of a sys-
tem from the open-loop frequency response.
If it is assumed that the asymptote crossover
frequency w, of the open-loop frequency re-
sponse occurs in (ornear) afrequency region
where the slope of the asymptote is —10dg/
dec., then the following relations hold if
|G (fw)| is a monotonically decreasing func-
tion:

|G (jw)| =1 foro= o, (7-43)

|G (jo) | > = 1for o <<, (low-frequency
range) (7-44)

|G (jw)| << 1for ® == w, (high-frequency
range) (7-45)

The first approximation to the location of the
poles of the closed-loop transfer function
C (s)/R (s)is obtained from the following :

(a) The zeros of G(s) whose magnitudes
are less than w, (low-frequency zeros)

(b) The poles of G (s) whose magnitudes
are greater than w, (high-frequency poles)

(c) Apoleats = —w,

For real or complex closed-loop poles which
arefar from w, in magnitude, the shift from
the first approximation of these poles to their
actual location can be calculated by a succes-
sive-approximation method which converges
more rapidly the further the poles are from
w,. If a closed-loop pole is approximated by a
low-frequency zero of G (s),then the true lo-
cation of the closed-loop pole s; can be deter-
mined by successively evaluating

a [(8—8a)"
()" == [—-——G o

for s, <w,, and s, = s,

(7-46)

where n is the order of the open-loop zero, s, 1s
the location of the open-loop zero, and 6, is the

shift from the open-loop zero to the closed-
loop pole.i.e., 6, =s; —8,.

7-23

If a closed-loop pole is approximated by a
high-frequency pole of G (s),then the true lo-
cation of the closed-loop pole s: can be deter-
mined by evaluating

@)= —[(s —s)"G()] ,_,,
for|s,| > w, and sz == s,
(7-47)
where n isthe order of the open-loop pole, s. is
the location of the open-loop pole, and &, is the

shift from the open-loop pole to the closed-
loop pole, i.e., 8, =8 —$s.

For closed-loop poles near w,, a graphical
procedure®? is recommended since the con-
vergence of the numerical method employing
Eqgs. (7-46) and (7-47) is either slow or nonex-
istent. The graphical procedure involves plots
of G(s) for s = —¢ tjo (along axes other
than the imaginary axis). Because the graph-
ical procedure tends to be somewhat lengthy,
it will not be given here.

Example. The open-loop transfer function
of a unity-feedback system is given by

G(S) — Ko(3+(ﬂ2) (3+0)3)

(7-48)
s(s4wy)?(s+ wy)?2
where
w; = 0.04
wWe — 0.2
w3 =1
Wy — 16

K, isaproportionality constant whose value
is to be determined. The asymptotes of this
function are sketched in Fig. 7-19. The cross-
over frequency w, is chosen as the geometric
mean of wz and oy since this particular choice
tends to produce the lowest closed-loop #,.
Near w,, the asymptote is given by
K, }

Swy>

Asymp |G

At the crossover frequency, w,, therefore,

K, _,

w2
or

K, = 0,082 = /o0, 02 = 4u2
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Reprinted with permission from Servomechanisms and Regu-
lating System Design. Volume 1. by 11. Chestnut and R. W.

Mayer, Copyright, 1961, John Wiley & Sons, Inc.
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Inspection of Fig. 7-19 and Eq. (7-48) shows
that the low-frequency zeros of G(s) occur at
—mz and —o; and that the high-frequency
poles of G(s) consist of a double pole at
—ay4. Therefore, the poles of the first approxi-
mation to C(s)/E(s) occur at —w, (single-
order), —ws (single-order) ,and —w, (double-
order), plus one pole at —w,. The zeros of
C(s)/R(s) arec the zeros of G(s), —w, and
—wz. As a result, the first approximation to
C(s8)/R(s) is

£(s) W4
R(s)” (s Tw) (s Ta)?
K, (zeros of G (s) above @)
(s ¥ (poles of G(s)above w,)
(7-49)

The first approximation to E(s) is found to
be

—~—

. s(s Fwy)?
R(s) (3 Tw) (s Tw) (s Tan)
1 (poles of G (s) below w,)
(s tw) (zerosof G(s)below w,)
(7-50)
The approximate factors of 1 + G(s) arc
given by
1+ G(s) = (st 02 (st 1)s T4
(s T 16)> (7-51)
To evaluate the shifts from the approximate
factors given in Eq. (7-61), Eqs. (7-46) and

==

/

-30

wy

10 log g |G{] )] —peem

log =
@3 -0 *

W

0

o
L]

]

Fig. 7-19 Sketch of open-loop asymptote function.

(7-47) are used. The numerical form of

G(s) is

G (e) = A 16%(s +02) (s +1)
s(s +0.04)2(s 4 16)2

Since w, = 4 the numerical method should be
tried for the factors (s+ 0.2), (s + 1), and
(s +16). The shift from the approximate
pole at s = —0.2 to the true pole is given by

b = — (s 4+ 0.2)
2= G(s)

(7-52)

= 0.0016

a——0.2

(7-53)
Since this quantity is small, the true pole
lics at

s = —02 + 00016 = —0.1984

For the approximate pole at s = —w; = -,
the shift to the true pole is given by
(s+1)
dym — == —0.253
8 G(S) s—1
(7-54,

This quantity is reasonably large so that a
sccond approximation to 83 is made by evalu-
ating the right side of Eq. (7-54) at s =
(—1) t (—0.253), instead of at s = —,
yielding
—(s+1)

3 =" 5,

= —0.3
G () 0.373

8=—1.253

(7-55)
The shift is still not too well approximated
since the change from Eq. (7-54) to (7-55) is
significant. The third approximation to 93 is
obtained by evaluating Eq. (7-55) ats=
(—1) T (=0.373), instead of ats = —1.253,
vielding

ppm— 8+ 1) — —0435

G(s) s——1.373

(7-56)
Since the original approximate closed-loop
pole at s = —1 was fairly close to the cross-
over frequency w, = 4, itistobe expected that
the process of determining the shift 8; will
converge fairly slowly. The succeeding ap-
proximations to the value of the ple are as
follows :
—1468, —1485, —1.496,
—1.509, and finally —1.510.

—1.503, —1.507,
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For the approximate double-order pole ats =
—16, the shift is given by

= 359.6
(7-57)

(852 = — (s +16)2G(s)]

s=—16

or
64 = i7.7

The original double-order pole splits in two,
one pole moving toward w, and the other pole
moving away from .. Only the pole moving
away from w, can be determined by the numer-
ical method. The second approximation to the
shift of this pole is s= (—16) F (—=7.7)
— —23.7. The third approximation to the
shift of this pole is obtained by evaluating Eq.
(7-57) at s= —23.7, instead of at s = —16,
yielding

(d)2= —(s T16)2G (s) = +6.4
=—23.7
(7-58)
ors = —22.4isthethird approximation to the

pole. Keeping track of the negative shift in
this case, the succeeding values of the pole are
found to be —22.6 and finally —22.56.

Thus, three of the five “exact” factors of
1+ G(s) are (s+0.1984), (s +1.51), and
(s + 22.56). Dividing these factors out yields
the remaining complex poles at s = —4.35
=+ j3.3. The “exact” close-loop response C/R
istherefore

C(s) __

1014 (s +0.2) (s +1)

(a) The rise time is approximately 1/wep,
where the rise time is defined as the time for
the output response to a unit-step input to
reach 0.63.

(b) The peak error for a unit-ramp input
is approximately 1/wem.

(¢) The peak output response for a unit-
impulse input is approximately wem.

(d) The peak overshoot in the output re-
sponse to a unit-step input is best determined
from M, by means of Figs. 7-14 and 7-15.

() Thesettling time t, is approximated by
the settling time of the equivalent second-or-
der system unless G(s) has low-frequency
zeros produced by integral networks.

(f) If a first-order lag network (integral
network) has been used to compensate the
system, the peak overshoot of the output re-
sponse to a unit-step input will be increased.
If T, is the time constant of the lag network,
an additional transient term Ae-/7¢ is added
to the step response, where A = 1/T.w, and
w. is the asymptote crossover frequency.

(g) If an integral network is added to a
system,the rate of decay of the error response
to a unit-ramp input response is determined
by the time constant 7, of the integral net-
work. This response can be sketched from the
following considerations :

R(s) (sT10.1984) (s+1.51) (s ¥22.56) (s> +8.69s +30)

Although the detail with which this example
has been presented may make the procedure
seem laborious, actually it is extremely rapid
even when the rate of convergence of the suc-
cessive approximations is relatively slow.
Note, also, that any desirable degree of accu-
racy can be maintained.

In other papers (329, Biernson gives a very
good summary of approximate relations be-
tween the open-loop frequency response and
the closed-loop transient response. If ., is de-
fined asthe frequency at which the magnitude
of G(jw) crosses the 0-dg line (magnitude
crossover frequency), then

(7-59)

(1) Theresponse initially rises atthe same
rate as the input.

(2) The peak of the response is 1/wem.

(3) If w. is the asymptote crossover fre-
quency, the tail of the response is approxi-
mately the tail of an exponential with time
constant T, starting from 1/w, at £ =0 and
falling to 1/K, at t = «, where K, is the vel-
ocity constant.

(h) The maximumtime delay by which the
output response to a unit-ramp input lags the
input ramp is approximately equal to the rise
time (0.63-value) of the output response to a
unit-step input.
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7-2 ERROR COEFFICIENTS"#¥313

Paragraph 7-1 discusses the performance of
feedback-control systems in terms of transi-
ent response and frequency response. Both of
these views are intimately connected and stem
from the impulse-response and convolution-
integral description which forms the basis for
all performance-evaluation methods. Unfor-
tunately, it is generally true that the evalua-
tion of performance by any of the foregoing
methods is very laborious when the input is
an arbitrary (but definable) time function.
The error-coefficient method is a technique
which aids the designer in such a case. Para-
graph 3-6 shows that the error response of a
system to a specified input can be expressed in
terms of the input, its derivatives, and a set
of error Coefficients derivable from the trans-
fer function of the system. The expression for
the errorresponse is

e(t) = egr(t) Ten(t) Ter(t) ...
(7-60)

where the error coefficients ey, e,, €., . . . are
the coefficients of the Maclaurin series expan-
sion of the error-to-input transfer function
E(S)/R(s),ie,
E(s)
R (s)

This expansion is valid everywhere except
where the input or any of its derivatives are
discontinuous. For practical purposes, only a
few terms of the expansion are used to evalu-
ate the error response. However, the expan-
sion cannot be used near points of discontinu-
ity of #, ¢, »”, ... if accurate results are
sought. Thus, for example, if a step discontin-
uity occurs in the input » (7)), the expansion is
invalid for atime interval extending from the
instant £, at which the step occurs to the time
(t, Tt,), where t, is the settling time of the
transient error response to the step (time for
the error transient to fall to 2% of its initial
value). Obviously, the step can be ignored if it
is small compared to the remaining terms of
the expansion in the interval ¢, < ¢ < (¢, *1,).

—ey+ &S+ exs2 + ... (7-61)

Biernson ¥ has suggested that the foregoing

difficulty can be resolved by examining
r, ', v, ...for discontinuities and subtract-

ing these discontinuities from the correspond-
ing functions. The remaining functions will
all be continuous, and the expansion can be
applied over the entire time range of interest.
Then, the effects of the discontinuities in
r, v, r'",...are added to the response. In this
procedure, a discontinuity in a function is con-
sidered to occur if the function rises (or de-
cays) more abruptly than the corresponding
transient response to the discontinuity. In
comparing the rise rate of the two curves, a
convenient criterion is to compare the times
for the two curvesto reach 63% of the initial
rise (or decay) of the curves.

A convenient procedure for determining the
error cocfficients required to satisfy perform-
ance specifications is the following:

(a) Giventheinputr (f)and the maximum
allowable error €,,, which can be tolerated at
any time, determine the derivatives +/, r",77”,
...of the input ().

(b) Assume values of the error cocfficients
sothatthe maximum value of each component
term in the expansion [Eq. (7-60)3 is equal
tO €mae

(c) Add the curves obtained in (b) to ob-
tain the first trial value of the error response
e (t).

(d) There will be times in which the first
trial e, (¢ ) will exceed €nq.. Referring to the
curves found in (b),decide which of the func-
tions 7, r’, ¥’ have their maxima in regions
where e, (1) exceeds €

(¢) Reducethe assumed values of the error
coefficients in (b) associated with the func-
tions found in (d).

(f) Add the adjusted curves found in ()
to those functions [found in (b)] which have
not been changed. Determine whether e, is
now exceeded and, if so, repeat (d) and (e).
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Once the error coefficients have been speci-
fied by means of a procedure similar to the
foregoing, the design of the system can be
carried out as follows :

(a) Thesystem isdesigned to meet all other
specifications on transient response and fre-
quency response such as bandwidth, M,, P,
etc.

(b) The error coefficients of the system
designed in (a) are found in terms of the
system parameters and the gain.

(c) If any of the error coefficients found in
(b) exceed their specified values, they may be
reduced by increasing the system gain, if
possible, by the introduction of low-frequency
dipole lead functions in the pole-zero config-
uration of the open-loop transfer function
G (s), or by the feedback-compensation tech-
nique suggested by King,(?

(d) The specifications on transient re-

sponse and frequency response are rechecked,
and step (c¢) is modified if necessary.

A warning should be added. Whenever at-
tempts are made to reduce one or more error
coefficients of a system by the methods sug-
gested above, it is possible that higher-order
error coefficients may increase. Therefore, if
by the addition of a low-frequency lead di-
pole, an error coefficient can be reduced to
zero, a check should be made to insure that
higher coefficients have not been increased
excessively. In addition, it is generally true
that low-frequency poles in a transfer func-
tion tend to increase the settling time of the
response of the system to steps in the higher
input-derivative functions. Therefore, if the
actual input being examined has discontinui-
ties in one or more of its higher derivatives,
the effect of the longer settling time in the re-
sponse to these discontinuities must be deter-
mined.

7-3 PERFORMANCE INDICES™ "9

A performance index P is a single number
which is used as an indirect measure of sys-
tem performance. Other measures of system
performance have already been considered,
such as the various commonly used parame-
ters M,, bandwidth, rise time, peak overshoot,
etc. However, these parameters provide only
a partial description of performance since, in
a sense, only part of the corresponding re-
sponse is described by each. To be sure, if
enough of these “response parameters” (for
want of a better term) are known, an accu-
rate description of the corresponding re-
sponse is possible. That is, the “response
parameters” may be considered direct de-
scriptions of the shape of their associated
responses. However, since a response func-
tion is continuous, theoretically an infinite
number of response parameters are necessary
to describe the response. To get around the
use of a multitude of response parameters, a

performance index may be used. The use of
performance indices is an attempt to replace
the functional description of the performance
of a system through its response parameters
by a numerical description that rates the
system performance with a single number.

Paragraphs 8-1 and 8-2 describe various
techniques for using performance indices.
This section merely presents the commonly
used indices together with the input condi-
tions for which they apply. Table 7-1 is a
summary of these indices. In practice, the
performance index corresponding to the spec-
ified input is found, and the system is ad-
justed to optimize (minimize or maximize)
the index. The indices P,, Pi, P, Ps, Pr, and
P; can be used in purely analytical proce-
dures. However, P, and P, are not treated
analytically but rather through the use of
analog computers.
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TABLE 7-1 COMMON PERFORMANCE INDICES

Index Input Description or Name Reference
P, _—_fwe dt Transient Control arca 1,2*
0
P, :fﬂ e|dt Transient Integral absolute error (IAE) 9
0
P, :fwt edt Transient 1
0
P, :j;”t le|dt Transient g;tre(:)%ra(ll-%xg)multiplied absolute 14,16,18
Ps :fwe2 dt Transient Integral-square error (ISE) 9,18,33,34
o
Py :fmte2 dt Transient
0
P; =Py/P? Transient 1
Py=¢* Stochastic Mean-square error (MSE) 34,35
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CHAPTER 8

OPTIMIZATION METHODS FOR TR’é\NSIENT AND
STOCHASTIC INPUTS

8-1 CRITERIA OF PERFORMANCE

In Par. 7-3 it was indicated that the con-
ventional measures of performance such as
rise time, peak overshoot, solution time, M,,
etc. were merely partial descriptions of the
frequency response of a system or the shape
of a particular transient response. As a
result, an adequate description of system be-
havior requires a fair number of response or
performance parameters. To avoid using a
multiplicity of response parameters (num-
bers which describe the response such as M,,
peak overshoot, bandwidth, rise time, etc.)
attempts have been made to describe system
behavior in terms of performance indices. A
performance index is a single number which
can be used as a criterion of performance.
The pertinent performance indices used are
those directly related to system error since
error is the basic determinant of the “good-
ness” of a system. The most common per-

formance indices are those listed in Par. 7-3.

When performance indices are used in sys-
tem design, the usual procedure is to mini-
mize the index if it is a direct measure of
error. With a given index one also associates
the specified input to the system. Several ap-
proaches can be used in carrying out the
minimization procedure.

In one approach it may be assumed that all
but a few of the system parameters are speci-
fied. Then, the optimization procedure in-
volves the adjustment of the free parameters
so as to minimize the performance index.

*By L.A. Gould

8-1

Such a procedure is called a fized-configura-
tion minimization method or technique since
the form of the system is specified and only
the numerical values of the free parameters
are sought.

In another approach nothing is assumed
about the configuration of the system. Here
the entire impulse response of the system is
varied to minimize the performance index.
This procedure is called a free-configuration
minimization method or technique.

Of the two procedures, the easier one to
apply and the one more commonly used is the
fixed-configuration technique since the pro-
cess of minimization can be carried out by
differentiating the performance index with
respect to the free parameters and setting the
resulting partial derivatives equal to zero.
The fixed-configuration technique is also casy
to apply when use is made of an analog com-
puter. The free-configuration method, on the
other hand, is less commonly used because it
can only be applied by the use of the calculus
of variations since in this case a system func-
fion (rather than a system parameter) is
varied to obtain a minimum.

In practice, the application of optimization
methods can lead to failure when one is not
cognizant of the limitations of the mathemati-
cal model that represents the physical system.
The optimum system often requires cancella-
tion of the characteristics of the fixed ele-
ments of the system, resulting in an unneces-
sarily wide-band performance and concurrent
nonlinear operation. To avoid this, con-
straints may be placed on signal levels or on
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bandwidth. Constrained optimization brings
the designer closer to the practical limitations
of the system and serves to guide system de-
sign in a realistic way.

The primary advantages of optimization
procedures (as contrasted with conventional
trial-and-error procedures) are twofold.

First, the designer is able, through optimiza-
tion, to decide whether a given set of specifi-

catlons is compatible. Second, the designer
can decide whether a compatible set of speci-
fications can be satisfied when bounded by

constraints.

8-2 OPTIMUM SYNTHESIS OF FIXED-CONFIGURATION
SYSTEMS

8-2,1 TRANSIENT INPUTS

For transient inputs the integral-square
error criterion (ISE) is commonly used (5710
to obtain optimum synthesis of a fixed-con-
figuration system. If discussion is limited to
unity-feedback systems, where the desired
output is the input, then the actuating signal
e(t) is equal to the system error ¥.(t). The
ISE criterion is then

+o0

1, :f y.2(t) dt (8-1)

The evaluation of the integral in Eq. (8-1)
is facilitated by the application of Parseval's
theorem :

+ o0
f 22 (t) di —

1
2nj

f*‘“’ X (s)X (—s) ds
o (8-2)

where X (s) is the Fourier transform of x (7).

Thus, Eq. (8-1) can be written

1, =—1—f+°° Y.(s)Yo(—s)ds  (83)

2nj

The procedure for minimizing the ISE is as
follows :

(a) Express the Fourier transform of the
error as a function of the complex frequency
s. This function will involve the free param-
eters of the system as unknown coefficients.

(b) Expressl, interms of Y, (s )by means
of Eq. (8-3).1f Y. (s)is rational, the form of
I, will be

__1 f+"°° C(s) ds
217 J_;. D(s)D(—s)
where C(s) and D(s) are polynomials in s.

(c) Evaluate the integral in Eq. (8-4).
Definite integrals of this form have been eval-
uated in terms of the coefficients of the poly-
nomials in the integrand.®1® A brief table
of such integrals is presented in Table 8-1
where the evaluation has been carried out for
s =jo. At this point, I, is expressed as a func-
tion of the free parameters p; through p,, i.e.,

(8-5)

I,

(8-4)

I,=1, (2, P2y« " Px)

(d) Adjust the free parameters py, ps, - - -
so astominimize /. This can be accomplished
analytically by solving the & simultaneous
equations

ol
oPi

However, it is often better to find the mini-
mum graphically by working directly with I.

=00(t=12,...,k) (8-6)

Example. A unity-feedback system has the
fixed-element transfer function

1

Grls) = s(Ts F1) (Tos T1)

where
T; = 0.01 second and

T,. = 0.04 second
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The compensation G.(g) is a pure gain, i.e.,
G.(s) = K,, the velocity constant

The input is a step of magnitude N, i.e.,
r(t) =N, (t)

The desired output is the input. The configu-
ration that describes the problem appears in
Fig. 8-1.

r L €
———“_’@—' G (2 —4 G,(s)

Fig. 8-1 Configuration for ISE minimization.

Solution. To find the value of K, that mini-
mizes the integral-square error I, we first
find the error transform Y, (s).From the con-
figuration in Fig. 8-1itis evidentthat

Y.(8) =FE(s) =R(s) —C(s), and

_ G.(5)G(8)
C® =5 + G.(3) Gy(s) Rls)
Now, B(s) = E‘-.
s

So, by substituting the expressions given
originally for G.(s) and G,(s) into the equa-
tion for C (s) we find that the error transform.
is

T Tws? 4+ (T;+ Tn) 8+ 1
TTs® + (T;+ Tm)s?+ s + Ko

Substituting Y. (s)into Eq. (8-3) and letting
s = jw, we find that

Ye(s) =Nl

where
¢ =1 do=K,
e=Tr+7T,2 di=1
ey = Tp2T,2 d=T,*T,
=177,

Using I3 of Table 8-1 to evaluate the integral
above, we get

— 4t —— K. )

Numerically, this becomes

[ _ N2 [525K, 125 1
=

2 Li19s5K, — K2

Inspection shows that I, = 0 if K, — oo, but
this solution is not allowed since the system
would then be unstable. Differentiating I,
with respect to K, and setting dI,/dK, = 0
yields

K2 +47.6K, —2980 =0
or
K, =35.80r —834

The negative value is not allowed so a velocity
constant K, =35.8 sec! minimizes the
integral-squarc crror. The value of the mini-
mum integral-square error is

I, =0049N2

As apoint of interest, for K, = 35.8 sec’!, the
value of the peak magnification is 10 logy,
M, = 2.8 dg which is a reasonable value.

Another optimization criterion is pre-
sented in a series of papers by Graham and
Lathrop®4# in which they have applied the
integral-time-multiplied-absolute-error crite-
rion (ITAE) to optimize the performance of

[cqot + co0® + ¢] do

N,2 +wx
I, = — - - 3 q - <
2x f_m lda(jw)? + d: (o) * 4 di (o) + do]l [ds(—Jw)3 4 du(—j0)* 4 di (—jo) + du]
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standard-system forms. However, their pro-
cedure is limited to step inputs only. The
ITAE criterion is

+-o0
lie = tly.(t)| dt (8-7)

—a0

Although the analytical application of the
ITAE criterion is practically impossible, the
performance index can be casily mechanized
on an analog computer.

N W et oy o

RESPOINE

For systems exhibiting zero steady-state
error for a step input (finite velocity con-
stant), the standard form chosen was

C(s) 1 /
R(s) s TgsT. . TgsT1

(8-8)
The denominator polynomials of the optimum
systems (that minimize the ITAE for a step 0 . o 5

input) are listed in Table 8-2 for the first NONDIMENSIORAL TIME

eight orders. Figure 8-2 shows the step re-

sponses of the optimum systems, and Fig. Fig. 8-2 Step-function responses of the optimum
8-3 shows the frequency responses of these unit-numerator transfer systems, second to
systems. eighth orders.

0.5

By permission from Transactions of the AIEE. Volume 72, Part
II, 1958, from article entitled ‘The Synthesis of “Optimum”
Transient Response: Criteria and Standard Forms’, by Dunstan
Graham and R. C, Lathrop.

TABLE 8-1 TABLE OF DEFINITE INTEGRALS

I, =L [t Coew
2r J_o Du(jo)Du(—jw)

where

Cansie) = Con20®2 4 Cop 30?4t 4 ...+ C20® + ¢
D, (jo) = d,(jo)" + dp-y (Jo) ' 4 . .. + dijo + dy

I =%
2d1d0
I, — Czdo + dgco
; 2d.d;d,

¢sd dy + Codsdy + Codsd
2dzdy(dedy — dsdy)
I, — (dody — dzdo) duc + dudridocy + didsdocs + (dads — d.d,) dc,
2d4dy (dsdady — dudy? — di*d,

3 =

8-4
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For systems exhibiting zero steady-state

@ error for a ramp input (infinite velocity con-
" E stant, finite acceleration constant), the stand-
-] 5 ard form chosen was
- -
8 2 C(s)._ as 1
2 Y R(s)—s" Tq s T | TgstTgsT1
x
o

(8-9)

The denominator polynomials of the optimum
systems of this type are listed in Table 8-3
for the second to sixth orders. The step re-
NONDIMENSIONAL FREQUENCY sponses of the optimum systems are shown in
Fig. 8-4.

Additional matter such as optimum com-
pensation of various systems and the effect
of time scaling are also discussed by these

Fig. 8-3 Frequency responses of the optimum
unit-numerator transfer systems.

By permission from Transactions of the AZEE, Volume 72, Pari

IL, 1953, from article entitled ‘The Synthesis of “Optimum® authors®*® with the use of the ITAE criterion
i : iteri F ’ D .
érrzrﬁsainlanl}jesl]{orgé Lflilrl:;l.a and Standard Forms’, by Dunstan as the performance index.

TABLE 8-2 THE MINIMUM ITAE STANDARD FORMS, ZERO-DISPLACEMENT-
ERROR SYSTEMS

s+ (7))
$2 + 1dwgs + g2
s34+ 1750052 + 2.1504%s + wg?
4 +2,10g5° + 34wy ?s% + 2.70g3s + wgs
s3 + 2.8(»054 + 5.0(»0253 + 5.5(»0352 + 3.4&)045 + a)os
$6 +3.250,55 + 6.60wg2s4 +8.60wq3s3 + 7,450y 452 + 3.950y5s + wy®
s7 + 44750455 + 104200255 + 150800354 + 15549453 + 10.640035% + 4.5809°s + wy?
s8 + 5,20wps7 + 12.800q 25 + 21,600y 355 + 25.75wy 454 + 222004553 + 13.3004552 + 5.150¢7 s + wy®

By permission from Transactionsof the AZEE. Volume 72, Part
il, 1953, from article entitled ‘The Synthesis of “Optimum”
Transient Response: Criteria and Standard Forms’, by Dunstan
Graham and R. C. Lathrop.

TABLE 8-3 THE MINIMUM ITAE STANDARD FORMS, ZERO-VELOCITY-
ERROR SYSTEMS

s2 + 3,205 +wy2
$3 +1.750y52 * 3.25w42s + wq®
$4 42,410,553 1 493wy 252 + 5.14w%s + wgt
85 + 2.190y54 + 6,500,253 +6.3004352 + 5.240q4s + @y’
$6 46,1205 + 13.420p 254 + 17,160,353 + 14140452 + 6.76wys + wg

[- )

BIy permission from Transactions of the AZEE Volumg 72, Pasrt
II, '1953. from article entitled ‘The Synthesis of “‘Optimum’
Transient Response: Criteria and Standard Forms’, by Dunstan
Graham and R. C. Lathrop.

8-5
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5 10
NONDIMENSIONAL TIME

Fig. 8-4 Step-function responses of the optimum
zero-velocity-error systems, second to sixth orders.

By permission from Transactions of the AZEE. Volume 72, Part
II, 1963, from article entitled ‘The Synthesis of “Optimum”
Transient Response: Criteria and Standard Forms’, by Dunstan
Graham and R. C. Lathrop.

8-2.2 STATIONARY STOCHASTIC
INPUTS(®.12.15)

The mean-square error (MSE) criterion is
universally used as a performance index
when the input is stochastic. The general
configuration that applies to this minimiza-
tion problem is shown in Fig. 8-5.

In this figure, v () is the data component
of the input, and n(¢) is the noise component
of the input. The mean-square error is de-
fined as

. +T
lim —21? () dt
—T

Y= (8-10)
On the assumption that the data and the
noise are uncorrclated, application of the
formulae given in Par. 3-8 to the configura-
tion of Fig. 8-5yields

+o
vi= [ 2, do (8-11)

J— oc¢

a-6

where
Q,,(s) =[1—W(s)] [1—W(—s)]

(I)vv(s) + W(S)W(—S) q)nn(s)
(8-12)

G (s) Gs(s)
14 G.(38) Gs(s)
®,, (s ) = power spectrum of system errory,

W(s) = (8-13)

®,,(s) =power spectrum of data v
®,, (s) = power spectrum of noise n

Since ®,,(w) is an even function, the evalua-
tion of the integral in Eq. (8-11) can be
carried out by means of the integral table
(Table 8-1).

In all other respects, the design procedure
for minimizing the mean-square error for
stationary stochastic inputs with a fixed sys-
tem configuration parallels the procedure for
transient inputs outlined above.

Example. For the configuration of Fig.
8-5,

Gi(s) = 1
s(Ts+ 1) (Tps + 1)
GC(S) =K,
q)vn(s): 0
0, (s)= — YT
i —82(v? — s?)

®,, (s)= 1™ (white noise)
E

G (s) =8 G;ls)

Fig. 8-5 Configuration for MSE minimization.
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T, = 0.01 sec

T = 0.04 sec

LV = 10 milliradian/sec

v = 0.1 (sec) !

Yn = 0.4 (milliradian)? —sec

If we assume that there is no noise initially
(®,, = 0) ,then

s(Tis+ 1) (Tws + 1)
Tf m33+(Tf+Tm)s2+s+K

A normalized frequency is chosen such that,
for s = jw, Ty = u. By applying the normali-
zation theorem of Par. 3-4 (Eq. 3-46) to the
expression for 1 — W (s) above, we obtain

1—W(s) =

(1 + ju) (1 + bju)
jub(u)® + (14-0) (ju)* + (ju) + K

where

p—Im_4
Tf
K:TfKu

In addition, the power spectrum of data ex-
pressed in terms of u is found to be

o= [0

where

uz(a2 + u?) ]

a = Tw = 0.001

From Eq. (8-12), the power spectrum of sys-
tem error expressed in terms of « is found to
be
2 3
by () = [0 [0
n D, (ju) Dy (—ju)

where
Cu) =b2ut 4 (1 4+ b2) uz 41

Dy(ju) =b(Gu)*+ (1 + b+ ad) (ju)?
+ (1 4+ a4 adb) (ju)?
+ (¢ 4 K) (ju) 4 aK
Diy( yu)—b( u)4+(1+b+ab)
(—ju)s + +ad) (— Ju)?

(a K) (— m) +.x
Then, using Eq. (8-11), we find the mean
square error to be
y2—2au’-’T, 1{ +e c(u)
2 \J_jw Dy (ju) Dy (—ju)
Evaluating this expression from I, of the
integral tables (Table 8-1) and substituting
numerical values, we find that
2
VYE s o 0.016K2 —399K t5.015
avT,]_ T —4K#* T5K2 T0.005K

To determine the minimum value of N it is
convenient to make a plot of N versus K.
This avoids a differentiation of N with re-
spect to K which results in a fourth-degree
algebraic equation whose roots must then be
determined. It is evident that using the plot
to determine the minimum is a simpler tech-
nique. The minimum from the plot is found to
occur at K = 1.1or N = 0.90. Consequently,
the optimum system has

K, = 90 sec!

[F] — 0.095 milliradian

If the noise is considered, the procedure is
more involved but unchanged in principle.

The results of the minimization of ¥, with
the noise added to the data as follows:

K, = 7.8sec!

"

y.2 | = 2.21 milliradian
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8-3 OPTIMUM SYNTHESIS OF FREE-CONFIGURATION SYSTEMS
WITH STATIONARY STOCHASTIC INPUTS®7 1121319

The design problem for the optimum syn-
thesis of free-configuration systems with sta-
tionary stochastic inputs is one of determin-
ing the closed-loop transfer function

(6]

R(s)
that minimizes the mean-square error when
information is given concerning the datav ('7),
noise n(z), desired output i(¢), and fixed-
element transfer function G;(s). No infor-
mation concerning the form of the compen-
sation G,(s) is needed. Figure 8-6 shows the
configuration that describes the problem (Gq
is the ideal element transfer function).

= W(s) (8-14)

The solution to this problem is obtained by
means of the calculus of variations and is in
the form of an integral equation :

fw dtsg;(ts

f"" dtsw (£2) bpe(ty + s — by — £5)

) [7 atug, ()

J— m

—f " dtag,(ts) ui (t1+ ts) =O0fort, =0

(8-15)
where

g, (t) = impulse response of fixed elements

G.(s) [ Gyls)

Fig. 8-6 Configuration for MSE minimization

w(t) = impulse response of control sys-
tem (L[W(s)])

#w (1) = autocorrelation function of r(7)

ér: (1) = crosscorrelation function between
7(t) and 2(¢)

If the fixed elements are minimum phase (no
zeros in right-half s-plane) or are unspecified,

Eq. (8-15) reduces to the Wiener-Hopf equa-
tion : (s,12,15)

[t o (=) — 0 (1) =
O0fort; =0
(8-16)
If the autocorrelation functions and the
impulse response of the fixed clements are
Fourier transformable, Eqgs. (8-15) and
(8-16) can be solved in terms of transforms
by a method called spectrum factorization.
For Eq. (8-15), the optimum system function

W (s) is given by

I'(s)
W(s) = LA(s) 1+ (8-17)
A+ (s)
where

I'(s) = 2aG/(—s) ®.i(s)
A(S) = 27[G,(S) G,(—S) (I)rr(s)

A+ (s )4 that factor of A (s) which contains
all the poles and zeros of A(s)
which lie in the left-hand s-plane

A‘(S) = —LA(S
A+(s)
I'(s) A

that part of the partial-frac-
tion expansion of T" (5 JA- (s)
dueto the poles of I' (s YA- (s)
which lie in the left-half s-

l.

A-(s)

plane
I'(s) ] __I'(s) - [F(s)
A(s)l_ ~ A(s) A=(s) I+
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Transformation and factorization of Eq.

(8-16) yiclds
_®.(s)
-, (s)
@+, (s)

(8-18)

where the notation i1s the same asthat defined
below Eq. (8-17).

Example. G, (s) is minimum phase, and

_ 07V
®,,(s) = X (— ) (s
®D,,(s) = 1~

n
q)vn(s) =0

6, — 10 milliradian/sec
v=0.1sec?

¥, = 0.4 (milliradian)? — sec
1(t) = v(¢t)

Normalize the frequency scale by letting

S
A= —
v
Then,
o, 1
(I)m) A = —
V= T a-m
Qﬂn(l) - i
n
Let
o2 =q andvy,=2>
Ve

Since the data and noise are un orrelat d

(q)vn - 0)’
D, (1) = P (M) + uu (V)=
b ¢z — A2 4 A
n [(—7&2) (1—133%)
where
a 0,2
_ = =2 104
¢t = b V3 Yn 5 X

Since the desired output<('7)is the datav (1),
@ () =@, (1)

Equation (8-18) applies to this problem. To
find @, (A) and ®+, (k) it is necessary to dis-
tinguish between poles and zeros in the two
half planes. Since ®,,(A) has a double pole on
the imaginary axis at the origin, the following
artifice is used. We let

—32 =1lim £ —4A) & T3
e 0

ThE:'_problem can then be worked with (g — A)
A) replacing —A2. After carrying out the

pertinent algebraic manipulations, we let e~ 0.
This is equivalent to factoring —3? into (— A)
(tA)  and then associating (—*) with the
right-half plane (RHP) and (+*) with the
left-half plane (LHP). Therefore, the factor-
ization of @ (A) becomes

(m+jn4+1) (m—jn41)

@, (A) =

(+2) (1 43)
[g (m 4 jn—1) (m—jn—1)
n (=2) (1 —=12)
where

m—=105+/2¢ +1=1532
n=05+/2c —1=15.80

The factor of ®,.(A) having all its poles and
zeros in the right-half plane is

b m+tjn—14 (m—jn—)

o (A) =
" n (=M1 =3
Therefore,
Qu(s) _
o (s)
c2

(+1) A+ 1) (m+jn—1) (m —jn—1)

This function has left-half-plane poles at
A = 0and» = —1.Expanding in terms of par-
tial fractions and retaining only those terms
in the expansion due to LHP poles, we obtain
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4
D.M)] {_1__1+c+\/20+1}
[@;,(A) L 1+
or
4] (s 1)(—“—1+\fc+1“)
[(1’;(1)]: et i- T n
Since,
o+ (1) = (m4+m4+)(m—gn+1)
” (+2)(Q412)
(1+\éZc+1 +l)

Numerically, since A = 10s and ¢ = 500, the
optimum response is

1+0.613s
where

)2+2c(win) +1
§=‘/;—+i=0.704

W(s) = e

Wy,

W, =v\/c = 2.24

The open-loop transfer function correspond-
ing to the optimum response is

CH) _ .06,y = (1+1+\f——§_ﬂl)
E@ oM A1 +1)
or,numerically, The rms error due to the signal acting alone is
C(s) _ 5, (06135 +1) 7] " = 0.796 milliradian
E(s) §(10s +1)

The mean-square error ¥, can then be evalu-
ated by using Eqgs. (8-11) and (8-12) together
with Table 8-1. The rms error due to noise
alone is found to be

|7

1/2
= 1.35milliradian
n

8-10

Consequently, the total rms error is

== B+ .
|

1/2 . . .
ye“] = 1.57 milliradian
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8-4 LIMITATIONS AND APPLICATION PROBLEMS

Several difficulties confront the designer
who carries out the optimization procedure in
any practical problem. He finds that (1) the
labor involved becomes excessive, and (2) the
resulting optimum compensation is both dif-
ficult to realize and unrealistic. The latter dif-
ficulty arises because cancellation of the fixed-
component transfer function is required, re-
sulting in component saturation and poor
utilization of hardware. One factor acting in
favor of the designer using the ISE and MSE
criteria is that the minima resulting from the
use of these procedures are broad. Thus, a
fairly wide deviation of parameters and con-
figurations can occur without appreciably
altering the performance index. Hence, the
labor involved in designing by optimization
techniques can be reduced greatly by judicious
engineering approximations. In addition,
more freedom is available to the designer
when the minima that arise in an optimization
problem are broad since he can then satisfy
additional performance specificationssuch as
rise time, peak overshoot, etc. The same can-
not be said for the ITAE criterion since itisa
selective criterion producing narrow minima
that leave little freedom to the designer.
Therefore, the ITAE criterion is not to be rec-
ommended if parameter variation is to be ex-
pected and other performance specifications
are to be met.

Techniques for vvercoming the second lim-
itation of optimization procedures have been
proposed by Newton.(1® He recommends
that constraints be placed on the signals that
are not to saturate. That is, the optimization
is to be carried out by requiring that the per-
formance index be minimized while the sig-
nals that may saturate are kept below a speci-
fied upper limit. Actually, however, a measure
of the peak-signal values is used to facilitate

analysis. In the case of transient inputs, the
integral-square signal values are to be kept
below assigned limits. In the case of stochastic
signals, the rms signal values are to be con-
strained. It is also possible to combine the two
types of signals by requiring, for example,
that the rms error for a stochastic input be
minimized subject to a constraint on the inte-
gral-square value of a specified signal for a
transient input.

Newton'" also proposes that constrained
optimization be carried out by minimizing
bandwidth since a minimum bandwidth sys-
tem is highly desirable in any case. Thus,
bandwidth is minimized subject to a con-
straint on the allowable error index.

By employing constrained optimization
using performance indices that exhibit broad
minima, the designer can approach a problem
with a greater degree of certainty of finding
out whether his specifications are compatible
and, if compatible, whether they can be met
in practice.

The optimization procedures discussed here
have been limited to transient inputs and sta-
tionary stochastic inputs. If the input is non-
stationary, then the optimum system will be-
come nonstationary or time-variable. If the
form of the time variation in the input statis-
tics is known, it is possible to design a system
which exhibits variable bandwidth. Unfor-
tunately, there is as yet no general method for
finding an explicit analytical solution to this
problem. If the time variation in the input
statistics is slow compared with the response
time of the system, then the nonstationary
problem can be broken down into a series of
stationary segments. If the input statistics
vary at a rate that is of the order of the re-
sponse time of the system, then one cannot
ignore the nonstationary nature of the prob-
lem.
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CHAPTER 9

SAMPLED-DATA SYSTEMS*

9-1 GENERAL THEORY

Linvill states, “A sampled-data control sys-
tem is one wherein the signal supplied to one
or more parts of the system 1is not given con-
tinuously in time, but is supplied at discrete
values of the time variable, . In such a system,
the partof the systembeing fed intermittently
might, for example, have an input signal ap-
plied toitatf =0, T,2T, 3T, ... (where T is
the length of time between samplings) with no
data atall supplied in the intervals separating
these sampling instants. A control system
makes use of sampled data when it is impos-
sible to supply continuous data to all its
parts.”?

fQuoted by permission from Transactions of the
AZEE, Volume 70, Part 11, 1951, from article en-
titled “Sampled-Data Control Systems Studied
Through Comparison of Sampling with Amplitude
Modulation,” by W. K. Linvill.

SAMPLING CARRIER
SIGNAL

ot o) SAMPLING

z
g DEVICE

If the sampling frequency is high compared
to the signal frequency and the critical fre-
quencies of the system, then the fact that the
data are sampled has little bearing on system
behavior. Otherwise, the effect of sampling
may become quite pronounced.

Figure 9-1 shows the elements of a typical
sampled-data system. The input 7 (¢) may be
composed of sampled or continuous data. The
sampling device periodically samples the actu-
ating signal e(t) under control of the carrier
signal supplied to it. The holding circuit is
used to smooth the sampled output from the
sampling device, and the smoothed output of
the holding circuit then drives the output
member. Itisevidentthatthe components and
signalsin the system are combinations of dis-
crete and continuous elements. Because part

*By L. A. Gould

ourpur | €V m
MEMBER

HOLDING
CIRCUIT

Fig. 9-1 Sampled-data system.
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of the system operates on sampled data and
part on continuous data, the analysis of sys-
tem behavior is not easily carried out by con-
ventional methods. For that part of the sys-
tem operating on continuous data, conven-
tional methods of analysis are best. For that
part operating on sampled data, the use of
sequences and linear difference equations is
best. However, methods have been developed
which treat sampled-data systems from a uni-
fied viewpoint and will be presented in this
chapter.

A sampled-data system like that in Fig. 9-1
can be represented by the mathematical mod-
el shown in Fig. 9-2. The impulse modulator
is an ideal device thatmultiplies the actuating
signal e(t) by the carrier signal A(z). The
function A(t) represents a periodic train of
unit impulses occurring at a frequency
Q@ = 2n/T radians per second (Fig. 9-3)—
where @ is called the sampling frequency. The
equivalent linear filter is so chosen that the
combined operation of the impulse modulator
and equivalent linear filter on the actuating
signal in the model produces the same input to
the output member as the combined action of
the sampling device and holding circuit in the
original system. For example, a system in
which the actuating signal is sampled every T
seconds by a device which holds a particular

1) et)

mAdLSBR

sample value atthat value until the next sam-
pling time is called a sampler-clamper. Its ef-
fectis shown in Fig. 9-4. This type of behavior
can be exactly represented by the combination
of an impulse modulator anda filter whose
transfer function G.(s) is

1 . e~st
GC(S) g 3

(9-1)
In the mathematical model, the output of the
impulse modulator will be a.train of impulses,
the magnitude of each being the value of the
actuating signal at the corresponding sam-
pling time. Although such a signal does not
exist in the physical system, it is useful to
isolate the action of the impulse modulator
and combine the equivalent linear filter with
the output member for the purpose of
analysis. The impulse modulatoris thought of
as a synchronous switch, controlled by a car-
rier, which periodically closes the connection
between the actuating signal and the input to
the equivalent linear filter (Fig. 9-5). The sig-
nal e(t) entering the switch is continuous in
this picture, but the signal e* (¢) leaving the
switch is discrete (sampled). It is also pos-
sible for the signal e ('t )to be discrete as well,
in which case the action of the switch has no
effectif itis synchronized with the discrete in-
tervals associated with the input. We will
adopt the convention that an impulse modula-
tor (or synchronous switch) operates on all

EQUIVALENT

LINEAR

FILTER PR

Fig. 9-2 Model of sampled-data system.

9-2
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signals entering it (whether continuous, dis-
crete, or a combination of both) to produce a
discrete output. Signals that have been sam-
pled, and are therefore discrete, will be repre-
sented by starred functions. Thus, the opera-
tion of an impulse modulator is as represented
in Fig. 9-6.

The carrier signal A(¢) in a sampled-data
system is represented by

A = (9-2)

n——ow

d,(t — nT)

The Laplace transform of this function is

+0

A(s) = X

n=0

e Ts

(9-3)

or

1

MO =TT

(9-4)

If a signal 7 ('t )is sampled by an impulse mod-
ulator, the sampled output »* (t) is

r*(t) = A(t)r(t) (9-5)

Solt—XTI Solt —(k +1T

e

Fig. 9-3 Train of unit impulses which represents
the carrier A(f).

OUTPUT OF SAMAL ER-CLAMPER
o(t) [

[

to to+ T ty+2T

Fig. 9-4 Action of sampled-clamper.

or

—+o0
™) = X

n——co0

r(nT) 8o(t —nT)  (9-6)

The Laplace transform R* (s) of a sampled
signal is

1 +=
R*(s) =7":§w R (s + jnQ) (9-7)
where
o= %ﬁi (9-8)
and
R(s) =L[r(t)] (9-9)

Another form of the transform of a sampled
signal is

r(nT) enTs

R*(S): §

1n=0

(9-10)

Note that a starred transform like B* (s ) rep-
resents the transform of a starred (sampled)
time function. Also from Eq. (9-7), starred
transforms are periodic functions of fre-
quency, the period being j Q. That is,

R*(s) ~R*(s +an) (9-11)
it e(t) e*(t) [FILTER AND c(t)
by OUTPUT
MEMBER

Fig. 9-5 Simplified picture of sampled-data system.

x(t) A ()

Fig. 9-6 Operation of sampling switch.
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9-2 THE z TRANSFORM AND THE w TRANSFORM

9-2,1 THE z TRANSFORM

Whenever a time function is transformable,
it can be shown that the transform of the
function when sampled is a rational function
of ¢7%; i.e.,

R*(s)= F(e7) (9-12)

where B* (s)isthetransform of the sampled
function 7* ('t ). If we let

o e—.eT

(9-13)

then transforms of sampled-time functions
are functions of anew complex variable x. The
ztransform of atime function »(7) is then de-
fined asthe Laplace transform B* (s) of r*(t)
where r* ('t ) is the function produced by im-
pulse modulating 7(7), and the z transform
is obtained by replacing =% by z in B* (8).1t
is conventional to-let B* (x) represent the z
transform of »(¢) although, rigorously, one
should use R* ( —1/T log.z).

If the Laplace transform E(s) of a func-
tion 7 ('t )is known, the z transform R* (x) can
be found by expanding R (s) in a partial- frac-
tion expansion and using the formulae given
below. If

R(s) = 31 (9-14)
=1 8+ a,
then
Ri(z) = §—fu (9-15)

=11 — zeuT

A shorttable of ztransforms and their equiva-
lent Laplace transforms is given in Table 9-1.
For more extensive tables sec references 35,
25, and 26. Unfortunately, several authors
have adopted the relation x — e+*T, This nota-
tion arose from the mathematics of difference
equations, but it is awkward and physically
deceiving in the present connection, since
et*T corresponds to ideal prediction. There-
fore, when using the literature, care must be
taken to verify which particular notation is
being used. In reference 5, for example, all the

9-4

expressions for X transforms should have x re-
placed by z! to make them correspond to the
notation adopted in this chapter.

The introduction of the x transform enables
one to treat sampled-data systems by all the
techniques available for continuous-data sys-
tems sinceitisevident thatthe process of sam-
pling a time function can be represented by a

TABLE 9-1
LAPLACE AND =z TRANSFORM PAIRS
Laplace
Transform : z Transform :
F(s) F*(2)
1. 1 1
2_ evnTx zn
3. L 1
S 1—=z
4| 2 I
s* (1 —2)2
5, 1 1
s+a 1—zeo?
6 a 2(1 —eT)
s(s+a) (1 —2) (1 —ze7)
7 a zsinaT
s? +a? 1 —2zcosuT 2
8. F(s4a) F* (=T x)
9. e*TF (s) 2 F* (x)
10. eF (s) Z /Ty F* (x )
1 1
1. s +1— log.a 1+
T
12 S 1 —zcosal
s2 T g2 1 —2z cos aT T 22
13—t TexTz
(s +a)? (1 —z e=er)2
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0, j20

0,i0

0,0

0, -j0

0, -j20

7

A. sPLANE

UNIT CIRCLE

ae—

B. zPLANE

Fig. 9-7 Relations between s plane and z plane.

variable transformation from the sdomain to
the z domain. The z transform 1s a conformal
transformationthat mapstherighthalf of the
s plane into the interior of the unit circle of
the z plane and the left half of the s plane to
the exterior of the unit circle of the z plane.
The imaginary axis of the s plane 18 mapped
into the unit circle of the z plane, the s-plane
origin (043j0) mapping into the point
(+1 43j0) in the z plane. These relations are
shown in Fig. 9-7. Because a z transform is
periodic (period = j@) ,the points (0 F jkQ)
(k=1,2,38,..) in the s planec also map into
the point (+1 —+70) in the z plane as shown in
Fig. 9-7. Similar relationships are easily visu-
alized and are treated later in this chapter.
There is one point which must be emphasized,
however. Sincethe z transform of a time func-
tion represents the Laplace transform of the
corresponding sampled-time function, infor-
mation about behavior between sampling in-
stantsis lost and cannot be recovered from in-
spection of z transforms. However, Barker 24
has developed a method for determining
behavior between sampling instants. This
method is described in Par. 9-5. It should also
be noted that the z transform is related to the
Mellin transform which is used to develop the
theory of transforms and to study problems in
clasticity .(2®

9-5

9-2.2 THE w TRANSFORM

Because of the difficulty involved in relating
some of the properties of sampled-data sys-
tems to the frequency-domain concepts that
are most convenient to apply in the study of
continuous systems, Johnson et al®® have
suggested a very useful transformation of
variables that aids greatly in design. If

_1—w
T 14w

(9-16)

is a bilateral transformation from the z plane
to the w plane, then
R*(w) =R*(z) 1—w

141w

(9-17)

is defined asthe w transform of r(t).The ad-
vantage of introducing the w transform be-
comes evident when an attempt iS made to
evaluate B* (s) for s = jo. Such an evaluation
requires an infinite “vector” sum, theoretical-
ly [Eq. (9-7)1, or else evaluation of R*
through the use of e7T = cos oT +j sin oT
and soitis fairly difficult to obtain in practice.
The usc of the w transform, on the other hand,
simplifies the determination of the frequency
response of sampled-data systems. The w
transform maps the unit circle in the 2z plane
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into the imaginary axis in the w planc and re-
stores some of the analytical advantages that
were lost through the sampling process. If

w=1u-+ v (9-18)
then
v = tan (921) (9-19)

gives the relation between the real frequency
« and the pseudo- frequency v corresponding

tothe imaginary part of w.Thereal frequency
w, from Eq. (9-19),is

w = 2 tan-! v (9-20)

T

The primary advantage of the w transform is
that the transforms of sampled signals can be
represented by a rational function of a fre-
quency variable w that is simply rclated to the
frequency . In the following sections this
property is brought out clearly.

9-3 OPERATIONAL METHODS

9-3.1 GENERAL

The operational definition of impulse modu-
lation given in Par. 9-1 simplifies the study of
sampled-data systems.

9-3.2 BASIC RELATIONS OF SAMPLED
FUNCTIONS

The following basic relations arc casy to
verify. From Fig. 9-8, it is evident that:

C(s) =G(s)R*(s) (9-21)

C*(s8) = G*(s)R*(s) (9-22)

[R* (s)]* =R*(s) (9-23)
From Fig. 9-9, it is evident that:

C(s)y =G(s)R(s) (9-24)

C*(s) =[G(s)R(s)]* (9-25)

C* (s )=G* (s)R* (s)!! (9-26)
From Fig. 9-10, it is evident that :

B 1 (9-27)

R* (8) 14 G*(3)

€ __ GG (9-28)

R*(s) 14+ G*(s)

C*(s) _ G*(s) (9-29)

R*(s) 1+ G*(3)

The foregoing relations indicate that all the
techniques of block-diagram algebra can be
used to manipulate sampled-data-system con-
figurations except for the added restrictions

9-6

G(s)

) J

Fig. 9-8 Sampling a smoothed sampled signal.

G(s) LM

Fig. 9-9 Sampling a filtered continuous signal.

[ ¢ c*

G(s)

Fig. 9-10 A sampled-data feedback system.
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that an impulse modulator (a) "stars" all
signals entering it, and (b) its position in a
diagram cannot be interchanged with a con-
tinuous transfer function. Equation (9-26)
is included to emphasize the fact that the
starred product of two Laplace transforms is
not cqual to the product of the corresponding
starred transforms.

The equations relating to Fig. 9-10 [Egs.
(9-27) through (9-29)] introduce some of
the properties of sampled-data feedback sys-
tems. In particular, the stability of a sampled-
data system is related directly to the zeros of
the following expression :

14+ G*(s) =0 (9-30)

If any of the roots of this equation lie in the
right half of the s plane, the system is un-
stable. Nyquist's criterion (Par. 4-3) can be
applied directly to determine the stability of
sampled-data systems, except for one modifi-
cation. Since G* (sY is a periodic function, it
has an infinite number of poles and zeros, but
the pole-zero configuration is repeated for
every multiple of jo. Similarly, the G* (8)
locus in the s plane is repeated every time s
changes by 7Q. Because the G*(s) plot is
symmetrical about the real axis in the s plane,
G* (s) need only be plotted for 0 < jo < j0/2
when s = jw. In practice, the s-plane contour

INFINITE
SEMICIRCLE

s=0

\

-I'jg-(ifu<0f

-%ig

\

A. G*(s) PLANE

0 < jw <4}

and the corresponding G* (s) locus are as
shown in Fig. 9-11 when the Nyquist cri-
terion is applied. In terms of the z plane, Eq.
(9-30) becomes

1+6*(z) =0 (9-31)
The stability of the system is determined by
plotting G* (x) as z traverses the unit circle.
If there are any roots of Eq. (9-31) that lie
inside the unit circle, the system is unstable.
The difficulty encountered in plotting G* (s)
or G*(x) from the required variation of s or
z is removed when the w transform is in-
troduced. G* (w)is easily handled since it is
expressible as a rational function of a fre-
quency variable.

Example. Consider a simple servomecha-
nism with block diagram shown in Fig. 9-10.
The physical device includes a sampler-
clamper (See Par. 9-1), a servomotor having
a one-second time constant, and an ideal am-
plifier. The transfer function of the continu-
ous portion [including the filter as in Eq.
(9-1)3 is given by Eq. (9-32).

G(s) =K (l_e—-*> 1 , T — 1 sec.
8 s(s41)
(9-32)
_ INFINITE STRIP
+ig >
5 1
‘ —
_j% -

B. s PLANE

fig. 971 Relations between s and G*(s) for application of Nyquist criterion.
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From Eq. (9-7),we obtain
I}—G*(s) =
E 1
n=—w (8 'I'jm))2 (1 Ts +an)
(9-33)

L]
N

(1—e)

where @ = 2n/T = 2n.

This function is difficult to plot for s = jw.
Taking the z transform of Eq. (9-32), we get
2(0.264z ¥ 0.368)
(0.3682z — 1) (x — 1)

This function is difficult to plot for z = e,
Letting

KLG* (2) = (9-34)

1 —w
1T w

: (9-35)
the wtransform of Eq. (9-32) is found to be
(1 —w) (0.632 +0.104w)
(0.632 +1.368w) (2w)
(9-36)

when w = jv, the function in Eq. (9-36) is
casily handled by conventional techniques
since the relation between the wplane and the
G* (w)plane is the same kind of relation as
that which exists between the s plane and the
G (5 ) plane. If the real frequency o is to be
considered, then there is an added difficulty
in that Eq. (9-20) must be used to calibrate
the frequency locus. The asymptotic and
gain-phase plane techniques can be used with
a change only in the relation between v and w.

KLG*(’M)) =

9-3.3 ADDITIONAL PROPERTIES OF SAMPLED
FUNCTIONS

(2) G* (&) =

ol

] dp  (9-37)

(b) If G(s) = N(s) -and D ('s) has only
D (s)
simple poles,
% (g7 o A(sa) 1
G (e ) - 'nzl B’(S") 1 . e—T(x—xn)

(9-38)
where s, is the nth pole of G (s).

9-8

(c) If the z transform of a time function
7(t) is given, the value of the time function
atthe sampling instants can be found from

=7 (nT) = l—f R*(2) 7 dz
2rj

(9-39)

where the contour integration in the z plane

is along a path that encloses all the singular
points of R* (x)z'-"

(d) Initial-Value Theorem :

lim 7 (¢) = lim (1 —2z)E*(#)

z->0

t->0

(e) Final-Value Theorem :If B* (x) hasall
its poles outside the unit circle of the z plane,

lim » (¢) :hm (1 —2z)R*(z) (9-41)

t>o0

(9-40)

f) Fors:i—j——(k =0,1,2,.

Q_E"_

T )

(g) The degree of the denominator of
G* (x) in z always equals the degree of the
denominator of G(s)in s if G ('s)is rational.

(h) The poles of G* (x)

L), G (2)

isalwaysreal (

in the strip
—j%-< Im(s) < +j—%— inthesplanearethe

poles of G(s)in the s plane.

(i) Changing the values of the poles of
G(s) changes the coefficients A (s,)/B’ (s,)
as well as the terms 1/(1 — zet7%) in the
partial-fraction expansion of G*(z) [Eq.
(9-38)].

(j) Insertion of zeros in G(s) changes
only the coefficients A (s,)/B’' (s,) .

(k) Thenumber of poles of G* (x) atz = 1
is equal to the number of poles of R (s) at
s =0.

() In terms of the w transform, the ini-
tial value theorem is

lim r(t) = lim (_Z)V_ RB*(w)

1+w

(9-42)

w->1
and the final-value theorem is

limr (£) = lim R* (w) (9-43)

t>c w>0 |+ wW
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9-4 DESIGN TECHNIQUES

The problem of designing a sampled-data
system is complicated by the fact that the
system can contain both discrete and contin-
uous ¢lements. In addition, direct application
of x-transform theory merely gives the re-
sponse at the sampling instants, but the be-
havior during the sampling instants cannot
be determined by simple methods.

The insertion of a sampling device in an
otherwise continuous system to produce a
sampled-data system introduces the following
limitations :

(a) A greater tendency towards instabil-
ity results.

(b) Ripple components arise in the output
at the sampling frequency and its harmonics.

(¢) The usable bandwidth of the system is
reduced to a fraction of the sampling fre-
quency , the theoretical upper limit being
Q/2.

To determine the gain necessary to sta-
bilize the system for a specified M, in the
closed-loop frequency response, the introduc-
tion of the w transform greatly facilitatcs
plotting the frequency locus as indicated in
Par. 9-3. Conventional continuous-system
techniques can be used.

The root-locus procedure can be used in a
conventional manner in the z plane to investi-
gate the closed-loop pole-zero configuration.
This procedure differs from that used for
s-plane loci of continuous systems in that:
(a) instability implies closed-loop poles in-
side the unit circle of the #z plane (as con-
trasted to right-half-plane poles in continu-
ous-system design), and (b) the dominant
pole (or pole pair) is the pole nearest the
point (1,0) in the z plane (as contrasted to
poles nearest the origin in the s plane).
Otherwise, conventional procedures can be
used to investigate stability, relative stabil-
ity, and the effect of compensation.

Compensation of sampled-data systems
with continuous networks (conventional lead
and lag networks) is a difficult design prob-
lem and is best trecated by trial-and-error
analysis. In many important applications
discrete networks can be used for compensa-
tion; for example, the use of digital compu-
ters in fire-control systems provides the de-
signer with an opportunity to use digital
(discrete) filters in the compensation of the
control system. Figure 9-12 shows the differ-
ence between continuous and discrete com-

G (s) Gyls)

‘.

>

Gy (s)

G‘(S)

 J

8. DISCRETE COMPENSATION

Fig. 9-12 Comparison between discrete and continuous compensation.

9-9
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pensation. In Fig. 9-12A, G, (s ) is the trans-
fer function of a continuous network which
is used to improve the closed-loop behavior;
G;(s) is the transfer function of the fixed
elements. In Fig. 9-12B, G.* (s) is the trans-
fer function of a digital network (digital
program) used to improve system perform-
ance. For the case of continuous compensa-
tion, we have

E*(s) _ 1 (9-44)
R*(s) 1+ [G.(5)Gs(s)]*
C(S) — Gc(s)Gf(s) (9_45)
R*(s) 1+ [G.(s)Gs(s)]*

For digital compensation, we have
B (s) 1 (9-46)

R*(s)  1+G*(s)GH(s)

Cl) . G)Gr(s)
R*(s) 1 TG*(s)G,*(s)

Compensation with a digital network is a
simpler analytical problem than continuous
compensation because the effect of the com-
pensation can be varied without altering the
fixed-element contribution to the open-loop
response  G;* (s)G,*(s). For continuous
compensation, the open-loop response is
[G.(s)G,(s)]*, and altering the compensa-
tion will alter the contribution of the fixed
elements to the open-loop response. Conven-
tional continuous system techniques can be
used for synthesizing digital programs to
compensate sampled-data systems ;but if con-
tinuous compensation is desired, a trial-and-
error analytical procedure is necessary.

(9-47)

9-5 PERFORMANCE EVALUATION

The determination of the time response of
a sampled-data system can be carried out in
closed form by the use of Eqgs. (9-38) and
(9-39). A simple numerical procedure for
determining the values of the output at the
sampling instants can be obtained by expand-
ing the z transform of the output in a power
series in z. Since z corresponds to a time
delay of one sampling instant, the coefficients
of the power-series expansion of a z trans-
form are the values of the corresponding
time function at the sampling instants, as
can be seen from an examination of Eq.
(9-10). The expansion is easily performed by
dividing the numerator by the denominator
since the z transform is a rational function.

Example.
Assume that the z transform of the output
is given by:
0.186(z* +1.392)
(1—x)[0.55422 — 1.108z 1]

C*(z) =

Dividing the numerator by the denominator,
the power series expansion of C* (x) is found
to be

C*(z) = (.26)z F (76)22 + (1.17) 2
+ (1.36)z¢ + (1.33)* + (1.20)z¢
+ (1077 F (99) + (96)22 ...

The coefficients of this expansion are the
sampled values of c¢(t), and the instant of
occurrence is determined from the power of
z in the appropriate term. The function is
plotted in Fig. 9-13.

An alternate method for finding the time
response of a system is based on a difference-
equation representation. Assume that

C*(S)__ Qo +(l1e_3T +afze_28T+
R*(s) bt bieT T hyerer T

" (9-48)
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Fig. 973 Sampled-time function.

Cross-multiplying, inverse transforming, and
solving for ¢(nT), we obtain

e(nT) = bl[a(.r(nT) +ar[(n —1)T]

+...—b’1c[ (n—1)T]
—boe[(n —2)T} — ... (9-49)

This is a general recurrence formula which
enables one to calculate the present value
c(nT) of the output in terms of a weighted
sum of the present and past values of the
input 7 (t) and the past values of the output.
The calculation is best carried out in tabular
form.

Example. Assume that the closed-loop trans-
fer function of a sampled-data servomecha-
nism is

C*(z) _ 15z

R*(z) ~ 1+052
If r(t) is a unit step, the tabular evaluation

of ¢(nT) can be carried out as follows. Cross-
multiplying, we get

c* 056 7C* =157 R*

Inverse transforming, we obtain
c(nT) 4.05¢[(n —1)T]
=157r[(n —1)T]
or
c(nT) = 1.57[(n—=1)T]
—05ce[(n—1)T]

when r (nT) is a unit step, and where the sys-
tem has been atrest sothat ¢(—T) is zero, the
calculation of ¢(nT) can be carried out in tab-
ular form as follows :

1.5r —0.5¢

n|[(n—1)T] [(n—1)T] c(nT)

0 0

1 1.5 0 0

2 1.5 —0.75 1.5

3 1.5 —0.375 0.75

4 1.5 —0.562 1.125

5 1.5 —0.469 0.938

6 1.5 —0.516 1.031

7 1.5 —0.492 0.984

8 1.5 —0.504 1.008

9 1.5 —0.498 0.996
1.002

The values in the last column are plotted in
Fig. 9-14. In general, it is necessary to know
the value of ¢ (nT) for values of n correspond-
ing to time prior to the beginning of the tran-
sient. If the system is of kth order, it is neces-
sary to know ¢ (nT) for k prior to the samples.
This corresponds to the need for knowing the
initial conditions in any transient problem.

c(nT) —f
(=
e
-

Fig. 9-14 Step response of sampled-data system.
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Since the z transform does not give the
value of the outputbetween sampling instants,
Lago and Truxal® have suggested a method
which enables one to determine the output at
submultiples of the sampling period T. A fic-
titious impulse modulator is placed immedi-
ately after the actual one (Fig. 9-15). The fic-
titious sampler has a sampling period which
is an integral submultiple of 7 ;i.e.,

T = L (9-50)
n
As a result, we can write
R*(z") .
c'* = —— . G'* 9-51
@) = oot sy €7@ (98D

where G'* (x) and C'™ (z) are z transforms of
g (t) and c(¢) with respect to the period T,
and R*(z") and G*(z") are z transforms of
r(1)and g ('t )with respect to the period T but
with zreplaced by z*.

An extension of the method above is given by
Barker.?4 In this extended method. the out-
put atany time between sampling instants can
be found. If we refer to Fig. 9-16, it can be
seen that the artificial delay produces a signal
¢' (#) which one can sample in order to observe
the values which will occur between the values
of ¢* (1).We find that

G*(z,m)

c* (Z,m) = m

R*(z)  (9-52)

where G*(z,m) 1s a modified z transform.
G* (z,m) is evaluated by assuming that g (7)
issampled at? = (n +m— 1) T instead of at
t = nT. A brief table of modified z transforms
is listed in Table 9-2. A more extensive table is
given by Barker.2% The use of Eq. (9-52)
enables one to scan the output by varying m
between zero and unity. Thus, the variation of
the output between sampling instants is ob-
served, and a study of the ripple can be made.

912

G(s)

Fig. 9-15 Determination of c(f) between sampling
instants by sampling at n Q rad/sec.

gel1-mlTs

v

et 1l-m)Ts

Fig. 9-76 Determination of c(l) beiween sampling
instants through the use of an artificial delay.

The error coefficients of asampled-data sys-
tem may be obtained from the expression

i [

Since E*(s) /R* (8)is arational function in z,
where z = e*7, we can expand it in a Taylor
series (in x) about the point x = 1 (s = 0).
Then, by using the infinite series expansion of
¢*T and rearranging terms, we can easily
obtain the Taylor series expansion of
E#*(sYR*(s)intermsof sats = 0:

1

e, =

dn

ds”

E*(s)
R*(s)

(9-53)

n!

%':j_; =ao+a;(z —1) 4+ ay(z —1)2

+ az(z —1)3 +
(9-54)
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TABLE 9-2 MODIFIED x TRANSFORMS

or

E* ) g, —T(a)s F T2 (an + i) s?

R* (s) 2! F(s) F*(z,m)

_T3(a3+a2+:«*§L!)s3+... (9-55) . 0

The techniques described in this section can 1 z
be used to obtain the transient response, the s 1—=2
ripple, and the error coefficients of a sampled- 1 T2
datasystem. Using trial-and-error procedures _— L2E A mz
and the conventional continuous-system de- s (1—2)*
sign techniques, the evaluation of a given sys- 1 ze-amT
tem in terms of a set of performance specifica- — ﬁ
tions is a straightforward matter. §+-a —zet
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CHAPTER 10

NONLINEAR SYSTEMS*

10-1

All of the techniques of system analysis
discussed in previous chapters are restricted
in their application to linear systems. This
restriction imposes two limitations on design.
First, components must be of high quality if
they are to operate in a linear manner when
amplitudes and frequencies of signals vary
widely. Second, the linearity restriction limits
the realizable system characteristics, the
types of systems, and the tasks that can be
accomplished.

Nonlinearities are generally of two types:

INTRODUCTION

incidental and intentional. Incidental nonlin-
carities are secondary effects which limit per-
formance in otherwise linear systems. Exam-
ples of phenomena that introduce incidental
nonlinearities include backlash, saturation,
dead zone, hysteresis, and coulomb friction.
On the other hand, intentional nonlinearitics
arethose introduced purposely to improve the
characteristics of systems or to alter them in
specified ways. The contactor (on-off orrelay)
servo is the most extreme example of such an
intentionally nonlinear system.

10-2 DESCRIBING FUNCT'ON PROCEDURE5(7,8,'|2,|3,|5,]8,19,21,22,3|,35,36,42,50,5'|,52)

One problem to be analyzed in an investiga-
tion of nonlinear system behavior is that con-
cerned with the question of stability. A
method of studying this problem utilizes the
describing-function procedure. The applica-
tion of the describing-function procedure en-
ables the designer to predict whether or not
a closed-loop system containing a nonlinear
clement will be stable. A system is said to be
stable if, after a sudden input or disturbance,
it eventually comes to rest. In some systems
the existence of a stable oscillation is accept-
able provided the amplitude of the oscillation
is small. A typical case is a relay control sys-
tem where a small amplitude oscillation may
be acceptable if the cost of eliminating the

"ByL.A. Gould
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oscillation is too high. A system is said to be
unstable if a finite input or disturbance to the
system results in an output oscillation that
tends to grow without bound.

The describing-function method is based on
three assumptions:

(a) There is only one nonlinear element in
the system. If there are more than one, that
part of the system including all nonlinearities
is treated as a single nonlinear component.

(b) The characteristics of the nonlinear
clement are independent of time. They depend
only on the present value and past history of
the input to the element.

(c¢) If the input to the nonlinear element is
sinusoidal, only the fundamental sinusoidal
component of the output of the element con-
tributes tothe input of this element.
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The last assumption is the heart of the
method. It 1s applicable when the amplitude
of the harmonics generated by the nonlinear-
ity decreases and when the eclements that fol-
low the nonlinearity have low-pass character-
istics.

Referring to Fig. 10-1, the method of anal-
ysis is as follows. The input x (7)to the non-
linear element N is assumed to be sinusoidal
with amplitude X and frequency w. The output
1y (1 ) will be periodic (butnonsinusoidal) with
the same frequency w. A Fourier analysis of
the output waveform ismade and all frequen-
cies except the fundamental are ignored. The
amplitude ¥, of the fundamental will, in gen-
eral, be a function of X and w, as will be the
phase angle of the fundamental relative to the
input. The describing function of the non-
linear element is defined as a complex num-
ber whose magnitude is Y,/X, the ratio of the
amplitude of the fundamental component of
the output to the amplitude of the input, and
whose angle is the phase angle of the funda-

— G1$ N 2(8) |
+

fig. 10-1 Nonlinear feedback control system.

mental component of the outputrelative to the
phase angle of the input. The describing func-
tion is usually denoted by N (X,w) . Symbol-
ically, if

x(t) = Xsin ot (10-1)
then
Y(t) =Y, sin (ot +¢1) + Y.2 sin
(ot F¢5) T Y 35in (0t +g,F ...
(10-2)
and
IN(X,w)I - %{1— (10-3)
LN(X,0) = ¢1 (10-4)

The describing functions of several impor-
tant nonlinearities will now be presented.
Figure 10-2showsthe input-output character-
istic of a contactor with inactive zone A (dead
zone) and hysteresis #. The amplitude and
phase curves of the describing function N of

OUTPUT Y

A
Y

f 3
y
4
Y
z
o
c
i
>

Fig. 10-2 Dimensionless representation of contactor
characteristics (case involving both inactive
zone and hysteresis).

Adapted by permission from Transactions of the AIEE. Volume
69, Part I, 1950, from article entitled ‘A Frequency Response
Method for Analyzing and Synthesizing Contactor Servomecha-
nisms’, by R. J. Kochenburger.
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this contactor as functions of the input ampli-
tude X appearin Fig. 10-3. Figure 10-4 shows
the input-outputcharacteristics of anonlinear
element containing both dead zone D and sat-
uration S. No phase shift is associated with
this element since, in general, phase shift will
not occur for a single-valued nonlinearity. The
describing function for no saturation (S—e)
is presented in Fig. 10-5. The describing
function for no dead zone (D = 0) is present-
ed in Fig. 10-6. Describing functions for vari-
ous combinations of dead zone and saturation

appear in Fig. 10-7. Figure 10-8shows the in-
put-output characteristic of a nonlinear ele-
ment characterized by hysteresis (backlash or
free play). The describing function for this
nonlinearity is presented in Fig. 10-9. Other
describing functions for more complex non-
linearities can be derived for the particular
case being considered. Additional describing
functions are given in the literature (8192
The procedure for using the describing
function to predict the nature of the stability
of a nonlinear system follows. Referring to
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Fig. 70-3 Plot of the describing function N (simple contactor with hysteresis ratio h/A).

Adapted by per from Tr. ti of the AIEE, Volume
69, Part I, 1960. from article entitled 'A Frequency Response
Method for Analyzing and Synthesizing Contactor Servomecha-
nisms', by R. J. Kochenburger.

10-3



NONLINEAR SYSTEVS
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Fig. 10-4. Nonlinear characteristic with dead zone
and saturation.

By Se\rmission from Automatic Feedback Control System Syn-
thesidx by J. G. Truxal, Copyright, 1955, McGraw-Hill Book
Company. Inc.

]
- —
peet—1""1
0.8 X - =
1
A
N 0.6
Ky
0.4
/
0.2 4
[¢]
(o) 2 4 6 8 10
X
[3)

Fig. 70-5 Describing function for dead zone.

Adapted by permission from Automatic Feedback Control Sys-
tem Synthesis, by J. G. Truxal. Copyright, 1955, McGraw-Hill
Book Company, Inc.

Fig. 10-10, the linear and nvnlinear portions
of the system are separated into two parts;
the describing function N applies to one part,
and the response of the lincar elements G to
the other. The gain-phase plane is employed
for plotting the negative reciprocal (—1/N)
of the describing function. The response
G (jw) of the linear clements is also plotted on

I.OL
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5 0.4 u
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o

wlx n

Fig. 10-6 Describing function for saturation.

Adapted by permission from Automatic Feedback Control Sys-
tem Synthesis, by J. G. Truxal, Copyright, 1955, McGraw-Hill
Book Company, Inc.
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Fig. 10-7 Describing function for saturation and
dead zone.

By permission from Automatic Feedback Control System Syn-
thesis, by J. G. Truxal, Copyright, 1955, McGraw-Hill Book
Company. Inc.

the same plane. If the —1/N locus and the
G(jw) locus do not intersect, the system is
stable and does not oscillate. If the —-1/N
locus and the G (jw) locus do intersect (two
types of intersections can occur), the system
may or may not be oscillatory. The describing
function for a contactor with hysteresis and
dead zone is sketched in Fig. 10-11 wherein
the types of intersections of the —1/N locus
with a G(Jw) locus are shown. The parameter
along the —1/N locus is the amplitude X of
the assumed sinusoidal input tu the nonlinear
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Fig. 10-9 Describing function for hysteresis-type
nonlinear element.

Adapted by permission from Transactions of the AIEE. Volume
72, Part 11, 1953, from article entitled ‘Describing Function
Method of Servomechanism Analysis Applied to Most Commonly
Encountered Nonlinearities’. by H. D. Grief.
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Fig. 10-10 Simplified nonlinear system.
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Fig. 10-11 Stability determination with
describing function.

element. Three cases illustrating the types of
intersection of the G (jw) locus with the
—1/N locus are shown in Fig. 10-11.

Case 1. The G(Jw) locus does not intersect
the —1/N locus. The system is stable and no
oscillation occurs.

Case 2. The G(jo) locus intersects the
—1/N locus attwo points A and B. Point A is
called a divergent equilibrium point since
sustained oscillations cannot be maintained at
the frequency w4 and amplitude X4 associated
with 4. The existence of a divergent equili-
brium can be determined by treating the
—1/N locus as one treats the —1 +j0 point
in the study of the stability of linear systems.
If the amplitude X associated with point A de-
creases slightly, the G (jo) locus will be lo-
cated in a stable position with respect to the
—1/N point, and oscillations will tend to die
out. Ifthe amplitude X tends to increase from
X4, the G(jw) locus encloses the —1/N point
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(correspondingto instability), and the ampli-
tude of oscillation will tend to increase. Thus,
oscillation cannot be maintained at A. How-
ever, point B is a point of convergent equilib-
rium, as can be determined by letting the
amplitude X both increase and decrease rela-
tive to X5. In each case, the tendency will be
for the amplitude of the oscillation to head
back to point B. Thus, the convergent equilib-
rium point B determines an amplitude Xg
(read off the —1/N locus) and a frequency
wp [read off the G (jw) locus] at which a sus-
tained oscillation occurs.

Case 3. The G(jw) locus intersects the
—1/N locus at point C. This is a convergent
equilibrium point, as can be determined by
letting the amplitude X increase or decrease
relative to the amplitude X, associated with
the intersection C. In each case, the amplitude
of oscillation will tend to return to X,.

The describing-function method thus pre-
dicts the stability of nonlinear systems, as
described above. If intersections occur be-
tween the —1/N locus and the G (jw) locus,
the amplitude and frequency of convergent
oscillations can be predicted to an accuracy
that is determined by the assumptions inher-
ent in the method. Techniques for estimating
the accuracy of the results are given in ref-
erences 15 and 52.

The describing-function procedure breaks
down if the two loci (— 1/Nand G) approach
cach other without intersecting, are tangent,
or intersect at a small angle. In these situa-
tions one cannot be certain as to whether or
not oscillations exist.

In general, the accuracy of the describing-
function method increases as the cutoff rate
of the linear element (fo/lowingthe nonlinear
element) increases. The accuracy may de-
crease if the linear element exhibits a sharp
resonance.

The describing-function procedure is use-
ful in predicting the closed-loop frequency re-
sponse of a system containing an incidental
nonlinearity when no oscillation can occur.
Thereby, peculiarities in measured charac-
teristics can be explained, and quantitative

estimates of nonlinear effects can be made. By
treating the —1/N locus as the equivalent of
the —1+ 70 point of conventional linear anal-
ysis, the degree of stability of a system con-
taining anonlinear elementmay be estimated.
Instead of aligning the (—180°, 0dg) point of
the Nichols chart with the (—180°, 0 dg)
point of the G{j®) locus in order to determine
M,, as is done when a linear element is pres-
ent, the (—180°, 0 dg) point of the Nichols
chart is aligned with a point chosen on the
—1/N locus of the nonlinear element for a
given amplitude X of the input to the element,
when a nonlinear elementis present. The tan-
gency of the G locus (plotted on the same co-
ordinates as the —1/N locus) to an M contour
of the Nichols chart will then be an indication
of the degree of stability associated with the
chosen amplitude X. Moving the (—180°, 0
dg) point of the Nichols chart along the —1/N
locus is equivalent to changing the amplitude
X of the input to the nonlinear element. By
this means, the variation of the degree of
stability (as measured by M,) can be deter-
mined as a function of the amplitude of the
input to the nonlinear element. The relation
between the amplitude X (inputto nonlinear
element) and the reference-input amplitude
R can be determined for each M, value from
the following relations (see Fig. 10-1).

= W LGatin)|

where w, is the frequency associated with the
point of M, tangency for ecach value of X
along the —1/N locus.

These methods can be extended to deter-
mine the entire frequency response of a sys-
tem by noting the intersections of other M
contours with the G locus at each value of X
and using the following relations to deter-
mine the input amplitude (or amplitudes) R
associated with each value of X :

(10-5)

CGw) | |_Gi(jw)N Gs(jw) (10-6)
R(jw) | | 14 G1(jw) N G2 (jw)
X (jw) 1 ‘ C(jw)

— 10-7
Ry |~ NG| | RGay | 107
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Example. A rclay (contactor) servomech-
anism employs a relay with a ratio of hyster-
esis h to dead zone A of 0.5. The describing
function of the relay is plotted in Fig. 10-12
as a function of the normalized input ampli-
tude a, where a = X/A, The linear element
G,(jw) is apure gain K (sce Fig. 10-1). The
linear element Gz (jw) is represented by the
relation

1
70 (0.05j0 + 1)

The block diagram of the system is shown in
Fig. 10-13. The response G:G: of the linear
elements is plotted in Fig. 10-12with K/4A =
20 as curve (B).No intersection occurs, and
so the system is stable. If the gain factor K
isincreased by 8.5dg (afactor of 7.1), curve
(A) is obtained. Now, an intersection occurs
for a = 0.9 and w = 55 rad/sec. This intersec-
tion is a convergent equilibrium point, and
the system will therefore oscillate at 55 rad/
gsec with an error amplitude E = 0.00635
since

Gz(j(l)) -

+l0 dg

+Sdg

O de

-8 dg

-10 dg

4

- Gy(Ja)G,

4
8 A

(iw)4

I 4

-180°* -160°* -l40° -120° ~00*

_ao.

Fig. 10-12 Contactor servomechanism study.

B1= TR/
R{jo) E(ja) " o 1 Cljw)
and A N M ™eos e T
K/A= 142 -
For the stable case, curve (B) of Fig. 10-12
and Eq. (10-5) are used to determine the
variation of M, with the magnitude |R| of the ) )
sinusoidal input. The results are plotted in Fig. 10-13 Contactor servomechanism.
Fig. 10-14.
40
|
| 5 \\
M, 2.0 \§
\\
10
0
0 0005 0010  Gulillem 0.020
L3

Fig. 10-14 Degree of stability variation with input
amplitude for contactor servomechanism.
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-l 0_3 P H AS E-P |. AN E P Roc E D U RE S(2.3,4,5,6,23,24,25,26,27,3o,34,39,40,4 1,44,46,47,48,51,52,53)

The main limitation of the describing-
function procedure is that it cannot predict
the response of stable nonlinear systems to
inputs that are not sinusoidal. In contrast, the
phase-plane method is an attempt to describe
the response of nonlinear systems to specific
transient inputs. In this method, attention is
focused on the differential equations that
describe the system, and the behavior of the
system is studied by plotting velocity versus
displacement with time as a parameter. This
velocity-displacement plane is called the phase
plane. Only second-order systems can be
handled in the phase plane although attempts
have been made to treat higher-order systems
by a phase-space representation. (34:40.46,47,48,53)

Phase-plane analysis is concerned with the
characteristics of the differential equation

xFa(zx)ze To(z,a)z =0 (10-8)

The phase-plane portrait of the system is a
plot of the velocity x as a function of the dis-
placement x,the plot being a family of curves
depending on the initial conditions x (0) and
x(0). Once the initial conditions have been
specified, the behavior of the system is deter-
mined completely by the curve in the phase
plane corresponding to the given initial con-
ditions. Thus, the phase-plane approach is
most useful in determining the response of a
system to a step input. Since a step input does
not always occur in practice, the application
of the phase-plane technique is severely re-
stricted when the response to other types of
inputs is sought.

As an example, consider a second-order
“linear system whose characteristic equation
i

!

!

| X +2'Qw,, xFw2x=0

(10-9)
If the velocity x is treated as a new variable
y, then, by eliminating the dependence of the
above equation on time, there results

Wy o, + w2 £ =0 (10-10)
dx Y

Equation (10-10) is a first-order equation
for ¥ as a function of x and has a family of
solutions depending on the initial values ¥ (0)
and x(0). Each solution is called a phase
trajectory, and the totality of solutions is the
phase-plane portrait of the system. The phase
trajectories for Eq. (10-10) are shown in
Fig. 10-15for ¢ = 0.5. In this figure, if the
initial conditions correspond to the point A4,
then the motion of the system is completely
described by the trajectory ApA;4:434,A4;4,
with time increasing in the direction of the
arrows.

In a more general case, it may be very diffi-
cult to solve the equation that describes the
trajectories. A graphical procedure involving
the determination of the isoclines (lines of
equal slope) is then possible.® Referring to
Eq. (10-8), the slope of the phase trajectories
is found to be

EZ_?i
dx

By setting the right side of this equation
equal to a constant, a curve connecting points
of equal slope is determined. The isoclines
thus obtained are plotted in the phase plane,
and the slopes of the various phase trajec-
tories can be drawn directly on the isoclines.
If a large number of isoclines are drawn, the
phase trajectories can be accurately deter-
mined.

=—a(z,y) — b(zy) = (10-11)
Y

Once the phase portrait of a system has
been constructed, the behavior of the system
can be investigated. If the response of the
system for a given set of initial conditions is
sought, the corresponding phase trajectory
determines the response. The variation of
time 7 along the trajectory can be ascertained
from the relation

t:f—l—dx
Y

The nature of the stability of the system
can be determined by an investigation of the
singular points of the system. If the behavior

(10-12)

10-8



THEORY

of a second-order system can be described by
the two first-order equations

x = P(2,y) (10-13)
Y =Q(x,y) (10-14)

the points at which x == 0 and ¥ = 0 are called
the singular points of the system and repre-
sent equilibrium states of the system. If the
trajectories approach a singular point, the
system is stable; whereas, if they diverge
from the singular point, the system may be
unstable. To investigate the naturc of the
equilibrium at a singular point, a Taylor
series expansion of the functions P (x,y) and
Q(z,) is made about the point, and all but

the first-order terms in expansion arc neg-
lected. Thus, the singular points are deter-
mined from the solutions of the equations

P(x,y) =0 (10-15)
Q(z,y) =0 (10-16)

The linearized forms of Egs. (10-13) and
(10-14) atthe singularpoint x = gandy = b
become

x=a;(x —a) Ya.(y —b) (10-17)
v=b(x —a) o,y —b) (10-18)

where a4, a, by, and b, are coefficients of the
expansion. Six types of singular points can
occur :
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Fig. 10-15 Phase portrait of linear second-order system with {, = 0.5.

By permission from Autfomatic Feedback Control System Syn-
thesis, by J. G. Truxal. Copyright. 1955, MeGraw-Hill Book
Company, Inc.
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(a) Stable node (Fig. 10-16)

(@, Ths) <0 (10-19) |'

(a1 + bs)? > 4 (a1by — @2b1) (10-20) v

(b) Unstablenode (Fig.10-17) s
(ar+by) >0 (10-21) /

(a; Fb2)2 > 4(aibs — asby) (10-22) /

(c) Stable focus (Fig. 10-18)

(a, b)) <0 (10-23) Fig. 10-17 Portrait in the vicinity of an
(@ 4 b2yt < 4(asbs — asby) (10-24) unstable node.

(d) Unstable focus (Fig. 10-19) 3.yesi1f"1';,ivss30." (t:O'Ilr“lr:x,;’l?m(‘flf)i[fyrf;ehet‘,iba]cgssfagdtgélra%;‘{eﬂrln e
(@ tb,) >0 1025y

(a, F b.)2 <4(abs —asby) (10-26)

(e) Center (Fig. 10-20)

(@, ¥b,) =0 (10-27) y

(a:1bs —ashy) >0 (10-28) \

(f) Saddle point (Fig. 10-21) \

(a,thr)=0 (10-29)

(a,by —axby) <O (10-30) f_[-\\\

The relations among the various singular
points and the Taylor series coefficientsgiven
by Eqgs. (10-19) through (10-30) are sum-
marized in Fig. 10-22.

\ Y Fig. 70-78 Portrait in the vicinity -of a

\ stable focus.

By permission from Automatic Feedback Control System Syn-
) L . thesis. by J. G. Truxal, Copyright. 1955, McGraw-Hill Book
Fig. 10-18 Portrait in the vicinity of a stable node. Company, Inc.

By permission from Automatic Feedback Control System Syn-
theaia, by J. C. Truxal. Copyright. 1955, McGraw-IIill Book
Company, Inc.
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Fig. 10-19 Portrait in the vicinity of an
unstable focus.

By permission from Automatic Feedback Control System Syn-
thesis. by J. G. Truxal, Copyright, 1955, McGraw-Hill Book
Company, Inc.

N
&

Fig. 10-20 Portrait in the vicinity of a center.

By permission from Automatic Feedback Control System Syn-
thesis, by J. G. Truxal. Copyright, 1956. McGraw-Hill Book
Company, Jnc.

In the case of feedback control systems, the
problem is simplified because Eq. (10-13) can
be replaced by

=1 (10-31)
and the Taylor series coefficients @; and a2
become

a; =0 (10-32)

=1 (10-33)

(.

=

Fig. 10-21 Portrait in the neighborhood of a
saddle point.

>\\\\7/

Adapted by permission from Automatic Feedback Control .S}':‘Izs-
tem Syntheeis, by J. G. Truxal, Copyright, 1955. McGraw-Hill
Book Company, Inc.

In addition to the determination of the
singular points, a complete description of the
stability of a system in the phase plane re-
quires a determination of the /limit cycles of
the system. A Jlimit cycle is an isolated closed
path in the phase portrait which corresponds
to a system oscillation of fixed amplitude and
period. A limit cycle is stable or unstable
depending upon whether the paths in the
neighborhood converge toward the limit cycle
or diverge away from it. Thus, there arise
two general types of self-excitation of non-
linear systems. Soft excitation occurs when a
limit cycle encloses an unstable singular point
(Fig. 10-23) ; hard excitation ocecurs when a
limit cycle encloses a stable limit cycle or a
stable singular point (Fig. 10-24). There is
no definite method available for determining
the limit cycles of a system or even if a limit
cycle exists. The only approach is to deter-
mine the convergent and divergent properties
of the phase trajectories. Thus, if all trajec-
tories are converging outside a circle C,
(centered at the origin) and diverging inside
a smaller circle C. (centered at the origin),
then a stable limit cycle must exist between
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Fig. 70-22 Types of singularities.

By permission from Automatic Feedback Control System Syn-
thesis, by J. G. Truxal, Copyright, 1955, McGraw-Hill Book
Company, Inc.
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Fig. 10-23 Portrait with soft self-excitation.

By permission from Automatic Feedback Control System Syn-
thesis. by J. G. Truxal, Copyright, 1955, McGraw-Hill Book
Company, Inc.

STABLE
SINGULAR POINT

4:\\ X

UNSTABLE

STABLE
LIMIT CYCLE

Fig. 10-24 Portrait with hard self-excitation.

By permission from Automatic Feedback Control System Syn-
thesis, by J. G. Truxal, Copyright, 1955, McGraw-Ilill Book
Company, Inc.

the two circles. In particular, an examination
of the time rate of change of the distance r
from the origin for small and large values of
x and ¥ can determine the divergent or con-
vergent properties of the phase trajectories.
Several other conditions for the existence of
limit cycles have been determined.® Some of
these conditions are the following :

(a) No limit cycle exists in any region
within which

5P 3Q

dx dy
does not change sign.

(b) Within any limit cycle the number of
nodes, foci. and centers must exceed the num-
ber of saddle points by one.

(¢) If a trajectory stays inside a finite
region and does not approach a singular
point, then the trajectory must be a limit
cycle or approach a limit cycle asymptoti-
cally.

Knowing the trajectories, the singular
points, and the limit cycles of a system, the
behavior of the system is completely deter-
mined when the initial conditions are speci-
fied. The determination of the trajectories
and the singular points is a straightforward
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procedure; the determination of the limit
cycles, however, is more difficult. The com-
plete phase portrait can then be used to deter-

mine the nature of system stability, and the
response of the system (if stable) is readily
ascertained.

10-4 LIMITATIONS, COMPENSATION, AND OTHER METHODS

As discussed previously, the describing-
function procedure is primarily effective in
determining the existence of limit cycles and
predicting the amplitudes and frequencies
associated with stable limit cycles. To a lesser
degree the describing-function procedure can
be used to estimate qualitatively the degree
of stability of stable nonlinear systems. In
addition, the describing-function method can
be used to determine the frequency response
of nonlinear systems therefore, it is helpful
in explaining anomalous experimental results.

The phase-plane procedure is useful in
determining the exact nature of the stability
of nonlinear systems in situations where the
describing function method is inapplicable.
In addition, the time response of a nonlinear
system can be determined expeditiously
through the use of the phase-plane so that a
more quantitative estimate of the degree of
stability of a system can be obtained.

Unfortunately, neither the phase plane nor
the describing function can be used to deter-
mine the response of a nonlinear system to
inputs other than simple steps or sinusoids.
Since these elementary inputs rarely occur
in practice, the utility of the two methods is
severely restricted.

When the input to a system is arbitrarily
defined, it is necessary to use either numeri-
cal computation (545556 or_more conveniently,
analog or digital computers. The analog com-
puter is an especially powerful aid in the
study of nonlinear systems.

Some specific remarks are in order regard-
ing the stabilization and compensation of
nonlinear systems. If the describing-function
method is applicable, stabilization can be ac-
complished by reshaping the response G (jw)

of the linear element with conventional linear
functions to eliminate intersections between
the describing function and G (jo). A non-
linear compensation function may be added
to reshape the original describing function.
If the added nonlinearity is separated from
the original one by a low-pass filter, the de-
scribing functions of the two nonlinearities
can be multiplied directly to obtain the com-
posite describing function of the nonlinearly
compensated system. If the compensating
nonlinearity immediately precedes or follows
the original nonlinearity with no separation
by filtering action, a new describing function
must be determined by combining the input-
output characteristics of the two nonlinear-
ities. In the latter case. the effect of the added
nonlinearity on the original describing-func-.
tion locus is much more difficult to visualize.

A great deal of effort has been devoted to
the study of “optimum™ nonlinear systems.
The basic assumption in these studies(5-11.23.24,
25,27,30,34,41,44,46,48) is that a system having a
transient response (to a step inmput) that
settles in a minimum period of time and has
a minimum overshoot is an “optimum”™ sys-
tem. The limitation of such “optimization™
methods is due primarily to the fact that a
nonlinear system will behave differently for
different inputs. As a result, a system that
has been “optimized™ for a given step input
may behave poorly for other step inputs of
different magnitude, and it is likely that it
will not behave in an optimum manner in
response to other types of inputs.

In conclusion, it should be said that the
problems of stabilization, compensation, and
optimization of nonlinear systems have, as
vet, not been adequately treated.
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