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SPACE-TIME CORRELATIONS OF VELOCITY AND PRESSURE AND
THE ROLE OF CONVECTION FOR HOMOGENEOUS TURBULENCE IN
THE UNIVERSAL RANGE

David M. Chase
TRG/A Division of Control Data Corporation

ABSTRACT

Kolmogorov's principles provide a basis for th-
treatment of Eulerian space-time correlations for turbulence
in the universal range by explicit separation of the kinematic
effect of convection by the large eddies. With reference to
unsheared homogeneous turbulence, the usual similarity forms
are assumed for intrinsic velocity correlations in a local co-
moving frame. The local-convection approximation, neglecting
dispersion in this frame and hence relating space-time correla-
tions to pure spatial correlations, is indicated to be a useful
one in the inertial and viscous subranges. For an isotropic
normal velocity distribution, the structure functions of fluctua-
ting velocity are computed and found to be nearly cpace-time
isotropic in the former subrange and exactly so in the latter.
The wavenumber-frequency spectrum of energy in the mean rest
frame, Ea(k,w), however, in the regime of large w/vok, where v
denotes rms velocity, is not given correctly by the local-
convection approximation, but essentially involves disper-
sion. Taylor's hypothesis relating wavenumber: (kl) spectra

in the mean rest frame to frequency spectra in a measurement




frame with velocity -ﬁo is found, in the local-convection
approximation for the inertial subrange, to be exactly valid

for all vo/uo provided a particular effective convection velocicy
different from u, is assumed; for sufficiently large le. where

L is the scale of energy-containing eddies, the dispersive
correction to this result is negligible. A plausible explicit
form is proposed for the intrinsic energy spectrum in the co-
moving frame, and consequent corrections to results of the
local-convection approximation for space-time correlations

and spectra are computed. This dispersive correction to correla-

A

tions is appreciable at Reynolds numbers of typical grid-
turbulence experiments. An extension of the basic separation
of convection and the local-convection approximation to shear Toa
flow is suggested.
From kinematic and similarity arguments for the
inertial subrange, inferences are also made concerning pressure
spectra in a measurement frame with velocity (-uo,0,0) relative
to the unsheared flow. A similarity form results for the
wavenumber - frequency spectrum ;(K,w)[ﬁ = (kl,k3)] in the vicinity
of the convective ridge (lo - kluol £ voK). Foc vo/uo<<1, the
functional form is then obtained for the point frequency spectrum
Pw) (=73

average pressure on a moving circulaxr area of radius Ro for

); the convective contribution to the spectrum Q(w) of

wRo/uo>>1 is smaller by a factor 0.8(wa/uo)'3. On assumption
of quasinormality of the velocity distribution and use of the
non-dispersive approximation of space-time isotropy for the

longitudinal correlation, the spectrum P(R,w) in the viciniiy

"~




of the convective ridge is determined explicitly, as well as
the cross-spectral density and space-time correlation of
pressure. From quasinormality, ;(R,w) is estimated also in

the low-wavenumber domain. 1In the limit wR /v >>1 the

ratio of the low-wavenumber to the mean-convective contribution

to the moving-area spectrum a(w) is ~(vo/uo)10/3(wRo/uo).




1. INTRODUCTION

In previous descriptive and phenomenological treat-
ments of turbulence, Eulerian space-time correlations of
fluctuating velocity have received limited attention relative
to that accorded spatial correlations at a fixed time. Yet
time correlaticns have been extensively measured, are amen-
able to familiar kinematic and similarity arguments, and
have essential importance in a number of applications.

Eulerian time correlations, i.e., in the general
sense, correlations of quantities measured in a coordinate
frame whose uniform motion is defined independently of the
decerrelating fluid motions in question, are influenced
by convection. Convection, where it has meaning, is a kin-
ematic effect and cin He treated trivially and independently
of the turbulent aynamics. Moreover, when the large-scale
convective effec.s are separated out, it becomes possible
to invoke similarity considerations to treat the effect of
the dispersive residual fluid motion.

Accordingly, some principal objectives of the
present paper are to elucidate the role and consequences of
convection, assess the validity and explore the consequences
and limitations of the local-convection (non-dispersive)
approximation relating space-time correlations to purely
spatial correlations, and to propose and apply a dispersive

generalization based on similarity in the inertial subrange.
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These questions are pursued in the spirit of Kolmogorov's
principles; no effort is made to deal with the explicit
dynamics of turbulent flow. Further verification or mod-
ification may presumably be expected from currently devel-
oping treatments of turbulent dynamics. The type of flow
treated is stationary, unsheared, homogeneous, and incom-
pressible.* A generalized form of the non-dispersive approx-
imation is suggested also for shear flow.

This investigatioa originated in a concern for
the properties of fluctuating pressure in a turbulent bound-
ary layer., Accordirgly, a further objective is to consider,
in the light of the work on velocity spectra, also pressure
spectra in unsheared homogeneous turbulence, not only rela-
tive to a frame in which the mean velocity vanishes, but
also a measurement frame moving at a velocity -Ga, say.
We thereby introduce a convection velocity as a kinematic
effect unrelated to the dynamics; thus Go plays a role sim-
ilar to that of the local mean flow velocity in boundary-
layer turbulence but without the complication of a shear
flow.

As it was the motivating context, we review briefly
how the problem of pressure fluctuations in a turbulent

boundary layer impels consideration of space-time correlations

?v I3
The ascumption that the turbulence is stationary as well as

homogeneous and isotropic implies, strictly speaking, the
presence of isotropic, statistically homogeneous energy
sources. Alternatively, we may regard the turbulence as
decaying, but with a characteristic time large compared to
any time incervals considered.




of velocity.* Consider the wavenumber-frequency spectrum
of pressure in the plane bounding a turbulent flow, P(K,w)
(K = (kl,k3)]. 1f the turbulent eddies were of frozen
shape, an eddy convected downstream at speed u would gen-
erate pressure fluctuations at a given frequency w only
via its component having streamwise wave number k.1 = w/u;
hence if the convection speed at no depth in the flow ex-
ceeds the as'—ptotic flow speed U_, the spectrum P(R,w)
would contain only wavenumbers K > w/U_ [K - [K|]. In actu-
ality, though the wavenumber spectrum peaks above w/U_, it
does not vanish at lower wave numbers but has a "tail" there
on account of non-convective effects, i.e., distortion and
decay of eddies.

In certain applications, however, some wavenumber
range in this tail with K<<w/U_ is heavily weighted reiative
to the range Kxw/U_. This circumstance is true of the frequency
spectrum of pressure averaged over a large area, e.g., over the
face of a flush-mounted transducer of radius Ro where mRo/U¢>>n,
by virtue of spatial averaging of the short-wavelength compo-
nents with Kan;l.** It is true also of the frequency spectrum
of pressure on an area or at a point shielded from the flow by
a layer of material of thickness L>>U_/w and of large lateral
extent, at low Mach number, on account of acoustic attenuation

of disturbances having wave lengch smailer than that of sound

in the intervening layer. Hence, to achieve a theoretical

*For elaboration of this discussion see Chase (1965).

ok
The spectrum of average pressure due to wav§ numbers Kxu/U_
in this situation has area dependence as R; ]

6




account of the effect of area averaging for a flush area
and of acoustic averaging for a shielded area, we must know
how the wavenumber spectrum of pressure declines with de-
creasing K in the non-convective tail where K< w/Um.*
Furthermore, this tail is relevant to the scaling of
boundary-layer pressure spectra with the flow parameters, which
has not been unambiguously established through the whole
domainr of interest. Specifically, by the usual relation
between the pressure and its fluctuating velocity sources
[Eq. (4-1)], contributions to pressure are attenuated ex-
ponentially with source depch X, and parallel wave number
K, i.e. as exp(-sz). At relatively high frequencies,
therefore, the convective contribution to pressure, having
K>w/U_. will derive mainly from velocity sources not far
outside the viscous sublayer. The characteristic length
involved by this contribution is thus likely to be the sub-
layer-thickness parameter v/v,, where v, is the friction
velocity.** On the other hand, the non-convective, low-
wavenumber contribution will derive from sources at greater
average depth, perhaps extending through a substantial

fraction of the boundary layer. The characceristic length

*

In the very low-wavenumber range K{w/c, wt ve ¢ is the
sound velocity in the fluid, it becomes necessary to
consider compressibility.

**This conclusion would be certain if all the coordinate
spatial scales of fluctuating velocity components in the
transition layer varied as wall distance x,; if some
ccales are determined by the large eddies, "however, they
will be of the order of the displacement thickness in-
stead of the wall distance. Recently, Bradshaw (1965)
has contributed to a grasp of this scaling dichotomy.




involved by this contribution may thus be rather the displace-
ment thickness 6,. Therefore, the scaling of the resultant
average-pressure spectrum depends at each frequency on the
appropriately weighted magnitude of the wavenumber spectrum
of pressure P(K,u), and hence of fluctuating velocity, in the

non-convective range K<w/Uuo relative to that in the convective
*

range K>uw/U_.

;fhe scaling of the two contributicns could be nearly equivalent
1f both are independent of the respective length parameters;
the frequency spectrum of point pressure then would vary as w™".




2. ROLES OF CONVECTION AND DISPERSION AND THE LOCAL-
CONVECTION APPROXIMATION FOR EULERIAN SPACE-TIME
CORRELATIONS AND SPECTRA OF VELOCITY

Let the Eulerian space-time correlation function
between a quantity a(x,t) mcasured at position X at time t
and a quantity B(X+T,t+7) measured at X+r, t+7 in a given co-
ordinate frame be represented, on assumption of a stationary
homogeneous process, by

(2-1) <a(X,t)B(x+r,t+1)> = waB(?’T)’

where ¢> denotes an ensemble average. Let Gaﬁ(?',T) represent
the correlation function for the same two measurement events
where ¥ refers to the spatial separation in a frame moving
relative to the first at the constant velocity -u. The
Galilean transformation between fiames vields the familiar
functional relation

e

(2-2) Wop(F, 1) = W o (F-T,7).

This rudimentary relation reflects the kinematic character of
convection. In the wavenumber-frequency domain, the corres-
ponding relation between the respective four-dimensional trans-

forms becomes

(2-3) By (K,u) = Ey ,(Ku-TK).

We turn explicitly to stationary homogeneous turbu-
lence and consider the Eulerian correlation function (2-1)

in the mean rest frame with a and £ taken to be components of




fluid velocity, say vy and vj. Since we shall consider the
universal equilibrium range, we prefer ordinarily to deal with
the velocity structure function (multiplied by %); we denote

this two-point, two-component tensor by Yij(F,T):

(2-4) Yij (x,7) =% <{Vi(§ # ?’ t+1) - ViG,t)][Vj (X471, t+7)
'Vj(ist)]>-
For i = j, this quantity is the decrease of the autocorrelation

from unity; we shall call such quantities "decorrelations.”

21 SEPARATION OF THE LARGE-SCALE CONVECTIVE EFFECT \

We now restrict consideration to spatial separations
r and time delays 7 that correspond to the universal equilibrium -

range, namely
(2'5) r << L) vO IT I<< L)

where v, represents the rms magnitude of fluctuating velocity
and L the characteristic scale of the large, energy-containing
eddies. Together, the conditions (2-5) insure that the spatial
separation of the two correlated space-time points in a frame
convected with the local velocity (~vo) associated with the

large eddies (an average of the local velocity at the two points)
is small compared to the size of the large eddies. Later we
shall restrict consideration to Keynolds numbers high enough

for existence of an inertial subrange where viscous effects

are negligible.

10.




It is an underlying assumption of the Kolmogorov
(1941) theory of the universal range that the large eddies
convect the small eddies without directly distorting them.
A related, and probably consequent, assumption is that, viewed
in the local frame in which the motion due to the large eddies
vanishes, the small eddies are statistically independent of
the large. These points have been emphasized by Kraichnan
(1964) and were recognized, for example, by Heisenberg (1948),
Von Weizsacker (1948), and Silverman (1957).

We may thus consider a subset of realizations of
the velocity field all corresponding to approximately the same
local velocity v in a given space-time region of small size
(defined by (2-5)) and take a statistical average of the two-
point velocity product over this partial ensemble. By the
stated assumptions, the resulting velocity correlation tensor,
if expressed as a function of coordinates in the frame with
velocity v, will be independent of V. We shall call the
Eulerian correlation function referring to this frame, which
is locally co-moving for any given convection velocity Vv due
to the large eddies, the intrinsic correlation function, and
designate the corresponding decorrelation tensor as ;ij(;,T)
[cf. (2-4)). For r=0, ¥ij(0,t) is the time correlation in a
frame which for each realization may be taken as that in which
the velocity at the initial time t vanishes; the Eulerian
time correlation so defined is closely related to the Lagrangian

time correlation and is equal to it in the limit of small -

11.
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and perhaps for all 1. We may alternmatively view the partial
ensemble average at fixed V as a spatial average over a re-
gion of dimensions larger than r (the separation in the co-
moving frame) and larger than VoTs but small compared to L.
In view of relation (2n2% for fixed v the decor-
relation tensor in the mean rest frame is related to the

intrinsic decorrelation by
Yij (_r.’f) =Yij G-VT, T) .

We let P(V)d33 denote the probability that the fluid velocity
in the mean rest frame lies in the three dimensional element
d3V of velocity space. Performing now the average over the
local convection velocity V due to the large eddies, which
is identified in the approximation in question with the total
fluid velocity, we obtain the basic relation of the standard

Eulerian space-time correlation (2-4) to the intrinsic decor-

relation:
(2-6) ¥y @) = [aRP®E) gijG-VT,T).

Setting 7 = 0, we note the obvious relation

(2-62)  ¥,,(F,0)= QU(?,O).

The pure spatial decorrelation Yij(?,o), we recall,
according to Kolmogorov's principles is an isotropic tensor.
Likewise, by the related earlier assumption, the intrinsic

decorrelation gij(?,T) is isotropic even for 170. 1t does




not generally follow, however, that Yij(?,T) is isotropic
for 1=0, in spite of condition (2-5), since in (2-6) the
probability density P(V) referring to the large eddies may

not be isotropic, i.e., it may depend on the direction of V.*’**

Relation (2-6) separates out the purely kinematic,
convective effect of the large-scale eddies from the instrinsic
small-scale properties of the turbulence.*** The equivalent
of relation (2-6) was given in the present context by
Silverman (1957). An instance of use of a relation of the
same sort where the function having the role of iij(?,T) does
not depend on the argument 1 is provided, as Silverman noted,
by the standard treatment of the scattering of radio waves by
aggregates of discrete scatterers in random motion (e.g.,

Kerr (1951)).

While the separation (2-6) in the universal range
is doubtlessly valid to some approximation, it is not entirely
clear how far this approximation may be pushed without resort

to Kolmogorov's principles in a questionably strong form.

*We could also abandon the earlier assumption of homogeneity
in the domain (2-5) and write a generalization of Fq. (2-6)
where P(v) would depend also on position and ¥y (r,7) would no
longer be homogeneous unless - = O. j

* ~ - .
**Since ?i.(r,r) is symmetric in i and j, according to (2-6)
so also is Yij(?,') even if P(v) is anisotropic.

koo . .
This distinction between fluctuations in local convec-

tion velocity and distortion of eddies has been empha-
sized by Fisher and Davies (1963) in connection with
intense shear turbulence.

13.
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In particular, it is not obvious that such a relation, with
gij(;,T) taken independent of Vv and of all properties of the
large energy-containing eddies, is valid beyond the local-
convection approximation (to be considered in the following
section) in which gij(F,T) is replaced by Yij(?,O). This
point is discussed further in the Appendix [see also Kraichnan
(1964)]. Neve=-theless, the presumption that the intrinsic
decorrelation Qij(?,r), for a suitably defined local velocity
v, has the independence in question has long received tenta-
tive acceptance [Von Weizsacker (1948), Heisenberg (1948),
Kraichnan (1959)] and is the simplest plausible explicit
assumption; therefore, we accept it here.

We record for further reference the relations that
follow from (2-6) between spectra in the proper and mean
rest frames. First, we introduce the trace of the intrinsic

decorrelation tensor:

(2-7) Y(r’”‘)ﬂii(;’ ),

where a sum is understood on repeated indices and Q’ being
an isotropic scalar, depends on r only via r(3 r ). VY is
thus related to the trace G(r,f) of the proper correlation
tensor wij(?,r) by

(2-8) Q(r,T) = vo2 - W(r,7).

A proper wavenumber spectrum of turbulent energy generalized

to time delays 1 #0 is dcfined in the usual way (e.g.Hinze

(1959)) by

14.




(2-9) E(k,7) = (21)" 22 [ a%F e 1 ®'F ger, 1)

—" [ dr kr sin kr ﬁ(r,r).
o

A similarly defined three-dimensional spectral correlation

-~

Eij(E;T), on account of isotropy in the proper frame, is

related to E(k,?) of (2-9) according to

(2-10)  E (K1) = @0 [oF e-1keT Wy o)
-1 2, -2 =
@-11) = @m Loy mkik D2 B0,

We may define the complete wavenumber-frequency spectrum of

energy for the proper frame by

212) B = @071 [ arel® B0,

- 00

and likewise the spectral tensor Eaij(ﬁ,w) which is identically
related to Eij(E,T). Eq. (2-11) yields

(2-13) Eaij(E,w) = (4n)'1(Sij-kikjk'z)k'zéa(k,m).

From the inverses of (2-9) and (2-12), the decorrelation trace

is related to the wavenumber-frequency spectrum of energy of
(2-16)  ¥(r,7) = 2m)°Y) defadk [1-et (K F-0T) -2 E, (k,0).
It is sometimes convenient to express this as

(2-15) Q(r,r) =4 fw dw f°° dk [(l-coswt)sin kr/kr+(l-sin kr/kr) ]
o o)

X Ea(k,l) .

15.




For the rest frame, analogously to (2-10), the

three-dimensional spectral correlation is defined by*

(2-16)  Ey (K, = @2m)3 | %% e iFT Wy E).

Substitution into (2-16) of Eq. (2-6) for "13 in terms of
Gij’ transformation of the integration vector from r to
T-v1, and identificaticn of a factor Eij(ﬁ}r) in the result

yield

(217)  Egy(k,1) = m) 7oy okk kKR (R, ),

i}
where
(2-18)  E(K,t) = E(k, T)M(KT)
with
(2-19) M(K71) = (a3 PR) e 1KVT,

As in the proper frame, we may define a complete spectral

tensor by

(2-20)  Euy Ro) = (2m)~L f-md'rei‘mEU (K, 7).

Inserting (2-17) for Eij(E,Tz we obtain the rest-frame
analog of Eq. (2-13):

(2-21)  E,; &) = (lnr)'l(sij-kikjk'z)k'zﬁa(l?,w)

where

(2-22) 7, (K0) = en Y drelYEBE®, ).

- 00

% Joint wavenumber frequency spectra of the kind defined here
were introduced, for example, by Bass (1954).

16.




From (2-18) we then find, in accord with (2-3),

(i-23)  E,(K,0) = [a¥ P@) Ea(k,m-V-E).

Eq. (2-23) [or (2-18)] is the spectral equivalent of the
basic relation (2-6). By the inverse of (2-16; and (2-20),

(2-24) Yij(?.T)=(4W)-1fmdwfd3ﬁ(51j-kikjk'z)[l-ei(E'?'wT)]

k"2, (K,0),
whence also the trace Y(r,T) is related to the energy spec-
trum EQ(E,w) as in the proper fram: analog (2-14). The

usual wavenumber spectrum of energy at fixed time, E(k), we

note, may be written as
(2-25)  E(K)=E(k,0) = [ do E, (k,)

= E(k,0) = fm dea(E,m).

If the distribution P(V) of the large-scale turbulent flow

is anisotropic, Eaij(E,w),unlike Eaii(E,x), is not an iso-

tropic tensor, but according to (2-21) it is the product of an iso-
tropic tensor and an anisotropic scalar, EA(E,Q); by (2-17) the
same is true of Eij(E,x), It is useful to define also the fre-
quency transform of the spatial correlation tensor,

Spl

- -1 - . ilwT, -
(2-26)  9;(F,.) = @) [ de Wyy ()

T -2,,-2
RS WA Rl C1y7kiksK 2yk 2, (K, ),

7

4



Since ¥(r,7) is isotropic, we may define longitud-

inal and transverse decorrelation functions gf(r,T) and
Yg(r,T), referring to Yij(F,T) for iz} with the direction i

respectively parallel and orthogonal to ?*. By definition,
(2-27)  ¥(T,7) = ¥e(r,7) + 2 ¥ (r,7).

The continuity equation implies

(2-28) ¥ (r,7) = ¥g(r,T) & kT ¥ (r,7)/or.

In terms of Qf and Qg, we have

~

(2-29) @ij(?,r) - rirjr'zlif(r,T)-Qg(r,T)l + oyt (0, L

ey

and Eq. (2-6) becomes ‘

(2-30) ¥y 1) ¢ [ARPE) (pyeyp Tt ¥ (py )Y (6, 1404 ¥, (p, ) ),
where p = T-VT.

Now we assume approximate isotropy and define P(V)vzdv
as the probability for a velocity magnitude between v and v+dv,

whence

2-31)  P@) = &m) lpe).

Acceptance of (2-31) in (2-19) yields

(2-32) M(kt)= M(kvoT) = fm dv VZP(V) sin kvi/kvT,
o

where the argument kvor recognizes that the scale of v is the

rms value v . We may rewrite relation (2-18) as

*Thus the normalized longitudiral correlation function f(r,<)
refer:1 ing to the proper frame may be written f(r,7) : 1-(3/v02)éf(r,');
the function commonly denoted by f(r) is t(r,0). 18.




(2-33)  E(k,7) = E(k, T)M(kv ),

as given by Silverman (1957) (also see Heisenberg 1948 ,
Wandel and Kofoed-Hansen 1962 ). We may similarly write

(2-23) as

(2-38)  E,(k,0) = [dVEE) E, (k07 - K)

= X fm dv va(v) fl duﬁa(k,w-kvu).
o) -1
Finally, in this case of complete isotropy, the trace function
¥ (r,1) = Wii(?,r) of the decorrelation tensor in the rest
frame, together with the continuity equation, suffices to de-
termine this tenzor (and depends on T only via r), just as
;(r,ﬁ) determines gij(;,T). Hence, the relation (2-6) be-

comes equivalent to the relation

(2-35) ¥(r,7) = ;dNPE)Y( T-V7 |, 7).

The one-point velocity distribution P(V) is ex-
pected to be normal, on the basis, roughly, of the central
iimit theorem; within experimental error, this result has
long been experimentally verified, as discussed by Batchelor
(1956). A noyrmal distribution would be expected for the
components Vv, of V even in the event of anisotropy where the
principal axes of the ellipsoid of constant probability would
be unequal. 1In the approximation of isotropy, the normal

distribution is given by




2-36) P = 370 @/m¥ v Pexn (-3 20, )

then the convection factor M of (2-32) and (2-33) becomes

(2-37) M(kvoT); exp(-k2v312/6),
2.2 LOCAL-CONVECTION APPROXIMATION FOR SPACE-TIME

CORRELATIONS BASED ON SIMILARITY AND THE CHARACTER

OF VELOCITY DISPERSION

Having delineated the relations between correla-
tions and spectra in the proper and rest frames, we consider
the intrinsic decorrelation Q(r,f) on the basis of the usual
dimensional arguments for the universal range. We also con-
sider the deviation of g(p,*) from the zero-delay value
@(p,o) for the range of , z | Tr-vt| that is significant in
the integral (2-6) with r and 7 restricted by (2-5). We
thereby tentatively justify the local-convection approxima-
tion for relating the rest-frame space-time correlation to
the purely spatial correlation.

Because of convection [Eq. (2-6)), the rest-frame

decorrelation Y(r,T) depends on the large eddies via the rms

*
fluctuating velocity v, even in the universal range. By the

* -
IInless P(v) is isotropic, Y(¥, ) depends on still other
characteristics of the large eddies.
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discussion at the beginning of Sec. 2.1, however, the intrinsic
decorrelation is independent of the large eddies (Von Weiz;cker
1948, Heisenberg 1948] see also Kraichnan 1964). Hence, by
Kolmogorov's similarity principles, y(r,7) in the universal
range (2-5)* must have the form (Chandrasekhar 1956)

1/2

(2-38) V(r,0) = (ev) e F(Ey,8y),

where F is a universal function of the arguments

§1 - €1/4 v“3/4r, 52 - €1/2v-1/2T

with ¢ the energy dissipation rate per unit mass and v the
kinematic viscosity.

We now restrict consideration to the inertial sub-
range where, in addition to conditions (2-5), either the separa-
tion r or the rms wander in the proper frame during 7t is large

*
compared to the microscale. This condition is expressed by*

It may suffice here, since y(r,7) refers to the co-moving frame,
to define the universal range by r<<L and el/% 7'3/2<<L in
place of (2-5); this condition on * implies a pseudo-Lagrangian
excursion small compared with L and is slightly weaker than
voI1 k<L, since it may be expressed roughly as (vJ TI?/2<<L3/2.
In any case, in one degree of another it is required that

volr k<L, since if VOIT L, an initially co-moving frame after
time T no longer removes the influence of even the large,
energy-containing eddies.

**I.e., if c1/3r'2/3|ﬂ, >1, the rms Lagrangian separation of

the fluid elements at the rorrelation points (X,t), (x+r, t+7)
is ~€|T|3/2; if e1/3r°2/3|1| <1, this separation is rather ~r
(see discussion below). Condition (2-39) thus insures that
the effective separation is large relative to the microscale.
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(2-39)  Pr el BE s g o (2 41, B¥ s,
where

(2-40) L3 v3/ac-%.

o]

Later we shall consider separately the viscous range. 1In
the inertial subrange, as well known, independence of v

implies the more restrictive form”

(2-42) ¥(r,1) = ()3 (2),

where F is a universal function of

(2-43) z z /3723,

m

Introducing V.. (rr)1/3, which to within a constant is the
velocity dispersion Q(r,O) over a distance r at fixed time,

we may write (2-42) also as
=4 2
¥(r,7) = V. F(vrT/r).

Referring to the limiting casesz - 0 andz—* ~,we have the stan-

dard forms implied by similarity arguments,

(2-44)  ¥(r,0) = A_(er)?/3,

(2-65)  ¥(0,7) = Bc | 7],

whence

(2-46) F(0) = A, ;i?w[z'lF(z)] - B,
x

On assumption of an isotropic convection-velocity distributica
P(V), we note, relation (2-6) and form (2-42) imply a rest-frame
decorrelation of the form

(2-41)  ¥(r,1) = (er)2/3M(vg1/r,2) 2 (er)2/3 H(v 7/x,vp /).
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where Ao and B are positive universal constants, presumably of
the order of unity. Experimental results quoted by Corrsin (1963)

for the constant N in the ordinary wavenumber spectrum

(2-47) E(k) = Ne2/3 -3/3

yield N = 1.5, whence, Ao: 3.6; likewise a semi-empirical
analysis by him suggests B: 4.7.* These estimates, especially
the latter, must be regarded as rough, but at any rate there
is no suggestion of a gross disparity between the values of
Ao and B in (2-44) and (2-45).

F(z) in (2-42) increases from the value AO at
z = 0 to become Bz at large z. It is reasonable to presume a
smooth behavior for F(z) in between. On this presumption, since
B~Ao, we may tentatively suppose that F(z) differs from Ao by
only a small fraction where z << 1. This supposition can be
confirmed only by suitable comparisons with experimeat, but
it is useful to give a brief heuristic discussion. g(f,l)

differs from ¥(p,0), i.e. F(z;), withz = l/3,-2/3

T
differs from Ao’ on two conceptually distinguishable accounts.
First, there is a velocity difference between the points separ-

ated by ¥ whose mean squared magnitude is v? ~ ¥(p,0) - Ao(ep)Z/B.

*
Values N - 1.77 and B = 17.5 have recently been estimated
theoretically by Kraichnan (1966).
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This velocity acts as a residual differential convection vel-
ocity that cannot be removed by the motion of the proper frame
and, during 't',produces an rms displacement Vp't; hence, the
mean squared magnitude of the velocity dispersion between the
two points occurring on this account during 1 is ~§(VA T],0)~
Ao(evpl T|)2/3 ~ Ao(ep)2/3zp2/3. Second, the velocity even
at a fixed point in the proper frame does not remain constant,
so that, even if p — 0, some decorrelation occurs during time

7. The mean squared magnitude of this change is ~ Q(O,T) -

Be | 1] = B(ep)2/3zp. Summing the two contributions in quadrature,

we obtain an estimate of the total velocity dispersion due to

time delay as a fraction of that for zero delay:

(2-48)  [¥(p,7) - ¥(p,0)]1/ ¥(p,0) = [F(zp) - F(0)]/ F(0)

2/3
-z, /3 (B/A,)z, -

This fraction, in fact, is small if z, <¢ 1. Actually, by an
argument given in the Appendix {[see also Sec.5], the contribu-
tion in (2-48) from spatial velocity dispersion more likely

2/3

varies as zg than as zp for small zp, and the contribution
from velocity wander may not enter in quadrature but in such

a way as ) be of still higher order Cqu), though at large
zp it must vary as zp and predominate. In fact, in Sec. 3.1
on the basis of a specific conjectured intrinsic spectrum
é4(k,w) and without reference to the heuristic distinction of
spatial velocity dispersion and velocity wander, it is found

that [F(zp) - F(O)]/F(0) ~ 0.47(B/’Ao)zzp2 , and apart from
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the value of the numerical coefficient the same result holds for
a broad class of possible Ea(k,w).

For the moment we suppose P(V) is isotropic; it
then suffices to consider the trace function Y (r,1). Inser-

ting (2-42) in (2-35) we have"

(2-51) (5,1 = AR R 1T -V 2 BORE 13S0 Y,

In view of the behavior F(z)— Bz as z — «, there is no singular
behavior of the integrand at T - vr = 0. When the integrations
over angles of V are performed, the spatial and convective
displacement vectors T and vt roughly speaking, add in quad-
rature. With the final integration over Vv, the characteristic
order of magnitude of | Tr-vr| in the integrand is simply

(2-52) Ry = (riy 2:2)%

The argument z involved in the integrand is thus typically of tne

*
Form (2-51) contrasts with that assumed by Chandrasekhar
(1956) in his theory of turbulence. By his contention

(2-49) v'(x,) = BBV, 2. 3723 )

where a prime denotes &/dr. But integration over r with neglect
of the contribution from the viscous range then yields

(2-50) v(r,7) = (r)¥/3 2(2) + ¥(0,7) , where
2(z) = (3/2)z fcx dx x'zc(x)

(c£{2-42)]. According toz(Z-SO), the large eddies contribute
to the decorrelation only additively and independently of r.
I1f the large-scale motion is isotropic and Y (0, ) depends on
it only via Voo for example, (2-50) has the form

t(r,) 2 (03 5@ + (evy 1 D3 TCE - B,
The failure of form (2-50) to reflect properly the effect of

convection by large eddies was emphasized by Kraichnan (1959),

(1959a). 25




order of

2. 3 & Rc | 1.

By use of the usual estimate e~v°3/L, we then have

2 ~(vg T VR R/,
The first factor is less than unity by definition (2-52),
and the second is small relative to unity by the restriction
(2-5) to the universal range. Hence only arguments z << 1
enter significantly in (2-51), and for such arguments, by
our previous discussion, the fractional error will be small
if we replace F in (2-51) by F(0) [EAOI. In accord with
(2-6a) we identify (e'c')z/3 F(0) as V¥(r,0). We must insert
Rc in place of r as the pertinent argument in condition
(2-39) for use of the inertial-subrange form (2-42) in the
integral (2-51); since ¢ | 1 I3 << v 2:% by (2-5), the inertial

subrange in the present context is then defined by
(2-53) £y << R, << L.

We thus obtain, as a valid approximation in the inertial
subrange {z-53), an explicit expression for the space-time
decorrelation Y(r,T) in terms of the purely spatial decor-

relation ¥ (r,0):

(2-54)  ¥(r,7) = [dV P() ¥(|T - V1 1,0).

In other words, in the computation of Yij(?,*) by Eq. (2-6),

the trace ;(r,T), which specifies Qij(F,T) ir. that equation,
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is approximated by

(2-55)  ¥(r,1) 2 ¥ (r,0) = ¥(r,0).

We refer to (2-54) as the local-convection, or
non-dispersive, approximation. This relation has been com-
pared with experiment by Favre (1965), who attributes its
proposal to Kovasznay. We shall consider these experiments
later. In Sec. 3.4 we shall derive explicitly in certain
limits the dispersive correction to (2-54) given by (2-51)
for the F(z) derived from the specific conjectured form of
Eé(k‘w) mentioned above. The dispersive correction to the
local-convection approximation (2-54) for Y(r,t) (or to the
corresponding approximations for Yij(f,x)) is found, for the
class of Ea(k,m) considered, to be of relative order ~(B/Ao)2

2)2/3 “(B/Ao)z(vor/L)2/3 and, still more generally,

x( € t/v0
vanishes in the defining limit RC/L- O of the universal
range. We discuss in the next section limitations on the
validity of the wavenumber-frequency spectrum corresponding
to (2-54).

In the more general case of anisotropic P(Vv), the

trace ¥(r, ) does not suffice to determine xij(?,r). Exactly

as at (2-42), however, for the inertial subrange we may write

(2-56)  t,(r,7) = A0 (8, (1= 0,1,2)

-~ ~ ~ - ~

where %OE 1, %1 = ff, iZ = ; and the equation for i:=0 repeats
(2-42) with ﬁo(z) = F(z)/AO. We may make :O(O) = :1(0) - *2(0);1
by taking (3/11)Ao = (3/4)A2 - Al 2 A and defining A accordingly.
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The Yij(?,r) can be formed directly by inserting @f, Yg as
given by (2-56) into (2-30). The earlier discussion of

Eq. (2-51) applies substantially unchanged to these equations
for Yij(?,r) since ol(z), oz(z) are similar in character to

F(Z)*. Hence the local-convection approximation (2-54) may

be generalized to the form required for anisotropic P(V):

(2-59)  ¥;,(F,7) = jax P(V)Y; (F-¥1,0).

This approximation is still equivalent to application of the
approximation (2-55) in Eq. (2-6).

We turn to consider whether (2-54) [and (2-59)]
should be valid also in the viscous range. In more general
terms, our previous arguments may be summarized as follows.
The effective displacement argument | r-v' | in Eq.(2-6) for
¥(r,t) is characteristically ~R_.. Hence approximation (2-54)

will be valid if
(2-60)  [¥(R_, )-*(R_,0)]/ (R ,0) <« L.

Considering two types of contribution, we estimate

*ﬁore explicitly, the continuity equation (2-28) with (2-27) and
(2-56) yields oz(z) = ol(z)-l/4 zoi(zL oo(z) = ol(z)-(2/11)zoi(z).
For the coefficients b, = lim [ol(z)/z], these imply

z’@
(9/11)b1 = (12/11)b2 = bo' From these results we find
2 "13/2 a,(z").

11/2 J/'w dzl Z'-13/20(Z')].

(2-57) oy(z) = (11/2)2*/2 [® az

(2-58) oz(z) = (11/8)[00(2)-(3/2)2
z
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¥(r,1) - ¥(r,0)  W¥(r,001¥ [ 11,0) + £(0,1).

Hence the condition for (2-54) becomes

(2-61)  (¥(1¥(R,,0))¥ | 7 1,0) + ¥(0,1)1/ ¥(R_,0) << L.
In the viscous range we have the standard result
(Hinze (1959))

(2-62)  4(p,0) = 5(:/30v)p° for p < £,

corresponding to F(QI,O) = 5(1/30)512 in Eq. (2-38) for ﬁl < L.

Similarly, for &2 <l we must have ;(0,1) < 12, i.e.

F(O,iz) = 5°2§§ , where <, is a constant; thus

(2-63) ;(0,1) > 5c2(cv)5(t/v)?2 for - ¢ (v/r)%.

This form in the similar case of the Lagrangian correlation
is implied also by the work of Uberei and Corrsin (1953),
summarized by Hinze (1959), p. 321. Identifying the two cases,

we would infer from this work a value for ¢y given by

(2-64)  ©, - (15)7212.75:71 + 4.460),

where a denotes Heisenberg s dimensionless spectrai-transfer
constant, presumed of the order of unity. By insertion of

(2-62)-(2-53), condition (2-61) may be written

(2-65)  (1/6)35 + 30¢,75/5 0. << L.

where :lc - - V-3/QRC. In the vi-- .s range defined by

29r




r2 c1/2v1/212 1/2

(2-66)  (r° + Y2 ayor (2 - eH12g,

we have (1/6)¢3¢<<l in (2-66). Condition (2-65) then reduces to

(2-67)  30¢, [(en)i/v 2101 + (e/v 027! < 1

But

(2-68) v 2/(en¥ 1 (3N15)Re,,

where Re, is the usual turbulence Reynolds number based on
transverse dissipation scale, and Re, >> 1 for the assumed
existence of the universal equilibrium range. According to
(2-64), we have cy ~ Y. Hence (2~67) is satisfied, and the
local-convection approximation (2-54) or (2-59) is expected
to hold in the viscous range (2-66), as well as in the iner-
tial subrange (2-53).
Conceivably, (2-54) is less valid in the connecting

r gion between inertial and viscous ranges. Apart from this
possibility, the local-convection approximation is expected

to be valid throughout the universal range where Rc << L.

30




2.3 SPACE-TIME CORRELATIONS BY THE LOCAL-CONVECTION
APPROXIMATION FOR AN 7SOTROPIC NORMAL VELOCITY
DISTRIBUTION; SPACE-TIME ISOTROPY; COMI'ARISON

WITH EXPERIMENT

We assume now & flow having an isotropic and normal
distribution of total fluctuating velocity P(v) given by
(2-31) and (2-36). 1In such case we may define longitudinal
and transverse decorrelation functions for the mean rest
frame, Yf(r,r) and Yg(r,T). The relations (2-27) - (2-29)
must then hold as well for the rest-frame functions (all
tildes omitted). Eq.(2-6) for 1i«j with i respectively
parallel and orthogonal to T then yields integrals for

~

Ve, ¥ in terms of Qf,Y Using spherical coordinates in

8 g’
V-space (d3V = dvdud@) with T as polar axis, and representing
(Y,Yf,Yg) by (YO,YI,YZ) for convenience (whence ¥, z¥, + 2!2),
we have*
® 2 1
(2-69) Yi(r,f) ~ (1/2) [ dv v°P(v) [ . du Yi(p),
o

with

(2:70) ¥ () I g (0,7) + 24 (0, 0),

2-71) ¥ ) F Ev i g, - 1]+ 1),

(2-72) ¥, s 2Xv02(-u?) p'zlifc.,r) - Gt ) I+ ¥ (e, ),

02 - el 4 (vi)? - 2rvin.

x
As a check, it is verified directly that Yf,

Yg satisfy the
continuity equation (2-28) provided Yf,gg do.
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We now utilize the local-convection approximation

and consider first the inertial subrange. We then have the
Qi(r,w) given by Eq.(2-56) with the ci(Z) replaced by unity.
Inserting (2-36) in (2-69) and integrating over u, we obtain

2-73) ¥ (r,7) = 3(6/m) A(er)?? [ dx x2 exp(-3x2/2)L, (xv_7/r),
(o]

where

L (8) = (11/16)8 L (s¥/3- 6 5/3),

s, = | 1+B |, 8_:|1'B|,
and L1 and L2 are given by similar but more complicated

expressions.

We readily find the limiting forms of (2-73):

2-76) ¥, (r,0) = Ay ()% 3(Qre 8.2 for B << 1,

(2-75) ¥ (r,7) =S (ev )2 31 8%) for B> 1,

vhere
B, ¥ VOIT'/r,
(2-76) A, = (4/3A , A, = (IL/3)A, A = A,
s, = S, = /D329 r1/6)4, S, = 35,

¢ = 11/27, ¢y = 11/108, ¢ = 5/27,

Clw = 1/5, sz = 2/5, COm = 1/3.

2/3

The charactciistic dependence Yi(O,T)- Si(€V0T) for r=0
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is well known (Landau aud Lifshitz 1959, Eq. (32.2)).
We could also derive ¥, and ¥, from the simpler
¥ by the continuity equation. Thus, writing Eq. (2-73)

functionally as

2-77) ¥, (,7) = A(en)¥ 36 (v 1 /m),

(whence Gi\O)-IL from (2-27) and (2-28) we obtain

(2-78) G (8,) = Gy(B,) - (3/11)83G, (5 )/38,
(cf.(2-58)). Eq. (2-78), together with the asymptotic form

Gi(Bo)--'(Si/Ai)802/3 as B~ =, yields

i 11/3 . . .-14/3
(2-79) G (B,) = (11/3)3, j dep G, (B).

Po

Since the displacements r and v, 1 must add nearly in
quadrature for appropriate relative scaling, we define
functions Hi(Bo) by writing

(2-80)  ¥,(r,7) = Ai(gRi)2/3[1-Hi(60)],

where

(2-81) R, Z.

By definition (2-81) of the scaling factors si2 and the results

(2-74), (2-75), the functions Hi(Bo) so defined are such that

(2-82)  H (0)= H (x) = O,
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i.e. Wi(r,T) = Ai(eRi)2/3 if either r « O or T = 0. From
the numerical values (2-76), we find

2 2 2
(2-83) 8y = 1.455, s, = 0.613, 8, = 0.795.

The integrals (2-73) have been evaluated numerically, and
the resulting functions Hi(ao) of (2-80) are shown in Figure
N - *
1 as functions of Tan 160 [= Tan 1(vcrrVr)].

We shall refer to a function that depends on r and
T only via r2 + sz(vo'r)2 for some constant s as a space-time
isotropic function. Figure 1 shows that the Yi(r,T) are all
closely approximated by the space-time isotropic functions 3

defined by neglecting the Hy in (280), i.e., \

(2-84) ¥, (r,7) = Ai(eRi)2/3. -

The corresponding maximum fractional errors are 1.3%, 3.5%
and 2.47 for the longitudinal, transverse, and trace functions
i1:-1,2,0), respectively.

We turn momentarily from the inertial to the viscous

subrange, applying once more the local-convection approximation

*
By expressing ¥(r,7) by the inverse of (2-9) and E(k, 1)

by (2-33) and (2-37), with E(k,T) replaced by E(k) -
Ne2/3k3/3 {4 the present approximation, we cbtain
¥(r,7) = 6?3 12 ak k7/3(1-(s1n kr/ke)exp(-v, 2 2k2/6) 1,
whence, according to Bateman (1954), p.74, (24), ¥(r,7) can
be expressed also in terms of Kummers confluent hypergeo-

metric series.
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(2-54). In this instance we have, as at (2-62)

(2-85)  ¥,(0) = 4,02, ¥ (p) = 20,07, ¥ (p) = 5u,0%,

vhere a s ¢/30v. Eq. (269}, with P(v) given by (2-36), now
yields

(2-86) ¥ (r,7) s A (/30v) RS,

with
2-87)  R% = r? 4sd (v, 0P,
2 2 2
801 5/3, 802 = 5/6,800 =1, [cf.(2-83)]
Aolz 1, Aoz ) ¢ 2. Aoo s 5-

Hence, in the viscous range the decorrelations !1(r,1)are ex-

actly space-time isotropic.

A space-time isotropic correlation function was
proposed previously by Lilley and Hodgson (1960), App.D.

For comparison with experiment, we consider also
space-time decorrelations, say Qij(?,T), measured in a frame
having a fixed velocity -ﬁ; s (-u,,0,0) relative to the mean
rest frame. By the kinematic relation (2-2), we have gij(?,T) -
Yij(? <8, 7,7). In the present approuimation Yij(?:T) is
isotropic and given in terms of Yf(r,T),Ws(t,T) as in Eq. (2-29).

In particular, the decorrelation for the streamwise component
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is expressed by

(2-88) @11(?,1) = ¥e(ryt) + Rz(r'l2 + Rz)'llwg(rir)-wf(f,r)],

where T = (rl-uoT,rz,r3) and R2 - r% +~r§. In the inertial

subrange Yo and ¥_ are given by (2-80), but since a relative

g
error ~1% is negligible, we use the space-time isotropic
approximation (2-84) for Y¢ and the consequent Yg [Eq. (2-28)],

obtaining

(2-89) ¥, F,1 = A(RDPAg 2R,

2 +R2+ slzvosz. The correlation at a . 3
i

where R% = (rl-uoT)

point in the mean-rest frame after a delay T according to

(2-89) is the same as in the laboratory frame after a delay

s (slvo/uo)r~(vo/uo)1 ; this result was given by Lilley and

Hodgson (1960), App.D, and noted to be in broad agreement

with the results of Favre (1965) for both grid and wall turbulence.
The velocity component referred to here is

parallel to 66 by definition, and in the measurement of present

concern r is also nominally parallel to Go' We therefore

suppose the angle @ [- sin'l(R/r)] between T and 36 is small,

as well as vo/uo<< 1, whence (2-89) may be written approximately

as

(2-90) ¥ (F, ) = A3 22 v (v su) e 2213

x (1 +3e20%0:2 + %% 4 v e ),
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where

A = uo(T-Tm) and T = rl/uo = r/uo.
Thus 7 1is the time delay at which 9 gll/ar1 = 0 for given
T, and A is the actual time delay in spatial units relative
to . Since @ << 1 and slvo/uo << 1, the time correlation
at fixed separation is determined mainly by A€2/3, but the
correlation envelope curve a@ll/ 01 «0 for varying separation

2/3 and the function

is determined mainly by the product of Ac
of @ and vo/uo given by setting A = 0 in (2-90). The rate

of decrease of this correlation envelope is sensitive to

the misaligmment @, being significantly increased by @ unless

g << v /u,.

We compare results computed from (2-90) with mea-
surements in grid-produced turbulence by Favre, Gaviglio, & Dumas
(1953),(1954), summarized by Favre (1965). Favre per-
formed a similar comparison based directly on the nondisper-
sive relation (2-64) (witht - T - G,7) and employing the
measured Yf(rﬂO), Yg(r; 0). 1he present comparison entails
the further approximation of Ye and Yg by the inertial-sub-
range forms but eliminates certain unassessed approximations
made by Favre. The parameter A is now regarded as adjustable
on the basis not only of the measured correlations for 7 = 0
but the whole series of measured space-time correlations

Yll(?,T) and their envelope. Use of the inertial-subrange

form, however, implies that the computed normalized space-time
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correlation must be expected to depart substantially from the
measured values at least where these are less than ~0.6. In the
specific experiments referred to,in fact, the Reynolds number
Re, = 44, scarcely sufficient for existence of an inertial
subrange at all, and small enough also that the dispersive
departure from the local-convection approximation may be

appreciable, as discussed in Sec. 3.4 below.

For the geometrical and flow parameters given for
the Favre experiments, we estimate from other experiments
on decay of turbulence downstream of a grid, notably Batchelor
and Townsend (1948), that the turbulence intensity at the
pertinent locations was vo/uo = 0.027.* Accepting this
value, assuming no misalignment (@=0), and adjusting A to
give a visually good fit to the form of the measured time
correl:tions at various fixed separations r, with more empha-
sis on agreement where the correlation is relatively high,
we arrive at A = 0.55 and the series of curves in Figure 2
having the solid-line envelopef* The breadth of the peaks for
various separations is fairly satisfactory relative to the
experimental results shown, but the envelope of the peaks de-

creases too slowly. This fact is attributed mainly to

"The dissipation rate ¢ is then computed by Eq.(2-72).

**At separation r = 0, for which the experimental curves
given in Figs. 1 and 5 of Favre (1965) fail to coincide,
we accept the latter.
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neglect of dispersion and to experimental misalignment.* If,

tor example, the latter were f§ - l.g) for each separation,

with vo/uo = 0.027 still and A = 0.55, the curves would be those
represented ——— - —— ; these agree rather well with the measured

ones and their envelope. If we suppose instead § - 0 but
arbitrarily adjust the intensity as well as A to

yield a fit, for A = 0.41 and vo/uo - 0.042 we obtain

almost identical results. In the measurements, the nominal
transverse separation was varied to maximize the correlation;

hence the error due to misalignment was presumably small. It
appears quite plausible that, if comparison were made with
experiments at sufficiently high Reynolds number, the results yielded
by (2-89) for space-time velocity correlations on the basis of the
local-convection approximation would prove in satisfactory agreement
with measurement, and provide a useful determination of the Kolmogorov
constant N. Further comment will be made in Sec. 3.4, where a dis-

persive correction is introduced.

*ae may consider also the effect of possible anisotropy of
the large eddies. Grant and Nisbet (1957) obtained experi-
mental indication that the streamwise fluctuating component
in grid turbulence tends to be the largest. Making the
extreme assumption of purely streamwise fluctuation in
place of (2-31 'we find, for T gﬁgallel to 36, that 205
Yf(O,t)/if(t,O) = O.AA(VO"/t) ir. place of 1.13 (vo‘/r) .
Hence such anisotropy would be expected to reduce rather
than increase the rate of decline of the space-time correla-

tion envelope. This anisotropy has no effect on the ratio

Dc/ps mentioned below.
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The measured streamwise space-time correlations
(R=0) may be characterized also by the ratio of minor to
major axis for the streamwise isocorrelation curves, which
depends somewhat on the correlation value (Favre, Gaviglio,
and Dumas 1953). More generally, we define pg as one hal { the
ratio of rl-intercept (t=0) of a streamwise isocorrelation
curve to the value of uyT where ry=u T on this curve; for an
ellipse, Py is nearly the ratio of axes. Transverse isocor-
relation curves (rl-O) were also measured in the experiments
and may be characterized mainly by the ratio o, of the R-intercept
(v=0) to the uof-intercept (R=0). Finally, compensated iso-
correlation curves (rlsuov) were measured and may be charac-
terized by the ratio P of the R-intercept (rl-O) to the r,-

intercept (R=0).

For the viscous range, which applies only where the
normalized correlation is very near unity, Bass (1954) derived
for homogeneous turbulence the general relations rs-(a/b)1/2/2,
Ot’l/\lil pcr\/fbs, where a/b is a small undetermined quantity.
Eqs. (2-86) and (2-88) of the local-convection approximation
for the viscous range conform to these results and imply a/b =

2 - .
(5/3)(v°/uo) , whence O 0.65 voluo. For the inertial sub-
range, on the other hand, Eq.(2-89) yields as-%slvo/uo*0.61vo/uo,

3 2 2, 2,172 L o 3y3/2 - R .
pt- A (1+s1 v, /uo ) 0.65, e (5) Slvo/uo 1.30»5, which we may
compare with experiment. The measured values of Sgr without dis-

persion, require somewhat too large vo/uo, as already discussed. The

measured Py varies in the vicinity 0.4 to 0.5, a value appreciably
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smaller than the computed 0.65. Most strikingly, the measured
pc/ps varies in the vicinity of 4 to 6, much larger than the
computed 1.3. Introduction of dispersion, anisotropy of the
large eddies, or streamwise inhomogeneity appears unsuitable

to account for this discrepancy. An obvious, but unlikely,

way to account for it, if the measured value is not grossly in
error, is to suppose the spatial velocity correlations at fixed
time are anisotropic and the streamwise component correlated
over a much larger distance in the transverse than the

streamwise direction.




2.4 VELOCITY SPECTRA IN THE LOCAL-CONVECTION
APPROXIMATION; IMPORTANCE OF VELOCITY DISPERSION

We consider the implications of the local-convection
approximation (2-55) for the rest-frame velocity spectra
defined in Sec. 2.1. The corresponding approximation for

the partial transform E(k,T) is
(2-91) E(k,7) ¥ E(k,0) 2 E(k),

where E(k) = E(k,0). By definition (2-12), then, we have

(2-92)  E, (k&) ¥ E(K)5(®),

whence (2-23) becomes
(2-93)  E, (&) T E(K)/ETR@ @ -FD),

This equation states that in the approximation of local convec-
tion, a fluctuating velocity component with given frequencv o

and wave number k can be generated only by virtue of a local
convection velocity v of the "frozen" large eddies such that

the projection of v in the direction of k generates a disturbance
at frequency w by motion of the fixed wave pattern. The restric-
tion (2-53) of (2-54) to the inertial subrange, by the rest-f{rame
analog of (2-15), implies the reciprocal restriction

(2-93a) 1_.'1’<<(k2+ mz/v§)1/2<<3;1

on (2-93) and (2-95) below.
In the case of isotropic P(v), Eq. (2-93) is equivalent
to the forilowing relation derived from Eq. (2-34):

(2-94)  E,(k,@)=(1/2)kTE(K) [ dwwP(v).
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With a normal distribution [Eq. {2-36)] this becomes

1/2 -1/2

(2-95) B, (k,0) =312 20 T g () expl - (3/2) (ofyi) U]

Hence, {f the normal distribution represents the true situation
sufficiently well, for large w/vok the lccal-convection
approximation yields an axceedingly small energy density
Ea(k,w) on account of the minute probability of a local
convection velocity >w/k. Because of the deformation and
decay of eddies, however, we must suppose that Ea(k,w) in
reality is much larger; i.e., however good an approximation

the local-convection approximation may be for wij(?, 1) in the
universal range, it is not adequate to yield a good
approximation to such a demanding detail as the frequency-wave-

number spectrum at large w/vok.

An example of the sensitivity of EQ(E,w) in this
regime is provided by comparing the spectrum corresponding
exactly to the local-convection approximation in the inertial
subrange with thaf corresponding to the space-time isotropic
approximation for the longit.iinal decorrelation Wf(r,m)
[EqQ. (2-84) 1; the latter sufficed to give ¢f(r,1) within 1.3%
of the value given by the former for all values of vow/r

(Fig.1l) . Corresponding to (2-56) with Oy = 1, we have the

E(k) of (2-47) with N = (110/27)[7(1/3)] 'A. Then (2-33),
(2-37) and (2-95) yield
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(2-96)  E(k,1) = N2/ 3k dexp kD26,

E, 'k,0) = (3/2w>1/2N62/3v;1k'8/3exp[-(3/2)(w/vok)z].

The space-time isotropic approximation (2-84) for wf(r,w), on
the other hand, by a standard relation (Hinze 1959, Eq. (3-70)
extended to 1 # 0) yields

(2-97)  E(k,m = 27/8r17/6) 17N 233 (s v _ni) 7/
XKy 7/6(81Vo7H)
E, (k,®) = v'1/2(14/11)[r(7/3)/r(11/6)]Ne2/3(slvo)'1
K811 4 syt 2171073

J -

where s, was given at (2-83) &and K, denotes the usual exponen-
tially decreasing modified Bessel function.* For large w/vok

the approximation {2-97) for Ea(k,u) thus does not retain the

rapid rate of decrease given by the exact local-convection

form (2-96).

2.5 TAYLOR'S HYPOTHESIS, EFFECTIVE CONVECTION VELOCITIES, AND
CROSS-SPECTRA IN THE LOCAL -CONVECTION AFPROXIMATION

The present methods afford a simple quantitative
treatment of departures from Taylor's hypothesis for the inertial

subrange in homogeneous turbulence, a topic previously

*If the approximation of space-time isotropy (2-84) is applied
to the trace y(r,r) instead of wf(r,w), the approximation to

(2-96) is less close than (2-97), with E(k,T) and Ea(k,w) instead
containing factors K11/6(sovoik) and [1 + (u/sovok)z]-7/3
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treated otherwise by Lin (1953), Uberoi and Corrsin (1953).
We define the hypothesis here in terms of the measured and
the hypothetical spectra which it is commonly invoked to relate.
“he hypothesis approximates the one-dimensional wavenumber
(kl) spectrum of a turbulence quantity in the mean rest frame
by its frequency spectrum, multiplied by u, at a fixed point
in the measurement frame, the latter frame having velocity
-ﬁo relarive to the former, for a frequemcy ® = u k. We
consider first, for simplicity, the spectra corresponding to
the trace of the velocity correlation, W(r,t), rather than to
the longitudinal or transverse components individually. The
first spectrum of convern is thus the one-dimensional energy

spectrum in the rest frame (multiplied here by %), given by

-1k
2-98)  EM (k) = (@) drpe 1rlw<?1,0)

where ?1 = (rl,0,0); the secnond is the measurement-frame analog
of the trace of Eq. (2-26) with r = 0,

(2-99) B = 80,0 =@ de1N(0,-).

where Q(?,T) refers to the frame with velocity -G; = (-EV,O,O).

We wisb to consider the departure from unity of the "Taylor ratio"

(2-100) T = uoe(uokl)/E(l)(kl).
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Eq. (2-98) can be straightforwardly transformed to
become, as given by Hinze (1959), Eqs. (3-72),(3-73%

2-101) M (k) - f: dkk " LE(K) .
1

In Eq. (3-19) we may use the kinematic relation
A e -
(2-102) W(E,t) = W(r - u T1,1).

By use of the equivalent of (2-14) written for the mean rest
frame and of (2-23), E3. (2-99) may be written

(2-103)  8(w) = (1) Lra¥p @) fadRkT %, (k0 - K (T, + D).

Here we shall find the Taylor ratio T in the local-

convection approximation (2-92) and consider the dispersive

effect in Sec. 3.3. From (2-103) and (2-92) we find

(2-104) &) = [dVR(V) [T, + vl'lf:/.ﬁo - dkk~ LE(Kk)
vhence

(2-105)  ugB(u ky) = fd3vP(v)I(v/uo,%)f:ll(v/uo’%)dkk-lE(k),
where

(2-106) I(v/ug,2) = (1 + 2(viu ) + (V/uo)zl'l/z.

46




A = v=Ub/vuo. and fd3V may be regarded as expressed in the

spherical form fwdvvzfzvdﬂfldk. In this approximation T is
o o -1

given as the ratio of (2-105) to 2-101). From (2-105) and
(2-106), we note, if the azimuthal integral [Z" dgP(¥) is
o]

an even function of A, then T differs from unity only by terms
of order (vo/uo)z; this will be so, in particular, if P(V)

is isotropic.

We now limit consideration to a power-law wave-

number spectrum:

(2-107)  E(k) = c k™ (W+D)

In actual fact we are concerned with the inertial subrange case
n == 2/3. The k-integrations in (2-101) and (2-105) may now

be performed to yield a ratio
2-108 - aR¥PEH UG 4+ n_ 43 Ay oD
( ) T = [dVP(V) (1T, + VI/u)" = [d vP(V)[I(v/uo,_)] .

Form (2-107) implies v(r,0)<r", and from this, proceeding
frcm the original forms (2-98) and (2-99) by use of (2-54) or

recasting (2-108),we can express T in the alternative form
(2-109) T = y(-u 1, 1) /v(-8,7,0);

the right side,under the present assumptions, is properly
{ndependent of v. For n = 2/3 and an isotropic normal P(V)

recalling (2-77) and (2-80) (for i = 0), we may write
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2]1/3

(2-110) T = G (v_fu)= [1 + 82(v_fu) (1 - H (v /u)].

for vo/u0 <<'1, Eq. (2-74) then yields explicitly
(2-111) T =1 + (5/27) (v /u ).

More generally, for arbitrary vo/u0 we can compute the correction
factor T explicitly from (2-110) by use of the value of Sy

[Eq. (2-83)] and the graph of the function HO(BO) given in

Figure 1.

We can proceed with the spectra corresponding to
individual component correlations wij(r’T) similarly to the
above for the trace W(r,t). Thus, we let Ei;)(kl) be defined
by (2-98) with W(r,,0) replaced by wij(rl’o)’ @ij(u» by (2-99)
with G(O,T) replaced by ﬁij(o,w), and, analogously to (2-100),

define

(2-112) Ty, = uosij(uokl)/Ei;)(kl).

In particular, as at (2-109), in the local-convection approxi-

mation with a power-law spectrum (2-107), we find
(2-113) Ti5 = wij(-ﬁox,x)/wij(-GQT,O),

which once more is properly independent of 1. For the inertial
subrange and an isotropic normal P(Vv), as at (2-110), we then
have as Taylor's ratio for the longitudinal (i = 1) and

transverse (i = 2) velocity components
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2.1/3

(2-116) Ty = G (v fuy) = [1+ si(v /u)?1M3[1 - Hy(v fu) ]

(no sum or. 1), where again the s, are given at (2-83) and
the Hi(vo/uo) for arbitrary“v/uo in Figure 1. For v/uo <1,
by (2-74), as at (2-111), these correcdon factors are given
by

(2-115) Ty =1+ (11/27)(vo/u0)2, Tyy = 1+ (11/108)(v0/uo)2

It is possible to re-interpret the computed correction
factors. Suppose we define new ratios T', Tij obtained by
replacing u by some other velocities u', uij, respectively, in
the definitions (2-100) and (2-112). From the power-law form
(2-107) we readily find T' = (uo/u')nT, Tij = (uo/uij)nTij’

Since the T and Tij proved to be independent of kl, we can

1/n _ 1/n
5 uij = uOTij .

From (2-114), for example, we see that we can provide an exact

t _ ot v _
make T' = Tij = 1 by choosing u' = u T

Taylor's hypothesis by employing effective convection velocities

2 2 25172

(2-116)  ugy = (ug + syv)) ' 7(1 - Hi(vo/uo)]y2

~(1) . . .
to compute nfi)(xl) = uiigii(uiikl)' This velocity differs
for longitudinal and transverse compcnents. Tor vo/u0 <« L5

by (2-115) we have

2,2 ;
(2-117)  uyy = u Tl + (A1/18)vi/ul), uy, = u (L + (11/72)v2/uly
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As for the dispersive correction to the local-
convection approximation applied here, in Sec. 3.3 it is
shown, for the Eg(k,w) considered, that dispersion contributes
to Taylor's ratio an added term of the order ~(eu;3k11)2/3
...,(vo/uo)z(le)'z/3 and, more generally, the added term vanishes

independently of vo/uo in the subject limit.

We note here a result for a measurement frame
quantity generalizing 8(w) of Eq. (2-99), namely the frequency
transform @ij(f,w) of the spatial velocity correlation (cross-
spectral density). Analogous to the mean-rest-frame quantity

- Pal
Oij(r,w) of Eq. (2-26), eij is given by
A — - 00 i 3 —
(2-118) 8 F,9) = (M 124, 10% Wy (F - Tyr,0)

or similarly by the second form of (2-26) with « > w - Gs- k

in E,- A result will be given only with neglect of dispersion
and with the further approximation of space-time isotropy for
the longitudinal decorrelation ¢f(r,1). The streaawise element
8,,(F,¢), vhere G_ = (u,,0,0), is then found from (2-118) and
(2-89), or from (2-97) and the alternate form of (2-118),

to be given by

(2-119)

A - - - = =

8,,(r,0) = 2 11N’[T(l?/t‘.-)] lN(2/3uel(w/ue) 11/6exp(iur1/uc)
xr;1/6Uurs/ue)K5/6(wrsfue)-% (uR/ue)2K1/6(wrS/ue)],
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where

2 2 2 2 2.2 2
r2+r3,rs=ver1+R,

-
]

(2-120)  w? - ug ¥ s%vg, Ve= 81Vo/Uqs

(=4
]

2 2.2, 2
e = Uelty = Uo(l + s7v /ul).

Eq. (2-119) holds for all vo/u° and reduces to the rest~-frame
quantity 911(?,w) for v, = Of For v°/u° <<'1, the contours
of constant |811(?,w)| are elongated along the longitudinal
axis relative to the transverse by a factor =fu°/v°. The
effective convection velocity u. defined by writing the phase
of 6}1 as wr,/u, thus proves to differ from u  as given by
(2-120). We recall from the discussion of Sec. 2.4 the
limitation that when w%/hc is large (and hence 1611| small)
the result (2-119) of the space-time isotropic approximation
will conform neither to the true 5}1 including dispersion nor
to the exact local-convection approximation.

At this point we may usefully discuss the relations
among variously defined convection velocities. Even in the
present unsheared homcgeneous flow, these differ from the
relative rest-frame velocity ug and from one another, though,

2

when vo/uo << 1, onlv by terms of the order of vg/uo. In

"We note the result of the exact local-convection approximation
- 1/3_-1/2, ,. ,.2/3 -1 -5/3
for r - O: 911(0,u) = (2/3) T I (5/6)Ne A (w/vo) .

This agrees with (2-119) for this case to within a constant, as
it must on dimensional grounds.
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unsheared flow, 1f the measurement frame coincides with the
laboratory frame, the intensity vo/uo is small erough that
csuch differences ere unmeasurable. In some types of intense
sheared turbulence, or in an envisioned experiment where the
measurement frame has a velocity intermediate between that

of the laboratory frame and the mean resc frame*, on the other
hand, these differences may be appreciable. 1In any event it
is illuminating to examine these differences in the present

context of a simple unsheared turbulence with fixed u,-

A convection velocity is defined with reference to
some property of a correlation func-ion or its transform in
the measurement frame, and this velocity in general differs
according to the property in question and also according to
the quantity the rcorrelation refers to, e.g. streamwise
component of fluctuating velocity (along Gﬁ)’ We define
convection velocities here by four such properties and refer
for definiteness to this streamwise component; the definitions

1re summarized herc in Table 1l:

*
Turbulence measurements in a moving frame have recently been
performed in a different connection by Uzkan (1965).
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Convection
No. Defining Condition Velocity Defined
A . -
1 Bwll(r,r)/arl = 0 (W, = max) ry/x
A _ A
2 awll(r"f)/a'f = 0 (Wll = maX) rI/T
A A -—
3 911(?}w) = exp(ivry/u,)18,,(T,)| u,
4 ED (k) = uy 18,1 (uq k)
11 Y1) = 117111ty Y11

Table 1. Various Definitions of Convection Velocity

In general, the convection velocities so defined might not be
constant but dependent on the pertinent variables. On a
standard plot uf the space-time correlation Gll(?,r) vs. time
delay with the time-correlation curve for each streamwise
separation ry displaced along the time axis by rl/uo, condition
1 corresponds to the envelope curve, whereas condition 2
corresponds tc the curve joining thc maxima of the individual
curves. These definitions have been discussed by Wills (1964)
in the more general context of shear flow, along with other
definitions which, in the present case, coalesce with these.
Condition 3 defines a convection velocity based on the phase
of a cross-spectral density, as done for example, by Corcos
(1964) . Condition 4 [recall Eqs. (2-98) and (2-99) ] defines
a convection velocity based on Taylor's hypothesis relating

spectra in frequency and wavenumber.

We give results for the convection velocities of

Table 1 in the local-convection approximation, neglecting
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dispersion, for the inertial subrange, and assume once more &n
isotropic normal distribution of fluctuating velocity. We
also compare the results given by the space-time isotropic
approximation to wf(r',f), corresponding to neglect of H]_in
Eq. (2-80)."

Since Gll(?,f) = ”11(F - G;T,T) exactly, the convection
velocity of condition 1 is just u_ if wll(?',f) has a maximum
for all 7 and all r,,ry at ri = 0. Examination based on the
results (2-80) [and (2-74), (2-75)] for wf(r',w) and
wg(r'T) shows that in fact wll(?“, 1) (obtained from (2-30)),
as well as Ve and wg individually, have minima at ri = 0. This
result is given also by the space-time isotropic approximation
to wf(r',T). Hence the convection velocity of condition 1

is just u,-

With regard to the convection velocity of condition 2,
we find by use of Eq. (2-75) and (2-74), respectively, that

this is given in two opposite limits by
(2-121)  u [l + (5/3)v2/ul] for (v /u)? 4+ R/v_7)2<< 1
ot™ 7T o’ "o o’ "o’ Yo’ .

2,2 2 2
uo[l + (11/9)v0/uo] for (Vo/uo) + (R/vow) >> 1,

apart from terms of higher order, where R2 = r% + rg. In

the space-time isotropic approximation, on the other hand,

*We do not neglect H2 to find ¢g(r',1) but accept the result

implied bty the approximation to uf.
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from (2-84) we find this velocity to be given iandependently of
ry,Tq, and 1 by u_(1 + si vglug) E uo(l + 1.&55vg/u§).

The convection velocity u_ defined by condition 3
has not been determined in the exact local-convection
approximation. In the space-time isotropic approximation,
however, it was given by (2-120). The latter is the same
velocity that was given by condition 2 in this approximation.
More generally, in any approximation in which, for some 1, j

and T,
(2-122) 813 (F,0) = Ay (F,0) exp(ior;/ugy) (A, Teal)

with the phase convection velocity ucij independent of w, and

in addition Aij(fl,-w)= Aij(f,w), it follows from the general

relation

a‘:}ij (?,T)/a'r =-ifdwe—iw-[u)/9\ij (-IT,CU)
that

[aﬁ‘ij&,w)/a.]rl gyt T O

i.e. in such case the convection velocities defined by

conditions 2 and 3 are the same.

The convection velocity Uy defined by condition 4
was given at Eo (2-116) or, for v°/uo <<'1l, Eq. (2-117). In
the space-time isotropic approximation, the result is given by

omitting H; in (2-116) ; for vo/uo << 1, this becomes




Uy = uo(l +'% s%vglug) < uo(l + 0.728v§/u§). The convection

velocity defined by Taylor's relation (conditi.n 4) depends,
we note, on the rest-frame space-time decorrelation wll(r',r)
in a range of the space-to-time separation ratio

ri/v01[= (rl'VoT)/VOT] opposite to that which determines the
velocity defined by condition 2. In the former instance, by
(2-113), the relevant ratio is |ri|/v01 = uo/vo, whereas in

the latter, by (2-121), it is ri/VoT-.Vo/Uo-

We note that in the exact local-convection approxi-
mation the convection elocities defined by conditions 1 and 3
4 are constant (i.e., independent of ysE3sTs and of kl, \
respectively, while in the further approximation of space-time
isotropy the velocities defined by all four are constant. The *

2 211/2

results are summarized, for Vo/uo <1 and(r2 + r3) & VoTy
in Table 2, which gives the values of a  where

2,2
the respective velocities are written as uo(l + aovo/uo).

Defining Approximation Used
Condition Space-time isotropic
(Table 1) Exact local convection longitudinal component
1 0 0
2
2 5/3 (vo/uo<«1, R/v01<<1) sy = 1.455
2
3 s] = 1.455
2 - .
4 11/13(vo/uo<<1) s1/2 = 0.728 (-.o/uo <L 1)
Table 2. Coefficients a for various convection velocities
uo(l + aovg/ug) referring to the streamwise velocity

t.
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3. RESULTS WITH VELOCITY DISPERSION

We wish to consider more explicitly the departure from
the local-convection approximation due to the spatial and temporal
dispersion of velocity in the local proper frame. This step
permits us to consider the imporaant spectral regime w/vok>>1
where dispersion is the determining effect, and to derive
corrections to quantities where the dominant effect is convec-
tion. We assume, as discussed in Sec. 2.1 and the Appendix,
that Eq. (2-6) with an intrinsic decorrelation having the
similarity form (2-42) remains competent to yield these correc-

tions.

3.1 MODEL INTRINSIC VELOCITY SPECTRUM INCORPORATING
DISPERSTION

The required form (2-42) for J(r,t) in the inertial
subrange implies that in a corresponding domain the intrinsic

wavenumber frequency spectrum'ia(k,w) has the functional form

-1/3

(31 E ko) - e3 736y, a = ¢ k-2/3)y .

The inertial subrange for ¥(r,r) is defined by

(3-2) L > (r2 + C|T|3)1/2 > L

(see condition (2-39) and footnote 1, preceding page]; considera-
tion of Eq. (2-15) indicates that the conjugate subrange of (3-1)
for ]%(k,w) is

llw|3)1/2 1

(3-3) Ll e s 6T «< 8]

The form (3-1) insures that J(r,r) has the requisite limiting

forms (2-46), provided the zeroth and first moments of G(Q) con-

verge. 57




We introduce for G(Q) in (3-1) a conjectural ex-
plicit form that meets the obvious requirements on this function
and has vertain other plausible properties (see Appendix);
specifically, we limit consideration first to the fcliowing
class of functions indexed by m:

-1/2

(3-4) g @ =a o aw BT

(m21), where a and Y, are constants. This form, with non-

vanishing Y0 correctly provides a finite spatial scale such

that motion correlated over a distance ~k'1 is associated Ry
mainly with frequencies smaller than the similarity estimate T
~e1/3k2/3. Some results to be obtained are independent of the

specific form of (3-4), apart from values of numerical coef-

ficients, and are really consequences of similarity together

with presumed asymptotic properties. The type of function

(3-4) for integral m has been chosen to lead to treactable

integrations.

In illustrating the effects of dispersion we give
results on assumption that m = 1 in (3-4), corresponding to
Eh(k,w) independent of k in the limit 0 » «, and also on
assumption that m = 3, corresponding to %a(k,w) varying as k4
in this limit.* The latter assumption is favored by the

following argument. The restriction (3-3) on the domain of

ilFQuantities linearly related to'fh(k,m) can be obtained for
m=3 from those for m=l simply by differentiation.
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1

the inertial-subrange form (3-1) suffices even when KgL™",

at least in the case where even the large-scale turbulence is

homogeneous and isotropic so that Eq. (2-15) provides a valid
basis for (3-3) at low k. (For kg_L'l, condition (3-3) is equiva-
) 3 /"2 4

o

lent to l<<(wL/v <<L/zo.) Now, in order to have E(k) « k

for k <<L'1. as required in this case, by reference to (2-2%)

1; presuming that this

we must also have E;(k,wsaka for k<<L~
requirement on E(k) cannot be relaxed with regard to contributions
from ® >>vo/L, we must have Ea(k,w)«k4 for sufficiently small

k even in the domain of (3-1). This result implies G(Q)txﬂ'lg/2
as Q»>=, The requirement E'a(k,w)“k4 as k»0 1is likewise implied

-19/2 as (= in the domain

in the usual way, and hence G(Q)=Q
(3-3), if it is supposed that the intrinsic velocity spectral
tensor f4ij(k’w) of Eq. (2-13) should be analytic at k=0.

This limiting deperdence, in the case of the assumed form (3-4),

implies m=3.

From (3-4) via (2-15) we are able to find the limiting

%
forms of the resulting function F(z) in the decorrelation (2-42):

(3-5) F(z) » Ao(1+amz2) as 20

(3-6) F(z) » Bz(1+emz'3/2) as z-w;

Ao and B are regarded as given independently of m, and in the

chosen cases m=1 and m=3 we obtain for the coefficients ap, °_

*See Appendix,Eqs. (A-19) and (A-22). In this and other cal-
culations below, we have performed various quadratures with
the aid of Bateman (1954).

59




—~
(934
[ ]
~J
~
Q
|

L = (873/5m)(B/A )% ~ 0.881(B/A ) >

17(55) /(273 %)a; ~ 0.529a,

S, = (ZW)-1/2C3/2(B/A°)-3/2

(8/3)(27/55)3/% |~ 0.916¢,
and for the constants a and Y, in (3-4)

u n-zcs/on(Ao/B)uz’ 712 = 3a_ /)3,

ay = (8/3)27/55)°%a), v = (2775532,

where ¢ = 51 /6T (1/3) ~ 0.977.

The z2 dependence of the next-to-leading term ir
the 1imit (3-5) occurs not only for the choice (3-4) but for
any G(Q2) that decreaces more rapidly than Q'3 as (»=, The de-
pendence of the next-to-leading term in (3-5) is indicated in
the Appendix to be plausible also on independent grounds.
The dependence of (3-4) as (0*0 and the related dependence of
(3-6) as z+*= are open to question (see Appendix, Eq. (A-21),
for a generalization of (3-6). These dependences, however,
are irrelevant to all results to follocw, except that numerical
coefficients in Eqs.(3-7) and those following for a » &, and
LR would be somewhat altered if the dependence in this limit were

otherwise.

60




D

3.2 VELOCITY SPECTRUM IN THE MEAN REST FRAME

From the assumed intrinsic energy spectrum EA(k,w) we
can compute by (2-23) the spectrum Ea(k,w) for the mean rest
frame. We give approximate results based on two opposite
limits. For the moment, we assume an approximately isotropic

distribution P(V). Eqs. (2-34) and (3-4) then yield

I P e P T
-1 (}' HL 2:- llw kvy |3m.

Two dimensionless variables are pertinent here, namely n = m/vok

and ( = ev;3k-1..(kL)-1, where the latter estimate follows from

e.~vg/L. We may consider { << 1, since we are counsidering
the inertial subrange. In a dom&in where v is not too large,
the convective approximation represents a valid lowest-order
result; essuming & normal distribution for P(v), inserting
E(k) in (2-95), and denoting this convective approximation by

EAc’ we write

(3-9) Fhelioe) = (37201 A 1?38 Bep - (3/2) (/v i) ?)

with N = [10/9T(1/3]A , in agreement with (2-95). By analysis of
(3-8) we find the dispersive correction EA'EAc to lowest order in ¢.
The result is given by 2/3 5

-'\ i _3 ‘I k A
(3-10) E, (k,w)=E,  (k,0) (1-(3/2)ba  (cv "k Ly "o (1-3(w v k)]

where bo=(3/5)F(1/3)/F(2/3)=1.19 [c£.(3-7)). As we should expect,
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dispersion thus decreases E, relative to E,. for small w/vok and
increases it for larger w/vok. In a domain where w/vok is large,
as discussed previously, E4 no longer is related to E4c but is

determined mainly by dispersion. From (3-8) in this instance, to

lowest order in (w/vok)'1 we obtain

(3-11) E,(k,0) ~ae3/27 7/ 22 3y,

the terms omitted being of relative order Gnlvok)'z. (We con-
sider only w20, since Ea(k-uQ-Ea(k,w).) The approximation (3-10)
can be good only if g2/3<<1 and in addition, if n3l, the value
(3-10) greatly exceeds (3-11). Hence, the domain of validity of
(3-10) may be given roughly as that where

a¥

(3-12) ¢2/3<c1 1€ 1 <1, or ‘

3) m-1 ﬂ-7/2€5/6

(3-13) (¢n” exp(3n2/2)<<1 if n >1;

similarly the domain of validity of (3-11) is that where

m-1 ﬂ-7/255/6

(3-14) n>>1 and ({n”3) exp(3n2/2)>>1.

The result (3-11) corresponds to simply neglecting kvu

relative to w and then k2/y2e-lr3 = Y-Zn"3

¢ relative to unity in
the integrand of (3-8). Returning to the basic relation (2-23),

we can take these steps more generally as follows:
(3-15)  E (K,0) = [EP@OE (ko - 7§ = B (k,0)

in the subject domain. The result (3-15) or (3-11) is evidently
independent of the assumption of an isotropic P(Vv). More generally,

assuming only that E,(k,w) varies as k2(m-1)

as k+0 at fixed w/vo,
and recognizing that E, in this limit is determined by dispersion,
not convection, and hence becomes independent of V,» we can infer

the result (3-11)(to within a constant), along with (3-15), -




directly on dimensional grounds. Thus the result does not depend
on the assumed explicit form (3-4) for Ea(k,w) or on (2-6).

It is useful to extend the latter considerations also
to the spectrum, say ga(ﬁ,w) measured in a frame having a fixed
velocity -ﬁo relative to the mean rest frame. Ea is given by

the kinematic relation [Eq. (2-3))

A
=

(3-16) g, (ko) = E, (K, - G -K).

We consider the domain of k,» where conditions (3-14) are
satisfied with w replaced by w - u_k=w', so that
(3-11) and (3-15) hold for Ea(k,w'). Further restricting

consideration to k << w/uo, we then have from (3-16)

A = ~ = ~
B-17) B (k@) =By (k,0) v By (k) o ayy "3/ %77 /24 " g 3yme1,

i.e., in the specified regime E; i1s nearly independent of Go'

3:3 DISPERSIVE CORRECTION TO TAYLOR'S HYPOTHESIS

We proceed to consider the effect of dispersion on
Taylor's ratio T, defined in Sec. 2.5. On assumption of our
standard form (3-4) for E;(k,w), we may write the basic

equation (2-103) as

(3-18) |w=] T _+VI kvl

) =a ¢1/42(m=1) r43%p (7) [Pk [ Ldv
O(D) 8m€ zk f (_)é {1 (k2+y2€-1|w-lﬁo+7|kvltr)m

1/2

Likewise, the denominator of (2-100), by (2-47) and (2-101),

is given by
€3




3-19  EP k) = a/5)ne % 3,

The ratio T is a function of two dimensionless variaties,

vo/uo and eu;3k;1. Initially, we regard these as independent

and both small. The departure of T from unity, say AT, can

then be approximated as the sum of a term ATC computed by neglect

of dispersion, with eu;3kil

=0 (i.e., T - 1 as computed above
in the local-convection approximation) and a term ATy computed
by neglect of local-convection, with vo/uo = 0. The actual

domain of validity may be defined in the light of the results.

To find ATd we take v, = 0, whence (3-18) yields

-1/2
-u kv|
1/2, 2(m-1),, 1 | ©-u
(3-20) 8(w)»a_c' /% [PdkfLdv 0 .

Analysis of this expression to lowest order in eu;3kil yields,

with some effort*,
291 = 2 -3 -1,2
(3-21)  oTy = (5/3)b,(B/A)*(cu "3, "1)2/3,
where b1 and b3 were given at (3-10). In summary, we have
(3-22) T-1= ATC + 0Ty,

with aTy given in the limit vo/uo » 0 and to lowest order in

3

cul k]! by (3-21); from (2-108), we also have,

*
If we consider instead T', defined by (2-100) with u' replacing

u_, then u;3 in (3-21) is replaced by u;Iu"z.

o’
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3, -1

in the limit eu “k; - 0,

(6]

(3-23) AT, = [VR@ (15, + 9 /u)?3 -1

For isotropic normal P(V), moreover, by (2-110) this becomes

2]1/2

6T, = (1 + sg(vo/uo) (1 - Ho(vo/uo)] -1,

if also v_/u_ << 1, by (2-111)

AT ™ (5/27) (vo/uo)z.

Actually, eu;3ki1 is not independent of v _/u_, but rather

o,
-3, -1 -1
eu k]t ~(v /u) (kL) 7Y, so that, by (3-21) ,

2 -2/3
(3-20) Ty~ (volug) 2y 23,
Since we are consicering only the regime le >> 1, we have

(3-25) Ard/ATC-(k1L)“2/3 < 1.

Hence the local-convection approximation to this extent suffices,
and the explicit results derived above on this basis are valid;
furthermore, these hold independently of the magnitude of vo/uo.
In particular, by the choice of convection velocities given

in Sec. 2.5,Taylor's hypothesis becomes exact in the limit

l/le + 0.
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3 DISPERSIVE CORRECTION TO SPACE-TIME VELOCITY
CORRELATIONS

We consider the dispersive corrections to the space-
time decorrelations y,(f,7) computed in Sec. 2.3 by the local-
convection approximation. For this purpose we assume the
standard dispersive intrinsic spectrum Ea(k,w) of (3-4). In
the limits we shall consider, however, only the limiting re-
sult (3-5) is actually per’.inent. Hence the results are ‘inde-
pendent of the specific form of (3-4), apart from the relation
and are cormt ingent sub-

2 as z%0.

(3-7) of the constant @ to B/A°
stantially only on the expected dependence F(z)-F(0)«z
The trace function y(r,t) for the inertial subrange

is given by Eq. (2-51). We assume an isotropic P(v), whence

> 00 . 1
(3-26)  Y(Ex)= ¥(r,7) = %(er)m ] dv vZP(v>£ dur2 /3 (2023,
o}

where

"= [1+(""‘/r)2‘ Z(VT/I')LGI/EZ = ell3r'2/:}f|.

Eq. (3-26) is the equivalent of (2-69), but the dispersive factor
oo(z) in (2-56) is no longer replaced by unity. We assume again
a normal P(v). The ratio w(r,-r)/(er)zl3 depends on the two

variables Bo=v°1/r and z, or equivalently on B and

We have A*(VOT/L)1/2<<1 by (2-5); A provides an appropriate
r~independent measure of the effect of dispersion.

The limit B> « is of particular interest, <‘nce,
for v°/u°<<1, it determines the envelope of the space-time
correlation curves W(f,r) in a measurement frame having velocity
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-ﬁo (for r and U  nearly parallel). By letting B,>® and then
x+0, i.e., considering the limit where p_+=, >0, A8 =z>/%se,
we are able to evaluate (3-26), by reference to (3-5) and (3-6),
to the two lowest orders in B;I with the two coefficients each

evaluated to the two lowest orders in 2. Explicitly, we find

(3-28) '(r’tr) = so(evof)2/3ﬁ.+(1/3)ﬂ;2+doam)\al3[1'(1/3)B;2§ ’

where d_ = (5/3)6"1/3b2 = 1.30 and s_ vas given at (2-76)".
Likewise, by considering the limit BO*O at arbitrary A(<l), we
find from (3-26) and (3-5)

(3-29)  4(r,m) = Ao(sr)2’3{1+¢s/z7>s§+amx“/3sf;/3t1-(1/27>ﬂ§i}.

4/3

in which the two parts proportional to A% and » are evalua-

ted to the lowest two orders in Bo.

Since the comparison with experiment considered
here concerns the longitudinal decorrelation wl(r,r), we wish
to obtain this also in approximetions corresponding to (3-28)
and (3-29) by reference to the continuity equation. The
latter is stili expressed by Eq. (2-78) in which, however,

G4 now depends on )\ as well as on B, We find
(3-30) wf(r,r)=Sl(ev01)2/3{1+(1/5)b;2+doamka'"[1-(1/5)80'2)}

(<1, A8 >>1),

where 5, was given at (2-76); in the other limit

*If, contrary to (3-3), E(r,r) contained an additive component
B'e|1| for all 1, y(r,t) would likewise contain this same
r-independent component. 67
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&> swnth

(3-31)  ye(r,®) = A(en) 2/ 3 {11727y 8241177y 2436413
m

x[l-(7/27)5§]} (8, << 1).

The transverse decorrelation wg(r,t) can be obtained similarly.
Writing wf = wfc+Awf, where wfc(r,t) is the result of the local
convection approximation and Awf(r,t) the dispersive correction,
however, we may insert the value of Ve given by Eq. (2-80) or
(2-84) without resort to the expansion of this part in (3- 30)
and (3-31) in powers of B;I and B, and use only the terms
proportional to x4/3 in these equations as the expansion of
Oyg alone, X

We may consider the effect of the dispersive correc-
tion computed here on the comparison with experiment in Section
2.3 and Figure 2. For small angle § between r and ﬁo, the
dispersive correction A@ll(f,r) to @11 as given by (2-89) or
(2-90) may be identified with Awf(lf-ﬁorl,r). We approximate
the latter for éo>land 60<1, respectively, by the relevant
terms in (3-30) and (3-31), where B  E v°1/|§-501|; this
approximation is unjustified for r,r such that B _>1 but Ag <1,
but this domain is relatively small, and the envelope curve,
in particular, will be given correctly., The additional parameter
B/Ao now enters via o [recall Eqs. (3-7), (2-44), (2-45)].

The magnitude of the quantity A of (3-27) in the

experiment in question is given as a function of the
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dimensionless time n = u°1/M, where M is the mesh spacing,
according to (2-68) by A = (5/3)"/2(v /u )Re, !/ 2Re, "1nl/2, vhere
Rey = uOM/v. For the parameters of the particular experiment,
assuming volu° = 0.027, we find A = 0.116n1/2, which is moderately
small, as required for such n that the correlation is high.

The space-time correlation computed by (3-30) and (3-31)
for a_ = 2.31 and A =~ 0.55 on assumption that (=0 and vo/u°-0.027 is
compared in Figure 3 with the experimental results shown previously
in Figure 2. The value used for an corresponds to B/Ao-1.62 if m=l
or B/Ao-2.23 if m=3 in Eq. (3-4). Also shown in Figure 3 (by solid
lines) 1is the result obtained by supposing that the disper-
sive term Awf is not that derived above but simply that
corresponding to the space-independent (wavenumber-singular)
form y(r,7)-y(r,0) = Belt|, whence 2yc(r,7) = (1/3)Belr|; the
result shown corresponds to B/Ao =1.04 with other parameters
as for the other computation. There is little to choose between
the computed curves. The envelope in either case could be made
to decrease more rapidly by increasing the assumed value of
B/Ao. Figure 3 shows also the envelope curve (a), given previously
in Figure 2, corresponding to ¢ = 0, voluo = 0.027, but without
dispersion (B/AO-O). For likely values of B/Ao the dispersive ef-
fect is seen to influence the space-time correlations appreciably
at the Reynolds numbers of the experiments considered.* Inclusion
of dispersion necessarily worsens agreement with experiment for the
envelope at the larger time delays, since the inertial-subrange form
assumed already gives too small a correlation at such t or I?-GoTl

that the correlation is far from unity.

v
Inclusion of dispersion does not affect the computed ratio o /o
pertinent to shapes of isocorrelation curves discussed in Sec. 2.3.
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4. PRESSURE CORREL..TIONS AND SPECTRA

We turn to the subject of pressure fluctuations,
Pressure is related to the velocity derivatives for an incom-
pressible flow by the familiar Poisson equation
(4-1) v2 (x,t) = - bz(v v,) /X, ox
P{X, P i3 st
where v, (X,t) refers to the total velocity or, in the unsheared

flows being considered, the fluctuating velocity. Prior to

the common pursuit of consequent relations, we progress by simnler

considerations.

4.1 PRESSURE SPECTRA IN A MOVING FRAME BY KINEMATICS
AND SIMILARITY FOR THE INERTIAL SUBRANGE

We consider once more a frame having constant velo-
city -ﬁo relative to the mean rest frame and refer to the
pressure on a planar area whose normal is orthogonal to Go.
Let the spectral density of pressure in frequency w and two-
component wave number K = (kl,k3) in the plane containing this
area be denoted by g(k,w). In the instance of the rest frame

(ﬁo=0), we denote this spectrum by P(R w). We then have”

(4-2) P(R,w) = P(R,w - G R) .

We assume that the large eddies are roughly ircotropic,

*In the terminology of Chandiramani (1965) and others, ﬁ(i,a)
(ore precisely its wavenumber integral) is the fixed-transducer
spectrum and P(R,») the moving-axis spectrum.
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so that the local fluctuating velocity is adequately charac-

terized by Vos a@nd limit consideration to the inertial subrange
L'1<<(K2+w2/u§)1/2<<L;1 (ujav,), where K = IRl. P(R,w), as a
function of kl’ k3, at fixed w, has a peak, or rather a ridge,
in region of R where the probability of a total fluid velocity,
Go+ v, that satisfies the convective condition w-(i + V)'RK =0

is substantial; this region is given by
= -u ‘RI<
(4-3) lw-a RL\VOK.

We recall in the parallel instance of the mean-rest-
frame velocity spectrum Ea(k,w) that the result of the local-
convection approximation, Eac(k,w) (see(3-9) ], was adequate
[see((3-10)] if w/voksl (or even somewhat larger, according
to (3-13), 1f [ is sufficiently small). Similarly here, we
expect that a local-convective approximation to the mean-rest-
frame pressure spectrum P(R,»') will be adequate roughly if
w'/voxgl. Now, the pressure is quadratically related to the
velocity fluctuations, and the velocity spectrum (or correla-
tion) in the inertial subrange is proportional to €2/3. Hence
P(K,0') in the local-convection domain, being otherwise inde-
pendent of velocity dispersion and thus of €, must bave the

form

PR,') = o2 (v, Rt

where D is a function having dimensions (lengt:h)lo/3

(time).
Since D must also be a properly convariant scalar function of

the vector R, we must have
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D(v,K,w') = v;]' k~13/3 F(v R/w');

on account of isotropy, however, F can depend on K only via

K, say F £ G(w'/VOK). Thus, in the subject domain, we have

(4-4) P(R,0') = p2€4/3 v;1 K'13/3 ¢(w'/v°K), whence
(4-5) ﬁ(R,w) = p2€4/3 vSl K'13/3 ¢([w-ﬁ°°K]/v°K)

We now assume u°>>v°, choose coordinates such that
Go = (u,,0,0), and consider the width Ak, in k, of the convective

ridge in §(ﬁ,w) centered at k,w/u . According to (4-3), we ¢

T ak

have sk;~(v,/u)K. The factor K'*3/3 in (4-5) with :
K2=(w/uo)2+k§ effectively cuts off contributions from

k32w/u°. Hence 4k;< J?(vo/uo)(w/uo) for all significant k,, P
so that Akl/k1~vo/u°<<1. Hence, when multiplied by a power

or other sufficiently smooth function of K, the function ¢ be

behaves roughly as a 6-function:

(4-6) G([w-uokll/vok) > aa(vo/uo)Kb(kl-w/uo),

where ag = [* ax@(x). This approximatior i. equivalent to
Taylor's hypothesis (based on the unmodified convection velo-
city uo).

We may now consider the frequency spectrum of the
point pressure,

(4-7) P(w) = [d2RP(R,w),

where the integration runs over the entire K-plane. Since in

this case %(R,w) is weighted uniformly in K, P(w) is largely
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determined by the domain of K which contains the peak in ﬁ(R,w)
and where (4-5) holds. From (4-5) to (4-7) we readily obtain

(4-8) 30») - c5/3a¢p2€4/3u51(w/u0)'7/3,
where
(4-9) g =2 )" dx (x2+1) ™ = 71/2(r(n-1/2) /T (m) 1.

We thus infer uniquely the frequancy dependence, s(w)-w'7/3.

The conditions for (4-8) are v°/u°<<1, wL/uo>>L and wlo/vo<<1.*
We consider now the spectrum, Q(w), of average

pressure on a circular area of radius R,, given by
(4-10) Q) = f d?RI23) (KR) /KR 12P(R,w) .

This quantity, for the homogeneous turbulence assumed, is not
actually accessible to experiment, since the introduction of a
pressure sensor of the prescribed area would naturally disturb
the homogeneity of the flow near the surface of the sensor.

We form the quantity rather as an edifying analog for the
spectrum of average pressure on a similar area of a wall in

the more diffi:ult case of a turbulent boundary layer.
Suppose first mRb/uo<g 1, so that we may approximate

the area-averagirg factor by

2 . 2
(23, (KR)) /KR 17 = 1 - (1/Q(KR )"

*gy (2-40), the last condition may be written
(wv/vg)(voL/v)1/4<<1.
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Then (4-5), (4-6), (4-10) and (4-8) yield

4-11) Q@) = P(e) (1-(eR_/u)?].

Consider now the opposite limit wRo/uo>> n. In
this case the range of K near the peak of s(i,w) in (4-10),
namely K~w/u°, is well separated from the range Kg?wR;I where
the area-averaging factor is relatively large. We must examine
the contribution to a(ug from the latter range, say a_(w) as
well as that from the former, say a+(w).

In the range of K pertinent to a_, since K<<w/uo,
we may approximate ;(R,w) by the rest-frame spectrum P(K,w).
Form (4-4) for P(R,w) may not hold for the range of K where
K<<w/vo, depending on the role of dispersion. At the same
time, we have no justification for presuming that P(R,w) here
does not depend explicitly on Vo and is independent of K, &8s
for m = 1 in the instance of the form (3-11) for the velocity
spectrum Ea(k,w)(if these conditions held we could uniquely
infer P(R,n) ~02c¢2™®). 1In Sec. 4.2 it is indicated that in this
domain, even though w/v°K>>1, P(K,») in fact is likely determined by
local convection and assumes the K-independent form of (4-14):
(4-12) P(i,w)"App2€4/3v°10/3w-13/3,
where Ap is a constant of the order of unity. The range of K where
(4-12) applies then yields, in the limit where wRO/vo>»1, the largest
contribution to the integral of form (4-10) for § () in the sum
(4-13) Qo) = Q=)+, ().
From (4-12) we thus obtain
(4-14) QUw) :lmApozca/3v°10/3w-13/3R0-2

for wRO/uo’>1, aR /v >>1, wt [V <<i.
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To find 6+_we may assume for ﬁ(K,w) in the pertinent
region of K the earlier form (4-5) and, without appreciable error,
extend the integral of the form (4-10) for Q+_over all K. Treat-
ing separately two opposite limiting cases, (wRoluo)(voluo)>>n
end <7, using (4-6), and at the proper stages making use of the
result (4/n)(KR°)'3 for the average of [ZJI(KRO)/KRO]2 over an in-
terval AK such that n<<8K<<K, we find both cases
4-15) Q@) =4rle /6agp254/3u;1(w/uo)'16/3R;3
with ¢, given at (4-9). Conditions for (4-15) and (4-11) (apart
from those on wRO/uo) are as given for Eq. (4-8).

Q_ varies as Raz, corresponding to a nonvanishing
effective area scale, whereas Q+ varies as R;3 . Their ratio, by
(4-14) and (4-15), is
(4-16) UA, 7 8 (v 1 )O3R 1),
where ao-"zAp/°19/6adf As for the reduction factor due to areea

averaging, by (4-8) we have
4-17)  QW)/P) = q_(«) + 4,(),

2 1A gE . 10 .=
q_=Q_/P -a_(voluo) /3(wR0/uo) 2,
q,2Q,/P = a+(wR°/uo)-3,

where a_ = 4vAp/c5/3a¢ and a_ = ac19/6/vc5/3'! 0.795,

For arbitrary values of mRoon, we may infer for 6+(w),

from (4-5) and (4-10), a functional form

(4-18) Q) = oze“/3uo'lno7/3h(vo/uo,wRO/uo).

;;nalogously, for boundary-layer turbulence we may conjecture

that Q /Q, ~(Va/UJ)2(uR,/U.). 75




By (4-8) and (4-15), limiting forms of the function h(x,y)

are given by h(x,y)= com!t-X')'.”3

Xy "16/3

as x0, y-90 and h(x,y) —» const.
as x-=»0, y»», Taking account of the relation
cmvoalL, we may make explicit all velocity dependence in the

scaling form (4-18) by writing

a+(w)~o 2R°u° 3(mL/uo el /3w(vo fug,aR fu),

where w(x,y) is a function related to h(x,y).
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4.2 PRESSURE SPECTRA AND CORRELATIONS BY THE MODEL
OF QUASINORMAL VELOCITY DISTRIBUT1ONS

The results of the preceding section can be clarified
and extended in part, at the expense of introducing imprecisely
assessed approximsations, by pursuing an explicit calculable
model to give §(R,w). The model to be considered will have
approximate validity only in the convective range (4-3) or
somewhat beyond, and not in the dispersive range, in part.cular
not where (4-13) applies.

From the basic relation (4-1) of the pressure field
to its velocity-derivative sources, the rest-frame spectrum
P(K,w) is found to be expressible in the present case of

stationary infinite homogeneous turbulence as the following

double integral over the coordinate normal to the plane of

R (e.g, from Kraichnan 1956):

(4-19) P(K,w) =(1ﬂbp2K'2 [: dx, l: dx, exp[-K(lx2|+|xé|)]

xS(xy = x,,K,0),
where

4-20)  $(Cp.Rw) = (@m)73f d?4) drexpl-L(R-T - 1) 1Q("5,%,7),
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4-21)  Q(GpE.7) = [bubabéb\"(<vava;Lv:,>'<vavB><vL'LVL>)]*._iﬂt_ 5

Va - Va(iat) ’ V& = Va(i'at + 1), X = (xlax2ax3)’ r= (CI,C29C3)
£z (C1s%9) baE.b/Bxa, d,' =0/0x], and integrals extend over

the infinite domain unless otherwise specified. P(R,w) as
given by (4-19) - (4%-21) is so normalized that the mean squared

fluctuating pressure is given by
(4-22)  <p’s> = [TawP(w) = [“dofd’RP(R,0).

We now assume the turbulence is isotropic; regarding the iner-

tial subrange, this assumption corresponds again to isotropic

P(V) in (2-6). In this event we may write Q of (4-21) as Q’r,T).

We define L(k,w) as the wavenumber-frequency spectrum of Q:

(4-23)  L(k,0) = [dOF/drexpl-i(R-F - @ 1) ]Q(r,T)

= &1,k2,k3)]. Then S in (4-19) may be written as a transform

of L over k2. In the present instance (unlike thoat of boundery-

layer turbulence) we can trivially integrate over x, and X, in

(4-19) to obtain

-4 2
P

4-24)  P(Rw) = 2n %2 diyk™L(k,0),

in which,we recall, k2 = kg + KZ.

To proceed further we m2ke the common assumption of
a quasinormal velocity distribution with reference to the
two-point, four-component space-time correlation <quBvaL> in
Eq. (4-21) for Q(r,t), i.e. w2 assume that the fuirth-urder
moments are related to the second-order moments in the same
way as if the statistical distribution of velocity in space-time

were a jcint normal distribution (Millionshtchikov 1944,

18




Batchelor 1951). This assumption has received serious criticism
(Kraichnan 1957, 1959a) as the basis for a dynamic treatment
of turbulence. Nevertheless, its use appears unlikely to lead
to msjor error in the less demanding application to a merely
descriptive treatment of velocity and pressure correlations,
and the assumption has often been so used. 1t 'was first
employed in the context of pressure fluctuations by Obukhov
(1949) . From this assumption, Batchelor (1951) derived the
form of the desired correlation function Q(r,T) for vanishing
time separation, i,e, Q(r,0). If the assumption of quasinor-
mality is made also for v # 0 (Chandrasekhar 1955), the deriva-
tion applies equally when the two points in question are
separated in time as well as space. In terms of the (mean-rest-
frame) longitudinal velocity decorrelation ¥; (r,7) the relation

derived is

4-25)  Qr,7) = al2@u e 29pey vrortur 4 e g2,

where a prime denotes d/0v. Alternatively, the spatial transform
of Q(r,t) defined by

1 -2 -1

qk ,7) = (Zﬂ)-de3;e-ik.;Q(r,T) = g0 "k .%m drrsinkrQ(r, )

is related to the corresponding transform E(k,t) of y(rg)
(see Eq. (2-17)) by

4-26)  qk,0)=(8nD) b AN EGIDE([R - R oeindor 1R-E' 174,

where cos®' = kekJkk'. L(k,») of (4-23) is then given as a
time transform of q(k,7). By virtue of its definition (+-21)
as a fourth-order derivative, Q(r,t), as shown for 1 = 0 by
Batchelor (1951), corresponds to & q(k,t) and hence to a

spectrum L(k,w) that vary, for any reasonable function dl(r,T),




p for k<<l, and likewise in the case where these quantities

as k
are generalized to anisotropy at low wave numbers. From (4-24),

(4-26) and (2-22) we can express P(K,w) also in terms of E4(k,ao:

(4-268) P(R,w) = (1/8n2)p2j' ) dk, f a3f' sine' |R-k'| 74

x fdw'Ea(k',w')Ea(IE-E'l yw=w')

In principle, in the inertial subrange we can assume
our standard form (3-4) for the intrinsic energy spectrum £, (k,w)
(suitably extended to low k or terminated at k-L'l), write the re-
sulting E4(k,w) as in (3-8), or more generally (2-34), and compute
the desired P(K,w) from (2-26a) or else proceed via (4-25) or (4-26).
We shall deal separately with the domain w/v°K>>1 and the opposite
domain where dispersion may be neglected, starting with the latter.

In the non-dispersive domain we can simply approximate
E(k,7) by (2-96) or Yl(r,T) by (2-80). On account of the still
considerable analytic difficulty, however, and the uncertain error
already introduced by the assumption of quasinormality, we proceed
still more crudely. We approximate Yl(r,T) in (4-25) as a space-time
isotropic function. The consequent error in the computed P(K,u) for
the inertial subrance relative to an exact local-convective approx-
imation will parallel the difference previcusly noted between (2-96)
and (2-97) in the case of the energy spectrum 54(k:w); furthermore,
dispersion will limit the validity even of an exact local-convection
approximation for P(R,u) in a parallel manner to that discussed for
Ea(k,ao in Sec. 3.2.

In the stated approximation, we have

“-21) (51 TR0 = ¥ (R 80




with Ry of the form (2-81). In the inertial subrange, where,
as at (2-84),

(4-28) by (B) = A(erp2/3 (£,<< BRy<< L)

with R, given specifically by (2-81) and (2-83), we find from
(4-25)

4-29)  Qic,7) = (16/9)a%43r:8/3 (15 80/ /R2+(112/9) £ /R,

In the viscous subrange, where, as at (2-86),

wl(Rl) - (€/30v)R§1 (Rol < £y
with R01 given by (2-87) and (2-88), we find
4-30)  Q(r,t) = &(e/15v)% (14 + £ /RA)).

We note further the result where a modified von Karman inter-

polation form (Hinze 1959, Eq.(3-131))
(4-31) V(&) = (U [L-exp(-k R)) ]

is assumed, in which ko is a constant inverse correlation

length:

(46-32)  Q(r,1) = (4/9)viexp(-Zk R, )k [ak?(c*/R) -10k R7)
! o0 €XP o 1/7¢t o 1 o'l

x(rz/af)(2-r2/R§\+R;2(15-20:2/R§+8r“/ai)}.

For the inertial-subrange form (4-29), the integral
(4-23) can be performed to yield, in a corresponding range,

the function L(k,w) in (4-24). We find

4-33) L) = b viled el @l ke 12,

gl




where

(4-38) &

oF GD/VE)Z, Ve = 81V

+ 0

= 2%/3 (640 /81y 2 (1 (2/3) /T (4/3) 142

S

Before proceeding, we formally generalize to the

1 45 not

non-universal range where the condition k, ML
satisfied. We continue to use the local-convection and
space-time isotropic approximations as at (4-27). There is
no justification for this extension, but it may prove quali-
tatively useful to point out the resulting difference. 1If
the reciprocal size of the energy-containing eddies is ~ko(~L'1),
it is natural to suppose that the alteration in L(k,w) that
would result from using a wl(Rl) roughly appropriate also
where k < k would be to replace k in (2-54) by something
like (k2+4k2)1/ , where the factor on k2 is uncertain but set
equal to four for reascas to appear.

To examine the point explicitly, we may employ
(4-31) and (4-32). Form (4-31) corresponds to an energy

spectrum E(k) that behaves appropriately, i.e., as ka,

for

k <« ko, whereas (4-28) corresponds to one that varies as

K33 for all k. Form (4-31) acsumes that the turbulence is
isotropic, however, even In the energy-containing range. It
does not reduce to form (4-28) for R << L(or k, >> ko), a
would the wnmodified von Karman interpolation form {(Hinze 1959,
(Eq.3-136)), but suffices for the present purpose. Inserting

(4-32) in (4-23), we find after considerable labor"

*It is convenient to evaluate (4-23) by use cf four-dimensional
spherical coordinates.
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4-35) L) = @2npiiv;la?

k(408" 145021248k 150 (k2 +a2) /2 (8a2 +5K2) )
7ra2)572
(k2+a2)5/2[ (k2 +a2) 1/2+4a]5

X

with as= Zko. In the high-k limit where m/vck-'O and a/k +0,
(4-35) becomes

-14.2 -2
evoak 3

(4-36) L(k,w) » (327/9)v
similarly, in the limit where a/k +0, it becomes

(4-37) L(k,w) > (32 7/9)v  vialid S,
which may be compared with the unmodified inertial-subrange
result (4-33) that pertains to the same limit, A simplified
form that approaches the same limits (4-36) and (4-37) and
broadly preserves the character of (4-35) in the general domain
of k and w is given by

4 2.4

(4-38) L (k,w) = (327/9)v; v4a?k4 (ad+a?) -3

L+a’) .

In view of the approximations already made and the non-
universality in the range in question, we may accept (4-38) in
place of (4-35). Since, hcwever, (4-37) and (4-38) justify
the initially suggested replacement ki*k3+a2 for general a/k+,

we can preserve the universal character for k _>> a by accepting

not (4-38) but the generalized form of (4-33):

(4-39) L(k,w) :Aév;1e4/3k4(k3+82 ~-8/3,

where 28-1 roughly measures the size of the energy-containing
eddies,
Inserting (4-39) in (4-24), we obtain the wavenumber-

frequency spectrum of pressure in the mean rest frame:
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(4-40) P(R,w) = Cap?et/ 3y k133,

where

K% = K?+(m/ve)2+az,

cf) = (8/9)2Y/ 353/ (13/6) /T (4/3) 142.

To obtain from (4-40) the corresponding spectrum s(K,m) in
the measurement frame having relative velocity -Go, we need
only use (4-2) to find

2.2 4/3 -12- 13/3

(4=41) P(K,m) - C Ve where
(4-42) K: = K+ (0-u_k)) % /v +a?

and we choose Go = (u ,0,0). On account of our use of the
local-convection approximation, the result for ﬁ(i,m) can hold
only where lm-uoxll/ve < K, corresponding to the region of the
convective peak (4-3). Comparing (4-40) for P(R,w) with (4-4)
(and setting a=0 for the inertial subrange) we see that accord-
ing to the present model, the function ¢ there introduced is
given by

-2 2 13/6

(4-43) d(x) = c2 s1 la + §1°x%)

In view of the previous comparison between (2-96) and (2-97)
for Ea(k,m), however, we should expect that an exact calcula-
tion of the local convection approximation for P(K,v) by means
of (4-26) (still on the basis of a narmal isotropic velocity

distribution) would yield a function @$(x) different from (4-43);

in any case, the result is not to be used for x>>1. Eq. (4-43) yields
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for the value of the coefficient ag defined at (4-6)
2
44 =
(4-044) a9 = Cp13/60

where €13/6 is given by (4-9).
In tbe present model, the frequency spectrum P(w)
can be found exactly from (4-7) for arbitrary vo/uo; from (4-40)

with K, * it’ we obtain

@-45) 3@ = (6mNC2pet A (WPl + 8Dy T8,

where Ug is the sum of the mean convection speed u, and the
effective fluctuating convection speed Ve in quadrature, given
at Eq. (2-120) (v, = s;v)). In the limit vo/uo+0 (with a=0),
this reduces to the form (4-8) obtained in this limit more
generally. Eq. (4-45) requires the nonviscous condition wlo/vo<<1.
We may consider Taylor's hypothesis for pressure,

as in 3ec. 3.3 for velocity, by regarding the ratio

(4-46) Tpszupﬁ(upkl)/Pl(kl),

where Pl(kl) is the wean-rest-frame spectrum in streamwise

wave number at a fixed time and cross-stream position (x3):

Py(k)) = [7 dw /" dkyP(R,0),
and u.p is an effective convection velocity open to choice.
From (4-41) and (4-45) we find Tp=1 exactly provided u =ug,
given at (2-120).

By (4-22), Eq. (4-45) yields a mean squared pressure

< p2> = (8/9)213 0 (2/3) /T (4/3) 1a2p 283,74/ 3

properly independent of u, and in accord with the usual
order-of-magnitude relation < pzj}/2~p< vi).
Concerning the properties of the convective ridge

in E(R,w) as given by (4-40), at fixed k, the quantity ﬁi has g




its minimum and hence g(K,w) its maximum at
(4-47) k1 = klmz (w/uo)(uo/ue)2 = c.u/uc :

this minimum value of ﬁ% is given by
Kim - (w/ue)2+k§+az;
the half width ok, of P(R,w) at one-fourth maximum is given
for Ak1< ki, by
2,2 21/2

(4-48) dkp = (vglug) (ol ulskdrati}
(cf. paragraph following (4-4)). The contours of constanc
P(R,») in K-space are defined by ﬁi = constant; by (4-42) they
are ellipses centered at k; = tk, , k; = 0 and have semiaxes
along kl and k3 in the ratio ve/ue .

From (4-41), (4-47), and (4-48) we see how, as u,
increases from zero, the ridge in E(R,w) sharpens and moves
from k1 = 0 out to k1 = w/2ve at u, = v, and then again toward
lower kl; similarly, from (4-45) we see how, as u, increaces,
the peak in ;(w) at w = 0 beccmes broader and lower, with
§(w) decreasing for w<( J?/Z)aue and increasing for w -~ @r3/2)aue.
We consider now the frequency transform of the

spatial correlation (cross-spectral density) in the measurement

frame,

A

(4-49) 0 iR~

o) = [aPRP(R, e

Defining the normalized magnitude M and effective convective

velocity u. by setting

(4-50) 6,(%0) = M(%,w) P(w)exp(in’)/u,),

g6




~»

from (4-40) and (4-45) we find that u, is again as given by
Eq. {2-120) and

(4-51)  M(F,w) = [zl/6r(7/6>1'1<w2/u§+a2>’“2<r§+x£:§>”12

2,1/2,,2,.2,2,1/2
!

x Ky (WP ulead) 2 (gnd D%,

where v, = ve/ue as at (2-120) The elliptical contours of

constant M(”,w) have axes along ’1 and >3 in the ratio ue/ve

inverse to that pertaining to P(R,w); this ratio gives also the

’

relative scales of the principal coefficients A(Clgu)z M(CI,OJD)
B(C3,w)z M(O,C3,w).

Taking the liberty of ccmparing with experimental
results for boundary-layer, as opposed to homogeneous, flow,
with the rms fluctuating velocity v in V. = 81V, attributed
a value characteristic of the constant-stress layer, say
Va = 0.1uo in the regime where the friction velocity v, is
given by v*/uo= 0.033, we obtain for ue/ve a value in good
agreement with the experimentally observea ratio of scales
(37.5) (Corcos 1963, Willmarth and Wooldridge 1962) . Gther
rough correspondences are evident between present reosults
(e.g., (4-45),(4-54)) and measurements {>r bounderyv-layer
turbulence; in view of the yreit differences betwveen these
types of flow these correspondences will not be pursued,
pending a carefui extension of the present approach.

The space-time correlation of pressure in the
measurement frame, ﬁp(-,~) can be found from
it o -

®p

(4-52) wp(%,x) = ] dee’
or be replacing 71 by Cl-uOT in the rest-frame correlation
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wP(E,T) similarly computed from Gp(ﬁ,w). From (4-50) and

(4-51) we find
-53) W (R, = cZped/3am23( (a2 AL

2 2 2]1/2

x Ky qal(fy-u,m%s )

where Ci = 2'1/3(16/9)[F(4/3)]-1 2, in which the argument in
square brackets may also be written as ug(w 1/u )2 2 2 2 s

In the inertial-subrange 1imit, where the argument of K2/3
becomes small, we obtain for the decorrelatiom ;p(z,r)
(= wp(o,O)-w-(E,T)]

2.2 4/3 ,2 2 22

(4-564) V(1) = 24% (5mu,r) 2+ 5y

As apparent also from (4-33) and (4-24), the space-time
isotropic approximation for the longitudinal decorrelation
wl(r,r) in the inertial subrange and the quasinormality relation
(4-25) thus lead to a space-time isotropic form (in two space
variables) also for the (mean-rest-frame) pressure decorrela-
tion. Since the result of the exact local-convection approxi-
mation to ¢1(r,1) was well approximated by space-time isotropy,
as seen by (2-80) and Fig. 1, the exact approximation to
;p(:,r) within the validity of the quasinormality assunption,
is probably well approximated by (4-54). In the approximation
of (4-27) and (4-28), by (4-54) we have

vp(Fh1) = ZPwa(E,T);

this result, for ¢= 0, reduces to that obtained previously
from the quasinormality assumption by Batchelor (1951) and
Obukhov (1949) .
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We note the variously defined convection velocities
for pressure. That defined by :1/1 where aﬁp/ac1= 0 is exactly
u,. According to approximation (4-53), that defined by &y /v

where 6§p/81 =0 is u_, given at (2-120), the same as the one

c?
defined at (4-50) by the cross-spectral density. The convection
veloclity defined by imposing Taylor's aypothesis (4-46), computed
by use of (% 41), was u,, given by (2-120). In short, these
convection velocities referring to pressure are just the same
as the corresponding ones referring to the streamwise velocity
component in the same approximation of space-time isotropy of
the longitudinal velocity correlation (see Table 2, last
colum) .

We turn now to P(R,») in the low-wavenumber region,

K<<w/v0, where we muct abandor. approximation (4-27) and consider

dispersion. For this purpose we employ (4-26a). The integrdl

(4-26a) derives contributions from domains where both, one, or

neither of the factors E4 has arguments corresponding to the iocal-

convective peak in this function, as opposed to the dispersive tail;
the peaks embrace roughly the ranges |m'|/vok'5 1 and

|w-w'l/v°|E-R'|5 1, as seen in Sec. 3.2.

We consider first the contribution to P(K,u), say

PC(K,w), from the non-dispersive domain where both E, factors are

determined largely by local convection and are given approximately

by Eq. (3-9). Examination of Eq. (4-26a) for wL/vo\>1 yields in
order of magnitude

(4-55) P(Ry0) ~ e 2u(e 23 832001y 1)

- 02‘5/3v50/3w-13/3“

-16/3

P, thus has a form roughly independent of K and consistent with the
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scaling (4-4). The domain of integration in (4-26a) that contributes
to P has k, w/vo~(>>K), so that local convection in the normal
direction can generate velocity fluctuations at frequency w,

though the local convection in the plane of K cannot. To be
justified in regarding Pc as determined by the inertial subrange

we must restrict consideration to the monviscous regime where
wto/vo<<1, in accord with condition (2-93a).

On the basgis of (4-55) we obtain for che contribution
of Pc to the spectrum (4-10) of average pressure on a moving area
of radius Ro where wRo/nvo>>1 and wRo/nuo>>1,the order of magnitude
estimate
(4-56) Qc(w)"’02€4/3volo/3w-13/3Ro-2.

The ratio of QC to the high-wavenumber mean-convective contribution
a+ was given at Eq. (4-16). It is noteworth that, on account of
the sufficiency of condition (2-93a) for the inertial subrange in
the local-convection approximation, it was not necessary tc assume
KL and L/Ro large to obtain the results (4-55) and (4-56).

We now attempt to estimate in order of megnitude the
contributions to P(K,w) from the domains where one or both E, factors
are determined largely by dispersion. To do so we consider crudely
that in the domain of the local-convective peak Ea(k,w) is again
given by (3-9) and outsid: that domain (but where condition (3-3)
is stili satisfied) by the dispersive form (3-11). Assuming
wL/vo>>1, we join the domains at a value of w/vok somewhat larger
than unity. Examination of (4-26a) for w/voK>>1 on this basis

shows that the results depend essentially on the value of m in

(3-4) and (3-11).
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In particular, for m = 3 both the convective-dispersive
and dispersive-dispersive contributions, defined with reference
to the arguments of the E4 factors in (4-26a), diverge on account
of the dependence of Ea(k',wD, as given by (3-11), when k'»0 and
w'»0. It is inferred that the actual values of these contributions,
if m = 3, depend on Ea(k',w') in the non-universal range where
k'LS1, w'L/vogl and the inertial subrange form (3-11) no longer
applies even for w'/Vok'>>1. In the range where conditions (2-93a)
(left inequality) does not apply, we estimate the order of magnitude

of E,(k,u), taking L™}

as the wavenumber scale and VO/L as the
frequency scale, as

(4-57) E, (k,u)v L?,

or, if kl«l, as (kL)avoLz. We may then estimate the previously
divergent convective-dispersive and dispersive-dispersive contri-
butions to P(K,w) with the integration domain properly restricted
to the universal range (2-93a), and estimate the contribution
from the non-universal domain separately by uce of (4-57). We
have contented ourselves with placing upper limits on the orders
of these contributions. We find the non-universal contribution

4/3 relative to the universal convec-

is at most of order (wL/vo)'
tive contribution P, of (4-55), and the convective-dispersive and
dispersive-dispersive contributions are likewise of higher order
relative to Pc with regard both to (wL/vo)'1 and to the other
small expansion variable (w/voK)'l. Hence, if m = 3 in (3-4)

and the quasinormality form (3-26a) is roughly valid, at least,
in the subject domains P(K,w) is given approximately by the

convective part Pc of (4-55) and 6_ by Qc of (4-56), as stated in

(4-12) and (4-14). -




Assumption that m = 1 in (3-4) and (3-11) leads to
different and rather curious results for the convective-dispersive
and dispersive-dispersive contributions. Denoting these contri-
butions to P(K,w) respectively by Pq and Py, from (4-26a) once
more for wL/v°>>1 we find these increase with decreasing K and
estimate their orders of magnitude relative to Pc of (4-55) as
given by

(4-58)  Peglp ~ (w/v )/

-5/6 -5/6.

(k) 7%, Py/Pg ~ (KL)

Thus Py is small relative to Beg for KL>>1, and in the non-
dispersive limit where KL>= at fixed w/voK, P q in turn becomes
small relative to P,. 1In a domain where w/VoKZKL: however, P
exceeds Pc. As for the o rresponding contributions to a_(w) of
(4-13), where wRo/vo>>1?>Ro/L and wRo/uo>>1, the contribution Q4
from Pd(ﬁ,w) is contrclled by non-universal behavior at KgL'1 but

1/3

is estimated as ~(RO/L) , and hence small, relative to the con-

tribution Q_ 4 from Pcd(K,w). Relative to Q. of (4-56) we then
-1/3

estimate ch/Qd~(wRo/vo)5/6(R°/L)5/6; Q.4 varies as R

, rather
than R;Z, and depends on v_ only via ¢. Again, where R /L>0 the
contribution Qc from the K-independent P, thus predominates, but
where wRo/vozL/Ro the lergest contribution is Q4. The condition
L/Ro>>wRo/vo(>>1) for applicability of (4-12) and (4-14) thus
obtained for m = 1 is much more restrictive than the condition

wRo/vo>>1 obteined for m = 3. We have already given reason to

suppose that m = 3 is the appropriate value.
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Assumption that m = 1 in (3-4) and (3-11) leads to
different and rather curious results for the convective-dispersive
and dispersive-dispersive contributions. Denoting these contri-
butions to P(K,w) respectively by P,q and Py, from (4-26a) once
more for wL/vo>>1 we find these increase with decreasing K and
estimate their orders of magnitude relative to Pc of (4-55) as
given by

(4-58) P /P, ~ (u/v K)>/®

-5/6 -5/6.

(KL) ’ Pd/Pcd ~ (KL)

Thus P, is small relative to P4 for KL>>1, and in the non-
dispersive limit where KL»= at fixed w/vok, P q in turn becomes
small relative to Pc. In a domain where u/VOKZKL, however, Pcd
exceeds Pc' As for the oo rresponding contributions to Q_(w) of
(4-13) , where wRo/v°>>1?>Rb/L and wa/uo>>1, the contribution Q4
from Pd(R,w) is controiled by non-universal behavior at KgL'1 but
is estimated as ~(R°/L)1/3, and hence small, relative to the con-
tribution Q 4 from Pcd(R,w). Relative to Q. of (4-56) we then
estimate ch/Qd~(wRo/vo)5/6(R°/L)5/6; ch varies as R;1/3, rather
than R;Z, and depends on v_ only via ¢. Again, where R /L>0 the
contribution Qc from the K-independent Pc thus predominates, but
where wRo/voz_L/Ro the largest contribution is ch. The condition
L/Ro>>wRo/vo(>>1) for applicability of (4-12) and (4-14) thus
obtained for m = 1 is mich more restrictive than the condition

wRo/v°>>1 obtained for m = 3. We have already given reasor. to

suppose that m = 3 is the appropriate value.
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5 LOCAL-CONVECTION APPROXIMATION FOR SHEAR FLOW

It is suggested in further work to treat space-time
correlations of velocity and pressure also in shear flow and,
1n particular, a cturbulent boundary layer by extension of the
present approach; the treatment, however, will become more a
guide to construction of a heuristic model and less a systematic
application of kinematic and similarity principles. We take
one step here by suggesting the generalization to shear flow
of the separation (2-6) of large-scale convective effects,
and of the local-convection approximation (2-59).

We assume for the present a uniform turbulent shear
flow, taking the flow in the Xy direction and velocity gradient
u' in the X, direction; relative tc the mepan rest frame for

the fluid layer at X, =0, the mean velocity is thus

(5-1) G(xz) = u'x,1;,

where il denotes a unit vector. We may denote the decorrelation
tensor of the fluctuating velocity in this frame between space-
time points (x,t), (x+r,t+t) by wij(xz,xé,E,T), with

r = (%1sX3-%Xp,%4) and Z = (5y,54), by virtue of homogeneity

in the X)X plane. Likewise, the decorrelation tensor measured
in a frame in which the meen velocities at x and x' are equal
but opposite, i.e., the frame with velocity (1/2):ﬁ(§é)+ﬁ(x2)]
relative to the frame of definition of G(xz), by the homogeneity
in the x, direction is independent also of x, and xé except

via xé-x2 and may be denoted by wij(fir), where r' denotes the
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separation vector in the specified frame. By the usual kine-

matic transfarmation these correlations are related exactly by

(5-2) wij (xz :xé’Z)T) = ng(f-(iﬂ)[ﬁ(xp +G(x2)]T’T)

As in the instance of unsheared flow, we may expect that
provided r and 1 satisfy cectain conditions, namely the previous
conditions (2-5) with possibly another to be adjoined, we
may regard the eddies that mainly determine ng(f,r) &s being
statistically independent of the large eddies that contain
most of the turbulence energy. Then, as at (2-6) , we may
approximately separate out the effect of the large eddies by
defining an intrinsic decorrelation tensor ;ij(E,T) relative
to the 1locally co-moving frame which is independent of this

motion:

(5-3) Jij(f,x) - fd3cp(6)iij(f-cw,r)
Jij is still affected by the existence of shear.

Now we distinguish a pseudo-convective effect of the shearing,
just as we did of spatial fluctuating-velocity dispersion in
the unsheared case in the discussion of Eq. (2-48) and in the
appendix, Egqs. (A-5), (A-7). Specifically, we imagine the
fluctuating velocities at the correleted points with their
differing mean velocities as tending to be preserved as the
medium between the points is'distorted by shear. Thus, apart
from residual dispersive effects, we expect that in the local
proper frame in question the velocity correlation for the two

space-time points will not change if, for any change 6r' in
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the separation vector r', a corresponding change 61 is made

in the time separation t such that points moving with the
respective mean velocities and coinciding with x+r', X respec-
tively at times t+t, t would be separated by r'+br' at the
respective times t+v+67, t+bt., Hence, if we define a decor-
relation tensor Jij with this pseudo-convective effect removed

by writing

(5-4)  wgyE T = v E -y IT,1)

then Jij(f",r) will depend on 1 (at fixed r') only on account

of the residual dispersive effect. Egs. (5-3) and (5-4) yield
5-5 O (F,7) = [d VPW) S, (F-[v+a(xh) -G(x,) )T,7)
( ) wij r,7) = Wij p) 2 ’

and (5-2) then yields wij in terms of ;ij'
We define a non-dispersive approximation, generalizing

the local-convection approximation for unsheared flow, by

(5-6) Vi ENT = IgE0)

Since, by (5-5) without approximation, ¥{;(£,0) - fpij (£,0),

Eqs. (5-5) and (5-6) yield

(5-7) O, (F,7) =  dIVP(¥) 90, (F-{V+a(x}) -G(x,) 17,0)
ijite : 1j 2 20

as the expression of the space-time correlation in terms of

the space correlation in the non-dispers.ve approximation,

In the frame referred to by (5-2) this similarly becomes
(5-8) ¥y (xp,%5,8,7) =

[PPOR@)u gy (xy x5, 5= ((3/2)E(x}) - (1/D) E(xp) 41,0
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If the shear is truly uniform, as assumed at (5-1), the
square-bracketed effective local convection velocity in (5-8)
may be written also as(1ﬁD[G(xi)+G(i2)]+u'11(xé-x2)+5. The
consequences of this non-dispersive approximation can be
extended to the treatment of pressure also in the present
anisotropic situation by assumption again of a quasinormal
velocity distribution. (The mean shear-turbulence interaction
contribution naturally must now be included.)

As for the conditions on r and 1 defining the
universal range where (5-3) may be applied, we apparently
require, apart from the conditions (2-5), that [u(x))-u(x,) JT<<L;
since, however, in shear flows typically vo~u'L, the added
condition is normally already implied by conditions (2-5).

As written, Eq. (5-7) or (5-8) is meaningful also
when applied to a non-uniform shear flow, e.g., a boundary
layer. 1If it is so applied, the crudity of the approximation,
at best, must be greater or the domain of applicability smaller.
In any case, it remains true, as we saw in the corresponding
instance in unsheared flow, that the non-dispersive approxi-
mation does not suffice to give a good approximation to the
tail of the wavenumber-frequency spectrum where ;/vok is
large.

Other well known complications are involved in treat-
ing pressure fluctuations inAa boundary layer, as opposed to
the unsheared homogeneous flow considered in the preceding
sections, even with regard to the domain of the convective peak

in the wavenumber spectrum to which we might tentatively apply
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(5-8) . These effects are attended by the entrance of the length
parameter v/v, characterizing the viscous-sublayer thickness
and, with reference to spatially dependent quantities, also

the distance X, from the wall*.

*Amnng other consequences of the wall, the spectrum P(R,w) of
pressure on the wall in the approximation of incompressibility,
streamwise_homogeneity, and vanishing viscosity, varies as Kk
when K«b6-1, where & 1s the boundaty-lager thickness, and

ence vanishes a« K+(0, in contrast to the nonvanishing limit
(0,w) in the unsheared homogeneous case (Kraichnan 1956,
Phillips 1956).
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6, SUMMARY AND CONCLUSION

Kolmogorov's principles, as expressed by Eq. (2-6),
provide a basis for the treatment of Eulerian space-time corre-
lations in the universal range (2-5) in homogeneous turbulence
by permitting the explicit separation of the kinematic effect
of convection by the large eddies. From the related presumption
that the space-time correlation in the local co-moving frame
has the commonly accepted similarity character independent of
the velocity distribution P(V), and from the order of magnitude
of the coefficients involved, it was indicated that the local-
convection (non-dispersive) approximation (2-59) has validity
in the inertial and viscous subranges.

In the local-convection approximation, with an iso-
tropic, normal velocity distribution, the space-time structure
functions of velocity were computed explicitly for the inertial
subrange (Eq. (2-80) and Fig. 1} and for the viscous subrange
(Eq. (2-86)). Theze functions were found to be nearly space-
time isotropic in the inertial subrange and exactly so in the
viscous, with differing velocity scales for longitudinal and
transverse components. The result in the former case was
compared with the space-time correlation in grid turbulence
measured by Favre and asscciates. The computed envelope of
the time correlations at fixed spatial separations, for the
presuined value of turbulence intensity in the cxperiment,

decreases somewhat too slowly to agree well with the measured
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one. This discrepancy is presumably due mainly to neglect of
dispersion, which is significant at the Reynolds number of the
experiment. At higher Reynolds number, such fitting of the
space-time correlation may usefully supplement measurements of
pure spatial correlations and wavenumber spectra to yield the
Kolmogorov coefticient [Eq. (2-56)].

For the¢ unsheared homogeneous turbulence assumed in
this work, Taylor's hypothesis relating wavenumber spectra
in the mean rest frame to frequency spectra in the measurement
freme (velocity -GO) was examined for the inertial sukrange.
In the local-convection approximation the hypothesis was found
to be exact for arbitrary turbulence intensity vo/uo’ provided
an appropriate effective convection velocity is used to relate
wavenumber to frequency for the respective spectra [Eq. (2-116)],
Fco small vo/uo, this convection velocity differs from u by a
term of relative order Vg/ug depending also on thu quantity
whose spectra are in question, and other commonly defined
convection velocities also dif “er by such terms [Table 2].
The related cross-spectral density of streamwise fluctuating
velocity in the measurement frame was also computed in the
space-time isotropic approximation _Eq. (2-119)1].

The local-convecticon approximation for fixed finite
scale L of the energy-containing eddies does not yield the wave-
number-frequency spectrum of turbulence correctly up to arbitrarily

large values of w»/v _k; rather, velocity dispersion in space
)
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and time due to local eddy distortion enters, and it is necessary
to consider the frequency spread of the intrinsic (proper-frame)
spectrum Ea(k,w). The standard similarity dependence of E, for
the inertial subrange was accepted [Eq. (3-1)], and an argument
given for the dependence Eq(k,u)“ka as kze/w3*0. At small vok/w,
the intrinsic and mean-rest-frame spectra, EA and EA’ could then
be inferred uniquely within a constant factor [Eqs. (3-11), (3-15)
with m = 3]. An explicit form having plausible properties was
suggested to be used for Ea(k»w) [Eq. (3-4)]. 1Its most conse-
quential property is to have a finite second moment with respect
to frequency [Eq. (A-18), n = 2]. The resulting dispersive
correction to the rest-frame spectrum as given by the local-
convection approximation was computed for moderate w/vok (Eq. (3-10)].
At given k, dispersion increases the energy Ea(k,w) in che higher
range of w/Vok at the expense of that in the lower,

From the assumed intrinsic spectrum, the dispersive
departure from validity of Taylor's hypothesis was found. The
departure from unity of the pertinent ratio of spectra at

-2/3 and hence,

wavenumber k  is of the order of (v_/u )’ (kL)
for k1L>> 1, small relative to the non-dispersive departure
compensable by the above mentioned redefinition of convection
velocity [Eqs. (3-21), (3-24)]. The dispersive correction to

the local-convection approximation to the space-time velocity
correlation was also found in two limits; it is of the relative
order of (v /)31 (vg /21 and (vy)3/2/eLt /251, and the
order of (voT)Z/r4/3L2/3 if VOT/r<<1 [Eqs. (3-28) - (3-31)]. The
effect on the comparison with measured results for grid turbulence
was computed. The magnitude of this effect depends on the ratio
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B/Ao [Eqs. (2-44), (2-45)]) measuring the relative decorrelating
influence of time delay and of spatial separation in the proper
frame; for a likely magnitude of B/Ao and the Reynolds number of
the experiment the computed dispersive effect is subst.ntial.
Inferences from kinematic and similarity arguments for
an inertial subrange can be drawn also concerning pressure spectra
in the measurement frame. The wavenumber-frequency spectrum ;(ﬁ,w)
referring to a plane parallel to Go was indicated to have the simi-
larity form (4-5) in the neighborhood of its convective ridge
(Iw-ﬁo’ﬂ <V K). For v _/u <<l,wL/u>>1, and wf /v _<<1, the point

frequency spectrum P(w) conld be inferred from (4-5) to have the A
-7/3

~¥

dependence (4-8), varying as u The spectrum é(w) of average
pressure for a circular area of radius Ro, though not directly
measurable, was considered with a view to future treatment of .

a turbulent boundary layer. For a small area (wRo/uoggl), the
area correction is given by (4-11). For a large area (wRo/uOQZﬂ),
contributions associated with the convective peak of f(R,m) and
with the low-wavenumber region (KéZngl) are distinguished, the

3

former varying as R; . From the form of f(R,L) in the convective
region the former contribution is given by (4-15).

With assumption of quasinormality of the velocity
distribution and the non-dispersive approximation of space-time
isotropy for the longitudinal fluctuating velocity correlation,
the spectrum E(R,w) applicable in the neighborhood of the con-
vective ridge was computed explicitly for the inertial subrange
(Eq. (4-40), a = 0] (and formally extended into the non-universal

range, assumed isotropic). 1In this approximation the point

spectrum P(w) was computed explicitly for arbitrary vo/uO
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[Eq. (4-45)], and the cross-spectral density and space-time corre-
lation of pressure were also obtained [Eqs. (4-50), (4-53), (4-54)].
The variously defined convection velocities are the same as those
for the streamwise velocity component in the same space-time
isotropic approximation. From the assumption of quasinormality,
;(ﬁ,w) was estimated also in the low-wavenumber part of the

1 -1
K /v LS,

inertial domain where w/v K>>1, L~ and /u K>>1.
Throughout this domain (assuming m = 3 in (3-11)), P(K,y) is given
approximately by the local-convective wavenumber-independent form
(4-55). Correspondingly, the low-wavenumber contribution to the
moving-area spectrum a(w) for wRO/vO>>1 and wRO/uO>>1 assumes

2

the form (4-56), varying as R; . The ratio of the low-wavenumber

to the mean-convective contribution to a(m) is given by (4-16).

The kinematic separation of large-scale convective
effects basic to th.s work, and the related local-convection
approximation for space-time correlations, were plausibly
extended to the more general case of shear turbulent flow
(Eqs. (5-5), (5-8)].

The present work provides a basis for further
comparisons with measurements on grid-produced and other
relatively unsheared turbulent flows and a springboard for an
attack on boundary-layer turbulence with reference to proper-

ties not yet adequately explored.
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APPENDIX

PROPERTIES OF THE INTRINSIC SPACE-TIME
CORRELATION OF VELOCITY IN THE INERTIAL SUBRANGE

1f we propose to calculate explicit corrections to
the local-convection approximation (2-54) [or (2-59)] in the
inertial subrange, i.e., to consider terms of next lowest order
in R /L (with R, given by (2-52) and L the scale of the energy-
containing eddies), we should examine further the degree of
validity of the basic separation (2-6) of large-scale convec-
tion. We therefore consider the possibility that the intrinsic
decorrelation J(E,T) for given v depends significantly on v and

likewise on the scale L, the rms velocity fluctuation v_, and

o’
any parameters of large-scale anisotropy. We denote such
possi:.ble dependence in a partially suppressed fashion by writing

Y = ;_(L'l,f,r). Later we must specify more precisely the

v
definition of v. Eq. (2-6) is thus generalized to

(A-1) v(E,7) = [a3P@)y_ @ ESr ).
v

Now let J(E,T) again denote a suitable function of
the form J(E,T) = (€r)2/3F(€l/3r-2/3]1|)[Eq. (2-42) ) independent
of v and the large eddies; E(E,T) is to be so chosen, if possible,
that when inserted in place of @_(E,T) in (A-1), the computed
v

correction Aw(f,r)z.w(f,r)-wé(f,r) to the local-convection

approximation
(a-2) b (Ey7) = [ VR §(E-V7,0)

is correct to lowest order in R /L. For any v(r,7) we can
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rewrite (A-1) as an (exact) equation for Ay:

(A-3)  Mu(E,1) = [d39PE) [y @ L, E-v1,0) -y (E-v1,0) )
v

+ [d39P@) @ L Evr, 1) -9 @Y, E-vr,0)] .
v v

The first integral represents an increment due to non-vanishing
L'l at zero dispersive time delay, and the second represents

an increment due to the dispersive time delay at fixed v

and L. The objective is then to define v and choose @(E,T)

such that Ay in (A-3), to lowest order in RC/L, is equal to

(4-6)  [d3VPE) [y(Fvr,1) -y (E-v7,0)].

With regard to the first integral in (A-3), by (A-1)
we have j'd3GP(G)iG(L'1,f-GT,O) = ¢(r,0); furthermore, to
the lowest two orders in r/L, y(r,0) has the form

2/3-Ang(r/L)2, (A; = coastant)

¥ (r,0)>F(0) (er) L

as exemplified by the result for the von Karman interpolation
form (Hinze 1959, Eq. (3-136)). Hence, the contribution to
Ay from the first integral in (A-3), relative to the magnitude

213 r_/1y*3. on the

of y_., is of the order -vg(RC/L)2+(eRC)
other hand, the value of (A-4) on the basis of a :(f,r) charac-
terized by (3-5) is estimated by reference to Eqs. (3-28),
(3-29), to lowest order in L;l, as of relative order (RC/L)Z/3
and hence of lower order than the first term in (A-3). It
remains then to consider whether the second term in (A-3)

alone agrees with (A-4) in this lowest order.
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We are free to choose v in (A-1)(and hence (A-3)
and (A-4)) to include contributions to fluctuating velocity
from all eddies down to some minimum size ~L', say (cf. Inoue
1951); for example, we might set L' = RC(L/RC)5 for some
0 <6 < 1 before letting RC/L + 0. The smaller L' is, the less

these eddies are removed from the size ~R, of eddies mainly
determining w_(L'l,f-GT,T)(with |£-vtl~R ), and hence the
more likely w_vis to depend significantly on v on account of
distortion ofvthese eddies by eddies of size > L'. On the
other hand, unless L'~Rc(i.e. 5 = 0), then.wé(L'l,f',T) will
have to include, by means of its dependence on the dispersive
time delay 1, the decorrelating effect during 1 due to the
residual convection velocity arising from eddies in the size
interval from ~L' down to ~R.. Consideration on this basis
indicates, indeed, that the second term in (A-3) is of lower
order in RC/L than (A-4), and hence cannot reduce to the latter
unless L'~Rc. If L'~R,, the desired reduction can
occur if the intrinsic decorrelation J_(L-I,E-GT,T) (with
IE-GT|~RC) is statistically independenz of the motion due to
eddies of size ~RC(L/RC)6 even for 6>0. We leave further
clarification to explicit dynamic treatments (e.g., Kraichnan
1959, 1966) and, as stated in the text, accept the similarity
form (2-42) for use in (A-1) where a definite form is required.
As a guide to the possible properties of the intrinsic
decorrelation J(r,r)[z J(E,T)], assumed of the form (2-42), we

append discussion of certain conjectures. Previously we dis-

tinguished two sources of decorrelation in y(r,T) relative to
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;(r,O)[=w(r,0)]: (1) differential convection due to velocity
dispersion over the distance r acting during time T;

(2) pseudo-Lagrangian velocity wander during 7, existing even
when r = 0 With regard to the latter, since i(0,1)~e|1|, this
effect may be considered a random walk of the velocity at a
given point in the proper frame, corresponding in the related
Lagrangian case to white noise in acceleration*.

For identifiable effects coatributing to velocity
decorrelation with time in a given Eulerian frame, one approxi-
mate mode of inclusion to be considered for possible validity
is this: the effect is regarded as producing during T a
displacement vector, with some independent probability density,
and for each realization of this displacement the velocity
correlation is supposed to be formed as the Eulerian correlation
function that applies in the absence of the effect with a dis-
placement argument that is the vector sum of the previously
applicable one with the new one. This mode is exemplified by
the basic Eq. (2-6) that treats the effect of large-eddy motion
on time correlation in the mean rest frame. A second simple
mode of inclusion of a given decorrelating effect may be
considered: the effect is regarded as producing a statistically
independent contribution, not to the displacement vector in the
correlation function, but to the velocity decorrelation itself.
The former approach is surely indicated (through statistical

independence may be doubtful) where the effect in question is

* (3
Though it is useful to distinguish these effects we cannot
expect that the actual dynamics permit a clean-cut separation
of the two.
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due to an identifiable convection of a presumed relatively
static eddy configuration, either a convection common to
both spatial points in the frame of the Eulerian correlation
in question or (in cruder approximation) one that arises from
a relative velocity between the two points*.

0f the two effects distinguished in the first para-
graph, the first, due to velocity dispersion over r, should
thus be treated by the convection view (recall also the dis-
cussion of Eq. (5-4)). Which, if either, treatment is
appropriate for the second effect, velocity wander, is less
clear. The view that velocity wander contributes to an effec-
tive displacement vector is akin\to the independence hypothesis
of Corrsinl961l, Saffman 1963, referring to the relation of
Lagrangian and Eulerian correlation functions. If we support

this view, we incline to a rough conjectured form
. 2 3= - 332 ,/2 =iz - = 2
(A-5) y(r,T1) - A€ /3 fd Xy J d sz(xl,xz)!r-clvrrxl—cszszl /%

where v_ = (el'rl)l/2

and v_ was defined after (2-43). P(il,iz)
is the joint probability of contributions to the effective
displacement vector, for points separated by r, of clvrril due

to differential convectiun and cszTiz due to velocity wander ;
the probability variables X;,X, are assumed normalized, so

that the rms values of the two displacement contributions are

clvrlTI and CZVTITI’ and c,c, are of the order of unity

since V.. is of the order of the differential velocity over r

*ﬁe note that the assumption of Chandrasekhar (1956) corres-
ponded to the opposite view that even the decorrelation with time
due to local convection by large eddies appears in the form
of an independent additive component in the velocity decorrela-
tion [see Eq. (2-50)]. -




and A of the order of the velocity wander during t. 1In the
spirit of the conjectured approximation, we regard P(il,iz) in
(A-5) as independent of r, 7 and of the directions of x,, iz,
except that it may depend significantly on Ky where

My = ii-flliiir, i.e., the probability of a relative velocity
between points (x,t) and (X+r,t+r) may well depend on the
direction with respect to the separation vector r. If in
addition, the processes associated with il and iz may be

considered independent, we may set

(A-6) P(iliiZ) = Pl(il)PZ(iZ) = (4")-2P1(x1,u1)P2(x2)-

If we support rather the view that velocity wander
contributes directly and independently to the velocity decor-

relation, we write in place of (A-5)

(A-7) V() = A0€2/3 f d3i1P1(i1)|f-c1vrriﬂ2/3+ (er)2/36(2),

where z was defined by (2-43). The second term represents
veloclty wender; by (2-45) G(z)=z as z-e, but G(z) may vanish
rapidly enough as z+0 so that the first term alone gives
;(r,r)-;(r,O) to lowest order in z. The simplest assumption

for G(z) , however, would be simply G(z) = Bz whence

(A-8) (er)2/36(z) = 7(0,7) = Belxl

This form, being independent of r, ylelds a contribution to
E(k,r) or Ea(k,w) having singular dependence as &(k) and hence

could be useful, if at all, only for quantities entailing

integration over wave number.
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If we could suppose that Pl(il) in (A-7) is isotropic
(i.e., independent of ul) and also normal, we obtain, as at
Eq. (2-80) (i=0), a contribution to l(r,r) from the first term
in (A-7) given by
A (eR)2/3(1-1_(c;2) ]
where

RZ = r2+s2(v 1) = r2(1+s§z2) .

An analysis of the corresponding contribution to the spectral

density Ea(k,w) appears to yield a negative value (varying as

GS/Zka-13/2) in the linit Q = w/el/3k2/3+u5 however, an

unacceptable result,

Similarly, examination of the Ea(k,w) given by (A-5)
in the simplified case of cl—()with isotropic Pz(iz) yields
Ea(k,w)« - E(k)ekzw (=~ e§/3k1/ ) as Q»o, i.e.,, a negative
spectrum again in this limit. It is natural to consider also
the variant of (A-5), in the simplified case where cr=0,obtained

by adding displacements r and ¢V, T in quadrature:

(A-9) V() = 823l x1H1/3,
This form also yields
(A-10) B, (ky) < -€ /330 a5 qse

in fact, by virtue of the discontinuous third derivative with

respect to 1, any form leading to

E(k,t) > A(k)-B(k) |7|3 as t>0 ,

where the function B(k) > 0 for some k, yields this same negative
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result for such k in the limit O -+ «,
A similar variant on the first term of (A-7) (or on
(A-5) with °2 = 0), namely

on the other hand, yielus a positive result*

A-12) E (k) « /220132 g5 05w,

The quadrature variant of the complete form (A-5) is

(A-13)  y(r,1) = A, 62/3(r2+c2e2/3 2/3.2, em 31/3

It appears that, despite the c, term,the term « lrl3 will
cause this form to yield once more a negative Eﬁ(k,w) in the
limit of large Q, so that this form also fails in this regime.
Though (A-13) is thus unacceptable even as a tentative approxi-
mation, it may correctly indicate the dependence of ;(r,T) in
the limits of large and small z.

In the limit z » 0, if [d°x,P(X;,X)u, = 0, fam
(A=5) yields to lowest order in z

(A-16)  3(x, ) -0 (D« 1(r,0)z2 « 4/3:72/3.2

In particular, if (A-6) holds and

(A-15) ,’mdxx3 Iidu upl(x,u) =0,
(o)

*iore generally, an assumed form
J(r 1) - A €2/3 l/m 2 2/3 l/m-—4/3 2 2m/ 3

(which has the requirecd form (€r) /3F(z)) also yields the
result (A-12 If m = 1/2, this form reduces to (A-11); if
m = 3/4, it as instead the required behavior, (: [1]) as z » =,
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then (A-14) is the limiting form. But Eq. (A-15) must be

valid, in fact, since otherwise the separation of all pairs

of fluid elements, on the average, would be increasing,

contrary to the condition of compressibility. Likewise form
(A-7), 1f [ d3ilpl(i1)ul = 0 and G(z) » 0 faster than 2% as

z » 0, also yields this result; so also does form (A-13)(cf. Eg.
(2-48)). On the other hand, if G(z)= z as z - 0, which would be

so if form (A-8) is valid in this limit form (A-7) yields instead

(A~16)  ¥(r,7)-¥(r,0)*4(0,1)= eltl;

in such case, velocity wander rather than differential
convection represents the leading contribution.
In the opposite limit where z + », if (A-6) holds,

form (A-5, yields to lowest order

P (r,1)-9(0,1)« y(0,7)z"} « (er)?/3;

form (A-13) also yields this result. On the other hand, form
(A=7) in this limit yields

i(r,f)-5(0.1)«(er)2/322/3 = 68/9r2/9|1:2/3.

We can avoid constructing functions ;(r,r) that lead
to negative Ea(k,w) by starting from the latter. In the inertial
subrange (3-3) the requisite form for Ea(k,m) is given by (3=1)
in the text. Form (3-1) yields
A-17)  3(x,0) = (9/10r(1/DN, ()23, T(0,0) = (3/D)-xe 7,
where
(A-18) No= 2/ dna"G(q),

i.e., the similarity form (3-1) implies the requisite limiting
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forms (2-44) and (2-45) independently of G(), provided only
that the moments No and N, exist and do not vanish,

Expressions (A-17) represent the leading terms of the
general similarity form J(r,T) = (er)2/3F(z) in the respective limits
z*0 and z+», and we mav consider the z-dependence of the next-to-
leading terms in these limits. The dependence as 20 is deter-
mined by the behavior of G(Q) as Q»=. First, suppose G(Q) in

this limit decreases faster than Q.

From Eqs. (2-15) and (3-1),
by expansion of l1-cosyT, we readily find

(A-19) F(2)~(9/10)T(1/3)N_+(3/2)T(2/3)Nyz? as z+0,

the first term having been given at (A-17). Now suppose instead

G(Q)*gmn'(2+6) as Q»=, 0<8<1l, g_ constant.
In this instance we find
(A-20) F(2)*(9/10)T(1/3)N_+b g z' ¥ as 20,
b - 2m [(26/3)cos(8/3)

O " 1 - 28/3 r(2+8)cos(n5/2)

Couvergence or non-convergence of the second moment N2 of G(Q%
which led respectively to (A-19) or (A-20), is equivalent to
decrease of O(rw), the frequency t ansform of the proper-frame

spatial ccrrelation, more or less rapidly than w-3 as
= *
€ 1/3r2/3m"’-’°.

*We may consider also a hypothetical space-independent velocity-

wander term (A-8) in ¥(r,7), which implies a next-to-leading termn
«z in F(z) as z+0, in place of those of (A-19) or. (A-20). ,Th=
corresponding contribution to E,(k,y) would be n~ Beé(k)w'z; thi-=
singular function is the ljmit 35 cne ?S the form (3-1), formally
corresponding to G(0) = ~~ B~ //45(0-3/4). Such an Eé(k,u) may b2
regarded as the limit of that g%vea bv form (3-4) with m =1 as
ym*O, in the sense that n~lx/(ké+x4)~x(k)as x>0.
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Similarly, the dependence of F(z) as z+* is related
to the behavior of G(N) as 0*0. In particular, if
G(Q)*gon'1+ﬂ as 00, 0<a<1, g constant,

we find

(A-21) F(2)+(3/2)mN; 2420 {5320 /3) %%%} g,z"

as z»», the first term having been given at (A-17). The condition
A>0 is required for finiteness of N, in (A-17). 1f A =1/2,
this result may be written

(A-22) F(2)+(3/2)mNyz + n(n/)2 g 2712 ag zoa. Jere

The type of function assumed for G(Q) at Eq. (3-4) !
meets the conditions yielding the limiting forms for F(z) in (A-19)
and (A-22) above, and Eqs. (3-5) and (3-6) accordingly represent
particular cases of these results. Apart from the coefiicient
a s form (3-5) is thus correct provided only that the second
moment N, of G() is actually finite. Further, the form (A-19)
(and (3-5)) agree with the limiting form suggested by (A-5)
and (A-13), or, more generally, with the limiting form obtained
if differential convection determines J(r,w)-a(r,O) as z » 0.
At the same time, in the opposite limit where z *+ o, if differen-
tial convection contributed to effective displacement in quad-
rature with the contribution from velocity wander, as in (A-95)
and (A-13), the next-to-leading term in F(z) would be constant

1/2

(A » 0 in (A-21)), not «z~ as in (A-22).
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A-18)  E (k) = ¢ %7 36@), aze 323y,

in the domain (3-3). Form (A-17) is the limit of such a farm,

formally corresponding to G(Q) = W-IBQ-7/25(Q-3/2).

(A-18) implies

Form

A-19)  3(r,0) = (9/10)TW/HN_(en)2/3, Jo,m = (3/2ym el

‘where

(A-20) N =2 émdQQ“G(Q),

i.e., the similarity form implies the requisite limiting forms
(2-44) and (2-45) independently of G(Q), provided only that

the moments No and N1 exist and do not vanish, It is natural
to examine the consequences of replacing 6(k) in (A-17) by a
common function, v'ls/(k2+82), which reduces to it in the limit
B -+ 0, but introduces a finite scale of spatial correlation of

1/2w-3/2

appropriate order (-~¢ ). In view of (A-18) we therefore

assume

A-21)  E (ko) = r 2Bew 2 ve 12141372 10 2L )3y

2

(4-22) i.e., 6@ - v 2Bya 214203 L,

The limit (A-17) would correspond to ¥ » 0. Eq. (A-21) further
yields, by use of (2-15), the limiting forms of i(r,f) given
at (3-5) and (3-6). Hence, the dependence of the two leading
terms of ;(r,w) as given by (A-Zl) in both limits z + 0 and

z * » gagrees with the limiting forms suggested by (A-5) and
(A-13), or more generally with the limiting forms obtained if

differential convection determines i(r,T)-J(r,O) as z » 0 and,
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as z » o, contributes to effective displacement in quadrature
with the contribution from velocity wander.

We may inquire how general is the dependence
F(z) -F(O)cz2 in the limit z + 0, implied by the specific form
(A-21) as stated at (3-5), ie., the dependence ATJEEE(r,T)-w(r,O)xrz

1/3r-2/3

as € 7+ 0. The singular form (A-17), for example,

corresponds rather to AT; «|t|. In general, we have by the

inverse of the proper-frame analog of (2-26)

AT; = 2fmdw(1-cosw1)6(r,w).
)

Hence, provided only that the frequency transform of the
spatial correlation trace falls off more rapidly than w'3 for
all r # 0, i.e., that G() falls off more rapidly than Q 3,

2 €1/3r-2/3

we have in fact ATJ“T s

T+ 0, since ATJ then
approaches the result obtained from the leading term

1-coswr »(1/2(wt)?; explicitly,
by > (3/2)T(2/3)N, (ex) 2/ 3(e1/3c72/3) 2

in terms of the assumed convergent moment N, defined by (A-20).
On the other hand, if 5(r,w) falls off as w'(2+°), 0< 6< 1,
i.e.,

G(D) * g, 0 (*®) a5 05w (go constant) ,

we obtain

B.¥ > bogy (en) 23 3m2 311y 100,

b = 2r  1r(26/3)cos(r6/3)
0" 1-26/3 r(2+6)cos(76/2)
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It seems likely that the second moment N, of G(?) is finite
through we cannot exclude the contrary. If it is, then assump-
tion of (A-21) can do no worse than yield numerical
constants, e.g., Co in (3-5), whose values may differ somewhat

from the correct ones.
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FIGIRE 1. Functions Hy(vJwWr) of Eq. (2-80). These functions
express the fractional departure from space-time
isotropy of the velocity decorrelation functions
computed in the local-convection approximation for
the inertial subrange [(1l) longitudinal, (2) trams-

verse, (0) trace].

FIGURE 2. Space-time correlations for streamwise fluctuating
velocity in laboratory frame. Experimental curves
—-==— — —, as given for grid turbulence by Favre
(1965), Figs. 1,5; computed curves for inertial sub-

range by local convection approximation, Eq. (2-90):

, turbulence intensity vo/uo = 0.027,

spatial separations aligned with mean flow (¢ = 0);

= , vo/uo = 0.027 but misalignment
® = 1.5°, or o = 0 but intensity arbitrarily adjusted
to vo/uo = 0.042. Computed curves for vanishing
separation coincide. Results are omitted at correl-

ations < 0.2.

FIGURE 3. Space-time correlations for streamwise fluctuating
velocity in laboratory frame. Experimental curves

— — — —, as in Fig. 2, computed curves for

?

inertial subrange with dispersion: =5
envelope from non-dispersive computation (———)

of Fig. 2;—-———, vo/uo = 0.027, ¢ = 0, disper-

sion included by Egqs. (3-30), (3-31) with

ap, = 2.31; ——, v /u, = 0.027, ¢ = 0, dispersion
included by space-independent addition to decorrelations

11%
with B/Ao = 1.04.
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local-convection approximation for the inertial subrange, to be exactly
valid for all vo/uo provided a particular effective convection velecity

different from Yy is assumed; for sufficiently large le, where L

is the scale of energy-containing eddies, the dispersive correction

to this result is negligible. A plausible explicit form is proposed
for the intrinsic energy spectrum in the co-moving frame, and con-
sequent corrections to results of the local-convection approximation
for space-time correlations and spectra are computed. This dispersive
correction to correlations is appreciable at Reynolds numbers of
typical grid-turbulence experiments. An extension of the basic sep-
aration of convection and the local-convection approximation to shear
flow is suggested.

From kinematic and similarity arguments for the inertial sub-
range, inferences are also made concerning pressure spectra in a
measurement frame with velocity (-u_,0,0) relative to the unsheared
ilow. A similarity form results fof the wavenumber-frequency spectrum

P(R,w)[R = (ky, ky)] in the vicinity of the convective ridge
(J® - kyu | <v.K). For v°/uo <«K'1, the fxnctionf%/§orm is then
obtained for the point frequency sgectrum P (W) (ow

tive contribution to the spectrum Q (w) of average pressure on a
moving circular area of radius Ro for wRo/uo>>1 is smaller by a

factor 0.8(wR_/u )'3. On assumption of quasinormality of the velocity
distribution 8nd%use of the non-dispersive approximation of space-time

A
isotropy for the longitudinal correlation, the spectrum P(K,«) in the
vicinity of the convective ridge is determined explicitly, as well
as the cross-spectral density and space-time correlation of pressure.

From quasinormality, P(R,w) is estimated also in the low-wavenumber
domain. I. the limit wRo/vo>>1 the ratio of the low-wavenumbir to

the mean-convective contribution to the moving-arca spectrum Q(«) is

~(v luy OB R _fu).

); the convec-
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line preceding Eq. (2-14). For "energy of" reaa "energy by."
line (-8): For "P(G)vzdv" reaa "P(v)vzdv i

In Eq. (2-38), in the definitions of e and 52, and in the line
following, for "v' read "v."

second line before Eq. (2-52): For "V" read "v."

(2-66): For "v1/2" read "vl/z."

line (-9): For "relation (2-64)" read "relation (2-59)."
line 6: Insert comma after "uo."

Eq. (2-100): For "@" read "g,"

Eqs. (2-104), (2-105): For "P(v)" read "P(v)."

line 2: For "for" read "For."

lines 9 and 11: For "r" read "r" and for "rl" read "fl" in
arguments.

line (-3): Forl eii read 9ii

line 8: For "u,.," read "u,.."

Eq. (2-119): Iigert ( aftir [ in second line.
line 1Zz: Close parentheses after "respectively."
line (-5): Close parentheses after " (3-6)."

line (-5): Close parentheses in "TI' (1/3)."

line (-10): For "y" read "ym."

Eq. (3-18), and p. 64, Eq. (3-20): Move factor "k

00

2(m-1) to follow

"f ", " 2 " 2
i dk"; for "y read Vo *

Eq. (3-18): For "@" read ng,n

11 2" " "
Eq. (3-21): For bm(B/Ao) read bo d(m
line (-4): For "b1 and b3 were" read "bo was."
line 6: For "AT" read "AT 3!
line (-7): For "B " read "B o

Eq. (4-5): For "u K" read "u K."




-2 -
P. 73, line 6: Read "P(w)<£ w-7/3 "

P. 80, line 1: For "k << 1" read "k &« L
p. 80, line 3: For "P(K,w)" read "P(i,m)."
p. 84, line 12: For "Kl" read "kl 4

p. 86, line 7: Delete + before k @

p. 87, Eq. (4-52): Should read "& (C t) = [ doe “lar 6 (C.m) "
-00

-1 "

P. 90, line 2: Read “k2~m/vo(>> K)."

P. 94: Insert comma after "$;
line 11. J

p. 106, line (-2): For "through" read "though."
PP. 114-116: Delete these pages.

(r,t)," line 10, and after "frame,"

p. 117, seventh reference: Following "Bolt" add "Beranek & Newman
Rept. No. 1310."
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