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SPACE-TIME CORRELATIONS OF VELOCITY AND PRESSURE AND 

THE ROLE OF CONVECTION FOR HOMOGENEOUS TURBULENCE IN 

THE UNIVERSAL RANGE 

David M. Chase 

TRG/A Division of Control Data Corporation 

ABSTRACT 

Kolmogorov's principles provide a basis for th 

treatment of Eulerian space-time correlations for turbulence 

in the universal range by explicit separation of the kinematic 

effect of convection by the large eddies. With reference to 

unsheared homogeneous turbulence, the usual similarity forms 

are assumed for intrinsic velocity correlations in a local co- 

moving frame.  The local-convection approximation, neglecting 

dispersion in this frame and hence relating space-time correla- 

tions to pure spatial correlations, is indicated to be a useful 

one in the inertial and viscous subranges.  For an isotropic 

normal velocity distribution, the structure functions of fluctua- 

ting velocity are computed and found to be nearly space-time 

isotropic in the former subrange and exactly so in the latter. 

The wavenumber-frequency spectrum of energy in the mean rest 

frame, E,(k,o)), however, in the regime of large m/vok, where vQ 

denotes rms velocity, is not given correctly by the local- 

convection approximation, but essentially involves disper- 

sion.  Taylor's hypothesis relating wavenumber (k,) spectra 

in the mean rest frame to frequency spectra in  a measurement 
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frame with velocity -ü is found, in the local-convection 

approximation for the inertial subrange, to be exactly valid 

for all v /u provided a particular effective convection velocity 

different from u is assumed; for sufficiently large k,L, where 

L is the scale of energy-containing eddies, the dispersive 

correction to this result is negligible. A plausible explicit 

form is proposed for the intrinsic energy spectrum in the co- 

moving frame, and consequent corrections to results of the 

local-convection approximation for space-time correlations 

and spectra are computed. This dispersive correction to correla- 

tions is appreciable at Reynolds numbers of typical grid- 

turbulence experiments.  An extension of the basic separation 

of convection and the local-convection approximation to shear 

flow is suggested. 

From kinematic and similarity arguments for the 

inertial subrange, inferences are also made concerning pressure 

spectra in a measurement frame with velocity (-u ,0,0) relative 

to the unsheared flow.  A similarity form results for the 

wavenumber-frequency tpectrum P(K,uu)[K = (k^kj)] in the vicinity 

of the convective ridge (lu> - k,u I ^ v K).  For v /u «1, the 

functional form is then obtained for the point frequency spectrum 
A     -7/3 A 

P(U))(*Uü   ); the convective contribution to the spectrum Q(iu) of 

average pressure on a moving circular area of radius R for 

111R /u »1 is smaller by a factor 0.8(u»R /u )  .  On assumption 

of quasinormality of the velocity distribution and use of the 

non-dispersive approximation of space-time isotropy for the 

longitudinal correlation, the spectrum P(R,uu) in the vicinity 



of the convective ridge is determined explicitly, as well as 

the cross-spectral density and space-time correlation of 

pressure.  From quasinormality, P(R,uu) is estimated also in 

the low-wavenumber domain.  In the limit uuR /v »1 the 

ratio of the lov-wavenumber to the mean-convective contribution 

* 10/3 
to the moving-area spectrum Q(u>) is ~(v0/

u
0)   (^o^o^' 

i 
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1.       INTRODUCTION 

In previous descriptive and phenomenological treat- 

ments of turbulence, Eulerian space-time correlations of 

fluctuating velocity have received limited attention relative 

to ihat accorded spatial correlations at a fixed time.  Yet 

time correlations have been extensively measured, are amen- 

able to familiar kinematic and similarity arguments, and 

have essential importance in a number of applications. 

Eulerian time correlations, i.e., in the general 

sense, correlations of quantities measured in a coordinate ' 

frame whose uniform motion is defined independently of the > 

decorrelating fluid motions in question,  are influenced 

by convection.  Convection, where it has meaning, is a kin- 

ematic effect and cm He treated trivially and independently 

of the turbulent dynamics.  Moreover, when the large-scale 

convective effects are separated out, it becomes possible 

to invoke similarity considerations to treat the effect of 

the dispersive residual fluid motion. 

Accordingly, some principal objectives of the 

present paper are to elucidate the role and consequences of 

convection, assess the validity and explore the consequences 

and limitations of the local-convection (non-dispersive) 

approximation relating space-time correlations to purely 

spatial correlations, and to propose and apply a dispersive 

generalization based on similarity in the inertial subrange. 

4. 
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These questions are pursued in the spirit of Kolmogorov's 

principles; no effort is made to deal with the explicit 

dynamics of turbulent flow. Further verification or mod- 

ification may presumably be expected from currently devel- 

oping treatments of turbulent dynamics.  The type of flow 

treated is stationary, unsheared, homogeneous, and incom- 

pressible. A generalized form of the non-dispersive approx- 

imation is suggested also for shear flow. 

This investigation originated in a concern for 

the properties of fluctuating pressure In a turbulent bound- 

ary layer.  Accordingly, a further objective is to consider, 

in the light of the work on velocity spectra, also pressure 

spectra in unsheared homogeneous turbulence, not only rela- 

tive to a frame in which the mean velocity vanishes, but 

also a measurement frame moving at a velocity -u, say. 

We thereby introduce a convection velocity as a kinematic 

effect unrelated to the dynamics; thus u plays a role sim- 

ilar to that of the local mean flow velocity in boundary- 

layer turbulence but without the complication of a shear 

flow. 

As it was the motivating context, we review briefly 

how the problem of pressure fluctuations in a turbulent 

boundary layer impels consideration of space-time correlations 

* 
The assumption that the turbulence is stationary as well as 
homogeneous and isotropic implies, strictly speaking, the 
presence of isotropic, statistically homogeneous energy 
sources.  Alternatively, we may regard the turbulence as 
decaying, but with a characteristic time large compared to 
any time incervals considered. 



of velocity.  Consider the wavenumber-frequency spectrum 

of pressure in the plane bounding a turbulent flow, P(K,o)) 

[K = (k,,k-)].  If the turbulent eddies were of frozen 

shape, an eddy convected downstream at speed u would gen- 

erate pressure fluctuations at a given frequency co only 

via its component having streamwise wave number k. = tu/u; 

hence if the convection speed at no depth in the flow ex- 

ceeds the as'-^Dtotic flow speed Uo, the spectrum P(1T,üJ) 

would contain only wavenumbers K £ cu/U  [K - | K \].     In actu- 

ality, though the wavenumber spectrum peaks above o>/U , it 

does not vanish at lower wave numbers but has a "tail" there 

on account of non-convective effects, i.e., distortion and 

decay of eddies. 

In certain applications, however, some wavenumber 

range in this tail with K«tw/U is heavily weighted relative 

to the range K^u/U.-  This circumstance is true of the frequency 

spectrum of pressure averaged over a large area, e.g., over the 

face of a flush-mounted transducer of radius R where wR0AJ„»TT, 

by virtue of spatial averaging of the short-wavelength compo- 

nents with K^TTR" .   It is true also of the frequency spectrum 

of pressure on an area or at a point shielded from the flow by 

a layer of material of thickness L>>Um/uu and of large lateral 

extent, at low Mach number, on account of acoustic attenuation 

of disturbances having wave lengch smaller than that of sound 

in the intervening layer.  Hence, to achieve a theoretical 

For elaboration of this discussion see Chase (1965). 

The spectrum of average pressure due to wave numbers Kxi/U, 
in this situation has area dependence as R"3. 

6 
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account of the effect of area averaging for a flush area 

and of acoustic averaging for a shielded area, we must know 

how the wavenumber spectrum of pressure declines with de- 

creasing K in the non-convective tail where K< u>/U . 

Furthermore, this tail is relevant to the scaling of 

boundary-layer pressure spectra with the flow parameters, which 

has not been unambiguously established through the whole 

domain of interest.  Specifically, by the usual relation 

between the pressure and its fluctuating velocity sources 

(Eq.(A-l)], contributions to pressure are attenuated ex- 

ponentially with source depth X2 and parallel wave number 

K, i.e. as expC-Kxj).  At relatively high frequencies, 

therefore, the convective contribution to pressure, having 

K>a>/U  will derive mainly from velocity sources not far 

outside the viscous sublayer.  The characteristic length 

involved by this contribution is thus likely to be the sub- 

layer-thickness parameter v/v^, where v+ is the friction 

velocity.  On the other hand, the non-convective, low- 

wavenumber contribution will derive from sources at greater 

average depth, perhaps extending through a substantial 

fraction of the boundary layer.  The characceristic length 
'*  
In the very low-wavenumber range K^co/c, wh re c is the 
sound velocity in the fluid, it becomes necessary to 
consider compressibility. 

•kit 
This conclusion would be certain if all the coordinate 
spatial scales of fluctuating velocity components in the 
transition layer varied as wall distance Xo; if some 
scales are determined by the large eddies, however, they 
will be of the order of the displacement thickness in- 
stead of the wall distance.  Recently, Bradshaw (1965) 
has contributed to a grasp of this scaling dichotomy. 

?. 



involved by this contribution may thus be rather the displace- 

ment thickness ö*. Therefore, the scaling of the resultant 

average-pressure spectrum depends at each frequency on the 

appropriately weighted magnitude of the wavenumber spectrum 

of pressure P(K,u:), and hence of fluctuating velocity, in the 

non-convective range K<u>/U relative to that in the convective 

range K>tu/U . 

The scaling of the two contributions could be nearly equivalent 
if both are independent of the respective length parameters; 
the frequency spectrum of point pressure then would vary as a>"1. 

i 



2.       ROLES OF CONVECTION AND DISPERSION AND THE LOCAL- 
CONVECTION APPROXIMATION FOR EULERIAN SPACE-TIME 
CORRELATIONS AND SPECTRA OF VELOCITY 

Let the Eulerian space-time correlation function 

between a quantity a(x,t) measured at position x at time t 

and a quantity ß(x+r,t+T) measured at x+r, t+T in a given co- 

ordinate frame be represented, on assumption of a stationary 

homogeneous process, by 

(2-i)    <a(x,t)ß(x+r,t+T)> = Waß(r,T), 

where <> denotes an ensemble average. Let W Q(r ,T)  represent 

the correlation function for the same two measurement events 

where 7    refers to the spatial separation in a frame moving 

relative to the first at the constant velocity -ü.  The 

Galilean transformation between frames vields the familiar 

functional relation 

(2-2)    Waß(r,T) = Waß(r-ÜT,T). 

This rudimentary relation reflects the kinematic character of 

convection.  In the w&venumber-frequency domain, the corres- 

ponding relation between the respective four-dimensional trans- 

forms becomes 

(2-3)    E4uß(RV) = E4aß(K\a>-ü.k-). 

We turn explicitly to stationary homogeneous turbu- 

lence and consider the Eulerian correlation function (2-1) 

in the mean rest frame with a and ß taken to be components of 

« 
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fluid velocity, say v, and v..  Since we shall consider the 

universal equilibrium range, we prefer ordinarily to deal with 

the velocity structure function (multiplied by %);  we denote 

this two-point, two-component tensor by ¥. .(T,T): 

(2-4)    ^(^.T) = % <[v1(3f + 7, t+T) - vi(3f,t)][vj(x+"F,t+T) 

-v.(x,t)]>. 

For I« j, this quantity is the decrease of the autocorrelation 

from unity; we shall call such quantities "decorrelations." 

2.1      SEPARATION OF THE LARGE-SCALE CONVECTIVE EFFECT 

We now restrict consideration to spatial separations 

r and time delays T that correspond to the universal equilibrium 

range, namely 

(2-5)    r « L, vo | T | « L, 

where v represents the rms magnitude of fluctuating velocity 

and L the characteristic scale of the large, energy-containing 

eddies.  Together, the conditions (2-5) insure that the spatial 

separation of the two correlated space-time points in a frame 

convected with the local velocity (~v ) associated with the 

large eddies (an average of the local velocity at the two points) 

is small compared to the size of the large eddies.  Later we 

shall restrict consideration to Reynolds numbers high enough 

for existence of an inertial subrange where viscous effects 

are negligible. 

10, 



It is an underlying assumption of the Kolmogorov 

(1941) theory of the universal range that the large eddies 

convect the small eddies without directly distorting them. 

A related, and probably consequent, assumption is that, viewed 

in the local frame in which the motion due to the large eddies 

vanishes, the small eddies are statistically independent of 

the large.  These points have been emphasized by Kraichnan 

(1964) and were recognized, for example, by Heisenberg (1948), 

Von Weizsäcker (1948), and Silverman (1957). 

We may thus consider a subset of realizations of 

the velocity field all corresponding to approximately the same 

local velocity v in a given space-time region of small size 

(defined by (2-5)) and take a statistical average of the two- 

point velocity product over this partial ensemble.  By the 

stated assumptions, the resulting velocity correlation tensor, 

if expressed as a function of coordinates in the frame with 

velocity v, will be independent of v.  We shall call the 

Eulerian correlation function referring to this frame, which 

is locally co-moving for any given convection velocity v due 

to the large eddies, the intrinsic correlation function,  and 

designate the corresponding decorrelation tensor as ^.(r,!) 

Icf.  (2-4)].  For r=0, t\i(0,:) is the time correlation in a 

frame which for each realization may be taken as that in which 

the velocity at the initial time t vanishes; the Eulerian 

time correlation so defined is closely related to the Lagrangian 

time correlation and is equal to it in the limit of small * 

11 



and perhaps for all T. We may alternatively view the partial 

ensemble average at fixed v as a spatial average over a re- 

gion of dimensions larger than r (the separation in the co- 

moving frame) and larger than VQT, but small compared to L. 

In view of relation (2-2) for fixed v the decor- 

relation tensor in the mean rest frame is related to the 

intrinsic decorrelation by 

*ij(*.*0 -fyCr-VT.T) 

We let P^Jd-'v denote the probability that the fluid velocity 
»i 

in the mean rest frame lies in the three dimensional element ^ 

d v of velocity space. Performing now the average over the 

local convection velocity v due to the large eddies, which 

is identified in the approximation in question with the total 

fluid velocity, we obtain the basic relation of the standard 

Eulerian space-time correlation (2-4) to the intrinsic decor- 

relation : 

(2-6)    ty(r,T) = /d^P^) ^(T-V'T.T). 

Setting T = 0, we note the obvious relation 

(2-6a)   ^(F.O)« ¥^(7,0). 

The pure spatial decorrelation ¥,,(7,0), we recall, 

according to Kolmogorov's principles is an Isotropie tensor. 

Likewise, by the related earlier assumption, the intrinsic 

decorrelation *<«(*»T) is isotropic even for t^O.  It does 

12 



not generally follow, however, that ¥,,(r,T) Is Isotropie 

for t=0, in spite of condition (2-5), since in (2-6) the 

probability density P(v) referring to the large eddies may 

not be Isotropie, i.e., it may depend on the direction of v. * 

Relation (2-6) separates out the purely kinematic, 

convective effect of the large-scale eddies from the instrinsic 

small-scale properties of the turbulence.    The equivalent 

of relation (2-6) was given in the present context by 

Silverman (1957). An instance of use of a relation of the 

same sort where the function having the role of ¥..(r,T)  does 

not depend on the argument i  is provided, as Silverman noted, 

by the standard treatment of the scattering of radio waves by 

aggregates of discrete scatterers in random motion (e.g., 

Kerr (1951)). 

While the separation (2-6) in the universal range 

is doubtlessly valid to some approximation, it is not entirely 

clear how far this approximation may be pushed without resort 

to Kolmogorov's principles in a questionably strong form. 

it 
We could also abandon the earlier assumption of homogeneity 
in the domain (2-5) and write a generalization of_F.q. (2-6) 
where P(v) would depend also on position and f,,(r,T) would no 
longer be homogeneous unless  = 0. 

** 

ij 

Since f..(r,T) is symmetric in i and j, according to (2-6) 

so also is i..(r, ) even if P(v) is anisotropic. 

*** 
This distinction between fluctuations in local convec- 
tion velocity and distortion of eddies has been empha- 
sized by Fisher and Davies (1963) in connection with 
intense shear turbulence. 

13 



In particular, it is not obvious that such a relation, with 

¥j.(r,T) taken independent of v and of all properties of the 

large energy-containing eddies, is valid beyond the local- 

convection approximation (to be considered in the following 

section) in which ^.(r^x) is replaced by ^(r.O). This 

point is discussed further in the Appendix [see also Kraichnan 

(1964)]. Nevertheless, the presumption that the intrinsic 

decorrelation ¥..(r,T), for a suitably defined local velocity 

v, has the independence in question has long received tenta- 

tive acceptance [Von Weizsäcker (1948), Heisenberg (1948), 

Kraichnan (1959)] and is the simplest plausible explicit 

assumption; therefore, we accept it here. 

We record for further reference the relations that 

follow from (2-6) between spectra in the proper and mean 

rest frames.  First, we introduce the trace of the intrinsic 

decorrelation tensor: 

(2-7)    i(r,T)=ili(F,T), 

where a sum is understood on repeated indices and ¥, being 

an isotropic scalar, depends on r only via r(^ r |). ¥ is 

thus related to the trace W(r,x) of the proper correlation 

tensor W..(r,T) by 

(2-8)    J(r,x) - vo
2 - W(r,T). 

A proper wavenumber spectrum of turbulent energy generalized 

to time delays  ^0 is defined in the usual way (e.g.Hinze 

(1959)) by 

* 
5 
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(2-9)    i(k,T) = (2Tr)"2k2 / d3? e'lt'r W(r,T) 

- 7T x / dr kr sin kr W(r,x). 
o 

A similarly defined three-dimensional spectral correlation 

Ej.(lctT), on account of isotropy in the proper frame, is 

related to E(k,x) of (2-9) according to 

(2-10)   E^OT.T) = (27T)"3 /d3? e_lt,? W^OF.T) 

(2-ll)   = (4»)"1(BlJ-klkjk"
2)k"2 E(k,-r). 

We may define the complete wavenumber-frequency spectrum of 

energy for the proper frame by 

(2-12)    E\(k,u>) = (27T)-1 f  dTelQT E(k,T), 
—oo 

and likewise the spectral tensor E#^.(k",u)) which is identically 

related to E..(K",T).  Eq. (2-11) yields 

(2-13)   i4ij(k\a>) = (47r)-1(5ij-kikjk-
2)k-2E4(k,ü>). 

From the inverses of (2-9) and (2-12), the decorrelation trace 

is related to the wavenumber-frequency spectrum of energy of 

(2-14)   *(r,x) = (27r)"1/0°du)/d3k" [l-e1(t'r"a)T) ] k"2 i4(k,^). 
-00 

It is sometimes convenient to express this as 

„ 00 00 

(2-15)        *(r,T)    = 4 /    du /    dk  [ (l-coswT)sin krAr+U-sin Yx/kr)) 
o o 

xE4(k,a) 

15 



For the rest frame, analogously to (2-10), the 

three-dimensional spectral correlation is defined by 

(2-16)   Etj(E,T) = (2TT)-
3
 / d3? •"*** WJJCF.T). 

Substitution into (2-16) of Eq. (2-6) for Wj, in terms of 

W^, transformation of the integration vector from r to 

r-vT, and identification of a factor E^^T) in the result 

yield 

(2-17)   E^OC.T) - (4T)"l(ölj-k1kjk"
2)k"2«(E,T), 

where % 

(2-18)   E(1C,T) = E(k,T)M(lcT) 

with 

(2-19)   M(k"x) = fd*Z P(7) e 3— „/—% _-ik"»VT 

As in the proper frame, we may define a complete spectral 

tensor by 

(2-20)   E4iJ(lT,a)) - (27T)'1 / dte^E^ (K\ T) . 

Inserting (2-17) for E,.(k",T), we obtain the rest-frame 

analog of Eq. (2-13)'. 

(2-21)  E4iJ(k» = (47r)-1(6ij-k1kjk-
2)k-2E4(t,u;) 

where 

00 

(2-22)   r..(fL,o>)  = (2TT)"1/ dTeiu)TE(t,T). 

Joint wavenumber frequency spectra of th«s kind defined here 
were introduced, for example, by Bass (1954). 

16. 



From (2-18) we then find, In accord with (2-3), 

(1-23)   E4(7,o)) « /d
3^ P(v) E^k.m-vME). 

Eq. (2-23) [or (2-18)] is the spectral equivalent of the 

basic relation (2-6).  By the inverse of (2-16) and (2-20), 

(2-24)   *13 (?, T)=(4Tr)-
1/°°düD/d^(5ij-k1kjk-

2) [i.«l<*.r-<DT) ] 

xk"2E4(lT,ca), 

whence also the trace ^(r.T) is related to the energy spec- 

trum E,(k~,ü)) as in the proper frame analog (2-14). The 

usual wavenumber spectrum of energy at fixed time, E(k), we 

note, may be written as 

(2-25)   E(k)=E(k,0) = / du> E4(kfu>) 
— 00 

= E(k",0) = / du£4dTfu)). 
-00 

If the distribution P(v) of the large-scale turbulent flow 

is anisotropic, E4i, (k",jj), unlike E4J, (k",u>), is not an iso- 

tropic tensor, but according to (2-21) it is the product of an iso- 

tropic tensor and an anisotropic scalar, E, (1C,JJ); by (2-17) the 

same is true of E, .(JC,T).  It is useful to define also the fre- 

quency transform of the spatial correlation tensor, 

(2-26)   e,,<?,x) : (2-r1 /"dV"«^.') 

a (A-)"1 / d^e1*'7 (-^-k^k-^k-^d?,.). 

17 



Since ¥(r,T) is Isotropie, we may define longitud- 

inal and transverse decorrelatlon functions ¥f(r,-r) and 

¥g(r,T), referring to Jj.(T,T) for i=j with the direction i 

respectively parallel and orthogonal to r . By definition, 

(2-27)   £(r» . Jf(r,T) + 2 ip(r,x). 

The continuity equation implies 

(2-28)   ¥g(r,T) - Jf(r,T)4%roif(r,T)/ör. 

In terms of T, and ¥ , we have 

(2-29)   ^(r.T) r rirjr"
2[^f(r,x)-tg(r,T)] + ö^igCr.T), 

and Eq. (2-6) becomes 

(2-30)   ¥i:J(r\T) « /d^P(v) [piPjp"
2lif(p,T)-ig(p,T)]+5ij¥g(p,T))t 

where "p s r-vr. 

Now we assume approximate isotropy and define P(v)v dv 

as the probability for a velocity magnitude between v and v-t-dv, 

whence 

(2-31)   P(v) z   (4TT)"1P(V). 

Acceptance of (2-31) in (2-19) yields 

(2-32)   M(ICT)- M(kv T) - / dv vZP(v) sin kvT/kv^, 
o 

where the argument kv T recognizes that the scale of v is the 

rms value v . We may rewrite relation (2-18) as 

Thus the normalized longitudinal correlation function f(r,~) 
2 ~ 

referring to the proper frame may be written f(r,t) : l_(3/vo ):f(r,); 

the function comnonly denoted by £(r) is t(r,0). ^g 

i 



(2-33)   E(k,T) , E(k,x)M(kvoT), 

as given by Silverman (1957) (also see Heisenberg 1948 , 

Wandel and Kofoed-Hansen 1962 ). We may similarly write 

(2-23) as 

(2-34)   E4(k,a>) = /d
3vP(v) E4(k,oo-v • k") 

= \  / dv v2P(v) / d^4(k,u)-kvn) 
o -1 

Finally, in this case of complete isotropy, the trace function 

i(r,i) = *ii(^»T) °f tne decorrelation tensor in the rest 

frame, together with the continuity equation, suffices to de- 

termine this tensor (and depends on r only via r), just as 

¥(r,0 determines ¥..(?, T).  Hence, the relation (2-6) be- 

comes equivalent to the relation 

(2-35)    Y(r,T) = /d^PCv^O r-vr |,T). 

The one-point velocity distribution P(v) is ex- 

pected to be normal, on the basis, roughly, of the central 

limit theorem; within expeiimental error, this result has 

long been experimentally verified, as discussed by Batchelor 

(1956). A normal distribution would be expected for the 

components v. of v even in the event of anisotropy where the 

principal axes of the ellipsoid of constant probability would 

be unequal.  In the approximation of isotropy, the normal 

distribution is given by 
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(2-36)    P(v) = 3V2 (2/r)* vo
_3exp(-3v2/2vQ

2); 

then the convection factor M of (2-32) and (2-33) becomes 

(2-37)    M(kvo'0: exp(-k
2v2x2/6). 

2.2       LOCAL-CONVECTION APPROXIMATION FOR SPACE-TIME 
CORRELATIONS BASED ON SIMILARITY AND THE CHARACTER 
OF VELOCITY DISPERSION 

Having delineated the relations between correla- 

tions and spectra in the proper and rest frames, we consider ,» 

the intrinsic decorrelation f(r,r) on the basis of the usual 

dimensional arguments for the universal range. We also con- 

sider the deviation of ¥(P,T) from the zero-delay value 

¥(p,0) for the range of p = | r-vx| that is significant in 

the integral (2-6) with r and T restricted by (2-5). We 

thereby tentatively justify the local-convection approxima- 

tion for relating the rest-frame space-time correlation to 

the purely spatial correlation. 

Because of convection [Eq. (2-6)J, the rest-frame 

decorrelation ¥(r,T) depends on the large eddies via the rms 

fluctuating velocity v even in the universal range.  By the 

if 
Unless P(v) is Isotropie, ¥(r\ -) depends on still other 

characteristics of the large eddies. 

i 

\ 
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discussion at the beginning of Sec. 2.1, however, the intrinsic 

decorrelation is independent of the large eddies (Von Weizacker 

1948, Heisenberg 1948] see also Kraichnan 1964).  Hence, by 

Kolmogorov's similarity principles, ^(r,x) in the universal 

range (2-5) must have the form (Chandrasekhar 1956) 

(2-38)     i(r,T) - (cv)1/2 F(?1,52), 

where F is a universal function of the arguments 

5l - e
1'4 ,->/*r, ?2 - «WV1'*T 

with c the energy dissipation rate per unit mass and v the 

kinematic viscosity. 

We now restrict consideration to the inertial sub- 

range where, in addition to conditions (2-5), either the separa- 

tion r or the rms wander in the proper frame during T is large 

compared to the microscale.  This condition is expressed by 

It may suffice here, since i|i(r,T) refers to the co-moving frame, 
1/2  3/2 to define the universal range by r«L and e '" :   «L in 

place of (2-5); this condition on t implies a pseudo-Lagrangian 

excursion small compared with L and is slightly weaker than 

v | i  k<L, since it may be expressed roughly as (v | T \f    «L  . 

In any case, in one degree of another it is required that 

v I T k<L, since if v | T f-L, an initially co-moving frame after 

time T no longer removes the influence of even the large, 

energy-containing eddies. 

** 1/3 -2/1 
I.e., if e ' r    M ^1, the rms Lagrangian separation of 

the fluid elements at the correlation points (x,t), (x+r, t+r) 

is -c  |i I3  ; if el'*r"2'3 |T I <1, this separation is rather ~r 

(see discussion below).  Condition (2-39) thus insures that 

the effective separation is large relative to the microscale. 
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(2-39)    (r2 + c | T |3)* » io  or (P^2 + | |2 |3)* » lf 

where 
(2-40)    >;o 5 v3/V*. 

Later we shall consider separately the viscous range.  In 

the inertial subrange, as well known, independence of v 
•k 

implies the more restrictive form 

(2-42)     J(r,T) s (er)2/3F(z), 

where F is a universal function of 

(2-43)    z -■  e1/3r'2/3 | T |. 

1/3 Introducing v = (cr) '   , which to within a constant is the 

velocity dispersion ¥(r,0) over a distance r at fixed time, 

we may write (2-42) also as 

*(r,T) = v2 F(vrT/r). 

Referring to the limiting cases z - 0 andz-> oc,we have the stan- 

dard forms implied by similarity arguments, 

(2-44) f<r,0) = Ao(cr)
2/3, 

(2-45) f(0,x) = Be | i |, 

whence 

(2-46) F(0) = Ao,  lim [z_1F(z)] : B, 

On assumption of an Isotropie convection-velocity distribution 

P(v), we note, relation (2-6) and form (2-42) imply a rest-frame 

decorrelation of the form 

(2-41)    f(r,T) - (er)2/3H(v0T/r,z) = («r)2/3 H(vQi/r,vr /r). 
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where A and B are positive universal constants, presumably of 

the order of unity. Experimental results quoted by Corrsin (1963) 

for the constant N in the ordinary wavenumber spectrum 

(2-47)    E(k) : N€
2/3k ~5/3 

yield N ~ 1,5, whence, A ~ 3.6; likewise a semi-empirical 

analysis by him suggests B- 4.7.  These estimates, especially 

the latter, must be regarded as rough, but at any rate there 

is no suggestion of a gross disparity between the values of 

AQ and B in (2-44) and (2-45). 

F(z) in (2-42) increases from the value A at 

z : 0 to become Bz at large z. It is reasonable to presume a 

smooth behavior for F^z) in between.  On this presumption, since 

B~A , we may tentatively suppose that F(z) differs from A by 

only a small fraction where z « 1.  This supposition can be 

confirmed only by suitable comparisons with experiment, but 

it is useful to give a brief heuristic discussion. 1(p,'i) 

differs from ¥(p,0), i.e.  F(z(J), with z = €1/3t'
2/3| T |, 

* r 

differs from A , on two conceptually distinguishable accounts. 

First, there is a velocity difference between the points separ- 

2  ~ 2/3 
ated by P whose mean squared magnitude is v - ¥(p,0) - A (ep) '   , 

Y "  O 

T  
Values N : 1.77 and B = 17.5 have recently been estimated 

theoretically by Kraichnan (1966). 
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This velocity acts as a residual differential convection vel- 

ocity that cannot be removed by the motion of the proper frame 

and, during r. produces an rms displacement v i; hence, the 

mean squared magnitude of the velocity dispersion between the 

two points occurring on this account during T is ~f(v | T |,0)~ 

AQ(ev I i  |) /3 ~ AQ(ep)
2/3z 2/3.  Second, the velocity even 

at a fixed point in the proper frame does not remain constant, 

so that, even if p -* 0, some decorrelation occurs during time 

T.  The mean squared magnitude of this change is ~ ¥(0,T) = 

Be | T | = B(ep) '   z .  Summing the two contributions in quadrature,        • 
P ) 

we obtain an estimate of the total velocity dispersion due to \ 

time delay as a fraction of that for zero delay: 

(2-48)     (i(p,T) - HP,0)]/  i(p,0) = [F(zp) - F(0)]/ F(0) 

~ z 2/3 + (B/A )z . p      v / o7 p 

This fraction, in fact, is small if z« 1.  Actually, by an 

argument given in the Appendix [see also Sec.5], the contribu- 

tion in (2-48) from spatial velocity dispersion more likely 
2 2/3 varies as z  than as z '     for small z , and the contribution 
P P P 

from velocity wander may not enter in quadrature but in such 
3 

a way as :.i be of still higher order (xzp),  though at large 

z it must vary as z and predominate.  In fact, in Sec. 3.1 

on the basis of a specific conjectured intrinsic spectrum 

E, (k,o)) and without reference to the heuristic distinction of 

spatial velocity dispersion and velocity wander, it is found 
2 2 

that (F(zD) - F(0)]/F(0) ^ 0.47 (B/A ) z   , and apart from 
V Op 
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the value of Che numerical coefficient the same result holds for 

a broad class of possible E, (k,ui). 

For the moment we suppose P(v) is isotropic;  it 

then suffices to consider the trace function t(r,T).  Inser- 

ting (2-42) in (2-35) we have* 

(2-51)    *(r,i) = e2/3/ d3^ P(v) | r - v T |2/3F(e1/3 | T I | r-vt |"2/3) 

In view of the behavior F(z)-~ Bz as z -* °% there is no singular 

behavior of the integrand at r - VT = 0.  When the integrations 

over angles of v are performed, the spatial and convective 

displacement vectors r and vx  roughly speaking, add in quad- 

rature. With the final integration over v, the characteristic 

order of magnitude of | r-vi | in the integrand is simply 

(2-52)  Rc = (r2+v 
2
T
2)* 

The argument z involved in the integrand is thus typically of trie 

^  

Form (2-51) contrasts with that assumed by Chandrasekhar 

(1956) in his theory of turbulence.  By his contention 

(2-49)    v'(r,7) = ,2/3r"1/3j(z), z s c-V3r-2/3 , _ ^ 

where a prime denotes d/br.     But integration over r with neglect 

of the contribution from the viscous range then yields 

(2-50)    f(r,-) = (£r)2/3 2(z) + *(0,-)  , where 

Z(z) : (3/2)z f  dx x"2o(x) 
z 

[cf 12-42)].  According to (2-50), the large eddies contribute 

to the decorrelation only additively and independently of r. 

If the large-scale motion is isotropic and ¥(0,r) depends on 

it only via v , for example, (2-50) has the form 

nr,") .- ( r)2/3 Z(z) + (evQ  | i |)2/3 T(•> | - f^/vQ). 

The failure of form (2-50) to reflect properly the effect of 

convection by large eddies was emphasized by Kraichnan (1959), 

(1959a). 
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order of 

*    I  eV\-V3 I T |. c c 
3 

By use of the usual estimate e~v /L, we then have 

V<vJ Tt/Rc)(Rc/L)
1/3. 

The first factor is less than unity by definition (2-52), 

and the second is small relative to unity by the restriction 

(2-5) to the universal range. Hence only arguments z « 1 

enter significantly in (2-51), and for such arguments, by 

our previous discussion, the fractional error will be small 
i 

if we replace F in (2-51) by F(0) [=A J. In accord with t 

(2-6a) we identify (er)2/3 F(0) as t(r,0). We must insert 

R in place of r as the pertinent argument in condition 

(2-39) for use of the inertial-subrange form (2-42) in the 

integral (2-51); since e | i I3 « VQ
2
T
2
 by (2-5), the ineitial 

subrange in the present context is then defined by 

(2-53)   iQ « Rc « L. 

We thus obtain, as a valid approximation in the inertial 

subrange (2-53), an explicit expression for the space-time 

decorrelation i^r.x) in terms of the purely spatial decor- 

relation t(r,0): 

(2-54)   t(r,i) T Jd3^ P(v) *( | r - VT 1,0). 

In other words, in the computation of ^(r,-) by Eq. (2-6), 

the trace ¥(r,T), which specifies ^.(r.T) in that equation, 

* 
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is approximated by 

(2-55)   *(r,i) - i (r,0) = Y(r,0). 

We refer to (2-54) as the local-convection, or 

non-dispersive, approximation. This relation has been com- 

pared with experiment by Favre (1965), who attributes its 

proposal to Koväsznay. We shall consider these experiments 

later.  In Sec. 3.4 we shall derive explicitly in certain 

limits the dispersive correction to (2-54) given by (2-51) 

for the F(x) derived from the specific conjectured form of 

E, (1C,LU) mentioned above.  The dispersive correction to the 

local-convection approximation (2-54) for y(r,T) (or to the 

corresponding approximations for f,.(f,i)) is found, for the 

2 class of E,(k,o) considered, to be of relative order ~(B/A ) 

x(fc-T/vo
2)2/3 ~(B/AO)

2
(VOT/L)

2/3
 and, still more generally, 

vanishes in the defining limit Rc/L -» 0 of the universal 

range.  We discuss in the next section limitations on the 

validity of the wavenumber-frequency spectrum corresponding 

to (2-54). 

In the more general case of anisotropic P(v), the 

trace *(r, ) does not suffice to determine i..(r,T).  Exactly 

as at (2-42), however, for the inertial subrange we may write 

(2-56)   ^(r.x) = Al(€r)
2/3o1(i),  (i= 0,1,2) 

where i   S t, i ■,   ; i-,   t? z 'i    and the equation for i=0 repeats 

(2-42) with ?0(z) = F(z)/Ao.  We may make :Q(0) = .^(0) : ^2(0):1 

by taking (3/ll)A - (3/4)A2 z A^  i  A and defining A accordingly. 
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The ¥„(7,1) can be formed directly by inserting *f, ¥ as 

given by (2-56) into (2-30). The earlier discussion of 

Eq. (2-51) applies substantially unchanged to these equations 

for ¥^.(7,1) since o^(z), o2(z) are similar in character to 
JL 

F(z) . Hence the local-convection approximation (2-54) may 

be generalized to the form required for anisotropic P(v): 

(2-59)   ^OF.T) * jd3^ P(v>ij(r"-v'T,0). 

This approximation is still equivalent to application of the 

approximation (2-55) in Eq. (2-6). 

We turn to consider whether (2-54) land (2-59)] 

should be valid also in the viscous range.  In more general 

terms, our previous arguments may be summarized as follows. 

The effective displacement argument | r-vi i in Eq.(2-6) for 

¥(r,T) is characteristically ~R .  Hence approximation (2-54) 

will be valid if 

(2-60)   [HRC, )-f(Rc,0)]/ r(Rc,0) « 1. 

Considering two types of contribution, we estimate 

^  
More explicitly, the continuity equation (2-28) with (2-27) and 

(2-56) yields o2(z) = o^z)- 1/4 zo^(z), oQ(z) = a1(z)-(2/ll)zo
,
1(z) 

For the coefficients b^^ =   limz # a)[c1(z)/z], these imply 

(9/11)b, - <12/ll)b2 = b .  From these results we find 

(2-57) ax(z)  = (ll/2)z11/2 /" dz' z1"13/2 oQ(z'). 

(2-58) o,(z) - (ll/8)[o(z)-(3/2)z11/2 j*  dz' z'"13/2o(z') ]. o 
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t(r,0 - ¥(r,0) <; ifl¥'(r,0)]* I x |,0) + *(0,i). 

Hence the condition for (2-54) becomes 

(2-61)   1*<[*(RC,0)J* I T |,0) + ¥<0,i)]/ H\,0)  « 1. 

In the viscous range we have the standard result 

(Hinze (1959)) 

(2-62)   Ht,0)  ~ 5(t/30v)p
2 for p < £Q, 

corresponding to F(^1,0) = 5(1/30)\*  in Eq. (2-38) for r^ ^ 1 

2 
Similarly, for £2 <1 we must have ^(0,T) « T , i.e. 

2 
^(0,?-) r ^co^2   » where c. is a constant» thus 

(2-63)   ?(0,t) . 5c2(cv)^(,A) 2  for i <; (v/e)*. 

This form in the similar case of the Lagrangian correlation 

is implied also by the work of Uberoi and Corrsin (1953), 

summarized by Hinze (1959), p. 321.  Identifying the two cases, 

we would infer from this work a value for c~ given by 

(2-64)   c2   (15)"
3/2(12.75a_1 + 4.46a), 

where a denotes Heisenberg' s dimensionless spectral-transfer 

constant, presumed of the order of unity.  By insertion of 

(2-62)-(2-o3), condition (2-61) may be written 

(2-65)    (1/6)-2 * 30 c^*/**«. « 1. 

where :,  ; •  ^"3/4R   in the vf
n' >s range defined by 
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(2-66)        (r2 ♦ cWW2 Cl0 or «* + ?2)1/2
il. 

2 
we have (l/ö)^«1  in (2-66).     Condition (2-65)   then reduces to 

(2-67) 30c2   [(ev)Vv0
2][l +  (r/v^)2]"1 «  1. 

But 

(2-68)        vo
2/(€^)^ =   (3//15)Rev 

where Re, is the usual turbulence Reynolds number based on 

transverse dissipation scale, and Re^ >> 1 for the assumed 

existence of the universal equilibrium range. According to 

(2-64), we have c2 ~ k-     Hence (2-67) is satisfied, and the 

local-convection approximation (2-54) or (2-59) is expected 

to hold in the viscous range (2-66), as well as in the iner- 

tial subrange (2-53). 

Conceivably, (2-54) is less valid in the connecting 

r gion between *nertial and viscous ranges.  Apart from this 

possibility, the local-convection approximation is expected 

to be valid throughout the universal range where R << L. 
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2.3      SPACE-TIME CORRELATIONS BY THE LOCAL-CONVECTION 
APPROXIMATION FOR AN rSOTROPIC NORMAL VELOCITY 
DISTRIBUTION; SPACE-TIME ISOTROPY; COMT\RISON 
WITH EXPERIMENT  

We assume now a flow having an Isotropie and normal 

distribution of total fluctuating velocity P(v) given by 

(2-31) and (2-36).  In such case we may define longitudinal 

and transverse decorrelation functions for the mean rest 

frame, ¥f(r,T) and * (r,T). The relations (2-27) - (2-29) 

must then hold as well for the rest-frame functions (all 

tildes omitted).  Eq.(2-6; for i.j with i respectively 

parallel and orthogonal to r then yields integrals for 

^f'^a ^n terms °f ^f'^e*  Using spherical coordinates in 
—  ^    3— — v-s^ace (d v = dvdudj?) with r as polar axis, and representing 

(¥»*£»*») bY (* »^1.^2^ for convenience (whence ¥Q ^ + 2*2) 

we have 

00 „ 1 

(2-69)   y,(r,T) r (1/2)/ dv vzP(v) /  Hu * (u), 
1 o -1    x 

with 

(2-70)   ¥Q(n) I  *f (p,0 + 2*g(p,T), 

(2-71)   *L(u) = (r-v Li)2p"2[*f(t ,T) - ig(p,T)] + ig(p,T), 

(2-72)   '*2G0 =(1/2XVT)
2
(1-^

2
) p"2lf (P,T) - ig(p,i )]+*g(p,T), 

9    2      2 p* r r + (VT)  - 2rvTn. 

*  
As a check, it is verified directly that ¥f, ¥  satisfy the 

continuity equation (2-28) provided ¥*,¥  do. 
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We now utilize the local-convection approximation 

and consider first the inertial subrange. We then have the 

^i(r»T) given by Eq.(2-56) with the o^z) replaced by unity. 

Inserting (2-36) in (2-69) and integrating over \i,  we obtain 

(2-73)   VAr,i)  z  3(6/7r)^A(€r)
2/3 f  dx x2 exp(-3x2/2)L.(xv T/r), 

o 

where 

LQ(ß) = (ll/16)ß-1(s^/3- s.?/3), 

s+ : I 1+ß I, 8_ r I 1-0 I, 

and L, and L~ are given by similar but more complicated 

expressions. 

We readily find the limiting forms of (2-73): 

(2-74)   fi(r,t) -A. (€r)2/3(l+cioß0
2) for ßQ« 1, 

(2-75)   ^(r,T) -S.(evor)
2/3(l+ciooß;

2) for ßQ» 1, 

where 

e0 '  volT(/r' 

(2-76)   A2 : (4/3)A , AQ z   (11/3)A, Aj_ = A, 

Sj_ = S2 = (2/3)1/3(22/9)7r-^r(ll/6)A, SQ = 3SX, 

c10 = 11/27, C20 .- 11/108, coo . 5/27, 

V « 1/5, c2oc .- 2/5, COOQ  s 1/3. 

The characteristic dependence ^(Q.T) -• Si(evQT) '*  for r=0 

* 

ft 
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is well known (Landau aud Lifshite 1959, Eq. (32.2)). 

We could also derive ¥, and Y» from tne simpler 

¥ by the continuity equation.  Thus, writing Eq. (2-73) 

functionally as 

(2-77)   ^(r.x) : A1(er)
2/3G1(v0TA). 

(whence G^O)«!), from (2-27) and (2-28) we obtain 

(2-78)   G0(ß0) = Gx(ß0) - (3/ll)eoaG1(3o)/d0o 

(cf.(2-58)).  Eq. (2-78), together with the asymptotic form 

G1(ß0MSi/Ai)ß0
2/3 as ßQ- oo, yields 

(2-79)   G1(ß0) = (ll/3)ß0
11/3 f    dßß_14/3Go(ß). 

ßo 
Since the displacements r and v i  must add nearly in 

quadrature  for appropriate relative scaling, we define 

functions H.(ß ) by writing 

(2-80)   ^(r.T) s Ai(cRi)
2/3[l-Hi(eo)], 

where 

(2-81)   Kt
2
z  r

2 + st
2 (VOT)

2
,  Si

2
: (S^)

3 

2 
By definition (2-81) of the scaling factors st    and the results 

(2-74), (2-75), the functions H1(ß )  so defined are such that 

(2-82)   ^(0)= H^oo) = 0, 
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* 

i.e. ^(r.x) s A^el^) ^3 if either r . 0 or T = 0.  From 

the numerical values (2-76), we find 

(2-83)   s2 z  1.455, 82 z  0.613, s2 = 0.795. 

The integrals (2-73) have been evaluated numerically, and 

the resulting functions Hj_(ß ) of (2-80) are shown in Figure 

-1       -1       * 
1 as functions of Tan ß  [a Tan (vm/r)]. 

We shall refer to a function that depends on r and 

2   2    2 
T only via r + s (v T) for some constant s as a space-time 

Isotropie function. Figure 1 shows that the tj(r,T) are all 

closely approximated by the space-time Isotropie functions ^ 

defined by neglecting the H- in (280), i.e., 

(2-84)   *i(r,T) * At(eR.)2/3. 

The corresponding maximum fractional errors are 1.37«, 3.5% 

and 2.4% for the longitudinal, transverse, and trace functions 

(i = 1,2,0), respectively. 

We turn momentarily from the inertial to the viscous 

subrange, applying once more the local-convection approximation 
a  

By expressing ¥(r,T) by the inverse of (2-9) and E(k,T) 

by (2-33) and (2-37), with E(K,T) replaced by E(k) : 

Ne2/\"5/3 in the present approximation, we obtain 

f(r,T) = 2Ne
2/3 Q  dk k'5/3[l-(sin krAr)exp(-vQ

272k2/6) ], 

whence, according to Bateman (1954), p.74, (24), ¥(r,T) can 

be expressed also in terms of Kummers confluent hypergeo- 

metric series. 
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(2-54). In this instance we have, at at (2-62) 

(2-85)   ¥L(p) * avp
2, ¥2(p) « 2avp

2, *0(p) s 5avp
2, 

where ay * e/30v. Eq. (2-69), with P(v) given by (2-36), now 

yields 

(2-86)   Y^r.T) « Aol(€/30v) R
2
£ 

with 

(2-87)   R^ s r
2 ^(v^)2, 

»01 = 5/3' 802 = 5/6/8oo s l' (cf.(2-83)] 

A01 = l» A02 = 2» *00 " 5* 

Hence, in the viscous range the decorrelatlons ?^(r,t)are ex- 

actly space-time Isotropie. 

A space-time Isotropie correlation function was 

proposed previously by Lilley and Hodgson (I960), App.D. 

For comparison with experiment, we consider also 

space-time decorrelatlons, say ¥..(r,i), measured in a frame 

having a fixed velocity -ü* ■ (-uo,0,0) relative to the mean 

rest frame. By the kinematic relation (2-2), we have ¥ji(r,T) = 

*j*(* -ö0T,T), in the present approximation ¥j,(r',T) is 

Isotropie and given in terms of f <r(r, T) ,v (r, T) as in Eq. (2-29) 

In particular, the decorrelatlon for the streamwlse component 

35. 
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is expressed by 

(2-88)   ¥n(r,T) s ¥f(r',T) + R
2(r^2 + R2)"1[*g(r

,,T)-i'f (r\x) ], 

—• 9    9    9 
where r's (ri"u0

T»r2»r3) and R = r2 +ry In tne inertial 

subrange ¥f and ¥  are given by (2-80). but since a relative 

error ~17<> is negligible, we use the space-time isotropic 

approximation (2-84) for ¥f and the consequent ¥  [Eq. (2-28)], 

obtaining 

(2-89)   *n(r,T) - A(eR1)
2/3(l^ R2/^2), 

/\ f\ O    O      0   0 0 

where R7 = (r,-u T)^ +R^+ s, v„ T .  The correlation at a llo'      1 o 

point in the mean-rest frame after a delay T according to 

(2-89) is the same as in the laboratory frame after a delay 

- (s,v /u )T~(V /u )T ; this result was given by Lilley and 

Hodgson (1960), App.D, and noted to be in broad agreement 

with the results of Favre (1965) for both grid and wall turbulence. 

The velocity component referred to here is 

parallel to ü" by definition, and in the measurement of present 

concern r is also nominally parallel to ü -We therefore 

suppose the angle 0 [= sin" (R/r)] between r and ü is small, 

as well as v /u « 1, whence (2-89) may be written approximately 

as 

(2-90)   ?u(r,T) * AC
2
/
3
[A

2
+ rV +s2(vo/uo)

2(r+ A)2]1/3 

x (1 + \  rV/h2 + rV + s2(vo/uo)
2(r+ ä)2]], 
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where 

A = u (T-T ) and T = r,/u -  r/u . ov  m'     m " 1/ o   ' o 

Thus T Is the time delay at which d ¥,,/är, s 0 for given 

r, and A is the actual time delay in spatial units relative 

to T .  Since flf « 1 and s,v Ai « 1, the time correlation m loo 

at fixed separation is determined mainly by Ae ' , but the 

correlation envelope curve d¥,,/ öT «0 for varying separation 

is determined mainly by the product of Ae '    and the function 

of 0 and v /u given by setting A = 0 in (2-90).  The rate 

of decrease of this correlation envelope is sensitive to 

the misalignment )f,  being significantly increased by 0 unless 

Q  « v /u . r o o 

We compare results computed from (2-90) with mea- 

surements in grid-produced turbulence by Favre, Gaviglio,& Dumas 

(1953),(1954), summarized by Favre (1965).  Favre per- 

formed a similar comparison based directly on the nondisper- 

sive relation (2-64) (with r •*■ r - u_x)  and employing the 

measured i,£(r*,0), V  (r\  0).  Ine present comparison entails 

the further approximation of ^ and ^ by the inertial-sub- 

range forms but eliminates certain unassessed approximations 

made by Favre.  The parameter A is now regarded as adjustable 

on the basis not only of the measured correlations for T s 0 

but the whole series of measured space-time correlations 

Lj(r,i) and their envelope.  Use of the inertial-subrange 

form, however, implies that the computed normalized space-time 
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correlation must be expected to depart substantially from the 

measured values at least where these are less than -0.6. In the 

specific experiments referred to,in fact, the Reynolds number 

Re^ i 44, scarcely sufficient for existence of an inertial 

subrange at all, and small enough also that the dispersive 

departure from the local-convection approximation may be 

appreciable, as discussed in Sec. 3.4 below. 

For the geometrical and flow parameters given for 

the Favre experiments, we estimate from other experiments 

on decay of turbulence downstream of a grid, notably Batchelor 

and Townsend (1948), that the turbulence intensity at the 

pertinent locations was v /u - 0.027.  Accepting this 

value, assuming no misalignment (0*0), and adjusting A to 

give a visually good fit to the form of the measured time 

correlations at various fixed separations r, with more empha- 

sis on agreement where the correlation is relatively high, 

we arrive at A - 0.55 and the series of curves in Figure 2 
■ffft 

having the solid-line envelope.  The breadth of the peaks for 

various separations is fairly satisfactory relative to the 

experimental results shown, but the envelope of the peaks de- 

creases too slowly.  This fact is attributed mainly to 

*  
The dissipation rate e is then computed by Eq.(2-72). 

At separation r = 0, for which the experimental curves 
given in Figs. 1 and 5 of Favre (1965) fail to coincide, 
we accept the latter. 

t 

5 
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neglect of dispersion and to experimental misalignment.  If, 
o 

tor example, the latter were 0 = 1.5 for each separation, 

with vQ/uo : 0.027 still and A * 0.55, the curves would be those 

represented — • ; these agree rather well with the measured 

ones and their envelope.  If we suppose instead 0 - 0 but 

arbitrarily adjust the intensity as well as A to 

yield a fit, for A . 0.41 and vQ/uo = 0.042 we obtain 

almost identical results.  In the measurements, the nominal 

transverse separation was varied to maximize the correlation; 

hence the error due to misalignment was presumably small.  It 

appears quite plausible that, if comparison were made with 

experiments at sufficiently high Reynolds number, the results yielded 

by (2-89) for space-time velocity correlations on the basis of the 

local-convection approximation would prove in satisfactory agreement 

with measurement, and provide a useful determination of the Kolmogorov 

constant N.  Further comment will be made in Sec. 3.4, where a dis- 

persive correction is introduced. 

We may consider also the effect of possible anisotropy of 

the large eddies.  Grant and Nisbet (1957) obtained experi- 

mental indication that the streamwise fluctuating component 

in grid turbulence tends to be the largest.  Making the 

extreme assumption of purely streamwise fluctuation in 

place of (2-31/we find, for r parallel to ü"o, that 

ff(0,'.)Af(r,0) = 0.44(vo./r) 
2/3 ii- place of  1.13 (voVr)2/3, 

Hence such anisotropy would be expected to reduce rather 

than increase the rate of decline of the space-time correla- 

tion envelope. This anisotropy has no effect on the ratio 

p /P mentioned below. 

39. 



The measured streatnwise space-time correlations 

(R-0) may be   characterized also by the ratio of minor to 

major axis for the streamwise isocorrelation curves, which 

depends somewhat on the correlation value (Favre, Gaviglio, 

and Dumas 1953). More generally, we define p  as one haK the 

ratio of r,-intercept (T-0) of a streamwise isocorrelation 

curve to the value of u T where r, «U^T on this curve; for an o       l o ' 

ellipse, p is nearly the ratio of axes. Transverse isocor- 

relation curves (r.,-0) were also measured in the experiments 

and may be characterized mainly by the ratio pt of the R-intercept ♦ 

(T-O) to the UT-intercept (R-0). Finally, compensated iso- 

correlation curves (r,-u T) were measured and may be charac- 

terized by the ratio p of the R-intercept (r,-0) to the r.- 

intercept (R-0). 

For the viscous range, which applies only where the 

normalized correlation is very near unity, Bass (1954) derived 

1/2 for homogeneous turbulence the general relations p -(a/b) ' /2, 

p ^l/"\/T, p »*\/7p , where a/b is a small undetermined quantity. 

Eqs. (2-86) and (2-88) of the local-convection approximation 

for the viscous range conform to these results and imply a/b - 
2 

(5/3)(v /u )  ,  whence p ^0.65 v /u .  For the inertial sub- 0  0 s      o  o 

range, on the other hand, Eq.(2-89) yields Ps"?
s
1
v
o/

,V0-6lvo/
u
o» 

Pt" I d-^1
2vo

2/uo
2)1/2-0.65, cc-(|)

3/2
Slvo/uo-1.30ps, which we may 

compare with experiment.  The measured values of : , without dis- 

persion, require somewhat too large v /u , as already discussed. The 

measured p  varies in the vicinity 0.4 to 0.5,  a value appreciably 
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smaller Chan the computed 0.65. Host strikingly, the measured 

p„/p_ varies in the vicinity of 4 to 6, much larger than the 

computed 1.3.  Introduction of dispersion, anisotropy of the 

large eddies, or streamwise inhomogeneity appears unsuitable 

to account for this discrepancy.  An obvious, but unlikely, 

way to account for it, if the measured value is not grossly in 

error, is to suppose the spatial velocity correlations at fixed 

time are anisotropic and the streamwise component correlated 

over a much larger distance in the transverse than the 

streamwise direction. 
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2.4      VELOCITY SPECTRA IN THE LOCAL-CONVECTION 
APPROXIMATION; IMPORTANCE OF VELOCITY DISPERSION 

We consider the implications of the local-convection 

approximation (2-55) for the rest-frame velocity spectra 

defined in Sec. 2.1. The corresponding approximation for 

the partial transform E(k,x) is 

(2-91)    E(k,t) *E(k,0) ; E(k), 

where E(k) ; E(k,0).  By definition (2-12), then, we have 

(2-92)    E4(k,cu) ^r E(k)6(a>), 

whence (2-23) becomes 

(2-93)    E4(E,aO - E(k)/d37p(v)6(cü - k"-v) , 

This equation states that in the approximation of local convec- 

tion, a fluctuating velocity component with given frequencv a> 

and wave number ic can be generated only by virtue of a local 

convection velocity v of the "frozen" large eddies such that 

the projection of v in the direction of fc generates a disturbance 

at frequency CD by motion of the fixed wave pattern.  The restric- 

tion (2-53) of (2-54) to the inertial subrange, by the rest-frarae 

analog of (2-15), implies the reciprocal restriction 

(2-933)  L_1«(k2+ CD Ar)1/2«^L 

on (2-93) and (2-95) below. 

In the case of Isotropie P(v), Eq. (2-93) is equivalent 

to the following relation derived from Eq. (2-34): 

(2-94)   E4(k,ü))-(l/2)k
_1E(k)/" dvvP(v). 

cu/k 
42 



With a normal distribution [Eq. (2-36)] this becomes 

(2-95)   E4(k,ü>) ^3
1/2(27r)-1/2(vok)"

1E(k)exp[-(3/2)(ü3/v0k)
2] 

Hence, if the normal distribution represents the true situation 

sufficiently well, for large co/v k the local-convection 

approximation yields an exceedingly small energy density 

E, (k,u>) on account of the minute probability of a local 

convection velocity >oo/k.  Because of the deformation and 

decay of eddies, however, we must suppose that E/(k,to) in 

reality is much larger; i.e., however good an approximation 

the local-convection approximation may be for f.,(r,   t) in the 

universal range, it is not adequate to yield a good 

approximation to such a demanding detail as the frequency-wave- 

number spectrum at large "J/V k. 

An example of the sensitivity of E, (Tc,a) in this 

regime is provided by comparing the spectrum corresponding 

exactly to the local-convection approximation in the inertial 

subrange with thaf corresponding to the space-time isotropic 

approximation for the longitc linal decorrelation ^(r,i) 

[Eq. (2-84) ]; the latter sufficed to give ;'f(r,-) within 1.37. 

of the value given by the former for all values of v i/r 

(Fig.l).  Corresponding to (2-56) with a    =  1, we have the 

E(k) of (2-47) with N = (110/27)[T(l/3) ]_1A.  Then (2-33), 

(2-37) and (2-95) yield 
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(2-96) E(k,-r)  = N£2/3k"5/3exp(-k2v2T2/6), 

E4'k,o))  =  (3/^)1/2Ne2/3v;1k'8/3exp[-(3/2)(u)/vok)2]. 

The space-time  Isotropie approximation  (2-84)   for ^f(r,x),  on 

the other hand,  by a standard relation  (Hinze  1959,  Eq.   (3-70) 

extended to T 4 0)  yields 

(2-97) E(k,T)  =  2'11/6[r(17/6)r1Ne2/3k'5/3(s1voTk)17/6 

xK17/6(slvoTk)' 

E4(k,o>)  » 7r-1/2
(i4/ll)[r(7/3)/r(ll/6)]Ne2/3(s1v0)"1 '    \ 

xk"8/3[l+  (o)/Slvk)2]-10/3 

) 

where s, was given at (2-83) and K denotes the usual exponen- 

tially decreasing modified Bessel function.  For large cu/v k 

the approximation (2-97) foi E,(k,w) thus does not retain the 

rapid rate of decrease given by the exact local-convection 

form (2-96). 

2.5      TAYLOR'S HYPOTHESIS, EFFECTIVE CONVECTION VELOCITIES, AND 
CROSS-SPECTRA IN THE LOCAL-CONVECTION APPROXIMATION 

The present methods afford a simple quantitative 

treatment of departures from Taylor's hypothesis for the inertial 

subrange in homogeneous turbulence, a topic previously 

If the approximation of space-time isotropy (2-84) is applied 
to the trace ^(r,-r) instead of ^(r.x), the approximation to 

(2-96) is less close than (2-97), with E(k,-r) and E, (k,cu) instead 
2 - 7/3 

containing factors K,, '6^sovo'^ an<? ^ + ^^sovok^ ^ 
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treated otherwise by Lin (1953), Uberoi and Corrsin (1953). 

We define the hypothesis here in terms of the measured and 

the hypothetical spectra which it is commonly invoked to relate. 

The hypothesis approximates the one-dimensional wavenumber 

(k,) spectrum of a turbulence quantity in the mean rest frame 

by its frequency spectrum, multiplied by u at a fixed point 

in the measurement frame, the latter frame having velocity 

-Ü relative to the former, for a frequency &  = u k*. We 

consider first, for simplicity, the spectra corresponding to 

the trace of the velocity correlation, W(F,T), rather than to 

the longitudinal or transverse components individually. The 

first spectrum of convern is thus the one-dimensional energy 

spectrum in the rest frame (multiplied here by TJ-) , given by 

-ik r 
(2-98)    E(1)(kL) = (2r)-1/°° drie  

l  Vr^O) 

where r, = (r,,0,0); the second is the measurement-frame analog 

of the trace of Eq. (2-26) with r = 0, 

A       A — 1 oo   i ml A 
(2-99)    0(co) = 9(0,o)) =(2ir) \f  die1 W(0,-). 

•»00 

where W(7,T) refers to the frame with velocity -u - (-u ,0,0). 

We wish to consider the departure from unity of the "Taylor ratio" 

(2-100)   T = u^u^p/E*1^) 
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Eq. (2-98) can be straightforwardly transformed to 

become, as given by Hlnze (1959), Eqs. (3-72) ,(3-73); 

(2-101)   E(1)(k,) = /°° dkk"1E(k). 
kl 

In Eq. (3-19) we may use the kinematic relation 

(2-102)   W(F,T) = W(7 - U0T,T). 

By use of the equivalent of (2-14) written for the mean rest 

frame and of (2-23), Eq. (2-99) may be written 

(2-103)   6(o>) = (27r)"1/d3vP(v)/d3TTk'2E4(k,ü) - "k".(ü0 + v)). 

Here we shall find the Taylor ratio T in the local- 

convection approximation (2-92) and consider the dispersive 

effect in Sec. 3.3. From (2-103) and (2-92) we find 

(2-104)   3(co) = /d^P^jü + vi"1/00 _   _dkk_1E(k), 
'       co/juo + v| 

whence 

(2-105)  u^uk,) = /d3vP(v)I(v/u ,A)/°°        dkk"lE(k), 
k1I(v/uo,A) 

where 

(2-106)   I(v/u >) - [1 + 2(v/uJ* + (v/u )2J"1/2, 

» 
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X = v*-ü"0/vu0,  and /d v may be regarded as expressed in the 
O  OTT     1 

spherical form /™dw / d(J/ d*. In this approximation T is 
oo-l 

given as the ratio of (2-105) to (2-101). From (2-105) and 
Atop 

(2-106), v»e note, if the azimuthal integral /  d0P(v) is 
o 

an even function of X, then T differs from unity only by terms 

of order (vQ/u0)2; this will be so, in particular, if P(v) 

is Isotropie. 

We now limit consideration to a power-law wave- 

number spectrum: 

(2-107)   E(k) = cnk"<
n+1) 

In actual fact we are concerned with the inertial subrange case 

n -- 2/3. The k-integrations in (2-101) and (2-105) may now 

be performed to yield a ratio 

(2-108)   T = /d3v"P(v")(|uo + v|/uQ)
n = /d3^?) [I(v/uo>*)]""• 

Form (2-107) implies ip (r ,0)0^^,  and from this, proceeding 

frcm the original forms (2-98) and (2-99) by use of (2-54) or 

recasting (2-108),we can express T in the alternative form 

(2-109)   T - V(-ÜOT,T)M-ÜOT,0); 

the right side,under the present assumptions, is properly 

independent of r. For n = 2/3 and an Isotropie normal P(v) 

recalling (2-77) and (2-80) (for i --  0), we may write 
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(2-110) T . Go(vo/uo)=  [1 + s20(vo/»0)2]l/3[l - Ho(vo/uo) ]. 

for vQ/uo « 1,  Eq.   (2-74)  then yields explicitly 

(2-111)        T ~ 1 + (5/27)(vo/uo)2. 

More generally, for arbitrary v /u we can compute the correction 

factor T explicitly from (2-110) by use of the value of s 

[Eq. (2-83)J and the graph of the function H (0Q) given in 

Figure 1. 

•»♦ 
We can proceed with the spectra corresponding to ^ 

individual component correlations W.,(r,x) similarly to the 

above for the trace W(r,-r). Thus, we let E>.'(k,) he defined 

by (2-98) with W(rp0) replaced by W^r^O), %±. <<o) by (2-99) ' * 
A A 

with W(0,T) replaced by W..(0,T), and, analogously to (2-100), 

define 

(2-112)  Tlj »^^(u^/E^Ckp. 

In particular, as at (2-109), in the local-convection approxi- 

mation with a power-law spectrum (2-107), we find 

(2-113)   Ttj = 7//ij(-üoT,T)/^ij(-üoT,0), 

which once more is properly independent of T. For the inertial 

subrange and an isotropic normal P(v), as at (2-110), we then 

have as Taylor's ratio for the longitudinal (i = 1) and 

transverse (i = 2) velocity components 
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(2-114)        Tu = G^v^)  =  [1 + 8j(v0/u0)2]1/3[l - H^/uJ] 

(no sum on 1), where again the s.  are given at  (2-83) and 

the H.(v /u )   for arbitrary v/u    in Figure 1.    For v/u    « 1, 

by  (2-74), as at  (2-111),  these correction factors are given 

by 

(2-115)      Tu = 1 +  (11/27) (v0/uo)2, T22 = 1 + (11/108) (vQ/u0)2 

It is possible to re-interpret the computed correction 

factors. Suppose we define new ratios T', Tj. obtained by 

replacing u by some other velocities u', u!., respectively, In 

the definitions (2-100) and (2-112) . From the power-law form 

(2-107) we readily find T' = (uo/u')nT, Tjj = (%/^i^iy 

Since the T and T., proved to be independent of k,, we can 

make T' = Tj, = 1 by choosing u' = u^1^", u±.   = 
u
0
THn- 

From (2-114), for example, we see that we can provide an exact 

Taylor's hypothesis by employing effective convection velocities 

(2-116)  uu = (u2 + s^v
2)1/^! - Hi(vo/uo))3/2 

to compute E>, ^ (k,) = uii®ii^uiikl^" This velocity differs 

for longitudinal at 

by (2-115) we have 

for longitudinal and transverse components. For v/u « 1, 

(2-117)  uu = uori + (ll/18)v
2/u2], u22 =  u0[l + (ll/72)v

2/u^]# 
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As for the dispersive correction to the local- 

convection approximation applied here, in Sec. 3.3 it is 

shown, for the E^(k,o)) considered, that dispersion contributes 

to Taylor's ratio an added term of the order —(eu'^kT1) 2^ 

2-2/3 
~(vQ/u0) (kjL) ' and, more generally, the added term vanishes 

independently of v /u in the subject limit. 

We note here a result for a measurement frame 

quantity generalizing 0(ou) of Eq. (2-99), namely the frequency 

xrs"1/6LraTr8/ue)K5/6(a,rs/ue)4 ^/u
e) ^l/V^W h 

• * 
transform 6..(r,cu) of the spatial velocity correlation (cross- 4 

spectral density). Analogous to the mean-rest-frame quantity 

e^F.cu) of Eq. (2-26), 6^, is given by 

(2-118)  e^Cr.o)) = (2rr)-1/"dTeiü,T W£j (F - Ü*OT,T) 

or similarly by the second form of (2-26) with a. -> a» - u * Ic 

in E/. A result will be given only with neglect of dispersion 

and with the further approximation of space-time isotropy for 

the longitudinal decorrelation ^(r,-r). The strtajiwise element 

8,,(r",<^), where ü" = (u ,0,0), is then found from (2-118) and 

(2-89), or from (2-97) and the alternate form of (2-118), 

to be given by 

(2-119) 

Sn(r>) = 2-U/6[r(17/6)]-
1Nt

2/3u;1(a;/ue)-
11/6exP(iar1/uc) 
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where 

R2 = x\  + r2 , r2 = ve
2r2 + R2, 

(2-120)  u2 = u2 + s2v2, ve= slVo/ue, 

2 2 2 2 u„=u/u =u(l + s,v/u). c   e' o   ov    1 o' o7 

Eq. (2-119) holds for all v /u and reduces to the rest-frame oo 

quantity 9^(7,0)) for vQ = 0.    For v /u « 1, the contours 

of constant |9j*(r,w) | are elongated along the longitudinal 

axis relative to the transverse by a factor — u /v . The 

effective convection velocity u_ defined by writing the phase 
A 

of 0,1 as ^>r,/u thus proves to differ from u as given by 

(2-120). We recall from the discussion of Sec. 2.4 the 

limitation that when ^r /u is large (and hence 10.,| small) 

the result (2-119) of the space-time isotropic approximation 
A 

will conform neither to the true 9,, including dispersion nor 

to the exact local-convection approximation. 

At this point we may usefully discuss the relations 

among variously defined convection velocities.  Even in the 

present unsheared homogeneous flow, these differ from the 

relative rest-frame velocity u and from one another, though, 

2  2 when v /u « 1, onlv by terms of the order of v /u .  In 
oo oo 

n— "  
We note the result of the exact local-convection approximation 

for 7=0:  9u(0,u) = (2/3) 1/3^"1/2I(5/6)Ne2/3v^1 (m/V())'
5/3. 

This agrees with (2-119) for this case to within a constant, as 
it must on dimensional grounds. 
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unsheared flow, if the measurement frame coincides with the 

laboratory frame, the intensity v /u is small enough that 

such differences are unmeasurable.  In some types of intense 

sheared turbulence, or in an envisioned experiment where the 

measurement frame has a velocity intermediate between that 

of the laboratory frame and the mean resc frame , on the other 

hand, these differences may be appreciable.  In any event it 

is illuminating to examine these differences in the present 

context of a simple unsheared turbulence with fixed u . o 

A convection velocity is defined with reference to 

some property of a correlation function or its transform in 

the measurement frame, and this velocity in general differs 

according to the property in question and also according to 

the quantity the correlation refers to, e.g. streamwise 

component of fluctuating velocity (along u ). We define 

convection velocities here by four such properties and refer 

for definiteness to this streamwise component; th«? definitions 

ire summarized here in Table 1: 

H " 
Turbulence measurements in a moving frame have recently been 
performed in a different connection by Uzkan (1965). 

« 
4 
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No. Defining Condition 
Convection 

Velocity Defined 

1 öWn(7,T)/Sr1 = 0 (Wu * max) r^t 

2 dW11(r>T)/BT = 0    (Wu = max) 'l'' 

3 eu(r,">) a exp(lü^r1/uc)|911(r,^)| uc 

4 En<ki> ' ulAl<uUkl> UU 

Table 1. Various Definitions of Convection Velocity 

In general, the convection velocities so defined might not be 

constant but dependent on the pertinent variables. On a 
A  _ 

standard plot of the space-time correlation W,,(r,t) vs. time 

delay with the time-correlation curve for each streamwise 

separation r, displaced along the time axis by r^/uQ, condition 

1 corresponds to the envelope curve, whereas condition 2 

corresponds to the curve joining the maxima of the individual 

curves. These definitions have been discussed by Wills (1964) 

in the moie general context of shear flow, along with other 

definitions ^hich, in the present case, coalesce with these. 

Condition 3 defines a convection velocity based on the phase 

of a cross-spectral density, as done for example, by Corcos 

(1964). Condition 4 [recall Eqs. (2-98) and (2-99)] defines 

a convection velocity based on Taylor's hypothesis relating 

spectra in frequency and wavenumber. 

We give results for the convection velocities of 

Table 1 In the local-convection approximation, neglecting 
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dispersion, for the inertial subrange, and assume once more an 

isotropic normal distribution of fluctuating velocity. We 

also compare the results given by the space-time isotropic 

approximation to ^(r',T), corresponding to neglect of H, in 

Eq- (2-80)* 

Since W,,(7,T) = W,,(r - ü~TtT) exactly, the convection 

velocity of condition 1 is just u if W,,(r',T) has a maximum 

for all T and all *2'v2  at rl ~ ®'    Exan,lnation based on the 

results (2-80) [and (2-74), (2-75)] for ^f(r',i) and 

Tp  (r'-r) shows that in fact Vi iC?', T) (obtained from (2-30)), 

as well as Vf and i>    individually, have minima at r' = 0.  This 

result is given also by the space-time isotropic approximation 

to ^f(r',x).  Hence the convection velocity of condition 1 

is just u . J    o 

With regard to the convection velocity of condition 2, 

we find by use of Eq. (2-75) and (2-74), respectively, that 

this is given in two opposite limits by 

(2-121)  uo[l + (5/3)v*/u*] for (v0/uQ)
2 + (R/VQT)

2
« 1, 

u0[l + (ll/9)v
2/u2] for (vo/uo)

2 + (R/VOT)
2
 » 1, 

2   2   2 
apart from terms of higher order, where R = r? + r~.  In 

the space-time isotropic approximation, on the other hand, 

We do not neglect H2 to find ^  (r\i)   but accept the result 

implied by the approximation to ip   . 
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from (2-84) we find this velocity to be given independently of 

r2,r3, and x by uQ(l + a\  vj/u*) * U(j(i + i.453vj/uj). 

The convection velocity u^ defined by condition 3 

has not been determined in the exact local-convection 

approximation.  In the space-time Isotropie approximation, 

however, it was given by (2-120). The latter is the same 

velocity that was given by condition 2 in this approximation. 

More generally, in any approximation in which, for some i, j 

and r, 

(2-122)  ©^(F.cu) = A^r",^) exp^u^/u^.) (k±.  real) 

with the phase convection velocity uc.. independent of CD, and 

in addition Ai.(r.,-üo)= AJ,(F,<D), it follows from the general 

relation 

A  _ —ion A   _ 
dWi:j(r,T)/dT =-i/dü3€

1- ^(r.w) 

that 

[ö dw\.(r,T)/ö] ij rl = ucijT 
= 0, 

i.e. in such case the convection velocities defined by 

conditions 2 and 3 are the same. 

The convection velocity u,, defined by condition 4 

was given at Eq  (2-116) or; for vQ/uo « 1, Eq. (2-117).  In 

the space-time Isotropie approximation, the result is given by 

omitting H, in (2-116); for v /u « 1, this becomes 

55 



u,, = u (1 + i s?vJ;/iA - u (1 + 0.72Svl/\ih.    The convection 
11    o    /loo    O 0  0 

velocity defined by Taylor's relation (condition 4) depends, 

we note, on the rest-frame space-tine decorrelation ^,,(r',T) 

in a range of the space-to-time separation ratio 

rj/v T[= (ri"va
T)/v0'r] opposite to that which determines the 

velocity defined by condition 2. In the former instance, by 

(2-113), the relevant ratio is |r[l/v0T = u0/vQ, whereas in 

the latter, by (2-121), it is rjA^x- vo/uQ. 

We note that in the exact local-convection approxi- 

mation the convection velocities defined by conditions 1 and 

4 are constant (i.e., independent of r?,r~,T, and of k^, 

respectively, while in the further approximation of space-time 

isotropy the velocities defined by all four are constant. The 

/ 2   2\ 1/2 
results are summarized, for vQ/uo « 1 and |r2 + r-jl   « vQTj 

in Table 2, which gives the values of aQ where 

2 2 
the respective velocities are written as UQ(1 + 

a
0
v
0/up. 

Defining 
Condition 
(Table 1) 

Approximation Used 

Exact local convection 
Space-time isotropic 

longitudinal component 

1 0 0 

2 5/3 (v0/u0<U, R/V0T«1) s? = 1.455 
J. 

3 s^ - 1.455 

4 ll/18(vo/uo«l) s^/2 =0.728 (vo/uo « 1) 

Table 2. Coefficients a for various convection velocities 
2 2° u (1 + a v /u ) referring to the streamwise velocity 

o     o o o 
component. 56 



3.       RESULTS WITH VELOCITY DISPERSION 

We wish Co consider more explicitly the departure from 

the local-convection approximation due to the spatial and temporal 

dispersion of velocity in the local proper frame. This step 

permits us to consider the imporaant spectral regime u>/v k»l 

where dispersion is the determining effect, and to derive 

corrections to quantities where the dominant effect is convec- 

tion. We assume, as discussed in Sec. 2.1 and the Appendix, 

that Eq. (2-6) with an intrinsic decorrelation having the 

similarity form (2-42) remains competent to yield these correc- 

tions. 

3.1      MODEL INTRINSIC VELOCITY SPECTRUM INCORPORATING 
DISPERSION  

The required form (2-42) for "^(r.-r) in the inertial 

subrange implies that in a corresponding domain the intrinsic 

wavenumber frequency spectrum E< (k,cu) has the functional form 

(3-1)    \(k,co) = e1/3k"7/3G(n), n = c"1/3k-2/3lü)1 

The inertial subrange for "^(r,T) is defined by 

(3-2)    L » (r2 + cltl3)1/2 » ip 

[see condition (2-39) and footnote 1, preceding page]; considera- 

tion of Eq. (2-15) indicates that the conjugate subrange of (3-1) 

for t. (k,(u) is 

(3-3)    L'1 « (k2 + e'Mcul3)172 « i^1 . 

The form (3-1) insures that ^(r,T) has the requisite limiting 

forms (2-46), provided the zeroth and first moments of G(ft) con- 

verge. 57 
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We introduce for G(n) in (3-1) a conjectural ex- 

plicit form that meets the obvious requirements on this function 

and has vertain other plausible properties (see Appendix); 

specifically, we limit consideration first to the following 

class of functions indexed by m: 

(3-4)   üB<n) - amn-
1/2 (i-*m

2fi3)-m 

(mil), where am and y    are constants.  This form, with non- m     m ' 

vanishing y , correctly provides a finite spatial scale such 

that motion correlated over a distance ~k  is associated 

mainly with frequencies smaller than the similarity estimate 

«we '\ '   .    Some results to be obtained are independent of the 

specific form of (3-4), apart from values of numerical coef- 

ficients, and are really consequences of similarity together 

with presumed asymptotic properties.  The type of function 

(3-4) for integral m has been chosen to lead to trxctable 

integrations. 

In illustrating the effects of dispersion we give 

results on assumption that m ■ 1 in (3-4), corresponding to 

E-(k,ou) independent of k in the limit 0, -*■ », and also on 

assumption that m - 3, corresponding to E,(k,^>) varying as k 
•it 

in this limit.  The latter assumption is favored by the 

following argument.  The restriction (3-3) on the domain of 

5f 
Quantities linearly related to E^(k,u)) can be obtained for 

m«3 from those for m-1 simply by differentiation. 
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the inertial-subrange form (3-1) suffices even when IgsL , 

at least in the case where even the large-scale turbulence is 

homogeneous and isotropic so that Eq. (2-15) provides a valid 

basis for (3-3) at Low k. (For k£ L , condition (3-3) is equiva- 

lent to l«(üiL/v0)
3/2«L/iQ.) Now, in order to have E(k) « k4 

for k *'<L~ , as required in this case, by reference to (2-25) 
** '      L -1 

we must also have E^(k,oo)«k for k«L  ; presuming that this 

requirement on E(k) cannot be relaxed with regard to contributions 

from a) >>v /L, we must have E*,(k,üo)«k for sufficiently small 
-1Q/2 

k even in the domain of (3-1).  This result implies G(n)«a y/ 

•* 4 as ft-*».  The requirement E,(k,a>)«k as k-K) is likewise implied 
-19/2 in the usual way, and hence G(fi)«*£2  '    as fi-*» in the domain 

(3-3), if it is supposed that the intrinsic velocity spectral 

tensor ^.,(k,i)) of Eq. (2-13) should be analytic at k-0. 

This limiting dependence, in the case of the assumed form (3-4), 

implies m«3. 

From (3-4) via (2-15) we are able to find the limiting 

forms of the resulting function F(z) in the decorrelation (2-42): 

(3-5)    F(z) ■> Ao(l-tamz
2)   as z*0 

(3-6)    F(z) - Bz(l4€ z-3/2) as z-*; m 

A and B are regarded as given independently of m, and in the 

chosen cases m-1 and m-3 we obtain for the coefficients a^, €
m 

See Appendix,Eqs. (A-19) and (A-22).  In this and other cal- 

culations below, we have performed various quadratures with 

the aid of Bateman (1954). 
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(3-7)    aL - (8/3/5n)(B/Ao)
2
c0.881(B/Ao)

: 

a3 - [7(55)/(27)
2]a1-r0.529a1 

«x - (2n)-
1/2c3/2(B/Ao)-

3/2 

c3 - (8/3)(27/55)
3/2

ei ^0.916ei 

and for the constants a and y    in (3-4) m 'm        v       ' 

ax  - n-2c3/2Ao(Ao/B)1/2,   ^ - c3(AQ/B)3, 

a3 - (8/3)(27/55)?/2a1,    7/ - (27/55)\21 

where c - 5r;/6r(l/3) ~ 0.977. 

2 
The z dependence of the next-to-leading term in 

the limit (3-5) occurs not only for the choice (3-4) but for 

any G(ft) that decreases more rapidly than Q  as Q-*»,  The de- 

pendence of the next-to-leading term in (3-5) is indicated in 

the Appendix to be plausible also on independent grounds. 

The dependence of (3-4) as Q-*0  and the related dependence of 

(3-6) as z-»1» are open to question (see Appendix,Kq.   (A-21), 

for a generalization of (3-6).  These dependences, however, 

are irrelevant to all results to follow, except that numerical 

coefficients in Eqs.(3-7) and those following for a , a , and 

7 would be somewhat altered if the dependence in this limit were 

otherwise. 
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3.2      VELOCITY SPECTRUM IN THE MEAN REST FRAME 

From the assumed intrinsic energy spectrum E, (k,ü3) we 

can compute by (2-23) the spectrum E, (k,oo) for the mean rest 

frame. We give approximate results based on two opposite 

limits. For the moment, we assume an approximately Isotropie 

distribution P(v).  Eqs. (2-34) and (3-4) then yield 

(3-8)    E4(k,.) . I -,1/VC-» f dvv
2P(v) fV l»-M-1/2 

J J,  /, 2.  2 -li 1 (V2+i2z"l\u-kvu\S?. 

Two dimensionless variables are pertinent here, namely r\ = oo/v k 

-3 -1     -1 and C z ev k ». (kL)  , where the latter estimate follows from 

3 
e ~v  /L.  We may consider C « 1, since we are considering 

the inertial subrange.  In a domain where r\  is not too large, 

the convective approximation represents a valid lowest-order 

result; assuming a normal distribution for P(v), inserting 

E(k) in (2-95), and denoting this convective approximation by 

E4c, we write 

(3-9)      E4c(k,a>) - (3/2n)1/2Nvo-
1c2/V8/3exp[-(3/2)(t./vok)

2] 

with N - [10/9r(l/3]Ao, in agreement with (2-95).  By analysis of 

(3-8) we find the dispersive correction E^-E^, to lowest order in £ 

The result is given by 
2/3     ,   2 

(3-10)      E4(k,tü)-E4c(k,to){l-(3/2)büatn(cvo-V
1)  U-3(<u,v0k) ] 

where bQ-(3/5)r(l/3)/r(2/3)-1.19 (cf.(3-7)].  As we should expect, 
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dispersion thus decreases E/ relative to E,  for small <D/V k and 

increases it for larger CD/V k.  In a domain where w/v k is large, 

as discussed previously, E, no longer is related to E,    but is 

determined mainly by dispersion. From (3-8) in this instance, to 

lowest order in (CD/V k)~ we obtain 

(3-11)     E4(k,o>) ^amc
3/V7/2(€k2/a)3)m"1, 

-2 
the terms omitted being of relative order (co/v k)    (We con- 

sider only u&Q,  since E, (k,-a)-E, (k,o)).)  The approximation (3-10) 
2/3 can be good only if Q  /J<<1 and in addition, if T^I, the value 

(3-10) greatly exceeds (3-11).  Hence, the domain of validity of 

(3-10) may be given roughly as that where ^ 

(3-12)      C2/3<<1 if Ti < 1, or 

(3-13)      (Crf3) m_1 Tf7/2C5/6exp(3n2/2)«l if n >1; 

similarly the domain of validity of (3-11) is that where 

(3-14)      TI»1 and (Crf3)"1"1 rf 7/V/6exp(3ri2/2)»l. 

The result (3-11) corresponds to simply neglecting kvp. 

2 2-13   -2-3 
relative to GO and then k /y e r = y  n Q  relative to unity in 

the integrand of (3-8).  Returning to the basic relation (2-23), 

we can take these steps more generally as follows: 

(3-15)   E4(£,u>) = /d3vP(v)E4(k,(ju - v-£) ~ E4(k,a>) 

in the subject domain. The result (3-15) or (3-11) is evidently 

independent of the assumption of an Isotropie P(v). More generally, 

assuming only that E4(k,co) varies as k 'm_1' as k+0 at fixed au/v , 

and recognizing that E4 in this limit is determined by dispersion, 

not convection, and hence becomes independent of v , we can infer 

the result (3-11)(to within a constant^ along with (3-15), 
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directly on dimensional grounds.  Thus the result does not depend 

on the assumed explicit form (3-4) for E4(k,ü)) or on (2-6). 

It is useful to extend the latter considerations also 

to the spectrum, say E, (k,co) measured in a frame having a fixed 
_ A 

velocity -uQ relative to the mean rest frame.  E, is given by 

the kinematic relation [Eq. (2-3)] 

(3-16)   E4(k>) = E4(k> - ü0 • k") . 

We consider the domain of k,cu where conditions (3-14) are 

satisfied with CD replaced by CD - u ■TCSOU', so that 

(3-11) and (3-15) hold for E, (k.to1) . Further restricting 

consideration to k « u>/u , we then have from (3-16) 

(3-17)   E\(k>) « E4(k>ü)) _ ^(k>a)) _ am7m-^
3/V7/2(ekV(»3)ra~1, 

i.e., in the specified repime E, is nearly independent of u . 

3.3      DISPERSIVE CORRECTION TO TAYLOR'S HYPOTHESIS 

We proceed to consider the effect of dispersion on 

Taylor's ratio T, defined in Sec. 2.5. On assumption of our 

standard form (3-4) for E, (k,o>), we may write the basic 

equation (2-103) as 

(3~18) - , | oo-1 u +v|kv|" 
0(^)-a e1/V(m~1)/d3vP(vV0Pdkj   dv    »    'I  -1° Z~Z T m o      -1     (k +y e    |cu-|u +v|kvr) 

Likewise, the denominator of (2-100), by (2-47) and (2-101), 

is given by 

.* m 
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(3-19)   E^Ckp = (3/5)Ne2/3k1-
5/3. 

The ratio T is a function of two dimensionless variables, 

-3 -1 
v /u and eu k, .  Initially, we regard these as independent 

and both small. The departure of T from unity, say AT, can 

then be approximated as the sum of a term AT computed by neglect 

-3 -1 of dispersion, with eu k- = 0 (i.e., T - 1 as computed above 

in the local-convection approximation) and a term AT. computed 

by neglect of local-convection, with v0/u = 0. The actual 

domain of validity may be defined in the light of the results. • 

To find ATJ we take v„ = 0, whence (3-18) yields 
Q O 

-1/2 

(3-20)  Ö(cu)-ame
1/2k2(m-1)/a,dk/1dv JXV'' 

ICD-U kv| 
m^'fck'v",~^rdk/*dv -* 

-1  (kVA"V-uJcv|J)" 2. 2 :i ——^ 

-3 -1 Analysis of this expression to lowest order in euQ k^ yields, 

with some effort , 

(3-21)   ATd = (5/3)bm(B/Ao)
2(Guo-

3k1-
1)2/3> 

where b^ and b., were given at (3-10).  In summary, we have 

(3-22)   T - 1 = ATC + ATj, 

with AT . given in the limit v /u •*■ 0 and to lowest order in 
-3-1 

eu k,  by (3-21); from (2-108), we also have, 

If we consider instead T', defined by (2-100) with u' replacing 
-3 -1 -2 

u , then u  in (3-21) is replaced by uQ u' 
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In the limit  eu"3^1 -> 0, 

(3-23)        ATC = /d37p(^(|ü0 + v|/uo)2/3  - 1. 

For Isotropie normal P(v), moreover» by (2-110)  this becomes 

ATC -   [1 + ^(v0/uo)V
/2[l - H0(vo/uo)]  -  1; 

if also vo/uQ «1, by (2-111) 

AT* (5/27)(v0/uo)2. 

-3-1 Actually, eu k,  is not independent of v0/
u
0» hut rather 

eu;\1-(vo/uo)
3(k1L)*

1, so that, by (3-21) , 

(3-24)   ATd-(v0/u0)
2(k1L)'

2/3. 

Since we are considering only the regime kjL » 1, we have 

(3-25)   ATd/ATc-(k1L)"
2/3 « 1. 

Hence the local-convection approximation to this extent suffices, 

and the explicit results derived above on this basis are valid; 

furthermore, these hold independently of the magnitude of v0/
u
0« 

In particular, by the choice of convection velocities given 

in Sec. 2.5,Taylor's hypothesis becomes exact in the limit 

1/kjL + 0. 
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3        DISPERSIVE CORRECTION TO SPACE-TIME VELOCITY 
CORRELATIONS  

We consider the dispersive corrections to the space- 

time decorre 1st Ions ^(r,T) computed in Sec. 2.3 by the local- 

convection approximation.  For this purpose we assume the 

standard dispersive intrinsic spectrum E,(k,cu) of (3-4).  In 

the limits we shall consider, however, only the limiting re- 

sult (3-5) is actually pertinent.  Hence the results are inde- 

pendent of the specific form of (3-4), apart from the relation 

(3-7) of the constant a to B/A .   and are contingent sub- 
m '   o' o 

stantially only on the expected dependence F(z)-F(0)«z' as z-K). 

The trace  function Kr,x)   for the  inertial subrange 

is given by Eq.   (2-51) .    We assume an Isotropie P(v) , whence 

(3-26)     ,Kr,T)S Hr,T)  - j(er)2/3 J"" dv v2P(v)f dnp2/3F(zTf 2/3) , 

where 

T, =  [l+(vT/r)2-2(vT/r)M31/.2z = €1/3
r-

2/3fr| . 

Eq.(3-26)   is the equivalent  of  (2-69),  but the dispersive factor 

a  (z)   in  (2-56) is no longer replaced by unity.    We assume again 
2/3 a normal P(v) .    The ratio tf/(r,t)/(€r)   '    depends on the two 

variables ß =v t/t and z, or equivalently on ß    and 

(3-27) X«p;l«3/2 -  (€x)1/2/v0 . 

We have r(vx/L)  ' «1 by (2-5);  X provides an appropriate 

r-independent measure of the effect of dispersion. 

The limit ß ■+ » is of particular interest,  c<nce, 

for v /u «1,  it determines the envelope of the space-time 

correlation curves W(r,T)   in a measurement  frame having velocity 
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-ü (for f and ü nearly parallel).  By letting ß -*■• and then 

V*0, I.e., considering the limit where ß0*", V*-0, Xß0*z ■**% 

we are able to evaluate (3-26), by reference to (3-5) and (3-6), 

to the two lowest orders in ß~ with the two coefficients each o 

evaluated to the two lowest orders in X.  Explicitly, we find 

(3-28)   *<r,T) * S0(ev0T)
2/3rU(l/3)ß;2+d0am>

4/3[l-(l/3)ß;2U , 

where d0 - (5/3)6"
L/3b2 » 1.30 and SQ was given at (2-76)*. 

Likewise, by considering the limit ßQ-K) at arbitrary X(<1), we 

find from (3-26) and (3-5) 

(3-29)   *(r,T) - A0(£r)2/3ri^/27)ß2+am^
/3ß4/3[l-(l/27)ß2lj, 

in which the two parts proportional to X° and v  are evalua- 

ted to the lowest two orders in ß . 

Since the comparison with experiment considered 

here concerns the longitudinal decorrelation ^,(r,x) , we wish 

to obtain this also in approximations corresponding to (3-28) 

and (3"2S) by reference to the continuity equation. The 

latter is still expressed by Eq. (2-78) in which, however, 

GJ now depends on X as well as on ß . We find 

(3-30)   ^f(r,T)=S1(6voT)
2/3{l+(l/5)^2+doanV

4 -(l-(l/5)eo 
2]) 

(X«l, *ß0»i), 

where S, was given at  (2-76); in the other limit 

If, contrary to  (3-5),  ^(r,x)  contained an additive component 
B'e|T|for all T,  ^(r,t) would likewise contain this same 
r-independent component. 67 
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(3-31)        *f(r,T)   = A(€r)2/3{l+(ll/27)p2+(li/7)ara>,4/3ey3 

x[l-(7/27)ß*]j (QO « i). 

The transverse decorrelation ^ (r,x) can be obtained similarly. 

Writing ^f = ^fc
+^f» where ^f (r,t) is the result of the local 

convection approximation and A^~(r,T) the dispersive correction, 

however, we may insert the value of ^/f given by Eq. (2-80) or 

(2-84) without resort to the expansion of this part in (3- 30) 

and (3-31) in powers of ß   and ß , and use only the terms 

4/3 proportional to A '  in these equations as the expansion of 
4 

A^£ alone. .« 

We may consider the effect of the dispersive correc- 

tion computed here on the comparison with experiment in Section 

2.3 and Figure 2. For small angle 0 between r and ü , the 

dispersive correction Av/n,(r,T) to ^,, as given by (2-89) or 

(2-90) may be identified with Atf/f(|r-üQT|,T). We approximate 

the latter for ß >land ßc<l> respectively, by the relevant 

terms in (3-30) and (3-31), where ßQ r v0T/|r-vox|; this 

approximation is unjustified for ?,T such that ß >1 but Xß <1, 

but this domain is relatively small, and the envelope curve, 

in particular, will be given correctly. The additional parameter 

B/AQ now enters via am [recall Eqs. (3-7), (2-44), (2-45)]. 

The magnitude of the quantity \  of (3-27) in the 

experiment in question is given as a function of the 

68 



dimensionless time n s UQT/M, where M is the mesh spacing, 

according to (2-68) by * = (5/3)1/2(vo/u0)ReM
1/2Rex"

1n1/2' where 

ReM = 
u
0M/v. For the parameters of the particular experiment, 

assuming vQ/u0 = 0.027, we find X = 0.116n ' , which is moderately 

small, as required for such n that the correlation is high. 

The space-time correlation computed by (3-30) and (3-31) 

for a - 2.31 and A - 0.55 on assumption that 0-0 and v/u -0.027 is m o o 

compared in Figure 3 with the experimental results shown previously 

in Figure 2. The value used for <xm corresponds to B/AQ-1.62 if m-1 

or B/A -2.23 if m-3 in Eq. (3-4).  Also shown in Figure 3 (by solid 

lines)  is the result obtained by supposing that the disper- 

sive term Atf/f is not that derived above but simply that 

corresponding to the space-independent (wavenumber-singular) 

form ^(r,x)-^<r,0) = Be|T|, whence Atf/f(r,-r) = (1/3)BC|T|; the 

result shown corresponds to B/A = 1.04 with other parameters 

as for the other computation. There is little to choose between 

the computed curves. The envelope in either case could be made 

to decrease more rapidly by increasing the assumed value of 

B/A .  Figure 3 shows also the envelope curve (a), given previously 

in Figure 2, corresponding to 0 - 0, v/u = 0.027, but without 

dispersion (B/A -0).  For likely values of B/A the dispersive ef- 

fect is seen to influence the space-time correlations appreciably 

at the Reynolds numbers of the experiments considered.  Inclusion 

of dispersion necessarily worsens agreement with experiment for the 

envelope at the larger time delays, since the inertial-subrange form 

assumed already gives too small a correlation at such T or | r-ü T| 

that the correlation is far from unity. 

K  
Inclusion of dispersion does not affect the computed ratio p /p 

pertinent to shapes of isocorrelation curves discussed in Sec. 2.3. 
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4.       PRESSURE CORRELATIONS AND SPECTRA 

We turn to the subject of pressure fluctuations. 

Pressure is related to the velocity derivatives for an incom- 

pressible flow by the familiar Poisson equation 

(4-1)    V2p(*,t) = -pd2(vivj)/aKiöxj, 

where v.(x,t) refers to the total velocity or, in the unsheared 

flows being considered, the fluctuating velocity. Prior to 

the common pursuit of consequent relatijns, we progress by simpler 

considerations. 

4.1      PRESSURE SPECTRA IN A MOVING FRAME BY KINEMATICS 
AND SIMILARITY FOR THE INERTIAL SUBRANGE  

We consider once more a frame having constant velo- 

city -G relative to the mean rest frame and refer to ehe J      o 

pressure on a planar area whose normal is orthogonal to ü . 

Let the spectral density of pressure in frequency oo and two- 

component wave number K = (k, ,k~) in the plane containing this 

area be denoted by P(R,cu) .  In the instance of the rest frame 

(ü =0) , we denote this spectrum by P(R,cu). We then have 

(4-2) P(R,o>) = P<K> - uo-K) . 

We assume that the large eddies are roughly irotropic, 

In the terminology of Chandiramani  (1965)  and others,  P(K,o) 
fröre precisely its wavenumber integral)   is the fixed-transducer 
spectrum and P(K,<JU)   the moving-axis spectrum. 

»♦ 

i.    % 
\ 
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so that the local fluctuating velocity is adequately charac- 

terized by v , and limit consideration to the inertial subrange 

L'
1«(x2+uu2/u^)1/2«jt^1 (uo*vo), where K= Iftl .  P(K,cu) , as a 

function of k,, k~, at fixed CJU, has a peak, or rather a ridge, 

in region of R where the probability of a total fluid velocity, 

ü + v, that satisfies the convective condition GD-(ü + V)*R =0 o o  ' 

is substantial; this region is given by 

(4-3) lu)-üo-Rl<v0K. 

We recall in the parallel instance of the mean-rest- 

frame velocity spectrum E, (k,cu) that the result of the local- 

convection approximation, E, (k,o)) [see(3-9)], was adequate 

[see((3-10)] if cu/v k<l (or even somewhat larger, according 

to (3-13), if C is sufficiently small).  Similarly here, we 

expect that a local-convective approximation to the mean-rest- 

frame pressure spectrum P(R,cu') will be adequate roughly if 

<D' /v K<1. Now, the pressure is quadratically related to the 

velocity fluctuations, and the velocity spectrum (or correla- 

2/3 
tion) in the inertial subrange is proportional to 6 '. Hence 

P(R,a)1) in the local-convection domain, being otherwise inde- 

pendent of velocity dispersion and thus of «, must have the 

form 

P(R,o>') = P
2€4/3D(v0,R,oO, 

where D is a function having dimensions (length)  '  (time). 

Since D must also be a properly convariant scalar function of 

the vector R, we must have 
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D(v,K,w')   - v^1 K_13/3 F(voR/co'); 

on account of isotropy, however, F can depend on R only via 

K,  say F * 0(CJO' /V
0K) •    Thus,  in the subject domain, we have 

(4-4) P(R,u>')   = p2€4/3 v"1 K"13/3 a(o)'/voK), whence 

(4-5) P(R,u))   = p2€4/3 v^1 K"13/3 0(t(u-ao-K]/voK) 

We now assume u >>v  , choose coordinates such that 

ü    = (u ,0,0)t and consider the width Ak,   in k,  of the convective 

ridge  in P(R,oo)  centered at k-t^cu/u .    According to  (4-3) , we 

have    Ak^v /u )K.    The factor K'13^3 in (4-5) with 

K =(o>/u )   +ko    effectively cuts off contributions from 

k.j>üj/uo.     Hence Ak1< V2(vQ/uo) (a)/uQ)   for all significant k*, 

so that Ak,/k,~v /u «1.    Hence, when multiplied by a power 

or other sufficiently smooth function of K,  the function 0 be 

behaves roughly as a &-function: 

(4-6) aüoj-u^l/v^)  - aa(v0/u0)KB(k1-a)/u0), 

where ad =    /°° dx0(x) .    This approximation  IJ equivalent to 
V -00 

Taylor's hypothesis (based on the unmodified convection velo- 

city u0) . 

We may now consider the frequency spectrum of the 

point pressure, 

(4-7) P(o))  = /d2KP(R,u>) , 

where the integration runs over the entire R-plane.    Since in 

this case P(R,u>)   is weighted uniformly in R,  P(u>)   is largely 
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determined by the domain of K which contains the peak in P(R,ou) 

and where (4-5) holds. From (4-5) to (4-7) we readily obtain 

(4-8) P(o)) -Cs^pV^cD/u^-7'3, 

where 

(4-9)      c_ = 2 /" dx(x2+l)-n - 7r1/2[r(n-l/2)/r(n)l. 
"   o 

*    -7/1 
We thus infer uniquely the frequency dependence, P(U>)»ID ' . 

The conditions for (4-8) are v0/uQ«l, UJL/UO»1, and uul /v «1. 

We consider now the spectrum, Q(w), of average 

pressure on a circular area of radius R , given by 

(4-10) Q(.) = / d2R[2J1(KR0)/KRo]
2P(K,o)). 

This quantity, for the homogeneous turbulence assumed, is not 

actually accessible to experiment, since the introduction of a 

pressure sensor of the prescribed area would naturally disturb 

the homogeneity of the flow near the surface of the sensor. 

We form the quantity rather as an edifying analog for the 

spectrum of average pressure on a similar area of a wall in 

the more difficult case of a turbulent boundary layer. 

Suppose first OJR /u <jC 1, so that we may approximate 

the area-averaging factor by 

[2J1(KRo)/KRo]
2 - 1 -(1/4)(KR0)

2
# 

*  
By (2-40), the last condition may be written 

(u,v/v2)(v L/v)1/4«l. 
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Then (4-5), (4-6), (4-10) and (4-8) yield 

(4-11)        Q(o>) = P(ü>)[1-(ü>RO/UO)
2
]. 

Consider now the opposite limit o>R /u » n .  In 
A 

this case the range of K near the peak of P(K,ü>) in (4-10), 

namely K-tu/u , is veil separated from the range K<£TTR  where 

the area-averaging factor is relatively large. We must examine 
A A 

the contribution to Q(CJD) from the latter range, say Q_(a>), as 
A 

well as that from the former, say Q+(a>). 
A 

In the range of K pertinent to Q_,  since K«u>/u , 
A  _ j 

we may approximate P(K,CJO) by the rest-frame spectrum P(K,cu). 

Form (4-4) for P(R,o>) may not hold for the range of K where \ 

K«u)/v , depending on the role of dispersion.  At the same 

time, we have no justification for presuming that P(R,uo) here 

does not depend explicitly on v and is independent of K, es 

for m = 1 in the instance of the form (3-11) for the velocity 

spectrum E<(k,co)(if these conditions held we could uniquely 
—      9 2-6 

infer P(K,Oü) ~p € u> ).  In Sec. 4.2 it is indicated that in this 

domain, even though UJ/V K»l, P(K,OJ) in fact is likely determined by 

local convection and assumes the K-independent form of (4-14): 

(4-12)      «f..) -A/e'/V0'3*'13'3. 
where A is a constant of the order of unity.  The range of K where 

(4-12) applies then yields, in the limit where -JDR /VO»1, the largest 

contribution to the integral of form (4-10) for Q_(u>) in the sum 

(4-13)     (J(u>) ~ ^(a))4^+(jo). 

Froir. (4-12) we thus obtain 

(4-14) H>> ,4nApc2,4/3vo
l°/V13/3R0-2 

for aÄo/uo»l, u)Ro/vo»l, o)io/vo«l. 
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To find Q+ we may assume for P(7,uu) in the pertinent 

region of R* the earlier form (4-5) and, without appreciable error, 

extend the integral of the form (4-10) for t$ over all K. Treat- 

ing separately two opposite limiting cases, («>R /u )(v /u )»n 

and «TT , using (4-6), and at the proper stages making use of the 

result (4/TT)(KR )"3 for the average of [ 2^(1» )/KR I2 over an in- 

terval AK such that TT«AK«K, we find both cases 

(4-15;   Q+(u,) = 4*-lc19/6.0pV/3u;l(<o/Uo)-16/3R-3 

with cn given at (4-9). Conditions for (4-15) and (4-11) (apart 

from those on uuR /u ) are as given for Eq. (4-8). 
' ft   _,     n-2 Q_ varies as RQ , corresponding to a nonvanishing 

effective area scale, whereas § varies as R  . Their ratio, by 

(4-14) and (4-15), is 

(4-16)     *_/Q+ - ao(vo/uo)
10/3(u)Ro/uo), 

2 * where a «*r A„/cig/taJ. As for the reduction factor due to aree 

averaging, by (4-8) we have 

(4-17)   Q(u))/P(u>) = q_(w) + q + (co), 

ys    ^ 

q.=_Q./P ^Jvo/uo)
1°/3(uuRo/Uo)-2> 

q+^Q+/P = a+(a*o/uo)-
3, 

where a_ - ^^1^^/^ flnd % = 4C19/6/TTC5/3 -± 0.795. 

For arbitrary values of u>R  /U   , we may infer  for Q+(ou), 

from (4-5)  and  (4-10),  a  functional  form 

(4-18) Q+(u>)  - o2€4/3uo"1R0
7/3hrvo/uotc.Ro/uo). 

Analogously,  for boundary-layer turbulence we may conjecture 

that 0^/Q+ ~(v*/UJ2(u,R0/U.). 75 



By (4-8) and (4-15), limiting forms of the function h(x,y) 

-7/3 are given by h(x,y)-> const. Xy    as x-»0, y-*0 find h(x,y) -• const. 

-16/3 
X y   'as x-»0, y •*<*>.     Taking account of the relation 

ecav /L, we may make explicit all velocity dependence in the 

scaling form (4-18) by writing 

Q+(0u)-p
2RoUo

3(cnL/uo)-
4/3w(vo/uo,aAo/uo), 

where w(x,y) is a function related to h(x,y). 

♦ 
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4.2 PRESSURE SPECTRA AND CORRELATIONS BY THE MODEL 
OF QUASINORMAL VELOCITY DISTRIBUTIONS  

The results of the preceding section can be clarified 

and extended In part, at the expense of introducing imprecisely 

assessed approximations, by pursuing an explicit calculable 

model to give P(R,cu) .    The model to be considered will  have 

approximate validity only in the convective range  (4-3)  or 

somewhat beyond, and not in the dispersive range,  in particular 

not where  (4-13)  applies. 

From the basic relation  (4-1)  of the pressure field 

to its velocity-derivative sources,  the rest-frame spectrum 

P(K,ou)   is found to be expressible In the present case of 

stationary infinite homogeneous  turbulence as  the  following 

double integral over the coordinate normal to the plane of 

X (e.g, from Kraichnan 1956): 

(4-19) P(K,cu)  =(l/4)pV2 /• dx2   r dxj expt-K(Jx2l + |x2l)] 

xS(x2  - x2,R,tu) , 

where 

(4-20)       S(C2,R,"0   -   (2TT)-3/ d2C/ dTexp[-i(R.C  - on) ]QC2,',,T) , 
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(4-2i)   Q<C2.C.T> - ^aviö;(<vavßv;v;>-<vav<viv^]-, - - » 

va ' va(*»t)» vi " va(i'»fc + T) » * = (xitx2»x3>» * " ^i»C2/.3) 

C "  (C^ICJ), öa= ^/öxa, öa'= d/öx^, and integrals extend over 

the Infinite domain unless otherwise specified.  P(R,<") as 

given by (4-19) - (4-21) is so normalized that the mean squared 

fluctuating pressure is given by 

(4-22) < p2> - /°°du>P(u>)  = /°°dü/d2KP(K,ü)). 
-00 -00 

We now assume the turbulence is Isotropie; regarding the iner- 
f 
* •♦ 

tial subrange, this assumption corresponds again to Isotropie % 

P(v)   in (2-6).     In this event we may write Q of (4-21)  as Q(r,x). \ 

We define L(k,u))  as the wavenumber-frequency spectrum of Q: 

(4-23)        L(k,a)  = /d3r/dTexp[-i(C f - oü T)]Q(r,x) 

[S * <kj,k2,k3) ].     Then S  in  (4-19)   may be written as a transform 

of L over kj.     In tht present  instance   (unlike thi?t of boundary- 

layer turbulence) we can trivially  integrate over Xo and xA  in 

(4-19)  to obtain 

(4-24)        P(KSCJ)  =  (2*)-4p
2/dk2k"4L(k,o)), 

2        2       2 in which,we recall, k    = kj + \. 

To proceed further we make the common assumption of 

a quasinormal velocity distribution with reference to the 

two-point,   four-component space-time correlation <v vßv'v'>  in 

Eq.   (4-21)   for Q(r,r),   i.e.  ve assume that the  foarth-ordei 

moments are related to the second-order moments  in the  same 

way as if the  statistical distribution of velocity  in space-time 

were a joint normal distribution  (Miliionshtchikov 1944, 
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Batchelor 1951). This assumption has received serious criticism 

(Kraichnan 1957, 1959a) as the basis for a dynamic treatment 

of turbulence. Nevertheless, its use appears unlikely to lead 

to major error in the less demanding application to a merely 

descriptive treatment of velocity and pressure correlations, 

and the assumption has often been so used. It was first 

employed in the context of pressure fluctuations by Obukhov 

(1949). From this assumption, Batchelor (1951) derived the 

form of the desired correlation function Q(r,x) for vanishing 

time separation, i.e. Q(r,0). If the assumption of quasinor- 

mality is made also for T 4  0 (Chandrasekhar 1955) , the deriva- 

tion applies equally when the two points in question are 

separated in time as well as space. In terms of the (mean-rest- 

frame) longitudinal velocity decorrelation ip-, (r,x) the relation 

derived is 

(4-25)   Q(r,T) - 4[2(^)2+2^^'+10r
4^^'+3r-2(f')2], 

where a prime denotes d/dr.  Alternatively, the spatial transform 

of Q(r,x) defined by 

q<k,T)= (2TT)-3/d37e~ik'rQ(r,T) = ^ n"
2 k_1/o°° drrsinkrQ(r,T) 

is related to the corresponding transform E(k,t) of V(rJ ) 

(see Eq. (2-17)) by 

(4-26)   q(k,T)-(8TT2)'Tk^/d
3C,E(k,,T)E(|C - £' J ,x)rinV I K-G' I"4, 

where cosG1   = fc'C/kk'.     L(k,oü)  of  (4-23)   is then given  as  a 

time transform of q(k,T).    By virtue of its definition  (-+-21) 

as a  fourth-order derivative, Q(r,x) , as shown for T = 0 by 

Batchelor (1951) , corresponds to a q(k,T)  and hence to a 

spectrum L(k,cu)   that vary,  for any reasonable function ^(r,T), 
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as k for k«l, and likewise in the case where these quantities 

are generalized to anisotropy at low wave numbers. From (4-24), 

(4-26) and (2-22) we can express P(K,CD) also in terms of E, (k,u>) : 

(4-26a)  P(R,oo) = (l/8TT2)p2f dk2 f d3fc' sinV |fc-fc* I'4 

x f duU'E4(k
,,(i,')E4(|Tc-'R

,| .ui-u»') 

In principle, in the inertial subrange we can assume 

our standard form (3-4) for the intrinsic energy spectrum f, (k,uu) 

(suitably extended to low k or terminated at k~L~ ), write the re- •• 

suiting E,(k,uj) as in (3-8), or more generally (2-34), and compute 

the desired P(K,uu) from (2-26a) or else proceed via (4-25) or (4-26). 

We shall deal separately with the domain uu/v K»l and the opposite 

domain where dispersion may be neglected, starting with the latter. 

In the non-dispersive domain we can simply approximate 

E(k,-r) by (2-96) or ^(r.-r) by (2-80). On account of the still 

considerable analytic difficulty, however, and the uncertain error 

already introduced by the assumption of quasinormality, we proceed 

still more crudely. We approximate Y.(r,T) in (4-25) as a space-time 

Isotropie function.  The consequent error in the computed P(K,w) for 

the inertial subrance relative to an exact local-convective approx- 

imation will parallel the difference previously noted between (2-96) 

and (2-97) in the case of the energy spectrum E,(k,uu); furthermore, 

dispersion will limit the validity even of an exact local-convection 

approximation for P(K,UJ) in a parallel manner to that discussed for 

E4(k,ü>) in Sec. 3.2. 

In the stated approximation, we have 

(4-27)     ^(r.t) ■ HX{KVQ)  *  ^(ty 80 
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with R,  of the form (2-81).    In the inertial subrange, where, 

as   at (2-84), 

(4-28) ^(F^)   - A(€R1)
2/3 (£0<< ^« L) 

with R,  given specifically by (2-81) and (2-83), we find from 

(4-25) 

(4-29)        Q(r,x)  - (16/9)A2€4/3R^8/3[15-(80/3)r2/R2^112/9)r4/R4] 

In the viscous    subrange, where, as at  (2-86), 

*1<*1>  - («/SOv^ (Rol < lQ) 

With R j^ given by (2-87)  and (2-88), we find 

(4-30)        Q(r,T)  =    4(e/15v)2(14 + r4/R^). 

We note  further the result where a modified von Karman inter- 

polation form (Hinze 1959,  Eq. (3-131)) 

(4-31) ^(ty- (V3)v2[l-exp(-koR1)] 

is assumed, in which k is a constant inverse correlation ' o 

length: 

(4-32)   Q(r,T) - (4/9)v4exp(-2koR1)k2[Ak
2(r/4/pJ)-10koR-

} 

x(r2/R2) (2-r2/R^+R^2(15-20r2/R2
1+8r

4/R4) ]. 

For the inertial-subrange form (4-29) , the integral 

(4-23) can be performed to yield, in a corresponding range, 

the function L(k,cu) in (4-24). We find 

(4-33) L(k,u>)   » A2 V;
le4/Vk;l6/3 (L"1« k+«  T1) , 
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where 

(4-34)        k2 = k2 +  (ü)/ve)2, ve = 8lvo, 

A*j = 24/3(640/81)7T2[r(2/3)/r(4/3)]A2  . 

Before proceeding, we formally generalize to the 

non-universal range where the condition k,   »L      is not 

satisfied.    We continue to use the local-convection and 

space-time  Isotropie approximations as at  (4-27).    There is 

no justification for this extension, but it may prove quali- 

tatively useful to point out the resulting difference.     If 

the reciprocal size of the energy-containing eddies is ~k (~L    ), 

it is natural to suppose that the alteration in L(k,cu)   that 

would result from using a  ijj, (R,)   roughly appropriate also 

where k,   < k    would be to replace k    in  (2-54)   by something 

like  (k^-Ktk^)       , where the factor on k^  is uncertain but  set 

equal  to  four    for reasons  to appear« 

To examine the point explicitly, we may employ 

(4-31)   and  (4-32).     Form (4-31)   corresponds  to an energy 
A 

spectrum E(k)   that behaves appropriately,   i.e.,  as k   ,   for 

k « k  , whereas   (4-28)  corresponds  to one  that varies as 
-5/3 k    '     for all k.     Form (4-31)   assumes  that  the turbulence  is 

Isotropie,  however,  even  in the energy-containing range.     It 

does not reduce  to form  (4-28)   for R,« L(or k+ » k ),  as 

would the unmodified von Karman interpolation form (Hinze 1959, 

(Eq.3-136)),  but suffices  for  the present purpose.     Inserting 
it 

(4-32)   in  (4-23), we find after considerable   labor 

It  is convenient to evaluate   (4-23)   by use of four-dimensional 
spherical coordinates. 
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(4-35)        L(k,o>)  =  (2V3)Vv;V 

k4[4üa4+45a2kj+8k4+5a(k2+a2) 1/2(8a2+5k2J ] 
X (k2+a2)5/2[(k2+a2)l/2+a]5 

with    a=2k0.     In the hlgh-k limit where cu/v^ + 0 and a/k + O, 

(4-35)  becomes 

(4-36) L(k,oo) + (32Tr/9)v;1voa2k"2  ; 

similarly, In the limit where a/k++Q, it becomes 

(4-37)        L(k.oo) - (32rr/9)v;1v4a2k4k;6, 

which may be compared with the unmodified inertial-subrange 

result (4-33) that pertains to the same limit. A simplified 

form that approaches the same limits (4-36) and (4-37) and 

broadly preserves the character of (4-35) in the general domain 

of k and GO is given by 

(4-38) L(k,oo) = (32T/9)v;
1vVk4(k2+a2)-3 . 

In view of the approximations already made and the non- 

universality in the range in question, we may accept (4-38) in 

place of (4-35).  Since, however, (4-37) and (4-38) justify 

? 2 2 the initially suggested replacement k~+k +a for general a/k+, 

we can preserve the universal character for k » a by accepting 

not (4-38) but the generalized form of (4-33): 

(4-39)        L(k,co)=A2v;1e4/\4(k2+a
2)-8/3, 

where 2a      roughly measures  the size of the energy-containing 

eddies. 

Inserting   (4-39)   in  (4-24), we obtain the wavenumber- 

frequency spectrum of pressure  in the mean rest frame; 
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(4-40) P(K.o))  = C2
?p
2eU,\l\U/3, 

where 

K2. - K2+(oü/ve)2+a2
l 

C2 - (8/9)21/3Tr"3/2[r(13/6)/r(4/3)]A2. 

To obtain from (4-40) the corresponding spectrum P(K,u>) in 

the measurement frame having relative velocity -ü , we need 

only use (4-2)  to find 

(4-41) P(K,uO  - C2p2e4/3v^1k^13/3, where 

(4-42) K^= K2+(cü-u£)k1)2/v2+a2 

and we choose ü   =  (u ,0,0).    On account of our use of the 

local-convection approximation,  the result for P(K,OJ)  can hold 

only where   luu-u K,l/v    < K, corresponding to the region of the 

convective peak (4-3).    Comparing (4-40)   for    P(K,co) with (4-4) 

(and setting a=0 for the inertial subrange) we see that accord- 

ing to the present model,  the function 0 there introduced is 

given by 

(4-43) 0(x)   = C2s^(l + s-2x2)-13/6 . 

In view of the previous comparison between (2-96) and (2-97) 

for E/(k,o)) , however, we should expect that an exact calcula- 

tion of the local convection approximation for P(R,o)) by means 

of (4-26) (still on the basis of a normal isotropic velocity 

distribution) would yield a function 0(x) different from (4-43); 

in any case, the result is not to be used for x»l.  Eq (4-43) yields 
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for the value of the coefficient a- defined at (4-6) 

<4"44^ a0 ■ Cpc13/6» 

where c, ^ ,^  is given by (4-9). 

In the present model, the frequency spectrum P(CD) 

can be found exactly from (4-7) for arbitrary v0/u_; from (4-40) 

with YLf. ■*■ Kj., we obtain 

(4-45)   P(o)) - (6F/7)CJP2C4/3U;1(O)
2
/UJ + a2)"7/6, 

where u is the sum of the mean convection speed u and the 

effective fluctuating convection speed v in quadrature, given 

at Eq. (2-120) (vg - s^) .  In the limit vQ/\iQ-*Q  (with a=0) , 

this reduces to the form (4-8) obtained in this limit more 

generally. Eq.(4-45) requires the nonviscous condition ml  /v «1. 

We may consider Taylor's hypothesis for pressure, 

as in Sec. 3.3 for velocity, by regarding the ratio 

(4-46) TpEUpHUpk^/P^), 

where P,(k,)   is  the irean-rest-frame spectrum in streamwise 

wave number at a fixed time and cross-stream position  (x3): 

P.(k,)   = r do) r dk,P(R,a), 
1 1 — 00 —00 ^ 

and u    is an effective convection velocity open to choice. 

From (4-41)   and  (4-45)  we  find T =1 exactly provided ^ =ug, 

given at  (2-120). 

By  (4-22) ,  Eq.   (4-45)   yields a mean squared pressure 

< P2>» (8/9)21/3:r(2/3)/r(4/3) ]A2p2€4/3a'4/3, 

properly  independent of u    and in accord with the usual 
2   1/2 2 order-of-magnitude relation < p   >     ~p< v   >. 

Concerning the properties of the convective ridge 

in P(K,OD)  as given by  (4-40),  at  fixed k^ the quantity icj has      g5 



its minimum and hence P(K,to) its maximum at 

(4-47) kx  = klBa (c/uo)(uo/ue)
2 = c/uc ; 

this minimum value of IC is given by 

*L-  Wue)^k2
3+a

2; 

the half width Ak,  of P(R,CJO)  at one-fourth maximum is given 

for Akx< klm by 

(4-48) AkL =  (ve/ue)(u)2/u2+k2+a2)1/2 

(cf.  paragraph following  (4-4)).    The contours of constant 

P(K,Oü)   in K-space are defined by KI - constant;  by  (4-42)   they > 

are ellipses centered at k,   = +kn_,  k3 - 0 and have semiaxes 

along k,   and k., in the ratio v /u    . 

From (4-41),   (4-47),  and  (4-48)  we see how,  as u - 

increases  from zero,   the ridge  in P(K,o:)   sharpens and moves 

from    k,   ■ 0  out  to k,   = cu/2v    at u    = v    and then again toward 1 1 e o        e ° 
lower k,;   similarly,   from  (4-45)  we  see how,  as u    increases, 

the peak  in P(CJJ)   at u = 0  becomes broader and  lower, with 

P(cu)   decreasing for co<( vr3/2)au    and  increasing  for a>      (\r3/2)au  . 

We   consider now the  frequency transform of the 

spatial correlation  (cross-spectral  density)   in the measurement 

frame, 

(4-49) ep(T,uO   =  /d2RP(R,u>)e1**'  . 

Defining  the normalized magnitude M and effective convective 

velocity u    by setting 

(4-50) ep(^,ü>)   -  M(",aJ)P(aJ)exp(it.ri/uc), 
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from (4-40) and (4-45) we find that u Is again as given by 

Eq. (2-120) and 

(4-51)   M(C,u>) = [2I/6r(7/6)]-l(a2/u2+a
2)7/12(:^2",2)7/12 

n  2/ 2 „2.1/2. .2^ 2,2,1/2, 
x K7y6((cu /ue+a )   (C3+ve \)      ) , 

where ve- v /u as at (2-120) The elliptical contours of 

constant M(",UJ) have axes along *« and "3 in the ratio u /v 

Inverse to that pertaining to P(R,cu) ; this ratio gives also the 

relative scales of the principal coefficients A(r. ,<o) = M(si,0>U)), 

B(C3,u))s M(0,C3,cu). 

Taking the liberty of comparing with experimental 

results  for boundary-la yer,  as opposed to homogeneous,   flow, 

with the rms  fluctuating velocity v    in v    = s-,v    attributed ° *    o e l o 
a value characteristic of the constant-stress   layer,  say 

v    = O.lu    in the regime where the friction velocity v^ is 

given by v^/u  - 0.033, we obtain  for u /v    a value  in good 

agreement with the experimentally observed ratio of scales 

07.5)   (Corcos   1963, Willmarth and Wooldridge  1962) .     Other 

rough correspondences  are evident between  present  results 

(e.g.,   (4-45) , (4-54))   and measurements  tor  boundary-layer 

turbulence;   in view of the greit  differences between these 

types of  flow    these correspondences will not  be pursued, 

pending a careful  extension of the present approach. 

The  space-time correlation of pressure  in the 

measurement   frame, W  (",-)   can be  found  from 

(4-52) *p(t,t)   = /d.e"1-  ep 
_ 

or be replacing   ', by  C, -u T  in the rest-frame correlation 
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W  (^,T)   similarly computed from 9   (?,u>).     From (4-50)   and 

(4-51)  we find 

(4-53)        Wp(C,x)  - cye^3a-
2/3[(,l.UoT)2 + ^v2T2]l/3 

x K2/3(a[('1-uoT)2^2
3+v2T2]l/2K 

where C2 = 2_1/3(16/9)[T(4/3)]-1A2,   in which the argument in 
2 2    2    2  2 square brackets may also be written as U'(T-"\/U )   +Cvhfe7",   . 

In the  inertia 1-subrange limit, where the argument of ^/o 

becomes small, we obtain for the decorrelation \p  (C*"0 

[-Wp(0,0)-Wp(C,T)] 

(4-54) ;p(?„T)   = 2A
2
P

2
€
4/3

[(»:I-UOT)
2

+;
2
+V

2
T
2
]
2/3

  . 

As apparent also from (4-33)  and  (4-24) ,  the space-time 

isotropic approximation for the  longitudinal decorrelation 

\j/,(r,i)   in the  inertial  subrange  and the quasinormality relation 

(4-25)   thus  lead    to a space-time  isotropic  form (in two space 

variables)   also  for the  (mean-rest-frame)   pressure decorrela- 

tion-      Since the result of the exact local-convection approxi- 

mation to  ^, (r,-r)  was well approximated by space-time   isotropy, 

as seen by  (2-80)   and Fig.   1,   the exact approximation to 

ty   (~',T)  within  the validity of the quasinormality assumption, 

is probably well approximated by  (4-54).     In  the approximation 

of  (4-27)   and  (4-28) ,  by  (4-54)  we have 

<p(",T)   = 2P%2(C-,T); 

this result, for T= 0, reduces to that obtained previously 

from the quasinormality assumption by Batchelor (1951) and 

Obukhov (1949). 
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We note the variously defined convection velocities 

for pressure.     That defined by  ^/T where dW /d^ 0  is exactly 

uQ.    According to approximation  (4-53),  that defined by  CJ/T 

where cW /öT = 0  is u , given at  (2-120),  the same as the one 
P c 

defined at  (4-50)   by the cross-spectral density.     The convection 

velocity defined by imposing Taylor's hypothesis   (4-46), computed 

by use of  (4 41), was ug,  given by  (2-120).     In short,  these 

convection velocities referring to pressure are just the same 

as the corresponding ones referring to the streamwise velocity 

component  in the  same approximation of space-time  isotropy of 

the  longitudinal velocity correlation  (see Table 2,  last 

column). 

We turn now to P(K,UJ) in the low-wavenumber region, 

K<<uu/v , where we must abandon approximation (4-27) and consider 
o 

dispersion.  For this purpose we employ (4-26a).  The integral 

(4-26a) derives contributions from domains where both, one, or 

neither of the factors E, has arguments corresponding to the iocal- 

convective peak in this function, as opposed to the dispersive tail; 

the peaks embrace roughly the ranges | uu' | /vQk' < 1 and 

Icü-üj'l/v I £-£'|< 1, as seen in Sec. 3.2. 

We consider first the contribution to P(K,x), say 

P (K,w), from the non-dispersive domain where both E, factors are 

determined largely by local convection and are given approximately 

by Eq. (3-9).  Examination of Eq. (4-26a) for wL/v »1 yields in 

order of magnitude 

(4-55)      Pc(K,,:)^c
2,J(c

2/3vo-
lK-8/3)2(a;/voK)-

16/3 

. P2,W°'V13/3- o 

P thus has a form roughly independent of K and consistent with the 
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scaling (4-4). The domain of integration in (4-26a) that contributes 

to Pc has k2 W/VQ~(»K) , so that local convection in the normal 

direction can generate velocity fluctuations at frequency uu, 

though the local convection in the plane of Y.  cannot.   To be 

justified in regarding P as determined by the inertial subrange 

we must restrict consideration to the nonviscous regime where 

uui /v «1, in accord with condition (2-93a). oo' 

On the basis of (4-55) we obtain for ehe contribution 

of P to the spectrum (4-10) of average pressure on a moving area 

of radius R where uuR /TTV »1 and uuR Am »1, the order of magnitude o       o  o        o  o 

estimate 

// «A\      n (   \- 2 4/3 10/3 ~13/3D -2 (4-56)      Qc(w)~p e  vQ   % Ro  ' 

The ratio of Q to the high-wavenumber rnean-convective contribution 

Q was given at Eq. (4-16).  It is noteworth that, on account of 

the sufficiency of condition (2-93a) for the inertial subrange in 

the local-convection approximation, it was not necessary to assume 

KL and L/R large to obtain the results (4-55) and (4-56). 

We now attempt to estimate in order of mrgnitude the 

contributions to P(R',ID) from the domains where one or both E, factors 

are determined largely by dispersion.  To do so we consider crudely 

that in the domain of the local-convective peak E,(k,w) is again 

given by (3-9) and outside that domain (but where condition (3-3) 

is stili satisfied) by the dispersive form (3-11).  Assuming 

uuL/v »1, we join the domains at a value of uu/vk somewhat larger 

than unity.  Examination of (4-26a) for uu/v K»l on this basis 

shows that the results depend essentially on the value of m in 

(3-4) and (3-11). 
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In particular, for m - 3 both the convective-dispersive 

and dispersive-dispersive contributions, defined with reference 

to the arguments of the E, factors in (4-26a), diverge on account 

of the dependence of E^(k,,iDl), as given by (3-11), when k'-K) and 

UB'-K).  It is inferred that the actual values of these contributions, 

if m ■ 3, depend on E,(k,,uul) in the non-universal range where 

k'L^l, up'L/v £l and the inertial subrange form (3-11) no longer 

applies even for uu'/v k'»l. In the range where conditions (2-93a) 

(left inequality) does not apply, we estimate the order of magnitude 

of E/(k,uu), taking L~ as the wavenumber scale and v /L as the 

frequency scale, as 

(4-57)     E4(k,uü)-voL
2, 

or, if kL«l, as (kL) v L . We may then estimate the previously 

divergent convective-dispersive and dispersive-dispersive contri- 

butions to P(K,uu) with the integration domain properly restricted 

to the universal range (2-93a), and estimate the contribution 

from the non-universal domain separately by use of (4-57). We 

have contented ourselves with placing upper limits on the orders 

of these contributions. We find the non-universal contribution 

is at most of order (u>L/v )"   relative to the universal convec- 

tive contribution P of (4-55), and the convective-dispersive and 

dispersive-dispersive contributions are likewise of higher order 

relative to P with regard both to (wL/v )" and to the other 

small expansion variable (uu/v K)~ .  Hence, if m » 3 in (3-4) 

and the quasinormality form (3-26a) is roughly valid, at least, 

in the subject domains P(K,uu) is given approximately by the 

convective part P of (4-55) and Q_ by Q of (4-56), as stated in 

(4-12) and (4-14). 91 
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Assumption that m - 1 in (3-4) and (3-11) leads to 

different and rather curious results for the convective-dispersive 

and dispersive-dispersive contributions. Denoting these contri- 

butions to P(K,u>) respectively by Pcd and Pd, from (4-26a) once 

more for UJL/V »1 we find these increase with decreasing K and 

estimate their orders of magnitude relative to P of (4-55) as 

given by 

(4-58)     Pcd/Pc - (oJ/voK)
5/6(KL)-5/6, Pd/Pcd ~ (KL)"

5/6. 

Thus Pd is small relative to P d for KL»1, and in the non- 

dispersive limit where KL-*» at fixed uu/v K, P . in turn becomes 

small relative to P . In a domain where i/v R^KL, however, P , 

exceeds P . As for the corresponding contributions to Q_(uu) of 

(4-13), where ü)R0/VO»1»R0/L and CJDRO/UO»1, the contribution Qd 

from Pd(K,uu) is controlled by non-universal behavior at K£L~ but 

1/3 is estimated as ~(R /L)   , and hence small, relative to the con- 

tribution Qcd from P d(R,u>).  Relative to (^ of (4-56) we then 

estimate <\.dA^(wR0/v0)
5/6(R0/t)

5/6J Q^ varies as R^1/3, rather 

than R , and depends on v only via e. Again, where R /L->0 the 

contribution Q from the K-independent P thus predominates, but c c 

where uuR /v ^L/R the largest contribution is 0 d.  The condition 

L/R »uuR /v (»1) for applicability of (4-12) and (4-14) thus 

obtained for m - 1 is much more restrictive than the condition 

uuR /v »1 obtained for m - 3. We have already given reason to 

suppose that m - 3 is the appropriate value. 
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Assumption that in ■ 1 in (3-4) and (3-11) leads to 

different and rather curious results for the convective-dispersive 

and dispersive-dispersive contributions. Denoting these contri- 

butions to P(K,uu) respectively by P . and P., from (4-26a) once 

more for uuL/v »1 we find these increase with decreasing K and 

estimate their orders of magnitude relative to P of (4-55) as 

given by 

(4-58)     Pcd/Pc - (Uü/VOK)
5/6

(KL)-
5/6

, ?d/Pcd - (KL)"
5/6. 

Thus Pd is small relative to P d for KL»1, and in the non- 

dispersive limit where KL-*» at fixed uu/vK, P . in turn becomes 

small relative to P .  In a domain where a/v K^KL, however, P , 

exceeds P . As for the corresponding contributions to Q_(UJ) of 

(4-13), where u>R0/v0»l»Ro/L and ci>Ro/uo»l, the contribution Q. 

from Pd(R,u)) is controlled by non-universal behavior at K£L~ but 
i/o 

is estimated as ~(R /L) '   , and hence small, relative to the con- 

tribution Qcd from Pcd(R,iu).  Relative to QQ  of (4-56) we then 

estimate 9cd/9c-(u)R0/v0)
5/6(R0/L)

5/6; Qcd varies as R^
1/3, rather 

than R , and depends on v only via e.  Again, where RQ/L-K) the 

contribution Q from the K-independent P thus predominates, but 

where ouR /v ^L/R the largest contribution is Q d-  The condition 

L/R »uuR /v (»1) for applicability of (4-12) and (4-14) thus 

obtained for m - 1 is much more restrictive than the condition 

UJR /v »1 obtained for m - 3. We have already given reason to 

suppose that m - 3 is the appropriate value. 
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5       LOCAL-CONVECTION APPROXIMATION FOR SHEAR FLOW 

It is suggested in further work to treat space-time 

correlations of velocity and pressure also in shear flow and, 

in particular, a turbulent boundary layer by extension of the 

present approach; the treatment, however, will become more a 

guide to construction of a heuristic model and less a systematic 

application of kinematic and similarity principles.  We take 

one step here by suggesting the generalization to shear flow 

of the separation (2-6) of large-scale convective effects, •♦ 

and of the local-convection approximation (2-59). 

We assume for the present a uniform turbulent shear 

flow, taking the flow in the x, direction and velocity gradient 

u' in the X2 direction; relative to the mean rest frame for 

the fluid layer at x2 = 0, the mean velocity is thus 

(5-1) G(x2) = u,x2I1, 

where  I,   denotes a unit vector.    We may denote the decorrelation 

tensor of the  fluctuating velocity in this frame between space- 

time points  (x,t),   (x+f,t+x)  by ip.. (x2,x2 ,C>T), with 

f =  (^»xJ-Xj»^)  flnd I «  (CpCß), by virtue of homogeneity 

in the x,-x3 plane.    Likewise,  the decorrelation tensor measured 

in a frame  in which the mean velocities at x and x'   are equal 

but opposite,   i.e.,  the  frame with velocity  (1/2)'G(xA)+G(x2) ] 

relative to the frame of definition of G(x2),  by the homogeneity 

in the x2 direction is independent also    of x2 and x2 except 

via xA-x2 and may be denoted by ^.(f1,!), where r'   denotes the 

93 



Separation vector in the specified frame.    By the usual kine- 

matic  transformation these correlations are related exactly by 

(5-2) ^1J(X2,X^,',T)  = ^j(f-(L/2Xu(xJ)+{l(x2)]T,T)   . 

As in the instance of unsheared flow, we may expect that 

provided r and T satisfy certain conditions, namely the previous 

conditions (2-5) with possibly another to be adjoined, we 

may regard the eddies that mainly determine <//?i(f,T) as being 

statistically independent of the large eddies that contain 

most of the turbulence energy.  Then, as at (2-6), we may 

approximately separate out the effect of the large eddies by 

defining an intrinsic decorrelation tensor y,.(r,T) relative 

to the locally co-moving frame which is independent of this 

motion: 

(5-3)    ^j(r,T) = /d3vP(v)i/i:j(f-VT,T) . 

tp..   is still affected by the  existence of shear. 

Now we distinguish a pseudo-convective effect of the  shearing, 

just as we did of spatial  fluctuating-velocity dispersion in 

the unsheared case  in the discussion of Eq.   (2-48)   and  in the 

appendix,  Eqs.   (A-5) ,   (A-7).       Specifically, we  imagine the 

fluctuating velocities at the correlated points with their 

differing mean velocities as  tending  to be preserved as  the 

medium between the points  is distorted by shear.     Thus,  apart 

from residual  dispersive effects, we expect that  in the  local 

proper  frame  in question the velocity correlation for the two 

space-time points will not change  if,   for any change &r'   in 
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/d3OP(v)*i:j(x2,xJ,C- [(3/2)G(xp-(l/2)ü(x2)+v]T,0) 

the separation vector r', a corresponding change 6T is made 

in the time separation T such that points moving with the 

respective mean velocities and coinciding with x+f', x respec- 

tively at times t+r, t would be separated by r'+6r' at the 

respective times t-K+6x , t+6T. Hence, if we define a decor- 

relation tensor ^9, with this pseudo-convective effect removed 

by writing 

(5-4)    ^jCr'.t) = ^j(£'-[G(x2)-a(x2)]T,T) , 

then ^?i(rM,T) will depend on T (at fixed f") only on account 

of the residual dispersive effect.  Eqs. (5-3) and (5-4) yield ^ 

(5-5)    ^(P.T) = /d3vP(v)^j(?-[v+G(x2)-G(x2)]T,T) 

and  (5-2)   then yields  p..   in terms of    ^?.. 

We define a non-dispersive approximation,  generalizing 

the  local-convection approximation for unsheared flow, by 

(5-6) JjjCrV)   = ^(r-,0)   . 

Since, by (5-5) without approximation, tf<°,(r,0) - ^i(r,0), 

Eqs. (5-5) and (5-6) yield 

(5-7)    i£j(r,T) - ;d3vP(v)i°j(f-iv+G(x2)-G(x2)]r,0) 

as the expression of the space-time correlation in terms of 

the space correlation in the non-dispersive approximation. 

In the  frame referred to by  (5-2)   this similarly becomes 

(5-8)     ^ii(x2,x2,C,T)   - 
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If the shear Is truly uniform, as assumed at (5-1) , the 

square-bracketed effective local convection velocity in (5-8) 

may be written also as 0./2)[ü(xl)+ü(x^) ]+u' I^xi-x«) +v.  The 

consequences of this non-dispersive approximation can be 

extended to the treatment of pressure also in the present 

anisotropic situation by assumption again of a quasinormal 

velocity distribution. (The mean shear-turbulence interaction 

contribution naturally must now be included.) 

As for the conditions on r and T defining the 

universal range where (5-3) may be applied, we apparently 

require, apart from the conditions (2-5), that [u(x£)-u(x2) ]T«L; 

since, however, in shear flows typically v ~u'L, the added 

condition is normally already implied by conditions (2-5). 

As written, Eq. (5-7) or (5-8) is meaningful also 

when applied to a non-uniform shear flow, e.g., a boundary 

layer.  If it is so applied, the crudity of the approximation, 

at best, must be greater or the domain of applicability smaller. 

In any case, it remains true, as we saw in the corresponding 

instance in unsheared flow, that the non-dispersive approxi- 

mation does not suffice to give a good approximation to the 

tail of the wavenumber-frequency spectrum where UJ/V k is 

large. 

Other weil known complications are involved in treat- 

ing pressure fluctuations in a boundary layer, as opposed to 

the unsheared homogeneous flow considered in the preceding 

sections, even with regard to the domain of the convective peak 

in the wavenumber spectrum to which we might tentatively apply 
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(5-8). These effects are attended by the entrance of the length 

parameter v/v* characterizing the viscous-sublayer thickness 

and, with reference to spatially dependent quantities, also 
it 

the distance x« from the wall . 

i 

Among other consequences of the wall, the spectrum P(R,CD) of 
pressure on the wall in the approximation of incompressibllity, 
streamwise homogeneity, and vanishing viscosity, varies as K? 
when K«6"l, where 6 Is the boundary-layer thickness, and 
hence vanishes ac K-+0, In contrast to the nonvanishlng limit 
F(0,CD) in the unsheared homogeneous case (Kraichnan 1956, 
Phillips 1956). 
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6.       SUMMARY AND CONCLUSION 

Kolmogorov* s principles,  as expressed by Eq.   (2-6), 

provide a basis  for the treatment of Eulerian space-time corre- 

lations  in the universal range  (2-5)   in homogeneous  turbulence 

by permitting the explicit separation of the kinematic effect 

of convection by the  large eddies.     From the related presumption 

that the space-time correlation  in the  local co-moving frame 

has  the commonly accepted similarity character  independent of 

the velocity distribution P(v),  and from the order of magnitude 

of the  coefficients  involved,   it was  indicated that the  local- 

convection  (non-dispersive)   approximation  (2-59)   has validity 

in the  inertial and viscous  subranges. 

In the  local-convection approximation, with an iso- 

tropic, normal velocity distribution,   the  space-time structure 

functions of    velocity were computed explicitly  for  the  inertial 

subrange   [Eq. (2-80)   and Fig.   1]  and  for  the viscous subrange 

[Eq.   (2-86)].     Theae  functions were  found to be nearly space- 

time  Isotropie   in  the  inertial  subrange and exactly so  in the 

viscous, with differing velocity  scales   for  longitudinal  and 

transverse components.     The result  in the  former case was 

compared with the  space-time correlation  in grid  turbulence 

measured by Favre and associates.     The computed envelope of 

the  time correlations  at  fixed spatial  separations,   for  the 

presumed value of turbulence  intensity  in the experiment, 

decreases  somewhat  too  slowly  to  agree well with the measured 
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one.  This discrepancy is presumably due mainly to neglect of 

dispersion, which is significant at the Reynolds number of the 

experiment.  At higher Reynolds number, such fitting of the 

space-time correlation may usefully supplement measurements of 

pure spatial correlations and wavenumber spectra to yield the 

Kolmogorov coefficient  (Eq. (2-56)]. 

For the unsheared homogeneous turbulence assumed in 

this work, Taylor's hypothesis relating wavenumber spectra 

in the mean rest frame to frequency spectra in the measurement 

fr*»tne (velocity -u ) was examined for the inertial subrange. 

In the local-convection approximation the hypothesis was found 

to be exact for arbitrary turbulence intensity v /u , provided o o 

an appropriate effective convection velocity is used to relate 

wavenumber to  frequency for the respective spectra [Eq  (2-116)]. 

Fc> small v /u . this convection velocity differs from u by a 
O  O o J 

2    2 term of relative order v /u*" depending also on the quantity 

whose spectra are in question, and other commonly defineH 

convection velocities also difer by such terms [Table 2]. 

The related cross-spectral density of streamwise fluctuating 

velocity in the measurement frame was also computed in the 

space-time isotropic approximation  Eq. (2-119)1. 

The local-convection approximation for fixed finite 

scale L of the energy-containing eddies does not yield the wave- 

number- frequency spectrum of turbulence correctly up to arbitrarily 

large values of CD/V k; rather, velocity dispersion in space 
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and time due to local eddy distortion enters, and it is necessary 

to consider the frequency spread of the intrinsic (proper-frame) 

spectrum ^(k,uu).  The standard similarity dependence of E, for 

the inertial subrange was accepted (Eq. (3-1)], and an argument 

given for the dependence E\(k,«)<*k as k e/uu -*0. At small v k/uu, 

the Intrinsic and mean-rest-frame spectra, E, and E, , could then 

be inferred uniquely within a constant factor [Eqs. (3-11), (3-15) 

with m - 3].  An explicit form having plausible properties was 

suggested to be used for E,(k,w) [Eq. (3-4)].  Its most conse- 

quential property is to have a finite second moment with respect 

to frequency [Eq. (A-18), n = 2].  The resulting dispersive 

correction to the rest-frame spectrum as given by the local- 

convection approximation was computed for moderate uu/v k (Eq. (3-10)] 

At given k, dispersion increases the energy E,(k>(ju) in ehe higher 

range of JJ/V k at the expense of that in the low«:r. 

From the assumed intrinsic spectrum, the dispersive 

departure from validity of Taylor's hypothesis was found.  The 

departure from unity of the pertinent ratio of spectra at 

2    -2/3 
wavenumber k, is of the order of (v /u ) (k,L)    and hence, 

for k,L» 1, small relative to the non-dispersive departure 

compensable by the above mentioned redefinition of convection 

velocity [Eqs. (3-21), (3-24)].  The dispersive correction to 

the local-convection approximation to the space-time velocity 

correlation was also found in two limits; it is of the relative 

order of (vQT/L)
2/3if (vQr/L)

1/2«l and (voT)
3/2/rL1/2»l, and the 

order of (voT)
2/r4/3L2/3 if vQT/r«l [Eqs. (3-28) - (3-31)].  The 

effect on the comparison with measured results for grid turbulence 

was computed.  The magnitude of this effect depends on the ratio 
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B/AQ [Eqs. (2-44), (2-45)] measuring the relative decorrelating 

influence of time delay and of spatial separation in the proper 

frame; for a likely magnitude of B/A and the Reynolds number of 

the experiment the computed dispersive effect is substantial. 

Inferences from kinematic and similarity arguments for 

an inertial subrange can be drawn also concerning pressure spectra 

in the measurement frame. The wavenumber-frequency spectrum P(K,uu) 

referring to a plane parallel to ü was indicated to have the simi- 

larity form (4-5) in the neighborhood of its convective ridge 

(| uu-üo-K| <vQK). For VO/UQ«1 >uuL/uo»l, and JJ£Q/V0«1, the point 

frequency spectrum P(uu) could be inferred from (4-5) to have the , 

-7/3 ' 4 dependence (4-8), varying as w    '   .  The spectrum Q(uu) of average 

pressure for a circular area of radius R , though not directly 

measurable, was considered with a view to future treatment of 

a turbulent boundary layer.  For a small area (nR /u <<1), the 

area correction is given by (4-11). For a large area (nK  /u>2n), 

contributions associated with the convective peak of P(K,uu) and 

with the low-wavenumber region (K^2rR ) are distinguished, the 

-3 - former varying as R  .  From the form of P(K,x) in the convective 

region the former contribution is given by (4-15). 

With assumption of quasinormality of the velocity 

distribution and the non-dispersive approximation of space-time 

isotropy for the longitudinal fluctuating velocity correlation, 

the spectrum P(K,u) applicable in the neighborhood of the con- 

vective ridge was computed explicitly for the inertial subrange 

[Eq. (4-40), a = 0] (and formally extended into the non-universal 

range, assumed isotropic).  In this approximation the point 

spectrum P(cu) was computed explicitly for arbitrary VQ/U^ 
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[Eq. (4-45)] , and the cross-spectral density and space-time corre- 

lation of pressure were also obtained [Eqs. (4-50), (4-53), (4-54)] 

The variously defined convection velocities are the same as those 

for the streamwise velocity component in the same space-time 

Isotropie approximation.  From the assumption of quasinormality, 

P(K,uu) was estimated also in the low-wavenumber part of the 

inertial domain where iw/v K»l, L" «JJ/V «£" , and uu/u K»l. 

Throughout this domain (assuming m - 3 in (3-11)), P(K,uu) is given 

approximately by the local-convective wavenumber-independent form 

(4-55).  Correspondingly, the low-wavenumber contribution to the 

moving-area spectrum Q(uu) for uuR /v »1 and OJR /U »1 assumes 

the form (4-56), varying as R .  The ratio of the low-wavenumber 

to the mean-convective contribution to Q(u) is given by (4-16). 

The kinematic separation of large-scale convective 

effects basic to th s work, and the related local-convection 

approximation for space-time correlations, were plausibly 

extended to the more general case of shear turbulent flow 

[Eqs. (5-5), (5-8)]. 

The present work provides a basis for further 

comparisons with measurements on grid-produced and other 

relatively unsheared turbulent flows and a springboard for an 

attack on boundary-layer turbulence with reference to proper- 

ties not yet adequately explored. 
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APPENDIX 

PROPERTIES OF rHE INTRINSIC SPACE-TIME 
CORRELATION OF VELOCITY IN THE INERTIAL SUBRANGE 

If we propose to calculate explicit corrections to 

the local-convection approximation (2-54)[or (2-59)]  In the 

inertial subrange,  i.e.,  to consider terms of next lowest order 

in R /L  (with R   given by (2-52)  and L the scale of the energy- 

containing eddies), we should examine further the degree of 

validity of the basic separation (2-6)  of large-scale convec- 

tion.    We therefore consider the possibility that the Intrinsic •• 

decorrelatlon ^(r,x)   for given v depends significantly on v and 

likewise on the scale L,  the rms velocity fluctuation v  , and 

any parameters of large-scale anisotropy.    We denote such 

possj.ble dependence in a partially suppressed fashion by writing 

ty =  tf/_(L~   ,f ,T).     Later we must  specify more precisely the 
v 

definition of v.     Eq.   (2-6)   is  thus generalized to 

(A-l) H£,T)   = Jd3vP(v)^(L"1,f-VT,T). 
v 

Now let ^(f,T) again denote a suitable function of 

the form ^(?,T) = (€r)2/3F(ei/3r'"2/3 ITI ) [Eq. (2-42)] independent 

of v and the large eddies; \p(v,T) is to be so chosen, if possible, 

that when inserted in place of ^_(r,T) in (A-l) , the computed 
v 

correction A(//(r,t) = V(r,T)-^c(f,T) to the local-convection 

approximation 

(A-2)      *c(r,T) = /d3vP(v)Kf-VT,0) 

is correct to lowest order in Rc/L.  For any ^(r.i) we can 
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rewrite  (A-l)  as an  (exact)  equation for Atf/: 

(A-3) A^(r,r)  = /d3vP(v)[^.(L"1,f-vT,0)-^(r-vT,0)] 

+ / d3vP(v)[^(L"1,r-vx,T)-J_(L"1,r-vT,0)] 
V V 

The first integral represents an increment due to non-vanishing 

L* at zero dispersive time delay, and the second represents 

an increment due to the dispersive time delay at fixed v 

and L.  The objective is then to define v and choose ^(r,x) 

such that A# in (A-3), to lowest order in Rc/L, is equal to 

(A-4)    / d3 vP(v) [ J(r-vr ,T) -^(r-vr ,0) ]. 

With regard to the first integral in (A-3), by (A-l) 

we have  /d vP(v)|/.(L  ,r-VT,0) = !//(r,0); furthermore, to 

the lowest two orders in r/L, ^(r,0) has the form 

¥(r,0)->F(0)(er)2/3-ALv^(r/L)
2,     (AL = constant) 

as exemplified by the result  for  the von Karman   interpolation 

form (Hinze  1959,  Eq.   (3-136)).     Hence,  the contribution to 

Lty from the  first  integral  in  (A-3),  relative to the magnitude 

of  ^  ,   Is of the order -v2(Rc/L)2^(eRc)2^3~-(Rc/L)4/3.     On the 

other hand,  the value of  (A-4)   on  the basis  of a  <j(r,T)   charac- 

terized by  (3-5)   is estimated by reference to Eqs.   (3-28), 

(3-29), to lowest order in L~ , as of relative order (Rc/L) 

and hence of lower order than the first term in (A-3).  It 

remains then to consider whether the second term in (A-3) 

alone agrees with (A-4) in this lowest order. 

2/3 
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We are free to choose v in (A-l)(and hence  (A-3) 

and  (A-4)) to include contributions to fluctuating velocity 

from all eddies down to some minimum size ~L' ,  say (cf.   Inoue 

1951);  for example, we might set L'   - RC(L/RC)5   for some 

0 < 6 < 1 before letting Rc/L -»-0.    The smaller L1   is,  the less 

these eddies are removed from the size ~R   of eddies mainly 

determining    # (L    ,r-VT,t) (with  |?-VTI~R_) r  avA hence the 
v c 

more  likely tym is to depend significantly on v on account of 
v 

distortion of these eddies by eddies of size > L'.    On the 

other hand, unless L'~R (i.e.  5 = 0), then ^ (L~   ,r' ,T) will 
c v '* 

have to include, by means of its dependence on the dispersive 

time delay T,  the decorrelating effect during  r due to the 

residual convection velocity arising from eddies  in the size 
«ft 

interval from ~L' down to ~R .  Consideration on this basis c 

indicates, indeed, that the second term in (A-3) is of lower 

order in R /L than (A-4), and hence cannot reduce to the latter 

unless L'~R .  If L'~R   the desired reduction can 

occur if the intrinsic decorrelation ^_(L~ ,r-vt ,T) (with 
v 

ir-v-rl~R ) is statistically independent of the motion due to 

eddies of size ~R (L/R )  even for 5-K). We leave further cv  c7 

clarification to explicit dynamic treatments (e.g., Kraichnan 

1959, 1966) and, as stated in the text, accept the similarity 

form (2-42) for use in (A-l) where a definite form is required. 

As a guide to the possible properties of the intrinsic 

decorrelation v (r,t) [ = ^(f ,T) ] , assumed of the form (2-42), we 

append discussion of certain conjectures.  Previously we dis- 

tinguished two sources of decorrelation in ip(r,i)  relative to 
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(Kr,0) l=^(r,0) ]:   (1)   differential convection due to    velocity 

dispersion over the distance r acting during time T; 

(2)  pseudo-Lagrangian velocity wander during x, existing even 

when r = 0      With regard to the latter,  since ^(0,X)~€|TI,  this 

effect may be considered a random walk of the velocity at a 

given point  in the proper frame, corresponding in the related 
* Lagrangian case to white noise in acceleration  . 

For identifiable effects contributing to velocity 

decorrelation with time in a given Eulerian frame, one approxi- 

mate mode of inclusion to be considered for possible validity 

is this:    the effect  is regarded as producing during T a 

displacement vector, with some independent probability density, 

and for each realization of this displacement the velocity 

correlation is  supposed to be  formed as  the Eulerian correlation 

function that applies  in the absence of the effect with a dis- 

placement argument  that  is the vector sum of the previously 

applicable one with the new one.     This mode  is exemplified by 

the basic Eq.   (2-6)   that  treats  the effect of large-eddy motion 

on time correlation  in the mean rest  frame.     A  second simple 

mode of inclusion of a given decorrelating effect may be 

considered:     the effect  is regarded as producing a  statistically 

independent contribution, not  to the displacement vector in the 

correlation function,  buc to  the velocity decorrelation  itself. 

The  former approach  is surely  indicated  (through statistical 

independence may be doubtful)  where the effect  in question  is 

Though it   is useful  to distinguish these effects    we cannot 
expect  that  the actual  dynamics  permit a  clean-cut  separation 
of the  two. 
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We note that the assumption of Chandrasekhar (1956) corres- 
ponded to the opposite view that even the decorrelation with time 
due to local convection by large eddies appears in the form 
of an independent additive component in the velocity decorrela- 
tion [see Eq. (2-50)]. 

107 

« 

due to an identifiable convection of a presumed relatively 

static eddy configuration, either a convection common to 

both spatial points in the frame of the Eulerian correlation 

in question or (in cruder approximation) one that arises from 

a relative velocity between the two points . 

Of the two effects distinguished in the first para- 

graph, the first, due to velocity dispersion over r, should 

thus be treated by the convection view (recall also the dis- 

cussion of Eq. (5-4)). Which, if either, treatment is 

appropriate for the second effect, velocity wander, is less 

clear.  The view that velocity wander contributes to an effec- \ 

tive displacement vector is akin to the independence hypothesis 

of Corrsinl96l, Saffman 1963, referring to the relation of 

Lagrangian and Eulerian correlation functions.  If we support 

this view, we incline to a rough conjectured form 

(A-5) i(r,r) A06
2/3 /d3^ / d3x2P(xL,x2) if-c1vrlx1-c2vTTX2i

2/3, 

1/2 - - where v = (e |T |) '  and v was defined after (2-43).  P(x,,x2) 

is the joint probability of contributions to the effective 

displacement vector, for points separated by r, of c,v tic, due 

to differential convection and c2v TX2 due to velocity wander ; 

the probability variables x,,x2 are assumed normalized, so 

that the rms values of the two displacement contributions are 

c,v IT | and c2v |x|, and c,,c2 are of the order of unity 

since v is of the order of the differential velocity over r 



and v of the order of the velocity wander during x.  In the 

spirit of the conjectured approximation, we regard P(x\,x2) in 

(A-5) as Independent of r, T and of the directions of x,, x2, 

except that it may depend significantly on u-, where 

^i~   Xj/r/lx 'r, !••«•» the probability of a relative velocity 

between points (x,t) and (x+f.t+r) may well depend on the 

direction with respect to the separation vector r.  If in 

addition, the processes associated with x, and x2 may be 

considered independent, we may set 

(A-6)    P(xlfx2) - P1(x1)P2(x2) = (4^"2p1(x1,n1)p2(x2). 

If we support rather the view that velocity wander 

contributes directly and independently to the velocity decor- 

relation, we write in place of (A-5) 

(A-7)    i(r,t) = Aoe
2/3 /d351Pl(£l)|f-clvrTX1]

2/3+ (er)2/3G(z), 

where z was defined by (2-43). The second term represents 

velocity wander; by (2-45) G(z)*z as z-+», but G(z) may vanish 

rapidly enough as z-*0 so that the first term alone gives 

^(r,T)-tf/(r,0) to lowest order in z.  The simplest assumption 

for G(z) , however, would be simply G(z) * Bz whence 

(A-8)    (cr)2/3G(z) = UO.T) = Beltl . 

This form, being independent of r, yields a contribution to 

E(k.x) or E,(k,a)) having singular dependence as 6 (k) and hence 

could be useful, if at all, only for quantities entailing 

integration over wave number. 
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If we could suppose that P^xp in (A-7) is isotropic 

(i.e., independent of \x-,)  and also normal, we obtain, as at 

Bq. (2-80) (i-0), a contribution to ^(r,x) from the first term 

in (A-7) given by 

where 

Ao(€R)2/3[l-H0(Clz)] 

R2 = r2+s2(vrT)2 = r2(l+s2z2)   . 

An analysis of the corresponding contribution to the spectral 

density E, (k,cu)  appears to yield a negative value (varying as 

e5/2k2uf13/2)   in the  limit Q = oo/c1^2/3-*«., however, an 

unacceptable result, 

Similarly, examination of the E, (k,uj)  given by (A-5) 

in the simplified case of c, = 0with isotropic Pyi^ yields 

E^(k,cu)* - E(k)€k a)    («-C'Tc '3CJO~4)  as Q-*oo,  i.e., a negative 

spectrum again in this  limit.     It is natural to consider also 

the variant of (A-5),  in the simplified case where c,= 0, obtained 

by adding displacements  r and c,v x   in quadrature: 

(A-9) i(r,x)= A0€2/3(r2+c2€M3)1/3. 

This form also yields 

(A-10) E4(k,üj)«-€5/3k1/3o)"4    as    fl-*«   ; 

in fact, by virtue of the discontinuous third derivative with 

respect to x, any form leading to 

E(k,x)->A(k)-B(k) |T|3 asx-0, 

where the  function B(k)>0  for some k, yields this same negative 
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result for such k in the limit ft -* ». 

A similar variant on the first term of  (A-7)   (or on 

(A-5) with c2 - 0), namely 

(A-U)        ;<r.T)-*0.
2/V^2

l«
2/V/3T2)1/3. 

it 
on the other hand,  yields a positive result 

(A-12)     E4(k,Lo)  -   €5/2k2oT13/2    as ft ■* «  . 

The quadrature variant of the complete  form (A-5)   is 

(A-13)        iCr.O-A^/V^/V'V^flT!3)1'3 • 

It appears  that, despite the c,   term,the  term *   IT I    will 

cause this form to yield once more a negative E/, (k,o>)   in the 

limit of large ft,  so that  this  form also  fails  in this regime. 

Though  (A-13)   is  thus  unacceptable even as a  tentative approxi- 

mation,   it may correctly  indicate the dependence of ^(r,x)   in 

the  limits of large and small z. 

In the  limit z -* 0,   if / d   xiP(x1 ,x2)p.i = 0,   form 

(A-5)   yields  to  lowest order  in z 

(A-14)        J(r,T)-J(r,0W  ^(r,0)z2 « £
4
/V

2/3
T
2
  . 

In particular,   if  (A-6)   holds and 

(A-15) /"dxx3 /jdu np1(x,u)   - 0   , 
o "l 

More generally, an assumed  forn. 

»(r.T) - A/'V'^VV'—*/W3 

2/3 
(which has the required form (cr)   F(z)) also yields the 
result (A-12).  If m - 1/2, this form reduces to (A-ll) ; if 
m « 3/4, it has instead the required behavior, (i |x|) as z ■*». 
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then (A-14) is the limiting form.  But Eq. (A-15) must be 

valid, in fact, since otherwise the separation of all pairs 

of fluid elements, on the average, would be increasing, 

contrary to the condition of compressibility. Likewise, form 

3 - 2 
(A-7), if / d X,P1(X,)PL, = 0 and G(z) ■* 0 faster than z as 

z ■+ 0, also yields this result; so also does form (A-13) (cf. Eq. 

(2-48)). On the other hand, if G(z)* z as z -»• 0, which would be 

so if form (A-8) is valid in this limit, form (A-7) yields instead 

(A-16)   ?(r,T)-f(r,0)-^(0,T)- C|T| ; 

in such case, velocity wander rather than differential 

convection represents the leading contribution. 

In the opposite limit where z -*• «, if (A-6) holds, 

form (A-5) yields to lowest order 

?(r,T)-i(0,T)« ^(O.T)«"1 * (er)2/3; 

form (A-13) also yields this result.  On the other hand, form 

(A-7) in this limit yields 

;(r,T)-;<o.T)«c«)2'V'3 -«WV/9IT!2^. 

We can avoid constructing functions tf(r,t) that lead 

to negative E, (k,u) by starting from the latter.  In the inertial 

subrange (3-3) the requisite form for E^k.w) is given by (3-D 

in the text.  Form (3-1) yields 

(A-17)   *(r,0) - (9/10)r(l/3)No(cr)
2/3, 7(0,x) - (3/2)^6 T| , 

where 

(A-18)   Nn - 2/0 dnn
nG(n), 

i.e., the similarity form (3-1) implies the requisite limiting 
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forms (2-44) and (2-45) independently of G(n), provided only 

that the moments N and N, exist and do not vanish. o     1 

Expressions (A-17) represent the leading terms of the 

general similarity form ?(r,T) - (er) '^"(z) in the respective limits 

z-K) and z-*-«, and we may consider the z-dependence of the next-to- 

leading terms in these limits. The dependence as z-K) is deter- 

mined by the behavior of G(n) as n->». First, suppose G(n) in 

this limit decreases faster than n . From Eqs. (2-15) and (3-1), 

by expansion of I-COSUJT, we readily find 

(A-19)     F(z)-(9/10)r(l/3)No+(3/2)r(2/3)N2z
2 as z-K), 

the first term having been given at (A-17).  Now suppose instead 

G(n)-*«0Bn"^ 
4 ' as ft*»,  0<6<1, ga  constant. 

In this instance we find 

(A-20)     F(z) + (9/10)r(l/3)No-rt>ogooz
1+6  as zH), 

b =  2n    r(26/3)cos(,T6/3) 

°  1 - 26/3 r(2+5)cos(n6/2) 

Convergence or non-convergence of the second moment N2 of G(ti)t 

which led respectively to (A-19) or (A-20), is equivalent to 

decrease of §(r,cu), the frequency t ansform of the proper-frame 
_3 

spatial correlation, more or less rapidly than w  as 

.-1/3 2/3 ._ * 

We may consider also a hypothetical space-independent velocity- 
wander term (A-8) in?(r,r), which implies a next-to-leading term 
«z in F(z) as z-K), in place of those of (A-19) or (A-20).  Th~. 
corresponding contribution to T., (k,jj) would be n_iBc;6(k)uL"'; thi- 
singular function is the limit df cne of the form (3-1), formally 
corresponding to C(n) - T'1Bn"7/z6(0-3'2). Such an E\(k,u.) wiy  be 
regarded as the limit of that given by form (3-4) wi!:h m - 1 as 
v -K), in the sense chat TT_1x/(k2+x2)-^(k)as x-K). 
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Similarly, the dependence of F(z) as z-** is related 

to the behavior of G(n) as fi-K).  In particular, if 

-14A 
G(n)-»gon 

w as n-K), 0<A<1, gQ constant, 

we find 

■A (A-2X) F(,M3/2)wV+2„l£f#$^ ZlUnWl] g, 

as Z-^CDJ the first term having been given at (A-17). The condition 

A>0 is required for finiteness of NQ in (A-17).  If A - 1/2, 

this result may be written 

(A-22)     F(Z)-^(3/2)TTN1Z +TrCn/2)
1/2 gQz"

1/2  as z—. V* 

The type of function assumed for G(n) at Eq. (3-4) ' 

meets the conditions yielding the limiting forms for F(z) in (A-19) 

and (A-22) above, and Eqs. (3-5) and (3-6) accordingly represent 

particular cases of these results. Apart from the coefficient 

a  , form (3-5) is thus correct provided only that the second 

moment N« of G(n) is actually finite. Further, the form (A-19) 

(and (3-5)) agree with the limiting form suggested by (A-5) 

and (A-13), or, more generally, with the limiting form obtained 

if differential convection determines i|i (r,T) -$ (r,0) as z ■* 0. 

At the same time, in the opposite limit where z ■+ <*>, if differen- 

tial convection contributed to effective displacement in quad- 

rature with the contribution from velocity wander, as in (A-5) 

and (A-13), the next-to-leading term in F(z) would be constant 

(A ■*• 0 in (A-21)), not "z'1*2  as in (A-22). 
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(A-18)   E4(k,o)) - f
1/3k"7/3G<ft),   fi= e'1/3k'2/3|o)|, 

in the domain (3-3).    Form (A-17)   is the limit of such a farm, 

formally corresponding to G(fi)  - 7r_1Bfi"7'26(fi"3'2).       Form 

(A-18)   implies 

(A-19) *(r,0)  - (9/10)r(l/3)No(er)2/3,    ^(0,T)  = (3/2)^1 |T| , 

where 

(A-20) Nn - 2  f°°dfiünG(ft) , 

i.e., the similarity form implies the requisite limiting forms 

(2-44)  and  (2-45)   independently of G(£2) , provided only that 

the moments N    and N,  exist and do not vanish.     It is natural o 1 
to examine the consequences of replacing 6(k)   in  (A-17)  by a 

-1        2    2 common function, TT    S/(k +3 ) , which reduces  to  it  in the  limit 

3 -*• 0, but introduces a finite scale of spatial correlation of 

1/2 -3/2 
appropriate order (~€ '  cu '  ) .  In view of (A-18) we therefore 

assume 

(A-21)   E4(k,oo) = 7r"2B€cü"2.7e"1/2|ao|3/2/(k2-Py2e"1iüj|3), 

(A-22) i.e.,       G(fi) - ir'h^'l/2(l^ü3)"1. 

The limit (A-17) would correspond to "y ■* 0.  Eq. (A-21) further 

yields, by use of (2-15), the limiting forms of ^(r,t) given 

at (3-5) and (3-6).  Hence, the dependence of the two leading 

terms of ^/(r,T) as given by (A-21) in both limits z -* 0 and 

z ■+■ » agrees with the limiting forms suggested by (A-5) and 

(A-13) , or more generally with the limiting forms obtained if 

differential convection determines if>(r ,T) -4 (r,0) as z -* 0 and, 
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as z -*■  oo, contributes to effective displacement in quadrature 

with the contribution from velocity wander. 

We may inquire how general is the dependence 

Lc  form 
2 

2 
F(z)-F(0)*z    in the limit z ■+ 0,  implied by the specific  form 

(A-21)  as stated at  (3-5), ie., the dependence L^= ^(r,r) -#(r,0)«T 

as el'\~2'\+0.    The singular form (A-17) ,  for example, 
mm 

corresponds rather to A * *|T|.     In general, we have by the 

inverse of the proper-frame analog of (2-26) 

AJ = 2/°°dü)(l-coscüT)ö(r,cjü) . 
T o 

Hence, provided only that the frequency transform of the 

spatial correlation trace falls off more rapidly than u>  for 

all r ^ 0, i.e., that G(Q) falls off more rapidly than fi"3, 

2    1/3 -2/3 
we have in fact A #*T as e ' r ' T ■* 0, since A TL  then 

approaches the result obtained from the leading term 
2 

1-cosGüT ->-(1/2XU)T) ; explicitly, 

M T 
(3/2)r(2/3)N9(€r)2/3(e1/3r"2/3T)2 

in terms of the assumed convergent moment Nj defined by  (A-20) 

On thi 

i.e., 

On the other hand,   if Ö(r,co)   falls off as    of'      ) ,  0< 6< 1, 

G(fi)   ■* g0 n~        '     as n ■* oo    (go constant) , 

we obtain 

AT^b0go(«)2/3(6l/3r"2/3l-l)1+B, 

b   -     2Tr      r(26/3)cos(7T6/3) 
° " 1-26/3 r(2+6)cos(TT6/2) 

.« 
1 

i 
i 
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Ic seems likely that the second moment N2 of G(ti)   Is finite 

through we cannot exclude the contrary. If it is, then assump- 

tion of    (A-21) can do no worse than yield numerical 

constants, e.g., C in (3-5), whose values may differ somewhat 

from the correct ones. 
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FIGURE 1.  Functions H^v^-rl/r) of Eq. (2-80).  These functions 

express the fractional departure from space-time 

isotropy of the velocity decorrelation functions 

computed in the local-convection approximation for 

the inertial subrange [(1) longitudinal, (2) trans- 

verse, (0) trace]. 

FIGURE 2.  Space-time correlations for streamwise fluctuating 

velocity in laboratory frame.  Experimental curves 

 , as given for grid turbulence by Favre 

(1965), Figs. 1,5; computed curves for inertial sub- « 

range by local convection approximation, Eq. (2-90): 

 , turbulence intensity v /u = 0.027, ' oo 

spatial separations aligned with mean flow (cp = 0); 

> 

 , VQ/
U
0 = 0.027 but misalignment 

cp = 1.5°, or cp = 0 but intensity arbitrarily adjusted 

to v_/u = 0.042.  Computed curves for vanishing 

separation coincide.  Results are omitted at correl- 

ations < 0.2. 

FIGURE 3.  Space-time correlations for streamwise fluctuating 

velocity in laboratory frame.  Experimental curves 

 , as in Fig. 2; computed curves for 

inertial subrange with dispersion:  , 

envelope from non-dispersive computation (— ) 

of Fig. 2; , vo/uQ * 0.027, cp « 0, disper- 

sion included by Eqs. (3-30), (3-31) with 

am - 2.31; — , vQ/u0 = 0.027, cp = 0, dispersion 

included by space-independent addition to decorrelations 
ll'j 

with B/A0 = 1.04. 
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local-convection approximation for the inertial subrange, to be exactly 
valid for all v /u provided a particular effective convection velocity 

different from u is assumed; for sufficiently large k,L, where L 

is the scale of energy-containing eddies, the dispersive correction 
to this result is negligible. A plausible explicit form is  proposed 
for the intrinsic energy spectrum in the co-moving frame, and con- 
sequent corrections to results of the local-convection approximation 
for space-time correlations and spectra are computed. Tnis dispersive 
correction to correlations is appreciable at Reynolds numbers of 
typical grid-turbulence experiments. An extension of the basic sep- 
aration of convection and the local-convection approximation to shear 
flow is suggested. 

From kinematic and similarity arguments for the inertial sub- 
range, inferences are also made concerning pressure spectra in a 
measurement frame with velocity (-u ,0,0) relative to the unsheared 
flow. A similarity form results fo? the wavenumber-frequency spectrum 

?(K,co)[T = (k,, k~) ] in the vicinity of the convective ridge 

(lu) - Lu I < v K) . For v /u„ « 1, the functional form is then N     1 o -"■ o        oo A     -7/3 
obtained for the point frequency spectrum P(Cü)(«üT ' ); the convec- 

tive contribution to the spectrum Q (u>) of average pressure on a 
moving circular area of radius R for u>R /u »1 is smaller by a 

° o 0        0  0 
factor 0.80uR /u )  . On assumption of quasinormality of the velocity 
distribution 8nd°use of the non-dispersive approximation of space-time 

i^otropy for the longitudinal correlation, the spectrum P(K,^) in the 
vicinity of the convective ridge is determined explicitly, as well 
as the cross-spectral density and space-time correlation of pressure. 

From quasinormality, P(TC,U)) is estimated also in the low-wavenumber 
domain.  Iu the limit "tt /v >>1 the ratio of the low-wavenumber to o' o A 
the mean-convective contribution to the moving-arta spectrum Q(u-) is 

-(V%>10/3cVuo>- 
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Errata 

for Report TRG-Oll-TN-67-1, "SPACE-TIME CORRELATIONS OF VELOCITY AND 
PRESSURE AND THE ROLE OF CONVECTION FOR HOMOGENEOUS TURBULENCE IN TME 
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63 

line preceding Eq. (2-14); For "energy of" reaa "energy by." 

line (-8): For "P(v)v2dv" reaa "P(v)v2dv." 

In Eq. (2-38), in the definitions of £. and £., and in the line 
following, for "v" read "v." l 

second line before Eq. (2-52): For "v" read "v." 

(2-66): For "v1/2" read "v1/2." 

line (-9): For "relation (2-64)" read "relation (2-59)." 

line 6: Insert comma after "u ." 
o 

Eq. (2-100): For "0" read "0." 

Eqs. (2-104), (2-105): For "P(v)M read *'P(v)." 

line 2: For "for" read "For." 

lines 9 and 11: For "r" read "r" and for "r " read "r. 
arguments. 

line (-3): For "0 

in 

" read "A   " 
ii  read  8ii* 

" read "u,  " line 8: For "u.. i.ca« «_. 

Eq. (2-119): Insert  ( after C in second line, 

line 12: Close parentheses after "respectively." 

line (-5): Close parentheses after "(3-6)." 

line (-5): Close parentheses in T(l/3)." 

line (-10): For "7" read "7 ." 

Eq. (3-18), and p. 64, Eq. (3-20): Move factor »k2^-1^ to follow 

00 
11 r in j    11 
J dk"; for "7  read "7  . o m 

63, Eq. (3-18): For "0" read "0." 

64, Eq. (3-21): For "bm(B/Ao)
2" read "bo <m." m m 

64, line (-4): For "bj^ and b3 were" read "bo wa3." 

65, line 6: For "AT" read "AT ." 
c 

68, line (-7): For "ß " read "ß ." 
o       o 

72, Eq. (4-5): For "G »K" read "G «K." 



p 

a 

- 2 - 

*      -7/3 " 
p. 73, line 6: Read "P(co) °C CD '   . 

p. 80, line 1: For "k « 1" read "k « L*1." 

p. 80, line 3: For "P(K,to)" read "P(K,o>)." 

p. 84, line 12: For "K^* read "k^" 

p. 86, line 7: Delete + before k, . 
- im on . 

87, Eq.   (4-52):  Should read "W (£,T)  - /    dto e"lm 9  (£,«)." 
r -oo ' 

p. 90, line 2: Read "k2 ~ a/v fc> K)." 

p. 94: Insert comma after '>,. (r ,T) ," line 10, and after "frame," 
line 11. 1J 

p. 106, line (-2): For "through" rend "though." 

pp. 114-116: Delete these pages. 

p. 117, seventh reference: Following "Bolt" add "Beranek & Newman 
Rept. No. 1310." 


